

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trade-
marks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the
designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for inciden-
tal or consequential damages in connection with or arising out of the use of the information or programs con-
tained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special
sales, which may include electronic versions and/or custom covers and content particular to your business,
training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data:

Vogel, Peter, 1953-
Practical code generation in .NET : covering Visual Studio 2005, 2008, and 2010 / Peter Vogel.

p. cm.
Includes bibliographical references and index.
ISBN 978-0-321-60678-5 (pbk. : alk. paper)

1. Microsoft Visual studio. 2. Code generators. 3. Microsoft .NET Framework. I. Title.
QA76.76.G46V65 2010
006.7'882--dc22

2010003301

Copyright © 2010 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or like-
wise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671 3447

ISBN-13: 978-0-321-60678-5

ISBN-10: 0-321-60678-7

Text printed in the United States on recycled paper at RR Donnelly in Crawfordsville, Indiana.

First printing April 2010

xiv

FOREWORD

“I believe raising the level of abstraction is fundamental in all practical
intellectual endeavors.”

—Bjarne Stroustrup, 2004

The story of software engineering has been the story of increasing the
level of abstraction at which we as programmers work, from logic encoded
in hardware to toggle switches representing binary digits, through machine
code, assembly language, low-level languages, and high-level languages
both procedural and functional. More recently, we have declarative mod-
els of business processes that can be shared and discussed with folks who
have no formal training in computer science at all. I’d wager that most
readers were nodding along with my list above until I got to the last item.
Has abstract modeling become a proven mainstream technique yet,
accepted and used by all in the industry? No, of course not; this is the
abstraction increase that we’re currently involved in working out, and
doubts and skepticism still abound. It’s hard to remember now, but all ear-
lier progressions were surrounded by doubt as to their value as well. In the
infancy of each new technique, programmers wanted detailed access to the
previous layer, not fully trusting the new tool to meet their needs, but as
tools and understanding matured, this requirement slipped away. Today,
few developers feel the need to examine the IL or bytecode produced by
their C# or Java compiler, and fewer still the assembly code produced by
the JIT compiler underlying their runtime.

Code generators bridge the gap from nascent abstractions to their well
understood predecessor technologies. They facilitate working on a prob-
lem at a higher, more productive level and translate that to a practical solu-
tion based on best practices at a lower level. Of course, all this talk of rais-
ing abstraction levels implies some sort of grandiose vision of defining your
application with metadata and generating the whole thing. This book
demonstrates clearly that nothing is further from the truth and that start-
ing small is where the value is at when it comes to code generators.

Foreword xv

As our abstractions get closer to our problem space, as opposed to being
merely refinements in the solution space, we’re inevitably going to use more
granular, more fragmented tools that are specialized for the task at hand.
Alongside a gradual easing of the difficulty of building such tools, we have
the ingredients for a productivity explosion, driven by the creation of small
tools to help with the distinct tasks in our day-to-day jobs. Unix command-
line developers have known this truth since the 1980s with their chaining of
small scripts; now it’s becoming a reality for the IDE generation.

Whether your design-time metadata is a simple list of settings and
their default values in Visual Studio, or the set of tables and stored proce-
dures to be accessed in your relational database, there’s ample opportuni-
ty for using that data to generate reliable code that conforms to proven pat-
terns. Look for metadata that’s already present in your application design,
and surface it to drive tools. Look for repetitive patterns in your code and
determine which pieces are fixed and where the variability is. Make creat-
ing tools and increasing task repeatability part of your normal approach to
problem solving to ease your working life.

Once these skills are within your everyday comfort zone, your produc-
tivity will get a boost and your value to your team will increase. Spreading
the use of such tools to make your peers more productive is an important
step in the transition of our industry from one dominated by software arti-
sans to one driven by engineering practices that provide predictable results
at scale.

I encourage you to add the techniques outlined in this book to your
toolset and to use them to develop your own workbench of generative
tools. In doing so, I’m confident you’ll improve your capabilities, and what’s
more, have fun doing so.

—Gareth Jones,
Developer Architect, Visual Studio
Issaquah, WA
March 2010

xvi

PREFACE

Whenever you’re looking at buying a book, it seems to me there’s only one
question that should be asked: “Why should I invest my hard-earned
money in this book?”

This book is designed to make you, as a software developer, more pro-
ductive. It does that by giving you all the tools you need to incorporate
code generation into your standard development practices. Why would you
buy this book? Because letting Visual Studio and .NET write the boring
code lets you work on the important stuff.

All the code-generation tools you need are already available to you
because you’re already using code generation. As soon as you start working
in .NET and any version of Visual Studio, an enormous amount of code is
being created for you. For instance, if you’ve ever created a DataSet then
you’ve been using a Visual Studio custom tool that generates the code class
file for your DataSet—and that’s just some of the code that’s easy to see.
There’s a great deal more generated code hidden away where you can’t find
it. In addition to making you more productive, those code-generation tools
have taken over creating some of the repetitious and error-prone parts of
building applications, thereby also increasing the quality of your code. The
next step is for you to start using those tools to create solutions that you—
rather than the .NET team—want solved.

But the problem is that there is no single point of reference for this
material. Code generation requires several tools, and there is no one place
where all those tools are discussed. And, even when you find resources for
those tools, a comprehensive reference that shows you how to apply them
is missing. So part of the answer to the question “Should I buy this book?”
is that the book provides “one-stop shopping” for all the tools you need to
implement code generation. I’ve put all the tools in one book and covered
all the parts of each tool that are relevant to code generation.

I’ve been building Visual Studio add-ins that created code for me since
.NET 1.1. As I worked with various clients, I found that they were also
adopting code-generation solutions—and I got to help them do it. So, in this

Preface xvii

book, I wanted to show how those tools could be used in a practical way—
and how they would work together. As a result, almost a third of this book
is taken up with three case studies that show how to coordinate these tools
to create useful, reliable code-generation solutions for common problems.

To put it another way: I wrote this book because I believe that the
code-generation tools built into .NET and Visual Studio 2005/2008/2010
will make you a better, more productive developer. And I believe that more
developers would develop more code-generation solutions if the tools were
more accessible to them.

And, of course, I wrote this book because it’s cool technology. Several
years ago, I stumbled across a great quote from Dick Sites (one of the
designers of Digital Equipment Corporation’s Alpha architecture): “I’d
rather write programs that help me write programs than write programs.”
That seemed right.

One caveat: If you’re looking for a book that shows you how to create
enormous frameworks that will generate thousands of lines of code from a
single XML document that describes an application—this is not that book.
Certainly, all the tools you’ll need are in here, but that’s not my focus. I
don’t want to describe how to spend three years building your very own
“application generator.” Instead, I want to give you the tools that will let
you solve a problem in your life and do it in a morning—a solution that
you’ll never have to think about again because it will just work.

The first case study in this book (in Chapter 9) is a good example: This
solution generates a class that simplifies access to the connection strings
specified in the connectionStrings element. It took me about a morning to
write, it works in every application, it reduces the amount of code I write,
and it eliminates errors in my applications. The second case study (Chapter
10) is similarly focused: It generates the code for an ASP.NET validator
that checks that data entered by the user is a valid entry in a table. Like my
connection string generator, this is something I use in almost every
ASP.NET application I write. The final case study (Chapter 11) took a full
day to write, but it allows nonprogrammers to use a visual designer to gen-
erate the code necessary to integrate their software into one of my appli-
cations—and to do it reliably and without requiring my intervention.

Here’s a breakdown of the topics covered in this book:

■ Chapter 1, “Introducing Code Generation,” is the “theory and prac-
tice” chapter. It discusses the structure of code-generation solutions
and covers best practices in architecting solutions.

■ Chapter 2, “Integrating with Visual Studio,” gives you enough infor-
mation about creating Visual Studio add-ins for you to integrate
code generation into your standard activities. The connection string
generator, for instance, generates code whenever the developer
closes the web.config file; the validator example generates code
whenever the developer closes an .aspx file containing a specific tag.

■ Chapter 3, “Manipulating Project Components,” covers the objects
and methods that you need to add (or remove) components to a
project: code files, folders, and so on.

■ Chapter 4, “Modifying Code in the Editor,” gives you the tools you
need to insert text into files. This allows you to generate code using
any tool you want (even standard string-handling functions) and
then insert that code into a file in your project.

■ Chapter 5, “Supporting Project-Specific Features,” provides sup-
port for working with specific types of projects: C#, Visual Basic, and
ASP.NET websites. Each of these project types have special fea-
tures that aren’t available through the objects covered in Chapter 4.

■ Chapter 6, “Generating Language-Neutral Code,” contains full cov-
erage of the CodeDom, which allows you to generate code without
having to commit to producing Visual Basic or C# until it’s time to
insert text into files.

■ Chapter 7, “Generating Code from Templates with T4,” covers a
new technology in .NET: Text Template Transformation Toolkit
(T4), which uses a template-based approach to code generation that
reduces the amount of code required in a solution.

■ Chapter 8, “Other Tools: Templates, Attributes, and Custom Tools,”
has three technologies you can use in creating code-generation solu-
tions: Visual Studio templates, attributes, and custom tools. Visual
Studio templates reduce the code that must be generated from your
code; attributes provide a way for developers to insert information
into a file to specify the code to be generated; custom tools are
standalone programs that, when associated with a file, read the file’s
contents and create a file of generated code.

■ Chapter 9, “Case Study: Generating a Connection String Manager,”
Chapter 10, “Case Study: Generating Validation Code,” and
Chapter 11, “Case Study: Generating Data-Conversion Code,” are
the three case studies included in this book.

xviii Preface

Preface xix

When I wrote this book, I assumed that you’re an experienced devel-
oper with a solid command of your programming language. I also assumed
that you have several years of experience in creating complex applications.

You can find code samples for this book and all three of the case stud-
ies on www.informit.com and on my website at www.phvis.com.

I hope you find this book useful and enjoyable to read.

—Peter Vogel
March 2010

www.informit.com
www.phvis.com

333

C H A P T E R 9

CASE STUDY: GENERATING A
CONNECTION STRING MANAGER

In this chapter:
• Defining the Problem
• Setting Up the Add-In
• Creating the Code Generator
• Customizing the Template
• Generating Code
• Reading Input
• Notifying the Developer
• Supporting Customization
• Tying Generation to Events
• Generating a Simple Class

In this chapter, I walk through an end-to-end solution for code generation
that concentrates on integrating with Visual Studio and working with the
CodeElement objects. The code for this solution is kept purposely simple to
avoid involving other tools. (For example, I only make minimal use of the
code editor object.) The case study in the next chapter includes a wider
range of tools, including the CodeDom.

I’ve also assumed that there will be only one configuration file open at
a time—because you can only have one app.config or web.config in a proj-
ect, that’s not an unreasonable assumption. However, because a Visual
Studio solution can include multiple projects, it’s at least conceivable that
a developer could have two or more configuration files open at a time. The
case study in the next chapter shows a more sophisticated process for han-
dling events to support scenarios where multiple files that trigger code
generation could be open.

334 Chapter 9 Case Study: Generating a Connection
String Manager

This solution does demonstrate how to do the following:

■ Support all project types, including ASP.NET websites, without
using the VsWebsite objects (or, at least, only having to use them once)

■ Support customization by the developer
■ Read existing files in the project to get the input specifications
■ Create a page in the Tools | Options dialog to allow the developer to

configure code generation
■ Tie code generation to events in Visual Studio

As part of this solution, I include some utilities that you can use in
other code-generation solutions. One caveat: To simplify the code in this
example, I assume that I’m only generating C# code, although I discuss
where the solution would be different when supporting Visual Basic.

Finally, within those self-imposed limitations, I’ve tried to demonstrate
a variety of techniques to show the range of options available to you when
generating code. My goal for this chapter is to demonstrate a process for
developing an add-in, along with some of my best practices and design pat-
terns I follow.

Defining the Problem

The problem I want to address is relatively simple: handling the connection
strings in an application’s configuration file. A typical example of the separate
section available for holding connection strings in an app.config or web.config
file looks like this:

<connectionStrings>

<add name=”Northwind” connectionString=”...”

providerName=”System.Data.SqlClient” />

</connectionStrings>

When retrieving the connection string, you access the connection
strings as named members of a collection. To retrieve the connection
string from the previous example in a non-ASP.NET application, you’d use
this code:

string MyConnection = ConfigurationManager.

ConnectionStrings[“Northwnd”].ConnectionString;

Defining the Problem 335

Here is the syntax for an ASP.NET application:

return System.Web.Configuration.WebConfigurationManager.

ConnectionStrings[“Northwnd”].ConnectionString;

This syntax creates problems for developers. The absence of
IntelliSense support when specifying the connection string means that you
have to switch back to your configuration file in order to find what con-
nection strings you have and what you called them; if you mistype the name
of the connection string, you won’t find that mistake until that line of code
executes (probably when someone who has input into your job appraisal is
looking over your shoulder). You don’t have to take my word that this syn-
tax is error-prone: Did you catch the misspelling of “Northwnd” in the sam-
ple code? It should have been “Northwind” to match the connectionString

example—but if you don’t spot that problem when reading the code, you
won’t find it until the code executes.

A Model Solution
ASP.NET provides a better model for handling connection strings in the
way that the personalization provider handles properties. As with connec-
tion strings, you define personalization properties by entering XML tags
into your website’s configuration file. A typical example looks like this:

<properties>

<add name=”LinesPerPage” type=”int” defaultValue=”0”/>

</properties>

Unlike connection strings, however, at runtime, you don’t access your
personalization properties as members of a collection. Instead, you access
the properties you defined in the Web.config through properties on the
Profile object, like this:

Profile.LinesPerPage = 15;

When entering this code you get full IntelliSense support for all the
Profile properties (see Figure 9-1). If you ask for a property that doesn’t
exist, your problem is found at compile time, not runtime. Overall, per-
sonalization delivers a solution that provides better support to developers
than is available with connections strings, even though the input to both
processes is the same.

336 Chapter 9 Case Study: Generating a Connection
String Manager

FIGURE 9-1 Although personalization properties are defined in an application’s
configuration file, access to those properties is handled through specific properties on the
Profile object.

The personalization solution is made possible through the magic of
code generation: By analyzing the entries in the configuration file, Visual
Studio and ASP.NET generate a Profile object with all the properties
specified in the Web.config file’s XML tags. Because the data type for each
property is specified in the XML tags, the generated code isn’t “general-
purpose” code with multiple if statements checking the data type or with
all variables declared as type Object—you get the specific code you need
for the properties you defined in the configuration file.

A similar solution for connection strings lets the developer write code
like this:

string MyConnection = ConnectionManager.Northwind;

In this solution, the ConnectionManager object is a static class that isn’t
instantiated and has a property for each connection string. This solution
gives the developer full IntelliSense support and compile-time checking
when accessing a connection string.

The code for my ConnectionManager object looks something like this for
Northwind property in a non-ASP.NET project:

public static partial class ConnectionManager

{

public static string Northwind

Setting Up the Add-In 337

{

get

{

return ConfigurationManager.

