

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this
book, and the publisher was aware of a trademark claim, the designations have
been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but
make no expressed or implied warranty of any kind and assume no responsibil-
ity for errors or omissions. No liability is assumed for incidental or consequen-
tial damages in connection with or arising out of the use of the information or
programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity
for bulk purchases or special sales, which may include electronic versions and/or
custom covers and content particular to your business, training goals, market-
ing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress cataloging-in-publication data is on file with the Library of
Congress

Copyright © 2011 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is
protected by copyright, and permission must be obtained from the publisher
prior to any prohibited reproduction, storage in a retrieval system, or transmis-
sion in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-321-60481-1
ISBN-10: 0-321-60481-4
Text printed in the United States on recycled paper at RR Donnelley

in Crawfordsville, Indiana.
First printing, November 2010

Editor-in-Chief
Mark Taub

Acquisitions Editor
Debra Williams Cauley

Development Editor
Michael Thurston

Managing Editor
John Fuller

Project Editor
Elizabeth Ryan

Copy Editor
Kitty Wilson

Indexer
The CIP Group

Proofreader
Linda Begley

Technical Reviewers
Jennifer Lindner
Pat Allen
Joe Ferris
Stephen Caudill
Tim Pope
Robert Pitts
Jim “Big Tiger” Remsik
Lar Van Der Jagt

Publishing Coordinator
Kim Boedigheimer

Cover Designer
Chuti Prasertsith

Compositor
The CIP Group

Contents

Foreword xi

Introduction xiii

Acknowledgments xvii

About the Authors xix

1 Models 1
AntiPattern: Voyeuristic Models 2

Solution: Follow the Law of Demeter 3
Solution: Push All find() Calls into Finders on the Model 7
Solution: Keep Finders on Their Own Model 10

AntiPattern: Fat Models 14
Solution: Delegate Responsibility to New Classes 15
Solution: Make Use of Modules 21
Solution: Reduce the Size of Large Transaction Blocks 24

AntiPattern: Spaghetti SQL 31
Solution: Use Your Active Record Associations and Finders Effectively 32
Solution: Learn and Love the Scope Method 36
Solution: Use a Full-Text Search Engine 42

AntiPattern: Duplicate Code Duplication 50
Solution: Extract into Modules 50
Solution: Write a Plugin 59
Solution: Make Magic Happen with Metaprogramming 64

2 Domain Modeling 73
AntiPattern: Authorization Astronaut 74

Solution: Simplify with Simple Flags 76
vii

AntiPattern: The Million-Model March 79
Solution: Denormalize into Text Fields 79
Solution: Make Use of Rails Serialization 82

3 Views 89
AntiPattern: PHPitis 91

Solution: Learn About the View Helpers That Come with Rails 92
Solution: Add Useful Accessors to Your Models 98
Solution: Extract into Custom Helpers 100

AntiPattern: Markup Mayhem 107
Solution: Make Use of the Rails Helpers 109
Solution: Use Haml 111

4 Controllers 117
AntiPattern: Homemade Keys 118

Solution: Use Clearance 119
Solution: Use Authlogic 121

AntiPattern: Fat Controller 123
Solution: Use Active Record Callbacks and Setters 123
Solution: Move to a Presenter 142

AntiPattern: Bloated Sessions 154
Solution: Store References Instead of Instances 154

AntiPattern: Monolithic Controllers 161
Solution: Embrace REST 161

AntiPattern: Controller of Many Faces 167
Solution: Refactor Non-RESTful Actions into a Separate Controller 167

AntiPattern: A Lost Child Controller 170
Solution: Make Use of Nested Resources 173

AntiPattern: Rat’s Nest Resources 180
Solution: Use Separate Controllers for Each Nesting 181

AntiPattern: Evil Twin Controllers 184
Solution: Use Rails 3 Responders 186

5 Services 189
AntiPattern: Fire and Forget 190

Solution: Know What Exceptions to Look Out For 190

viii Contents

AntiPattern: Sluggish Services 195
Solution: Set Your Timeouts 195
Solution: Move the Task to the Background 195

AntiPattern: Pitiful Page Parsing 197
Solution: Use a Gem 198

AntiPattern: Successful Failure 201
Solution: Obey the HTTP Codes 203

AntiPattern: Kraken Code Base 207
Solution: Divide into Confederated Applications 207

6 Using Third-Party Code 211
AntiPattern: Recutting the Gem 213

Solution: Look for a Gem First 213
AntiPattern: Amateur Gemologist 214

Solution: Follow TAM 214
AntiPattern: Vendor Junk Drawer 216

Solution: Prune Irrelevant or Unused Gems 216
AntiPattern: Miscreant Modification 217

Solution: Consider Vendored Code Sacrosanct 217

7 Testing 221
AntiPattern: Fixture Blues 223

Solution: Make Use of Factories 225
Solution: Refactor into Contexts 228

AntiPattern: Lost in Isolation 236
Solution: Watch Your Integration Points 238

AntiPattern: Mock Suffocation 240
Solution: Tell, Don’t Ask 241

AntiPattern: Untested Rake 246
Solution: Extract to a Class Method 248

AntiPattern: Unprotected Jewels 251
Solution: Write Normal Unit Tests Without Rails 251
Solution: Load Only the Parts of Rails You Need 254
Solution: Break Out the Atom Bomb 259

ixContents

8 Scaling and Deploying 267
AntiPattern: Scaling Roadblocks 268

Solution: Build to Scale from the Start 268
AntiPattern: Disappearing Assets 271

Solution: Make Use of the System Directory 271
AntiPattern: Sluggish SQL 272

Solution: Add Indexes 272
Solution: Reassess Your Domain Model 277

AntiPattern: Painful Performance 282
Solution: Don’t Do in Ruby What You Can Do in SQL 282
Solution: Move Processing into Background Jobs 286

