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Foreword

It’s hard to believe that it will soon be three years since Zed Shaw published his infa-
mous (and now retracted) rant “Rails Is a Ghetto.” Even though Zed’s over-the-top
depiction of certain well-known people was wicked and pure social satire, the expres-
sion he coined has stuck like the proverbial thorn among certain higher echelons of
the community. It’s an especially piquant expression to use when we’re called on to fix
atrocious Rails projects. Occasionally, we’ll even use the phrase with regard to our own
messes. But most commonly, this expression is applied to code written by the unwashed
masses. The rapid ascension of Rails as a mainstream technology has attracted droves of
eager programmers from both outside and inside the wide sphere of web development.
Unfortunately, Rails doesn’t discriminate among newcomers. It offers deep pitfalls for
bearded wise men of the object-oriented world and PHP script kiddies alike.

Frankly, I would have written this book myself eventually, because there’s such a
need for it in the marketplace. At Hashrocket, we do a lot of project rescue work. Oh,
the agony! We’ve seen every AntiPattern detailed in this book rear its ugly face in real-
life projects. Sometimes we see almost every AntiPattern in this book in a single proj-
ect! My good friends and consultants extraordinaire Chad and Tammer have seen the
same horrors. Only fellow consultants like these two could write this book properly
because of the wide variety of coding challenges we face regularly. The solutions in this
book cover a wide range of sticky situations that we know any professional Ruby
developer will run into on a regular basis.

If you’re new to Rails (and, based on the demographics, you probably are), then
you’re now holding one of the most valuable resources possible for getting past the
chasm that separates an ordinary Rails developer from greatness. Congratulations and
good luck making the leap.

—Obie Fernandez
Author of The Rails 3 Way
Series editor of the Addison-Wesley Professional Ruby Series
CEO and founder of Hashrocket
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Introduction

As Rails consultants, we’ve seen a lot of Rails applications. The majority of the
AntiPatterns described in this book are directly extracted from real-world applications.
We hope that by formalizing their descriptions here, we can present you with the tools
you’ll need to identify these AntiPatterns in your own code, understand their causes,
and be able to refactor yourself out of the broken patterns.

What Are AntiPatterns?
AntiPatterns are common approaches to recurring problems that ultimately prove to
be ineffective.

The term AntiPatterns was coined in 1995 by Andrew Koenig, inspired by Gang
of Four’s book Design Patterns, which developed the concept of design patterns in the
software field. The term was widely popularized three years later by the book
AntiPatterns: Refactoring Software, Architectures, and Projects in Crisis (William Brown,
Raphael Malveau, Skip McCormick, and Tom Mowbray). According to the authors of
AntiPatterns, there must be at least two key elements present to formally distinguish an
actual AntiPattern from a simple bad habit, bad practice, or bad idea:

• A repeated pattern of action, process, or structure that initially appears to be ben-
eficial but ultimately produces more bad consequences than beneficial results 

• A refactored solution that is clearly documented, proven in actual practice, and
repeatable

What Is Refactoring?
Refactoring is the act of modifying an application’s code not to change its functional
behavior but instead to improve the quality of the application itself. These improvements
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are intended to improve readability, reduce complexity, increase maintainability, and
improve the extensibility (that is, possibility for future growth) of the system.

This book makes extensive reference to the process of refactoring in order to fix
code that is exhibiting an AntiPattern. In an attempt to increase readability and under-
standability of the AntiPatterns and solutions in this book, we’ve left out the auto-
mated test suite that should accompany the code. We want to draw extra attention to
the fact that your code should be well tested. When you have tests in place, some of
the solutions we’ve presented will be much easier to implement with confidence.
Without tests, some of the solutions might not even be possible. Unfortunately, many
of the applications you encounter that exhibit these AntiPatterns will also be untested.

How to Read This Book
Each AntiPattern in this book outlines the mistakes we see in the wild and the nega-
tive effects they have on developer velocity, code clarity, maintenance, and other
aspects of a successful Rails project. We follow each AntiPattern with one or more
solutions that we have used in practice and that have been proven as proper fixes for
the AntiPattern.

While you can read this book straight through from front to back, we’ve taken
great pains to make each solution stand on its own. Therefore, this book is both a
strong technical publication as well as a quick source of reference for Rails developers
looking to hone their techniques in the trenches.