ConnectionStrings[“Northwind”].ConnectionString;

}

}

}

Supporting Customization
The ConnectionManager solution also allows the developer to introduce
custom code to support those instances where a full connection string isn’t
stored in the configuration file. For instance, one of my clients provides
data gathering and storage services to their customers. To support scala-
bility (and to help ensure privacy), each customer’s data is kept in a sepa-
rate database. As a result, my client stores a template connection string in
the application’s configuration file. The template contains replaceable
components that support tailoring the connection string for each cus-
tomer. In my client’s application, whenever a connection string is
retrieved, code in the application modifies the template and tailors the
string to work with a specific customer’s database. The
ConnectionManager solution supports this kind of modification by allowing
the developer to step in and add his or her own code to the process.

Setting Up the Add-In

Practical code-generation solutions should seamlessly integrate with the
developer’s normal activities. I begin this project by creating the add-in
that will trigger code generation whenever the config file is closed (or
whenever the developer chooses to generate code by selecting a menu
option).

Defining the Add-In
I start a new code-generation project either by extending an existing add-
in with similar functionality or creating a new one. For this project, I start
a new add-in. I always begin with the simplest possible interface for trig-
gering the code generation: a single menu item that runs the solution. This
simplifies testing and debugging. Near the end of the project, I convert this

338 Chapter 9 Case Study: Generating a Connection
String Manager

add-in to run when the project is built or when the configuration file is
closed.

From the File menu, I select New Project and, in the New Project dia-
log, under Extensibility, I select the Visual Studio Add-In template. After
giving my add-in a name (I used “ConnectionManager”) and specifying a
folder to keep it in, I click the OK button to start the wizard. In the wiz-
ard, I take the following actions:

■ Select C# as the language.
■ Deselect Microsoft Visual Studio Macros.
■ Replace the default name and description for the add-in with my

own text.
■ Select all three choices on the fourth page:

■ Add a command to the Tools menu.
■ Have the add-in load with Visual Studio.
■ Promise not to put up a modal dialog.

■ Add some information for the About dialog.

Once the project is created, I modify the project’s properties (as
described in Chapter 2, “Integrating with Visual Studio”):

■ Set the assembly name (and make the same change in the
<Assembly> element of the two .addin files).

■ In the Build Events tab (C#) or on the Compile tab after clicking
the Build Events button (Visual Basic), I add these two lines to the
Pre-build event command line. (This code is spread over two lines
to fit on the page, but the second and third line should be entered
as one line in the Pre-build text box.)

if exist “$(TargetPath).locked” del “$(TargetPath).locked”

if exist “$(TargetPath)” if not exist “$(TargetPath).locked” move

“$(TargetPath)” “$(TargetPath).locked”

Creating the Menu
Once the project is generated, my next step is to modify the code in the
Connect.cs file. One of my goals when designing the Connect.cs file is to
create a version that doesn’t require many changes when setting up a
new add-in. To support that, in the Connect.cs file I add four fields
(named menuName, menuItemName, menuItemCaption, and menuTooltip) at the

Setting Up the Add-In 339

top of the class. If all that’s required in an add-in is a single menu item
on a menu (and that’s always my start point for any solution), the only
changes required are to the values of these four fields:

string menuName = “Tools”;

string menuItemName = “ConStrGentr”;

string menuItemCaption = “Generate Connection String Class”;

string menuToolTip = “Create a class for managing connection strings”;

I then replace all the code in the OnConnection method with the fol-
lowing code in Visual Studio 2005/2008, which uses my fields to find the
menu specified in my four fields:

public void OnConnection(object application, ext_ConnectMode

connectMode, object addInInst,

ref Array custom)

{

_applicationObject = (DTE2)application;

_addInInstance = (AddIn)addInInst;

if (connectMode == ext_ConnectMode.ext_cm_UISetup)

{

object[] contextGUIDS = new object[] { };

Commands2 commands = (Commands2)_applicationObject.Commands;

string FoundMenuName;

try

{

System.Resources.ResourceManager resourceManager = new

System.Resources.ResourceManager(

_addInInstance.ProgID + “.CommandBar”,

System.Reflection.Assembly.GetExecutingAssembly());

System.Globalization.CultureInfo cultureInfo = new

System.Globalization.CultureInfo(_applicationObject.LocaleID);

if (cultureInfo.TwoLetterISOLanguageName == “zh”)

{

System.Globalization.CultureInfo parentCultureInfo =

cultureInfo.Parent;

FoundMenuName = resourceManager.GetString(

String.Concat(parentCultureInfo.Name, menuName));

}

else

{

340 Chapter 9 Case Study: Generating a Connection
String Manager

FoundMenuName = resourceManager.GetString(String.Concat(

cultureInfo.TwoLetterISOLanguageName, menuName));

}

}

catch (Exception e)

{

FoundMenuName = menuName;

}

if (FoundMenuName == ““)

{

FoundMenuName = menuName;

}

The equivalent code in Visual Studio 2010 looks like this:

CommandBar cb;

bool MainMenu = true;

string MenuBarName = “Menubar”;

if (MainMenu)

{

cb = ((CommandBars)_applicationObject.CommandBars)[MenuBarName];

cb = ((CommandBarPopup)cb.Controls[FoundMenuName]).CommandBar;

}

else

{

CommandBars cbs = (CommandBars)_applicationObject.CommandBars;

cb = cbs[FoundMenuName];

}

In Visual Studio 2008/2010, the next code adds a new menu item (with
the name specified in menuItemName) to the menu I just found, with the cap-
tion and tooltip specified in menuItemCaption and menuToolTip:

Commands2 cmds = (Commands2)_applicationObject.Commands;

CommandBars cbs = (CommandBars)_applicationObject.CommandBars;

CommandBar cb = cbs[FoundMenuName];

Command NamedCommand = null;

try

{

NamedCommand = _applicationObject.Commands.Item(

_addInInstance.ProgID + menuItemName, 1);

}

catch

Setting Up the Add-In 341

{

try

{

NamedCommand = cmds.AddNamedCommand2(_addInInstance,

menuItemName, menuItemCaption, menuToolTip,

true,50, ref contextGUIDS

(int) vsCommandStatus.vsCommandStatusSupported +

(int) vsCommandStatus.vsCommandStatusEnabled,

(int) vsCommandStyle.vsCommandStylePictAndText,

vsCommandControlType.vsCommandControlTypeButton);

}

catch {}

try

{

CommandBarControl cbc =

cb.Controls[menuItemCaption];

}

catch

{

NamedCommand.AddControl(cb, 1);

}

}

}

}

In Visual Studio 2005, I would need to replace the code that uses
AddNamedCommand2 with code that uses AddNamedCommand:

Command command = cmds.AddNamedCommand(_addInInstance,

menuItemName,menuItemCaption, menuToolTip,

true,59,ref contextGUIDS,

(int) vsCommandStatus.vsCommandStatusSupported) +

(int) vsCommandStatus.vsCommandStatusEnabled);

In addition to replacing the code in the OnConnection method, I also
need to modify the code in the QueryStatus method to allow me to use any
menu item created by this add-in:

public void QueryStatus(string commandName,

vsCommandStatusTextWanted neededText,

ref vsCommandStatus status,

ref object commandText)

342 Chapter 9 Case Study: Generating a Connection
String Manager

{

if(neededText ==

vsCommandStatusTextWanted.vsCommandStatusTextWantedNone)

{

if (commandName.StartsWith(_addInInstance.Name + “.Connect”))

{

status = (vsCommandStatus)vsCommandStatus.

vsCommandStatusSupported

|vsCommandStatus.vsCommandStatusEnabled;

return;

}

}

}

Calling the Solution
To make the Connect.cs class as portable as possible, I put my code-
generation solution in a separate class. This means that the only change
required to the Exec method of Connect.cs is the name of the class and
method that implements the solution.

For this solution, I have the Exec method instantiate a class called
DatabaseUtilities and call a method named GenerateConnectionManager. I
pass the DTE2 object that provides access to Visual Studio to the construc-
tor for this code-generation class. As a result, the code in this Exec method
to create the DatabaseUtilities class, pass the _applicationObject variable
that holds the DTE2 object, and call the GenerateConnectionClass method
looks like this:

public void Exec(string commandName,

vsCommandExecOption executeOption,

ref object varIn, ref object varOut,

ref bool handled)

{

handled = false;

if(executeOption == vsCommandExecOption.

vsCommandExecOptionDoDefault)

{

if (commandName == _addInInstance.ProgID + “.” + menuItemName)

{

DatabaseUtiltiies dbu = new

DatabaseUtiltiies(_applicationObject);

dbu.GenerateConnectionClass();

Creating the Code Generator 343

handled = true;

return;

}

}

}

Creating the Code Generator

With the framework for calling my code-generation solution in place, I’m
ready to start creating the code-generation code in my DatabaseUtilities

class. The constructor for the class accepts the reference to the DTE2

object and moves it to a field in the class. The initial version of the class
also contains the GenerateConnectionManager method that’s called from my
add-in:

using System;

using System.Collections.Generic;

using System.Text;

using EnvDTE;

using EnvDTE80;

namespace ConnectionStringGenerator

{

class DatabaseUtiltiies

{

DTE2 applicationObject;

public DatabaseUtiltiies(DTE2 ApplicationObject)

{

applicationObject = ApplicationObject;

}

public void GenerateConnectionManager()

{

}

}

}

344 Chapter 9 Case Study: Generating a Connection
String Manager

At this point, I’ve got enough code to start testing my solution by
adding a line of code to my GenerateConnectionManager method that writes
to the status bar:

applicationObject.DTE.StatusBar.Text = “Code generator called.”;

I can now check that the menu item appears (with all the text spelled
correctly), that I can load my generation class, and that I can successfully
call the generation method. If all that works, I’m ready to start thinking
about what the solution will do.

Finding the Project
The first step in this code-generation project is to retrieve a reference
to the project that the developer wants to modify. At this point, it’s
worthwhile to think about the problem from the point of view of the
developer for whom you’re generating the code. When the developer
clicks the menu item that starts the code-generation process, what proj-
ect will the developer expect your code to work with?

For a code-generation solution run from a button on a menu, my first
choice is to work with the project for the currently open document. This
code retrieves the project for that document:

Project prj = null;

if (applicationObject.ActiveDocument != null)

{

prj = applicationObject.ActiveDocument.

ProjectItem.ContainingProject;

}

However, if there is no open document, my second choice is to work
with the project for the item currently selected in Solution Explorer. This
code checks to see if an item is selected in Solution Explorer and if the
item has an associated ProjectItem. Then, if both of those conditions are
true, it retrieves the associated Project:

else

{

if (applicationObject.SelectedItems.Count > 0)

{

if (applicationObject.SelectedItems.Item(1).ProjectItem

!= null)

{

Creating the Code Generator 345

prj = applicationObject.SelectedItems.Item(1).

ProjectItem.ContainingProject;

}

else

{

prj = applicationObject.SelectedItems.Item(1).Project;

}

}

Unfortunately, there is a possibility that no document is open, that
nothing is selected in Solution Explorer, or that the selected item doesn’t
return a Project reference. If I can’t determine the Project, I give up and
exit. However, the decent thing to do in that situation is to tell the devel-
oper that no code has been generated. It’s tempting to pop up a form
telling the developer that no code was generated, but when working
through the Add-In Wizard, I promised never to display a modal dialog.
So, instead I just update Visual Studio’s status bar with code like this. (In
the section “Notifying the Developer” later in this chapter, I enhance the
messaging to use the TaskList for more serious messages.)

if (prj == null)

{

applicationObject.DTE.StatusBar.Text =

“Please select a project item.”;

return;

}

Assuming that I get a reference to the Project, I now get references
to the Project’s ProjectItems collection and the Solution it’s part of—I’ll
need both of these objects later in the solution:

ProjectItems pjis = prj.ProjectItems;

Solution2 sln = (Solution2) applicationObject.Solution;

Does Anything Need to be Done?
In the process I recommended in Chapter 1, “Introducing Code
Generation,” as part of reading your inputs you should determine whether
any code needs to be generated. In this case, that means retrieving the
web.config file and determining if it contains any connectionString elements.

346 Chapter 9 Case Study: Generating a Connection
String Manager

This code attempts to retrieve the project’s web.config file and, if that
fails, the project’s app.config file. If neither exists, the code exits:

ProjectItem cfg = null;

try

{

cfg = pi.Project.ProjectItems.Item(“web.config”);

}

catch

{

try

{

cfg = pi.Project.ProjectItems.Item(“app.config”);

}

catch {}

}

if (cfg == null)

{

return;

}

With a configuration file found, the code loads its contents into an
XML document by passing the full pathname to the configuration file to an
XmlDocument object. The code then uses an XPath expression to search the
document for connectionString elements. If none are found, the code exits:

System.Xml.XmlDocument dom;

dom = new System.Xml.XmlDocument();

dom.Load(@cfg.Properties.Item(“FullPath”).Value.ToString());

System.Xml.XmlNode ndCons =

dom.SelectSingleNode(“//connectionStrings”);

if (ndCons == null || ndCons.ChildNodes.Count == 0)

{

return;

}

Segregating Generated Code
I’m almost ready to start adding code, but I need to decide how to handle
the files containing my generated code. Although many code generators
attempt to hide generated classes from the developer, my preference is to
leave the code visible. (Among other benefits, this makes it easier for me

Creating the Code Generator 347

to check that I’m generating the right code during development and
debugging.)

However, I do segregate my generated code into special folders. Using
the reference to the ProjectItems collection, I can add that folder to hold
my generated code using the AddFolder method. For most projects, I cre-
ate a folder called “Generated Code” to put the class file in. However, for
ASP.NET projects, I place the class file in the App_Code folder.

These folders may already be present. (Even my own Generated Code
folder may already exist if the developer has run this add-in, or another one
of my code-generation utilities, before.) Adding the folder a second time will
raise an error; however, rather than check that the folder already exists, I just
catch the error and discard it. I’ll need to access the folder again, so after
adding it I retrieve a reference to the new folder through the ProjectItems’
Item method (unfortunately, the AddFolder method doesn’t return a refer-
ence to the new folder) and store it.

I begin by declaring a field to hold the reference to the folder with the
generated code:

ProjectItem codeFolder;

In the following code, I first check to see what kind of project I have
by looking at the GUID in the Project object’s Kind property. If it’s an
ASP.NET project, I attempt to add the App_Code folder. For any other
kind of project, I add a folder named “Generated Code.” As I noted before,
if the folders already exist, I just catch the error and discard it. After
attempting to add the folder, I get a reference to it:

if (prj.Kind == “{E24C65DC-7377-472b-9ABA-BC803B73C61A}”)

{

try

{

pjis.AddFolder(“App_Code”,

“{6BB5F8EF-4483-11D3-8BCF-00C04F8EC28C}”);

}

catch { };

codeFolder = pjis.Item(“App_Code”);

}

else

{

try

{

pjis.AddFolder(“Generated Code”,

Constants.vsProjectItemKindPhysicalFolder);

348 Chapter 9 Case Study: Generating a Connection
String Manager

}

catch {};

codeFolder = pjis.Item(“Generated Code”);

}

I could simplify the code required to add the App_Code folder by
using the VsWebSite objects (described in Chapter 5, “Supporting Project-
Specific Features”). However, for this case study, one of my goals is to use
as few tools as possible, which means avoiding using the project-specific
objects described in that chapter.