9 Databases 291
AntiPattern: Messy Migrations 292

Solution: Never Modify the up Method on a Committed Migration 292
Solution: Never Use External Code in a Migration 293
Solution: Always Provide a down Method in Migrations 295

AntiPattern: Wet Validations 297
Solution: Eschew Constraints in the Database 298

10 Building for Failure 301
AntiPattern: Continual Catastrophe 302

Solution: Fail Fast 302
AntiPattern: Inaudible Failures 306

Solution: Never Fail Quietly 307

Index 311

x Contents

Foreword

It’s hard to believe that it will soon be three years since Zed Shaw published his infa-
mous (and now retracted) rant “Rails Is a Ghetto.” Even though Zed’s over-the-top
depiction of certain well-known people was wicked and pure social satire, the expres-
sion he coined has stuck like the proverbial thorn among certain higher echelons of
the community. It’s an especially piquant expression to use when we’re called on to fix
atrocious Rails projects. Occasionally, we’ll even use the phrase with regard to our own
messes. But most commonly, this expression is applied to code written by the unwashed
masses. The rapid ascension of Rails as a mainstream technology has attracted droves of
eager programmers from both outside and inside the wide sphere of web development.
Unfortunately, Rails doesn’t discriminate among newcomers. It offers deep pitfalls for
bearded wise men of the object-oriented world and PHP script kiddies alike.

Frankly, I would have written this book myself eventually, because there’s such a
need for it in the marketplace. At Hashrocket, we do a lot of project rescue work. Oh,
the agony! We’ve seen every AntiPattern detailed in this book rear its ugly face in real-
life projects. Sometimes we see almost every AntiPattern in this book in a single proj-
ect! My good friends and consultants extraordinaire Chad and Tammer have seen the
same horrors. Only fellow consultants like these two could write this book properly
because of the wide variety of coding challenges we face regularly. The solutions in this
book cover a wide range of sticky situations that we know any professional Ruby
developer will run into on a regular basis.

If you’re new to Rails (and, based on the demographics, you probably are), then
you’re now holding one of the most valuable resources possible for getting past the
chasm that separates an ordinary Rails developer from greatness. Congratulations and
good luck making the leap.

—Obie Fernandez
Author of The Rails 3 Way
Series editor of the Addison-Wesley Professional Ruby Series
CEO and founder of Hashrocket

xi

This page intentionally left blank

Introduction

As Rails consultants, we’ve seen a lot of Rails applications. The majority of the
AntiPatterns described in this book are directly extracted from real-world applications.
We hope that by formalizing their descriptions here, we can present you with the tools
you’ll need to identify these AntiPatterns in your own code, understand their causes,
and be able to refactor yourself out of the broken patterns.

What Are AntiPatterns?
AntiPatterns are common approaches to recurring problems that ultimately prove to
be ineffective.

The term AntiPatterns was coined in 1995 by Andrew Koenig, inspired by Gang
of Four’s book Design Patterns, which developed the concept of design patterns in the
software field. The term was widely popularized three years later by the book
AntiPatterns: Refactoring Software, Architectures, and Projects in Crisis (William Brown,
Raphael Malveau, Skip McCormick, and Tom Mowbray). According to the authors of
AntiPatterns, there must be at least two key elements present to formally distinguish an
actual AntiPattern from a simple bad habit, bad practice, or bad idea:

• A repeated pattern of action, process, or structure that initially appears to be ben-
eficial but ultimately produces more bad consequences than beneficial results

• A refactored solution that is clearly documented, proven in actual practice, and
repeatable

What Is Refactoring?
Refactoring is the act of modifying an application’s code not to change its functional
behavior but instead to improve the quality of the application itself. These improvements

xiii

are intended to improve readability, reduce complexity, increase maintainability, and
improve the extensibility (that is, possibility for future growth) of the system.

This book makes extensive reference to the process of refactoring in order to fix
code that is exhibiting an AntiPattern. In an attempt to increase readability and under-
standability of the AntiPatterns and solutions in this book, we’ve left out the auto-
mated test suite that should accompany the code. We want to draw extra attention to
the fact that your code should be well tested. When you have tests in place, some of
the solutions we’ve presented will be much easier to implement with confidence.
Without tests, some of the solutions might not even be possible. Unfortunately, many
of the applications you encounter that exhibit these AntiPatterns will also be untested.

How to Read This Book
Each AntiPattern in this book outlines the mistakes we see in the wild and the nega-
tive effects they have on developer velocity, code clarity, maintenance, and other
aspects of a successful Rails project. We follow each AntiPattern with one or more
solutions that we have used in practice and that have been proven as proper fixes for
the AntiPattern.

While you can read this book straight through from front to back, we’ve taken
great pains to make each solution stand on its own. Therefore, this book is both a
strong technical publication as well as a quick source of reference for Rails developers
looking to hone their techniques in the trenches.

The following is a brief outline of what’s covered in each chapter:

• Chapter 1, “Models”: Because Rails encourages code to be pushed down the
Model-View-Controller (MVC) stack to the Model layer, it’s fitting that a chapter
on models is the largest chapter in the book. Here, we focus on a variety of
AntiPatterns that occur in Model layer code, from general object-oriented pro-
gramming violations to complex SQL and excessive code duplication.

• Chapter 2, “Domain Modeling”: Going beyond the nitty-gritty code at the
Model layer in a Rails project, this chapter focuses on overall schema and database
issues. This chapter covers issues such as normalization and serialization.

