

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations
have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or
consequential damages in connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales,
which may include electronic versions and/or custom covers and content particular to your business, training goals,
marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data
Savas, Foy.

The Merb way / Foy Savas.
p. cm.

ISBN 978-0-321-60638-9 (pbk. : alk. paper)
1. Web site development. 2. Merb (Electronic resource) I. Title.

TK5105.888.S2775 2009
006.7’6—dc22 2009013263

Copyright c© 2009 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system,
or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For
information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

The code in this book may be distributed only subject to the terms and conditions set forth in the MIT License.

The MIT License reads:

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the “Software”), to deal in the Software without restriction, including without limitation to
the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to the following conditions:

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

ISBN-13: 978-0-321-60638-9
ISBN-10: 0-321-60638-8

Text printed in the United States on recycled paper at Donnelley in Crawfordsville, Indiana.
First printing, June 2009

Editor-in-Chief
Mark Taub

Acquisitions Editor
Debra Williams Cauley

Development Editor
Michael Thurston

Managing Editor
John Fuller

Project Editor
Anna Popick

Copy Editor
Barbara Wood

Indexer
Richard Evans

Proofreader
Barbara Wood

Technical Reviewers
Matthew Knox
Jen Lindner

Editorial Assistant
Kim Boedigheimer

Cover Designer
Chuti Prasertsith

Compositor
ITC

Foreword

I viewed the Merb project with a big dollop of suspicion almost from the very start.
First of all, it started out as a really simple concept, but got a lot more complicated as
additional contributors got involved. And whether my suspicion was misplaced or not,
I couldn’t shake the feeling that the Merb people were insisting on reinventing Ruby on
Rails simply to be difficult.

Merb isn’t that different from Rails, nor is it a major improvement as far as I was
concerned. It was only slightly better (in some regards), and only slightly different from
Ruby on Rails. Sure there were some benchmarks showing big performance gains for
using Merb, but I was not convinced enough to switch. And I couldn’t bear to use Merb
and Rails concurrently. You see, they were very similar, yet different in subtle ways. The
last thing I want to do when I’m programming on hard deadlines is to slow down to
remember the differences between Merb’s render method and the one in Rails, etc.

Life continued, and while I was very happy and making a ton of money working
with and writing about Rails, I still occasionally looked at Merb, if only to see what they
were up to. Sure enough, by 2008 my perception of Merb had started to change. I met
Foy Savas and he gave me the gist of why it would make sense to write The Merb Way.
I concurred and Foy got busy writing.

As Merb approached a 1.0 release, it appeared that Yehuda Katz and his band of merry
discontents were actually achieving a viable platform, one that would attain permanent
status as an alternative to Rails. I started hearing about significant production projects
running on Merb, such as yellowpages.com. My appreciation for Merb grew, as I got
familiar with the project goals and noticed how the competition was acting as a healthy
stimulus for Rails to not rest on its laurels. I wasn’t ready to switch to Merb myself, since
my key criterion is maturity, which Rails has in spades, but no longer was I suspicious.

xix

xx Foreword

In November of 2008 I was extremely happy about Foy being almost finished writing
the first manuscript of this book, knowing that it would be a good complement to the
Professional Ruby Series and a good companion for The Rails Way. Foy delivered an
awesome conference presentation in Boston where he covered some of the key concepts
from the book in an engaging and entertaining manner—the crowd ate it up and I knew
The Merb Way would be a winner.

It wasn’t too many weeks later that the unthinkable happened. After an eruption of
feuding between members of the Rails and Merb teams, some secret meetings occurred
and shocking news was unveiled right before Christmas: DHH and Yehuda happily
proclaimed that the core teams of both frameworks were merging and that within a year,
the Merb codebase would be merged with Rails in order to produce Rails Version 3,
after which development of Merb would discontinue.

The million-dollar question (okay, not quite that much) for Foy and myself as the
Series Editor was whether to continue with the publication of The Merb Way. After all,
if the Merb framework was going away, then what was the point?

After letting the matter settle for a while, we arrived at our answer, which you already
know since you are holding this book. It turns out that learning about Merb is valuable
in a number of important ways. First, Merb is still used rather widely and we suspect
that its lifetime will exceed what the current core team has in mind. Second, Foy is
a gifted writer and his descriptions of the philosophies that impacted the design and
implementation of Merb are definitely useful to everyone who will be affected by the
changes that will happen in Rails 3.

It’s with great pleasure that I welcome the incomparable Foy Savas and publish The
Merb Way as a full-fledged and proud installment of the Professional Ruby Series. I
sincerely hope you get as much out of this book as I have.

Obie Fernandez
March 31, 2009

Introduction

—
A way that can be taken rarely stays the way.

A name that can be given rarely stays the name.
—Laozi

(translated by your author)

The first two lines of the Dao De Jing capture truths so fundamental that we find
them everywhere—including, without exception, in this book. Originally entitled the
The Merb Companion, it was intended to be the advanced practitioner’s bible. But the
little framework named Merb grew quickly, so much so that the Rails world took notice,
and before long, the core teams came together and decided to merge the two. Yet
despite Merb’s fundamentals being seen as the basis for the features of the future, Rails
conventions needed to be maintained long-term. Incidentally, this book’s content was
left in an awkward limbo. Should we wait for the completion of the merge or perhaps
publish immediately? Should we preserve the chapters we had written so far or produce
them anew after the merge? Soon, however, an epiphany came. Though the book had
material highly relevant to the Merb developers of the day and was equally suitable for
bringing foresight to the Rails developers of tomorrow, its greatest and lasting potential
was in shedding light on how Merb, the framework that even Rails envied, had been
designed. Thus, we arrive here, at the introduction of The Merb Way.

xxvii

xxviii Introduction

Born a pastie
Zoom back to September 9, 2006. If you were using Rails, it was version 1.1. As for Git,
it was still just something the Linux kernel used. So naturally, when Ezra Zygmuntowicz
needed to publicly distribute the then only 120-line source code for Merb, a pastie made
the most sense. Turn back a few pages and you’ll find that pastie, prepended to this
book in all of its glory. Look it over once and you’ll realize Ezra had an itch to scratch:
fast Ruby template rendering with the smallest possible memory footprint. To do this
he used only two gems, Mongrel and ERB, which, for those keen on etymology, also
serve as the roots of the name Merb itself. But like any project that starts off both small
and practical, it grew. A few months later a gem was put up on RubyForge. For a while
it came with an example app that touted Merb’s ability to handle file uploads while not
locking out other requests. This became the most popular use of Merb, often appearing
coupled with Rails applications in the wild.

Created by rebels
But Merb has moved far beyond the stage when its application generator could produce
the uploader application. This may have been because it quickly became a breeding
ground in which Rails concepts could be rethought. Eventually, this led to a shared
vision among developers that Merb would be Rails done right. Thankfully, the openly
opinionated nature of Rails actually kept them away from simply adopting alternative
opinions. Instead, they chose as one of their maxims agnosticism, in the form of opt-in
modularity. This allowed Merb application developers to work with whatever tools they
needed for their projects. Merb’s versatility meant that it would become the underlying
framework for numerous customized stacks that otherwise did not easily fit within the
opinions of Rails. Its developers, consequently, have often been thought of as rebels from
the Rails mentality, since many of them maintain strong opposing views on particular
Rails opinions.

However, that’s not all there is to the Merb development story. The crowd of
developers also had an arguably more scientific bent, aiming to make the best selection
of the methods they employed through microbenchmarks. Ruby is often cited as one
of the world’s slowest programming languages from a computational perspective, but
to the developers of Merb, this didn’t mean that microseconds didn’t matter. After
all, web development frameworks are often tested in terms of responses per second. So
when it came to Merb internals, whether it was in route matching or filter chaining,
only the fastest Ruby constructs were used. The end result was Merb blazing past Rails

Introduction xxix

in response time benchmarks. More profoundly, Merb raised the bar for Ruby web
framework performance in general, finally allowing Ruby to win when pitted against
other frameworks from different languages.

Interestingly enough, this combination of performance and modularity is also indica-
tive of another Merb development character trait: its desire to solve higher-level problems.
Whereas Rails features have nearly consistently been born of necessity, Merb’s focus has
been on abstract goals like versatility and design. This has pushed the limits of what can
be done with Merb, resulting in advancements like the abstract controller class, code
slices, and arbitrary application layout. In sum, Merb in many ways conceptually broke
the “frame” in framework by thinking of itself less as a way to produce Model-View-
Controller (MVC) web apps and more as a highly modular platform upon which nearly
all Ruby web development, no matter how unusual, can occur.

The future of Rails
Put all this goodness together, and you’re bound to attract the attention of most devel-
opers. Not surprisingly, teams large and small began using Merb as a full application
framework in production environments for their most demanding applications. This
finally put Merb to the test, and the results were completely in line with its benchmarks:
more responses per second with a solidly smaller memory footprint. All of this occurred
at the cusp of its reaching its 1.0 release on November 7, 2008.

Quickly the Merb development team oriented itself toward larger goals through what
would have been a 2.0 release. Objectives included, among other things, an abstracted
Object Relational Mapper (ORM) that could be used to create an agnostic admin panel
and convenient direct routing to templates. But with the stable release already out,
developers at large began taking Merb much more seriously, and soon online comment
wars fanned flames between the Rails and Merb core teams. Thus prompted to confront
each other, the core development teams began to talk it over. However, soon they began
earnestly asking themselves whether the large amount of duplication between the two
frameworks was warranted. At the end they concluded two things: first, that each side
had aspects that would be beneficial to the other, and second, that yes, they could work
together. Announced officially on December 23, 2008, the Rails and Merb development
effort would be merged, with a promise of a smooth transition from both Merb 1 and
Rails 2 to the combined Rails 3.

So what can we expect from this merger? Well, above all will be the fusion of
attitudes and objectives from both sides. The Rails of the future will undoubtedly appeal
to developers in both pragmatic and idealistic ways. Merb will bring speed, performance,

xxx Introduction

and modularity along with a tempering of the preestablished Rails opinions. We will
see a flowering of custom Rails stacks, some of which may eventually push the limits
of the Rails framework itself. Toward what—who knows? But with the possibility of
such a greatly expanded domain, two things are certain. The first is that anyone in
software who needs to build an agile and sophisticated web application upon a high-
performance framework should definitely get on this train. The second, which applies
more to developers themselves, is that a firm understanding of the design decisions
behind Merb’s development will not only prepare them for the future of Rails but can
also open up their own talents through the elegance of its code.

This book is thus focused on giving developers the deepest possible understanding
of Merb itself. While you may use it as a reference guide in the development of Merb ap-
plications (which we strongly recommend without hesitance until the release of Rails 3),
you may also appreciate its guided exploration of the Merb source. That said, for those
afraid of code, it may perhaps be a good time to put this book back on the shelf. Everyone
else, be warned; we’re going to cut deep into the framework itself, revealing not only
what was done, but what can be learned from it. As you move forward, do not lose focus.
After all, they say that one should always aim to learn from the best, and through Merb,
the framework that without exaggeration brought the Rails monoculture to its knees,
you are doing just that.

CHAPTER 5
Models

Models are related data and algorithms that respectively represent the properties and
behaviors of domain objects used within an application. Models are used in nearly every
decently complex object-oriented application because they organize application data
in object form. Within the scope of a typical Merb application, examples of modeled
objects may include users, posts, entries, or comments. These objects are most often
persisted in a database through the use of an Object Relational Mapper, or ORM.
As agnosticism has been central to Merb’s design, application developers are free to
integrate whatever Ruby ORM they may need. Nonetheless, the default ORM included
as part of the standard Merb stack is DataMapper, an ActiveRecord-like ORM that aims
to push the boundaries of object-data interaction even more significantly toward the
object side.

Given its acceptance as part of the standard Merb stack, we will cover the use of only
DataMapper in this chapter. However, don’t let that stop you from using ActiveRecord,
Sequel, or any of the other options, since each of these ORMs is capable of creating,
retrieving, updating, and deleting persisted data and is fully supported by the Merb core.

5.1 Configuration
Prior to being able to use the DataMapper ORM within your Merb application, you
will have to make sure that you have done three things:

• Included the DataMapper dependencies within config/dependencies.rb

• Selected DataMapper as the ORM in init.rb

• Configured your database connection in config/database.yml

113

114 Chapter 5: Models

However, if you used merb-gen to generate a standard application and have SQLite3
installed, then you’ll find that all of these are already covered for you. If your application
was generated in some other manner, you may want to see Chapter 1 to figure out how
your configuration files should be laid out.

Other standard dependencies

The standard Merb generator inserts several other DataMapper dependencies into
the file config/dependencies.rb. These commonly used DataMapper plugins
provide functionality such as migrations, automatic timestamping, validations, and
record aggregation. You are free to comment out or remove any of these dependen-
cies, but as we’ll see through examples, even the most basic application models tend
to want them to be available.

DataMapper works with several different database back ends. Support for MySQL,
PostgreSQL, and SQLite3 are all included via the DataMapper core. If you’re using
another database application, you may be able to find an appropriate adapter in the
dm-more or dm-adapters gems. Alternatively, if your computer has the memory for it,
there’s a DataMapper adapter that will store your model records completely in memory.

Not just databases

When you use DataMapper, you aren’t limited to interacting only with conventional
databases. Instead, the DataMapper concept of a repository applies equally well to
just about any data source composed of records. This includes numerous web service
APIs where CRUD-like operations are available. A great example of such an adapter is
the Salesforce adapter Yehuda Katz has written. In just under 300 lines of code, the
adapter provides full DataMapper interaction via the Salesforce API. You’ll find that
these adapters can also be used to augment models through secondary repositories,
which is commonly the case when using Bernerd Schaefer’s full-text-search Ferret
adapter.

Repository configuration is done in a YAML file named config/database.yml.
The standardly generated config/database.yml file is broken into four
environments—development, test, production, and rake—corresponding to the
environments that are standardly used by a Merb application. If you have another
environment—for instance, a staging environment—it, too, can be listed in this file.

5.2 Model classes 115

Typically there is overlap in the configuration of environments, so YAML node anchors
and aliases are used to reduce redundancy.

What’s a YAML node?

YAML nodes are named blocks of content in a YAML file. You can set up an anchor
to the content of a node by using an ampersand and word after the naming of the
node. Below we connect the content of development with the anchor &default.

development: &default
adapter: mysql
database: example_development

We can reference this anchor by using the alias *default later on. If we use this alias
as the value on a merge key, <<, it will include the previously defined content. Here
we merge in the defaults from before and then override the value for the database:

test:
<<: *default
database: example_test

5.2 Model classes
Model classes exist in the directory app/models. These classes typically have singular
names and exist one class per file. Examples that may appear in a Merb blog applica-
tion are Post in the file app/models/post.rb and FavoriteLink in app/models/

favorite_link.rb. Organizing model classes in this way isn’t strictly necessary,
though, since Merb by default includes everything inside app/models by recursive glob.
In other words, so long as you make sure that your model class is somewhere in app/

models, it will be available at boot. Nonetheless, our recommendation is that you do
arrange your model classes in a reasonable way, so that both you and others can easily find
them.

While various DataMapper modules can incorporate different functionality within
your model class, the fundamental module that must be included in order for your class
to work with DataMapper is DataMapper::Resource. Below we include this module
and effectively set up our User class as a DataMapper model.

class User
include DataMapper::Resource

end

116 Chapter 5: Models

Design decision: resource module versus base class

DataMapper model classes are not created through inheritance from an abstract base
class. If you’ve used ActiveRecord, which does do so, you may wonder why this alter-
nate design decision has been made. Interestingly enough, early versions of DataMap-
per did actually use a parent class called DataMapper::Base. With time, however,
the developers of DataMapper grew concerned that this was conceptually coupling
application logic with DataMapper’s own. In other words, application models are
more reasonably thought of as being enhanced through database persistence rather
than as stemming off a library’s base class that provides such functionality.

In some ways, this design decision can be seen as an application of the Principle
of Substitutability, which insists that subtypes are capable of replacing their parents
without affecting the correctness of the program. While this principle doesn’t exactly
translate well when using Ruby (proving correctness through types isn’t anywhere
near Ruby’s slant), we can learn from the principle by recognizing that inheritance
is best used when a subclass makes no behavioral constraining modifications on the
parent.

Let’s take a look at the source behind the Resource module to get a feel for how it
affects the class in which it is included:

module DataMapper
module Resource

...