With the folder in place, I add the class file that will eventually con-
tain my ConnectionManager code. At this point I have to decide how I
want to handle regeneration when the developer is generating the code
for the second (or subsequent) time. The simplest strategy for support-
ing regeneration is to find the file containing the code from the previ-
ous generation and delete it. The alternative is to attempt to reconcile
the previously generated code against the current environment, a
process that is both difficult to implement and error-prone. (One solution
is demonstrated in the case study in Chapter 10, “Case Study:
Generating Validation Code,” where I selectively replace methods in a
class to leave the developer’s methods in place while replacing my gen-
erated methods.)

In a well-designed solution, you should only need to update an existing
file occasionally. Typically, solutions end up having to reconcile old code
with new code because the solution didn’t provide a clean separation
between the generated code and the developer’s custom code. For this
example, I keep most of the generated code in one file and provide a sep-
arate file for the developer’s custom code.

For this solution, both of the files will have their names begin with
“ConnectionManager.” The file that holds the generated code will be
named “ConnectionManager.Generation,” the file holding the developer’s
code will be named “ConnectionManager.Customization.” Initially, all I
build into the solution is the ConnectionManager.Generation file.

In this solution, if the ConnectionManager.Generation file already exists,
I don’t want to try adding it again and catching the error: I always want to
delete any existing version of the file in order to start generating the code from
a blank slate. To ensure that I’m deleting the right file, I use the full pathname
to the file by concatenating together the path to the project and name of the
folder I added. The code looks like this:

string ProjectPath;

ProjectPath = System.IO.Path.GetDirectoryName(prj.FullName);

Creating the Code Generator 349

ProjectItem prji = sln.FindProjectItem(@ProjectPath + @”\” +

codeFolder.Name + @”\ConnectionManager.Generation.cs”);

if (prji != null)

{

prji.Delete();

}

Adding the Template
After ensuring that the file doesn’t exist, I now add the Visual Studio tem-
plate that provides the base for my generation class: a class file in C#. To
get this file in the right folder, I use the reference to the folder where I’m
going to keep my generated code, which I retrieved earlier. This example
adds the template for a non-ASP.NET project:

string ItemTemplatePath = sln.GetProjectItemTemplate(

“Class.zip”, “CSharp”);

ProjectItem pji = codeFolder.ProjectItems.AddFromTemplate

(ItemTemplatePath,”ConnectionManager.Generation.cs”);

To enable my add-in to support ASP.NET, I need to add a different
template. This code checks the project’s Kind property and, when the proj-
ect is a website, adds the correct class. Revising the previous code to han-
dle ASP.NET projects produces the following code:

string ItemTemplatePath;

if (prj.Kind == “{E24C65DC-7377-472b-9ABA-BC803B73C61A}”)

{

ItemTemplatePath = sln.GetProjectItemTemplate(“Class.zip”,

@”Web\CSharp”);

}

else

{

ItemTemplatePath = sln.GetProjectItemTemplate(“Class.zip”,

“CSharp”);

}

ProjectItem pji = codeFolder.ProjectItems.AddFromTemplate

(ItemTemplatePath,”ConnectionManager.Generation.cs”);

It’s possible, for a number of reasons, that the AddFromTemplate method
will successfully add the class file but not return a ProjectItem. (For

350 Chapter 9 Case Study: Generating a Connection
String Manager

instance, if the template is a wizard, you won’t get a return value because
wizards don’t return ProjectItems.) So, after adding the item, I check to see
if the reference is null; if it is, I use FindProjectItem to get a reference to
the class file. (This also provides a check that the class file was suc-
cessfully added.)

if (pji == null)

{

pji = sln.FindProjectItem(@ProjectPath + @”\” +

codeFolder.Name + @”\ConnectionManager.Generation.cs”);

}

if (pji == null)

{

applicationObject.DTE.StatusBar.Text =

“Unable to add class file.”;

return;

}

Customizing the Template

Because the input to any code-generation solution controls the output, it’s
time to consider what the input for this code-generation solution looks like.
I assume that the config file for the application contains a
ConnectionStrings element, like this:

<connectionStrings>

<add name=”MainDB” connectionString=”...” providerName=”...”/>

</connectionStrings>

The solution should generate a class that looks like this:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace MyProject

{

class ConnectionManager

{

string MainDB

Customizing the Template 351

{

get

{

return System.Configuration.ConfigurationManager.

ConnectionStrings[“MainDB”].ConnectionString;

}

}

}

}

Unfortunately, the result of adding the template for a new class in a
non-ASP.NET project looks like this:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace MyConsoleProject.Generated_Code

{

class ConnectionManager

{

}

}

In a projectless web application, the class looks like this:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Web;

/// <summary>

/// Summary description for ConnectionManager

/// </summary>

public class ConnectionManager

{

public ConnectionManager()

{

//

// TODO: Add constructor logic here

//

}

}

352 Chapter 9 Case Study: Generating a Connection
String Manager

A number of differences exist between the template file and the
class file for which I’m aiming. To get the class file I want, I must do the
following:

■ Simplify the namespace. For many projects, I will have added the
class to a subfolder named Generated Code. By default, in a C#
project, the folder name will be included in the class’s namespace
(e.g., MyProject.Generated_Code). I’d prefer not to force develop-
ers to have to drill down through the Generated_Code namespace;
instead, I will have the ConnectionManager be in the project’s root
namespace.

■ Make the class static/shared. Making this change allows the
developer to call properties on the class without having to instanti-
ate it.

■ Delete the constructor. Static/shared classes are not allowed to
have constructors.

■ Make the class a partial class. Because this is created as a partial
class, developers can customize ConnectionManager’s behavior by
adding code to a separate file.

In addition, I want to ensure that the project has a reference to the
System.Configuration DLL. Web projects will have this reference by
default but other types of project won’t.

Had I used a custom template (as described in Chapter 8, “Other
Tools: Templates, Attributes, and Custom Tools,” and demonstrated in the
case study in Chapter 10), I could omit much of the following code.
However, using custom templates does make your code-generation solu-
tion dependent on having the right template installed on the developer’s
computer. Although the following solution requires more code, it does
mean that my solution is more self-contained.

Fixing the Namespace
To simplify the Namespace, I first retrieve the FileCodeModel for the class file.
If the project is a “projectless” website, I must cast the ProjectItem as a
VSWebProjectItem and call its Load method before I can access its
FileCodeModel. For other project types, I can just access the FileCodeModel;
therefore, once again, the code checks to see if this is an ASP.NET project
and does the right thing:

Customizing the Template 353

FileCodeModel fcm;

if (prj.Kind == “{E24C65DC-7377-472b-9ABA-BC803B73C61A}”)

{

VsWebSite.VSWebProjectItem tmpWPI;

tmpWPI = (VsWebSite.VSWebProjectItem) pji.Object;

tmpWPI.Load();

fcm = tmpWPI.ProjectItem.FileCodeModel;

}

else

{

fcm = ConnMgr.FileCodeModel;

}

Once the FileCodeModel is retrieved, I iterate through the top-level items
until I find the Namespace. Once I find the Namespace, I set it to the project’s
DefaultNamespace, which I retrieved from the Project’s Properties collection.
For Visual Basic projects, a Namespace typically isn’t included in the file, but
that’s not a problem—if the Namespace isn’t found, the code does nothing:

CodeElement2 codeClass;

foreach (CodeElement2 ce in fcm.CodeElements)

{

if (ce.Kind == vsCMElement.vsCMElementNamespace)

{

ce.Name = prj.Properties.Item(

“DefaultNamespace”).Value.ToString();

Because my code resets the Namespace’s name, there’s a very real possi-
bility that my reference to the Namespace may be corrupted after the
change. So, after changing the Namespace’s name, I use this code to reac-
quire the reference to the Namespace:

CodeElement2 ceNamespace = (CodeElement2) fcm.CodeElements.Item

(prj.Properties.Item(“DefaultNamespace”).Value.ToString());

Modifying the Class
To modify the class, I now find the Class by iterating through the
CodeElements collection within the Namespace I just changed and store the
reference in a variable named codeClass:

354 Chapter 9 Case Study: Generating a Connection
String Manager

foreach (CodeElement2 ceClass in ceNamespace.Children)

{

{

if (ce.Kind == vsCMElement.vsCMElementClass)

{

codeClass = ce;

}

}

If there is no Namespace in the Class (the typical scenario for a Visual
Basic file), the code acquires the reference to the Class and puts it in
codeClass inside the loop that looks for the Namespace:

if (ce.Kind == vsCMElement.vsCMElementClass)

{

codeClass = ce;

}

With the Namespace corrected (if present) and a reference to the class
held in the codeClass variable, I now look for the class’s constructor inside
codeClass’s Children collection and delete it. Because I’ve added a C# file,
I can identify the constructor by looking for a function with the same name
as the class (“ConnectionManager”). For a Visual Basic application, I’d be
looking for a method named New:

foreach (CodeElement2 ce in codeClass.Children)

{

if (ce.Kind == vsCMElement.vsCMElementFunction &&

ce.Name == “ConnectionManager”)

{

fcm.Remove(ce);

}

}

I also need to modify the class’s definition to make the class partial and
shared/static. A CodeClass2 object has the necessary functionality to make
those changes. Because the code has already retrieved a reference to the
class as a CodeElement, all that I have to do is to cast my codeClass reference
to a CodeClass2 object to get the functionality I need:

CodeClass2 cc = (CodeClass2) codeClass;

Generating Code 355

Now that I have a reference to a CodeClass2 object, I make the class a
partial class by setting its ClassKind property and a static/shared class by
setting its IsShared property:

cc.ClassKind = EnvDTE80.vsCMClassKind.vsCMClassKindPartialClass;

cc.IsShared = true;

Adding a Reference
In order to access the ConnectionStrings element in the application’s con-
figuration file, non-web projects will need a reference to the
System.Configuration assembly (website projects already have the neces-
sary reference). To add this reference, the first step is to cast the reference
to the Project object to a VSLangProj.VSProject type. Once the project is
cast, a reference to the System.Configuration assembly can be added by
name using the References collection’s Add method (if the reference is
already present, no error is raised):

VSLangProj.VSProject vsPrj;

vsPrj = (VSLangProj.VSProject) prj.Object;

vsPrj.References.Add(“System.Configuration”);

Generating Code

With the template fully customized, I can start generating the code for the
properties I want to add to the class. For now, I’m going to assume that I’ve
retrieved a single connection string name from the application’s configuration
file and put the connection string’s name in the variable PropertyName. I’m also
going to assume that the single line of code that the property requires is in the
variable PropertyReturnCode. In the next section, “Reading Input,” I look both
at retrieving the information from the configuration file and handling multi-
ple connection strings. The code for this example is sufficiently simple that
using the CodeDom to generate the code is overkill. In the next chapter, I look
at a case study where the code is sufficiently complex to justify the CodeDom.

The following code adds a property using whatever name is in the vari-
able PropertyName (I omit the name for the property’s setter in order to cre-
ate a read-only property):

356 Chapter 9 Case Study: Generating a Connection
String Manager

CodeProperty cp;

cp = cc.AddProperty(PropertyName, null,

vsCMTypeRef.vsCMTypeRefString, -1,

vsCMAccess.vsCMAccessPublic,null);

The design for the ConnectionManager requires the method to be
static/shared. In theory, to make that change all I need to do is set the
IsShared property on the CodeProperty2 object that represents my newly
added property. Unfortunately, in some versions of Visual Studio, the
AddProperty method returns a CodeProperty object that doesn’t support the
IsShared method and can’t be cast to a CodeProperty2 object.

The solution is to use the CodeProperty object’s Getter property to
retrieve the CodeFunction object for the new property’s getter, and because
CodeFunctions do have an IsShared property, I can use that to make the
property static/shared:

cp2.Getter.IsShared = true;

Now that the property has been added, I insert the code for the proper-
ty using the CodeEditor object. The first step is to retrieve the StartPoint for
the body of the property’s Getter and, from it, create an EditPoint. Once the
EditPoint is created, my next step is to delete any default code inserted into
the property by the AddProperty method (in C#, for instance, the AddProperty

method inserts a line of code that throws an exception):

EditPoint epGetter = cp.Getter.GetStartPoint(

vsCMPart.vsCMPartBody).CreateEditPoint();

epGetter.Delete(cp.Getter.GetEndPoint(vsCMPart.vsCMPartBody));

After clearing any default code, the final step is to insert any new code:

epGetter.Insert(PropertyReturnCode);

Reading Input

So far, I’ve just assumed that I’ve retrieved the inputs to the process: the
names of the connections string in the app.config or web.config file. In this
section, I look at retrieving that input and integrating it into the solution.

Reading Input 357

I’ve kept the code for this case study purposely simple to concentrate on
the structure of a code-generation solution. For a case study that generates
more complex code, see Chapter 10.

Processing the Configuration File
The connection strings are kept in the configuration file for the application,
so my first step is to retrieve either the web.config file (for ASP.NET proj-
ects) or app.config file (for all other project types). Rather than check the
project type, I use the ProjectItems collection to try and retrieve the
app.config file; if I don’t find it, I try to retrieve the web.config file. If nei-
ther is found, there are no connection strings to generate so I display a sta-
tus message and exit.

Because failing to find an item in the ProjectItems collection raises
an error, I use a try...catch block to determine if the configuration files
are found:

ProjectItem cfg;

try

{

cfg = prj.ProjectItems.Item(“web.config”);

}

catch

{

try

{

cfg = prj.ProjectItems.Item(“app.config”);

}

catch

{

if (prj == null)

{

applicationObject.DTE.StatusBar.Text =

“No configuration file.”;

return;

}

}

}

358 Chapter 9 Case Study: Generating a Connection
String Manager

Once I’ve found the configuration file, the next step is to read it. The
Properties collection for a Project item includes the FullPath to the item.
Using that value, I can load the configuration file into an XMLDocument, as this
code does:

System.Xml.XmlDocument dom;

dom = new System.Xml.XmlDocument();

dom.Load(@cfg.Properties.Item(“FullPath”).Value.ToString());

Adding Property Code
With the document loaded, the next step is to loop through the children of
the connectionStrings element. For each child element, I retrieve the
name attribute from the element and use that to create the property:

System.Xml.XmlNode ndCons =

dom.SelectSingleNode(“//connectionStrings”);

foreach (System.Xml.XmlNode ndCon in ndCons)

{

string PropertyName = ndCon.Attributes[“name”].Value;

CodeProperty cp;

cp = cc.AddProperty(PropertyName, null,

vsCMTypeRef.vsCMTypeRefString,

-1, vsCMAccess.vsCMAccessPublic, null);

cp.Getter.IsShared = true;

EditPoint epGetter = cp.Getter.GetStartPoint(

vsCMPart.vsCMPartBody).CreateEditPoint();

epGetter.Delete(cp.Getter.GetEndPoint(vsCMPart.vsCMPartBody));

epGetter.Insert(“return “ +

“System.Web.Configuration.WebConfigurationManager.” +

“ConnectionStrings[\””+ PropertyName +

“\”].ConnectionString;”);

}

For a non-ASP application, the last line of code looks like this:

epGetter.Insert(“return ConfigurationManager.ConnectionStrings[

\”” + PropertyName + “\”].ConnectionString;”);

Notifying the Developer 359

Notifying the Developer

So far, in notifying the developer, I’ve simply written a message to the sta-
tus bar. However, that’s only really appropriate for messages that provide
information about ongoing processing. Where the add-in is unable to con-
tinue processing, it’s more appropriate to write the message to the
TaskList, where it will appear in the Add-In and Macros category.

