
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321604118
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321604118
https://plusone.google.com/share?url=http://www.informit.com/title/9780321604118
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321604118
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321604118/Free-Sample-Chapter

Enterprise
Software Security

9780321604118_Book 1.indb i9780321604118_Book 1.indb i 11/11/14 11:36 AM11/11/14 11:36 AM

This page intentionally left blank

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Enterprise
Software Security

A Confluence of Disciplines

Kenneth R. van Wyk
Mark G. Graff
Dan S. Peters
Diana L. Burley, Ph.D.

9780321604118_Book 1.indb iii9780321604118_Book 1.indb iii 11/11/14 11:36 AM11/11/14 11:36 AM

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may
include electronic versions; custom cover designs; and content particular to your business, training
goals, marketing focus, or branding interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact
governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact
international@pearsoned.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2014950276

Copyright © 2015 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright,
and permission must be obtained from the publisher prior to any prohibited reproduction, storage in
a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. To obtain permission to use material from this work, please submit a written
request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle River,
New Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-60411-8
ISBN-10: 0-321-60411-3

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, IN.

First printing: December 2014

9780321604118_Book 1.indb iv9780321604118_Book 1.indb iv 11/11/14 11:36 AM11/11/14 11:36 AM

I want to dedicate this book to my wife and my parents,
for believing in me and encouraging me.

—Kenneth R. van Wyk

I want to thank my old friend KRvW once again for his
trust and patience, as well as for the

astounding insight that launched this adventure.
—Mark G. Graff

My work is dedicated to my family and to
childhood memories about my grandparents.

—Dan Peters

To my family for their unwavering support.
—Diana L. Burley, Ph.D.

9780321604118_Book 1.indb v9780321604118_Book 1.indb v 11/11/14 11:36 AM11/11/14 11:36 AM

This page intentionally left blank

vii

Contents

 Preface xiii

1 Introduction to the Problem 1

Our Shared Predicament Today 2
Why Are We in This Security Mess? 5
Ancient History 7
All Together Now 11
The Status Quo: A Great Divide 15
What’s Wrong with This Picture? 20
Wait, It Gets Worse 25
Stressing the Positive 27
Summing Up 30
Endnotes 31

2 Project Inception 33

Without a Formal Software Security Process—
The Norm Today 34

The Case for a Project Security Team 42
Tasks for the Project Security Team 43
Putting Together the Project Security Team 50
Roles to Cover on the Security Team 51
Some Final Practical Considerations about Project

Security Teams 64
Summing Up 67
Endnotes 68

9780321604118_Book 1.indb vii9780321604118_Book 1.indb vii 11/11/14 11:36 AM11/11/14 11:36 AM

viii Contents

3 Design Activities 71

Security Tiers 72
On Confluence 76
Requirements 78
Specifications 98
Design and Architecture 100
It’s Already Designed 112
Deployment and Operations Planning 115
Summing Up 121
Endnotes 121

4 Implementation Activities 123

Confluence 123
Stress the Positive and Strike the Balance 124
Security Mechanisms and Controls 126
Code Reuse 146
Coding Resources 148
Implementing Security Tiers 152
Code Reviews 154
A Day in the Life of a Servlet 157
Summing Up 167
Endnotes 167

5 Testing Activities 169

A Few Questions about Security Testing 170
Tools of the Trade 180
Security Bug Life Cycle 185
Summing Up 191
Endnotes 192

6 Deployment and Integration 193

How Does Deployment Relate to Confluence? 194
A Road Map 194
Advanced Topics in Deployment 198
Integrating with the Security Operations Infrastructure 200
Third-Generation Log Analysis Tools 213
Retrofitting Legacy and Third-Party Components 216

9780321604118_Book 1.indb viii9780321604118_Book 1.indb viii 11/11/14 11:36 AM11/11/14 11:36 AM

Contents ix

Notes for Small Shops or Individuals 217
Summing Up 219
Endnotes 220

7 Operating Software Securely 221

Adjusting Security Thresholds 222
Dealing with IDS in Operations 230
Identifying Critical Applications 236
CSIRT Utilization 237
Notes for Small Shops or Individuals 238
Summing Up 240

8 Maintaining Software Securely 241

Common Pitfalls 243
How Does Maintaining Software Securely Relate to

Confluence? 248
Learning from History 249
Evolving Threats 251
The Security Patch 254
Special Cases 256
How Does Maintaining Software Securely Fit into

Security SDLCs? 259
Summing Up 261
Endnotes 262

9 The View from the Center 263

Ideas for Encouraging Confluent Application Development 265
Toward a Confluent Network 269
Security Awareness and Training 273
Policies, Standards, and Guidelines 274
The Role of Other Departments and Corporate Entities 275
Resource Budgeting and Strategic Planning for Confluence 277
Assessment Tools and Techniques 279
Mobile Plans—Postmortem Interviews 289
Notes for Small Shops or Individuals 292
Summing Up 292
Endnotes 293

 Index 295

9780321604118_Book 1.indb ix9780321604118_Book 1.indb ix 11/11/14 11:36 AM11/11/14 11:36 AM

Acknowledgments

From Kenneth R. van Wyk:

Thanks of course to my authoring team. We come from a pretty diverse
set of backgrounds and experiences—by design—and I’m proud of what
we’ve put together here. Together we proudly wave the flag of confluence
and hope many will join in.

Likewise, our tech reviewers have been fabulous: Danny Smith (who
has been on a couple of my review teams now), Bill Reynolds, Derrick
Scholl, Andrew van der Stock, and Kevin Wall. Like the authors, you repre-
sent a diverse set of experiences, and we value greatly all your suggestions. I
hope we’ve done them justice. If we haven’t, it certainly isn’t your fault!

I also want to send out a special thanks to my mom and dad. My dad,
who as a schoolboy was captured by the sounds of those Rolls Royce Mer-
lin and Griffin engines in their Spitfires and Hurricanes as they flew over
his grade school. He later went on to be a 747 pilot at what was at the time
one of the biggest and most respected airlines on the planet. He encouraged
me in everything I did. Every hobby, everything. He always encouraged me
to soar, whether it meant competing or simply pushing myself to the limits
of my abilities. I’m forever grateful for that encouragement.

And my mom, who not once, not twice, but three times followed her
husband and moved to three different continents. She was a farm girl from
rural South Africa, where English was anything but the primary language.
And then, she not only learned English, but became an English professor at
a U.S. university. I often consider how I would react to being, say, a French
professor to French students, and it gives me chills.

How could I fail, given such amazing examples! Thanks, Mom and
Dad. I love you both.

From Mark G. Graff:

I want to thank my old friend KRvW once again for his trust and
patience, as well as for the astounding insight that launched this adventure
(maybe better: his “trust, insight, and astounding patience”). To Diana and

9780321604118_Book 1.indb x9780321604118_Book 1.indb x 11/11/14 11:36 AM11/11/14 11:36 AM

Acknowledgments xi

Dan: There would be no book without your skills and dedication; I feel
rescued. To my family: Wow—look what we did! Finally, love and fond
regards to fellow security practitioners/sufferers around the world.

From Dan S. Peters:

I feel proud to be part of this exquisite author group and to able to
contribute my knowledge and experience to this book project. Even though
I could anticipate ahead of time all the stress related to book writing, it was
a very easy decision for me to take part in the project once I talked to Ken
and Mark about it. The arguments were simply so convincing and aligned
so well with my vision of the situation that I could not resist the tempta-
tion. Together with Diana, the four of us formed a well-rounded team, com-
plementing each other’s vision, knowledge, and passion for the subject of
software security. I believe that the confluence book would not be possible
based on the experiences of individual authors, and could only be born out
of such collaboration.

My family, of course, deserves appreciation as well, as they often had
to cope with weekend calls and late-night shifts while I was trying to move
forward on an especially stubborn subject. They had to deal with my
frustrations about writer’s block and continued encouraging me in this
endeavor through all these weeks, months, and (alas) years. Thank you!

From Diana L. Burley:

Thank you to this amazing team of authors. Ken and Mark, our syner-
gy was apparent from the start, and I was honored to work alongside you
as your vision turned into our vision and then into our reality. Dan, your
ability to hone in on the technical details of every discussion sharpened us
all. Our collaboration is a call to action. To the educators who will answer
this call, the future begins with you. Let the message of confluence perme-
ate your classrooms as you develop the next generation of security profes-
sionals.

To my family—my children, who inspire me every day to push beyond
traditional boundaries and challenge the status quo; my parents, who
instilled in me the need to disrupt accepted thought patterns by crafting
arguments that blend academic rigor (from my mother, the college profes-
sor and administrator) with practical wisdom (from my father, the corpo-
rate executive); my brother, whose belief in me carried me through the late
nights; and my best friend, who makes each day always better!

9780321604118_Book 1.indb xi9780321604118_Book 1.indb xi 11/11/14 11:36 AM11/11/14 11:36 AM

About the Authors

Kenneth R. van Wy k is a career security guy, having started with Carnegie
Mellon University’s CERT/CC in the late 1980s and subsequently worked
for the United States Department of Defense and in several senior technolo-
gist roles in the commercial sector. He is the co-author of two popular
O’Reilly and Associates books on incident response and secure coding.
He now owns and runs KRvW Associates, LLC, a software security
consulting and training practice in Virginia, USA.

Mark G. Graff is the CISO of NASDAQ OMX. Formerly the chief cyber-
security strategist at Lawrence Livermore National Laboratory, he has
appeared as an expert witness on computer security before Congress and
analyzed electronic voting machine software security for the state of
California. A past chairman of the International Forum of Incident
Response and Security Teams (FIRST), Graff has lectured on risk analysis,
the future of cyber security, and privacy before the American Academy for
the Advancement of Science, the Federal Communications Commission
(FCC), the Pentagon, and many U.S. national security facilities and think
tanks.

Dan S. Peters has been involved with security for longer than he had first
expected when he stumbled into this field out of curiosity while making a
good living as a consultant and a commercial software developer. Many
security disciplines are exciting to him, but mobile security has been the
most intriguing topic as of late. Before working on this book, Dan repeat-
edly shared his passion for security in conference presentations and numer-
ous publications.

Diana L. Burley, Ph.D., is an award-winning cyber-security workforce
expert who has been honored by the U.S. Federal CIO Council and was
named the CISSE 2014 Cybersecurity Educator of the Year. As a professor,
researcher, and consultant on IT use and workforce development for nearly
20 years, she passionately promotes a holistic view of cyber security to
influence education, policy, and practice from her home in the Washington,
D.C., region.

9780321604118_Book 1.indb xii9780321604118_Book 1.indb xii 11/11/14 11:36 AM11/11/14 11:36 AM

Preface

In today’s commercial enterprises, information security staffs spend years
building walls around their business applications. That’s good. Practitioners
have known for years, however, that—for a real chance at corporate
safety—the enterprise’s application programmers must also build security
into the business software.

Yet even the powerful combination of a sound perimeter and front-to-
back application security might not suffice against the highly sophisticated
attacks launched against today’s networks. One surprising reason: There is
all too often a cultural and physical separation between the software devel-
opment staff and the information security staff in large enterprises.

This book bridges that gulf. We identify the issues that distinguish and
keep the two groups apart, and suggest practical and actionable guidance as
to how best to collaboratively address the security needs of the enterprise.
This book will help programmers design, write, deploy, and operate better
enterprise software applications. It will help network security engineers
make better use of the applications’ output to drive and adjust manifold se-
curity appliances, such as firewalls. But we hope it will achieve much more.

Uniquely drawing ideas from two distinct disciplines, software engi-
neering and network security, this book is intended to point the way to a
new, holistic approach to enterprise protection. We envision an integrated
program of application development, security appliances, network architec-
ture, and policies and procedures we call “confluence.”

It’s not just about the perimeter anymore, or even safe software. Re-
cent developments such as the so-called “advanced persistent threat” have
breached those barriers. But in this book we show how businesses can
move forward by building software that actively contributes to the intru-
sion detection and response processes. (Today, most extant enterprise soft-
ware still provides audit logs or event logs of security exceptions, and little

9780321604118_Book 1.indb xiii9780321604118_Book 1.indb xiii 11/11/14 11:36 AM11/11/14 11:36 AM

xiv Preface

more.) Drawing on our case-study files, we show how software should—
and can—be made to play a vital active role in protecting an enterprise
before, during, and after security incidents. Software can and should take
active measures to safeguard customer data, business processes, and other
sensitive data within the scope of the application. This approach, so far as
we know, has not been addressed to this degree in other publications.

By taking a wide-angle view of security, we show how even parts of
the company that are not on the firing line can nevertheless help make the
company safer. (See Chapter 9, “The View from the Center,” for example,
for a discussion of the role of Human Resources in this effort.) And along
the way we reintroduce, for the benefit of non-engineers (certainly a
majority among today’s developers and security practitioners) certain
well-understood engineering principles, such as feedback loops and fidelity
tests, into the battle. It’s a fertile field—a frontier, really: an area of tech-
nical ground left unplowed because as a community of technologists we
have not sufficiently considered the two disciplines of development and IT
security together.

Moving Targets Are Harder to Hit

Much has changed while we wrote this book. Cloud computing has entered
the scene in a massive way, as has mobile. When we started the book,
Ken was carrying around one of those dreadful little “smart” phones
with a physical keyboard. And then, along came a little company from
Cupertino and one from Palo Alto that redefined mobile computing and
forever changed the status quo.

These changes have had a huge impact not only on the computing
world, but also on our project. A moving target is always harder to hit.
But, in another and very real sense, they’ve underscored the need for such
a book. We see small teams of “agile” developers these days diving into
projects with sometimes reckless abandon, in search of the next great app.
Although this innovation should be embraced and encouraged, we’re also
cautious when it comes at the expense of making some dreadful security
mistakes.

One of the subgoals of this book is to help a new generation of soft-
ware developers and IT security professionals avoid some of the horrible
mistakes we’ve personally witnessed over the years.