@api public
def self.append_inclusions(*inclusions)
extra_inclusions.concat inclusions
true

end

def self.extra_inclusions
@extra_inclusions ||= []

end

When Resource is included in a class this
method makes sure it gets all the methods
#
-
@api private
def self.included(model)
model.extend Model
model.extend ClassMethods

5.2 Model classes 117

if defined?(ClassMethods)
model.const_set('Resource', self)
unless model.const_defined?('Resource')

extra_inclusions.each { |inclusion|
model.send(:include, inclusion) }

descendants << model
class << model
@_valid_model = false
attr_reader :_valid_model

end
end

...
end

end

Focusing on the last method listed above, we can see that the Resource module ex-
tends the class in which it is included (above called model). In the process, it principally
extends it with the Model module, which contains the logic for property persistence and
object retrieval. As we come to these methods later on, we’ll open up the Model class
source as well. For now, however, take note of Resource’s ability to include extra mod-
ules through the class method append_inclusions. This method is used extensively
by DataMapper plugins that need to extend the functionality of all DataMapper models.
For instance, below is some of the source for dm-timestamps, which automatically sets
timestamps on properties of particular names.

module DataMapper
module Timestamp
Resource.append_inclusions self

...

def self.included(model)
model.before :create, :set_timestamps
model.before :update, :set_timestamps
model.extend ClassMethods

end

end
end

The first line appends the module to all DataMapper models. Later on, using its own
self.included, the module includes its own logic into the model. This cascading of
modules is thus particularly effective for code as modular as DataMapper.

118 Chapter 5: Models

5.3 Properties
Each DataMapper model is able to persist its data. The kind of data it is able to store
is defined through its properties. If you’re using a typical database, these properties
correlate with the columns of the model’s corresponding table. Below is an example of
a DataMapper model with three properties.

class TastyAnimal
include DataMapper::Resource

property :id, Serial
property :name, String
property :endangered, TrueClass

end

In many ways, you can think of properties as persistent accessors. In fact, taking a
look into the source of the property method (found in the Model resource we spoke
about earlier), we find that a dynamic getter and setter are created using class_eval:

def property(name, type, options = {})
property = Property.new(self, name, type, options)

create_property_getter(property)
create_property_setter(property)

...
end

...

defines the getter for the property
def create_property_getter(property)
class_eval <<-EOS, _ _FILE_ _, _ _LINE_ _
#{property.reader_visibility}
def #{property.getter}
attribute_get(#{property.name.inspect})

end
EOS

...

end

defines the setter for the property
def create_property_setter(property)
unless instance_methods.include?("#{property.name}=")

5.3 Properties 119

class_eval <<-EOS, _ _FILE_ _, _ _LINE_ _
#{property.writer_visibility}
def #{property.name}=(value)
attribute_set(#{property.name.inspect}, value)

end
EOS

end
end

The most important thing to learn from the source shown above is that properties
dynamically create getter and setter methods. Additionally, these methods can end up
protected or private through visibility attributes. Finally, the getters and setters produced
are not exactly equivalent to attr_reader and attr_writer because of their internal
use of the methods attribute_get and attribute_set.

Going back to the Resource source, we can find these two methods manipulating
the values of model properties, once again located in Model. You’ll have to excuse this
volleying back and forth, but the point of the Resource and Model modules is to
separate individual resource methods from those related to the model as a whole.

@api semiplugin
def attribute_get(name)
properties[name].get(self)

end

@api semipublic
def attribute_set(name, value)
properties[name].set(self, value)

end

protected

def properties
model.properties(repository.name)

end

You may have noticed the @api semipublic comment above the getter and setter
methods. This is because application developers should not ordinarily need to use these
methods. Plugin developers, on the other hand, may need to use them as the easiest way
to get and set properties while making sure they are persisted.

For application developers, however, this does bring up one important point: Do
not use instance variables to set property values. The reason is that while this will set
the object’s value, it will unfortunately short-circuit the model code that is used to track
whether a property is dirty. In other words, the property value may not persist later upon

120 Chapter 5: Models

save. Instead, you should use the actual property method. Below you’ll find an example
with comments that should get the point across.

class Fruit
include DataMapper::Resource

property :id, Serial
property :name, String
property :eaten, TrueClass

def eat
unless eaten?
will not persist upon save
@eaten = true

will persist upon save
eaten = true

end
end

end

Before we describe the extended use of properties, let’s take a look at the database
side to understand how persistence works.

5.3.1 Database storage
In order to persist the data of model objects, we need to set up our database for that
data to be stored. The default-generated configuration files use a SQLite3 database file
called sample_development.db. This setup is perfect for most development scenarios
given its quickness to get up and running. With that in mind, we’d say stick with it
whenever possible, leaving the alteration of config/database.yml for production or
staging environments.

Create your database with rake

If you are using MySQL or PostgreSQL for development, though, it may be useful to
know that there is a Merb DataMapper rake task that can create your database for
you. After making sure your config/database.yml file contains the appropriate
username and password, rake db:create issues the database admin command
you may have otherwise forgotten.

5.3 Properties 121

5.3.1.1 Automigrating the DB schema
Databases typically need to be prepped for the data they will store during application
development. The process by which DataMapper does this is called automigration,
because DataMapper uses the properties listed in your models to automatically create
your database schema for you. Using the provided Merb DataMapper rake task, we can
automigrate the model that we created earlier and then take a peek inside the database
to see what was done:

$ rake db:automigrate
$ sqlite3 sample_development.db
sqlite> .tables
tasty_animals
sqlite> .schema
CREATE TABLE "tasty_animals" ("id" INTEGER NOT NULL
PRIMARY KEY AUTOINCREMENT, "name" VARCHAR(50), "
is_endangered" BOOLEAN);

As you can see, a table with a pluralized and snake-cased name was created for our model,
TastyAnimal. Remembering the various properties of the model class, we can also spot
corresponding columns inside the schema’s CREATE statement. Note that while Ruby
classes were used on the property lines, standard SQL types appear in the database.

Design decision: emphasize the model as an object

DataMapper has notably chosen to include properties within the model files. Those
familiar with ActiveRecord may find this odd, having been accustomed to distributing
schema information across migration files. There are, however, a number of benefits
to the DataMapper way of handling properties, including

• An explicitness that helps developers understand how a model is used

• An ability to work around legacy systems far more easily due to the lack of schema
dependence

• The possibility of distributing model property persistence across multiple
databases or repositories

• The time-saving nature of automigrations

These benefits may take a while to appreciate given their subtleness, but there is a
more general paradigm shift going on that we should mention: The inclusion and use
of properties in DataMapper model classes essentially pushes the ORM concept even
further object-side, where the resulting combination of less magic and less mainte-
nance is a total win.

122 Chapter 5: Models

The code behind automigration is definitely worth studying, so let’s take a look at
the module AutoMigrations, which includes itself within the Model module:

module DataMapper
module AutoMigrations
def auto_migrate!(repository_name =
self.repository_name)

auto_migrate_down!(repository_name)
auto_migrate_up!(repository_name)

end

@api private
def auto_migrate_down!(repository_name =
self.repository_name)

repository_name ||= default_repository_name
repository(repository_name) do |r|
r.adapter.destroy_model_storage(r,
self.base_model)

end
end

@api private
def auto_migrate_up!(repository_name =
self.repository_name)

repository(repository_name) do |r|
r.adapter.create_model_storage(r,
self.base_model)

end
end

def auto_upgrade!(repository_name =
self.repository_name)

repository(repository_name) do |r|
r.adapter.upgrade_model_storage(r, self)

end
end

Model.send(:include, self)

end # module AutoMigrations
end # module DataMapper

5.3 Properties 123

As you can see, there are two API public class methods you can use with mod-
els, auto_migrate! and auto_upgrade!. These effectively call the three adapter
methodsdestroy_model_storage,create_model_storage, andupgrade_model_
storage. Let’s go deep into the source and see how these three methods do the heavy
lifting:

class DataMapper::Adapters::AbstractAdapter
module Migration

def upgrade_model_storage(repository, model)
table_name = model.storage_name(repository.name)

if success = create_model_storage(repository,
model)

return model.properties(repository.name)
end

properties = []

model.properties(repository.name).
each do |property|

schema_hash = property_schema_hash(repository,
property)

next if field_exists?(table_name,
schema_hash[:name])

statement = alter_table_add_column_statement(
table_name, schema_hash)

execute(statement)
properties << property

end

properties
end

def create_model_storage(repository, model)
return false if storage_exists?(
model.storage_name(repository.name))

execute(create_table_statement(repository, model))

124 Chapter 5: Models

... create indexes

true
end

def destroy_model_storage(repository, model)
execute(drop_table_statement(repository, model))
true

end

end
end

The simplest of these, destroy_model_storage, executes a drop table statement.
The create_model_storagemethod, on the other hand, first checks to see if the model
storage already exists, returning false if it does or true if it does not, and consequently
has the chance to create it. Finally, upgrade_model_storage is the most complicated
of the three. It first attempts to create the storage (effectively testing whether it exists
or not) and then attempts to add new columns for new properties. This leaves existing
data in place and is perfect if you have simply added properties to a column. Lest this
appear to be no more than hand waving, let’s dig even deeper into the methods that the
AbstractAdapter uses to create the SQL for these statements:

class DataMapper::Adapters::AbstractAdapter

immediately following the previous code

module SQL
private

def alter_table_add_column_statement(table_name,
schema_hash)

"ALTER TABLE "+
quote_table_name(table_name)+
"ADD COLUMN "+
property_schema_statement(schema_hash)

end

def create_table_statement(repository, model)
repository_name = repository.name

statement = <<-EOS.compress_lines
CREATE TABLE
#{quote_table_name(

5.3 Properties 125

model.storage_name(repository_name))}

(#{model.properties_with_subclasses(
repository_name).map { |p|

property_schema_statement(
property_schema_hash(repository, p))

} * ', '}
EOS

if (key = model.key(repository_name)).any?
statement << ", PRIMARY KEY(#{ key.map { |p|
quote_column_name(p.field(repository_name))

} * ', '})"
end

statement << ')'
statement

end

def drop_table_statement(repository, model)
"DROP TABLE IF EXISTS "+
quote_table_name(model.storage_name(
repository.name))

end

def property_schema_hash(repository, property)
schema = self.class.type_map[property.type].
merge(:name => property.field(repository.name))

if property.primitive == String &&
schema[:primitive] != 'TEXT'
schema[:size] = property.length

elsif property.primitive == BigDecimal ||
property.primitive == Float
schema[:precision] = property.precision
schema[:scale] = property.scale

end

schema[:nullable?] = property.nullable?
schema[:serial?] = property.serial?

if property.default.nil? ||
property.default.respond_to?(:call)
schema.delete(:default)
unless property.nullable?

126 Chapter 5: Models

else
if property.type.respond_to?(:dump)

schema[:default] = property.type.dump(
property.default, property)

else
schema[:default] = property.default

end
end

schema
end

def property_schema_statement(schema)
statement = quote_column_name(schema[:name])
statement << " #{schema[:primitive]}"

if schema[:precision] && schema[:scale]
statement << "(#{[:precision, :scale].map {
|k| quote_column_value(schema[k])

} * ','})"
elsif schema[:size]
statement << "("+
quote_column_value(schema[:size])}+")"

end

statement << ' NOT NULL'
unless schema[:nullable?]

statement << " DEFAULT " +
quote_column_value(schema[:default]) if
schema.has_key?(:default)

statement
end

end
include SQL

end

The first thing you may notice is that the methods are included within a module
called SQL and that the module is included immediately after it is closed. The reason for
this is that within DataMapper adapters, code is often organized by use, and thus the
encapsulation of private methods into a module easily allows for alternating regions of
public and then private methods.

Now, turning to the actual methods, we can see that some of them—for in-
stance, drop_table_statement—are just a line of simple SQL. Likewise, alter_
table_column_statement is just a single line that outputs add column statements.

5.3 Properties 127

The create_table_statement, however, is far more complex, relying on various other
methods to get its work done. One of these, properties_with_subclasses, pulls up
all model properties, including those that are simply keys used with relationships. We’ll
go further into properties_with_subclasses later on when we examine model rela-
tionships, but for now let’s take a look at the method property_schema_statement,
which quotes the property as a column name and then appends its type. It also adds the
appropriate SQL for decimals, non-nullables, and default values.

We hope this has brought you deep enough into the inner workings of automigration
to both appreciate its design and get a feel for how adapter code handles the production
of SQL more generally. But it would also be nice to be able to use some of it practically,
and thankfully you can do so. For instance, if you’re in mid-development, you may
fire up interactive Merb and use auto_upgrade! on a model to which you’ve added
properties:

> Fruit.auto_upgrade!

Likewise, you may want to refresh the data of a model using auto_migrate! in the
middle of a test file. Here’s an example we’ve spotted in the wild:

before :each do
Invite.auto_migrate!

end

5.3.2 Defining properties
Let’s now take a more rigorous look at properties as well as the options we have while
defining them. As we’ve seen, each property is defined on its own line by using the method
property. This class method is mixed in via the inclusion of DataMapper::Resource.
It takes a minimum of two arguments, the first being a symbol that effectively names
the property and the second being a class that defines what type of data is to be stored.
As we will see soon, an optional hash of arguments may also be passed in.

5.3.2.1 Property types
While abstracting away the differences across database column types, DataMapper has
chosen to stay true as much as possible to using Ruby to describe properties types. Below
is a list of the various classes supported by the DataMapper core. Note that the inclusion
of DataMapper::Resourcewill include DM in your model class, and that when defining
properties, you will not have to use the module prefix DM:: before those that use it.

128 Chapter 5: Models

• Class—stores a Ruby Class name as a string. Intended for use with inheritance,
primarily through the property type DM::Discriminator.

• String—stores a Ruby String. Default maximum length is 50 characters. Length
can be defined by the optional hash key :length.

• Integer—stores a Ruby Integer. Length can be defined by the optional hash key
:length.

• BigDecimal—stores a Ruby BigDecimal, intended for numbers where decimal
exactitude is necessary. Can use the option hash keys :precision and :scale.

• Float—stores a Ruby Float. Primarily intended for numbers where decimal
exactitude is not critical. Can use the two options hash keys :precision and
:scale.

• Date—stores a Ruby Date.

• DateTime—stores a Ruby DateTime.

• Time—stores a Ruby Time.

• Object—allows for the marshaling of a full object into a record. It is serialized into
text upon storage and when retrieved is available as the original object.

• TrueClass—a Boolean that works with any of the values in the array [0, 1, 't',

'f', true, false]. In MySQL it translates down to a tinyint, in PostgreSQL a
bool, and in SQLite a boolean.

• DM::Boolean—an alias of TrueClass. This is around for legacy DataMapper
support, simply to provide a more commonly recognized name for the type.

• Discriminator—stores the model class name as a string. Used for single-table
inheritance.

• DM::Serial—used on the serial ID of a model. Serial IDs are auto-incremented
integers that uniquely apply to single records. Alternatively, a property can use the
Integer class and set :serial to true. You will nearly always see this type applied
to the id property.

• DM::Text—stores larger textual data and is notably lazy-loaded by default.

You may be interested in knowing how the casting in and out of property values
works. For the primitive types, values coming out of the database are cast using the
methodProperty#typecast. Below we see how this methods prunes results, modifying
them into what we want in Ruby.

5.3 Properties 129

def typecast(value)
return type.typecast(value, self) if type.respond_to?(:typecast)
return value if value.kind_of?(primitive) || value.nil?
begin
if primitive == TrueClass
%w[true 1 t].include?(value.to_s.downcase)

elsif primitive == String
value.to_s

elsif primitive == Float
value.to_f

elsif primitive == Integer
value_to_i = value.to_i
if value_to_i == 0

value.to_s =˜ /ˆ(0x|0b)?0+/ ? 0 : nil
else
value_to_i

end
elsif primitive == BigDecimal
BigDecimal(value.to_s)

elsif primitive == DateTime
typecast_to_datetime(value)

elsif primitive == Date
typecast_to_date(value)

elsif primitive == Time
typecast_to_time(value)

elsif primitive == Class
self.class.find_const(value)

else
value

end
rescue
value

end
end

Custom types, however, are handled by subclasses of an abstract type class called
DataMapper::Type. These load and dump data in whatever way they are programmed
to do. We’ll see custom types later on when we examine some DataMapper-type
plugins, but for now let’s take a look at one of the custom types from the DataMapper
core, Serial:

module DataMapper
module Types
class Serial < DataMapper::Type
primitive Integer

130 Chapter 5: Models

serial true
end # class Text

end # module Types
end # module DataMapper

Note its use of the methods primitive and serial, which are defined in the class
DataMapper::Type:

class DataMapper:Type
PROPERTY_OPTIONS = [
:accessor, :reader, :writer,
:lazy, :default, :nullable, :key, :serial, :field,
:size, :length, :format, :index, :unique_index,
:check, :ordinal, :auto_validation, :validates,
:unique, :track, :precision, :scale

]

...

class << self

PROPERTY_OPTIONS.each do |property_option|
self.class_eval <<-EOS, _ _FILE_ _, _ _LINE_ _
def #{property_option}(arg = nil)
return @#{property_option} if arg.nil?

@#{property_option} = arg
end

EOS
end

def primitive(primitive = nil)
return @primitive if primitive.nil?
@primitive = primitive

end

...

end
end

From this we can first see that the primitivemethod sets the type to which the property
value should be dumped. The serial method, on the other hand, is an example of the
property option, which we’re about to address.

5.3 Properties 131

5.3.2.2 Option hash
The third argument that the property method can take is an option hash, which affects
various behavioral aspects of the property. For instance, below we’ve specified that a
property should default to some value.

class Website
include DataMapper::Resource

property :id, Serial
property :domain, String
property :color_scheme, String, :default => 'blue'

end

Here’s a list of the various property options and their uses:

• :accessor—takes the value :private, :protected, or :public. Sets the access
privileges of the property as both a reader and a writer. Defaults to :public.