Defining the Output Utility
To handle output, I use a single method that, when passed a message and
a severity level, either updates the status bar or adds an item to the task list,
depending on the severity level. Updating the status bar not only lets the
developer using your utility know what’s going on, it’s also helpful in
debugging—if your add-in abends, the status bar will display the last mes-
sage sent to it, giving you a clue as to where in your add-in you stopped
processing. Because I use this method in a variety of code-generation proj-
ects, I put it in its own class library project called CodeGenerationUtilities
(this project needs references to both EnvDTE and EnvDTE80).

My utility also includes an enumeration, which I call GenerationLevel. I
use it to specify the error level of the message. As a minimum, you need to
support two severity levels: one for messages to be written to the status bar
and one for messages to be written to the Task List. The two levels that I use
are called “information” and “severe”:

namespace CodeGenerationUtilities

{

public enum GenerationLevel

{

information,

severe

}

In order to update the status bar and the Task List, my utility needs to
access the DTE2 object used by the add-in. I pass that reference to the util-
ity in its constructor.

360 Chapter 9 Case Study: Generating a Connection
String Manager

Handling the Task List
In the utility’s constructor, I delete all related messages that may be in the
Task List from previous code generations. In order to avoid deleting mes-
sages created by other code-generation utilities, I use the TaskList’s
SubCategory: When adding messages I set the SubCategory to a value unique
to the particular code-generation solution. (All my code-generation solu-
tions set the TaskList’s Category to “Code Generation.”) As a result, I can
use the SubCategory to delete messages from previous executions of this
code-generation solution. I pass the SubCategory to be used when adding
or deleting messages into the utility’s constructor and store it in a field. As
a result, the constructor for the utility looks like this:

string subcategory;

public Utilities(DTE2 ApplicationObject, string SubCategory)

{

applicationObject = ApplicationObject;

subCategory = SubCategory;

TaskList tl = applicationObject.ToolWindows.TaskList;

foreach (TaskItem ti in tl.TaskItems)

{

if (ti.SubCategory == SubCategory)

{

ti.Delete();

}

}

}

My utility includes a WriteOutput method that accepts the message
text to display and a GenerationLevel flag. If GenerationLevel is set to
severe, the message is added to the TaskList; if GenerationLevel is set to
information, the message is used to update the status bar:

public class Utilities

{

public void WriteOutput(string Message, GenerationLevel Level)

{

if (Level == GenerationLevel.severe)

{

TaskList tl = applicationObject.ToolWindows.TaskList;

TaskItems2 tis = (TaskItems2)tl.TaskItems;

Notifying the Developer 361

TaskItem ti = tis.Add2(“Code Generation”,

subCategory, Message,

(int)vsTaskPriority.vsTaskPriorityHigh,

(int)vsTaskIcon.vsTaskIconCompile,

true,””,0,true,true,false);

}

else if (Level == GenerationLevel.information)

{

applicationObject.DTE.StatusBar.Text = Message;

}

}

Using the Output Method
With the CodeGenerationUtilities object created, I can add a reference to
the add-in so that it can use the class. To simplify code, the add-in will need
a using statement (or an Imports statement in Visual Basic) that points to the
new project:

using CodeGenerationUtilities;

My code-generation solution also needs a class-level variable that can
hold a reference to the utility:

Utilities util;

In my add-in’s constructor, I create a reference to the
CodeGenerationUtilities object:

util = new Utilities(applicationObject,

“ConnectionStringGenerator”);

With that work done, I can use the WriteOutput method to send mes-
sages to the developer running the code-generation solution. As an exam-
ple, the following call adds a message to the Task List:

util.WriteOutput(“Unable to create Connection Manager”,

GenerationLevel.severe);

362 Chapter 9 Case Study: Generating a Connection
String Manager

Supporting Customization

As I noted at the start of this case study, part of this solution includes giv-
ing the developer the ability to modify the connection string retrieved from
the configuration file. There are at least two ways to provide this option:

■ Add a second partial class (the “customization” class) where the devel-
oper can add code to modify the connection string. The class holding
the generated code calls methods in this second class before return-
ing the connection string to the calling application. The developer can
add code inside these methods to modify the connection string.

■ Allow the developer to inherit from our generated class. Again, our
generated code would call methods that allow the developer to
modify the connection string before the string is returned. However,
with this design, the developer would override those methods to add
his or her own code.

For this case study, I use the first strategy. As part of that strategy, I add
a second file to the project (named ConnectionManager.Customization)
where developers can put their custom code.

I also allow the developer to turn customization on and off so that
when the developer doesn’t need to modify the connection string through
Visual Studio’s Options dialog, the customization support (e.g., the
ConnectionManager.Customization file) won’t be generated.

Customizable Code
When customization is turned on, the property generated calls a method
and passes it the connection string. The property then returns whatever is
passed back by the method. A typical example of the generated code with
customization support looks like this:

public static string Northwind

{

get

{

return NorthwindCustomization(

System.Web.Configuration.WebConfigurationManager.

ConnectionStrings[“Northwind”].ConnectionString);

}

}

Supporting Customization 363

The corresponding customization class contains stubs for the cus-
tomization methods:

public static partial class ConnectionManager

{

public static string NorthwindCustomization(string ConnectionString)

{

return ConnectionString;

}

}

Developers can now put any code to modify the connection string in
these stubs. To ensure that the developer never loses any code, my code never
deletes the customization class. If a customization stub doesn’t exist, the code-
generation process will add the stub. However, no compile error is raised if a
developer renames (or deletes) a connection string that he or she has written
customized code for. Unfortunately, the customized code will never be called.

The add-in offers one other customization option. Although the add-in’s
default implementation is a static/shared class, developers may find that too
restrictive when they start adding their custom code. In order to give the
developers more options, I also allow them to turn off the static/shared option.

Accepting Input
Rather than expect the developer to specify these options for each gener-
ation, I let the developer set the customization options in the Tools |
Options dialog. For a complete solution, the options should be stored on
a project-by-project basis so the dialog for these choices should be a list of
projects showing the choice for each option. However, that would take the
focus of this case study into the realm of Windows Form programming and
away from creating an effective code-generation implementation, so this
example just supports a global setting that applies to all projects.

Defining the Options Dialog
My first step in adding to the Tools | Options dialog is to create a separate
project (named ConnectManagerUI) to hold the user control that becomes
part of the Tools | Options dialog. Because, even for testing purposes, this
project’s DLL must go into the Add-Ins library, I create a new class library

364 Chapter 9 Case Study: Generating a Connection
String Manager

project and set the output path on the Tools | Options | Build dialog to
...\Visual Studio version\Addins\.

In order to have the user control loaded by Visual Studio, I add the fol-
lowing elements to my add-in project’s .Addin files (this code assumes that
the user control will be called ConnectionManagerOptions). The Tools |
Options dialog uses the values in the Category and SubCategory elements to
create the TreeView on the left side of the dialog that lets the developer
navigate to my user control. I also use the Category/SubCategory values in
my add-in’s code to retrieve the options the developer sets:

<ToolsOptionsPage>

<Category Name=”Code Generation”>

<SubCategory Name=”Connection Manager”>

<Assembly>ConnectionManagerUI.dll</Assembly>

<FullClassName>ConnectionManagerUI.ConnectionManagerOptions

</FullClassName>

</SubCategory>

</Category>

</ToolsOptionsPage>

Saving Developer Choices
It’s my responsibility to save and retrieve the choices entered by the devel-
oper in the Tools | Options dialog. To support that, I add a class to my
CodeGenerationUtilities project with methods that save and retrieve string
values to and from the Windows registry. That class looks like this:

namespace CodeGenerationUtilities

{

public class Utilities

{

public static string GetValue(string Name)

{

Microsoft.Win32.RegistryKey key;

key = Microsoft.Win32.Registry.CurrentUser.OpenSubKey(

@”SOFTWARE\Microsoft\VisualStudio\9.0”, false);

return key.GetValue(Name, ““).ToString();

}

public static void SaveValue(string Name, string value)

{

Supporting Customization 365

Microsoft.Win32.RegistryKey key;

key = Microsoft.Win32.Registry.CurrentUser.OpenSubKey(

@”SOFTWARE\Microsoft\VisualStudio\9.0”, true);

key.SetValue(Name, value,

Microsoft.Win32.RegistryValueKind.String);

}

}

Option Manager Class
Before creating the user control, I also create a class in the same project as
the user control to manage the values entered by the developer. In addi-
tion to simplifying the code in the user control, this option manager class
is required if I’m going to pass the values saved by the user control to the
add-in that generates the code.

The option manager class has one property for each value I allow the
developer to set in the user control and uses the SaveValue and GetValue

methods in my Utilities class to save data in the Windows registry as
strings. The code in the option manager class sets the names that these val-
ues will be saved under in the Windows registry. The naming convention
that I use is the word “Generate,” followed by the name of the code-
generation solution, followed by the property name.

This option manager class for this case study has properties for turning
customization support on or off (SupportCustomization, which saves its value
under the name GenerateConnectionManagerSupportCustomization) and
specifying whether the class and property should be static/shared (IsStatic,
which saves its value under the name GenerateConnectionManagerIsStatic):

namespace ConnectionManagerUI

{

public class ConnectionStringProperties

{

public string SupportCustomization

{

get

{

return Utilities.GetValue(

“GenerateConnectionManagerSupportCustomization”);

}

set

{

366 Chapter 9 Case Study: Generating a Connection
String Manager

Utilities.SaveValue(

“GenerateConnectionManagerSupportCustomization”, value);

}

}

public string IsStatic

{

get

{

return Utilities.GetValue(

“GenerateConnectionManagerIsStatic”);

}

set

{

Utilities.SaveValue(

“GenerateConnectionManagerIsStatic”, value);

}

}

}

}

Creating the User Control
I’m finally ready to add the user control that will appear in the Tools |
Options dialog (see Figure 9-2). The user control has two check boxes, one
for each of the two options offered by this add-in: whether a customization
file will be generated and whether the generated classes should be
static/shared.

I must add two attributes to the user control to have it work well with
the Tools | Options (ComVisible and ClassInterface). In addition, the user
control must implement the EnvDTE.IDTToolsOptionsPage interface. This
code shows the resulting definition for the user control for this case
study:

namespace ConnectionManagerUI

{

[System.Runtime.InteropServices.ComVisible(true)]

[System.Runtime.InteropServices.ClassInterface(

System.Runtime.InteropServices.ClassInterfaceType.AutoDual)]

public partial class ConnectionManagerOptions: UserControl,

EnvDTE.IDTToolsOptionsPage

{

Supporting Customization 367

FIGURE 9-2 The user control for the case study allows the developer to turn support for
customization on or off and to specify whether the generated class is static/shared.

In the user control, I take advantage of the option manager class that I
created earlier to do most of the user control’s work. I instantiate that class
in my user control’s constructor:

public ConnectionManagerOptions()

{

InitializeComponent();

opts = new ConnectionStringProperties();

}

Implementing the User Control Interface
The IDTToolsOptionsPage interface adds several methods to the user con-
trol, but I only need to put code in four of them. I add code to the
OnAfterCreated event to retrieve the current values for the property and to
the OnOk event to save the current values. In these events, I just call the
appropriate methods on my option manager class (with a little extra code
to initialize the page when the user control is called for the first time):

public void OnAfterCreated(EnvDTE.DTE DTEObject)

{

if (opts.IsStatic == “true”|| opts.IsStatic == ““)

{

368 Chapter 9 Case Study: Generating a Connection
String Manager

this.StaticCheckbox.Checked = true;

}

else

{

this.StaticCheckbox.Checked = false;

}

if (opts.SupportCustomization == “true”)

{

this.CustomizationCheckbox.Checked = true;

}

else

{

this.CustomizationCheckbox.Checked = false;

}

}

public void OnOK()

{

if (this.StaticCheckbox.Checked)

{

opts.IsStatic = “true”;

}

else

{

opts.IsStatic = “false”;

}

if (this.CustomizationCheckbox.Checked)

{

opts.SupportCustomization = “true”;

}

else

{

opts.SupportCustomization = “false”;

}

}

Because I intend to pass the values collected in the user control to an
add-in running in Visual Studio, I also implement the interface’s
GetProperties method. All that I have to do is to set the PropertiesObject
passed to this routine to an instance of my option manager class:

Supporting Customization 369

public void GetProperties(ref object PropertiesObject)

{

PropertiesObject = opts;

}

Integrating with the Add-In
With the work on the user control complete, the developer can choose his
or her options in the Tools | Options page. I access the developer’s choices
by retrieving a Properties object from the applicationObject, specifying
the Category and SubCategory I set in the .add-in file’s ToolsOptionsPage ele-
ment. I typically end up using these options throughout my add-in, so I
usually declare the Properties object at the class level:

Properties props;

I then retrieve the options in the add-in’s constructor. To retrieve the
options set through the user control, I pass the Category and SubCategory I set
in the ProvideOptionPage attribute on the user control to the get_Properties
method on the applicationObject. (In Visual Basic, you read the Properties

property.) In the get_Properties method, the SubCategory value is passed to
a parameter called PageName. For this case study, the Category is “Code
Generation” and the SubCategory is “Connection Manager”:

props = applicationObject.get_Properties[“Code Generation”,

“Connection Manager”];

To retrieve any particular property, I pass the property name from my
data manager object to the Properties object’s Item method. This example,
for instance, retrieves my IsStatic method from my option manager class
and, because the value returned by the property is a string, converts it into a
Boolean value:

bool IsStatic;

if (props.Item(“IsStatic”).Value.ToString() == “true”)

{

IsStatic = true;

}

else

{

IsStatic = false;

}

370 Chapter 9 Case Study: Generating a Connection
String Manager

The resulting values can be used to control code generation. For
instance, this example uses the IsStatic value to control whether the class
is declared as static/shared:

if (!IsStatic)

{

cc.IsShared = true;

}

Generating Custom Code
Working with a file that holds code written by the developer requires a dif-
ferent strategy than a file holding only code you generate. In general, it’s
never okay to delete a developer’s code, but it is okay to make the code
invalid or irrelevant.

As an example, in this case study the developer may add custom code
to work with the Northwind property that is tied to the Northwind con-
nection string. If the developer then deletes the connection string named
“Northwind” from the configuration file and ConnectionManager is regen-
erated, my solution will re-create the ConnectionManager.Generation file
without the Northwind property.

Without the Northwind property in place, the developer’s custom code
is orphaned and will never be called—but that’s not a problem (at least, it’s
not your problem). Even if removing the generated Northwind property
prevents the solution from compiling because of problems with the custom
code (not the case with this solution), the problem is—from the develop-
er’s point of view—solvable: When the compile fails, the developer will get
a message pointing to the offending custom code. The developer can then
modify or delete the code.

What would not be a good idea would be to “helpfully” delete the
developer’s custom code. After all, the developer may intend to move his
or her orphaned custom code to another custom routine—if my solution
deletes the code, that option is no longer available to the developer.