9780321604118_Book 1.indb xiv9780321604118_Book 1.indb xiv 11/11/14 11:36 AM11/11/14 11:36 AM

Preface xv

Origins, Authors, Credentials

This book began over six years ago, in early 2008, with an observation
by Ken van Wyk. A principal in a successful security consulting and train-
ing company, Ken had noticed an unaddressed need while conducting his
“Secure Coding” classes for application developers around the world.
Although his students were generally highly skilled at programming, and
quickly acquired the technical defensive coding and diagnostic techniques
he taught, the nature of “the threat” (and the tricks and mindsets of at-
tackers) involved mostly new concepts. This lacuna hampered the ability of
some students to anticipate what an attacker would do. At the same time,
in conversations with enterprise security practitioners at some of the same
companies he was teaching at, he found that some of the canniest firewall
gurus lacked a basic grounding in programming beyond, say, some familiar-
ity with scripting languages, but not higher level programming languages.
These same gurus were often frustrated with developers who “didn’t get it”
when the topic was enterprise security, while they themselves often lacked
familiarity with the “business logic” that was a prime mover on the devel-
opment side of the house. As an old hand in the network security game,
Ken saw that a yawning communications gap had opened in the field over
the decades he had been working in it.

Ken approached Mark Graff, with whom he had previously collab-
orated on the successful tome Secure Coding (O’Reilly, 2003), and pro-
posed writing a new book that would try to bring the two diverging fields
back together. The working title was Confluence. Together Mark and Ken
worked up a draft outline and successfully pitched the book to their first-
choice publisher, Addison-Wesley.

We’ll fast-forward the story here, to the point in 2011 when the two
original authors realized they needed help if the project was ever going to
make the bookstores (or web sites). After a round of recruiting (employing
SC-L, the “Secure Coding” website inspired by the book and managed by
Ken) and a diligent interview process, two new authors joined the proj-
ect. Dan Peters (from a large security vendor) and Dr. Diana Burley (from
George Washington University) filled out the team, supplying a critical mix
of technical and field expertise, strategic thinking, academic precision, and
a critical mass of time and energy.

9780321604118_Book 1.indb xv9780321604118_Book 1.indb xv 11/11/14 11:36 AM11/11/14 11:36 AM

xvi Preface

Your four authors combine for about a century of experience in pro-
gramming, engineering, education, communications, entrepreneurship,
management, and security architecture. Our collaborative product exam-
ines each of these practices in the light of “confluence,” the flowing together
of heretofore divergent disciplines. Let’s take a look.

Contents

 We have arranged topics in this book in a logical order that roughly fol-
lows the high-level stages of a classic programming project, and chapter list
below reflects that ordering. So after we take a detailed look in Chapter 1,
“Introduction to the Problem,” at the problem we are trying to solve—the
divergence of technical streams that ought to be collaborating—we move
into our own little development life cycle with Chapter 2, “Project
Inception.” While examining confluent design, implementation, testing,
deployment, and maintenance, your authors illustrate various points in
terms of real-world experience and provide a running example. Wrapping
up, we recapitulate the material slightly from a new, integrated point of
view, showing how a Chief Information Security Officer at a hypothetical
company might undertake to put all the disparate pieces into motion to
produce a confluent enterprise.

Chapter 1: Introduction to the Problem

Chapter 2: Project Inception

Chapter 3: Design Activities

Chapter 4: Implementation Activities

Chapter 5: Testing Activities

Chapter 6: Deployment and Integration

Chapter 7: Operating Software Securely

Chapter 8: Maintaining Software Securely

Chapter 9: The View from the Center

Generally, of course, we recommend that you read the chapters in order.
This is a narrative analysis, not a technical compendium. We provide tech-
nical snippets, but mainly what we offer is argument and advice. And al-
though we would be delighted to find that readers find a particular excerpt
especially pertinent to their requirements, we have tried our best to write a

9780321604118_Book 1.indb xvi9780321604118_Book 1.indb xvi 11/11/14 11:36 AM11/11/14 11:36 AM

Preface xvii

book that can profitably be read in its entirety. It is our testament, in a way:
an attempt to shine a light along a path we think leads to a safer and more
resilient online world.

Summing Up

All these years have been a long time to write a book. We stuck with it be-
cause we think that there has been a bit of a wrong turn in the evolution of
information security. We find ourselves in a cul-de-sac, but we think we see
a way out. We hope you will agree. Let’s get to it!

9780321604118_Book 1.indb xvii9780321604118_Book 1.indb xvii 11/11/14 11:36 AM11/11/14 11:36 AM

This page intentionally left blank

This page intentionally left blank

71

Design Activities

3

L et’s get down to business by diving into some specific things we can
accomplish together in our software development efforts. Design is a

great starting point. Even for those of you following various agile (or other
nonwaterfall) development methodologies, there’s always some thought (if
not documentation) given to the design aspects of a software project. As
such, we’re going to take a look at “design” in a general sense and include
some aspects that you might or might not consider to be design work per
se. These include requirements and specifications. And again, even agile
practitioners should find value in these discussions.

But let’s start with laying some foundations of what can and should
be achieved—from a security standpoint of course—while we’re designing
our project. We know that a perfectly coded but poorly designed appli-
cation can end up having egregious security defects. Perhaps more to
the point, having an exceptionally clear picture of the application before
implementing it, at least fully, can only serve to help. We realize that this

Inception ImplementationDesign Testing Deployment Operation Maintenance

9780321604118_Book 1.indb 719780321604118_Book 1.indb 71 11/11/14 11:36 AM11/11/14 11:36 AM

72 Chapter 3 Design Activities

concept smacks in the face of some development practices, most notably
the family of agile development techniques. At the same time, we also sup-
port the notion of prototyping portions of code in order to better develop
and understand the design itself. Such prototyping can take many forms,
from rudimentary software, to wireframes, to notecard interactions with
co-developers.

We discuss here two different categories of things to consider: positive
practices to follow, and reviewing an existing design for security defects.
Both of these are important to consider, but they’re also very different in
how we’ll approach them.

Security Tiers

Before we proceed, though, we want to introduce a concept here; we refer
to it as security tiers. We think it’s useful to consider at least three tiers of
security readiness as defined shortly. Note that we’re in no way trying to
define a maturity model here; it’s simply worthwhile to consider a few secu-
rity tiers, which will help steer us in the right direction as we proceed. Also,
some projects might deem a low tier of security to be quite adequate, even
when developed by teams that are highly mature in their software security
practices. Thus, these security tiers refer to the state of the end product, not
the maturity of the development team per se.

We’re also not referring here to identity realms like one might find with
single sign-on and other identity management solutions. In those situa-
tions, one has to pay close attention to transitive trust models in which
an intruder can gain access to a user’s session in a low state and use those
shared credentials to breach a higher security state.

No, our concept here of security tiers is simply one of readiness within
a single system. We believe that the concept is useful particularly at a design
level to decide what security solutions to include and how to include them
within an application system, whether it be simple or highly complex.

With that in mind, we’ll keep the tier definitions to a simple low,
medium, and high here and define them as shown in Table 3.1.

9780321604118_Book 1.indb 729780321604118_Book 1.indb 72 11/11/14 11:36 AM11/11/14 11:36 AM

Security Tiers 73

Table 3.1 Tier Definitions

Tier Definition

Low We think of low level here as meeting a bare minimum set of security
standards for secure software. Basically, software written to this level
ought to be able to withstand attacks such as those discussed in
Chapter 1, but not necessarily contain any more security functionality
per se. This is, of course, in addition to meeting its normal functional
requirements.

Medium At a medium tier, software not only should be able to withstand attacks,
but should also be reporting and alerting security personnel appropri-
ately about the nature of the attacks. (Of course, care must be taken to
ensure that the event logs can never be used as a means of attack, such
as XSS.)

High At this level, our software can withstand attacks, report problems to
security personnel, and be able to programmatically take evasive maneu-
vers against its attackers. The evasive maneuvers might include simple
account locking (with due care to prevent intentional denial of service),
user data encryption, recording of intruder information to be used as
evidence, and myriad other activities. We think of this tier as a highly
desirable state, particularly for enterprise software conducting substantial
and valuable business.

These tiers will serve as a simple but fundamental basis for discuss-
ing different things that the development team and the security team can
concentrate on during a project’s design. Naturally, we’ll see them again in
subsequent chapters.

It’s also worthwhile emphasizing that the low tier is at or above much
of today’s software in and of itself, because so much of what’s running
today is unable to withstand even relatively basic attacks.

We should also briefly talk about the rationale for having tiers in the
first place. To illustrate our reasoning, let’s use a common attack like cross-
site scripting (commonly called XSS). For the sake of this discussion, let’s
assume that our application contains a customer registration form page
that prompts the user for his name, street address, email address, and so on.
Now, along comes an attacker who attempts to enter some maliciously con-
structed XSS data into one or more of the fields of our registration form.

If our software has been written to the low tier described previously,
it would prevent the XSS data from causing any damage. The <script>

9780321604118_Book 1.indb 739780321604118_Book 1.indb 73 11/11/14 11:36 AM11/11/14 11:36 AM

74 Chapter 3 Design Activities

information will be stopped and the user typically be asked to reenter the
malformed data. Perhaps this would even happen in the client browser by
way of some JavaScript input validation.

However, in an enterprise computing environment, we might want
our software to do something more. After all, a street address containing
<script>alert(document.cookie)</script> (or some far more dan-
gerous scripting nastiness) can only be an attempt to attack our software
and not a legitimate street address. Particularly if our application’s con-
text is a business processing system, merely stopping an attack is just not
adequate.

For a business system, we’d no doubt want to provide some infor-
mation logging for our security team to look at, perhaps by means of
an existing enterprise intrusion detection and monitoring infrastructure.
That’s where the medium tier comes in. Here, we’d make use of the security
monitoring capabilities to provide useful, actionable business data to the
security team. We’ll discuss what sorts of things should be logged later in
this chapter, as well as in Chapter 6, “Deployment and Integration,” but
for now, suffice it to say that we’d want the security team to have the data
they’d need in order to take some appropriate administrative action against
the application user.

And in some contexts, we might still want to take this concept further.
When we detect a clear attack like the one in this scenario, we might want
to have our software itself take some evasive actions. These might include
locking the offending user’s account, scrubbing the user’s account of any
privacy information, and so forth.

This scenario helps put in context how and why you might consider
designing and writing a particular piece of software for an appropriate
security tier. And, more to the point here, it’s vital to start thinking about
how you’ll design these things into your software as early in the process as
possible.

A great starting point when you’re getting started down this path is
to consult with your local IT security team and/or your incident response
team. Since they are ultimately the “consumers” of the security components
of an application, they absolutely need to be included in this process. For
example, the contents of the logging information (tier 2) should be delib-
erately generated to support the incident response process. The type of
information needed by a CSIRT (computer security incident response team)
tends to be significantly different than traditional debugging logs, because

9780321604118_Book 1.indb 749780321604118_Book 1.indb 74 11/11/14 11:36 AM11/11/14 11:36 AM

Security Tiers 75

it must include business-relevant data to find and catch an intruder. The
principal purpose of debugging logs, on the other hand, is for developers to
find and remove software bugs from a system.

It turns out that many of the decisions we make at this early design
stage of a project, irrespective of any software development life cycle
(SDLC) methodology we’re following, have long-reaching ramifications
from a security standpoint. For example, it might seem like a good idea to
design and build some input validation all the way out at the application
client code—perhaps for simplicity or to unburden the server with these
seemingly trivial operations. Even though we know that client-side valida-
tion can be trivially bypassed, there are significant usability factors involved
that might persuade us to do some of the input validation there—and then
validate the data again on the server. For that matter, the server must never
presume the client to be free of tampering. Quite the contrary, the design
team and hence, the server itself must always assume the client can and
will be tampered with. The client side code, after all, resides and executes
entirely outside of the server’s realm of control.

Software Development Life Cycle Methodologies

Software Development Life Cycle, or SDLC, methodologies prescribe the way software

systems progress from conception to operation stage. There are multiple variations

of these methodologies, ranging from very strict and formal waterfall-based models

to extremely flexible and loosely organized agile variations. A new acronym, SSDLC

(sometimes called sSDLC or SSDLC), has been created to refer to Secure SDLC, striving

to explain how to transform normal product development life cycle to produce more

secure outcome. (We should point out, in passing, that Microsoft calls its SSDLC

process the Secure Development Lifecycle (SDL).)

In some business contexts, however, this approach might not be what
we want and need. In particular, if a user does attempt to attack our cli-
ent code, we’ve by design eliminated our ability to detect the attack and
respond appropriately.

On the other hand, if we design the security mechanisms into the core
of our software, we stand a significantly better chance of not only detecting
an attempted attack, but being able to properly log what has taken place

9780321604118_Book 1.indb 759780321604118_Book 1.indb 75 11/11/14 11:36 AM11/11/14 11:36 AM

76 Chapter 3 Design Activities

and to potentially take evasive action. We can choose, for example, to lock
a user’s account if the user has attempted to break our software. (In fact,
this response might well even be mandated by the IT security or compliance
team.) If that response is programmed in, procedures must be in place to
review the triggering actions along with authenticating a user requesting
that an account be unlocked. Consider the case when an attacker purposely
triggers the locking of the enterprise’s CFO’s account. The CFO is going to
want to get back into the system, but how do you verify that the requester
is the CFO when he is yelling at you, and what if the actions were the
CFO’s and the logs indicate some insider financial manipulation?

All of these things are possible and feasible, but our design decisions
can have a tremendous impact on how or whether we go about doing them.
For this reason, we need to carefully consider our security design and make
consistent architectural decisions that will properly support our business
needs later.

On Confluence

In larger organizations one would expect to find more specialization, which
is also true for security folks. Today, in our experience, one often finds IT
security practitioners in large shops who elected that specialty early in their
careers, and have little or no background in application design and coding.
They are likely to be well versed in the latest attacks, and can be experts in
setting parameters for firewalls and similar devices, and interpreting the log
files. But several fine network security engineers of our acquaintance have
no programming skills at all, whereas many others feel they are doing well
to cobble together a functional PERL script to manipulate log files. This is
the state of the practice today, and one of the drivers behind the need for
confluence.

As we’ve said previously, one of the many key elements of success in
addressing security issues properly from the beginning is confluence among
the development and security teams. To be sure, many other stakeholders
need to be included in the process as well, but none so clearly and com-
prehensively as these two. The overall process of teams and stakeholders’
selection and considerations for doing it are explained in Chapter 2, “Proj-
ect Inception.” The thinking and consideration that should go into design-
ing a business application are clear examples and opportunities of this
confluence.