• :reader—takes the value :private, :protected, or :public. Sets the access
privileges of the property as a reader. Defaults to :public.

• :writer—takes the value :private, :protected, or :public. Sets the access
privileges of the property as a writer. Defaults to :public.

• :lazy—determines whether the property should be lazy-loaded or not. Lazy-loaded
properties are not read from the repository unless they are used. Defaults to false on
most properties, but is notably true on DM::Text.

• :default—sets the default value of the property. Can take any value appropriate
for the type.

• :nullable—if set to true it will disallow a null value for the property. When
dm-validations is used this invalidates a model.

• :key—defines a property as the table key. This allows for natural keys in place of
a serial ID. This key can be used as the index on the model class in order to access
the record.

• :serial—sets the property to be auto-incremented as well as to serve as the table
key.

• :field—manually overrides the field name. Best used for legacy repositories.

• :size—sets the size of the property type.

• :length—alias of :size.

132 Chapter 5: Models

• :format—used with the String property type. When used with a dm-

validations format can set a regular expression against which strings must validate.

• :index—sets the property to be indexed for faster retrieval. If set to a symbol instead
of to true, it can be used to create multicolumn indexes.

• :unique_index—defines a unique index for the property. When used with dm-

validations, new records with nonunique property values are marked invalid. If
set to a symbol instead of true, it can be used to create multicolumn indexes.

• :auto_validation—when used with dm-validations, can be used to turn off
autovalidations by using the value true.

• :track—determines when a property should be tracked for dirtiness. Takes the
values :get, :set, :load, and :hash.

• :precision—sets the number of decimal places allowed for BigDecimal and
Float type properties.

• :scale—sets the number of decimal places after the decimal point for BigDecimal
and Float type properties.

5.4 Associations
DataMapper also supports the defining of associations between models. If you’ve used
ActiveRecord before, these are nearly the same. Otherwise, know that associations al-
low you to define the relationships between models (one-to-one, one-to-many, etc.),
automatically creating database keys where necessary while also making it possible to
conveniently pull up related model objects from associates. Let’s survey the various
relationships possible with DataMapper.

Design decision: generalized association methods

The largest distinction between DataMapper and ActiveRecord associations is
DataMapper’s use of only two methods, has and belongs_to. This differs from Ac-
tiveRecord’s one method per association type and has benefited DataMapper through
simplicity of both internal design and interface. We’ll see the elegance of the internal
design later on, but know that these two generalizations allow application developers
to simplify the cognitive steps needed to arrive at the appropriate associations. That
is, to determine if an association should use has or belongs_to, you only need to
ask whether a related model key should maintain a property for the ID of the other
model. Moving from here, you can then define the cardinality and pathway of the

5.4 Associations 133

relationship if necessary. This may not seem like anything special to an experienced
developer, but we’ve found that this easing of an interface’s learning curve tends to
be indicative of cleaner design, making it a win-win situation for everyone.

5.4.1 Belongs to
In general, you should know that a belongs-to association is meant to help you quickly
retrieve an associated resource by defining a one-to-something association between two
models (specifically, a child and its parent), where the child class should store its parent’s
key as a property. So, for instance, the following associates a comment with a user:

class Comment
include DataMapper::Resource

property :id, Serial
property :body, Text

belongs_to :user
end

Note that upon automigration the belongs-to association automatically creates the
column user_id within the comments table. This means that any model object now
has two new methods accessible, user_id and user. The first is simply the ID of the
associated user, but the second actually retrieves the user resource for you. These defaults
may not always fit your domain logic, however, so they can be altered.

class Paper
include DataMapper::Resource

property :id, Serial
property :body, Text

belongs_to :author, :class_name => "User",
:child_key => [:author_id]

belongs_to :reviewer, :class_name => "User",
:child_key => [:reviewer_id]

end

Here we have two user objects parenting our paper object. To handle ambiguity, we
use the hash keys class_name and child_key. The first is a string representation of the
parent class name, and the second is an array indicating how the key should be stored
within our child. At the end this produces the methods author_id, reviewer_id,

134 Chapter 5: Models

author, and reviewer on papers, where the first two are essentially association prop-
erties and the second two are means of retrieving the associated objects.

Let’s take a look at how the belongs_to magic is performed:

module DataMapper::Associations
def belongs_to(name, options={})

@_valid_relations = false

if options.key?(:class_name) &&
!options.key?(:child_key)

warn "..." # must set both
end

relationship = ManyToOne.setup(name, self, options)
end

end

module DataMapper::Associations::ManyToOne

Set up many-to-one relationship between two models
-
@api private
def self.setup(name, model, options = {})
assert_kind_of 'name', name, Symbol
assert_kind_of 'model', model, Model
assert_kind_of 'options', options, Hash

repository_name = model.repository.name

model.class_eval <<-EOS, _ _FILE_ _, _ _LINE_ _
def #{name}

#{name}_association.nil? ?
nil : #{name}_association

end

def #{name}=(parent)
#{name}_association.replace(parent)

end

private

def #{name}_association
@#{name}_association ||= begin
unless relationship = model.relationships(
#{repository_name.inspect})[:#{name}]

5.4 Associations 135

raise ArgumentError,
"Relationship #{name.inspect} "+
"does not exist in \#{model}"

end

association = Proxy.new(relationship, self)
child_associations << association
association

end
end

EOS

model.relationships(repository_name)[name] =
Relationship.new(
name,
repository_name,
model,
options.fetch(:class_name,
Extlib::Inflection.classify(name)),

options
)

end
end

Starting with the Associations module, we can see that belongs_to fires off
the creation of a many-to-one association. Moving on to ManyToOne.setup, we find
extensive class evaluation where new methods for the association are defined. These allow
us to get or set the association. Note that the reader method essentially proxies to the
parent model (using a Proxy class later defined within ManyToOne). It also employs
the Relationship class, DataMapper’s most generalized way of storing information
on associations within model classes. Finally, note that the use of ManyToOne does not
strictly indicate that the relationship between the two models needs to be many-to-one.
It may indeed be one-to-one (as determined within the other model), but from the
perspective of the child model the more generalized ManyToOne class is appropriate for
handling both possibilities.

5.4.2 Has
At this point you may be wondering about the flip side of the relationship, that is, the
parent. Has associations are meant to handle this. The characteristics of has associations,
however, differ in that they are meant to associate varying numbers of related model
resources without storing information within the model object itself.

136 Chapter 5: Models

Let’s create the counterpoint of the comment model we created in the previous
section:

class User
include DataMapper::Resource

property :id, Serial
property :login, String, :nullable => false

has n, :comments
end

Note that the has method takes a minimum of two parameters. The first of these is
the cardinality, which may be specified by a number, series, or n, and the second is the
symbolized name of the associated class. If you’re scratching your head over n, just know
that it is equivalent to1.0/0 and that it allows an indefinite number of associates. If you’re
coming from the ActiveRecord world, you can think of this as the “many” in has_many.

As we did before, we can tweak our relationship for the sake of the domain logic:

class User
include DataMapper::Resource

property :id, Serial
property :login, String, :nullable => false

has 1, :authored_papers, :class_name => "Paper",
:child_key => [:author_id],
:remote_name => :author

has n, :reviewed_papers, :class_name => "Paper,
:child_key => [:reviewer_id],
:remote_name => :reviewer

end

There are plenty of things to notice this time. Once again, we’ve specified the
associated class name along with the child_key, but we’ve also set remote_name,
which is the symbolized name of the relationship in our other model. Last, note that
we set the cardinality of the first to 1, which limits users to authoring only one paper,
effectively making the relationship one-to-one.

Having now seen the use of has, let’s go into the source to understand how it works:

module DataMapper::Associations
def has(cardinality, name, options = {})

5.4 Associations 137

if name.kind_of?(Hash)
name_through, through =
name.keys.first, name.values.first

end

options = options.merge(
extract_min_max(cardinality))

options = options.merge(
extract_throughness(name))

... some warnings

klass = options[:max] == 1 ? OneToOne : OneToMany

... we'll show you later

relationship = klass.setup(
options.delete(:name), self, options)

end

private

def extract_min_max(constraints)
assert_kind_of 'constraints', constraints,
Integer, Range unless constraints == n

case constraints
when Integer

{ :min => constraints, :max => constraints }
when Range

if constraints.first > constraints.last
raise ArgumentError, "..."

end
{ :min => constraints.first,
:max => constraints.last }

when n
{ :min => 0, :max => n }

end
end

end

From this we can see that has_many, like belongs_to, creates an association, but that it
may be OneToOne or OneToMany based upon the max cardinality. Because we’ve already
looked inside one of these associations and because the others are set up in similar ways,
we’ll leave it up to you to explore further if you like.

138 Chapter 5: Models

5.4.3 Has through
You may need to work with one-to-many-through or many-to-many relationships. To
handle these, DataMapper uses through. Let’s tackle one-to-many-through first and
then take a look at many-to-many relationships:

class Post
include DataMapper::Resource

has n, :taggings
has n, :tags, :through => :taggings

end

class Tagging
include DataMapper::Resource

belongs_to :post
belongs_to :tag

end

class Tag
include DataMapper::Resource

property :id, Serial
property :value, String

has n, :taggings
has n, :posts, :through => :taggings

end

These examples show us three associated models where the Tagging class acts like a
join table bridging the one-to-many relationships from both sides. Sometimes, though,
you don’t want to explicitly define this middle table. DataMapper lets you do this by
setting through to Resource:

class Post
include DataMapper::Resource

has n, :post
has n, :tags, :through => Resource

end

class Tag
include DataMapper::Resource

property :id, Serial
property :value, String

5.4 Associations 139

has n, :posts, :through => Resource
end

This automatically creates the bridging model for us dynamically. But this isn’t magic;
remember the line from the def has snippet of source code that we didn’t show you?
Here it is:

klass = ManyToMany if options[:through] ==
DataMapper::Resource

With that inside the previous snippet, it’s easy to see that the use of the through

option with Resource changes the association setup to a ManyToMany. This special
association is used to create a join table model for you. Here’s part of the setup method
showing just that:

module DataMapper::Associations::ManyToMany

def self.setup
... the usual

unless Object.const_defined?(model_name)
model = DataMapper::Model.new(storage_name)

model.class_eval <<-EOS, _ _FILE_ _, _ _LINE_ _
def self.name; #{model_name.inspect} end
def self.default_repository_name
#{repository_name.inspect}

end
def self.many_to_many; true end

EOS

names.each do |n|
model.belongs_to(
Extlib::Inflection.underscore(n).gsub(
'/', '_').to_sym)

end

Object.const_set(model_name, model)
end

relationship
end

Note the particularly unique creation of a model through Model.new as opposed to a
standard class definition. This is meant only for dynamically defined models like the one
above.

140 Chapter 5: Models

5.5 CRUD basics
DataMapper as an ORM is intended to create, retrieve, update, and delete records from
a repository through interactions with Ruby objects. This means that we don’t have
to write SQL statements through the normal course of usage. In fact, DataMapper’s
versatility, intelligence, and performance will probably leave you never needing to write
a single SQL statement in your entire application.

Throughout this section, we will assume the existence of the following model:

class BlogEntry
include DataMapper::Resource

property :id, Serial
property :live, TrueClass
property :title, String
property :text, Text

end

5.5.1 Creating records
The creation of DataMapper records is a two-step process. The first step is the creation
of a new model object. This is as simple as initializing with the new method. This
method can also take an attributes hash that will set the model object’s properties. The
second step of this process is the saving of the object’s data into the database as a record.
This is done via the save method. Below we create a new blog entry and then save it
immediately after.

blog_entry = BlogEntry.new(:title => "Model Magic!",
:text => "Persistently cool.")

blog_entry.save

At the end, this issues a SQL insert command, saving the data in our database. However,
let’s take a look first at the most superficial methods inside the DataMapper that make
this work:

module DataMapper::Resource
def save

... association related

saved = new_record? ? create : update

if saved
original_values.clear

5.5 CRUD basics 141

end

... association related

(saved | associations_saved) == true
end

def new_record?
!defined?(@new_record) || @new_record

end

protected

def create
return false if new_record? &&
!dirty? && !model.key.any? { |p| p.serial? }

set defaults for new resource
properties.each do |property|
next if attribute_loaded?(property.name)
property.set(self, property.default_for(self))

end

return false unless repository.create([self]) == 1

@repository = repository
@new_record = false

... IdentityMap related

true
end

private

def initialize(attributes = {})
assert_valid_model
self.attributes = attributes

end

end

As you can see, the default initialize has been overridden so that it can set
attributes. You’ll also spot a method assert_valid_model, but it isn’t of much interest
since all it does is confirm that the model class does in fact have properties defined.
Moving on to the save method, you’ll find that it first checks to see if the model object

142 Chapter 5: Models

should be a new record. To do this it uses the public method new_record?, which is
also available to you should you need it as an application or plugin developer. Then,
given that our record is new, it invokes the protected method create. This method
effectively cascades through the resource’s repository object down to an adapter, where
a SQL create statement is executed.

Alternatively, you can shorten this process to a single step by using the class method
create defined within the Model module. Here we use it just as we did before:

blog_entry = BlogEntry.create(:title => 'Models Rule!',
:text => 'Persistently cool.')

Taking a peek at the source code, we find that the class method create does exactly
what we did ourselves before but returns the model object for our convenience:

module DataMapper::Model

def create(attributes = {})
resource = new(attributes)
resource.save
resource

end

end

5.5.2 Retrieving records
The retrieval of model records is principally done through the two methods all and
first. These two methods pull up a collection of records or access a single record,
respectively. They can easily be chained, allowing for the refining of the data to be
retrieved. Let’s take a look at some basic examples:

user = User.first(:login => 'foysavas')
groups = Group.all(:name => '%Ruby%')
admin_groups = groups.all(:user => user)

The first line looks up a user by login, the second retrieves all groups with the word
Ruby in them, and the third refines the collection of the second to only those where the
user is the admin. Let’s look at the source behind the methods first and all to get an
understanding of how they work:

module DataMapper::Model

def all(query = {})
query = scoped_query(query)
query.repository.read_many(query)

5.5 CRUD basics 143

end

def first(*args)
query = args.last.respond_to?(:merge) ?
args.pop : {}

query = scoped_query(
query.merge(:limit => args.first || 1))

if args.any?
query.repository.read_many(query)

else
query.repository.read_one(query)

end
end

end

Both all and first use the method scoped_query to integrate new query param-
eters with any preexisting ones that may exist higher up on a collection on which the
method may be acting:

module DataMapper::Model

private

def scoped_query(query = self.query)
assert_kind_of 'query', query, Query, Hash

return self.query if query == self.query

query = if query.kind_of?(Hash)
Query.new(query.has_key?(:repository) ?
query.delete(:repository) :
self.repository, self, query)

else
query

end

if self.query
self.query.merge(query)

else
merge_with_default_scope(query)

end
end

end

144 Chapter 5: Models

DataMapper uses the method assert_kind_of as a way of enforcing types and
throws errors when types do not match. Thus, above, we see that scoped_query accepts
only queries and hashes. The hashes are really just cases of yet-to-be-initiated queries
coming from the parameters of some method like all or first. If both new query
parameters and an existing query exist, the two are merged. The model’s default scope
(typically having no conditions and all non-lazy model fields) is used to merge in further
conditions.

Design decision: query object algebra

If there was ever something to be excited about with regard to DataMapper, this is
it. Under the hood, the reason why DataMapper can do things like chain retrieval
methods and use strategic eager loading is that it essentially handles queries as ele-
ments of an algebraic structure. This is completely unlike most ORMs, which simply
treat queries as undesirable SQL remnants to be executed. We recommend letting
this subtlety take its time to soak in. However, the essence of it all is that with each
call of a retrieve method, DataMapper creates a new query by operating on two other
queries (one of them possibly empty). With this fresh perspective on DataMapper, we
recommend visiting the code behind the method Query#update, which we’re just
about to do.

The method Query#merge duplicates the query and then seeks to update it. Below
we see this method as it leads into Query#update.

class DataMapper::Query

def update(other)
assert_kind_of 'other', other, self.class, Hash

assert_valid_other(other)

if other.kind_of?(Hash)
return self if other.empty?
other = self.class.new(@repository, model, other)

end

return self if self == other

@reload = other.reload?
unless other.reload? == false

@unique = other.unique?
unless other.unique? == false

@offset = other.offset

5.5 CRUD basics 145

if other.reload? || other.offset != 0
@limit = other.limit
unless other.limit == nil

@order = other.order
unless other.order == model.default_order

@add_reversed = other.add_reversed?
unless other.add_reversed? == false

@fields = other.fields
unless other.fields == @properties.defaults

@links = other.links
unless other.links == []

@includes = other.includes
unless other.includes == []

update_conditions(other)

self
end

def merge(other)
dup.update(other)

end

end

Note that the method update picks out special query parameters before updating the
conditions and finally returning itself.