• Chapter 3, “Views”: The Rails framework gives developers a large number of
tools and conventions that make code in the Model and Controller layers consis-
tent and maintainable. Unfortunately, the required flexibility in the View layer

xiv Introduction

prevents this sort of consistency. This chapter shows how to make use of the View
layer tools Rails provides.

• Chapter 4, “Controllers”: Since the integration of a RESTful paradigm in the
Rails framework, the Controller layer has seen some significant improvements.
This chapter goes through the AntiPatterns we’ve seen in Controller-layer-related
Rails code.

• Chapter 5, “Services”: Dealing with and exposing APIs requires tenacity. This
chapter walks through all the common pitfalls we’ve seen, including timeouts,
exceptions, backgrounding, response codes, and more.

• Chapter 6, “Using Third-Party Code”: This short chapter reviews some of the
AntiPatterns that can come from incorporating community plugins and gems
into your applications.

• Chapter 7, “Testing”: One of the strengths of Rails is the strong push toward test-
driven development. Unfortunately, we’ve seen as many AntiPatterns inside test
suites as in production code. This chapter outlines these AntiPatterns and how to
address them.

• Chapter 8, “Scaling and Deploying”: Developing a Rails application locally is a
great experience, but there are many factors to consider once it’s time to release an
application to the world. This chapter will help you ensure that your applications
are ready for prime time.

• Chapter 9, “Databases”: This chapter outlines the common issues we’ve seen with
migrations and validations.

• Chapter 10, “Building for Failure”: Finally, the last chapter in the book gives
guidance on general best practices for ensuring that an application degrades grace-
fully once it encounters the real world.

xvIntroduction

This page intentionally left blank

CHAPTER 9
Databases

With the Rails framework providing a simple ORM that abstracts many of the data-
base details away from the developer, the database is an afterthought for many Rails
developers. While the power of the framework has made this okay to a certain extent,
there are important database and Rails-specific considerations that you shouldn’t
 overlook.

291

AntiPattern: Messy Migrations
Ruby on Rails database migrations were an innovative solution to a real problem faced
by developers: How to script changes to the database so that they could be reliably
replicated by the rest of the team on their development machines as well as deployed
to the production servers at the appropriate time. Before Rails and its baked-in solu-
tion, developers often wrote ad hoc database change scripts by hand, if they used them
at all.

However, as with most other improvements, database migrations are not without
pain points. Over time, a database migration can become a tangle of code that can be
intimidating to work with rather than the joy it should be. By strictly keeping in mind
the following solutions, you can overcome these obstacles and ensure that your migra-
tions never become irreconcilably messy.

Solution: Never Modify the up Method on a
Committed Migration
Database migrations enable you to reliably distribute database changes to other mem-
bers of your team and to ensure that the proper changes are made on your server dur-
ing deployment.

If you commit a new migration to your source code repository, unless there are
irreversible bugs in the migration itself, you should follow the practice of never modi-
fying that migration. A migration that has already been run on another team mem-
ber’s computer or the server will never automatically be run again. In order to run it
again, a developer must go through an orchestrated dance of backing the migration
down and then up again. It gets even worse if other migrations have since been com-
mitted, as that could potentially cause data loss.

Yes, if you’re certain that a migration hasn’t been run on the server, then it’s possi-
ble to communicate to the rest of the team that you’ve changed a migration and have
them re-migrate their database or make the required changes manually. However,
that’s not an effective use of their time, it creates headaches, and it’s error prone. It’s
simply best to avoid the situation altogether and never modify the up method of a
migration.

Of course, there will be times when you’ve accidentally committed a migration
that has an irreversible bug in it that must be fixed. In such circumstances, you’ll have
no choice but to modify the migration to fix the bug. Ideally, the times when this hap-
pen are few and far between. In order to reduce the chances of this happening, you

292 Chapter 9. Databases

should always be sure to run the migration and inspect the results to ensure accuracy
before committing the migration to your source code repository. However, you shouldn’t
limit yourself to simply running the migration. Instead, you should run the migration
and then run the down of the migration and rerun the up. Rails provides rake tasks for
doing this:

rake db:migrate

rake db:migrate:redo

The rake db:migrate:redo command runs the down method on the last migration
and then reruns the up method on that migration. This ensures that the entire migra-
tion runs in both directions and is repeatable, without error. Once you’ve run this and
double-checked the results, you can commit your new migration to the repository
with confidence.

Solution: Never Use External Code in a Migration
Database migrations are used to manage database change. When the structure of a
database changes, very often the data in the database needs to change as well. When
this happens, it’s fairly common to want to use models inside the migration itself, as in
the following example:

class AddJobsCountToUser < ActiveRecord::Migration

def self.up

add_column :users, :jobs_count, :integer, :default => 0

Users.all.each do |user|

user.jobs_count = user.jobs.size

user.save

end

end

def self.down

remove_column :users, :jobs_count

end

end

In this migration above, you’re adding a counter cache column to the users table, and
this column will store the number of jobs each user has posted. In this migration,

293AntiPattern: Messy Migrations

you’re actually using the User model to find all users and update the column of each
one. There are two problems with this approach.

First, this approach performs horribly. The code above loads all the users into
memory and then for each user, one at a time, it finds out how many jobs each has and
updates its count column.

Second, and more importantly, this migration does not run if the model is ever
removed from the application, becomes unavailable, or changes in some way that
makes the code in this migration no longer valid. The code in migrations is supposed
to be able to be run to manage change in the database, in sequence, at any time. When
external code is used in a migration, it ties the migration code to code that is not
bound by these same rules and can result in an unrunnable migration.