9780321604118_Book 1.indb 769780321604118_Book 1.indb 76 11/11/14 11:36 AM11/11/14 11:36 AM

On Confluence 77

Microsoft’s SDL process stresses this concept in a different way. Their
cornerstones include both a Software Security Group (SSG) and people in
a security advisor (SA) role, who act as the primary point of contact for all
things security in product development. Note that, organizationally, SAs
can belong either to the SSG or to the development organization, but work
very closely with the security professionals. As such, they are advocates for
the developers, not part of review or audit process that might at times be
viewed as an adversarial role. We wholeheartedly support this concept and
further believe it to be a vital success factor for developing a secure appli-
cation system. Existence of such a formal security structure also helps with
obtaining a senior management’s mandate for following SDL practices and
enforcing it consistently at all stages of product life cycle, because grass-
roots efforts often do not work well with security.

Key Responsibilities of the SA Role

The key responsibilities of the SA role include the following:

• Acting as a point of contact between the development team and the security

team

• Holding SDL-related meetings for the development team

• Holding threat-model and design reviews with the development team

• Educating the development team on threats and best practices

• Analyzing and triaging security-related and privacy-related bugs

• Acting as a security sounding board for the development team

• Advising the development team on enterprise code guidelines, libraries,

APIs, etc.

• Preparing the development team for security reviews and assessments

• Interacting with the information security team regarding CSIRT, monitoring,

and other processes

We make it a point to describe key collaborative opportunities through-
out this book, but perhaps the most important aspect of this exists here
during the design process. No matter how rigorously your team engages
in design activities, you’re more than likely to be successful if you’re able
to reach out to all the stakeholders and include them as active participants
in the design process. Having said that, care should be taken to clearly set
roles and responsibilities, in order to prevent a “too many cooks in the

9780321604118_Book 1.indb 779780321604118_Book 1.indb 77 11/11/14 11:36 AM11/11/14 11:36 AM

78 Chapter 3 Design Activities

kitchen” sort of situation. It is one thing to reach out to a stakeholder and
solicit input; that is completely different than handing the helm over to the
stakeholder.

In our experience, we’ve often found design review processes in which
various stakeholders are included, but more often than not, the gating
functions have been primarily business related and not security related. For
example, can the application be developed within budget? Will it be deliv-
ered on time? Is the expense justifiable? Although this is all good and essen-
tial to do, we feel that security concerns need to also be included as early as
possible, and that means including the security stakeholders in the process.

Requirements

Although many software developers these days eschew the practice of
formally gathering and documenting their software requirements, there are
many things worth considering at this earliest stage of development. Even
if this is done only at an informal or “whiteboard” level, it can significantly
help the team in understanding and capturing a project’s security needs in
addition to its functional needs.

We’ll describe these considerations and steps here in several areas:
abuse cases, regulatory requirements, and security requirements. Later,
we will consider these requirements together with the security tiers we
described earlier in the chapter. All these will come together as we discuss
the topic of secure designs later in this chapter. Although the overall process
is described as a team exercise, the role of the SA is extremely important
throughout these activities, because he or she serves as both an anchor and
a guiding force for all the participants.

Abuse Case Analyses

To start with, although abuse case analyses had been used in various ways
for some time, McGraw’s Software Security: Building Security In1 provides
us with one useful description of abuse case analysis. In essence, abuse case
analysis looks at the intended functionality of a piece of software and seeks
ways in which the software can be misused for evil purposes. As such, it
is a review-based process to help us ensure that we’re not building some-
thing that can be used to cause harm. That said, abuse case analysis can be
a powerful means of finding problems with a project before it ever begins.

9780321604118_Book 1.indb 789780321604118_Book 1.indb 78 11/11/14 11:36 AM11/11/14 11:36 AM

Requirements 79

If the software will likely be misused or abused in a way the owner really
does not want to happen, it is a serious problem.

Let’s illustrate this with an example. Suppose you’re the engineering
team leader of your company’s customer-facing web presence. One day,
the vice president of marketing walks into your office and asks you to add
a new feature to the web application: a mechanism for customers to sub-
scribe to a new monthly newsletter the marketing department is launching.
Simple enough; you can add a basic web form that asks the customers for
their email address and perhaps some other contact data. After you have
the information, you simply add the incoming addresses into a database of
customers who receive the newsletter. All done? What could go wrong with
this scenario? After all, all the functionality that the VP asked for is now
complete, right?

Although it’s true that this scenario fulfills all the functional require-
ments, there’s a big problem. You probably recognized immediately that
anyone could enter a “customer’s” information and have her added to the
subscription list. That’s an abuse case. Heck, someone who really wanted
to disrupt us could write a short script that would submit thousands or
millions of addresses into our database if we’re not careful. That’s another
abuse case, and one with obvious and really bad consequences. Now, let’s
take that further, to its logical conclusion.

If we recognize the potential for abuse, we’d want to prevent that from
happening, naturally. A first step could be to add a security requirement
to the functional requirement that might say something like “only verified
email addresses may be added to the subscriber list.” It’s a good, actionable
requirement. Our development team might implement that by sending an
email confirmation to each address submitted for inclusion in the sub-
scriber list. Now are we done?

Not so fast. Let’s think a bit fiendishly here. If an email confirmation
goes to the (intended) subscribers and requires them to verify that they
want to be on the list, what could go wrong? Well, there’s still an abuse
case potential here. The mere act of sending out those confirmation emails
could be disruptive. If an attacker bombards our subscription mechanism
with fake but carefully chosen email addresses—say, at one of our key busi-
ness partners—what would happen if our system then sends thousands and
thousands of confirmation emails?

9780321604118_Book 1.indb 799780321604118_Book 1.indb 79 11/11/14 11:36 AM11/11/14 11:36 AM

80 Chapter 3 Design Activities

So it’s not enough to send out a confirmation email; we have to ensure
that our application is talking to a human, and not a script. There’s another
security requirement to consider. We note that CAPTCHAs are routinely
used to address this issue. (CAPTCHAs are automated tests used to verify
that a user is in fact a human. They usually show a distorted image of a
word or phrase that an artificial intelligence would be unable to recognize
but the user can read and enter correctly.) Nonetheless, let’s add a security
requirement such as “subscription requests may be issued only by human
users of the system.” See where this is going?

It’s always best to consider abuses such as the ones we’ve described
here before a system is rolled out into a production environment. But that
requires the development team to be able to really think fiendishly, ignoring
the mere functional requirements, and to consider how the system can be
abused. It has been our experience that this can be a difficult leap for many
developers. Security professionals, on the other hand, have been worrying
about abuses like this for decades, and thinking fiendishly comes naturally
to them. Invite them to participate.

In considering abuse cases, the following are some questions and
important areas of concern to consider for each application. These ques-
tions are similar to those we’ll address while doing a threat model, but let’s
consider them separately here while we ponder abuse cases.

➤ How?—Means and Capabilities

 • Automated versus manual

In our mailing list scenario given previously, we saw an automated
attack against a simple function. Often, designers consider a single
use case with blinders on when thinking about how an applica-
tion might be used. In doing this, they fail to see how the (usually
simple) act of automating the functionality can be used to wreak
significant havoc on a system, either by simply overwhelming it or
by inserting a mountain of garbage data into the application’s front
end. Never underestimate the determination of a while true do
{} block.

➤ Why?—Motivations and Goals

 • Insider trading

Automating a user interface into an application is in no way the
end of the myriad of ways an attacker can abuse an application.

9780321604118_Book 1.indb 809780321604118_Book 1.indb 80 11/11/14 11:36 AM11/11/14 11:36 AM

Requirements 81

Consider the human aspects of what an application will be capable
of doing, and what sorts of bad things a maliciously minded person
might be able to make of those capabilities. Insider trading should
be a significant concern, particularly in publicly traded companies.
Automation is, after all, a double-edged sword of sorts. We not
only are automating a business function, but also might well be
inadvertently automating a means for someone to attack a business
function.

 • Personal gain

Similarly, look for avenues of personal gain in an application. Ask
whether a user of the application could use the information to
“play” the stock market, for example, in a publicly traded company.
This can be a significant concern in major business applications in
enterprise environments.

 • Information harvesting

Here, we look for opportunities for an authorized application user
to gather—perhaps very slowly over time—information from an
application and use that information for bad purposes. A prime
example could include a customer database that contains informa-
tion on celebrity or otherwise VIP customers, such as a patient data-
base in a hospital where the VIP has been treated. That information
could be very valuable on the black market or if sold to the media.

 • Espionage

Although several of these issues overlap significantly, it’s useful to
consider them separately. Espionage, whether corporate or other-
wise, could well be simply a case of information harvesting, but it’s
still worthy of separate consideration. Consider not just information
like the celebrity database, but also company proprietary informa-
tion and how it could be collected and sold/given to a competitor.
What opportunities does the application being analyzed offer up to
a user who might be persuaded to do such a thing?

9780321604118_Book 1.indb 819780321604118_Book 1.indb 81 11/11/14 11:36 AM11/11/14 11:36 AM

82 Chapter 3 Design Activities

 • Sabotage

Even in the best of economic climates, you’ll occasionally find
disgruntled employees who are bent on damaging a company for
all manner of reasons. Their actions might be clear and unambig-
uously malicious—such as deleting files or destroying records in a
company database—but they might also be more subtle and diffi-
cult to detect. Consider how a malicious-minded application user
might be able to harm the company by sabotaging components in
an application.

 • Theft

This one is sort of a catchall for things that weren’t brought up in
the previous ones, but it’s worthwhile considering general theft at
this point. Credit card account information is a prime candidate
here.

Now, it’s quite likely a software developer will look at a list like this
and throw her arms up in the air in frustration, thinking it’s not feasible to
brainstorm something like this comprehensively. After all, it is fundamen-
tally an example of negative validation, which we generally seek to avoid at
all costs. Although that’s true, there’s still significant merit in doing abuse
case analysis. Of course, the secret to getting it right is to do it collabora-
tively with some folks who are practiced at this sort of thing—like, say, the
information security team.

It is also a good idea to consider separately the likelihood of an attack
and the impact of a successful attack. These two things are quite differ-
ent and bear separate analysis. Impacts can be imagined or brainstormed
quite effectively, whereas likelihood can be more deeply analyzed, or even
quantified.

Here’s how the collaborative approach can work for analyzing abuse
cases. After you’ve gathered a basic understanding of the functional goals
of your project, invite a few key folks to take a look at the project and
“throw stones” at it. You will want to ensure that all the interested parties
are at the meeting; these should include at a minimum the business pro-
cess owner, the design team, the information security team and/or incident
response team, and the regulatory compliance monitoring team.

9780321604118_Book 1.indb 829780321604118_Book 1.indb 82 11/11/14 11:36 AM11/11/14 11:36 AM

Requirements 83

Tips on Conducting a Successful Abuse Case Study

To set the stage for considering abuse cases, consider holding a meeting among the

key stakeholders: business owner (representative), IT security and/or CSIRT, security

architecture, and developers. Before the meeting, be sure to distribute some basic

design information about the application being considered. (But still bring copies of

these documents to the meeting, just in case anyone “forgot” his copy.) This can be

fairly high level at this point, but it must include a list of the business requirements and

a graphic visualization of how the application should function, along with some basic

narrative descriptions of the application’s components and what they do. Data flow

diagrams can be useful here as well.

At the meeting, carefully introduce the purpose of the meeting to all the partici-

pants. Emphasize that you are only looking for misuse or abuse cases at this time. Your

participants will invariably head down the SQLi or XSS path, but steer them back and

focus exclusively on how the application’s core functionality could be abused.

To catalyze constructive discussion, orally describe the application’s functions

through its phases: startup, production (including transactions, queries, or whatever

else the application does), and how it shuts down. Next describe the normal use cases

of each class of application user, emphasizing the types of information each user can

access and what functionality she is presented with in the application.

You should be seeking areas of debate at this point. Seek questions like “What’s to

prevent a user from copying all the customer records off to removable media?” When

these questions come up, explore them, and be sure to keep the discussions civil and

focused.

At this point, the best way to proceed is to describe the project to the
assembled group. Discuss how the system will function and what services
it will provide. You should be sure to list any existing security requirements
that are already understood. At this point, run through a brainstorming
session to collect any and all concerns that come up. The most important
thing is to discuss the issues and enable—encourage even—the team to be
as harsh as possible.

Take each security concern the group raises to its logical conclusion,
and be sure to understand each one in detail. Make a list, for example, of
any preconditions that would need to exist for an attack to be successful.
So if an attack would need direct access to a server console, make sure
that’s clearly annotated in the list of issues the group comes up with.

9780321604118_Book 1.indb 839780321604118_Book 1.indb 83 11/11/14 11:36 AM11/11/14 11:36 AM

84 Chapter 3 Design Activities

Next, take the list of issues and rigorously consider what security
requirements could be added or enhanced to prevent the underlying cause
from being exploitable. If an issue is not avoidable, consider security
requirements that would enhance the ability to detect an attack if it does
take place. A security requirement such as “all access to the application
will be logged, with all user actions being recorded and monitored” can be
useful, for example, in such situations.

It’s also helpful to watch out for some common pitfalls with abuse case
analysis. First and foremost, this process must be finite and has a clearly
defined stopping point—which should be clearly communicated from the
beginning to all participants. Any time you put a bunch of technical-minded
folks together in a room, you’re never guaranteed the outcome you expect.
Engineers have a near-overwhelming inclination to digress in ways you
can’t begin to fathom. Abuse case analysis is no exception to this. Expect
them to discuss low-level technical details such as buffer overflows, cross-
site scripting, and a myriad of other things that just aren’t relevant at this
stage.

To get value out of abuse case analysis, it is absolutely vital to facilitate
and guide the brainstorming process carefully but firmly.

Asset Inventory

We’ve also found it useful to start at this point to generate an inventory of
the sensitive assets the system will need access to. This inventory should
include such things as customer records, passwords, and encryption keys,
as well as the high-value functions in the application. If applicable, consider
prioritizing the inventory in terms of value to the company. Although a
large enterprise might have to set up a large corporate project to identify
key assets (a customer database, for example), security-conscious folks in
smaller places will have their arms around those assets all the time.