In the customization file, the general strategy is to first check before
adding any custom code to see if it’s already present. If the code is present,
the solution should leave the code alone; if the custom code isn’t present,
the solution should generate whatever support code is part of the code-
generation solution. If the developer wants to have any support for custom
code regenerated, all the developer has to do is delete the relevant custom
code. With the custom code gone, the solution will regenerate any neces-
sary support code.

Tying Generation to Events 371

Adding Custom Code
In the case study, the first place where I implement this strategy is in adding
the customization file. For the file holding the generated code, the file is
always deleted and re-created. For the customization file, on the other
hand, if the file is present, the solution just retrieves a reference to it; only
if the customization file isn’t already present does my solution generate the
customization file. This code checks to see if customization is being sup-
ported and, if it is, implements that strategy:

if (IsCustomized)

{

pjic = sln.FindProjectItem(@ProjectPath + @”\” +

codeFolder.Name + @”\ConnectionManager.Customization.cs”);

if (pjic == null)

{

if (prj.Kind == “{E24C65DC-7377-472b-9ABA-BC803B73C61A}”)

{

ItemTemplatePath = sln.GetProjectItemTemplate(“Class.zip”,

@”Web\CSharp”);

}

else

{

ItemTemplatePath = sln.GetProjectItemTemplate(“Class.zip”,

“CSharp”);

}

pjic = codeFolder.ProjectItems.AddFromTemplate(

ItemTemplatePath, “ConnectionManager.Customization.cs”);

}

}

The same process is followed when adding the support stubs inside the
customization file: Stubs are only added if they’re not already present.

Tying Generation to Events

Rather than use a menu item to trigger code generation, a better solution
for this case study is to tie the code generation to events in Visual Studio.
The obvious choice for this case study is to check for changes in the con-
figuration file: Whenever the configuration file is closed, for instance, the
code could check for the presence of connection strings and regenerate the
ConnectionManager. This is the strategy used for generating the code

372 Chapter 9 Case Study: Generating a Connection
String Manager

behind the .NET DataSet designer: The code is generated when the
designer is closed (and, in Visual Studio 2008 and 2010, when the focus
shifts away from the DataSet’s visual designer).

However, the developer also needs a way to force the
ConnectionManager to be regenerated if only for those situations where
the developer wants to make a change and leave the configuration file
open. You could leave the menu item in place (or add a button to the
ConnectionManager’s Tools | Options dialog). However, a better solution is
to tie the code generation into the build process.

Integrating with Builds
Integrating with the build process is the easier of the two events to set up,
so I look at that option first. The first step is to declare a class-level variable
to hold a reference to the events package that references build events. For
a build-related event, that variable is declared with the BuildEvents data
type, as this code does:

EnvDTE.BuildEvents BuildE;

In order to tie the code-generation property into Visual Studio events, I
have to wire up the events when the add-in is loaded by Visual Studio. I have
a couple of choices here: I can either use the add-in’s constructor (called from
the Connect method in C# or the New method in Visual Basic) or the
OnConnection method. I use the OnConnection method because I can check the
connectMode parameter passed to the method to ensure that the method is
being called in setup mode. Just to be safe, though, I also check that I haven’t
already set up the event by seeing if my class-level variable is set to null.

This code retrieves the BuildEvents package and then ties a method in
the connect class (which I’ve named BuildE_OnBuildBegin) to the
OBuildBegin event:

if (connectMode == ext_ConnectMode.ext_cm_UISetup)

{

if (BuildE == null)

{

BuildE = _applicationObject.Events.BuildEvents;

BuildE.OnBuildBegin += new

_dispBuildEvents_OnBuildBeginEventHandler(BuildE_OnBuildBegin);

}

In my OnBuildBegin method, I need to create my generation class
(DatabaseUtilities) and call my code-generation method

Tying Generation to Events 373

(GenerateConnectionManager) whenever the project is being rebuilt. To
determine whether the project is being rebuilt, I can check the two flags
passed into the event handler:

■ BuildScope—Reports the scope of the build (batch, project, or
solution)

■ BuildAction—Type of build (Clean, Build, Rebuildall, Deploy)

If I created temporary files or folders that I didn’t automatically
delete as part of the code-generation process, I should remove those
when the event is called with BuildAction set to Clean. However, for this
solution, the Clean action is the one BuildAction where I don’t want to
regenerate ConnectionManager:

void BuildE_OnBuildBegin(vsBuildScope BuildScope,

vsBuildAction BuildAction)

{

if (BuildAction != vsBuildAction.vsBuildActionClean)

{

DatabaseUtiltiies dbu;

dbu = new DatabaseUtiltiies(_applicationObject,

_addInInstance);

dbu.GenerateConnectionManager();

}

}

Integrating with Documents
To catch the events that fire when the configuration file is opened or closed,
I first have to catch the events fired when any document is opened or
closed. I add another field (named docMaster) to my class to hold the
DocumentEvents package for this “master” document event routine.
Eventually, I’m going to need a reference for the event that ties to my con-
figuration file, so I also add a field (named docConfig) to hold that reference:

EnvDTE.DocumentEvents docMaster;

EnvDTE.DocumentEvents docConfig;

In the OnConnection method, when the method is called in setup mode,
I check to see if I’ve set the event package; if I haven’t, I set the reference.
Once I’ve set the reference, I attach a method (which I’ve called
docMaster_DocumentOpened) to the DocumentOpened event. The DocumentOpened

event is a filtered event: Because I pass a reference to a document to this

374 Chapter 9 Case Study: Generating a Connection
String Manager

event, the event will only fire when that specific document is opened. For
my “master” event handler, however, I want to catch events for all docu-
ments, so I pass a null as part of wiring up the event:

if (docMaster == null)

{

docMaster = (EnvDTE.DocumentEvents)

_applicationObject.Events.get_DocumentEvents(null);

docMaster.DocumentOpened +=new

_dispDocumentEvents_DocumentOpenedEventHandler(

docMaster_DocumentOpened);

}

In my docMaster_DocumentOpened event handler, I want to wire up an event
routine that will fire when the configuration file is closed. (This may be just
the initial version of this handler: If I expand this solution, I can add more
code in this handler to check for other documents that I’m interested in and
wire up events for them also.) I first check to see if I’ve already set an event
for the configuration file by checking the field where I hold the reference
(docConfig). If that field is null, I then check the Document parameter passed to
the event handler to see if the document being opened is either the web.con-
fig or app.config file:

void docMaster_DocumentOpened(Document Document)

{

if (docConfig == null && Document.Name == “app.config”)

{

If the document being opened is either of the configuration files, I get
a reference to the DocumentEvents package as I did in setting up the master
event handler. This time, however, I filter the event by passing the Document

object that represents the configuration file. In this case study, I want to
capture the DocumentClosing event so I wire up the DocumentClosing

EventHandler to a routine I’ve named docConfig_DocumentClosing:

docConfig = (EnvDTE.DocumentEvents)

_applicationObject.Events.get_DocumentEvents(Document);

docConfig.DocumentClosing +=new

_dispDocumentEvents_DocumentClosingEventHandler(

docConfig_DocumentClosing);

}

}

Generating a Simple Class 375

In my docConfig_Closing event handler, as before, I create my code-
generation class and call the method that creates the connection manager.
In addition, at the end of the routine, I set the reference for this handler
to null:

void docConfig_DocumentClosing(Document Doc)

{

DatabaseUtilities dbu;

dbu = new DatabaseUtiltiies(_applicationObject, _addInInstance);

dbu.GenerateConnectionManager();

docConfig = null;

}

Generating a Simple Class

This chapter has demonstrated a complete—though simple—code-
generation solution. Principally, this solution hasn’t dealt with having mul-
tiple config files open at the same time, and I’ve deliberately restricted the
objects I’ve used to keep the toolkit required for understanding this chap-
ter small. I’ve also assumed that the generated code will always be in C#.
(Although, because the solution generates so little code, extending it to
handle Visual Basic—or any other language—would be very simple.) I also
haven’t spent much time on structuring code—the focus of the project is
to concentrate on the code-generation process. The case study in the next
chapter goes beyond this solution to handle multiple documents, using a
larger toolkit, generating more complex code, and supporting both C# and
Visual Basic through the CodeDom.

You can download the code for this case study from my website (www.
phvis.com) and www.informit.com.

www.phvis.com
www.phvis.com
www.informit.com

INDEX

487

A
absolute file paths, 91-92
accepting input, 363

accessing and saving option
properties, 73-75

adding Options tab, 71-73
creating dockable windows,

65-69
options, 65-66
saving input values, 69-71

Access property (CodeType
object), 124

accessing
arrays, 220
CodeModel, 87
Document objects, 130-131
enumerated values, 219-220
FileCodeModel, 88-89
indexers, 221
option properties, 73-75
templates from code, 291-292
TextDocument objects, 130-131
Visual Studio from custom

tools, 324
Activate method, 132
Add method, 160
Add New Domain Enumeration

option (DSL Explorer), 441
Add-In Wizard, 24-27
add-ins

adding to .vscontent file, 486
Add-In Wizard, 24-27
ConnectionManager

AddNamedCommand
method, 341

calling solution, 342-343
creating menu, 338-342

defining, 337-338
Exec method, 342-343
OnConnection method,

339-340
QueryStatus method, 341-342

validation code generator add-in
creating, 388-389
GenerateValidator method,

395-397
handling multiple documents

in events, 392-395
submenus, 390-392

Visual Studio add-in. See Visual
Studio add-in

AddArgument method, 109
AddAttribute method, 107-110
AddBase method, 96
AddClass method, 93-94, 108, 424
AddCode method, 410
AddCodeWebSite method, 422
AddDelegate method, 97
AddEnum method, 100-101
AddFolder method, 83-84, 347
AddFolderAndFile method, 405
AddFromDirectory method, 86
AddFromFile method, 86, 174
AddFromFileCopy method, 86
AddFromGAC method, 174
AddFromProject method, 174
AddFromTemplate method,

80, 84-85, 172, 286, 291,
349, 406

AddFunction method, 102-104
AddImplementedInterface

method, 96
AddInterface method, 93-95

AddNamedCommand method,
36, 341

AddNamedCommand2 method, 36
AddNamespace method, 89-91
AddParameter method, 97-98, 104
AddProject method, 160
AddProperty method, 104-105, 356
AddStruct method, 101-102
AddToSubmenu method, 475
AddTwoIntegers method, 186-187
AddVariable method, 102, 106-107
ADO.NET objects, generating,

415-417
advantages of code generation, 4-7
AfterClosing event, 64
AllowMultiple property

(AttributeUsage
attribute), 311

_applicationObject field, 29, 47
AppRelativeUrl property

(WebService object), 179
arrays

accessing, 220
declaring, 193-195

assembly directive, 258-259
Assembly object, 312
AssemblyReference objects

adding, 174
processing, 174-175
properties, 174
removing, 175

assignment statements, 219,
224-225

AtEndOfDocument property
(Document object), 140

AtStartOfDocument property
(Document object), 140

attributes. See also
specific attributes

adding to components, 107-110
controlling where attributes are

used, 310-311
custom attributes, 308-310
documenting with, 315
explained, 285, 305-306
naming, 308
processing with reflection,

311-315
referencing, 306-307

<Attributes> element, 487
Attributes property

(CodeMemberMethod
object), 186, 202

AttributeTargets enumeration, 310
AttributeUsage attribute, 310-311
AutoNavigate (Visual Studio 2005),

55-56
AutoNavigate parameter (TaskItem

object), 55

B
backing out changes

checking status of
UndoContext, 135

explained, 133
retrieving and opening

UndoContext, 133-134
base classes, creating in T4,

265-267
BaseConstructorArgs

collection, 212
Bases collection, 125-126
BaseValidator object, 382
BeginBatch method, 126
benefits of code generation, 4-7
binary operations, 218-219
BindingFlags enumeration, 313
BlankLinesBetweenMembers

property (CodeGenerator
Options object), 244

boilerplate code, copying into
projects, 86

bookmarks, creating, 147-148

488 Index

BracingStyle property (Code
GeneratorOptions
object), 245

build process, integrating
connection string manager
with, 372-373

BuildEvents data type, 372
BuildManager object, 169, 328
BuildNumber property (Reference

object), 161
built-in parameters (.vstemplate

file), 296-298
BuiltEvents package, 59
bulk insertions, 151
bulk replacements, 152

C
cache, GAC (Global Assembly

Cache), 317-318
CallContext object, 281
CanUserDelete parameter

(TaskItem object), 54
casting data types, 222-223
categories, displaying properties

of, 469
ChainedConstructorArgs

collection, 212-213
changes

checking for, 114
undoing

checking status of
UndoContext, 135

explained, 133
retrieving and opening

UndoContext, 133-134
Checkable parameter (TaskItem

object), 54
checking status of UndoContext

object, 135
choosing interfaces, 120-121
classes. See also specific classes

adding to projects, 92-96
base classes, creating in

T4, 265-267
constructors, 211-213
creating, 185-186
entry points, 213-214

events. See events
explained, 197-198
fields, 200-201
functions, 102-104
generation classes, 30-31
generic classes, 199
indexers, 216
inheritance, 198-199
modifying, 353-355
partial classes, 199
properties

adding, 104-105
defining, 214-215

variables, 106-107
ClassKind property

(CodeClass), 95
ClassName property (WebService

object), 180
cleaning up after insertions, 151
ClearBookmarks method, 148
Close method, 132
closing

Document object, 132-133
TextDocument object, 132-133

clrversion parameter (.vstemplate
file), 297

code-generation classes, integrating
with Connect class

adding submenu button,
471-475

explained, 470-471
extensibility, 479-480
responding to events, 475-478
responding to menu button, 479

code model objects, 79-80
code providers

compiling code, 246-247
generating code, 243-246

code snippets, 3
CodeSnippetCompileUnit, 237
CodeSnippetExpression,

236-237
CodeSnippetStatement, 237
explained, 235-236

code structures
For loops, 229-232
If...Then, 228-229
Try...Catch, 232-235

CodeArgumentReference
Expression object, 184

CodeArrayCreateExpression
object, 193-195

CodeArrayIndexerExpression
object, 220

CodeAssignStatement object, 187,
219, 224

CodeAttribute2 object, 109
CodeAttributeArgument object,

240-241
CodeAttributeDeclaration

object, 240-241
CodeBinaryOperatorExpression

object, 187, 218-219, 231
CodeBinaryOperatorType

enumeration, 219
CodeCatchClause object, 232-235
CodeClass object, 78

ClassKind property, 95
methods

AddBase, 96
AddDelegate, 97
AddEnum, 100-101
AddFunction, 102-104
AddImplemented

Interface, 96
AddProperty, 104-105
AddStruct, 101-102
AddVariable, 106-107
GetStartPoint, 411

codeClass variable, 353
CodeClass2 object, 95
CodeCommentStatement object,

239-240
CodeCompileUnit object, 185,

243-246
CodeConstructor object, 211-213
CodeDefaultValueExpression

object, 190
CodeDelegate object, 97
CodeDelegateCreateExpression

object, 210
CodeDelegateInvokeExpression

object, 209
CodeDirectionExpression

object, 226

Index 489

CodeDom object
class members

constructors, 211-213
entry points, 213-214
events, 206-211
fields, 200-201
indexers, 216
methods, 201-205
parameters, 205-206
properties, 214-215

classes
explained, 197-198
generic classes, 199
inheritance, 198-199
interfaces, 198-199
partial classes, 199

code providers
compiling code, 246-247
generating code, 243-245
generating partial code, 246

code snippets
CodeSnippetCompile

Unit, 237
CodeSnippetExpression,

236-237
CodeSnippetStatement, 237
explained, 235-236

code structures
For loops, 229-232
If...Then, 228-229
Try...Catch, 232-235

comments, 239-240
custom attributes, 240-241
declarations

arrays, 193-195
delegates, 195-197
local scalar variables, 190-193

directives, 241-242
explained, 181-182
expressions. See expressions
generating code with (validation

code generator case study)
ADO.NET objects, 415-417
casting method results,

420-421
CodeGenerationMember

method, 421

data conversions, 419-420
event-handler method,

414-415
GenerateCode method, 411
initialization, 413-414
parameterized Select

statement, 418
ServerValidate method,

412-413
supporting “projectless”

websites, 421-424
sample project

classes, 185-186
code to be generated, 183-184
data types, 184-185
explained, 182-183
generating code, 188-189
literals, 184-185
methods with parameters,