The following is a brief outline of what’s covered in each chapter:

• Chapter 1, “Models”: Because Rails encourages code to be pushed down the
Model-View-Controller (MVC) stack to the Model layer, it’s fitting that a chapter
on models is the largest chapter in the book. Here, we focus on a variety of
AntiPatterns that occur in Model layer code, from general object-oriented pro-
gramming violations to complex SQL and excessive code duplication.

• Chapter 2, “Domain Modeling”: Going beyond the nitty-gritty code at the
Model layer in a Rails project, this chapter focuses on overall schema and database
issues. This chapter covers issues such as normalization and serialization.

• Chapter 3, “Views”: The Rails framework gives developers a large number of
tools and conventions that make code in the Model and Controller layers consis-
tent and maintainable. Unfortunately, the required flexibility in the View layer
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prevents this sort of consistency. This chapter shows how to make use of the View
layer tools Rails provides.

• Chapter 4, “Controllers”: Since the integration of a RESTful paradigm in the
Rails framework, the Controller layer has seen some significant improvements.
This chapter goes through the AntiPatterns we’ve seen in Controller-layer-related
Rails code.

• Chapter 5, “Services”: Dealing with and exposing APIs requires tenacity. This
chapter walks through all the common pitfalls we’ve seen, including timeouts,
exceptions, backgrounding, response codes, and more.

• Chapter 6, “Using Third-Party Code”: This short chapter reviews some of the
AntiPatterns that can come from incorporating community plugins and gems
into your applications.

• Chapter 7, “Testing”: One of the strengths of Rails is the strong push toward test-
driven development. Unfortunately, we’ve seen as many AntiPatterns inside test
suites as in production code. This chapter outlines these AntiPatterns and how to
address them.

• Chapter 8, “Scaling and Deploying”: Developing a Rails application locally is a
great experience, but there are many factors to consider once it’s time to release an
application to the world. This chapter will help you ensure that your applications
are ready for prime time.

• Chapter 9, “Databases”: This chapter outlines the common issues we’ve seen with
migrations and validations.

• Chapter 10, “Building for Failure”: Finally, the last chapter in the book gives
guidance on general best practices for ensuring that an application degrades grace-
fully once it encounters the real world.
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CHAPTER 9
Databases

With the Rails framework providing a simple ORM that abstracts many of the data-
base details away from the developer, the database is an afterthought for many Rails
developers. While the power of the framework has made this okay to a certain extent,
there are important database and Rails-specific considerations that you shouldn’t
 overlook.
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AntiPattern: Messy Migrations
Ruby on Rails database migrations were an innovative solution to a real problem faced
by developers: How to script changes to the database so that they could be reliably
replicated by the rest of the team on their development machines as well as deployed
to the production servers at the appropriate time. Before Rails and its baked-in solu-
tion, developers often wrote ad hoc database change scripts by hand, if they used them
at all.

However, as with most other improvements, database migrations are not without
pain points. Over time, a database migration can become a tangle of code that can be
intimidating to work with rather than the joy it should be. By strictly keeping in mind
the following solutions, you can overcome these obstacles and ensure that your migra-
tions never become irreconcilably messy.

Solution: Never Modify the up Method on a 
Committed Migration
Database migrations enable you to reliably distribute database changes to other mem-
bers of your team and to ensure that the proper changes are made on your server dur-
ing deployment.

If you commit a new migration to your source code repository, unless there are
irreversible bugs in the migration itself, you should follow the practice of never modi-
fying that migration. A migration that has already been run on another team mem-
ber’s computer or the server will never automatically be run again. In order to run it
again, a developer must go through an orchestrated dance of backing the migration
down and then up again. It gets even worse if other migrations have since been com-
mitted, as that could potentially cause data loss.

Yes, if you’re certain that a migration hasn’t been run on the server, then it’s possi-
ble to communicate to the rest of the team that you’ve changed a migration and have
them re-migrate their database or make the required changes manually. However,
that’s not an effective use of their time, it creates headaches, and it’s error prone. It’s
simply best to avoid the situation altogether and never modify the up method of a
migration.