5.5.2.1 Special query parameters
The parameters passed into all and first are mostly understood simply as conditions
upon parameters. However, certain keys are understood as special query parameters that
shape the query in other ways. The following list should make the use of each of these
clear:

• add_reversed—reverses the order in which objects are added to the collection.
Defaults to false.

• conditions—allows SQL conditions to be set directly using an array of strings.
Conditions are appended to conditions specified elsewhere.

• fields—sets the fields to fetch as an array of symbols or properties. Defaults to all
of a model’s non-lazy properties.

• includes—includes other model data specified as a list of DataMapper property
paths.

146 Chapter 5: Models

• limit—limits the number of records returned. Defaults to 1 in the case of first
and is otherwise not set.

• links—links in related model data specified by an array of symbols, strings, or
associations.

• offset—the offset of the query, essential for paging. Defaults to 0.

• order—the query order specified as an array or properties (or symbols) modified
by the two direction methods desc and asc.

• reload—causes the reloading of the entire data set. Defaults to false.

• unique—groups by the fields specified, resulting in a unique collection. Defaults
to false.

5.5.2.2 Lazy loading of collections
DataMapper does not load collections or issue database queries until the data is absolutely
needed. The major benefit here is that application developers can worry less about the
database side of things once again, knowing that unless they actually use the data of
a resource, no database query will be executed. With Merb, we’ve also found that this
means simpler controller code, since we can use chained relationships or pagination
inside the view. With any other ORM, this may be extremely bad form, given that it
implies littering the view with lines of supporting code as well as incurring performance
penalties based on the retrieval of possibly unused data. Below we present the practical
application of collection lazy loading.

Posts Controller
app/controllers/posts.rb

class Posts
before :set_page

def index
@posts = Post.all
render

end

private

def set_page
@p = params[:page] > 0 ?
params[:page] : 1

end
end

5.5 CRUD basics 147

Posts Index View
app/views/posts/index.html.haml
- @posts.all(:limit => 10, :offset => 10*@p).each do |i|
.post
= @posts.name

Note that this executes only one database query, specifically at the each. To see how
and why this works, we need to take a look at some of the code in the parent class of
Collection, LazyArray:

class LazyArray # borrowed partially from StrokeDB
instance_methods.each { |m|
undef_method m unless %w[
_ _id_ _ _ _send_ _ send class dup object_id
kind_of? respond_to? equal? assert_kind_of
should should_not instance_variable_set
instance_variable_get extend].include?(m.to_s)

}

add proxies for all Array and Enumerable methods
((Array.instance_methods(false)
| Enumerable.instance_methods(false)).map { |m|
m.to_s

} - %w[taguri=]).each do |method|

class_eval <<-EOS, _ _FILE_ _, _ _LINE_ _
def #{method}(*args, &block)
lazy_load
results = @array.#{method}(*args, &block)
results.equal?(@array) ? self : results

end
EOS

end

def load_with(&block)
@load_with_proc = block
self

end

...

private

def lazy_load
return if loaded?

148 Chapter 5: Models

mark_loaded
@load_with_proc[self]
@array.unshift(*@head)
@array.concat(@tail)
@head = @tail = nil
@reapers.each { |r|
@array.delete_if(&r)

} if @reapers
@array.freeze if frozen?

end

...

end

Starting at the top, we can see that all but the quintessence methods are undefined.
This is because LazyArray is meant to emulate the primitive Array class, and starting
off with a slate that is as blank as possible helps us get there. The next few lines define
various instance methods from both Array and Enumerable, essentially making
LazyArray a proxy to a real array but prefacing the call of any array method with
lazy_load. The lazy_load method itself either simply returns true if already loaded,
or uses a Proc defined through the load_with method to populate the array. All in
all, the lazy loading of LazyArray has a profound impact on the DataMapper API,
arguably serving as the foundation for the elegance and straightforwardness of the query
algebra.

5.5.2.3 Lazy loading of properties
Some property data is not automatically retrieved when a model object is loaded. For
instance, by default, text properties are not loaded unless you specifically request them.
This form of lazy loading is facilitated by code with the Resource module and Prop-

ertySet class. Let’s see it in action before taking an in-depth look at how it has been
put together:

app/models/post.rb
class Post
include DataMapper::Resource

property :id, Serial
property :title, String
property :body, Text

end

Example Merb Interaction
> post = Post.first

5.5 CRUD basics 149

˜ SELECT "id", "title", "is_basic" FROM "posts" ORDER BY
"id" LIMIT 1

=> #<Post id=1 title="First Post!" body=<not loaded>>
> post.body
˜ SELECT "body", "id" FROM "posts" WHERE ("id" = 1) ORDER BY "id"
=> "Nothing to see here"

Note that if we had multiple text properties, they would all have been loaded by the
second line of interaction. To prevent this from happening, you can define lazy contexts
on properties, thus segmenting the retrieval of lazy property data:

app/models/post.rb
class Article
include DataMapper::Resource

property :id, Serial
property :title, String, :lazy => true
property :abstract, Text, :lazy => [:summary, :full]
property :body, Text, :lazy => [:full]

end

It’s time to see how this is done. We’ll have to open up Resource and Prop-

ertySet, with the insight that a property when either get or set calls the method
Resource#lazy_load:

module DataMapper::Resource

def lazy_load(name)
reload_attributes(
*properties.lazy_load_context(name) -
loaded_attributes)

end

end

class DataMapper::PropertySet

...

def property_contexts(name)
contexts = []
lazy_contexts.each do |context,property_names|
contexts << context
if property_names.include?(name)

end
contexts

end

150 Chapter 5: Models

def lazy_load_context(names)
if names.kind_of?(Array) && names.empty?
raise ArgumentError, '+names+ cannot be empty',
caller

end

result = []

Array(names).each do |name|
contexts = property_contexts(name)
if contexts.empty?
result << name # not lazy

else
result |= lazy_contexts.values_at(*contexts).
flatten.uniq

end
end
result

end
end

The methods of PropertySet aren’t anything special, but seeing how they work
certainly clears up any ambiguity that may have existed within the concept of lazy load
contexts.

5.5.2.4 Strategic eager loading
If you’ve used ActiveRecord before, you’ve probably trained yourself to avoid N+1
queries. These come up frequently in ActiveRecord since iteration over the associates of
a model object usually forces you to make a query for each associate. Add in the original
query for the model itself, and you have N+1 queries in total. However, DataMapper
prevents this from happening and instead issues only two queries. Let’s take a look at an
example in a view to make this more concrete:

<% Post.all.each do |post| %>
<div class="post">
<h1><%= post.title ></h1>
<h2>by <%= post.author.name %></h2>

</div>
<% end %>

With the code above, all posts and the names of their authors are outputted using
only two queries: the first to get the posts and the second to get their authors. This kind
of elimination of N+1 queries is called strategic eager loading and is possible thanks
to a combination of many different DataMapper implementation decisions. To get an

5.5 CRUD basics 151

idea of how strategic eager loading works, let’s take a look at some code inside the
Relationship class that would have been used in the previous example:

class DataMapper::Associations::Relationship

...

@api private
def get_parent(child, parent = nil)
child_value = child_key.get(child)
return nil if child_value.any? { |v| v.nil? }

with_repository(parent || parent_model) do
parent_identity_map = (parent || parent_model).
repository.identity_map(parent_model.base_model)

child_identity_map = child.
repository.identity_map(child_model.base_model)

if parent = parent_identity_map[child_value]
return parent

end

children = child_identity_map.values
children << child
unless child_identity_map[child.key]

bind_values = children.map {
|c| child_key.get(c) }.uniq

query_values = bind_values.reject {
|k| parent_identity_map[k] }

bind_values = query_values
unless query_values.empty?

query = parent_key.zip(bind_values.transpose).
to_hash

association_accessor =
"#{self.name}_association"

collection = parent_model.send(:all, query)
unless collection.empty?
collection.send(:lazy_load)
children.each do |c|
c.send(association_accessor).
instance_variable_set(
:@parent,
collection.get(*child_key.get(c)))

end

152 Chapter 5: Models

child.send(association_accessor).
instance_variable_get(:@parent)

end
end

end

end

From this we learn that in the process of getting a parent resource, DataMapper pulls
up the identity map of the parent model and child model to see if the resource has already
been loaded. If it has, DataMapper short-circuits any retrieval and simply returns the
appropriate parent. Most important, if the resource is not already loaded, DataMapper
uses the parent keys from all the relevant children within a collection query. The results
are then loaded immediately, and after all children are connected with their parents, the
parent requested is returned.

5.5.3 Updating records
Resources can be updated by using the save method similarly to how it was used with
record creation. However, for saving to have any effect, it is necessary that at least one
property value be recently set. This causes DataMapper to mark certain properties as
dirty and use them during the creation of an update statement. Below we display the
two ways of setting a property value and causing it to be marked as dirty.

post = Post.first
post.title = "New Title"
post.attribute_set(:body, "New Body")
post.save

However, note that the second method attribute_set is typically reserved for use in-
side override writer methods. Note that save, in the case of non-new records, cascades to
the calling of update. Thus we have the option of using that method directly if we want:

post.update

5.5.3.1 Using update_attributes
There is one other way to invoke the updating of attributes. This is to use the
method update_attributes, which accepts an arbitrary hash and then an optional
constraining property array. Consequently, it works well with form parameters a user
may have passed in:

class Users
def update

5.5 CRUD basics 153

if @user.update_attributes(params[:user],
[:name, :email, :description])
redirect resource(@user)

else
render :edit

end
end

end

Here we have constrained the user to being able to update only name, email, and
description.

5.5.3.2 Original and dirty attribute values
You may at some point want to enhance model logic through the comparison of original
and dirty attribute values. Here we do so within the method update_speed:

class Position
property :id, Serial
property :vertical_position, Integer
property :horizontal_position, Integer
property :speed, Float

belongs_to :player

before :save, :update_speed

private

def update_speed
dy = 0
dx = 0
if original_values[:vertical_position]
dy = vertical_position -
original_values[:vertical_position]

end
if original_values[:horizontal_position]
dx = horizontal_position -
original_values[:horizontal_position]

end
v = Math.sqrt(dx*dx + dy*dy)
attribute_set(:speed, v)

end

end

You may notice that we use a before hook here. We’ll cover hooks in the next section.

154 Chapter 5: Models

5.5.4 Destroying records
Records can be deleted by using the destroy method. Alternatively, if you’re looking
to delete a full collection of resources, you can use the method destroy!:

User.first(:id => 2).destroy
Post.all(:user_id => 2).destroy!

5.6 Hooks
DataMapper hooks differ from those used in Merb controllers. This is because controller
filter chains require a decently specific form of logic. DataMapper models, on the other
hand, have the benefit of using the more generic Hook class of Extlib.

Design decision: explicit hooks over aliasing of methods

DataMapper could have left it up to application developers to fend for themselves
when it comes to hooks. After all, Ruby is an extremely versatile language, and the
alias method could be used to chain model methods like create and save.
However, DataMapper developers, like Merb developers, shared a distaste for the
aliased decoration of methods for, among other reasons, its confusing implications
on stacktraces. Therefore, Extlib::Hook was created to enable application de-
velopers to easily decorate both instance and class methods without doing any
aliasing.

From the application developer’s perspective, the two methods used to create
hooks are before and after. DataMapper registers specific hooks for the methods
save, create, update, and destroy. Each of these can be used with before and
after.

module DataMapper
module Hook
def self.included(model)
model.class_eval <<-EOS, _ _FILE_ _, _ _LINE_ _
include Extlib::Hook
register_instance_hooks :save, :create,
:update, :destroy

EOS
end

end
DataMapper::Resource.append_inclusions Hook

end # module DataMapper

5.7 Plugins 155

5.7 Plugins
Modularity has been a central objective of DataMapper. Thus, many of the features that
you might otherwise expect within a standard ORM are with DataMapper found as
plugins. This includes timestamping, aggregation, validations, and various data struc-
tures. In this section we’ll go over the most fundamental of these plugins, understanding
not only how they’re used but also how they work.

5.7.1 Extra property types
The package dm-types provides numerous additional property types. Here’s a list of
those included:

• BCryptHash—encrypts a string using the bcrypt library

• Csv—parses strings as CSVs using FasterCSV

• Enum—stores an enumerated value as an integer

• EpochTime—converts Time and DateTime to EpochTime, that is, the number of
seconds since the beginning of UNIX time

• FilePath—stores paths as strings using Pathname

• Flag—binary flags stored as integers

• IpAddress—IP address stored as a string

• Json—JSON stored as a string

• Regexp—regular expressions stored as strings

• Serial—an auto-incrementing integer type

• Slug—escapes a stored string, making it suitable to be used as part of a URL

• URI—stores an Addressable::URI as a string

• UUID—creates a UUID stored as a string

• Yaml—stores YAML as a string

Let’s take a look at the source to one of these for a better understanding of how to
create our own types:

require 'yaml'

module DataMapper
module Types
class Yaml < DataMapper::Type
primitive String

156 Chapter 5: Models

size 65535
lazy true

def self.load(value, property)
if value.nil?
nil

elsif value.is_a?(String)
::YAML.load(value)

else
raise ArgumentError.new(
"+value+ must be nil or a String")

end
end

def self.dump(value, property)
if value.nil?
nil

elsif value.is_a?(String) && value =˜ /ˆ---/
value

else
::YAML.dump(value)

end
end

def self.typecast(value, property)
Leave values exactly as they're provided.
value

end
end # class Yaml

end # module Types
end # module DataMapper

As you can see, new DataMapper types can be created by subclass off of DataMap-
per::Type. You will then have to set the primitive type, and this can be done using
the class method primitive. You may additionally have to set attributes like size and
laziness as was done in the case above. Finally, the two methods that do the hard work
are the class methods load and dump. These need to be defined only if the custom type
needs to override them from simply returning the value. With the Yaml type, strings are
converted into YAML when loaded from the database and are converted to strings when
they need to be dumped into the database.

5.7.2 Timestamps
The gem dm-timestamps is one of the most commonly used DataMapper plugins.
It saves you from having to code timestamping into your models. Note that once the
gem is included, it applies to all DataMapper models. Thus we can set the following

5.7 Plugins 157

four properties in any Merb stack model, knowing they will automatically be set when
needed:

class User
property :created_at, DateTime
property :created_on, Date
property :updated_at, DateTime
property :updated_on, Date

end

Because dm-timestamps is a decently simple plugin but also reveals the foundation
of resource extension plugins, let’s take a quick look:

module DataMapper
module Timestamp
Resource.append_inclusions self

TIMESTAMP_PROPERTIES = {
:updated_at => [DateTime,
lambda { |r, p| DateTime.now }],

:updated_on => [Date,
lambda { |r, p| Date.today }],

:created_at => [DateTime,
lambda { |r, p|
r.created_at ||
(DateTime.now if r.new_record?) }],

:created_on => [Date,
lambda { |r, p|
r.created_on ||
(Date.today if r.new_record?) }],

}.freeze

def self.included(model)
model.before :create, :set_timestamps
model.before :update, :set_timestamps
model.extend ClassMethods

end

private

def set_timestamps
return unless dirty?
TIMESTAMP_PROPERTIES.each do |name,(_type,proc)|
if model.properties.has_property?(name)
model.properties[name].set(self,
proc.call(self,

158 Chapter 5: Models

model.properties[name])) unless
attribute_dirty?(name)

end
end

end

module ClassMethods
def timestamps(*names)
raise ArgumentError, '...' if names.empty?

names.each do |name|
case name
when *TIMESTAMP_PROPERTIES.keys
type, proc = TIMESTAMP_PROPERTIES[name]
property name, type

when :at
timestamps(:created_at, :updated_at)

when :on
timestamps(:created_on, :updated_on)

else
raise InvalidTimestampName,
"Invalid timestamp property name '#{name}'"

end
end

end
end # module ClassMethods

class InvalidTimestampName < RuntimeError; end
end # module Timestamp

end # module DataMapper

The first line to notice is the third one. Here the module appends itself to Resource.
As we saw earlier in this chapter, this gets the Timestampmodule automatically included
in all classes that include DataMapper::Resource. Moving on, we see the definition
of a number of lambdas to be used in setting the four basic timestamps. This is followed
by the class method included, which sets up before hooks to apply the timestamps. It
all extends our model classes with a timestamps class method. This is a convenience
method for defining the various timestamp properties tersely.