Therefore, it’s always best to use straight SQL whenever possible in your migra-
tions. If you do so, you can rewrite the preceding migration as follows:

class AddJobsCountToUser < ActiveRecord::Migration

def self.up

add_column :users, :jobs_count, :integer, :default => 0

update(<<-SQL)

UPDATE users SET jobs_count = (

SELECT count(*) FROM jobs

WHERE jobs.user_id = users.id

)

SQL

end

def self.down

remove_column :users, :jobs_count

end

end

When this migration is rewritten using SQL directly, it has no external dependencies
beyond the exact state of the database at the time the migration should be executed.

There may be cases in which you actually do need to use a model or other Ruby
code in a migration. In such cases, the goal is to rely on no external code in your
migration. Therefore, all code that’s needed, including the model, should be defined
inside the migration itself. For example, if you really want to use the Usermodel in the
preceding migration, you rewrite it like the following:

294 Chapter 9. Databases

class AddJobsCountToUser < ActiveRecord::Migration

class Job < ActiveRecord::Base

end

class User < ActiveRecord::Base

has_many :jobs

end

def self.up

add_column :users, :jobs_count, :integer, :default => 0

User.reset_column_information

Users.all.each do |user|

user.jobs_count = user.jobs.size

user.save

end

end

def self.down

remove_column :users, :jobs_count

end

end

Since this migration defines both the Job and User models, it no longer depends
on an external definition of those models being in place. It also defines the has_many
relationship between them and therefore defines everything it needs to run success-
fully. In addition, note the call to User.reset_column_information in the self.up
method. When models are defined, Active Record reads the current database schema.
If your migration changes that schema, calling the reset_column_information
method causes Active Record to re-inspect the columns in the database.

You can use this same technique if you must calculate the value of a column by
using an algorithm defined in your application. You cannot rely on the definition of
that algorithm to be the same or even be present when the migration is run. Therefore,
the algorithm should be duplicated inside the migration itself.

Solution: Always Provide a down Method in Migrations
It’s very important that a migration have a reliable self.down defined that actually
reverses the migration. You never know when something is going to be rolled back. It’s
truly bad practice to not have this defined or to have it defined incorrectly.

295AntiPattern: Messy Migrations

Some migrations simply cannot be fully reversed. This is most often the case for
migrations that change data in a destructive manner. If this is the case for a migration
for which you’re writing the down method, you should do the best reversal you can do.
If you are in a situation where there is a migration that under no circumstances can
ever be reversed safely, you should raise an ActiveRecord::IrreversibleMigration
exception, as shown here:

def self.down

raise ActiveRecord::IrreversibleMigration

end

Raising this exception causes migrations to be stopped when this down method is run.
This ensures that the developer running the migrations understands that there is
something irreversible that has been done and that cannot be undone without manual
intervention.

Once you have the down method defined, you should run the migration in both
directions to ensure proper functionality. As discussed earlier in this chapter, in the
section “Solution: Never Modify the up Method on a Committed Migration,” Rails
provides rake tasks for doing this:

rake db:migrate

rake db:migrate:redo

The rake db:migrate:redo command runs the down method on the last migra-
tion and then reruns the up method on that migration.

296 Chapter 9. Databases

AntiPattern: Wet Validations
Ruby on Rails generally treats a database as a dumb storage device, essentially working
only with many of the common-denominator features found in all the databases it
supports and eschewing additional database functionality such as foreign keys and
constraints. But many Rails developers eventually realize that a database has this func-
tionality built in, and they attempt to use it by trying to duplicate the validation and
constraints from their models into the database. For example, the following User
model has a number of validations:

class User < ActiveRecord::Base

validates :account_id, :presence => true

validates :first_name, :presence => true

validates :last_name, :presence => true

validates :password, :presence => true,

:confirmation => true,

:if => :password_required?

validates :email, :uniqueness => true,

:format => { :with => %r{.+@.+\..+} },

:presence => true

belongs_to :account

end

You could attempt to create a database table to back this model that attempts to
enforce the same validations at the database level, using database constraints. The
(inadequate) migration to create that table might look something like this:

self.up

create_table :users do |t|

t.column :email, :string, :null => false

t.column :first_name, :string, :null => false

t.column :last_name, :string, :null => false

t.column :password, :string

t.column :account_id, :integer

end

execute “ALTER TABLE users ADD UNIQUE (email)”

297AntiPattern: Wet Validations

execute “ALTER TABLE users ADD CONSTRAINT

user_constrained_by_account FOREIGN KEY (account_id) REFERENCES

accounts (id) ON DELETE CASCADE”

end

self.down

execute “ALTER TABLE users DROP FOREIGN KEY

user_constrained_by_account”

drop_table :users

end

However, there are several reasons this doesn’t work in practice. For one thing, not
all databases support all the constraints that Active Record supports. For example, in
MySQL, it’s possible to enforce the uniqueness constraints on email, but none of the
other constraints are fully possible without the use of stored procedures and triggers.
For example, in the migration earlier in this chapter, there is only a constraint on NULL
values in the first_name column. A blank string would still be allowed to be inserted.

If you are on a database that supports these constraints, you are then left to main-
tain them all by hand, in duplicate—a process that is tedious and error prone.

Active Record does not handle violations of database constraints well. It does not
automatically read the constraints in the database. And if something is out of sync and
a constraint in the database is hit, this will result in an exception that is not handled
gracefully at the library level. The result is a failure the user sees or one that the pro-
grammer must handle, which is impractical.

Solution: Eschew Constraints in the Database
It’s simply best to not fight the opinion of Active Record that database constraints are
declared in the model and that the database should simply be used as a datastore.