In the Microsoft SDL approach,2 they describe a process called threat
modeling. An asset inventory is absolutely vital to doing threat model-
ing, but it’s not the same thing. We’re trying to articulate here a very clear
understanding of everything of value in our application. In other words,
what are the targets an attacker is most likely to go after? If we can build a
solid understanding of what the targets are and prioritize them in a relative
manner (say, low, medium, and high business value, recognizing that one
company’s “low” could well be another company’s “high” and so forth),

9780321604118_Book 1.indb 849780321604118_Book 1.indb 84 11/11/14 11:36 AM11/11/14 11:36 AM

Requirements 85

then we can also understand what can and should be protected, and how
much effort we should put into protecting each.

As we said previously, an application’s assets can include important
data, but also functions. For example, many applications have an identifi-
cation and authentication mechanism. Since these are by nature accessible
to unknown attackers, they almost always should be included as high-value
targets in an asset inventory. That will help us later in allocating the neces-
sary resources for reviewing and testing those modules.

Now, although developing an asset inventory isn’t something that can
or must be done during a requirements process per se, it’s still a good idea
to start thinking (and documenting) this as early as possible. Microsoft’s
SDL process starts this step early as well.

Regulatory Requirements

Next, we should consider the security-related regulatory requirements that
our software is going to have to operate under. In many industries today,
our business systems are required to conform to myriad security laws and
guidelines. This is particularly true in publicly traded companies as well as
certain highly regulated industry sectors such as financial and insurance
services, pharmaceutical and healthcare, and public utility companies.

Additionally, companies that operate internationally might have
country-specific regulatory and privacy requirements to comply with.
Naturally, this can greatly complicate the security requirements process. In
some cases, the application itself might need to operate differently based on
where the customer, employee, or other user is located.

And especially in these extremely complex environments, it is com-
monplace these days to find corporate-level compliance officers or at least
a compliance monitoring team. Often, the compliance team will organiza-
tionally fall under the CIO, COO, Audit, or even General Counsel’s office.

Step number one in this part of the design process is to seek out the
person or department in charge of compliance monitoring and engage him
or her in the process. As a starting point, specifically look for issues such as
the following:

 • Data or information that needs to be protected for privacy

Many business systems are required to safeguard the privacy of
customer data, Social Security numbers, credit card numbers, and so
on. These are vital to the security of the application, and the sooner

9780321604118_Book 1.indb 859780321604118_Book 1.indb 85 11/11/14 11:36 AM11/11/14 11:36 AM

86 Chapter 3 Design Activities

the development team is explicitly aware of the requirements, the
better off everyone will be. Find out the specific privacy issues for
each data element. In some circumstances, it might also be useful to
consider privacy requirements for various markets, even if a prod-
uct isn’t (yet) marketed in some of those markets. Considering those
requirements now might well save us substantial grief later, should
the company decide to expand into those markets.

 • Data retention requirements

Several U.S. Government bureaucracies—and no doubt many
others—have stringent requirements on data retention, covering
things such things as email and transaction records. It is important
to gather all of these requirements and investigate how the applica-
tion itself can help support them, instead of simply dismissing them
to the data center staff to implement. As an example, consider the
data retention requirement the Securities and Exchange Commission
in the U.S. imposes on broker-dealers. It’s called “Rule 17a-4,” and
it dictates that certain records (trade blotters, order tickets, trade
confirmations, and much more) be preserved in nonrewritable and
non-erasable format for specified periods. For “communications
that relate to the broker-dealer’s business as such,” the retention
requirement is three years.3 If your app will operate in a regulated
environment, we recommend you get expert help to ensure that you
facilitate appropriate data retention.

 • Data or processes that require special reporting

Many security regulations have explicit requirements for reporting
particular types of data access and such. Credit card transactions,
for example, might be required to be logged (but not with custom-
er-sensitive information in the logs) under the Payment Card Indus-
try Data Security Standards (PCI-DSS) requirements. There might
well also be breach reporting requirements for many applications
and the jurisdictions in which they operate.

 • Entity identification or authentication requirements

Some sensitive application environments are required to meet
minimum standards for strong user and/or entity identification and
authentication. PCI-DSS again provides us with ample examples,

9780321604118_Book 1.indb 869780321604118_Book 1.indb 86 11/11/14 11:36 AM11/11/14 11:36 AM

Requirements 87

such as in Requirement 8.3, which says, “Incorporate two-factor
authentication for remote access (network-level access originating
from outside the network) to the network by employees, adminis-
trators, and third parties.” Portugal’s Digital Signature of Invoices
law represents another example of Entity Identification require-
ment; it attempts, among other things, to bind invoice documents to
the software that was used to create it.

 • Access control requirements

Sensitive data or functions within an application can require addi-
tional access controls for read and/or write access. These are often
designated in industry requirements such as PCI-DSS once again.
PCI-DSS Requirement 7 states, “Restrict access to cardholder data
by business need to know.”

 • Encryption requirements

In addition to access control, many sensitive data elements need
additional privacy and integrity protection using cryptographic
controls. PCI-DSS 8.4, for example, tells us, “Render all passwords
unreadable during transmission and storage on all system compo-
nents using strong cryptography.” Note here two things: that the
requirement covers passwords while both at rest and in transit,
and that it leaves open significant options in how to implement the
standard, even though it does define “strong cryptography” in the
document. It is nonetheless actionable and exactly the sort of secu-
rity requirement we should be looking for. Further, it is the sort of
requirement that can and should evolve with time, as cryptographic
algorithms are retired, new practices discovered, and so on.

 • Change-management requirements

Many highly regulated industries, such as the pharmaceutical and
healthcare sector in the U.S., have rigorous requirements for change
management of production business data processing systems. Even
though change management is not something that a software devel-
oper always has a direct role in, it is still important to be aware of
these requirements and to adapt the software practices to fit into
them. One exception here regarding change management has to do
with source code repositories. Strong access control for both “read

9780321604118_Book 1.indb 879780321604118_Book 1.indb 87 11/11/14 11:36 AM11/11/14 11:36 AM

88 Chapter 3 Design Activities

only” and “read write” permissions in a source repository should
be emphasized, even if only to safeguard things like comments in
source code containing sensitive information about a project. The
same holds true for a project’s bug tracking system.

It would be easy to assume that some of the topics in the preceding list
are “someone else’s job” and thus outside of the scope of the development
team’s efforts, but that would be unfortunate. Although some of these
topics are in fact someone else’s responsibility, in order to be effective, there
must be a clear interface between them and the application itself. The more
cohesive the bond between these requirements and the development team’s
efforts, the better the end product will be. Put another way, it should be
clear by now that there are many stakeholders in the overall security of a
typical business application, and they should all be consulted and included
in the planning and implementation.

Security Requirements

In the preceding section, we discussed regulatory requirements. These tend
to be driven by governments, industries, or other standards bodies—but
nevertheless external to the company that develops or owns the software.
Let’s now focus on some internal requirement issues.

From the development team’s perspective, the thought process to go
through is largely similar: Seek out the appropriate stakeholders and engage
them in the process to find out what their security requirements are. The
primary difference is the stakeholders themselves. Whereas we looked to
the compliance team previously, now we should be looking at the internal
information security group directly in this part of the process.

In looking internally for security requirements, there is another place to
take a look at as well: internal security standards. Much like their govern-
ment and industry counterparts, internal standards will often include
requirements for such common security mechanisms as authentication,
passwords, and encryption. Although they are typically more detail-
oriented, quite often they fall short of being truly actionable, but they’re
still a good place to start looking.

The sorts of things to look for at this point include the following:

 • Identification and authentication requirements

Many large corporations have application security policies and
guidelines that include identification and authentication. Some go

9780321604118_Book 1.indb 889780321604118_Book 1.indb 88 11/11/14 11:36 AM11/11/14 11:36 AM

Requirements 89

so far as to designate tiers of sensitivity for applications—
generally three to five levels of security, such as “level 1: customer
data,” “level 2: company proprietary information,” and “level 3:
public information.” Note: These levels are for illustrative purposes.
It is often the case, for example, that customer data covers multiple
data types and corresponding sensitivities. Password and authen-
tication factor guidelines are also commonly found. They’ll typi-
cally include minimum length, frequency of password changes, and
character set requirements for all passwords and such, along with
any multifactor authentication requirements for the most sensitive
applications. It is not uncommon for a company’s internal security
standards or policies to prescribe specific guidelines for proper
credentials storage, specifying certain hashing and/or encryption
algorithms and when those should be applicable. The development
team must follow these guidelines if they exist. If they don’t, now is
a good time to define them for this project and those in the future.

 • Event-logging requirements

Despite the fact that many enterprise data centers have existing
architectures in place for centralized event logging, it has been
our experience that most event logging actually takes place at the
operating system and web/app-server level. That is, we’ve rarely
seen application-level logging that is truly adequate for the inci-
dent responders to properly do their jobs. We’ll discuss this topic
in much more detail later, as part of Chapter 6, but for now, let’s
at least ensure that the development team is fully aware of any and
all event-logging requirements and infrastructures that are in place.
We say this in the plural because many enterprise environments log
both operational and security event data, and they often separate
those two types of logs quite substantially.

 • Disaster recovery and business continuity requirements

Most large enterprises do significant disaster recovery and business
continuity (“DR/BC”) planning these days. Although much of this
has to do with natural disasters such as hurricanes, floods, fires,
and earthquakes, it is still important to engage in conversation with
the folks doing this planning. In particular, look for requirements
around alternative data centers (or hosting services, and so on)
and other contingency planning in order to understand how your

9780321604118_Book 1.indb 899780321604118_Book 1.indb 89 11/11/14 11:36 AM11/11/14 11:36 AM

90 Chapter 3 Design Activities

application will be able to support that type of requirement. The
plans often include requirements for rotating to alternative “hot”
or “warm” data centers with specific minimum downtime require-
ments and such. These things are often considered outside the direct
scope of the application development process, but it is important
to have at least a minimum understanding of the requirements.
There might well be, for example, requirements to be able to have
an application seamlessly, without downtime, of course, switch to
different event logging or other infrastructure servers. These can
have a significant impact on how the development team designs and
implements many such configuration settings.

 • Incident response requirements

Increasingly, corporations have in place incident response teams,
either in-house or outsourced. These teams are generally faced with
one or more of the following challenges when an incident occurs:
diagnose the problem, contain and/or stop the incident, investigate
(or support the investigation of) an incident, or perform a damage
assessment after an incident has taken place. In pretty much every
case, the common denominator and the “lifeblood” of the incident
response teams is having a clear and accurate situational awareness
of what is going on or what did go on inside the affected business
application. This invariably leads to event logging.

Now, although we’ve already raised the event-logging requirements
previously, incident response requirements can be quite different
from ordinary event logging. For example, the incident response
team often has a need to capture and store log data and maintain
a chain of evidence so that the information will subsequently be
useful in a court of law. They also often need to assemble from
disparate information sources a clear picture and timeline of what
an attacker did (or attempted to do) during an incident, which
requires log data to be rather detailed across all the components
and layers of a complex business application. This can be a daunt-
ing task under the best of circumstances. Timelines can be better
reconstructed if components generating log entries have synchro-
nized their times. “System time” policies are becoming even more

9780321604118_Book 1.indb 909780321604118_Book 1.indb 90 11/11/14 11:36 AM11/11/14 11:36 AM

Requirements 91

important as enterprises utilize distributed systems and cloud com-
puting environments spanning multiple time zones, and so on.

As such, it’s quite possible that the incident response team will have
quite a “wish list” of things they will need from your application
when doing their jobs. That wish list is generally borne from expe-
rience and operational need when it comes to performing their jobs
as rapidly as possible. In reality, their normal mode of operation is
to adapt to and to work with the information they have available,
but what better time to ensure that they’ll have what they need than
during the early phases of developing an application?

The best way to do this is to gather a clear understanding of the
incident response team’s use cases for how they will need to inter-
act with your application during an incident. Meet with them as
you would the business owner or user community to find out how
they’ll use your application.

 • Account management requirements

Another commonly set of functional and security requirements can
found in account management practices. Corporations often have
guidelines and policies for user and employee accounts, as well as
for third parties, contractors, consultants, and so on. Employee
accounts on enterprise applications might need to be synchro-
nized with employee records in the Human Resources department,
for example, to ensure that accounts for departing employees get
deactivated when an employee leaves the company. As you might
imagine, we’ve seen many mistakes made in this area over the years.
All too many business applications are written in the absence of any
means of verifying employment.

You’re likely to find several relevant stakeholders when it comes to
account management practices. You might find, for example, that
Human Resources can contribute substantially, in addition to the IT
Security department for their policies on opening and closing appli-
cation accounts. But don’t stop there. Even the incident response
team might be able to contribute with requirements for deactivating
accounts during incidents while maintaining their data for forensic
analysis or evidentiary purposes.

9780321604118_Book 1.indb 919780321604118_Book 1.indb 91 11/11/14 11:36 AM11/11/14 11:36 AM

92 Chapter 3 Design Activities

 • Access control requirements

In our experience, access control requirements for applications tend
to be rather superficial even in larger corporations. It’s not uncom-
mon, for example, to find access control statements that designate
user-class and administrator-class users of an application and what
they should be allowed or not allowed to do. However, it’s not
common to find access control requirements that go beyond these
simple one or two dimensions.

That might well be quite adequate for many applications, but it
still bears consideration at this early stage. Among other things,
it can open up a significant set of possibilities to have more rig-
orously defined role-based solutions for some more complicated
applications.

With that in mind, the most relevant stakeholder for gathering
access control requirements is most often the business process
owner—the person who is responsible for the business functional-
ity of the application itself. In talking with the business owner, it’s
important to listen for language that would lead you to need more
stringent access controls than simple user/administrator accesses.
Listen, for example, for language like “anyone in accounting should
be able to do ‘x’,” whereas “those in HR should be allowed to only
view the information, not change it.”

Irrespective of which departments and stakeholders are considered,
a well-designed access control system and policies should be based
on the venerable principle of least privilege.

 • Session management requirements

Session management is a big issue at a technology level for web-
based applications, but it’s still relevant for many other application
architectures as well. The sorts of things to look for with regard to
session management should include timeout periods for inactivity,
time-of-day restrictions, location restrictions, failover capabilities,
and so forth.

As with access control requirements, the most likely relevant stake-
holder for these issues tends to be the business owner. And the way
to approach the topic of session management requirements is to
seek use-case scenarios. (These might well already be defined, so be
sure to read up on what information has already been gathered.)