5.7.3 Aggregates
The DataMapper core has been designed to limit its use as a reporting tool and simply
act as an ORM. The plugin dm-aggregates consequently adds in some of the most
common aggregating methods used by SQL databases:

5.7 Plugins 159

• count—finds the number of records in a collection by directly using a count SQL
statement and not the Ruby size method

• min—finds the minimum value of a numerical property using SQL

• max—finds the maximum value of a numerical property using SQL

• avg—finds the average value of a numerical property using SQL

• sum—totals the values of a numerical property using SQL

Chances are you will use dm-aggregates at some point. However, before we look
into the source, it’s best to recognize that the plugin essentially extends DataMapper’s
capability to what it was not really meant to do.

module DataMapper
class Collection
include AggregateFunctions

private

def property_by_name(property_name)
properties[property_name]

end
end

module Model
include AggregateFunctions

private

def property_by_name(property_name)
properties(repository.name)[property_name]

end
end

module AggregateFunctions
def count(*args)
query = args.last.kind_of?(Hash) ? args.pop : {}
property_name = args.first

if property_name
assert_kind_of 'property',
property_by_name(property_name), Property

end

160 Chapter 5: Models

aggregate(query.merge(:fields =>
[property_name ?
property_name.count : :all.count]))

end
end

module Adapters
class DataObjectsAdapter
def aggregate(query)
with_reader(read_statement(query),
query.bind_values) do |reader|

results = []

while(reader.next!) do
row = query.fields.zip(
reader.values).map do |field,value|

if field.respond_to?(:operator)
send(field.operator, field.target, value)

else
field.typecast(value)

end
end

results << (query.fields.size > 1 ?
row : row[0])

end

results
end

end

private

def count(property, value)
value.to_i

end

module SQL
private

alias original_property_to_column_name
property_to_column_name

def property_to_column_name(repository,
property, qualify)

5.7 Plugins 161

case property
when Query::Operator
aggregate_field_statement(repository,
property.operator, property.target, qualify)

when Property, Query::Path
original_property_to_column_name(repository,
property, qualify)

else
raise ArgumentError, "..."

end
end

def aggregate_field_statement(repository,
aggregate_function, property, qualify)

column_name = if aggregate_function == :count
&& property == :all
'*'

else
property_to_column_name(repository, property, qualify)

end

function_name = case aggregate_function
when :count then 'COUNT'
...
else raise "Invalid ... "

end

"#{function_name}(#{column_name})"
end

end # module SQL

include SQL

end
end

end

Above we have included only the code covering the count method. However, it’s easy to
recognize the substantial monkey patching going on, particularly in the case of the SQL
methods. Otherwise, though, this is a great example of the trickling down of method
calls from collections and models into the adapter where SQL statements are formed.

162 Chapter 5: Models

5.7.4 Validations
The plugin dm-validations validates the property values of model objects before
saving them. This means that if a model object returns false upon save, you can most
likely interpret it as having been caused by undesirable values on properties. Another
way to check if a particular model is valid is to directly use the valid? method that
is squeezed in before create or update. Before we go any further, here’s a list of the
validation methods available within your models through dm-validations:

• validates_present—validates the presence of an attribute value.

• validates_absent—validates the absence of an attribute value.

• validates_is_accepted—validates that an attribute is true or optionally not false
through :allow_nil => true. It can also work with a custom set of acceptance
values using :accept => [values].

• validates_is_confirmed—validates the confirmation of an attribute with an-
other attribute, for instance, matching password and password_confirmation.
The default confirmation attribute is the original attribute ending in _confirma-

tion, but :confirm can be used to set it to anything else.

• validates_format—validates the format of an attribute value against a regular
expression or Proc associated by :with. Alternatively, it can be used with predefined
formats such as Email and Url through :as. The :allow_nil key is also available.

• validates_length—validates the value of a numeric against a :min or :max value.
Alternatively, a range can be used along with :within.

• validates_with_method—validates either the model as a whole or a specific
property through a method. If only one parameter is given, it is the symbolic form
of the method to check the entire model. If two are given, they are the attribute and
the method used to check that attribute. Error messages can be passed as true by
returning an array where false is the first element and a string for an error message
is the second from the validating method.

• validates_with_block—like validates_with_method but uses blocks. You
can validate either against the whole model or a specific attribute as well as pass in
error messages.

• validates_is_number—validates that the value of an attribute is a number, ap-
propriate for use in checking the precision and scale of floats.

• validates_is_unique—validates that the attribute value is unique, either within
the scope of the attribute value of all other model objects or some other scope specified

5.7 Plugins 163

by an array of property symbols through :scope. Also accepts :allow_nil to
be set.

• validates_within—validates that an attribute value is within a set of values
specified by :set.

Alternatively, instead of directly using the validations methods, you can include
particular hash key-and-values on property definitions. Here’s a list of what keys auto-
matically create appropriate validations:

• :nullable—when set to false, automatically creates a presence validator

• :length or :size—automatically creates a length validator

• :format—creates a format validator

• :set—creates a within validator

Additionally, numerical properties are automatically validated using validates_

is_number. To turn off autovalidation on this or any other property type, use
:auto_validation => false.

5.7.4.1 Conditions
Validation methods are also capable of generally accepting conditions as Procs assigned
to :if or :unless. The single block parameter for these Procs is the resource itself.
Thus we can do the following:

class Experiment
include DataMapper::Resource

property :id, Serial
property :name, String
property :impetus, Text
property :question, Text
property :hypothesis, Text
property :description, Text
property :conclusion, Text
property :completed, TrueClass
property :result, TrueClass

validates_present :conclusion, :if => proc { |r|
r.completed? && r.result?

}
end

164 Chapter 5: Models

For terseness, DataMapper validations also allow us to specify a method as a symbol
instead of a full Proc. Here we require only that an experiment be complete for it to have
a conclusion:

validates_present :conclusion, :if => :completed?

5.7.4.2 Contexts
Contexts allow us to do validations with similar conditions, but specified at the point of
validation. For instance, assuming we have the same Experiment model from before,
we may set different contexts on particular property validations specifying that they must
be validated together:

validates_present :impetus, :when => [:proposal]
validates_present :question, :when => [:proposal]
validates_absent :completed, :when => [:proposal]

The array assigned to when is an array of contexts. The default context is known
as :default. We can now use these contexts by including them as a parameter with
valid?:

exp = Experiment.new(
:name => 'Great Subjective Experiment',
:impetus => 'Thoughts on physicalism and the mind',
:question => 'Is it possible to subjectively test '+
'the consciousness of other modes of thought '+
'through their integration with your own?'

:completed => true)
exp.valid?(:proposal) # => false

5.7.4.3 Errors
Every time a model object is validated, it populates (or empties) a hash of errors accessible
through the resource instance method errors. These errors can be used to indicate to
a user that something went wrong or otherwise recognize what particular attributes are
invalid:

resource.errors.each do |e|
puts e # => [[:attr_name, ["Error!"]]]

end

resource.errors.on(:attr_name) # => ["Error!"]
resource.errors.on(:another_attr) # => nil

Notice how errors.on returns nil when there are no errors. Consequently it can
be used to test if an error is present on a property. Also note that error messages are

5.8 Conclusion 165

given as arrays. This is because multiple validation errors may have occurred on a single
attribute.

5.8 Conclusion
DataMapper is an undeniably excellent ORM. It offers application developers the chance
to stay as far away from database work as possible by streamlining development migrations
and placing model properties within the model. It also lets us treat ORM objects even
more casually by virtue of its eager and lazy loading of data sets. Inside the Merb stack
or not, the highly modular DataMapper will serve you well.

Index

= (equal sign)
outputting results, 107–108
outputting strings, 108
sanitizing, 108

(pound sign)
comment indicator, 103
in ID names, 106

/ (slash)
in file paths, 21
path expansion, 22

. (dot), in class names, 106
& (ampersand), anchors in YAML nodes, 115
== (equal signs), sanitizing, 108
- (hyphen), code indicator, 107
% (percent sign), tag indicator, 105
{ } (curly braces), in Haml tags, 107
() (parentheses), in optional route matching, 52
<% %> ERB delimiters, 102
<% =%> ERB delimiters, 102
<%= %> ERB delimiters, 102
<%= -%> ERB delimiters, 102
∼ (tilde), preserving whitespace, 108

A
absolute_url method, 71
Abstract controllers, 69–70
abstract! method, 229, 238–239

abstract? method, 229
AbstractController class, methods
before, 69
absolute_url, 71
action_name, 70
action_name=, 70
add_filter, 69
after, 69
body, 71
body=, 71
capture, 71
capture_erb, 71
catch_content, 71
clear_content, 71
concat, 71
concat_erb, 71
content_type, 71
content_type=, 71
controller_name, 69–70
default_layout, 70
filter, 69
general, 69, 70
inherited, 69
instance, 70
layout, 70
normalize_filters!, 69
partial, 71

299

300 Index

AbstractController class,
methods (continued)

relative_url, 71
render, 70
render, 71
render_all, 71
render_html, 71
render_js, 71
render_json, 71
render_options, 70
render_text, 71
render_xml, 71
render_yaml, 71
skip_after, 69
skip_before, 69
skip_filter, 69
subclasses_list, 69
template_roots, 70, 71
template_roots=, 70, 71
throw_content, 71
throw_content?, 71
URL, 71
url, 71
view, 71

Access privileges, properties, 131
Access realms, 240
:accessor option, 131
Action caching, 274–275
action key, 42
action_name method, 70
action_name= method, 70
Actions

callable, returning, 72
callable, setting, 79
calling, 66
hiding/showing, 72, 79
mailers

invoking, 258–259
naming, 257–258

methods available as, 68

names, 70
parts, 266–267
readability, improving, 78

ActionStore strategy store, 270
ActiveRecord, definition, 26
ActiveRecord associations, versus DataMapper,

132–133
Adapter options, Rack, 23–25
Adapters, DataMapper, 114
add_filter method, 69
Adding

controller names to
subclasses_list, 69

CSS error class, 186
filters to filter chains, 69
names to routes, 57–58
query parameters, 143
routes, 44–45
session functionality, 29

add_rakefiles plugin, 222
Addressable URIs, storing as strings, 155
add_reversed query parameter, 145
add_slice method, 202–203
AdhocStore strategy store, 270
after class method, 81–82
After filter chain, 69
After filters, 81–82
after method
AbstractController class, 69
authentication strategies, 229
creating hooks, 154
filter method, 69
Strategy class, 229

after_app_loads blocks, 30
AfterAppLoads boot loader, 30
after_app_loads method, 13–14
after_authentication method,

237
after_callbacks array, 237
Aggregates, 158–161

Index 301

all method, 142–145
alter_table_column_statement

method, 126
Ampersand (&), anchors in YAML nodes,

115
app argument, 3
app/ directory, 9
Application class, 31, 72
Application controllers, 72–74
Application layouts

alternative, specifying, 28–29
core, 3
custom, 3
flat, 2–3, 6–8
overview, 2–3
standard, 3, 8–9
very flat, 2–6

Applications
creating, 1–2
development environment, 7, 16–17
environments, 7, 16–17
nontemplate code, loading, 29
production environment, 7, 16–17
reloading, 11
single file. See Flat application layouts; Very

flat application layouts.
testing environment, 7, 16–17

assert_kind method, 144
Associations

belongs to, 132–135
belongs_to method, 132–135
cardinality, specifying, 136
DataMapper versus ActiveRecord, 132–133
has, 132–133, 135–137
has method, 132–133
has through, 138–139
join table models, creating, 139
ManyToMany associations, 139
many-to-many-through, 139
one-to-many-through, 138–139

overview, 132–133
symbolized class names, 136
through method, 138–139

Attaching files to email, 260–261
Attributes, updating, 152–153
attribute_set method, 152
Audit routes rake task, 48
audit:routes command, 48
auth core. See Authentication, auth core.
auth more. See Authentication, auth

more.
auth password slices. See Authentication,

auth password slices.
authenticate method, 235
authenticate! method, 225–226
Authentication, auth core
abstract! method, 229
abstract? method, 229
add_rakefiles plugin, 222
after method, 229
after_authentication method,

237
after_callbacks array, 237
authenticate method, 235
authenticate! method, 225–226
Authentication class, 223–227
before method, 229
before_app_loads plugin, 222
callbacks, 236–237
customizations, 236
customize_default method, 236
ensure_authenticated helper,

234–235
error messages, storing, 232–233
halt! method, 230
halted? method, 230
helpers, 234–235
hooking methods, 224
inherited method, 229
initialize method, 230

302 Index

Authentication, auth core (continued)
model class, selecting, 223
push_path method, 222
redirect method, 230
responses, 233–234
responses.rb file, 233–234
router helper, 235
run_after_authentication_

callbacks method, 226–227, 237
serial callbacks, 226–227
sessions, 231
setup.rb file, 222
strategies.rb file, 222
Strategy class, 227–231
user_class method, 231

Authentication, auth more

controller, 245
encrypt method, 243
models, 242–245
overview, 237–238
passwords, encrypting, 243–244
redirect_back_or method, 245
redirecting logins, 245
strategies
abstract! method, 238–239
access realms, 240
Base class, 238
basic, 239–241
basic_authentication?

method, 240
login_param method, 239
OpenID, 242
password form, 241
password_param method, 239
run! method, 239

Authentication, auth password slices
controller, 247–249
destroy action, 248
error_messages_for method, 250

Exceptions controller, 247–249
lib files, 246–247
login view, 249–250
Sessions controller, 247–249
underscored filters, 248
update action, 248
views, 249–250

Authentication class, 223–227
Auto-increment, enabling, 131
Auto-incrementing integers, 155
Automatic

form actions, setting, 187
parameters, routing match rules, 51
parameters, symbolic matching, 51
validation, 132, 163

auto_migrate! method, 123–126
auto_upgrade! method, 123–126
:auto_validation option, 132
Average value, calculating, 159
avg method, 159

B
Base class, 238
basic_authentication? method, 240
BCryptHash property type, 155
be_client_error matcher, 291–292
before class method, 80–81
Before filter chain, 69
Before filters, 80–81
before method
AbstractController class, 69
authentication strategies, 229
creating hooks, 154
Strategy class, 229

BeforeAppHooks boot loader, 29
before_app_loads blocks, 29
before_app_loads plugin, 222
Belongs-to associations, 132–135

Index 303

be_missing matcher, 291–292
be_successful matcher, 291–292
BigDecimal class, 128
Binary flags, storing as integers, 155
Blank, testing for, 22
blank? method, 22
Block-aware enhancer, 103–105
BlockAwareEnhancer, 103–105
Blocks

calling later, 97
placing in worker queue, 74

body method, 71
body= method, 71
Body of controller response, getting/setting, 71
Boolean class, 128. See also TrueClass.
Boolean property type, 128
Boot loaders, overview, 27
BootLoader class
AfterAppLoads, 30
BeforeAppHooks, 29
BuildFramework, 28–29
ChooseAdapter, 31
Cookies, 30
Defaults, 28
Dependencies, 29
DropPidFile, 28
LoadClasses, 29
Logger, 27
MimeTypes, 30
MixinSession, 29
RackUpApplication, 31–32
ReloadClasses, 32
ReloadTemplates, 32
SetupSession, 30
SetupStubClasses, 31
StartWorkerThread, 31
Templates, 29–30

Bound variants versus unbound, 181
bound_check_box method, 182–183

Builder module, 179
BuildFramework boot loader, 28–29
build_request method, 275–277
build_url method, 275–277

C
cache action, 274–275
cache! action, 274–275
cache_action action, 274–275
Caching

configuring
ActionStore, 270
AdhocStore, 270
FileStore, 269–270
fundamental stores, 269–270
GzipStore, 270
MemcachedStore, 269–270
PageStore, 270
SHA1Store, 270
strategy stores, 270

delete method, 273
deleting, 273
exists? method, 272
fetch methods, 273
fetching, 273
helpers

action caching, 274–275
build_request method, 275–277
build_url method, 275–277
cache action, 274–275
cache! action, 274–275
cache_action action, 274–275
eager caching, 275–277
eager_cache method, 275–277
fetch_fragment method, 277
fetch_partial method, 277–278
fragment caching, 277
partial caching, 277–278

304 Index

Caching (continued)
read method, 272
reading, 272
writable? method, 271–272
write method, 271–272
writing, 271–272

Caitlin, Hampton, 105
callable_actions method, 72
Callbacks, authentication, 236–237
Camel case, converting strings to, 21
camel_case method, 21
capture method, 71
capture_erb method, 71
Cardinality, specifying, 136
Casting values, 128–129
catch_content method, 71
cattr_accessor method, 20
cattr_reader method, 20
cattr_writer method, 20
-C flag, 9–10
Checkbox control, 182–183
check_box method, 189–190
Checking routes, 45
check_request_for_route method, 11
ChooseAdapter boot loader, 31
Class class, 20, 128
Classes

listing, 20
models

creating, 116
inheritance, 116
organizing, 115
Principle of Substitutability, 116
required for DataMapper, 115–117
Resource method, 115–117

names
Haml views, 106–107
storing as strings, 128

reloading, 32

class_inheritable_accessor method,
20

class_inheritable_reader method, 20
class_inheritable_writer

method, 20
class_provided_formats method,

72–73
class_provided_formats= method,

72–73
clear! method, 208
clear_content method, 71
Clearing content, rendering templates, 71
clear_provides method, 72
Client response time, filters, 82
close_sandbox! method, 11
Collections, reversing object order, 145
Comments, ERB views, 103
Compiling templates, 89–90
concat method, 71
concat_erb method, 71
Conditions, validations, 163–164
conditions query parameter, 145
config/ directory, 12
Config method, 14
Configuration

caching
ActionStore, 270
AdhocStore, 270
FileStore, 269–270
fundamental stores, 269–270
GzipStore, 270
MemcachedStore, 269–270
PageStore, 270
SHA1Store, 270
strategy stores, 270

mailers
delivery methods, 254–255
quota checking, 255
sendmail, 254

Index 305

SMTP, 253–254
test_send method, 254

sessions, 206
Configuration files

databases, 19–20
database.yml, 19–20
development.rb, 16
environments, 16–17
init script
after_app_loads method, 13–14
basic configuration, 14
dependencies, 13–14
gems and load path, 12
inflector customization, 15
libraries, distributing, 12–13
ORM options, 14–15
plugins, distributing, 12–13
RubyGems, 12–13
template engines, 14
testing options, 15

init.rb, 19–20
logging

debug messages, 18
error messages, 18
example, 18
fatal messages, 18
flushing logs, 11, 18
info messages, 18
log file location, 17
message levels, specifying, 18
viewing logs, 18
warn messages, 18

production.rb, 16–17
router, 17
router.rb, 17, 43
routers, 43
test.rb, 17
YAML files, 19–20