186-187
namespaces, 185-186
statements, 187-188
variables, 184-185

statements. See statements
UserData, 242-243
valid names, generating, 238-239

CodeElement object
choosing interfaces, 120-121
position parameters, 119-120
properties

InfoLocation, 118
Language, 119

retrieving from text, 138-139
CodeElementFromPoint

method, 117
CodeEntryPointMethod object,

213-214
CodeEvent object, 121
CodeEventReferenceExpression

object, 208
CodeExpressionStatement

object, 226
CodeFieldReferenceExpression

object, 201, 219
CodeFolders, 177-179
CodeFunction object, 104

CodeGenerationMember
method, 421

CodeGenerationUtilities project,
359, 361, 364, 395

CodeGeneratorOptions object,
244-245

CodeIndexerExpression
object, 221

CodeIterationStatement
object, 230-232

CodeLabeledStatement object, 228
CodeMemberEvent object, 208
CodeMemberField object, 200
CodeMemberMethod object, 186,

201-203
CodeMemberProperty object,

214-215
CodeMethodInvokeExpression

object, 225
CodeMethodReferenceExpression

object, 203-204
CodeMethodReturnStatement

object, 188, 227
CodeModel object

accessing, 87
explained, 78-79, 86-87
methods

AddAttribute, 107-110
AddClass, 93-94
AddDelegate, 97
AddEnum, 100-101
AddInterface, 93-95
AddNamespace, 89-91
AddStruct, 101-102
CreateCodeTypeRef, 99-100
IsValidID, 92, 450

CodeModel property (Project
object), 87

CodeNamespace object, 101-102
CodeNamespaceImport

object, 185
CodeObjectCreateExpression

object, 221-222
CodeParameterDeclaration

Expression object, 186-187,
195-196, 205-206, 210

CodePrimitiveExpression object,
185, 190, 218, 414

490 Index

CodeProperty object
Getter property, 356
IsShared property, 105

CodeProperty2 object, 356
CodePropertyReferenceExpression

object, 215
CodeRegionDirective object, 242
CodeRemoveEventStatement

object, 211
CodeSnippetCompileUnit

object, 237
CodeSnippetExpression object,

236-237
CodeSnippetStatement object, 237
CodeStatement object, 226
CodeStruct object, 102
CodeThisReferenceExpression

object, 218
CodeThrowExceptionStatement

object, 227-228
CodeTryCatchFinallyStatement

object, 232-235
CodeType object

Bases collection, 125-126
comments, 124-125
finding components with,

121-123
properties

Access, 124
DocComment, 125

CodeTypeDeclaration object,
186, 199

CodeTypeDelegate object, 195-196
CodeTypeFromFullName

method, 122
CodeTypeOfExpression

object, 222-223
CodeTypeParameter object,

204-205
CodeTypeRef objects, 99-100
CodeTypeReference object, 185,

190-192
CodeTypeReferenceExpression

object, 219
CodeVariable object, 106
CodeVariable2 object, 107
CodeVariableDeclarationStatement

object, 190, 196

CodeVariableDeclaration
Statements object, 187

CodeVariableReferenceExpression
object, 184, 191, 196,
223-224, 231

collections. See specific collections
COM, 31
commands, NamedCommand, 41
Commands class, 36
Commands2 class, 36
comments, 124-125, 239-240
Comments property (CodeDom

object), 239-240
compile directives, DEBUG, 79-80
compile units, 237
CompileAssemblyFromDom

method, 246
CompilerParameters object,

246-247
compiling code, 246-247
components

adding to websites, 172-173
attributes, 107-110
finding with CodeType object,

121-123
processing all components in

file, 114-116
retrieved elements

choosing interfaces, 120-121
determining if element can be

modified, 118
position parameters, 119-120
writing language-specific

code, 119
retrieving

by location, 117
by name, 116-117

conditional inclusion, 304-305
configuration files, processing

(connection string
manager), 357-358

Connect class, integrating
code-generation
classes with

adding submenu button,
471-475

explained, 470-471

extensibility, 479-480
responding to events, 475-478
responding to menu button, 479

connection string manager
(case study)

code generator, 355-356
GenerateConnectionManager

method, 343-344
retrieving project, 344-345
retrieving web.config file,

345-346
segregating generated code,

346-348
ConnectionManager add-in

AddNamedCommand
method, 341

calling solution, 342-343
creating menu, 338-342
defining, 337-338
Exec method, 342-343
OnConnection method,

339-342
customization support, 337

accepting input, 363
adding custom code, 371
creating user control, 366-367
customizable code, 362-363
defining Options dialog,

363-364
explained, 362
generating custom code, 370
implementing user control

interface, 367-368
integrating with add-in,

369-370
option manager class, 365-366
saving developer choices,

364-365
explained, 333-334
integrating with builds, 372-373
integrating with documents,

373-375
output

defining output utility, 359
handling Task List, 360
WriteOutput method, 361

project goals, 334-337

Index 491

reading input, 356
adding property code, 358
processing configuration file,

357-358
templates

adding, 349-350
adding references to, 355
class modifications, 353-355
customizing, 350-352
namespace, 352-353

connection strings, retrieving,
334-335

ConnectionManager add-in
AddNamedCommand

method, 341
calling solution, 342-343
creating menu, 338-342
defining, 337-338
Exec method, 342-343
OnConnection method, 339-340
QueryStatus method, 341-342

ConnectionManager object,
336-337

ConnectionStrings collection, 417
<ConnectionStrings> element, 350
Console project, 80-81
ConstKind property

(CodeVariable2
object), 107

constructors, creating, 211-213
ContainingProject property, 82, 87
<Content> element, 482
<ContentVersion> element, 483
context menus, 44-46, 468
controlled indenting, 154
ControlToValidate property

(BaseValidator object), 382
converting

expressions to statements,
226-227

files into templates, 287-290
templates to custom etools,

459-462
CopyFromFile method, 84
copying

boilerplate code into, 86
repetitive code, 2-3

CopyLocal property (Reference
object), 161

CreateCodeTypeRef method,
99-100

CreateEscapedIdentifier
method, 238

CreateFunctionName method,
262-263

<CreateInPlace> element, 295
CreateInstance method, 247
CreatePartialClasses class, 29
CreateToolWindow2 method, 67
CreateUniqueId method, 92
CreateValidIdentifier method, 238
CreateVBClass class, 29-30
custom attributes

adding, 240-241
creating, 308-310

custom connection string manager
template, 350-352

class modifications, 353-355
namespace, 352-353
references, 355

custom data types, 98-99
custom directives

defining, 267-270
support for, 282

custom hosts
adding custom methods to,

280-281
custom directives, support

for, 282
defining, 274-280
invoking T4 templates with,

273-274
custom parameters (.vstemplate

file), 298-299
custom tools

accessing Visual Studio
from, 324

converting templates to, 459-462
explained, 286, 315-316
GUIDs, 318
installing to GAC (Global

Assembly Cache), 317-318

IVsSingleFileGenerator
interface

Generate method, 319
GenerateCode method,

319-320
GetDefaultExtension

method, 318
monitoring, 325-326
registering for Visual Studio,

321-322
retrieving information about

custom output, 326-329
testing, 322-323

CustomerNotFoundHandler
delegate, 207

customization, supporting in
connection string manager

accepting input, 363
adding custom code, 371
creating user control, 366-367
customizable code, 362-363
defining Options dialog, 363-364
explained, 362
generating custom code, 370
implementing user control

interface, 367-368
integrating with add-in, 369-370
option manager class, 365-366
saving developer choices,

364-365
<CustomParameters>

element, 298
CustomTool property, preloading,

462-463

D
data conversions, 419-420
data types

BuildEvents, 372
casting, 222-223
custom data types, 98-99
enumerated data types, 441
returning, 222-223
specifying, 185

data-conversion designer
(case study)

adding items to, 439
capturing inputs, 466

492 Index

creating with Domain-Specific
Language Designer
Wizard, 432-435

Decoders, 439, 442
default components, 435-438
designer

graphical items, 442-446
relationships, 441-442
testing, 448-449
toolbox items, 446-447
validation, 447, 450-454

distribution, 458
converting template to

custom tool, 459-462
preloading CustomTool

property, 462-463
Visual Studio 2005/2008

deployment project,
464-465

Visual Studio 2010
deployment project, 465

domain properties, 440-441
enumerated data types, 441
explained, 427-428
generating code, 454-455
goals, 428-431
ParseManager, 439, 442
Parser, 439
template

configuring, 455-458
converting to custom tool,

459-462
preloading CustomTool

property, 462-463
Visual Studio 2010 additions,

465-466
DatabaseUtilities class, 343-344
databinding, 466
debug attribute (template

directive), 258
DEBUG compiler directive, 79-80
debugging

Debugging project, 448
in Visual Studio 2005/2008,

32-34

declarations
arrays, 193-195
delegates

defining delegates, 195-196
instantiating delegates,

196-197
local scalar variables, 190-193

declarative programming, 17-18
Decoder class, 429-430
Decoders, 439, 442
delegates

adding to projects, 96-97
CustomerNotFound

Handler, 207
defining, 195-196, 207
instantiating, 196-197
invoking, 223-224
parameters, 97-98

Delete method, 150, 202-203
DeleteWhitespace method, 151
deleting text, 149-150
deployment. See distribution
DerivedTypes collection, 126
Description property (Reference

object), 161
design-time integration (Visual

Studio add-in), 22-27
designers. See

data-conversion designer
DesignItemOutputDeleted

event, 325
DesignTimeOutputDirty event,

325, 327
developer, notifying (connection

string manager)
defining output utility, 359
handling Task List, 360
WriteOutput method, 361

directives
assembly, 258-259
custom directives

defining, 267-270
support for, 282

import, 258-260
include, 258-260
including in T4 templates, 258

organizing code into regions
with, 241-242

output, 258-261
parameter, 258, 261
template, 258-259

disconnecting event objects, 64
displayed text, controlling, 153
displaying properties in

categories, 469
distribution

.vscontent file, 481
add-ins, 482
example, 485-486
templates, 482-484
toolbox controls, 484
ZIP files, 484

data-conversion designer, 458
converting template to

custom tool, 459-462
preloading CustomTool

property, 462-463
Visual Studio 2005/2008

deployment project,
464-465

Visual Studio 2010
deployment project, 465

explained, 485
installing solutions, 486

DocComment property (CodeType
object), 125

docConfig_Closing event
handler, 375

docE_Closing event handler, 62
dockable windows, creating, 65-69
docMaster_DocumentClosing

method, 394
docMaster_DocumentOpened

method, 62, 374, 393
document events, 59-62
Document object

closing, 132-133
explained, 129-130
making available to

developer, 131-132
methods

Close, 132
Open, 131

Index 493

opening, 130-131
properties, 139-140

documentation, 315
DocumentClosing method, 480
DocumentClosingEventHandler,

394
DocumentOpened event, 62, 373,

471, 475
DocumentOpenMaster event, 62
documents

document events, 61-62
Document object

closing, 132-133
explained, 129-130
making available to

developer, 131-132
methods, 131-132
opening, 130-131
properties, 139-140

event handling, 475-478
handling multiple documents in

events, 392-395
integrating connection string

manager with, 373-375
domain properties, adding to

data-conversion designer,
440-441

Domain-Specific Language
Designer Wizard, 432-435

DRY (Don’t Repeat Yourself), 2
DSL Editor, 437-438

adding enumerated data types
to, 441

adding graphical items to,
442-446

adding items to designer, 439
adding toolbox items to, 446-447
defining relationships in,

441-442
Validate All command, 447

DSL Explorer, 438
DslLibrary, 465
DTE2 class, 29
DTEEvents package, 59
DynamicPropName property

(WebReference
object), 176

E
EditPoint object

bulk insertions, 151
bulk replacements, 152
cleaning up after insertions, 151
controlled indenting, 154
controlling displayed text, 153
creating bookmarks, 147-148
explained, 135
finding text with, 144-145
formatting code, 154
inserting/deleting text, 149-150
methods. See specific methods
properties, 140
relocating, 143-144
replacing text, 150-151
retrieving CodeElements from

text, 138-139
retrieving information about,

139-140
retrieving text with, 141-143
retrieving with FileCodeModel,

136-138
retrieving with

TextDocument, 136
smart formatting, 154

elements. See specific elements
ElseOnClosing property

(CodeGeneratorOptions
object), 244

enabling validation, 450-451
EndDirectives collection, 241-242
EndOfDocument method, 144
EndOfLine method, 144
EnsureServerRunning

method, 171-172
entry points, creating, 213-214
enumerated data types, adding

to data-conversion
designer, 441

enumerated values, accessing,
219-220

enumerations
adding, 100-101
AttributeTargets, 310
BindingFlags, 313
CodeBinaryOperatorType, 219

GenerationLevel, 359
MemberAttributes, 186

EnvDTE2 object, 47
error handling

validation code generator (case
study), 425-426

Visual Studio add-in, 57
Error method, 263
ErrorMessage property

(BaseValidator object), 382
errors, generating, 263
escape characters, including in T4

templates, 257
EvaluateIsValid method, 383-384
event handling

disconnecting event objects, 64
document events, 61-62
event handlers

creating, 209-210
docConfig_Closing, 375
docE_Closing, 62
docMaster_

DocumentOpened, 374
DocumentClosing(), 477
DocumentClosingEvent

Handler, 394
SlnE_AfterClosing(), 64
slnE_Opened(), 477-479
winE_WindowNavigated, 61
wiring events to, 210-211

event packages
extracting, 63-64
table of, 58

extracting event packages, 63-64
filtered events, 60-61
simple events, 58, 60

event packages
extracting, 63-64
table of, 58

EventArgs object, 383, 386-387
events, 206. See also

event handling
AfterClosing, 64
defining, 208
delegates, 207
DesignItemOutputDeleted, 325

494 Index

DesignTimeOutputDirty,
325-327

DocumentOpened, 62, 373,
474, 478

DocumentOpenMaster, 62
handling multiple documents in,

392-395
Imports, 168
OnAfterCreated, 367-368
OnOk, 367-368
Opened, 58
raising, 208-209
ReferenceAdded, 163
responding to, 475-478
ServerValidate, 379
TaskNavigated, 55-56
WindowActivated, 60
wiring to handler methods,