Of course, there will be times when you’ve accidentally committed a migration
that has an irreversible bug in it that must be fixed. In such circumstances, you’ll have
no choice but to modify the migration to fix the bug. Ideally, the times when this hap-
pen are few and far between. In order to reduce the chances of this happening, you
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should always be sure to run the migration and inspect the results to ensure accuracy
before committing the migration to your source code repository. However, you shouldn’t
limit yourself to simply running the migration. Instead, you should run the migration
and then run the down of the migration and rerun the up. Rails provides rake tasks for
doing this:

rake db:migrate 

rake db:migrate:redo

The rake db:migrate:redo command runs the down method on the last migration
and then reruns the up method on that migration. This ensures that the entire migra-
tion runs in both directions and is repeatable, without error. Once you’ve run this and
double-checked the results, you can commit your new migration to the repository
with confidence.

Solution: Never Use External Code in a Migration
Database migrations are used to manage database change. When the structure of a
database changes, very often the data in the database needs to change as well. When
this happens, it’s fairly common to want to use models inside the migration itself, as in
the following example:

class AddJobsCountToUser < ActiveRecord::Migration

def self.up

add_column :users, :jobs_count, :integer, :default => 0

Users.all.each do |user|

user.jobs_count = user.jobs.size

user.save

end

end

def self.down

remove_column :users, :jobs_count

end

end

In this migration above, you’re adding a counter cache column to the users table, and
this column will store the number of jobs each user has posted. In this migration,
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you’re actually using the User model to find all users and update the column of each
one. There are two problems with this approach.

First, this approach performs horribly. The code above loads all the users into
memory and then for each user, one at a time, it finds out how many jobs each has and
updates its count column.

Second, and more importantly, this migration does not run if the model is ever
removed from the application, becomes unavailable, or changes in some way that
makes the code in this migration no longer valid. The code in migrations is supposed
to be able to be run to manage change in the database, in sequence, at any time. When
external code is used in a migration, it ties the migration code to code that is not
bound by these same rules and can result in an unrunnable migration.

Therefore, it’s always best to use straight SQL whenever possible in your migra-
tions. If you do so, you can rewrite the preceding migration as follows:

class AddJobsCountToUser < ActiveRecord::Migration

def self.up

add_column :users, :jobs_count, :integer, :default => 0

update(<<-SQL)

UPDATE users SET jobs_count = (

SELECT count(*) FROM jobs 

WHERE jobs.user_id = users.id

)

SQL

end

def self.down

remove_column :users, :jobs_count

end

end

When this migration is rewritten using SQL directly, it has no external dependencies
beyond the exact state of the database at the time the migration should be executed.

There may be cases in which you actually do need to use a model or other Ruby
code in a migration. In such cases, the goal is to rely on no external code in your
migration. Therefore, all code that’s needed, including the model, should be defined
inside the migration itself. For example, if you really want to use the Usermodel in the
preceding migration, you rewrite it like the following:
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class AddJobsCountToUser < ActiveRecord::Migration

class Job < ActiveRecord::Base

end

class User < ActiveRecord::Base

has_many :jobs

end

def self.up

add_column :users, :jobs_count, :integer, :default => 0

User.reset_column_information

Users.all.each do |user|

user.jobs_count = user.jobs.size

user.save

end

end

def self.down

remove_column :users, :jobs_count

end

end

Since this migration defines both the Job and User models, it no longer depends
on an external definition of those models being in place. It also defines the has_many
relationship between them and therefore defines everything it needs to run success-
fully. In addition, note the call to User.reset_column_information in the self.up
method. When models are defined, Active Record reads the current database schema.
If your migration changes that schema, calling the reset_column_information
method causes Active Record to re-inspect the columns in the database.

You can use this same technique if you must calculate the value of a column by
using an algorithm defined in your application. You cannot rely on the definition of
that algorithm to be the same or even be present when the migration is run. Therefore,
the algorithm should be duplicated inside the migration itself.

Solution: Always Provide a down Method in Migrations
It’s very important that a migration have a reliable self.down defined that actually
reverses the migration. You never know when something is going to be rolled back. It’s
truly bad practice to not have this defined or to have it defined incorrectly.
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Some migrations simply cannot be fully reversed. This is most often the case for
migrations that change data in a destructive manner. If this is the case for a migration
for which you’re writing the down method, you should do the best reversal you can do.
If you are in a situation where there is a migration that under no circumstances can
ever be reversed safely, you should raise an ActiveRecord::IrreversibleMigration
exception, as shown here:

def self.down

raise ActiveRecord::IrreversibleMigration

end

Raising this exception causes migrations to be stopped when this down method is run.
This ensures that the developer running the migrations understands that there is
something irreversible that has been done and that cannot be undone without manual
intervention.