Console methods, 10–11

Console traps, 9–10
Constants, converting to paths, 21
Content type for controller response,

getting/setting, 71
content_type method, 71
content_type= method, 71
Contexts, validations, 164
Controller access, sessions, 220
Controller class

class methods
callable_actions, 72
class_provided_formats, 72
class_provided_formats=, 72
clear_provides, 72
does_not_provide, 72
format, 72
general, 72
hide_action, 72
only_provides, 72
overview, 70
provides, 72
reset_provides, 72
show_action, 72

instance methods
class_provided_formats, 73
class_provided_formats=, 73
cookies, 73
delete_cookie, 73
does_not_provide, 73
escape_xml, 74
escaping, 74
format, 73
general, 73
h, 74
headers, 73
html_escape, 74
nginx_send_file, 74
only_provides, 73
other, 74

306 Index

Controller class (continued)
instance methods (continued)
params, 73
provides, 73
rack_response, 73
redirect, 73
render_chunked, 74
render_deferred, 74
render_then_call, 74
request, 73
run_later, 74
send_chunk, 74
send_data, 74
send_file, 74
session, 73
session, 73
set_cookie, 73
status, 73
status=, 73
stream_file, 74

Controller classes
AbstractController, methods
before, 69
absolute_url, 71
action_name, 70
action_name=, 70
add_filter, 69
after, 69
body, 71
body=, 71
capture, 71
capture_erb, 71
catch_content, 71
clear_content, 71
concat, 71
concat_erb, 71
content_type, 71
content_type=, 71
controller_name, 69–70
default_layout, 70
filter, 69

general, 69, 70
inherited, 69
instance, 70
layout, 70
normalize_filters!, 69
partial, 71
relative_url, 71
render, 70
render, 71
render_all, 71
render_html, 71
render_js, 71
render_json, 71
render_options, 70
render_text, 71
render_xml, 71
render_yaml, 71
skip_after, 69
skip_before, 69
skip_filter, 69
subclasses_list, 69
template_roots, 70, 71
template_roots=, 70, 71
throw_content, 71
throw_content?, 71
URL, 71
url, 71
view, 71

Application, 72
Controller, class methods
callable_actions, 72
class_provided_formats, 72
class_provided_formats=, 72
clear_provides, 72
does_not_provide, 72
format, 72
general, 72
hide_action, 72
only_provides, 72
overview, 70
provides, 72

Index 307

reset_provides, 72
show_action, 72

Controller, instance methods
class_provided_formats, 73
class_provided_formats=,

73
cookies, 73
delete_cookie, 73
does_not_provide, 73
escape_xml, 74
escaping, 74
format, 73
general, 73
h, 74
headers, 73
html_escape, 74
nginx_send_file, 74
only_provides, 73
other, 74
params, 73
provides, 73
rack_response, 73
redirect, 73
render_chunked, 74
render_deferred, 74
render_then_call, 74
request, 73
run_later, 74
send_chunk, 74
send_data, 74
send_file, 74
session, 73
session, 73
set_cookie, 73
status, 73
status=, 73
stream_file, 74

Exceptions, 31, 74
Controller classes, custom

actions
callable, setting, 79

hiding/showing, 79
readability, improving, 78

controller location, 75–76
naming controllers, 76
organizing methods

action readability, improving, 78
making methods available to subclasses,

77–78
overview, 76
sharing nonaction methods, 77

controller key, 42
Controller prefixes, 59
Controller response

body, getting/setting, 71
content type, getting/setting, 71
formats provided, 72, 73

controller_for_slice method, 201
controller_name method, 69–70
Controller#part method, 266–267
Controllers

abstract, 69–70. See also
AbstractController.

application, 72–74
authentication
auth more, 245
auth password slices, 247–249

calling actions, 66
definition, 34
dispatching requests, 66–67
exceptions, 74, 88
initializing, 66–67
location, 75–76
mailers, 257–258
Merb, 70–72. See also Controller class.
names

adding to subclasses_list, 69
creating, 76
returning, 69–70

parts, 263–266
rack response, 73
for slices, 200–201

308 Index

Controller#send_mail method,
258–259

Convention over configuration, 5
Converting

constants to paths, 21
numbers to currency values, 169–170
strings to camel case, 21
time to EpochTime, 155

Cookies
deleting, 73
functionality, loading, 30
getting, 73
session domain, setting, 206
session storage, 211–214
session store, encrypting, 206
setting, 73

Cookies boot loader, 30
cookies method, 73
CookieSession class, 211–214
Core application layouts, 3
core argument, 3
count method, 159–161
Counting numerical properties, 159–161
coverage task, 282
create action, 62
create_model_storage method,

123–126
create_table_statement method, 127
CRUD (create, retrieve, update, delete) basics
all method, 142–145
assert_kind method, 144
creating records, 140–142
deleting collections, 154
deleting records, 154
destroy!: method, 154
destroy method, 154
enforcing types, 144
first method, 142–145
lazy loading of collections, 146–148
lazy loading of properties, 148–150

LazyArray class, 147–148
model objects, creating and saving, 140–142
N+1 queries, 150
overview, 140
query object algebra, 144
query parameters, adding, 143
Query#merge method, 144–145
Relationship class, 151–152
retrieving records

data sets, reloading, 146
fields, fetching as an array, 145
grouping by fields, 146
including other data, 145
lazy loading of collections, 146–148
limiting number returned, 146
links in related model data, 146
overview, 142–145
query offset, 146
query order, 146
reversing object order, 145
SQL conditions, setting, 145
strategic eager loading, 150–152

scoped_query method, 143
special query parameters, 145–146
strategic eager loading, 150–152
updating records
attribute_set method, 152
original values versus dirty values, 153
overview, 152
save method, 152
update_attributes method,

152–153
update_speed method, 153

CSS error class, adding, 186
Csv property type, 155
Curly braces ({ }), in Haml tags, 107
Currency values, converting numbers to,

169–170
current_form_context method,

187–188

Index 309

Custom application layouts, 3
Customizations, authentication, 236
customize_default method, 236
Cycle helpers, 176–177
cycle method, 176–177
Cycling through a list of values, 176–177

D
Data sets, reloading, 146
Database storage

automigrating DB schema, 121–127
default configuration file, 120
overview, 120–121
sample_development.db file, 120

Databases
accessing without a password, 19
configuration files, 19–20
creating with rake, 120

database.yml files, 19–20, 115
DataMapper

adapters, 114
associations, versus ActiveRecord, 132–133
CRUD. See CRUD (create, retrieve,

update, delete) basics.
data sources, 114
database back ends, 114
definition, 26
Ferret adapter, 114
required module, 115–117
Salesforce adapter, 114
session storage, 217–219

Date and time. See also Helpers, date and time.
converting time to EpochTime, 155
property type, 128
time equivalent of date, 22

Date class, 128
date format, 171
DateAndTimeFormatting module, 173
DateTime class, 22, 128
db format, 171

Debug messages, logging, 18
Debugging code. See Interactive sessions.
Decimal places, setting, 132
Decimal precision, property type, 128
default method, 57
:default option, 131
default_cookie_domain setting, 206
default_layout method, 70
Defaults boot loader, 28
Deferred blocks, running, 31
deferred method, 82
Deferred routes, routing match rules, 53–54
Deferring rendering responses, 74
Defining property types, 127–130, 155–156
Delete button, creating, 191
delete method, 11, 273
DELETE verb, 39–40
delete_button method, 191
delete_cookie method, 73
Deleting

cache data, 273
collections, 154
cookies, 73
records, 154
URLs, 11
users, 62

Dependencies
gems as, 13–14
init script file, 13–14
loading, 29
models, 114

Dependencies boot loader, 29
dependencies method, 14
dependency method, 13
Design principles, 5
destroy!: method, 154
destroy action, 62, 248
destroy method, 154
destroy_model_storage method,

123–126

310 Index

Development environment, applications, 7,
16–17

development.rb files, 16
Dirty values

versus original, 153
tracking properties for, 132

Discriminator class, 128
_dispatch method, 66
Dispatcher, overview, 33
Dispatching requests, 11, 66–67
dispatch_request method, 11
dispatch_to method, 11
display method, 95–96
dm-aggregate plugin, 158–161
dm-timestamps gem, 156–158
does_not_provide method, 72–73
Domain matching, 41
Dot (.), in class names, 106
DropPidFile boot loader, 28
drop_table_statement method, 126
Dual-formatted email messages, 255

E
Eager caching, 275–277
eager_cache method, 275–277
Ebb adapter, 25
ebb key, 25
edit action, 62
-e flag, 16
Email. See Mailers.
emongrel key, 25
encrypt method, 243
Encryption

cookies session store, 206
encrypt method, 243
passwords, 243–244
strings, 155

Enforcing types, 144
ensure_authenticated helper,

234–235

Enum property type, 155
Enumerated values, storing as integers, 155
Environment configuration file, loading, 29
Environments

applications, 7, 16–17
configuration files, 16–17
settings, 16–17
specifying, 16–17

EpochTime, converting to, 155
EpochTime property type, 155
Equal sign (=)

outputting results, 107–108
outputting strings, 108
sanitizing, 108

Equal signs (==), sanitizing, 108
ERB format, rendering templates, 89
ERB (eRuby) views. See also Views.

(pound sign), comment indicator,
103

<% %> delimiters, 102
<% =%> delimiters, 102
<%= %> delimiters, 102
<%= -%> delimiters, 102
basic delimiters, 102
block-aware enhancer, 103–105
BlockAwareEnhancer, 103–105
comments, 103
overview, 101–102
whitespace, removing, 102

Error messages
logging, 18
storing, 232–233

error_messages_for method, 186, 191,
250

escape_regex method, 21
escape_xml method, 74
Escaping

HTML entities, 74
methods, 74
special characters, 21, 155

Index 311

strings, 155
XML entities, 74

Evented Mongrel adapter, 25
Exception controllers, setting up, 31
Exceptions

in controller code, 74, 87–88. See also
Exceptions controller.

overview, 87
raising, 87

Exceptions class, 31, 74
Exceptions controller, 247–249
exists? method, 272
Expiration time for sessions, setting, 206
Extlib. See also Stack.

/ (slash), in file paths, 21
/ (slash), path expansion, 22
blank, testing for, 22
blank? method, 22
camel_case method, 21
cattr_accessor method, 20
cattr_reader method, 20
cattr_writer method, 20
class, 20
Class class, 20
classes, listing, 20
class_inheritable_accessor

method, 20
class_inheritable_reader

method, 20
class_inheritable_writer

method, 20
date, 22
date, time equivalent, 22
DateTime class, 22
escape_regex method, 21
Hook module, 23
in? method, 21
inheritable class-level variables, creating, 20
keys, strings or symbols as, 22
lazy loading, 23

LazyArray class, 23
Logger class, 22
logging, 22
Mash class, 22
meta_class method, 21
methods, associating before/after other

methods, 23
Object class, 21
objects

in arrays, duplicating, 21
in arrays, finding, 21
singleton class access, 21

ObjectSpace class, 20
overview, 20
Pathname class, 22
Pooling module, 23
resource sharing, 23
SimpleSet class, 23
snake_case method, 21
String class, 21
strings

camel case, converting to, 21
escaping special characters, 21
as inline templates, 23
joining in file paths, 21
language translation, 21
path/constant conversion, 21
snake case, converting to, 21

String.translate method, 21
String.translations

method, 21
t method, 21
time, returning, 22
Time class, 22
to_const_path method, 21
to_const_string method, 21
to_datetime method, 22
to_json method, 22
to_time method, 22
try_dup method, 21

312 Index

Extlib. See also Stack. (continued)
unescape_regex method, 21
unified class and instance variables,

creating, 20
VirtualFile class, 23

F
fake_request method, 11
FalseClass method, 22
FastCGI adapter, 25
Fatal messages, logging, 18
fcgi key, 25
Ferret adapter, 114
fetch methods, 273
fetch_fragment method, 277
Fetching cache data, 273
fetch_partial method, 277–278
-f flag, 18
:field option, 131
Fields

fetching as an array, 145
grouping retrieved data by, 146
names, overriding, 131

fields query parameter, 145
Fieldset elements, creating, 180–182
fieldset method, 180, 189
fieldset_for method, 189
fields_for method, 189
File paths, strings in, 21
file_field method, 189–190
FilePath property type, 155
Files, attaching to email, 260–261
FileStore cache store, 269–270
Filter chains, adding filters, 69
Filter methods, 69
Filters

before, 80–81
AbstractController methods, 69
adding to a filter chain, 69

after, 81–82
after class method, 81–82
after filter chain, 69
applying selectively, 82–83
before class method, 80–81
client response time, 82
deferred method, 82
ensuring option values are arrays, 69
before filter chain, 69
Haml views, 109
:if option, 83
options, 82–83
overview, 79–80
passing parameters to, 83
skip_after class method, 83–84
skip_before class method, 83–84
skipping, 69, 83–84
underscored, 248
:unless option, 83
:with option, 83

finalize method
SessionContainer class, 208
SessionStoreContainer class, 211

first method, 142–145
Fixatable routes, 59–60
Flag property type, 155
Flat application layouts, 3, 6–8
flat argument, 3
Flexible segmentation, 52
Float class, 128
Floating property type, 128
flush method, 18
Flushing logs, 11, 18
form method, 180, 188
Form module, 187–191
format key, 42
:format key, 163
Format methods, 72–73
:format option, 132

Index 313

Formats
controller response, 72, 73
date and time, 171–173
rendering templates

default, 89
ERB, 89
specifying, 92–94

form_contexts method,
187–188

form_for method, 188–189
Forms

actions, setting automatically, 187
context, changing from another

form, 189
default builder, 187
elements, creating, 180–182, 185–187.

See also Helpers, form.
helpers. See Helpers, form.
names, 188–189
without model object content, 188

ForumSlice module, 196
Fragment caching, 277
Freezing gems, 13

G
Garbage collection, session storage, 215–216
Gems

as dependencies, 13–14
directory size, reducing, 13
freezing, 13
libraries, distributing, 12–13
and load path, init script file, 12
--no-rdoc flag, 13
plugins, distributing, 12–13
RubyGems, 12–13
version-specific, installing, 13

generate method
SessionContainer class, 208
SessionStoreContainer class, 211

get method, 11
GET verb, 39–40
Getter/setter methods, dynamic creation, 119
Getting. See Retrieving; specific items.
Globs, 29
GzipStore strategy store, 270

H
h method, 74
halt! method, 230
halted? method, 230
:haml parameter, 14
Haml views. See also Views.