210-211
*Events object, 162
exceptions, throwing, 227-228
Exec method, 27-30, 342-343,

471, 479
ExecuteScalar method, 420-421
ExpandView method, 166
Export Template Wizard, 287-290
expressions. See also

specific expressions
accessing arrays with, 220
accessing enumerated values

with, 219-220
accessing indexers with, 221
assignment statements, 219
binary operations, 218-219
casting and returning types,

222-223
converting to statements,

226-227
explained, 217
including in T4 templates, 255
instantiating objects with,

221-222
invoking delegates, 223-224
literals, 218
reference expression objects,

217-218

extending
T4 (Text Templating

Transformation Toolkit)
creating new base class,

265-267
defining custom directives,

267-270
explained, 253, 265

Visual Studio add-in menus,
36-37

extensibility, 10
extracting event packages, 63-64

F
fields, creating, 200-201
File parameter (TaskItem

object), 55
FileCodeModel object

accessing, 88-89
explained, 78, 86-87
methods

AddDelegate, 97
AddNamespace, 89-91
BeginBatch, 126
CodeElementFromPoint, 117
GetStartPoint, 136
get_CodeElement, 138

retrieving EditPoints with,
136-138

<FileContentType> element, 482
fileinputextension parameter

(.vstemplate file), 297
fileinputname parameter

(.vstemplate file), 297
<FileName> element, 482
FileProperties2 object, 170
files

.tt extension, 254

.vscontent, 481
add-ins, 482
example, 485-486
templates, 482-484
toolbox controls, 484
ZIP files, 484

.vstemplate
built-in replaceable

parameters, 296-298
conditional inclusion, 304-305
custom replaceable

parameters, 298-299
<ProjectItem> element,

299-301
<References> element,

301-302
sample template, 302-303
structure of, 293-294
<TemplateData> element,

294-296
<WizardExtension>

element, 303
absolute file paths, 91-92
adding to projects, 84-85
converting into templates,

287-290
relative file paths, 91
web.config, retrieving, 345-346
ZIP files, adding .vscontent

files to, 484
filtered events, responding to,

60-61
FinalReleaseCOMObject

object, 32
Find method, 161
finding

components with CodeType
object, 121-123

project items, 110-112
projects, 110-112
text

with EditPoint object,
144-145

with regular expressions,
146-147

Visual Studio add-in menus,
38-40

FindPattern method, 144-145, 403
FlushItem parameter (TaskItem

object), 55
FolderPath property (CodeFolder

object), 177

Index 495

FolderProperties2 object, 170
folders, adding to projects, 83-84
For loops, 229-232
formatting code, 154
FullName property (Document

object), 140
FullPath property

(AssemblyReference
object), 174

G
GAC (Global Assembly Cache),

installing custom tools to,
317-318

general-purpose code, 3-4
Generate Code submenu, 471-474
Generate method, 319
GenerateCode method, 319-320,

411, 462
GenerateCodeFromCompileUnit

method, 189, 245
GenerateCodeFromCompileUnit

object, 246
GenerateConnectionManager

method, 343-344
GenerateValidator method,

395-397, 401
generation classes, writing, 30-31
GenerationLevel enumeration, 359
generic classes, 199
generic methods, 204-205
get_CodeElement method, 138
get_IsDerivedFrom method, 126
get_Properties method, 369
get_VariablePersists method, 127
GetConnectionElement

method, 413
GetCustomAttributes method,

313-314
GetDefaultExtension method, 318
GetHostOption method, 278
GetLines method, 142-143
GetMenu method, 473-474
GetObject method, 63
GetProjectItemTemplate method,

84, 291

GetProjectTemplate method, 81
GetProperties method, 73-75, 368
GetStartPoint method, 136,

142, 411
GetStatements property

(CodeMemberProperty
object), 214

Getter property (CodeProperty
object), 356

GetText method, 137, 141, 146
GetTypes method, 312
GetUniqueFileName method, 85,

168-169, 172
GetValue method, 70
Global Assembly Cache (GAC),

installing custom tools to,
317-318

Globals object
storing input values in, 69-70
storing strings in, 127

Globals property
Project object, 70
Solution object, 70

GoTo statements, 228
graphical items, adding to

data-conversion designer,
442-446

GreaterThan property (Document
object), 140

guidn parameter (.vstemplate
file), 298

GUIDs
for custom tools, 318
retrieving for folders, 83

H
HandleCustomerNotFound

method, 210
HasGet property

(CodeMemberProperty
object), 214

HasSet property
(CodeMemberProperty
object), 214

helper methods, 3-4, 261-263
<Hidden> element, 295

hosts
custom hosts

adding custom methods to,
280-281

custom directives, 282
defining, 274-280
invoking T4 templates with,

273-274
Visual Studio host, invoking T4

templates with, 272
hostspecific attribute (template

directive), 258

I
ICustomer interface, 202-203
Identity property (Reference

object), 161
IDTToolsOptionsPage interface,

367-368
if...$else$...$endif$ structure,

304-305
If...Then structure, 228-229
ImplementationTypes property

CodeMemberMethod
object, 202

CodeMemberProperty
object, 214

import directive, 258, 260
Imports statements

adding, 166-167
explained, 166
monitoring Imports events, 168
removing, 167

include directive, 258, 260
Indent method, 154
indents, controlling, 154, 264-265
IndentString property

(CodeGeneratorOptions
object), 245

indexers
accessing, 221
defining, 216

InfoLocation property
(CodeElement object), 118

inheritance, 198-199
Inherited property (AttributeUsage

attribute), 311

496 Index

inherits attribute (template
directive), 259

InitExpression property
(CodeVariable object), 106

input
accepting, 363

accessing and saving option
properties, 73-75

adding Options tab, 71-73
creating dockable windows,

65-69
options, 65-66
saving input values, 69-71

reading (connection string
manager), 356

adding property code, 358
processing configuration file,

357-358
Insert method, 149, 409
InsertFromFile method, 151
inserting

code (validation code generator),
410-411

text
bulk insertions, 151
cleaning up after

insertions, 151
Insert method, 149

installing
code-generation solutions, 490
custom tools to GAC (Global

Assembly Cache), 317-318
instantiating

delegates, 196-197
objects, 221-222

integrating
code-generation classes with

Connect class
adding submenu button,

471-475
explained, 470-471
extensibility, 479-480
responding to events, 475-478
responding to menu

button, 479
with Visual Studio. See Visual

Studio add-in

interfaces. See also
specific interfaces

adding to projects, 92-96
choosing, 120-121
explained, 198-199

InvalidCustomerIdEvent
Handler, 98

invoking
delegates, 223-224
methods, 225-226
T4 templates

configuring project, 271
explained, 270
with custom host, 273-274
with Visual Studio host, 272

IsAborted property (UndoContext
object), 135

IsAbstract property
(CodeClass2), 95

IsDirectiveSupported method, 269
IsDirty property (Project

object), 114
IsOpen property (UndoContext

object), 135
IsPartial property

(CodeTypeDeclaration
object), 199

IsShared property
CodeProperty object, 105
CodeStruct object, 102

IsStatic method, 369
IsStrict property (UndoContext

object), 135
IsValid property (EventArgs

object), 386
IsValidID method, 92, 450
IsValidIdentifier method, 239
Item method, 161
item templates

accessing from code, 291-292
components, 290-291
converting files into, 287-290
explained, 286-287
testing, 292-293
.vstemplate file

built-in replaceable
parameters, 296-298

conditional inclusion, 304-305

custom replaceable
parameters, 298-299

<ProjectItem> element,
299-301

<References> element,
301-302

sample template, 302-303
structure of, 293-294
<TemplateData> element,

294-296
<WizardExtension>

element, 303
itemname parameter (.vstemplate

file), 297
ITextTemplating class, 272
ITextTemplatingEngineHost

interface, 274
IVsSingleFileGenerator interface,

317-318
Generate method, 319
GenerateCode method, 319-320
GetDefaultExtension

method, 318

J-K-L
Kind property

documents, 140
folders, 84

labeled statements, 228
Language property

CodeElement object, 119
Document object, 139
template directive, 258

language-specific code, 119
<LanguageDiagram> element, 447
LessThan property (Document

object), 140
libraries, 158-159
Line parameter (TaskItem

object), 55
Line property (Document

object), 140
LineDown method, 143
LineLength property (Document

object), 140

Index 497

LineUp method, 143-144
ListOfCustomersCodeType

method, 99, 119
literals, 185, 218
<LoadBehavior> element, 32-33
LoadFrom method, 312
LoadIncludeText method, 277
loading Visual Studio add-in, 32-34
local scalar variables, declaring,

190-193
location, retrieving

components by, 117
LogErrors method, 277-278, 450
lookup methods, generating

ADO.NET objects, 415-417
event-handler method, 414-415
initialization, 413-414
ServerValidate method, 412-413

lookupClass variable, 423
LookupValidator

adding to toolbox, 387-388
creating, 382-386
creating other code-generated

validators, 387
EventArgs object, 386-387

loops, For, 229-232

M
machinename parameter

(.vstemplate file), 297
Main method, 213
MajorVersion property (Reference

object), 161
managing

code-generation process
(validation code generator),
402-403

websites, 171-172
MathFunctions class, 183, 186
MDA (Model-Driven Architecture)

benefits, 14-15
goal, 14
limitations, 15-17

MemberAttributes
enumeration, 186

menu button, responding to, 482

menus
for ConnectionManager add-in,

338-342
menu names, 468
validation code generator add-in,

390-392
Visual Studio add-in menus

accessing context, 46-48
adding, 37-38
extending, 36-37
finding, 38-40
menu items, 40-42
removing, 35
submenus, 43-46
supporting multiple menu

items, 42-43
messages, writing to Output

window and TaskList,
51-55

methods. See specific methods
MinorVersion property (Reference

object), 161
Model-Driven Architecture,

(MDA), 14-17
ModelBus, 465
monitoring

changes to references, 162-164
changes to Web References, 166
custom tools, 325-326
Imports events, 168

MoveToLineAndOffset
method, 144

MoveToPoint method, 144
multiple documents, handling in

events, 392-395
multiple menu items,

supporting, 42-43

N
Name property

assembly directive, 259
AssemblyReference object, 174
CodeMemberMethod

object, 186
CodeMemberProperty

object, 214

Document object, 140
Reference object, 161
UIHierarchyItem object, 50

NamedCommand object, 41,
390-391

names
menu names, 468
retrieving components by,

116-117
valid names, generating, 238-239

Namespace property
imports directive, 260
WebReference object, 175

namespaces
adding to projects, 89-91
checking for valid names, 92
creating, 185-186
referencing, 352-353

naming attributes, 308
notifying developer (connection

string manager)
defining output utility, 359
handling Task List, 360
WriteOutput method, 361

NumIndices property (Property
object), 113

O
objects. See specific objects
OnAfterCreated event, 367-368
OnAfterCreated method, 73
OnBuildBegin method, 372-373
OnCancel method, 73
OnConnection method, 34-35,

339-340, 372-373, 392,
470, 488

OnOk event, 367-368
OnOK method, 73
Open method, 131
Opened event, 58
OpenInEditor attribute

(<ProjectItem> element),
300, 399

opening
Document objects, 130-131
TextDocument objects, 130-131
UndoContext object, 133-134

498 Index

OpenInHelpBrowser attribute
(<ProjectItem>
element), 300

OpenInWebBrowser attribute
(<ProjectItem>
element), 300

OpenOrder attribute
(<ProjectItem>
element), 300

Option Explicit statement, 243
option properties, accessing and

saving, 73-75
Option Strict statement, 243
Options dialog, 363-364
Options tab, 71-73
organizing code into regions,

241-242
output for connection

string manager
defining output utility, 359
handling Task List, 360
WriteOutput method, 361

output directive, 258-261
Output window, writing messages

to, 51-55

P
packages

extracting, 63-64
table of, 58

parameter directive, 258, 261
parameterized Select

statement, 418
parameters

adding to delegates, 97-98
adding to methods, 205-206
passing to templates, 281-282
position parameters, 91, 119-120
replaceable parameters

(.vstemplate file)
built-in parameters, 296-298
custom parameters, 298-299

Parameters property
(CodeMemberProperty
object), 214

ParseManager, 439, 442
Parser, 439
ParseTag method, 429
partial classes, 199
partial code, generating, 246
passing parameters to templates,

281-282
Path property

Document object, 140
Reference object, 161

paths
absolute file paths, 91-92
relative file paths, 91

PHVISTagParse class, 429
position parameter, 91, 119-120
preloading CustomTool property,

462-463
PrivateImplementationType

property
CodeMemberMethod

object, 202
CodeMemberProperty

object, 214
prj variable, 82
process of code generation, 11-12
ProcessDirective method, 268-269
processing components, 114-116
ProcessTemplate method, 272
ProcessValidators method, 407
project information, determining,

404-405
project items

finding, 110-112
removing, 113-114

Project object
CodeModel property, 87
Globals property, 70
referencing, 344-345

ProjectInfo structure, 402
ProjectItem collection, 286, 291
<ProjectItem> element,

299-301, 399
ProjectItem object

ContainingProject property, 87
Remove method, 113

ProjectItems object, 81
methods

AddFolder, 83
AddFromTemplate, 84

retrieving reference to, 82
ProjectItemsEvents package, 59
“projectless” websites, supporting,

421-424
ProjectProperties3 object, 170
projects

classes, 92-96
copying boilerplate code into, 86
creating, 80-81
delegates, 96-98
enumerations, 100-101
files, 84-85
finding, 110-112
folders, 83-84
interfaces, 92-96
namespaces

adding, 89-91
checking for valid names, 92

Projects collection, referencing,
82-83

properties, reading, 113
structures, 101-102

Projects collection, referencing,
82-83

properties. See also
specific properties

adding to classes, 104-105
defining, 214-215
displaying, 469
domain properties, adding to

data-conversion designer,
440-441

option properties, accessing and
saving, 73-75

reading project properties, 113
Properties collection, 73
<ProvideDefaultName>

element, 295

Index 499

Q-R
QueryStatus method, 42, 341-342

raising events, 208-209
reading

project properties, 113
input (connection string

manager), 356
adding property code, 358
processing configuration file,

357-358
ReadOnly property (Document

object), 140
reference expression objects,

217-218
Reference object, 161, 174. See

also references
ReferenceAdded event, 163
ReferenceAdded function, 164
ReferencedProject property

(AssemblyReference
object), 174

ReferenceKind property
(AssemblyReference
object), 174

references
adding, 160-161, 301-302, 355
AssemblyReference objects

adding, 174
processing, 174-175
properties, 174
removing, 175

monitoring changes to, 162-164
properties, 161
removing, 160-161, 164-166
retrieving information about,

161-162
WebReference objects

adding, 164-166, 175
monitoring changes to, 166
processing, 175-176
properties, 175-176
removing, 164-166, 176
retrieving, 177

References collection, 160-161.
See also references

<References> element, 301-302
References property (VSWebSite

object), 174
ReferencesEvents object, 162-164
referencing

namespaces, 352-353
Projects collection, 82-83

reflection, processing attributes
with, 311-315

Refresh method, 169
regions, organizing code into,

241-242
registeredorganization parameter

(.vstemplate file), 297
registering custom tools, 321-322
registry, saving input values in,