Despite all of the above, you may find yourself working with a DBA who insists
that foreign key constraints or other constraints be stored in the database, or you your-
self may simply believe in this principle. In such a case, it is strongly recommended
that you not attempt to do this by hand and instead use a plugin that provides support
for this. One such plugin is Foreigner (http://github.com/matthuhiggins/foreigner/),
which provides support for managing foreign key constraints in migrations. Several
other well-supported plugins provide support for additional constraints, most of
which will be specific to your database server.

298 Chapter 9. Databases

http://github.com/matthuhiggins/foreigner/

There’s Always an Exception

In the example we’ve been looking at in this section, the exception is NULL constraints
coupled with default database values. Active Record handles these constraints per-
fectly, with the defaults even being picked up and populated in your model automati-
cally. Therefore, the recommended way to provide default values to your model
attributes is by storing the default values in the database. For example, if you want to
default a Boolean column to true, you can do so in the database:

add_column :users, :active, :boolean, :null => false, :default =>

true

This will result in the active attribute on the user model being set to true whenever
a new user is created:

>> user = User.new

>> user.active?

=> true

You can use this swell behavior to your benefit to simplify code and make your objects
more consistent. In most applications, setting all Booleans to allow null and to
default to false is preferred. That way, your Booleans will really have only two possi-
ble values, true and false, not true, false, and nil.

299AntiPattern: Wet Validations

=, 114
character, 114
% character, 114
[] operator, 115
. character, 114
- operator, 114

A

Abstract methods, 57
Accessors, 98–100
AccountsController, 26, 29, 144, 148
AccountsControllerTest, 143, 146
ActionMailer, 193, 254
ActionPack, 254
ActivationsController, 164
Active Presenter, 149–153
Active Record

associations, 3–7, 11–12, 32–36, 242, 282
lifecycle methods, 125
scope, 33, 36–42
scopes, 10–13
validation macros, 53

ActiveRecord#save!, 226
ActiveResource, 254
ActiveSupport, 255

ActiveSupport::Concern, 53, 56, 58
ActiveSupport::TestCase, 223, 226,

236, 246, 248, 255, 261
Acts As Revisionable, 85
ActsAsVersioned, 85
add_user, 75–76
admin, 27–29
AdminController, 161–165
AlertsController, 100
alerts_rss_url, 104–105
Amateur Gemologist, 214–215
Amazon S3, 268–270
AND, 44
Antipatterns, xiii
AntiPatterns: Refactoring Software,

Architectures, and Projects in Crisis, xiii
APIs, 184–186
/app/helpers, 91
ApplicationHelper, 103
application_helper.rb, 103
/app/views directory, 91
apt, 44
@article.comments.count, 282
@article.comments.length, 282
@article.comments.size, 282
ArticlesController, 123–125,

139–142, 243–245
assert, 221, 233

311

Index

Association methods, 33–36
AssociationProxy, 11–13, 141
Associations, 3–7, 11–12, 242, 282
Attributes, 27–28, 47–48
:authenticate before filter, 119–120
Authentications, 118–122, 167–169
Authlogic, 121–123
Authorization, 118
Authorization Astronaut, 74–78
Automated test suite, xiv

B

Background processing, 286–289
Background tasks, 195–196
Backtrace, 86–87
Beck, Kent, 221
before_create, 28–29, 86
before_filter, 173, 304
before_save, 150, 309
Behavior-driven development (BDD), 221,

225–233
Blawg, 257–264
Bloated Sessions, 154–160
Boolean columns, 276
Boolean values, 299
Booleans, 76–78, 84–85
Bundler, 63, 219

C

Callbacks, 25–27, 237, 309
Callbacks and setters, 123–142
can_ methods, 74–76
Capistrano, 271
Case-insensitive sort, 283
Catlin, Hampton, 112
city column, 275
Class (defined), 2

Class, compared with model, 2
class attributes, 96, 109, 114–115
Class definitions, 34, 64, 68, 70, 225
Class method rake tests, 248–250
Classes, refactoring, 16–17
Clearance, 119–121
Cloud deployment, 268–270
Clustered environment, 270
Code patching, 217–219
Code sharing, 219
Code splitting, 207–210
Comments, 273–274
Complexity, 14
composed_of method, 19–20
Composite index, 274–276
Composition, 18–19, 61
Conditional callbacks, 137–138
Conditional joins, 273–274
Conditions, 40, 44
config.plugin_paths, 261
config/routes.rb, 120, 168, 264
Confirmation email, 28–29
Constants, 57, 243
Constraints, 297–299
content_for, 95–98, 115
content_tag, 102, 110–111
content_tag_for, 110
Contexts, 230–232, 234–235
Continual Catastrophe, 302–305
Controller actions, 161
Controller naming, 162
Controllers

Bloated Sessions, 154–160
Controller of Many Faces, 167–169
Evil Twin Controllers, 184–188
Fat Controller, 123–153
Homemade Keys, 118–122
Lost Child Controller, 170–179
Monolithic Controllers, 161–166
Rat’s Nest Resources, 180–183

Conversion, 16–17
Cookies, 154–156, 198

312 Index

count, 282
create, 124–130, 141
#create, 143–144, 146–148
create_account!, 24–29
created_at, 47–48, 128
create_first_version!, 126–133
create_version!, 124, 126–128,

130–133, 137–139
cron, 286–287, 302
CSS, 91, 107–109, 115–116
CSS3, 198–199
csv, 17
Cucumber, 120–121, 163, 239
current_version, 133–138

D

Database
Boolean values, 299
constraints, 297–299
defaults, 129, 147, 277
down method, 293–296
external code, 293–295
indexes, 272–277
Messy Migrations, 292–296
transactions, 125, 147
up method, 292–296
validations, 297–299
Wet Validations, 297–299

database.yml, 256, 260
DateTime columns, 276
db:indexes:missing, 277
db:migrate, 293, 296
db:migrate:redo, 293, 296
define_method, 68, 77, 238
delayed_job (DJ), 196, 287–289
delegate method, 6–7, 18–19
delete_user, 76, 162–163, 166
Delta indexes, 48–49
Denormalization, 79–82, 84, 280–281
Denormalized role_type, 77