= (equal sign)
outputting results, 107–108
outputting strings, 108
sanitizing, 108

. (dot), in class names, 106
== (equal signs), sanitizing, 108
- (hyphen), code indicator, 107
% (percent sign), tag indicator, 105
(pound sign), in ID names, 106
{ } (curly braces), in Haml tags, 107
∼ (tilde), preserving whitespace, 108
class names, 106–107
filters, 109
history of, 105
HTML injections, preventing, 108
HTML-sensitive characters, sanitizing,

108
ID names, 106–107
indentation, 106
versus inline styles, 109
interpreting lines, 107
nesting code, 106
outputting lines, 107–108
sanitized lines, 108
tags, 105–106
whitespace, preserving, 108

314 Index

Has associations, 132–133, 135–137
has method, 132–133
Has through associations, 138–139
have_body matcher, 292
have_content_type matcher, 292
Headers, requests, 73
headers method, 73
Helpers

authentication, 234–235
caching

action caching, 274–275
build_request method, 275–277
build_url method, 275–277
cache action, 274–275
cache! action, 274–275
cache_action action, 274–275
eager caching, 275–277
eager_cache method, 275–277
fetch_fragment method, 277
fetch_partial method, 277–278
fragment caching, 277
partial caching, 277–278

cycle, 176–177
cycle method, 176–177
date and time
date format, 171
DateAndTimeFormatting module,

173
db format, 171
formats, 171–173
long format, 171
prettier_time method, 175–176
relative date and time, 175–176
relative time, 175–176
relative_date method, 175
relative_date_span method, 175
relative_time_span method, 175
RFC 822 format, matching, 171
rfc822 format, 171

short format, 171
Time DSL, 173–175
time format, 171
time_lost_in_words method, 175

numeric
minutes_to_hours method, 169
to_currency method, 169–170
two-digits method, 168

ordinalize method, 173
ordinals, 173
overview, 167
tag, 177–178
tag method, 178
truncate method, 167–168

Helpers, form. See also Forms.
builders

bound variants versus unbound, 181
bound_check_box method,

182–183
Builder module, 179
checkbox control, 182–183
CSS error class, adding, 186
error_messages_for method, 186
fieldset elements, 180–182
fieldset method, 180
form actions, setting automatically, 187
form elements, 180–182, 185–187
form method, 180
forms, default builder, 187
label elements, 184–185
label method, 184–185
name parameter, 179
obj parameter, 179
origin parameter, 179
process_form_attrs method,

180, 187
ResourcefulFormWithErrors, 187
update_bound_check_box method,

183–184

Index 315

update_bound_controls

method, 186
update_*_controls method,

181–182
validation errors, outputting, 186

helpers
check_box method, 189–190
current_form_context method,

187–188
delete button, creating, 191
delete_button method, 191
error_messages_for method, 191
fieldset method, 189
fieldset_for method, 189
fields_for method, 189
file_field method, 189–190
form context, changing from another

form, 189
form method, 188
Form module, 187–191
form names, 188–189
form_contexts method, 187–188
form_for method, 188–189
forms without model object content, 188
hidden_field method, 189–190
password_field method, 189–190
radio_button method, 189–190
radio_group method, 189–190
select method, 189–190
singleton form context, 188
text_area method, 189–190
text_field method, 189–190
validation errors, outputting, 191

overview, 179
hidden_field method, 189–190
hide_action method, 72
Hiding actions, 72
Hijacking user accounts, 59–60
Hook module, 23

Hooking methods, authentication, 224
Hooks, models, 154
HTML (HyperText Markup Language)

email messages, 255
entities, escaping, 74
injections, preventing, 108
MIME set, rendering views with, 71

html task, 282
html_escape method, 74
HTML-sensitive characters, sanitizing, 108
HTTP verbs, 39–40
Hyphen (-), code indicator, 107

I
ID names, Haml views, 106–107
identify method, 63
:if option, 83
-i flag, 9–10, 13
in? method, 21
includes query parameter, 145
Indentation, Haml views, 106
index action, 61
:index option, 132
Indexing properties, 132
Inflector customization, 15
info messages, logging, 18
Inheritable class-level variables, creating, 20
Inheritance, model classes, 116
inherited method
AbstractController class, 69
Strategy class, 229

Init file, loading, 29
Init script file
after_app_loads method, 13–14
basic configuration, 14
dependencies, 13–14
gems and load path, 12
inflector customization, 15
libraries, distributing, 12–13

316 Index

Init script file (continued)
ORM options, 14–15
plugins, distributing, 12–13
RubyGems, 12–13
template engines, 14
testing options, 15

initialize method, 230
Initializing controllers, 66–67
init.rb files, 19–20
Inline styles versus Haml views, 109
Inlining templates, 90
Instance methods, 70
Integer class, 128
Integers. See also Numbers.

auto-incrementing, 155
binary flags as, 155
enumerated values as, 155
property type, 128

Interactive Merb, registering routes,
45–48

Interactive sessions
check_request_for_route

method, 11
close_sandbox! method, 11
console methods, 10–11
console traps, 9–10
delete method, 11
dispatch_request method, 11
dispatch_to method, 11
fake_request method, 11
get method, 11
logger output, flushing, 11, 18
open_sandbox! method, 11
post method, 11
put method, 11
reload! method, 11
reloading the application, 11
request method, 11
request routes, checking or listing, 11
requests, 11

sandboxing, 11–12
show_routes method, 11
starting, 9
trace_log! method, 11
url method, 11
URLs, 11

IP addresses, storing as strings, 155
IPAddress property type, 155
IRB adapter, 25
irb key, 25
Iterating through a list of values, 176–177

J
Join table models, creating, 139
JS MIME set, rendering views with, 71
JSON, storing as a string, 155
JSON MIME set, rendering views with,

71
Json property type, 155

K
Katz, Yehuda, 103, 114
Kernel methods, 293–294
:key option, 131
Keys
action, 42
controller, 42
ebb, 25
emongrel, 25
fcgi, 25
format, 42
:format, 163
irb, 25
:key option, 131
:length, 163
:nullable, 163
Rack, 25
route parameters, 42
runner, 25

Index 317

session_id_key setting, 206
session_secret_key setting, 206
:set, 163
:size, 163
strings or symbols as, 22
swift, 25
table keys, defining, 131
thin, 25
webrick, 25

L
Label elements, creating, 184–185
label method, 184–185
Language translation, 21
layout method, 70
Layout options, rendering templates

class-level, setting, 70
disabling, 70
resetting, 70
setting, 70

Layout templates, 94–95
layout_for_slice method, 201
Lazy loading

collections, 146–148
enabling, 131
:lazy option, 131
LazyArray class, 23, 147–148
properties, 148–150

:lazy option, 131
LazyArray class, 23, 147–148
:length key, 163
:length option, 131. See also :size

option.
lib files, 246–247
Libraries, distributing, 12–13
limit query parameter, 146
links query parameter, 146
Listing

classes, 20
routes

with audit routes rake task, 48
audit:routes command, 48
with interactive Merb, 45–48
route command, 45
show_routes method, 11,

47–48
subclasses, 69
users, 61

Literal matching, routing match rules,
50–51

Literal segments, 40–41
LoadClasses boot loader, 29
Location, controllers, 75–76
Logger boot loader, 27
Logger class, 22
Logger output, flushing, 11, 18
Loggers, updating, 29
Logging

configuration files
debug messages, 18
error messages, 18
example, 18
fatal messages, 18
flushing logs, 11, 18
info messages, 18
log file location, 17
message levels, specifying, 18
viewing logs, 18
warn messages, 18

Extlib, 22
Logger boot loader, 22, 27

Login view, 249–250
login_param method, 239
Logins, redirecting, 245
long format, 171

M
MailController classes, 257–258
MailController#attach method,

260–261

318 Index

Mailer class
configuring, 253–255
MailFactory interface, 255–257

Mailers
actions

invoking, 258–259
naming, 257–258

attaching files, 260–261
configuration

delivery methods, 254–255
quota checking, 255
sendmail, 254
SMTP, 253–254
test_send method, 254

controllers, 257–258
Controller#send_mail method,

258–259
dual-formatted messages, 255
generating mailer files, 261–262
HTML email, 255
MailController classes, 257–258
MailController#attach method,

260–261
MailFactory, 255–257
multipart messages, 255
parameters, 259–260
rendering message views, 261
templates, 261
testing, 261
:test_method method, 261
using directly, 255–257

MailFactory, 255–257
ManyToMany associations, 139
Many-to-many-through associations, 139
Mash class, 22
Master process, 2
Match captures, registering routes with, 56
match method, routing match rules, 50
Match rules. See Routing, match rules.

max method, 159
Maximum value, calculating, 159
Memcached session storage, 216–217
MemcachedStore cache store, 269–270
Memory session storage, 214–216
MemorySessionStore class, 215–216
Merb controllers, 70–72
Merb servers

overview, 32–33
shutting down, 2

Merb stack. See Stack.
merb-gen command, 1–2
meta_class method, 21
(Method) parameters, 43
Method route conditions, 39–40
Methods. See also Helpers; specific methods.

associating before/after other methods, 23
available as actions, 68
organizing

action readability, improving, 78
making methods available to subclasses,

77–78
overview, 76
sharing nonaction methods, 77

MIME types, registering defaults, 30
MimeTypes boot loader, 30
min method, 159
Minimum value, calculating, 159
minutes_to_hours method, 169
MixinSession boot loader, 29
Model class, selecting for authentication, 223
Model objects, creating/saving, 140–142
Model serial IDs, property type, 128
Model specs, in testing, 283–285
model task, 281
Models
after method, 154
associations. See Associations.
authentication, auth more, 242–245

Index 319

classes
creating, 116
inheritance, 116
organizing, 115
Principle of Substitutability, 116
required for DataMapper, 115–117
Resource method, 115–117

configuration, 113–115
CRUD basics. See CRUD (create, retrieve,

update, delete) basics.
database.yml file, 115
DataMapper

adapters, 114
data sources, 114
database back ends, 114

dependencies, 114
hooks, 154
before method, 154
plugins. See Plugins.
properties. See Properties.
repository configuration, 114–115
serial IDs, 128
YAML configuration file, 114–115
YAML nodes, 115

Mongrel adapter, 25
Multipart email messages, 255

N
N+1 queries, 150
name method, 58
name parameter, 179
Names

actions, 70
controllers

adding to subclasses_list,
69

creating, 76
returning, 69–70

mail controller actions, 257–258
MailController classes, 257

routes
adding, 57–58
controller prefixes, 59
namespaces, 59
prefixing, 58–59

namespace method, 59
Namespaces, 59
Neighman, Daniel, 221
Nesting match statements, 50
new action, 62
nginx_send_file method, 74
NilClass class, 22
Nontemplate code, loading, 29
--no-rdoc flag, 13
normalize_filters! method, 69
Null values, disallowing, 131
:nullable key, 163
:nullable option, 131
Numbers. See also Integers.

average value, calculating, 159
Boolean, 128
converting to currency, 169–170
counting, 159–161
dates and times, 128
decimal, precision, 128
decimal places, setting, 132
floating, 128
integers, 128
maximum value, calculating, 159
minimum value, calculating, 159
model serial IDs, 128
ordinals, 173
property types, 128
single-digit, padding to two digits, 168
summing, 159

Numeric class, 22
Numeric helpers
minutes_to_hours method, 169
to_currency method, 169–170
two-digits method, 168

320 Index

O
obj parameter, 179
Object class
blank? method, 22
in Extlib, 21
property type, 128

Objects
in arrays, duplicating, 21
in arrays, finding, 21
marshaling into records, 128
singleton class access, 21

ObjectSpace class, 20
offset query parameter, 146
One-to-many-through associations, 138–139
only_provides method, 72–73
OpenID, authentication strategy, 242
open_sandbox! method, 11
Optional matching, routing match rules, 52–53
options method, 59
order query parameter, 146
ordinalize method, 173
Ordinals, 173
origin parameter, 179
ORM options, init script file, 14–15
ORMs (object relational mappings), 25–27

P
PageStore strategy store, 270
Parameters

mailers, 259–260
(Method) parameters, 43
passing to filters, 83
request parameters, 43
from requests, 73
route parameters, 43

params method, 73
Parentheses (()), in optional route matching, 52
PartController class, 263–266
Partial caching, 277–278

partial method, 71
Partials, 111–112
Parts

actions, 266–267
controllers, 263–266
generating files, 267

Passing in literal strings, routing match
rules, 51

Password form, authentication strategy, 241
password_field method, 189–190
password_param method, 239
Passwords. See also Authentication, auth

password slices; Security.
accessing databases without, 19
authentication. See Authentication, auth

password slices.
encrypting, 243–244
encryption, 243–244
form authentication strategy, 241
password_field method, 189–190
password_param method, 239

Path route conditions
definition, 39
literal segments, 40–41
overview, 40–41
query strings, 40
segments, 40–41
symbolic segments, 40–41
syntax, 40–41

Pathname class, 22
Paths

converting to constants, 21
storing as strings, 155

Percent sign (%), tag indicator, 105
Persistent accessors, 118
Pidfile, dropping, 28
Plugins

addressable URIs, storing as strings, 155
aggregates, 158–161
auto-incrementing integers, 155

Index 321

average value, calculating, 159
avg method, 159
binary flags, storing as integers, 155
count method, 159–161
counting numerical properties, 159–161
distributing, 12–13
dm-aggregate plugin, 158–161
dm-timestamps gem, 156–158
encrypting strings, 155
enumerated values, storing as integers, 155
EpochTime, converting to, 155
escaping strings, 155
IP addresses, storing as strings, 155
JSON, storing as a string, 155
max method, 159
maximum value, calculating, 159
min method, 159
minimum value, calculating, 159
numerical properties, 159
parsing strings as CSVs, 155
paths, storing as strings, 155
property types, 155–156. See also specific

types.
records, counting, 158–161
regular expressions, storing as strings, 155
strings, 155
sum method, 159
summing numerical values, 159
timestamps, 156–158
URLs, strings in, 155
UUIDs, storing as strings, 155
validations. See also specific validation

methods.
automatic, turning off, 132, 163
with blocks, 162
conditions, 163–164
confirming attributes, 162
contexts, 164
errors, 164–165
format of a value, 162

formats, 163
with methods, 162
numerical length, 162–163
numerical values, 162
overview, 162–163
presence of, 163
presence of a value, 162
within a range of values, 162–163
true values, 162
uniqueness, 162–163
validates_within method, 163

YAML, storing as a string, 155
Pooling module, 23
post method, 11
POST verb, 39–40
Posting URLs, 11
Pound sign (#)

comment indicator, 103
in ID names, 106

Power, David, 255
:precision option, 132
Prefixing route names, 58–59
Prepare block, router configuration, 43–44
prettier_time method, 175–176
Principle of least surprise, 5
Principle of Substitutability, 116
process_form_attrs method,

180, 187
Production environment, applications, 7,

16–17
production.rb files, 16–17
Properties

access privileges, setting, 131
alter_table_column_statement

method, 126
auto-increment, enabling, 131
auto_migrate! method, 123–126
auto_upgrade! method, 123–126
create_model_storage method,

123–126

322 Index

Properties (continued)
create_table_statement method,

127
database storage

automigrating DB schema, 121–127
default configuration file, 120
overview, 120–121
sample_development.db file, 120

in DataMapper, benefits of, 121
decimal places, setting, 132
default value, setting, 131
defining

casting values, 128–129
options, 131–132. See also specific options.
overview, 127
property types, 127–130, 155–156.

See also specific types.
destroy_model_storage method,

123–126
drop_table_statement method, 126
field names, overriding, 131
getter/setter methods, dynamic creation,

119
including in model files, 121
indexing, 132
lazy-loading, enabling, 131
null values, disallowing, 131
overview, 118–120
persistent accessors, 118
properties_with_subclasses

method, 127
property_schema_statement

method, 127
size, setting, 131
with subclasses, 127
table keys, defining, 131
tracking for dirtiness, 132
type plugins, 155–156
upgrade_model_storage method,

123–126

validation, 132
values, setting with instance variables,

119–120
properties_with_subclasses method,

127
property_schema_statement method,

127
Protocol matching, 41
provides method, 72–73
public/ directory, 9
push_path method, 222
put method, 11
PUT verb, 39–40
Putting URLs, 11

Q
Queries

N+1, 150
parameters, adding, 143
special query parameters, 145–146
strings, path route conditions, 40

Query object algebra, 144
Query offset, 146
Query order, 146
Query#merge method, 144–145
Quota checking, email, 255

R
Rack. See also Stack.

adapter options, 23–25
adapters, choosing, 31
Ebb adapter, 25
ebb key, 25
emongrel key, 25
Evented Mongrel adapter, 25
FastCGI adapter, 25
fcgi key, 25
functional description, 24–26
IRB adapter, 25

Index 323

irb key, 25
Mongrel adapter, 25
ORMs (object relational mappings), 25
overview, 23
Runner adapter, 25
runner key, 25
setting up, 31–32
swift key, 25
Swiftiplied Mongrel adapter, 25
Thin adapter, 25
thin key, 25
WEBrick adapter, 25
webrick key, 25

Rack response, controllers, 73
rack_response method, 73
RackUpApplication boot loader,

31–32
radio_button method, 189–190
radio_group method, 189–190
Rake tasks, in testing, 279–282
read method, 272
:reader option, 131
Reading cache data, 272
Reaping session storage, 215–216
Records, counting, 158–161
redirect matcher, 292
redirect method
Controller class, 73
registering a redirect, 56
Strategy class, 230

redirect_back_or method, 245
Redirecting logins, 245
Redirects

after-POST requests, 85
a caveat, 84–85
in before filters, 86–87
overview, 84
redirect method, 73, 84
registering, 56
registering routes with, 56

redirect_to matcher, 292
regenerate method
SessionContainer class, 208
SessionStoreContainer class, 211

Regexp property type, 155
register method

generating slices, 195–196
registering routes with, 55–56. See also To

method; With method.
Registering route parameters, 54
Registering routes with

match captures, 56
to method, 54–55. See also Register

method; With method.
with method, 55. See also Register

method; To method.
redirecting, 56
register method, 55–56. See also To

method; With method.
symbols, 56–57

Regular expressions
routing match rules, 53
segment-specific, routing match rules, 52
setting route conditions, 39
storing as strings, 155
validation against, 132

Relationship class, 151–152
Relative time, 175–176
relative_date method, 175
relative_date_span method, 175
relative_time_span method, 175
relative_url method, 71
reload! method, 11
reload query parameter, 146
ReloadClasses boot loader, 32
Reloading

applications, 11
classes, 32

ReloadTemplates boot loader, 32
Renaming resources, 63

324 Index

render method
AbstractController class, 71
basic rendering, 91–92

Render methods, 70
render_all method, 71
render_chunked method, 74, 96
render_deferred method, 74,