9780321604118_Book 1.indb 929780321604118_Book 1.indb 92 11/11/14 11:36 AM11/11/14 11:36 AM

Requirements 93

At a more technical level, there also might be company standards
or guidelines on how to implement session management in an
application, particularly if the application is web-based. Enterprise
data center environments often make use of either single sign-on
or other centralized authentication services and APIs, which are
equally important to be aware of and make use of when designing
an application.

Hopefully, these standards include security guidelines on such issues
as session fixation, safeguarding session cookies, and cookie con-
tents. Great care, too, should be taken in cookie generation. Per-
sistent cookies should be rigorously encrypted, for example. This
type of technical session management requirement is not at all likely
to come from the business owner, but rather the security team,
because these are things that often are discovered during security
reviews.

 • Encryption standards

Particularly in regulated industries, there are often policies for
encrypting sensitive data. Sometimes, these requirements don’t come
from external regulations, but from the security department directly.
At a bare minimum, it is important to find out what these stan-
dards are and to conform to them. Most often, the guidelines serve
to specify what encryption algorithms are acceptable for particular
types of application data. In most cases, they explicitly and strictly
ban any attempts to come up with “homemade” cryptographic
functions, requiring teams to rely on existing and vetted algorithms
and implementations instead. What is often missing in encryption
standards and requirements is detailed information on how the
entire crypto system should work, such as key generation and man-
agement. Those details are typically up to the developer, and great
care must be taken in how these things are done.

These standards are all important, of course, but we should point
out that there is still plenty of room to make mistakes. In our expe-
rience, far more encryption problems arise from poor key manage-
ment practices than from selecting algorithms that aren’t up to the
task—and very few encryption standards even address the topic of
how best to do key management.

9780321604118_Book 1.indb 939780321604118_Book 1.indb 93 11/11/14 11:36 AM11/11/14 11:36 AM

94 Chapter 3 Design Activities

Password storage is another topic that should be taken up in
encryption requirements. It is recommended that password storage
standards use a one-way hash function approach that combines the
password with other information such as the user account identi-
fier. In this manner the same password used by different accounts
will not result in the same password validation value (hash). Being
a one-way hash, it should also be computationally expensive to
derive the password from the hash value. This helps to minimize
the impact if the account and password values are stolen from their
storage on a server component.

 • Change-management requirements

Most even moderately mature enterprises have documented pro-
cesses and procedures for handling changes to production applica-
tions. For the software developers, the key is to know how best to
interact with that process and work within its boundaries. As with
disaster recovery and business continuity, these requirements can
have an impact on how best to design and implement an applica-
tion. For example, if an application must maintain login credentials
to connect to a database server, it’s generally best to keep those
credentials in a properties file (of course, protected, as, hopefully,
specified in credential management and encryption standards) and
never hard-coded in the application’s source code. Apart from the
security vulnerability introduced by hard-coding login credentials
in an application, keeping them in a properties file often makes
things easier from a change-management standpoint. This is because
changing a properties file on a production system is typically far
easier than changing the source code and rebuilding an application.
So, as a starting point, the stakeholder to look for on this is gener-
ally in either the CIO or the COO environment, or perhaps IT and
IT security, depending on who sets the change-management pro-
cesses in your organization.

 • Patching requirements

All software has to be patched periodically. Patching and updates
follow very formal processes when external customers are involved,
but for internal-only products these rules can be somewhat less
rigid, although they need to take into account all of an applica-
tion’s components, from its operating systems through its libraries,

9780321604118_Book 1.indb 949780321604118_Book 1.indb 94 11/11/14 11:36 AM11/11/14 11:36 AM

Requirements 95

frameworks, and others. In any case, the development team should
take future patches and possible formal requirements around this
process into consideration early in the design phase.

Where things become more complicated is with updating software
components that require rebuilding the underlying application soft-
ware. It is not uncommon for organizations in an enterprise to have
an unclear or otherwise unrealistic understanding of which orga-
nization is responsible for deploying specific patches. For example,
installing operating system patches is generally fairly easy, whereas
replacing a software framework requires a complete rebuild of an
application. In these cases, the patching is best not left to the IT
operation staff.

Also, it is worth noting here in passing that large enterprises are
increasingly insisting on security requirements, including patching,
in their contract verbiage with software vendors.

As you can see, this list is far more internally focused than the one in
the preceding section. It’s no less important, however. It’s also worth noting
that it’s more than likely you’ll find that no standards exist for many or
even all the items in the list just given. In that case, it would be far too easy
to dismiss the topic and continue in a “business as usual” mode, but that
too would be unfortunate. Instead, we suggest you consider it an opportu-
nity for collaboration between the development team and the security team
to put together a meaningful and actionable set of guidelines and require-
ments to address this list (and more).

Bringing It All Together

Many of you reading this might well feel overwhelmed at this point. We’ve
just laid out a highly ambitious list of things to consider when gathering
the security requirements for a business application. The list is daunting, we
agree. However, the news isn’t all bad. Let’s consider some of the positive
aspects of what we’ve been covering in this section.

For one thing, it’s highly likely you won’t need to do all of this with
every application. There’s an economy of scale to be found here. So if, like
many organizations, your organization handles multiple business appli-
cations, then you can definitely expect to see a reduction in the level of
effort with each passing application. Also be cautious of single sign-on

9780321604118_Book 1.indb 959780321604118_Book 1.indb 95 11/11/14 11:36 AM11/11/14 11:36 AM

96 Chapter 3 Design Activities

environments where a weakness in a relatively low-risk application can
result in stealing credentials to compromise a higher-risk application. Either
way, the first project that embarks on this path must have executive sup-
port because they are more likely to see the return on investment later as
other enterprise application projects arise.

Also, remember the notion of having a security advisor working with
development teams? Well, here’s an opportunity for the security advisor to
shine and prove his value to the development effort. The security advisor
should, among other things, be expert at all the security requirements an
organization needs to conform to, external as well as internal.

At the very least, the organization’s security team should be able to
provide a significant list of applicable requirements, laws, and guidelines
that will need to be followed on an ongoing basis. This list will need to be
periodically updated since many of the standards change over time, and the
list should include a resource library with searchable documents for each
set of requirements.

So although doing this correctly would require a rather significant
initial outlay of effort and possibly electronic resources, every application
project should be able to benefit from that effort, reducing the per-project
costs significantly over time. This, by the way, is a compelling argument for
at least some level of centralization of software development infrastructure
in an organization.

With that in mind, it has been our experience that the best way of
collecting security requirements is via meetings and interviews with the
stakeholders. Ideally, this will be done with the project’s security advisor
on hand, but even if your organization does not have a security advisor, it’s
still quite achievable. Here are some procedural considerations.

 • Do your homework

No matter how eager your stakeholders are to contribute and help,
they’ll always appreciate it when you spend some time in advance
and do some preparation. Start by doing some online research and
information gathering about the external and internal regulations
you believe are applicable to your application. Download and read
the latest version of all of them. If there are preproduction versions
of any of these standards in the development pipeline, get those as
well. It’s quite likely those will become relevant to your application

9780321604118_Book 1.indb 969780321604118_Book 1.indb 96 11/11/14 11:36 AM11/11/14 11:36 AM

Requirements 97

after they’re released, so you’ll want to be aware of what’s coming
along, even if they’re not currently in their final form.

Make a list of the regulations, standards, laws, and so on, including
the internal security policies and guidelines that are applicable to
your project.

While reading through all the standards, make a list of questions.

Use this time also to ensure that you deeply understand the business
intent of the application. Know what it is intended to do and what
it is not intended to do. Ensure that the stakeholders agree to this as
well, and understand the pitfalls of mission creep. And be realistic
that some mission creep is simply inevitable.

Make a list of all the stakeholders you’ll need to talk with. These
might be individual people, or perhaps roles or departments (e.g.,
General Counsel or Compliance Officer).

 • Start with abuse cases and asset inventory

Using the most preliminary and basic set of functional requirements
for your application, go through an abuse case analysis process
for the application as described earlier in this chapter. Some of the
issues uncovered in the analysis could well turn out to be addressed
in the various security requirements, but it never hurts to spend the
time to really understand how your application might be misused
after it is deployed. Plus, it’s been our experience that understanding
the abuse cases helps build your own knowledge of the application
and what aspects of it really need to be well protected later.

 • Invite the stakeholders

Depending on the nature of your questions and agenda, you might
end up doing one-on-one interviews with the various stakehold-
ers, or you might end up inviting them to one meeting. Whichever
works best for you, invite all the relevant stakeholders to participate
in this stage of the application development process, again being
cautious to avoid the “too many cooks in the kitchen” problem.

 • Brainstorm and refine

With your stakeholder(s) gathered, ask your questions and dive
deeply into the answers. Where answers seem vague, push to make
them explicit. You want to seek clear and actionable answers here

9780321604118_Book 1.indb 979780321604118_Book 1.indb 97 11/11/14 11:36 AM11/11/14 11:36 AM

98 Chapter 3 Design Activities

wherever possible. Toss out topics for discussion that perhaps the
stakeholder hadn’t considered. You might need to illustrate things
via examples and case studies to make them clear. You’re also likely
to be questioned about the likelihood of something bad happening.
Has it happened before? When? And so on.

Gathering the security requirements for an application can seem like a
lot of effort indeed. However, getting this step done well will undoubtedly
have significant payoffs throughout the development effort, irrespective of
the software development methodology your organization follows. And
again, we haven’t even begun to discuss the security tiers we mentioned
early in the chapter yet.

We’ve placed a lot of emphasis on requirements gathering because
mistakes made now can have a multiplying impact later. Neglecting some-
thing like a policy on encrypting customer data can result in massive
reengineering if we get “surprised” by the requirement after we’ve designed
and built the application. Things get more dynamic and exciting when
Agile processes (and variations) are introduced, because they tend to be less
planned and more flexible. As the authors have frequently observed, Agile
teams skip documentation updates altogether during these so-called springs
(literally living by the motto “code is the best documentation”), which
creates quite a lot of issues for security analysis. As a result, the security
requirements have to be continuously reintroduced and readjusted based on
the current project planning—most likely, as a mandatory integral part of
weekly sprints.

There’s a secondary benefit from going through a rigorous security
requirements gathering process early, and it’s one we haven’t discussed yet.
By engaging all the application stakeholders in dialogue long before starting
to actually design or develop any code, you’re including them in the process
rather than asking them to just review and accept your work later. It’s rare
to find the individual who doesn’t appreciate that approach.

Specifications

If you’ve done a good job at collecting and synthesizing the security
requirements, turning them into specifications—if indeed your process
even calls for this step—should be relatively smooth sailing. In essence, the
requirements speak to the what, and the specifications speak to the how.
We’ve seen many examples of the specifications being rolled into the design

9780321604118_Book 1.indb 989780321604118_Book 1.indb 98 11/11/14 11:36 AM11/11/14 11:36 AM

Specifications 99

of an application itself, and many organizations don’t bother with articu-
lating a separate set of specifications above and beyond the requirements
they’ve already gathered.

For our context here, we’re not going to presume any specific devel-
opment methodology, but we do want to make sure that our readers
understand the benefits that can be gained from documenting the project’s
specifications.

So let’s consider a few examples from our security requirements given
previously.

We described a PCI-DSS requirement (8.3) that says, “Incorporate
two-factor authentication for remote access (network-level access originat-
ing from outside the network) to the network by employees, administrators,
and third parties.” This is already fairly specific language, but we might
fine-tune it for our own application by saying something like, “Use [hard-
ware token] and associated authentication server for authenticating all non-
local application logins.” We also want to ensure that we have a degree of
traceability from our requirements to our specifications. Numbering each,
and being consistent with the numbers, can be enormously helpful.

Similarly, we cited another PCI-DSS requirement that says, “Render all
passwords unreadable during transmission and storage on all system com-
ponents using strong cryptography.” Here, the specification verbiage, which
should be driven by the enterprise’s security standards, could become some-
thing such as, “User passwords must be transmitted in TLS 1.1 encrypted
sockets using (minimum) 128-bit keys and cipher suite [example] and
stored on the LDAP server in hashed format using SHA-384 (minimum).”
This example, provided here merely for illustrative purposes, clearly shows
how a relatively open requirement statement becomes specific to a local
environment.

At a minimum, it is worth going through all the security requirements
you’ve collected, and localizing them with specific details on local policies
for such things as password lengths and encryption standards.

From a security perspective, we are obviously placing less emphasis
on this aspect of the design process. The reason for that is that the core
important details typically surface during the requirements phase and not
so much in the specifications. That’s not to diminish the value of document-
ing an application’s specifications. Quite the contrary, details such as those
we’ve listed here are important, but they also tend to be a fairly direct and
simple mapping from the various requirements guidelines and policies.

9780321604118_Book 1.indb 999780321604118_Book 1.indb 99 11/11/14 11:36 AM11/11/14 11:36 AM

100 Chapter 3 Design Activities

There is one important exception to this, however: contradictions. Par-
ticularly in heavily regulated or complex environments, it’s not uncommon
to find contradictory guidance in various security requirement sources. One
source might, for example, indicate using an AES-128 encryption algorithm,
whereas another says Blowfish is adequate.

The rule of thumb to follow here is to go with the higher level of secu-
rity. But that’s not always immediately obvious in all cases, as with the AES
versus Blowfish example. In a case like this, it’s probably best to seek policy
clarification from the IT security organization, or better yet, a professional
cryptographer.

Design and Architecture

Now, with our security requirements and specifications document, it’s
finally time to start considering the architecture and design of our applica-
tion—or for our purposes here, the security aspects of the design. If you’ve
been following our advice on collecting requirements, you’re likely to find
that many of the security details in the design will essentially “write them-
selves.” Okay, that’s an exaggeration, but at least many of the architectural
security decisions should be made easier from a good collection of security
requirements.

These decisions will also be heavily driven by the expectations for
security tiers introduced earlier in this chapter—in particular, we’re faced
with architectural decisions of where to place specific security mechanisms
for each security tier. If “tier 1” is your target, the decisions are likely to
be quite simple; you can accomplish most of tier 1 within an application’s
presentation layer, especially server-side, with a relatively small amount of
back-end coding being required.