Deploying. See Scaling and deploying
Descriptive naming, 134
Design Patterns: Elements of Reusable Object-

Oriented Software, xiii, 54, 225
Disappearing Assets, 271
<div>, 114
div_for, 110, 115
Domain model, 277–281, 284
Domain modeling

Authorization Astronaut, 74–78
Million-Model March, 79–87

dom_class, 110
dom_id, 110
down method, 293–296
DRY (Don’t Repeat Yourself) Principle,

50, 226
Duplicate Code Duplication

metaprogramming, 64–71
modules, 51–59
plugins, 59–64

Duplicate exceptions, 85
Dust, 221

E

Eager loading, 280
Email confirmation, 28–29
Email errors, 192–193
Email model, 208
EmailsController, 208–210
Encapsulation, 2, 4–7
Engine Yard, 270
Engines, 119
Environment info, 86–87
environment.rb, 261
ERb, 89, 91, 94–95
Error catching application, 85–86
Error logging, 192–194, 309–310
Error pages, 301, 308
Errors, rescuing, 190–192, 308
eval, 63

313Index

Evaluating third-party tools, 214–215
Evil Twin Controllers, 184–188
Exceptional, 194, 309–310
exception_notification, 194, 310
Exceptions, 85, 125, 148, 190–194, 309
EXPLAIN statements, 277
extend, 22–23, 34–35, 50, 53, 56, 58
External code, 293–295
:extract_backtrace_info, 86–87
:extract_environment_info, 86–87
:extract_request_info, 86–87
Extracting code into modules, 50–59

F

Facebook errors, 190–192
Factories, 225–227, 234–235
Factory, 225
Factory.define, 227
FactoryGirl gem, 227, 234, 256
Factory.next, 227
Factory.sequence, 227
Fail fast, 302–305
Fail whale, 301
Failure

Continual Catastrophe, 302–305
Inaudible Failures, 306–310

FakeWeb, 250
Fat Controller

callbacks and setters, 123–142
conditional callbacks, 137–138
create, 124–130
current_version, 133–138
database transactions, 125
exceptions, 125
lifecycle methods, 125
presenter, 142–153
unless, 135

Fat Models
composed_of method, 19–20
delegate method, 18–19

large transaction blocks, 24–30
Law of Demeter, 18
modules, 21–24
nested attributes, 27–28
refactor into new classes, 15–21
Single Responsibility Principle, 15–21

Ferret, 43
Fielding, Roy, 161
Fields, Jay, 149
fields_for, 84, 145
File attachment plugin, 268–270
Filesystem limits, 269
FileUtils::NoWrite, 250
Filters, 47
find() calls, 7–13
find_by_sql, 34n
Fire and Forget

exceptions, 190–194
Hoptoad, 192–194
HTTP errors, 192
publish_to, 190–191

500 error, 190, 303, 308
Fixture Blues

contexts, 228–235
factories, 225–227

fixtures, 223
flatten, 284–285
Flow control, 125
Foreign keys, 273, 277, 297–298
Foreigner, 298
Forking, 247
Forking gems, 219
:format, 100–101
Formatted URL helpers, 100–101
form_for, 92–93, 110, 145, 175
Full-text search engine, 42–49

G

Gamma, Erich, 54, 225
Gang of Four, xiii

314 Index

Gem install, 44
Gems

Authlogic, 121–123
Clearance, 119–121
compared with plugins, 63–64, 211
evaluating, 214–215
forking, 219
git repository, 219
Haml, 112–114
modifying, 217
monkey patching, 217–219
parsing web pages, 198–200
unused, 216
when to look for, 213

generate plugin, 60–61
Generators, 60–61, 119–120
Get, 75–76, 244, 263
git repository, 219
GitHub, 211–219, 227, 287
Golick, James, 149
Google App Engine, 270
Graceful degradation, 210

H

Haml, 111–116
.haml, 113
has_and_belongs_to_many, 74–75, 83
has_finder, 40n
hashed_password, 225
has_many, 12, 77, 83, 295
Helm, Richard, 54, 225
Helpers, 92–98, 100–106
Homemade Keys

Authlogic, 121–123
Clearance, 119–121

Hoptoad, 85–87, 192–194, 309–310
HTML

Haml, 111–116
parser, 198–199
semantic markup, 107–109

HTTP errors, 192
HTTP Post, 208–210
HTTP status codes, 203–206
Hunt, Andy, 50

I

id attributes, 109–111, 114
id column, 272–273
:id_partition, 269–271
Inactive code, 214
Inaudible Failures, 306–310
include, 22–23, 50
included, 53, 56, 58
includes, 278, 280
Indentation, 113–114
Indexes, 272–277
Indexing, 44–45
Inheritance, 2
Initializer, 24, 52
init.rb, 60–63, 253–254
Inline text, 114
Instance methods, 23, 50, 61–62
Integration points, 238–239
Irreversible actions, 305
Irreversible migration, 296

J

JavaScript, 89, 91, 94, 109, 111, 178
Johnson, Ralph, 54, 225
Joins, 273–274
Json, 17, 184

K

Koenig, Andrew, xiii
Kraken Code Base, 207–210

315Index

L

lambda, 37–39
Law of Demeter, 3–7, 18, 38
layouts directory, 91
length, 282
/lib directory, 52–53, 61, 63
Lifecycle methods, 125
Lighthouse, 208
Limerick Rake, 277
link_to, 94–98, 100–102, 172
log-queries-not-using-indexes, 277
Lorem Ipsum, 251–254
Lost Child Controller, 170–179
Lost in Isolation, 236–239