96–97
render_html method, 71
Rendering

email message views, 261
responses, 74
views, 71

Rendering, templates
basic rendering, 91–92
clearing content, 71
compiling templates, 89–90
display method, 95–96
formats

default, 89
ERB, 89
specifying, 92–94

inlining templates, 90
layout options, 70
layout template, 94–95
overview, 89
render method, 91–92
render methods, 70
render_chunked method, 96
render_deferred method, 96–97
render_then_call method, 97
status code, setting, 94
:status option, 94

render_js method, 71
render_json method, 71
render_options method, 70
render_text method, 71
render_then_call method, 74, 97
render_xml method, 71
render_yaml method, 71

Repository configuration, 114–115
Request access, sessions, 219
Request class, 33
Request helper, in testing, 289–290
Request matchers, in testing, 290–292
request method, 11, 73
Request parameters, 43
Request routes, checking or listing, 11
Request specs, in testing, 285–288
request task, 281
REQUEST_METHOD option, 66–67
REQUEST_PATH option, 66–67
Requests

building, 11
dispatching, 11, 33, 66–67
headers, 73
incoming, dispatching, 33
object routed to the controller, 73
overview, 33
parameters, 73
returning, 11
status codes, 73

reset_provides method, 72
Resource method, 115–117
resource method, 62–63
Resource routes. See also Routers; Routes;

Routing.
renaming resources, 63
standard resources routing
create action, 62
deleting users, 62
destroy action, 62
edit action, 62
index action, 61
new action, 62
resources method, 60–62
show action, 62
single resource routing, 62–63
update action, 62
updating users, 62

Index 325

user accounts, creating, 62
user profiles, displaying, 62
users, listing, 61

Resource sharing, 23
ResourcefulFormWithErrors, 187
resources method, 60–62
respond_successfully matcher,

291–292
Responses, authentication, 233–234
responses.rb file, 233–234
Restarting after code changes, avoiding, 7
retrieve method, 211
Retrieving

records
data sets, reloading, 146
fields, fetching as an array, 145
grouping by fields, 146
including other data, 145
lazy loading of collections, 146–148
limiting number returned, 146
links in related model data, 146
overview, 142–145
query offset, 146
query order, 146
reversing object order, 145
SQL conditions, setting, 145
strategic eager loading, 150–152

URLs, 11
RFC 822 format, matching, 171
rfc822 format, 171
route command, 45
Route conditions

DELETE, 39–40
domain matching, 41
GET, 39–40
HTTP verbs, 40
methods, 39–40
minimal requirements, 39
paths

definition, 39

literal segments, 40–41
overview, 40–41
query strings, 40
segments, 40–41
symbolic segments, 40–41
syntax, 40–41

POST, 39–40
protocol matching, 41
PUT, 39–40
setting with regular expressions, 39

Route parameters
action key, 42
controller key, 42
defaults, setting, 57
definition, 42
format key, 42
keys, 42
registering, 54
settings, 54

Router helper, authentication, 235
router.rb files, 17
Routers

behaviors, definition, 38
configuration

configuration file, 43
prepare block, 43–44
route order, 44
router.rb file, 43
routes, adding, 44–45

configuration files, 17
definition, 33
testing URL generation and recognition,

49–50
Routes

absolute URLs, returning, 71
adding, 44–45
checking, 45
definition, 38
fixatable, 59–60
including session IDs. See Session fixation.

326 Index

Routes (continued)
interaction with resources. See Resource

routes.
listing

with audit routes rake task, 48
audit:routes command, 48
with interactive Merb, 45–48
route command, 45
show_routes method, 47–48

names
adding, 57–58
controller prefixes, 59
namespaces, 59
prefixing, 58–59

order, specifying, 44
registering with

match captures, 56
to method, 54–55. See also Register

method; With method.
with method, 55. See also Register

method; To method.
redirecting, 56
register method, 55–56. See also To

method; With method.
symbols, 56–57

relative URLs, returning, 71
session fixation, 59–60
showing, 11, 47–48

Routing, match rules
deferred routes, 53–54
full regular expressions, 53
literal matching, 50–51
match method, 50
nesting match statements, 50
overview, 50
passing in literal strings, 51
symbolic matching

() (parentheses), in optional
matching, 52

automatic parameters, 51

flexible segmentation, 52
optional matching, 52–53
overview, 51
segment-specific regular expressions, 52

Routing, overview, 38
RSpec extensions, in testing, 292–294
RubyGems, 12–13
run! method, 239
run_after_authentication_

callbacks method, 226–227,
237

run_later method, 97
Runner adapter, 25
runner key, 25

S
Salesforce adapter, 114
sample_development.db file, 120
Sandboxing, 11–12
Sanitized lines, Haml views, 108
save method, 152
:scale option, 132
Schaefer, Bernerd, 114
scoped_query method, 143
Security. See also Passwords.

hijacking user accounts, 59–60
session fixation, 59–60

Segments, path route conditions, 40–41
Segment-specific regular expressions, routing

match rules, 52
select method, 189–190
send_chunk method, 74
send_data method, 74
send_file method, 74
Sending

binary data, 74
chunks, 74
files

attached to email, 260–261
overview, 97–98

Index 327

send_file method, 98
through nginx, 74

Sendmail, 254
Sequel, 26
Serial callbacks, authentication, 226–227
Serial class, 128
Serial IDs, models, 128
:serial option, 131
Serial property type, 155
Server. See Merb servers.
Session containers, 207–208, 214–215
Session fixation, 59–60
session method, 73, 220
Session methods, 73
Session store, accessing, 73
SessionContainer class, 207–208
session_expiry setting, 206
session_id= method, 208
session_id_key setting, 206
Sessions

authentication, 231
configuration, 206
containers, setting up, 30
controller access, 220
cookie domain, setting, 206
cookie session store, encrypting, 206
default values, setting up, 30
default_cookie_domain setting,

206
definition, 34
expiration time, setting, 206
functionality, adding, 29
IDs, 205–206
overview, 205–206
request access, 219
session method, 220
session_expiry setting, 206
session_id_key setting, 206
session_secret_key setting, 206
session_store setting, 206

Sessions, storing
clear! method, 208
finalize method
SessionContainer class, 208
SessionStoreContainer class, 211

generate method
SessionContainer class, 208
SessionStoreContainer class, 211

regenerate method
SessionContainer class, 208
SessionStoreContainer class, 211

retrieve method, 211
session containers, 207–208, 214–215
SessionContainer class, 207–208
session_id= method, 208
SessionStoreContainer class,

208–211
setup method
SessionContainer class, 208
SessionStoreContainer class, 211

storage mechanisms
cookie sessions, 211–214
CookieSession class, 211–214
DataMapper sessions, 217–219
garbage collection, 215–216
memcached sessions, 216–217
memory sessions, 214–216
MemorySessionStore class,

215–216
reaping sessions, 215–216
TamperedWithCookie error, 214

store containers, 208–211, 214–215
Sessions controller, 247–249
session_secret_key setting, 206
session_store setting, 206
SessionStoreContainer class,

208–211
:set key, 163
set_cookie method, 73
Setting. See specific items.

328 Index

setup method
SessionContainer class, 208
SessionStoreContainer class, 211

setup.rb file, 222
SetupSession boot loader, 30
SetupStubClasses boot loader, 31
SHA1Store strategy store, 270
short format, 171
show action, 62
show_action method, 72
Showing

actions, 72
routes, 11, 47–48

show_routes method, 11, 47–48
SimpleSet class, 23
Single resource routing, 62–63
Singleton form context, 188
Singular words, switching to plural, 15
:size key, 163
Size of properties, setting, 131
:size option, 131. See also :length option.
skip_after class method, 83–84
skip_after method, 69
skip_before class method, 83–84
skip_before method, 69
skip_filter method, 69
Skipping filters, 69, 83–84
Slash (/)

in file paths, 21
path expansion, 22

slice command, 196–199
slice method, 201–203
Slices. See also Authentication, auth password

slices.
developing

building slices into gems, 199–200
controller_for_slice method,

201
controllers, 200–201

ForumSlice module, 196
generating slices, 193–196
layout_for_slice method, 201
register method, 195–196
running slices, 196–199
slice command, 196–199

using
add_slice method, 202–203
overview, 201
slice method, 201–203

Slug property type, 155
SMTP, 253–254
Snake case, converting strings to, 21
snake_case method, 21
Spec files, in testing, 282–283
Special characters, escaping, 21
spectasks.rb file, 279–280
SQL conditions, setting, 145
Stack. See also Extlib; Rack.

ORMs (object relational mappings), 26–27.
See also ActiveRecord; Sequel.

plugins, 26–27
Standard application layouts, 3, 8–9
Standard resources routing
create action, 62
deleting users, 62
destroy action, 62
edit action, 62
index action, 61
new action, 62
resources method, 60–62
show action, 62
single resource routing, 62–63
update action, 62
updating users, 62
user accounts, creating, 62
user profiles, displaying, 62
users, listing, 61

StartWorkerThread boot loader, 31

Index 329

Status codes
rendering templates, setting, 94
requests, sending, 73
in testing, 291–292

status method, 73
status= method, 73
:status option, 94
Stepping through a list of values, 176–177
Storage mechanisms

cookie sessions, 211–214
CookieSession class, 211–214
DataMapper sessions, 217–219
garbage collection, 215–216
memcached sessions, 216–217
memory sessions, 214–216
MemorySessionStore class,

215–216
reaping sessions, 215–216
TamperedWithCookie error, 214

Store containers, 208–211, 214–215
Storing sessions. See Sessions, storing.
Strategic eager loading, 150–152
strategies.rb file, 222
Strategy class, 227–231
Strategy stores, 270
stream_file method, 74
Streaming files, 74, 97–98
String class, 21, 128
Strings

camel case, converting to, 21
encrypting, 155
escaping special characters, 21, 155
globs, 29
as inline templates, 23
joining in file paths, 21
language translation, 21
parsing as CSVs, 155
path/constant conversion, 21
snake case, converting to, 21

storing, 128
truncating, 167–168
in URLs, 155

String.translate method, 21
String.translations method, 21
Stub classes, setting up, 31
Subclasses, listing, 69
subclasses_list method, 69
sum method, 159
Summing numerical properties, 159
swift key, 25
Swiftiplied Mongrel adapter, 25
Symbolic matching

routing match rules
() (parentheses), in optional matching, 52
automatic parameters, 51
flexible segmentation, 52
optional matching, 52–53
overview, 51
segment-specific regular expressions, 52

Symbolic segments, 40–41
Symbolized class names, 136
Symbols

registering routes with, 56–57
thrown content, catching, 71

T
t method, 21
Table keys, defining, 131
Tag helpers, 177–178
tag method, 178
Tags, Haml views, 105–106
TamperedWithCookie error, 214
Template engines, init script file, 14
template_roots method, 70, 71
template_roots= method, 70, 71
Templates. See also Views.
capture method, calling, 71
capturing ERB blocks, 71

330 Index

Templates. See also Views. (continued)
concat method, calling, 71
concatenating ERB blocks, 71
embedding in templates, 71
ERB blocks, 71
inline, strings as, 23
inlining, 29–30
mailers, 261
Merb view templates, 109–111
reloading, 32
rendering. See Rendering, templates.
root location, 70, 71
within templates, 111–112
templating system, default, 101–102
throwing content, 71
thrown content, checking for, 71
view. See Flat application layouts.

Templates boot loader, 29–30
Testing
be_client_error matcher, 291–292
be_missing matcher, 291–292
be_successful matcher, 291–292
coverage task, 282
extensions, 293–294
have_body matcher, 292
have_content_type matcher, 292
html task, 282
Kernel methods, 293–294
mailers, 261
model specs, 283–285
model task, 281
rake tasks, 279–282
redirect matcher, 292
redirect_to matcher, 292
request helper, 289–290
request matchers, 290–292
request specs, 285–288
request task, 281
respond_successfully matcher,

291–292

routers, URL generation and recognition,
49–50

RSpec extensions, 292–294
spec files, 282–283
spectasks.rb file, 279–280
status codes, 291–292

Testing environment, applications, 7, 16–17
Testing options, init script file, 15
:test_method method, 261
test.rb files, 17
test_send method, 254
Text class, 128
Text data, storing, 128
Text MIME set, rendering views

with, 71
text_area method, 189–190
text_field method, 189–190
Thin adapter, 25
thin key, 25
through method, 138–139
throw_content method, 71
throw_content? method, 71
Tilde (∼), preserving whitespace, 108
Time, returning, 22
Time class, 22, 128
Time DSL, 173–175
time format, 171
time_lost_in_words method, 175
Timestamps, 156–158
to method, registering routes with, 54–55.

See also Register method; With
method.

to_const_path method, 21
to_const_string method, 21
to_currency method, 169–170
to_datetime method, 22
to_json method, 22
to_time method, 22
trace_log! method, 11
:track option, 132

Index 331

TrueClass class, 128. See also Boolean
class.

truncate method, 167–168
try_dup method, 21
two-digits method, 168

U
Underscored filters, 248
unescape_regex method, 21
Unified class and instance variables,

creating, 20
Uniform Resource Locators (URLs). See URLs

(Uniform Resource Locators).
unique query parameter, 146
:unique_index option, 132
Uniqueness, validating, 162–163
:unless option, 83
update action, 62, 248
update_attributes method, 152–153
update_bound_check_box method,

183–184
update_bound_controls method,

186
update_*_controls method, 181–182
update_speed method, 153
Updating

attributes, 152–153
records
attribute_set method, 152
original values versus dirty values, 153
overview, 152
save method, 152
update_attributes method,

152–153
update_speed method, 153
updating attributes, 152–153

users, 62
upgrade_model_storage method,

123–126
URI property type, 155

URIs, storing as strings, 155
url method
AbstractController class, 71
Merb console, 11
URLs, generating, 11, 50

URL methods, 71
URLs (Uniform Resource Locators)

absolute, returning, 71
deleting, 11
generating, 11
getting, 11
posting, 11
putting, 11
relative, returning, 71
retrieving, 11
router generation, testing, 50
router recognition, testing, 49–50
strings in, 155

User accounts
creating, 62
hijacking, 59–60

user_class method, 231
Users

deleting, 62
listing, 61
profiles, displaying, 62
updating, 62

use_template_engines method, 14
UUID property type, 155
UUIDs, storing as strings, 155

V
validates_absent method, 162
validates_format method, 162
validates_is_accepted

method, 162
validates_is_confirmed

method, 162
validates_is_number method, 162

332 Index

validates_is_unique method,
162–163

validates_length method, 162
validates_present method, 162
validates_with_block method,

162
validates_within method, 163
validates_with_method

method, 162
Validations

automatic, 132
automatic, turning off, 132, 163
with blocks, 162
conditions, 163–164
confirming attributes, 162
contexts, 164
errors, 164–165, 186, 191
format of a value, 162
formats, 163
with methods, 162
numerical length, 162–163
numerical values, 162
overview, 162–163
presence of, 163
presence of a value, 162
within a range of values, 162–163
against regular expressions, 132
true values, 162
uniqueness, 162–163
validates_within method, 163

Very flat application layouts, 3–6
very_flat argument, 3–6
View methods, 71
View templates. See Flat application layouts.
Views. See also Templates.

authentication, 249–250
for ERB. See ERB (eRuby) views.

for HTML. See Haml views.
login, 249–250
Merb view templates, 109–111
partials, 111–112
templates within templates, 111–112
templating system, default, 101–102
for XML. See Haml views.

VirtualFile class, 23

W
Warn messages, logging, 18
WebController mixin, 265–266
WEBrick adapter, 25
webrick key, 25
Weizenbaum, Nathan, 105
Whitespace

preserving, 108
removing, 102
sensitivity, 19

Widgets. See Parts.
with method, registering routes with, 55.

See also Register method; To
method.

:with option, 83
Worker queue, placing blocks in, 74
Worker threads, starting, 31
Workers, definition, 34
writable? method, 271–272
write method, 271–272
:writer option, 131
Writing cache data, 271–272

X
XML entities, escaping, 74
XML MIME set, rendering views with, 71

Index 333

Y
YAML

configuration file, 114–115
files, 19–20

MIME set, rendering views with, 71
nodes, 115
storing as a string, 155

Yaml property type, 155

	Foreword
	Introduction
	Chapter 5 Models
	5.1 Configuration
	5.2 Model classes
	5.3 Properties
	5.3.1 Database storage
	5.3.2 Defining properties

	5.4 Associations
	5.4.1 Belongs to
	5.4.2 Has
	5.4.3 Has through

	5.5 CRUD basics
	5.5.1 Creating records
	5.5.2 Retrieving records
	5.5.3 Updating records
	5.5.4 Destroying records

	5.6 Hooks
	5.7 Plugins
	5.7.1 Extra property types
	5.7.2 Timestamps
	5.7.3 Aggregates
	5.7.4 Validations

	5.8 Conclusion

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