On the other hand, if your target is tier 2 or 3, you’ll want to give care-
ful consideration to the security mechanisms you employ, and where they
should be placed within your application. Building (essentially) intrusion
detection functionality into an application is generally best suited for the
business logic layer of an application, but there will still be some security
functionality in other areas of the application, from the presentation layer
through the data layer.

The important thing is to consider the architectural ramifications care-
fully, and then implement consistently throughout the application. Mixing

9780321604118_Book 1.indb 1009780321604118_Book 1.indb 100 11/11/14 11:36 AM11/11/14 11:36 AM

Design and Architecture 101

and matching architectural components for convenience or familiarity is
not a recipe for success.

So it’s on to considering the design or architecture of our application.
We’re big believers in prescriptive guidance of positive practices, rather
than (just) reviewing a design for flaws. So we’ll start there.

Prescriptive Design Practices

Perhaps the most important prescriptive practice to follow in designing
secure applications is relying on common well-tested infrastructure and
reusing already vetted design patterns, but that presents a “chicken and
egg” sort of dilemma. By that we mean repeatedly using a set of design
components that have proven themselves to be secure. Additionally, it’s
useful to use design checklists that verify certain positive compliance
aspects of design components. Let’s consider these things in some detail.

But first, let’s briefly take a look at the origins of these practices. Our
secure designs should be built on top of sound architectural principles, such
as those described by Saltzer and Schroeder in the 1970s.

Saltzer and Schroeder’s “The Protection of
Information in Computer Systems”

This pivotal work by renowned engineers Jerome Saltzer and Michael Schroeder intro-

duced several data protection principles that are as relevant today as they were when

the paper was first written in 1975. These include the following:

• Economy of mechanism

• Fail-safe defaults

• Complete mediation

• Open design

• Separation of privilege

• Least privilege

• Least common mechanism

• Psychological acceptability

Knowingly or otherwise, we make use of all of these design principles in virtually every

aspect of our software today. Every person involved in building secure software should

be intimately familiar with these principles and how to apply them.

They should also of course incorporate the security requirements and specifications

we’ve spent so much effort in collecting and documenting previously.

9780321604118_Book 1.indb 1019780321604118_Book 1.indb 101 11/11/14 11:36 AM11/11/14 11:36 AM

102 Chapter 3 Design Activities

From there, we should look at various security aspects of our design
for construction soundness and turn those into checklists that can then be
reused in later projects or verified and validated in the current project. Ideal
targets for such checklists should include the following set of focus points:

 • Identification and authentication

Things to look for in a strong “I & A” mechanism include con–
forming to corporate standards for username and password—
minimum length, acceptable character sets, and so on—but extend
well beyond that. Software designers should also ensure that all
sensitive information is adequately protected while at rest as well
as while in transit. They should also ensure appropriate creden-
tials management practices, that is, that all passwords are securely
hashed and salted, and then stored into a repository. The credential
repository itself should conform to any standardized architecture
that is in place. Login credentials should also never be exposed in
the URL field of a web browser, via a GET method; they should
instead be embedded in the HTTP request body as a POST param-
eter. For that matter, it is entirely possible that your enterprise
already has a standardized identification and authentication, or
identity management, architecture, and you’ll need to make use of
that. That is all well and good, but the preceding criteria should still
be considered carefully.

 • Key management

Although the topic of key management is substantial, private and
symmetric keys, used by an application, require specific handling
and have to be adequately protected according to the IT/IS guide-
lines. The most frequent solutions here are the use of key stores, file
permissions, or specialized hardware tokens for highly protected
systems.

 • Access control

This one is more problematic to find through a simple checklist
process per se, but there are still some things that can be verified.
The basic principle to doing access control inside an application is
to ask the question of whether a user, an entity, or a process should
have access to the data or function it is requesting. That is, all data

9780321604118_Book 1.indb 1029780321604118_Book 1.indb 102 11/11/14 11:36 AM11/11/14 11:36 AM

Design and Architecture 103

and function calls should in fact be designed as requests that can be
authoritatively answered.

As such, the thing to look for at a design level is a centralized access
control mechanism that enforces policy. The policy itself will be
set—perhaps dynamically—elsewhere, but internally, there needs to
be a means of answering the question of whether a request should
be permitted.

What makes this problematic is that every access needs to follow
this requesting methodology. We’ll discuss this in more detail in
Chapter 5, “Testing Activities.”

 • Boundaries

Every application of even moderate complexity has numerous
boundary layers. They can be between components, servers, classes,
modules, and so on, but at a design level we generally have a bird’s
eye view of all of them—at least if we’re doing it right. From a
security standpoint, boundary layers offer a positive opportunity to
verify good practices like input validation and access control.

Most risk assessment methodologies implicitly map out boundary
layers in their threat modeling process by defining security zones
(aka trust boundaries). Each zone is then studied for the risks it
poses.

Looking at an application’s boundary layers is similar, but generally
offers a slightly more data-centric perspective on things.

 • Network connections

Network connections, including both physical and VPN, are essen-
tially a single boundary between components, but we list them
separately here because they offer different types and levels of
security controls. For one thing, in most enterprises, the networks
themselves are operated by the IT organization. And further,
network-level security controls tend to be outside the direct scope of
the application itself, but nonetheless can be useful at independently
enforcing some policies.

For example, a network layer between an application server and a
database can enforce permitting only SQL network traffic between
the two components. Although the network can’t often do much
more than that, it does provide us with some useful controls that

9780321604118_Book 1.indb 1039780321604118_Book 1.indb 103 11/11/14 11:36 AM11/11/14 11:36 AM

104 Chapter 3 Design Activities

help us enforce some of Saltzer and Schroeder’s design principles—
namely, compartmentalization, graceful failure, and least privilege
in this case.

 • Component interconnections

These are simply another form of boundary layer, but much like the
network boundaries, separate application components can offer up
different types of opportunities for security controls.

 • Event logging

Event logging is a big topic for application developers, and it is one
that is almost always not well understood or adequately imple-
mented. The key point that most developers don’t get is that the
customer for event logging should be the IT security or incident
response team. As such, it’s vital to consider their use cases with
regard to event logging. More often than not, application event
logging mostly contains debugging information. Although that
information is useful for debugging purposes, it’s not all that’s typi-
cally needed when responding to security incidents. In addition, the
security team often needs more business specific logging in order to
determine the “who, what, where, when, and how” sorts of things
they need to do.

From a design checklist standpoint, you should be verifying that the
security team has provided their log use cases and that those use
cases will be incorporated into the application’s design. For details
and examples of such use cases, see the discussion in Chapter 6.

 • Session management

Most modern platforms and application servers these days provide
more than adequate tools for building robust session management
into applications running on them, but mistakes can still happen.
We’ll discuss this further in Chapter 4, “Implementation Activities,”
but for now, let’s ensure that the available infrastructure for doing
session management will be used for our application.

 • Protection of sensitive data

Enterprise applications carry all sorts of sensitive data these days,
and it’s up to the developers to ensure that the sensitive data is
being properly protected. As with protecting any secret, it’s vital

9780321604118_Book 1.indb 1049780321604118_Book 1.indb 104 11/11/14 11:36 AM11/11/14 11:36 AM

Design and Architecture 105

to consider sensitive data at rest and in transit, because each state
carries with it a different set of protection mechanisms that should
be considered.

 • Data validation

Any time our application has to make use of an external service—
command-line interface, LDAP directory, SQL database, XML
query engine, and so on—we have to ensure that the data being sent
to the service is safe, after we’ve mutually authenticated those com-
ponents, of course. There are several key concepts in that sentence.
First off, we can’t assume that a service we’re calling is going to
adequately protect itself. Second, we have to ensure that the intent
of our service request is immutable from change due to whatever
data we’re sending to the service.

Essentially, we have to do proper input validation for the current
module and output encoding of what will be sent to the service
before making the call, and we have to do it in the context of under-
standing what the next service call is intended to do. That’s a pretty
tall order, because encoding for a database call will be different
from the one for LDAP query, for instance.

Design Checklists

It’s a good idea to keep a checklist or two readily available to the design team. These

checklists should cover basic topics to ensure they are appropriately represented in

various components of a system’s design. It is also vital to be cognizant of the fact that

checklists cannot capture everything, and can and should evolve over time and quite

possibly per application. Still, they can serve as a good starting point for catalyzing

thoughts. Sample checklists should include the following:

• Establishing connections

 This checklist should step through all the things one must do in establishing

a connection between two application components, such as ensuring mutual

authentication and ensuring transport layer protection of data.

• Authenticating users

 This list should point to standard design components for authentication, such

as enterprise authentication services and how to invoke them.

9780321604118_Book 1.indb 1059780321604118_Book 1.indb 105 11/11/14 11:36 AM11/11/14 11:36 AM

106 Chapter 3 Design Activities

• Managing sessions

• Securing data at rest

• Securing data in transit

…and so on. The point is to promote consistent conformance to established design

patterns.

Oh, and you’ll want to carry many of these checklists forward as coding guidelines

(with rigorous annotations) as well. We’ll discuss that in the next chapter.

As you might imagine, the earlier list is by no means a comprehensive
one, but it does represent a pretty common list of application aspects. For
each of these common problems, we should put together a checklist of
issues to ensure that we have properly addressed them in our own designs.
Plus, since this list of things is pretty common, we can use it as a basis for
some design patterns that we’ll be making repeated use of.

Now, some of the elements in the list aren’t necessarily discrete appli-
cation components—say, for example, protecting sensitive data—but they
are all things we should address as we consider the security aspects of our
design.

It’s also worth giving careful thought to the feasibility of security
aspects of a design. It is a common mistake to overengineer a design and
basically attempt to protect everything all the time. The problems with this
approach are numerous. For one thing, we’re likely to end up with a solu-
tion that is too costly for the problem we’re trying to solve. It might also be
too complicated to be successful, or building it that way might simply take
far more time than we have available. For that matter, it is also common to
underengineer a design due to tight timelines, budgets, and so on. The key
is to find the right balance, as in so many things.

So we have to make compromises, but we have to be able to do so in
a principled, businesslike, and repeatable sort of way. That is, we have to
have sound justification for the design decisions we make or don’t make.
That’s where a risk management methodology comes in.

Risk management is one of McGraw’s three pillars of software secu-
rity,4 and it helps us make decisions with confidence. Without a sound way
of considering business risks, we’re inevitably going to make the wrong

9780321604118_Book 1.indb 1069780321604118_Book 1.indb 106 11/11/14 11:36 AM11/11/14 11:36 AM

Design and Architecture 107

decisions by accepting risks we don’t understand. That’s a big gamble to
subject the business to.

We’ll discuss threat modeling shortly, but one method that can be useful
is to consider an application’s most likely threat profiles. Think of these as
use cases, but from a security perspective: What are the most likely avenues
of attack your application absolutely must be able to defend itself against?

For example, we often refer to the “coffee shop attack” when discussing
web application security. That is, consider an attacker on an open Wi-Fi
network (say, in a coffee shop) using a network sniffing tool to eavesdrop
on all the network traffic traversing the Wi-Fi. Now, consider one of your
application’s users using your application in that same coffee shop. Can
your application withstand that level of scrutiny, or does it hemorrhage
vital data such as user credentials, session tokens, or sensitive user data?

Similarly, when a mobile application is designed for a smartphone or
tablet computer, the most likely risk a user faces is from data left behind on
a lost or stolen device. If your application is on that lost/stolen device, what
information could an attacker find on the device using forensic tools? Does
your mobile application store sensitive data locally on the mobile device?

In designing your security mechanism, keeping a handful of these threat
profiles in mind is a healthy thing to do. Of course, the threat profiles need
to be specific to your application’s architecture, but it’s generally not too
difficult to find data on attacks against similar architectures.

Implementation Considerations

There are many aspects of design that directly overlap with implemen-
tation. One aspect, in particular, is in designing where to place various
security implementations in an application’s design. For example, the next
chapter discusses input validation extensively. If we were to implement
input validation without any regard for our application’s design, we would
be quite likely to end up with a functioning but unmaintainable mountain
of junk.

The reason for this is that it is entirely feasible to build input validation
code at just about any layer of abstraction within an application. Further, if
input validation is implemented “on the fly,” there is a tendency to include
such things as regular expressions throughout the code base. This is what
can easily result in code that is basically impossible to maintain over time.

9780321604118_Book 1.indb 1079780321604118_Book 1.indb 107 11/11/14 11:36 AM11/11/14 11:36 AM

108 Chapter 3 Design Activities

So, despite the fact that something like input validation—which essen-
tially does nothing to enhance the functional features of an application—is
generally viewed as an implementation detail, it is important to design it
carefully into one’s security architecture. In the case of input validation
code, it should be centralized in implementation and features, as appro-
priate. If there are multiple distinct functional layers in an application (for
example, Web UI, XML processing, LDAP access, and so on), validation can
be centralized on a per-layer basis—but never scattered around randomly.
The same thing goes for access control, which would be quite impossible to
slap on after the fact, if it was not properly designed into the product from
its conception. And in each of these cases, care should be taken to retain
control on the server side of the application, regardless of what validation
or access control might be done on the client.

These design considerations can have an enormous impact as well.
Again citing the case of input validation, if we implement our input valida-
tion at the application’s presentation layer, it will largely preclude us from
being able to implement tier 2 or tier 3 security features into the applica-
tion, simply because of the lack of features available to us in the presenta-
tion layer.

We’ll discuss detailed examples of this in the next chapter, but for now,
let’s at least be entirely cognizant that our design decisions need to have a
 firm footing in the reality of our intended implementations.

Design Review Practices

The common denominator in all development methodologies is to start
with a clear understanding of the proposed design of the product. Although
we’ve seen design documents span an enormous spectrum of detail, there
is simply no substitute to really knowing and understanding the product’s
design before proceeding.

Irrespective of your development methodology, you should have a
fundamental description of the application and its components. A diagram
visualizing all the components is a good starting point (see Figure 3.1). It
should include all the physical as well as logical components of the applica-
tion, at a bare minimum.

9780321604118_Book 1.indb 1089780321604118_Book 1.indb 108 11/11/14 11:36 AM11/11/14 11:36 AM

Design and Architecture 109

Firewall

Workstations

NIDS

NIDSNIDS

Host-based IDS

Internet

Figure 3.1 Diagram of a typical enterprise application design, top view.