Once you have the down method defined, you should run the migration in both
directions to ensure proper functionality. As discussed earlier in this chapter, in the
section “Solution: Never Modify the up Method on a Committed Migration,” Rails
provides rake tasks for doing this:

rake db:migrate 

rake db:migrate:redo

The rake db:migrate:redo command runs the down method on the last migra-
tion and then reruns the up method on that migration.
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AntiPattern: Wet Validations
Ruby on Rails generally treats a database as a dumb storage device, essentially working
only with many of the common-denominator features found in all the databases it
supports and eschewing additional database functionality such as foreign keys and
constraints. But many Rails developers eventually realize that a database has this func-
tionality built in, and they attempt to use it by trying to duplicate the validation and
constraints from their models into the database. For example, the following User
model has a number of validations:

class User < ActiveRecord::Base

validates :account_id, :presence => true

validates :first_name, :presence => true

validates :last_name,  :presence => true

validates :password, :presence     => true,

:confirmation => true,

:if           => :password_required?

validates :email, :uniqueness => true,

:format     => { :with => %r{.+@.+\..+} },

:presence   => true

belongs_to :account

end

You could attempt to create a database table to back this model that attempts to
enforce the same validations at the database level, using database constraints. The
(inadequate) migration to create that table might look something like this:

self.up

create_table :users do |t|

t.column :email,      :string, :null => false

t.column :first_name, :string, :null => false

t.column :last_name,  :string, :null => false

t.column :password,   :string

t.column :account_id, :integer

end

execute “ALTER TABLE users ADD UNIQUE (email)”
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execute “ALTER TABLE users ADD CONSTRAINT

user_constrained_by_account FOREIGN KEY (account_id) REFERENCES

accounts (id) ON DELETE CASCADE”

end

self.down

execute “ALTER TABLE users DROP FOREIGN KEY

user_constrained_by_account”

drop_table :users

end

However, there are several reasons this doesn’t work in practice. For one thing, not
all databases support all the constraints that Active Record supports. For example, in
MySQL, it’s possible to enforce the uniqueness constraints on email, but none of the
other constraints are fully possible without the use of stored procedures and triggers.
For example, in the migration earlier in this chapter, there is only a constraint on NULL
values in the first_name column. A blank string would still be allowed to be inserted.

If you are on a database that supports these constraints, you are then left to main-
tain them all by hand, in duplicate—a process that is tedious and error prone.

Active Record does not handle violations of database constraints well. It does not
automatically read the constraints in the database. And if something is out of sync and
a constraint in the database is hit, this will result in an exception that is not handled
gracefully at the library level. The result is a failure the user sees or one that the pro-
grammer must handle, which is impractical.

Solution: Eschew Constraints in the Database
It’s simply best to not fight the opinion of Active Record that database constraints are
declared in the model and that the database should simply be used as a datastore.

Despite all of the above, you may find yourself working with a DBA who insists
that foreign key constraints or other constraints be stored in the database, or you your-
self may simply believe in this principle. In such a case, it is strongly recommended
that you not attempt to do this by hand and instead use a plugin that provides support
for this. One such plugin is Foreigner (http://github.com/matthuhiggins/foreigner/),
which provides support for managing foreign key constraints in migrations. Several
other well-supported plugins provide support for additional constraints, most of
which will be specific to your database server.
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There’s Always an Exception

In the example we’ve been looking at in this section, the exception is NULL constraints
coupled with default database values. Active Record handles these constraints per-
fectly, with the defaults even being picked up and populated in your model automati-
cally. Therefore, the recommended way to provide default values to your model
attributes is by storing the default values in the database. For example, if you want to
default a Boolean column to true, you can do so in the database:

add_column :users, :active, :boolean, :null => false, :default =>

true

This will result in the active attribute on the user model being set to true whenever
a new user is created:

>> user = User.new

>> user.active?

=> true

You can use this swell behavior to your benefit to simplify code and make your objects
more consistent. In most applications, setting all Booleans to allow null and to
default to false is preferred. That way, your Booleans will really have only two possi-
ble values, true and false, not true, false, and nil.
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