M

Macros, 53, 69, 150
Markup helpers, 102–103
Markup Mayhem

Haml, 111–116
Rails helpers, 109–111
semantic markup, 107–109

Martin, Robert Cecil, 16, 19
Mechanize, 198
MessagesController, 180–183
Messy Migrations, 292–296
Metaprogramming, 64–71
Method (defined), 2
Method names, 238
Methods, 33–36
Migration, 129–130, 262, 292–296
Million-Model March

denormalizing data, 79–82
serialization, 82–87

MIME, 89
Miscreant Modification, 217–219
Missing indexes, 277
Mock Suffocation, 240–245

Mocking, 2, 39, 236–239
Mocking and stubbing, 247
Model, 2
Models

Duplicate Code Duplication, 50–71
Fat Models, 14–30
Spaghetti SQL, 31–49
Voyeuristic Models, 2–13

Model-View-Controller (MVC)
architecture, 2–3

Model-View-Presenter (MVP) pattern, 149
Modifying gems, 217
Modularity, 2
Modules, 21–24, 51–59
Monkey patching, 217–219
Monolithic Controllers, 161–166
Multistep wizard, 154–158
MySQL, 43–44, 277, 298

N

N+1, 279
named_scope, 40n, 42, 242
Naming controllers, 162
Nested attributes, 27–28
Nested controllers, 182–183
Nested resources, 173–179
Nested transactions, 146–147
Net::HTTP library timeout, 195
Never fail quietly, 307–310
New Relic, 194, 277, 310
new_version, 141–142
nil, 308
Nokogiri, 198–199
Normalized domain model, 79

O

Object-oriented programming, 2–3, 16, 18
“One assertion per test,” 233–234

316 Index

One-to-many associations, 170–179
Open source code, patching, 217–219
OrdersController, 155–159
ORM (object-relational mapping), 1–3, 73
OS X Leopard, 260

P

Painful Performance
background processing, 286–289
using SQL, 282–285

Paperclip, 268–271
params, 104, 139–141
Parsing web pages, 197–200
Password, 118–122, 163
PasswordsController, 164–165
Patching code, 217–219
PDF, 17
perform, 196, 287–288
Performance testing, 277, 310
PHPitis

accessors, 98–100
helpers, 100–106
view helpers, 92–98

Pitiful Page Parsing
Mechanize, 198–199
Nokogiri, 198–199
RestClient, 199

Pivotal Tracker, 208
Plugins

Acts As Revisionable, 85
ActsAsVersioned, 85
Blawg, 257–264
compared with gems, 63–64, 211
Foreigner, 298
guide, 61
Limerick Rake, 277
Lorem Ipsum, 251–254
New Relic, 194, 277, 310
Paperclip, 268–271
QueryReviewer, 277

Rails Footnotes, 277
Slugalicious, 255–258
testing, 251–265
user authentication, 118–122
versioning, 217–219
writing and sharing, 59–64

Polymorphic conditional joins, 273–274
Polymorphism, 2
port, 44
PortfoliosController, 304
Post, 208–210, 261, 263
PostgreSQL, 43–44
PostsController, 169, 261, 263
posts.yml, 229
PostTest, 226–227, 236, 261–262
post_test.rb, 236
Pragmatic Programmer, The, 50
Presenter Pattern, 142–153
Primary keys, 272–273
Principle of Least Knowledge. See Law of

Demeter
private, 2
protected, 2
public, 2
/public/javascripts, 91
/public/stylesheets, 91
publish_to, 189–191

Q

QueryReviewer, 277
Queue systems, 209
Queuing, 287–289

R

Rails (library), 255
Rails 3, 63, 186–188
Rails Footnotes, 277
Rake command, 262

317Index

rake db:migrate, 293, 296
rake db:migrate:redo, 293, 296
Rake routes, 173
rake tasks, 44–46, 246–250, 262–264,

293, 296
Rat’s Nest Resources, 180–183
RAW version state, 129
Readability, 305
read_timeout, 195
Recutting the Gem, 213
Redis, 287
Refactoring, xiii–xiv, 3–4, 15–21, 167–169,

228–235
References, 154–160
Relationship collections, 134
RemoteProcess, 36–39
render method, 94–96
Request info, 86–87
require, 62–63, 104
rescue, 124, 190–192, 307–308
rescue_from, 308
reset_column_information, 295
Resource, 167–169
Responders, 186–188
respond_to, 184–186, 188
respond_with, 187–188
Resque, 196, 209, 287
RestClient, 199
RESTful APIs, 201–202
RESTful controllers, 161–169
RJS, 89, 91–92
Routes file, 264
RPM, 277, 310
Rspec, 221
rss_link, 101–102, 104–105

S

Sass, 115–116
Save, 146–147, 241–242
save method, 125–127, 140

save! method, 25–26, 126, 139–140, 148,
307–310

#save!, 148, 242
Scaling and deploying

Disappearing Assets, 271
Painful Performance, 282–289
Scaling Roadblocks, 268–270
Sluggish SQL, 272–281

schema.rb, 256–257
scope, 10–13, 33, 36–42, 242
Searchable, 54
Searching, 46–48
Searching serialized data, 85–87
self.down, 294–296, 298
self.up, 293–295, 297
Semantic markup, 107–116
send, 238
send_confirmation_email, 28–29
send_later, 288
Serialization, 82–87
serialize, 84–87
Services

Fire and Forget, 190–194
Kraken Code Base, 207–210
Pitiful Page Parsing, 197–200
Sluggish Services, 195–196
Successful Failure, 201–206