Other useful things to include in design documentation include the
following:

 • Components

Each component of an application should be described, at least at a
top level. What is it called? What is its primary functionality? What
security requirements does it have? Who should access it?

 • Data elements

What data does the application handle? What are the sensitivities of
the data? Who should be allowed to view the data? Who should be
allowed to alter the data?

 • Data interfaces

How will data be exchanged through the various components of the
application? What network protocols will be used? What format(s)
will the data be exchanged in?

9780321604118_Book 1.indb 1099780321604118_Book 1.indb 109 11/11/14 11:36 AM11/11/14 11:36 AM

110 Chapter 3 Design Activities

 • Bootstrap process

How is the overall system instantiated? What security assumptions
are made during the bootstrapping? How do the application’s com-
ponents mutually authenticate?

 • Shutdown process

On shutdown, what is done with system resources, such as open
files, temporary file space, and encryption keys? What residue is left
behind and what is cleaned up?

 • Logging process

This is the process and components for event logging, to include
debugging and security logs.

 • Failure process

This includes processes for handling system failures, from relatively
simple to catastrophic.

 • Update/patch process

 This consists of the processes for installing component updates, at
various levels and components within the application.

The preceding description is highly simplistic, but at the same time it
can seem pretty daunting. If you really take the time to do each of these
steps in detail, threat modeling a typical application can be an enormously
time-consuming process, which can be time and cost prohibitive for many
enterprises. As such, this outline is intended merely to give you an overview
of what is involved in the threat modeling process. What’s important from
our standpoint is how to put any of this into practice.

We’ve had success at breaking down this threat modeling approach into
a more simple process, based on the work of many people in the software
security field today.

After you have a clear picture of how the application will work, it’s
useful to break the design into individual operational security zones, partic-
ularly for a distributed application with multiple servers and one or more
clients.

Next, for each zone and each element in each zone, articulate (prefera-
bly in a table format) each of the following: who, what, how, impact, and
mitigation.

9780321604118_Book 1.indb 1109780321604118_Book 1.indb 110 11/11/14 11:36 AM11/11/14 11:36 AM

Design and Architecture 111

 • Who?

Who can access the zone or element? Not just the registered, autho-
rized users, but who could access the item in general. If it is (say) an
application on a mobile device, consider the legitimate user, a user
accessing a lost or stolen device, and so on. Try to be reasonably
comprehensive in this step. What you’re doing is articulating the
threat agents.

 • What?

What can each threat agent do to potentially harm the system? Can
the threat agents steal a hard drive from a server? Access a table in a
SQL database? Masquerade as a legitimate user and get to sensitive
data inside the application? And so forth.

 • How?

How can the threat agents carry out each of the things in the
what list?

 • Impact?

If the attack is successful, what is its impact on the business? What
are the direct costs as well as the indirect costs? In what ways is the
business’s reputation tarnished?

 • Mitigation?

 For any given attack, what mitigation options are available? How
much would they cost (in “low,” “medium,” and “high” terms if
more quantifiable data are not available)?

Assuming you’ve assembled the right team of design reviewers, it’s quite
likely this approach will result in some useful and meaningful discussions
about the application’s design.

You should try to consider as many aspects of the application’s design
as feasible. These reviews can vary from taking a few hours to taking many
days, depending on an application’s complexity, and how much detailed
analysis is expected.

So it needn’t be so difficult to do. And we’ve certainly found the payoffs
to justify the time spent. You might find Cigital’s approach to be pretty sim-
ilar in many ways to the threat modeling process we’ve just described.

9780321604118_Book 1.indb 1119780321604118_Book 1.indb 111 11/11/14 11:36 AM11/11/14 11:36 AM

112 Chapter 3 Design Activities

It’s Already Designed

Throughout this chapter—and indeed in much of this book—we have
assumed you would be largely working on new projects, rather than assess-
ing or continuing prior work efforts. Well, that can be a rather unrealistic
assumption these days. So let’s take some time to dive a bit deeper into
what sorts of design security activities can be reasonably accomplished even
after a system is in production.

One immediate disadvantage we see here is that ex post facto design
changes tend to be costly,5 so you will doubtlessly encounter more than
a little initial resistance in trying to make any substantive changes to the
design. This is particularly true for projects that are widely deployed and
not (just) run from centralized data centers. This means that any design
changes that might come out of an ex post facto review need to be rigor-
ously researched and cost-justified in order to be successful. We believe that
this inertia is more than likely to result in workarounds and compromises
more often than it results in real design changes, which will no doubt pres-
ent their own challenges over time. Moreover, some fundamental secu-
rity issues in legacy applications simply cannot be accomplished without
complete rewrite of the application. This might happen due to inherently
insecure application architectural choices or simply because of underlying
platform or language shortcomings—more on that in Chapter 8, “Main-
taining Software Securely.” But we should still press on.

Another common hurdle to clear is in “simply” finding the design itself.
Many software products and systems are built and deployed without any
sign of design documentation. Often, the design “documentation” lives in
the brains of the people who designed the system in the first place, and
quite possibly those people have moved on to other jobs, perhaps in dif-
ferent companies. We feel that documenting a system’s design, even if it is
done only ex post facto, is in and of itself a huge benefit that will find value
over time even if no changes are made by way of a security assessment.
Indeed, two of your authors have amassed considerable experience doing
just this at a major corporation. A further pitfall of a system that lacks a
clearly documented design is that seemingly innocuous changes can often
lead to spectacular failures. It is vital for the entire team to have a clear,
comprehensive, and deep understanding of the underlying system.

9780321604118_Book 1.indb 1129780321604118_Book 1.indb 112 11/11/14 11:36 AM11/11/14 11:36 AM

It’s Already Designed 113

So enough with the impediments; let’s look at how to do design review
of a deployed system. Here are some general steps to consider, along with
some tips and recommendations in accomplishing them.

1. Document the design.

 Start by looking at whatever existing design documentation is avail-
able, of course. Depending on your organization’s software devel-
opment process, this could range from nonexistent to voluminous.
The important thing is to “get your head around” the design and
thoroughly understand what the software is doing. In our experi-
ence, this is best accomplished through a combination of documen-
tation, visualization, and human interviews. So start by sitting down,
turning off all interruptions, and studying whatever documentation
you have. Care should be taken to validate that the derived design
accurately depicts the running system.

 Then, if at all possible, seek out the design team and spend some
quality time with them and a large whiteboard. Draw the top-level
design in the form of the major software elements and dependencies,
their functions, communications channels, data, and so on. Next,
overlay a state diagram onto that design, and do your best to under-
stand the software’s different states of operation, including initial-
ization, steady-state operation, exception modes, shutdown, backup,
availability features, and so on. Take this discussion as deep as
you’re able to. Look, for example, at each component interconnec-
tion and ask how it is identified, authenticated, protected, and so on,
as well as what network protocols and data types are being passed.
Be sure to document any assumptions at this point
as well.

 Perhaps most important during this whiteboard exercise, ask ques-
tions. Assume nothing. Look for unanticipated failure states. And
document all the answers you get. You might well find that your
own documentation has details in it that surpass the existing design
documentation, such as it might be.

 If you’re lucky, much of this will already be in place. But even if that
is the case, your priority right now has to be attaining a high degree
of understanding of what the documentation says. So even in that
fortunate case of having ample documentation, it is still worthwhile
to interview the design team and have them explain things in their

9780321604118_Book 1.indb 1139780321604118_Book 1.indb 113 11/11/14 11:36 AM11/11/14 11:36 AM

114 Chapter 3 Design Activities

own words. This will help galvanize your understanding of the sys-
tem, as well as potentially point out areas of ambiguity and down-
right errors that might exist in the documentation itself.

2. Perform threat modeling.

After you are confident that you have a deep and thorough under-
standing of the documentation, go through the threat modeling
process as we’ve described. You might well have collected ample
fodder for this in documenting the design (or studying the extant
documentation).

3. Assess the risks and costs.

Either directly during the threat modeling process v or separately, it’s
vital to assess the risks and prioritize them.

4. Decide on a remediation strategy.

The toughest part at this point could well be deciding what the right
threshold of risk is for the system you’re reviewing. The biggest
difference in doing this now versus during the initial product devel-
opment is that remediation costs are likely to be substantially higher.
And not just the direct costs, but the indirect ones. For example, how
will deploying a new design inconvenience your customers? How
will it affect backward compatibility? The answers to these questions
are extremely important.

The remediation strategy, then, must take all these answers into
account, in addition to the normal business impact justifications. For
example, a fairly low-impact design defect might well get remediated
because its costs are relatively low, whereas a higher impact problem
might be delayed until a major release cycle because the costs do not
justify the value.

5. Fix the (justified) problems.

Any issues found that meet your remediation strategy should now
be fixed. And, as you might well imagine, it’s never just as simple as
coding a fix and then checking off the issue as being finished. Since
the issue is now, by definition, an important one, it becomes import-
ant to dive deeply into the issue.

6. Verify the fixes.

It’s of course not enough to say something is fixed; you have to
prove it as well. Especially for security weaknesses, whenever possi-
ble you should build test cases that explicitly test for each weakness.

9780321604118_Book 1.indb 1149780321604118_Book 1.indb 114 11/11/14 11:36 AM11/11/14 11:36 AM

Deployment and Operations Planning 115

Try also to consider similar classes of weaknesses that might exist
elsewhere in the system.

7. Lather, rinse, repeat.

 Essentially, keep iterating through this until you’re finished. Mind
you, defining that end point isn’t easy. What’s important is to give
each application a level of scrutiny that its value warrants, and to
keep at it until that level has been met.

With luck, you won’t have unearthed any truly catastrophic design
flaws during this process on an application that is already deployed. And
if you did, hopefully you found it before your adversaries did. As we
said, major design flaws can be hugely costly to fix after an application is
deployed.

We should add that it has been our experience that applications already
deployed rarely get ex post facto design review scrutiny. That sort of review
would usually happen only for the most security-critical software and, even
then, usually only if other security flaws have been discovered. Another
factor that makes this difficult is when staff is reassigned to work on other
projects after any given project has drawn to completion.

Deployment and Operations Planning

Think it’s too early in the game to start considering how the system is going
to be deployed and operated? Guess again. We’ll come back to this in a lot
more detail in Chapter 7, “Operating Software Securely,” but for now it is
important for us to be sure to understand how our application is going to
get deployed and operated. For example, how are our application compo-
nents going to integrate into the intrusion detection infrastructure in the
organization?

The Design Review

Today is the first meeting of the newly minted Product Security Team (PST) for the

ongoing development of version 2.0 of Peabody’s Wandering Medic (WM) app. The

first step is to decide on some of the basics and what things can reasonably be done,

despite the fact that the development team is already well into the implementation of

WM 2.0.

9780321604118_Book 1.indb 1159780321604118_Book 1.indb 115 11/11/14 11:36 AM11/11/14 11:36 AM

116 Chapter 3 Design Activities

It is agreed that a lightweight design review would be the first course of action.

The team would use this opportunity to get to know each other, as well as for everyone

to thoroughly “get their heads around” the WM 2.0 design itself. After all, the Peabody

team had, to date, only seen the WM apps from the outside, and this is their first deep

dive into how the system will work.

So the Peabody CTO starts the process by asking the dev team, apparently with-

out a hint of irony, to produce whatever design documentation they currently have.

The dev team nervously grins and proclaims their design to be their source code. The

code is modular; it is laid out logically; any first-year computer science graduate should

be able to look at the code and intuitively understand the flow of operation. The CTO

is less than convinced, and he insists on whiteboarding a top-level design flow of the

app and all of its components, including both the mobile client components and the

server-side components. The dev team is quite frustrated, but because they really want

to see the new merger succeed, they agree.

It takes the dev team and CTO staff a good solid four hours of discussions and

whiteboard sketching to put together their visualization of the WM 2.0 design. The

whiteboard, although quite cluttered and ugly, now contains the first design view of

WM 2.0 (see Figure 3.2). It has been a frustrating process, but not without value.

Configure
DB Credentials

Authenticate
Read/Write Data

Wandering Medic
Web Portal

HTML

Rest

Figure 3.2 The architecture of the Wandering Medic portal.

Most of the frustrations have been because the dev team had differing opinions

about how some components of the system would work in the final 2.0 product. The

discussions have been lively and heated, but the good news is that the dev team itself

has been able to solidify their own understanding of the system they’re building. In

9780321604118_Book 1.indb 1169780321604118_Book 1.indb 116 11/11/14 11:36 AM11/11/14 11:36 AM

Deployment and Operations Planning 117

fact, they even reluctantly agree that the mere process of writing their design—such

as it is—on the whiteboard has helped them. They stop short of saying that the four

hours in the confere nce room were better than four hours of coding, though.

Still, drawing the design is only the first step in the design review. The team takes

a break until morning, when they’ll do a quick design review using a threat modeling

approach.

Freshly rested, our PST returns to the conference room to start the second phase

of their process, the threat model.

With the design drafted, the CTO suggests dividing it into security zones as a

starting point. The functional zones are easy: mobile zone, middleware/controller zone,

database zone, authenticator zone. As a starting point, these delineations help the

team consider them one at a time.

The first step is now to consider all the threat agents (people, mostly) who have

access—legitimate and otherwise—across each zone. To get things rolling, the CTO

suggests starting with the mobile zone. Then they will brainstorm all the threat agents

they can come up with and then consider each in light of the following details. They

must be sure to clearly set the rules for the brainstorming session in advance.

• Doctors

 Clearly, the primary users of the app are the doctors. They have legitimate access

to the devices and the app itself. What could motivate a doctor to attack the

system? (1) Financial gain—a doctor might look through patient records to brain-

storm “legitimate” medical procedures the patient should receive. Far-fetched, but

this is a brainstorming exercise.… (2) Privacy violation—a doctor might want to

read the records of a VIP patient, out of curiosity, or to give/sell the info. (3) Com-

petition—a doctor might want to read another doctor’s patient information to

find out how the other doctor is treating a specific ailment. (4) Coverup—a doctor

could attempt to remove or alter information to cover up mistakes. The team con-

tinues this brainstorming to come up with as many things as they can that could

motivate a doctor to attack.

 Now, for each of these potential attacks, the team considers how (technologically)

skilled the doctor would need to be in order to be able to succeed.