70-71
regular expressions, finding text

with, 146-147
related classes, retrieving, 125-126
relationships, adding to data-

conversion designer,
441-442

relative file paths, 91
relocating EditPoint object,

143-144
Remove method, 113, 167
removing

add-in menus, 35
AssemblyReference objects, 175
Imports statements, 167
items, 113-114
references, 160-161
WebReference objects,

164-166, 176
repetitive code

copying and pasting, 2-3
explained, 2
general-purpose code, 3-4

replaceable parameters
(.vstemplate file)

built-in parameters, 296-298
custom parameters, 298-299

ReplaceParameters attribute
(<ProjectItem> element),
300, 399

ReplacePattern method, 152
ReplaceText method, 150-151
replacing text

bulk replacements, 152
ReplaceText method, 150-151

<RequiredFrameworkVersion>
element, 295

resetaddin utility, 35
ResolveAssemblyReference

method, 276
ResolveDirectiveProcessor

method, 278, 282
ResolvePath method, 275
responding

to events
disconnecting event

objects, 64
document events, 61-62,

475-478
extracting event packages,

63-64
filtered events, 60-61
simple events, 58-60
table of event packages, 58

to menu button, 479
retrieved elements

choosing interfaces, 120-121
determining if element can be

modified, 118
position parameters, 119-120
writing language-specific

code, 119
retrieving

CodeElements from text,
138-139

CodeModel, 87
components

by location, 117
by name, 116-117

connection strings, 334-335
custom output information,

326-329
Document objects, 130-131
EditPoint objects

with FileCodeModel, 136-138
with TextDocument, 136

500 Index

FileCodeModel, 88-89
GUIDs for folders, 83
project properties, 113
reference information, 161-162
related classes, 125-126
selected items with Visual Studio

add-in, 50-51
text with EditPoint object,

141-143
TextDocument objects, 130-131
UndoContext object, 133-134
VSWebProjectItem objects, 179
web.config file, 345-346
WebReference objects, 177

return statements, 227
ReturnCopyright method, 266
returning data types, 222-223
ReturnType property

(CodeMemberMethod
object), 186, 202

RevisionNumber property
(Reference object), 161

$rootnamespace$ parameter,
296-298

RunCustomTool method, 329

S
$safeitemname$ parameter,

296-297
safeitemrootname parameter

(.vstemplate file), 297
SaveValue method, 71
saving

developer choices, 364-365
input values, 69-71
option properties, 73-75

searching for templates, 81
segregating generated code,

346-348
Select statement, 418
SelectedItems collection, 48
SelectionEvents package, 59
Server Explorer window, 50-51
ServerValidate event, 379
ServerValidate method, 412-413

ServiceDefinitionUrl property
(WebReference
object), 176

ServiceLocationUrl property
(WebReference
object), 176

ServiceName property
(WebReference
object), 176

set_VariablePersists method, 127
SetAborted method, 134
SetBookMark property (EditPoint

object), 147-148
SetLogicalData method, 281
SetProjectInformation method,

402, 404
SetStatements property

(CodeMemberProperty
object), 214

simple events, responding to, 58-60
simplicity, 10
SlnE_AfterClosing event

handler, 64
slnE_Opened() event handler,

476-477
smart formatting, 154
SmartFormat method, 154
Solution object, 70
Solution2 object, 80-84
SolutionEvents package, 58-59
SourceProject property (Reference

object), 161
SqlCommand object, 379
SqlConnection object, 379
StandardAssemblyReferences

method, 275-276
StartDirectives collection, 241-242
starting code-generation process

(validation code generator),
400-402

StartOfDocument method, 144
StartOfLine method, 144
StartProcessingRun method, 270
statements

adding to methods, 187-188
assignment statements, 219,

224-225

converting expressions to,
226-227

explained, 224
GoTo statements, 228
Imports

adding, 166-167
explained, 166
monitoring Imports

events, 168
removing, 167

invoking methods with, 225-226
labeled statements, 228
Option Explicit, 243
Option Strict, 243
return statements, 227
Select, 418
throwing exceptions, 227-228
TryParse, 419-420

Statements property
(CodeMemberMethod
object), 202

status of UndoContext object,
checking, 135

strings, storing in Globals
object, 127

StrongName property
AssemblyReference object, 174
Reference object, 161

structures, 101-102
subcategories of properties,

displaying, 469
submenus

adding, 44
creating, 43-44
submenu button, 471-475

SubType attribute (<ProjectItem>
element), 300

Supports method, 245
<SupportsCodeSeparation>

element, 295
<SupportsLanguageDropDown>

element, 295
<SupportsMasterPage>

element, 295
SuppressGeneration attribute, 408

Index 501

T
T4 (Text Templating

Transformation Toolkit)
code-generation strategies,

252-253
explained, 249-251
extending

creating new base class,
265-267

defining custom directives,
267-270

explained, 253, 265
T4 in Visual Studio, 251-252
templates, creating

accessing generated code, 264
assembly directive, 258-259
controlling code indentation,

264-265
directives, 258
escape characters, 257
explained, 254-257
generating errors and

warnings, 263
helper methods, 261-263
import directive, 258-260
include directive, 258-260
output directive, 258-261
parameter directive, 258, 261
template directive, 258-259

templates, invoking
configuring project, 271
explained, 270
with custom host, 273-274
with Visual Studio host, 272

TabSize property (Document
object), 139

TargetFileName attribute
(<ProjectItem>
element), 399

targetframeworkversion parameter
(.vstemplate file), 297

TaskItem object, 53-55
TaskList window

accessing, 49-50
handling, 360
writing messages to, 51-55

TaskListEvents package, 59
TaskNavigated event, 55-56
TempFileLocation property, 75
template directive, 258-259
<TemplateData> element, 294-296
templates

adding to .vscontent file,
482-484

benefits of, 285
connection string

manager project
adding references to, 355
adding template, 349-350
class modifications, 353-355
customizing template,

350-352
namespace, 352-353

converting to custom tools,
459-462

data-conversion designer,
455-458

item templates
accessing from code, 291-292
components, 290-291
converting files into, 287-290
explained, 286-287
testing, 292-293
.vstemplate file, 293-305

passing parameters to, 281-282
references, 301-302
searching for, 81
T4 templates, creating

accessing generated code, 264
assembly directive, 258-259
controlling code indentation,

264-265
directives, 258
escape characters, 257
explained, 254-257
generating errors and

warnings, 263
helper methods, 261-263
import directive, 258-260
include directive, 258-260
output directive, 258-261
parameter directive, 258, 261
template directive, 258-259

T4 templates, invoking
configuring project, 271
explained, 270
with custom host, 273-274
with Visual Studio host, 272

validation code generator
template, 397-400

testing
custom tools, 322-323
data-conversion designer,

448-449
templates, 292-293

text
cleaning up after insertions, 151
controlling displayed text, 153
deleting, 149-150
finding

with EditPoint object,
144-145

with regular expressions,
146-147

inserting
bulk insertions, 151
cleaning up after

insertions, 151
Insert method, 149

replacing
bulk replacements, 152
ReplaceText method, 150-151

retrieving with EditPoint object,
141-143

Text Templating Transformation
Toolkit. See T4

TextDocument object
closing, 132-133
explained, 129-130
making available to developer,

131-132
methods

ClearBookmarks, 148
Close, 132
Open, 131

opening, 130-131
properties, 139
retrieving EditPoints with, 136

TextPoint object, 136

502 Index

TextRanges object, 146
TextSelection object, 51
throwing exceptions, 227-228
time parameter (.vstemplate

file), 297
toolbox controls

adding to data-conversion
designer, 446-447

adding to .vscontent file, 488
<ToolsOptionsPage> element,

72-73
Try...Catch structure, 232-235
TryParse method, 420
TryParse statement, 419-420
TryToShow method, 153
.tt extension, 254
Type property

(CodeMemberProperty
object), 214

TypeParameters collection, 199

U
UIHierarchy object, 50
UIHierarchyItem object, 50
UndoContext object, 425-426

checking status of, 135
properties, 135
retrieving and opening, 133-134

undoing changes
checking status of

UndoContext, 135
explained, 133
retrieving and opening

UndoContext, 133-134
Unload method, 180
unloading VSWebProjectItem

objects, 180
UpdateLocalCopy method, 180
URL property (WebService

object), 180
UserControl object

adding to Visual Studio add-in,
65-69

methods, 73
UserData property (CodeDom

object), 242-243

userdomain parameter (.vstemplate
file), 297

username parameter (.vstemplate
file), 297

utilities, 3-4
resetaddin, 35
Utilities class, 364-365

V
valid names, generating, 238-239
Validate All command (DSL

Editor), 447
validation. See also validation

code generator
data-conversion designer,

447, 450
adding validation code,

452-454
enabling validation, 450-451
validation options, 454

enabling, 450-451
validation code generator (case

study)
code generator add-in

creating, 388-389
GenerateValidator method,

395-397
handling multiple documents

in events, 392-395
submenus, 390-392

code-generation process
adding code-generation file,

405-406
determining project

information, 404-405
explained, 400
inserting code, 410-411
managing, 402-403
processing validators, 407-410
starting, 400-402

dedicated code solution, 378-380
error handling, 425-426
explained, 377-378
generalized code solution, 380
generated code solution,

380-382

generating code with CodeDom
ADO.NET objects, 415-417
casting method results,

420-421
CodeGenerationMember

method, 421
data conversions, 419-420
event-handler method,

414-415
GenerateCode method, 411
initialization, 413-414
parameterized Select

statement, 418
ServerValidate method,

412-413
LookupValidator

adding to toolbox, 387-388
creating, 382-386
creating other code-generated

validators, 387
EventArgs object, 386-387

supporting “projectless”
websites, 421-424

template, defining, 397-400
ValidationContext object, 453
ValidationDataType enumerated

value, 383
ValidationMethod attribute, 453
ValidationState attribute, 452
Value property

EventArgs object, 386
Property object, 113

variables
adding to classes, 106-107
codeClass, 353
local scalar variables, 190-193
lookupClass, 423
prj, 82
specifying, 184

VBImportsEvents object, 168
VBProjectProperties object, 170
VBProjPropId100 object, 170
VerbatimOrder property

(CodeGeneratorOptions
object), 245

Version property (Reference
object), 161

Index 503

visibility, 10
Visible property (Window object),

131-132
Visual Studio

accessing from custom tools, 324
code snippets, 3

Visual Studio add-in
accepting input

accessing and saving option
properties, 73-75

adding Options tab, 71-73
creating dockable windows,

65-69
options, 65-66
saving input values, 69-71

classes
CreatePartialClasses, 29
CreateVBClass, 29-30
DTE2, 29
generation classes, writing,

30-31
COM support, 31
creating foundation code with

Add-In Wizard, 24-27
debugging issues, 32-34
design-time integration, 22-23
Exec method, 27-30
explained, 21-22
loading, 32-34
menus

accessing context, 46-48
adding, 37-38
adding menu items, 40-42
adding submenus, 44
context menus, 44-46
creating submenus, 43-44
extending, 36-37
finding, 38-40
removing, 35
supporting multiple menu

items, 42-43
OnConnection method, 34-35
responding to events

disconnecting event
objects, 64

document events, 61-62

extracting event packages,
63-64

filtered events, 60-61
simple events, 58-60
table of event packages, 58

windows
AutoNavigate, 55-56
error handling, 57
retrieving selected

items, 50-51
Server Explorer

window, 50-51
TaskList window, 49-50
writing messages to, 51-55

Visual Studio Content
Installer, 490

vsCMInfoLocationExternal
(InfoLocation
property), 118

vsCMInfoLocationNone
(InfoLocation
property), 118

vsCMInfoLocationProject
(InfoLocation
property), 118

.vscontent file, 485
add-ins, 486
example, 489-490
templates, 486-488
toolbox controls, 488
ZIP files, 488

VSLangProj libraries, 158-159
VSLangProjWebReferencesEvents

object, 166
VSProject object

explained, 160
Imports statements

adding, 166-167
explained, 166
monitoring Imports

events, 168
removing, 167

methods
GetUniqueFileName,

168-169
Refresh, 169

504 Index

references
adding, 160-161
monitoring changes to,

162-164
properties, 161
removing, 160-161
retrieving information about,

161-162
Web References, 164-166

WorkOffLine property, 169
VSProjectItem object, 329
.vstemplate file

built-in replaceable parameters,
296-298

conditional inclusion, 304-305
custom replaceable parameters,

298-299
<ProjectItem> element,

299-301, 399
<References> element, 301-302
sample template, 302-303
structure of, 293-294
<TemplateData> element,

294-296
<WizardExtension>

element, 303
VSWebProjectItem object

retrieving, 179
unloading, 180

VSWebSite object
adding website components,

172-173
AssemblyReference objects

adding, 174
processing, 174-175
properties, 174
removing, 175

CodeFolders, 177-179
explained, 170-171
managing websites, 171-172
methods

AddFromTemplate, 172
EnsureServerRunning,

171-172
GetUniqueFileName, 172
WaitUntilReady, 172-173

References property, 174
VSWebProjectItems

retrieving, 179
unloading, 180

WebReference objects
adding, 175
processing, 175-176
properties, 175-176
removing, 176
retrieving, 177

WebReferences collection,
175-177

WebServices collection, 179-180

W-X-Y-Z
WaitUntilReady method, 172-173
Warning method, 263
warnings, 263
web.config file, retrieving, 345-346
WebReference objects

adding, 164-166, 175
monitoring changes to, 166
processing, 175-176
properties, 175-176
removing, 164-166, 176
retrieving, 177

WebReferences collection, 175-177
WebServices collection, 179-180
WebSiteItemsEvents package, 59
websites

adding components to, 172-173
CodeFolders, 177-179
explained, 170-171
managing, 171-172
“projectless” websites,

supporting, 421-424
Window object, 131-132
Window2 object, 67
WindowActivated event, 60
WindowEvents package, 59
windows

dockable windows, 65-69
Visual Studio windows

AutoNavigate, 55-56
error handling, 57
retrieving selected items,

50-51

Server Explorer window,
50-51

TaskList window, 49-50
writing messages to, 51-55

Windows registry, saving input
values in, 70-71

winE_WindowNavigated event
handler, 61

<WizardExtension> element, 303
wizards

Add-In Wizard, 24-27
Domain-Specific Language

Designer Wizard, 432-435
Export Template Wizard,

287-290
wizard classes, 303

WorkOffLine property (VSProject
object), 169

Write method, 257
WriteCopyright method, 266
WriteLine method, 256-257
WriteOutput method, 360-361, 397
writing

language-specific code, 119
messages to Output window and

TaskList, 51-55
WsdlAppRelativeUrl property

(WebReference
object), 176

year parameter (.vstemplate
file), 297

ZIP files, adding .vscontent
files to, 484

	Foreword
	Preface
	Chapter 9 Case Study: Generating a Connection String Manager
	Defining the Problem
	Setting Up the Add-In
	Creating the Code Generator
	Customizing the Template
	Generating Code
	Reading Input
	Notifying the Developer
	Supporting Customization
	Tying Generation to Events
	Generating a Simple Class

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K-L
	M
	N
	O
	P
	Q-R
	S
	T
	U
	V
	W-X-Y-Z