Session store, 154–160
set_version_number, 131
Sharding, 268
should, 150, 231
Shoulda, 221–222, 228
Signup (presenter), 149–153
Simplicity, 14
Single Responsibility Principle, 15–21
Single-table inheritance (STI) pattern, 275
size, 282
Slashes, 99
Slow query logging, 277
Slugalicious, 255–258
Sluggish Services

background tasks, 195–196
delayed_job, 196

318 Index

Resque, 196
timeouts, 195

Sluggish SQL
domain model, 277–281
indexes, 272–277

SMTP, 193
Solr, 43
SongsController, 172–176, 184–186,

201–203
Sorting, 47–48, 283
Spaghetti SQL

Active Record associations, 32–36
full-text search engine, 42–49
Law of Demeter, 38
Scope method, 36–42

Sphinx, 43–44
SQL, 37–38, 282–285
sqlite3, 256, 260
“SRP: The Single Responsibility Principle,”

16, 169
Standard controller actions, 161
StandardError, 192
Star syntax, 45–46
state column, 275
State model, 79–82
Stateless, 154
Status codes, 203–206
Stubs, 240–245
Submodules, 61–62
Successful Failure

HTTP status codes, 203–206
RESTful APIs, 201–202

Superclass, 54, 57, 59
suspenders, 24
Symlink, 260–261, 271
System directory, 271

T

Tags, 107, 273–274
Taligent, 149

TAM (tests, activity, and maturity), 214–215
Template pattern, 54, 56–59
Test-driven development (TDD), 64, 221,

241, 251
test/factories.rb, 256
test/factory.rb, 225
/test/fixtures, 170–171, 223
test_helper.rb, 104, 147, 225, 252–256
Testing

contexts, 230–232
Cucumber, 163, 239
embedding a Rails app, 259–265
Fixture Blues, 223–235
and integration points, 238–239
Lost in Isolation, 236–239
Mock Suffocation, 240–245
“one assertion per test,” 233–234
performance, 277, 310
plugins and gems, 251–265
rake tasks, 246–250
schema.rb, 256–257
stubs, 240–245
test cases, 221, 229–230, 240–241
and third-party tools, 214–215
Unprotected Jewels, 251–265
Untested Rake, 246–250
view helpers, 103–106

Test::Spec, 221
Test::Unit, 221
test/unit/helpers, 104
TextMate, 261
Thinking Sphinx

delta indexes, 48–49
filters, 47
gem install, 44
indexing, 44–45
searching, 46–48
sorting, 47–48
star syntax, 45–46

Third-party code
Amateur Gemologist, 214–215
Miscreant Modification, 217–219

319Index

Third-party code (continued)
Recutting the Gem, 213
Vendor Junk Drawer, 216

Thomas, Dave, 50
thoughtbot

Clearance, 119–121
FactoryGirl gem, 227, 234, 256
Hoptoad, 85–87, 192–194, 309–310
Limerick Rake, 277
Paperclip, 268–271
Shoulda, 221–222, 228
suspenders, 24

Ticket, 208
TicketsController, 208–210
Ticket-tracking application, 208–210
Time, 126–128
Timeouts, 195
to_param, 275
ts:in, 44–46, 49
ts:start, 45–46, 49
ts:stop, 46, 49
Twitter, 301, 309

U

Uniqueness validations, 274
unless, 135
Unnested resources, 176–179
Unprotected Jewels

init.rb, 252–253
plugin integration, 251–254
sqlite, 256, 260
test/factories.rb, 256

Untested Rake
class method, 248–250
FakeWeb, 250
FileUtils::NoWrite, 250
forking, 247
mocking and stubbing, 247
rake tasks, 246–248

Unused gems, 216

up method, 292–296
URL helpers, 100–101, 168, 255
URL mapping, 163
“Use only one dot,” 5
User authentication plugins, 118–122
User authorization code, 74–78
users_attributes, 27–28
UsersController, 9–11, 92–93,

163–164, 167–168, 205
UserSessionsController, 121–122
users.yml, 223, 225, 229
use_transactional_fixtures, 147

V

#valid?, 242
Validation macros, 53
Validations, 25–28, 297–299, 307
Vendor Junk Drawer, 216
vendor/gems directory, 217
vendor/plugins directory, 217
Version model, 130–142
Versioning, 85, 217–219
Versions, 128–129
View helpers, 91–100, 103–106
Views

ERb, 89, 91, 94–95
layer, 91
Markup Mayhem, 107–116
MIME, 89
PHPitis, 91–106
RJS, 89, 91–92

Virtual Proxy, 37
Vlissides, John M., 54, 225
Voyeuristic models

Active Record associations, 3–7, 11–12
Active Record scopes, 10–13
delegate method, 6–7
encapsulation, 4–5
find() calls, 7–13
Law of Demeter, 3–7

320 Index

UsersController, 9–11
wrapper methods, 6

W

Wanstrath, Chris, 287
webrat, 264
Wet Validations, 297–299
WHERE clauses, 275
Whitespace sensitivity, 113–114, 116
will_paginate library, 44–45
Wrapper methods, 6
written_at, 126–128

X

Xapian, 43
XML, 17, 184, 198–199
XPath, 198–199
xUnit Pattern, 221

Y

YAML, 223–225
yield, 95–98
yum, 44

321Index

	Contents
	Foreword
	Introduction
	9 Databases
	AntiPattern: Messy Migrations
	Solution: Never Modify the up Method on a Committed Migration
	Solution: Never Use External Code in a Migration
	Solution: Always Provide a down Method in Migrations

	AntiPattern: Wet Validations
	Solution: Eschew Constraints in the Database

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