• Nurses

 Although the primary app users are the doctors, without a doubt nurses will also

need to use the app. However, they might well have different motivations for

(potentially similar) attacks. (1) Embarrassment—a nurse might enter false data

to make a doctor look bad. (The team considers that attack case to be more likely

than the other way around.) (2) Many of the same attack cases the team identified

for doctors also exist for nurses.

9780321604118_Book 1.indb 1179780321604118_Book 1.indb 117 11/11/14 11:36 AM11/11/14 11:36 AM

118 Chapter 3 Design Activities

• IT technicians

 Certainly, the hospital’s own IT staff would have to have access to each mobile

device. While discussing this, the team briefly considers the case of “BYOD” (bring

your own device) situations. The debate on this topic gets quite heated, with the

developers primarily saying that they absolutely want to support BYOD situations.

In the end, however, the Peabody CTO prevails and says that a medical enterprise

environment will never allow patient data on a BYOD device, so they dismiss that

case. Secretly, the CTO hopes that decision doesn’t come back to haunt them

later.… So what would motivate the hospital’s own technicians to attack a system?

(1) Sabotage—the techs are disgruntled because of continued budget cutbacks,

and they want to teach the big hospital conglomerate a lesson. (2) Sabotage—the

techs might want to build a Trojan horse into the app deployment so that the app

fails if/when a technician is laid off. (3) Financial gain—the techs know about VIP

patients in the hospital, and they could use access to the app to look up private

details and then sell that information externally. (4) And again, this list continues.

 The skills required to do an attack, however, are far more prevalent in our IT tech-

nicians than in the doctors and nurses.

• Patients

 From time to time, it is quite conceivable that a patient will have access to a doc-

tor or nurse’s mobile device. In those situations, what might motivate a patient to

attack the app? (1) Alter records—a patient might change his own record to show

more/less severe ailments. Perhaps this is financially motivated, to attempt to be

charged less for a medical service. (2) Drugs—a patient could try to use a device

to add or alter prescriptions, for various reasons. (3) Privacy violation—a patient

might attempt to look up someone else’s medical records.

 Of course, patients’ technology skills will span a broad spectrum, so it’s best to

assume that the patient is very technically astute.

• Doctors’ families

 Unless the hospital has a policy of not allowing staff to take mobile devices home,

the team has to consider what the families could do. Here it might be a good

idea to consider some actual attack cases as well as inadvertent attack cases. (1)

Games—perhaps it’s cliche[as], but it still bears consideration. What happens if/

when a doctor’s family members try to install games (or other nonsanctioned

apps) on a hospital-owned mobile device?

Table 3.2 provides the final summary of potential threat agents that the PST team has

come up with after an exhausting deliberation, as well as their potential motivations

and expected technical skill levels.

9780321604118_Book 1.indb 1189780321604118_Book 1.indb 118 11/11/14 11:36 AM11/11/14 11:36 AM

Deployment and Operations Planning 119

Table 3.2 Threat Agents

Threat Agent Motivation Technical Skills

Doctors Financial gain

Privacy violation

Competition

Coverup

Low

Nurses Embarrassing doctor

Financial gain

Privacy violation

Coverup

Low

IT Technicians Sabotaging hospital

Sabotaging application

Privacy violation

High

Patients Alter records

Financial gain

Drug access

Privacy violation

High

Doctors’ families Using third-party apps

Privacy violation

Embarrassing doctor

Low

Thieves of mobile device Privacy violation

Sabotaging hospital

High

Device tech support Privacy violation

Sabotaging hospital

Sabotaging application

High

Next, keeping its scope to the mobile zone, the team considers all the following

factors. When carrying out this step, the team continues its brainstorming approach.

One technique to facilitate this is to use a large whiteboard and construct a matrix (see

Table 3.3) with each of the following column headings:

• Target

 Here, the team considers all the targets within the mobile zone. The targets can

be technical, data, or process based. For this app, the team considers its primary

targets to be patient data (including PII, prescriptions, diagnoses, etc.), medical

staff accounts, and encryption keys from back-end applications.

9780321604118_Book 1.indb 1199780321604118_Book 1.indb 119 11/11/14 11:36 AM11/11/14 11:36 AM

120 Chapter 3 Design Activities

• Vulnerability

 To consider all the weakness states of these targets, the team must deeply under-

stand the app and how it functions. In particular, they need to consider all the

circumstances where the target data is stored on a mobile device, whether in

nonvolatile storage, in volatile storage, or in transit to/from the device.

• Attack

 To brainstorm the potential attacks, we need to deeply understand the applica-

tion’s architecture—and force some vital decisions—and understand how things

will be implemented. For the team’s first shot at doing a threat model, they agree

to hold off on several of the technology decisions and then revisit them later. For

example, one attack they consider is to gain access to any local data stores via

their SQLite (or whatever database the implementation team uses) files, which

can be trivially done on iOS or Android versions of their app. They also consider

 carefully whether the access is read-only or read/write.

 In fact, many of the issues the team will consider at this point will slowly be

updated as the development process continues.

• Impact

 There are two types of impacts any vulnerability will have: technical and business.

Whereas the development team understandably concentrates on the technical side

of this activity, business stakeholders become worried about business impact, so

they very strongly push the team to include business considerations in the impact

analysis.

• Remediation

 This is where the technical world really clashes with the business reality. If the

vulnerability remediation requires completely rearchitecturing the solution, man-

agement gets quite impatient. This is where the impact analysis is really utilized,

because the team and business folks will have to evaluate the risks of additional

costs and delays incurred while fixing security issues versus not doing it and poten-

tially being hit with breaches, data losses, and similar niceties. None of which

Peabody wants to happen, of course—and neither does its CTO want to reimple-

ment the portal.

9780321604118_Book 1.indb 1209780321604118_Book 1.indb 120 11/11/14 11:36 AM11/11/14 11:36 AM

Endnotes 121

Table 3.3 Matrix

Target Vulnerability Attack Impact Remediation
Patient's data Stored on device

Stored on SD

Transmitted in clear

Encryption keys Stored on device

Transmitted in clear

Staff accounts Stored on device

Summing Up

Whatever your application, and no matter what security tier you think it
falls into, taking the time to think it through to the end before you start
coding is essential. There is a reason many of the masters of chess and the
Oriental board game Go train themselves to sit on their hands when con-
sidering their next move. Contemplation, even with a move clock ticking,
pays off.

Perhaps you use a formal development life cycle. Maybe you’ve formed
a project security team, or will just kick around ideas with friends. (Or will
you, lacking a collaborator, explain your technical problems to an empty
chair? It has worked for us.) Whatever your process, we hope the struc-
ture and tips in this chapter ease the “take it apart; good, now put it back
together” thinking essential to “confluent” design.

Ready, set, go! It’s Implementation time.

Endnotes

1. Gary McGraw, Software Security: Building Security In (Boston: Addison Wesley Profes-
sional, 2006).

2. Michael Howard and Steve Lipner, The Security Development Lifecycle (Redmond, Wash-
ington: Microsoft Press, 2006).

3. For details, see “SEC Interpretation, Electronic Storage of Broker-Dealer Records,” Securi-
ties and Exchange Commission, www.sec.gov/rules/interp/34-47806.htm.

4. McGraw, 2006.

5. Barry Boehm, Software Engineering Economics (Upper Saddle River: Prentice Hall, 1981).

9780321604118_Book 1.indb 1219780321604118_Book 1.indb 121 11/11/14 11:36 AM11/11/14 11:36 AM

http://www.sec.gov/rules/interp/34-47806.htm

This page intentionally left blank

This page intentionally left blank

Index

295

A

abuse case analysis, 78-83
access control

centralized, 135
design and, 102
failures, 233
implementation and,

134-136
PDP (Policy Decision

Point), 136
requirements, 87, 92

AccessController, 245-247
account management, 91
active development, 44
administrative users as

stakeholders, 55-56
advisor (security team), 52
Anderson, James P.,

Computer Security
Threat Modeling
and Surveillance, 26

Apache web server, 28
Apple in-app purchasing

system attack, 252
application-level event

logging, 163
application servers, infra-

structure integration
and, 204

AppScan (IBM), 48
AppSensor, 223-224
architectural diagrams,

testing and, 170
architecture, 100
ASIM, 27

assessment, confluence,
279-289

assets
critical, identifying, 237
inventory, 84-85

attacks
Apple in-app purchasing

system, 252
coffee shop attack, 107
Morris Worm, 26

auditing, 33
audit trails, 27
authentication

design and, 102
I & A (identification

and authentication),
129-131

repeated failures, 233
requirements, 86-88
SSL, 127
vulnerabilities, 39

B

backfilling enforcement, 36
booting, keys and, 141
boundary layers, design

and, 103
branching code, 152
browsers, 28
BSIMM (Build Security in

Maturity Model),
266, 282-284

budgeting, 64, 278-279
bugs, 185-189

business continuity, 89
business goals for system,

43

C

capital expenses, conflu-
ence and, 278

CAPTCHA, 80
case studies

Debian OpenSSL versus
Valgrind, 247

design review, 115-120
catch block, 153
centralized access control,

135
central viewpoint, 263-268
Certificate Authorities, 127
certificates, server-to-server

connections, 127
CGI (Common Gateway

Interface), 28
change management,

87, 94
Cheswick, Bill, 27
CISO (Chief Information

Security Officer),
263

Clyde Vax Audit, 27
CMDS, 27
CMM (Capability Maturi-

ty Model), 280
code reuse, 147-148
code review, 48, 154-157,

165-167

9780321604118_Book 1.indb 2959780321604118_Book 1.indb 295 11/11/14 11:37 AM11/11/14 11:37 AM

296 Index

coding
branching, 152
ESAPI, 149-151
programming cook-

books, 151
QA, 180

coffee shop attack, 107
collaboration, 228-232
Collector process, 271
compliance, code reuse,

148
components

critical, identifying, 237
design and, 104
third-party, maintenance,

243
vulnerabilities and, 42

Computer Security Threat
Modeling and
Surveillance
(Anderson), 26

configuration manage-
ment, collaboration
and, 231

confluence, 23
assessment, 279-289
budget and, 278-279
consulting and, 278
cross-department,

275-277
deployment and, 194
expenses and, 278
factors in, 265-266
funding, 278-279
maintenance and, 248
meetings/events, 277
motivations for compli-

ance, 268-269
policies and, 274-275
small shops/individuals,

292
software licenses and,

278
training, 277
training and, 273-274

confluent networks, 265
developing, 269-273

connections
design and, 103

implementation and,
126-127, 145

server-to-server, certifi-
cates, 127

consulting, confluence and,
278

cookbooks for program-
ming, 151

costs, deployed system
design review, 114

credentials, protection
mechanisms, 139

cryptography, random
numbers and, 139

CSIRT (computer security
incident response
team), 74, 137, 199,
237-238

CSRF (cross-site request
forgery), vulnerabili-
ties and, 42

The Cuckoo’s Egg (Stoll),
26

CVSS (Common Vulnera-
bility Scoring
System), 242

cyber crime, Kevin
Mitnick, 26

D

database servers, infra-
structure integration
and, 204

data cops, 31
data diagrams, testing and,

170
data retention require-

ments, 86
Debian OpenSSL versus

Valgrind, 247
Denning, Dorothy, 26
deployed system review,

113-115
deployment, 49

confluence and, 194
diagrams, testing and,

172
individuals, 217

internal, security testing
and, 176

IT department and, 37
mobile, 218-219
operations planning and,

115
predeployment review,

37
preparations, 195-197
second pass, 37
security operations team,

38-40
small shops, 217
threat-specific decisions,

198-199
Deraison, Renaud, 29
design, 100

deployed system review,
113-115

ex post facto, 112
maintenance and, 244
zones, 110

design practices, 101-108
design review, 108

case study, 115-120
diagram, 109-110

developers as stakeholders,
62

development team, 35-37
DevOps, 222

critical application iden-
tification, 237

CSIRT and, 237
IDS and, 230-232
information security

integration, 228
security events, 232-235

DevOps, 222. See also
Rugged DevOps

DIDS (Distributed
Intrusion Detection
System), 26

direct object reference,
insecure, 40

disaster recovery, 89
documentation, deployed

system design
review, 113

9780321604118_Book 1.indb 2969780321604118_Book 1.indb 296 11/11/14 11:37 AM11/11/14 11:37 AM

Index 297

E

encryption
network communication,

SSL and, 131
NIST and, 140
requirements, 87
sensitive information

protection, 139
standards, 93

end users as stakeholders,
56-58

enforceAuthorization
method, 245-247

enforcement, backfilling,
36

ENISA (European Union
Agency for Network
and Information
Security), 46

enterprise integration, code
reuse and, 148

entity identification, 86
ESAPI (Enterprise Security

API), 125, 149-151
AccessController,

245-247
espionage, abuse case

analysis, 81
European Union Agency

for Network and
Information Securi-
ty. See ENISA

event logging, 33, 136-137
application level, 163
audience, 137
design and, 104
requirements, 89

expenses, confluence and,
278

external constraints, 45-47

F

Farmer, Dan, 28
Federal Information Secu-

rity Management.
See FISMA

Felton, Edward, 29

finally block, 153
financial auditors as stake-

holders, 61
firewalls, 27, 202, 204
FIRST (Forum of Incident

Response and
Security Team), 242

FISMA (Federal Informa-
tion Security
Management), 46

FISMA (Federal Infor-
mation Security
Management Act of
2002), 281

fixes, deployed system
design review, 114

forwards, unvalidated, 42
framework maintenance,

243
FTC (Federal Trade

Commission), 46
functional testers, 49
function-level access con-

trol, vulnerabilities,
42

funding, confluence and,
278-279

Fyodor Vaskovich, 29

G

Gauntlet firewall, 27
Greenfield/Clean Slate, 44
grey box testing, 182

H

Haystack, 26
Help desk as stakeholders,

57-58
high security tier, 72
history, importance of in

maintenance,
249-251

httpd, 28
HTTP (HyperText Trans-

fer Protocol), 27
HttpOnly attribute, 138

I

I & A (identification and
authentication),
129-131

IC3 (Internet Crime Com-
plaint Center), 21

IDS (Intrusion Detection
Systems), 29-30,
200-201, 230

IEC (International
Electrotechnical
Commission), 281

implementation
access control, 134-136
design and, 107-108
event logging, 136-137
I & A (identification

and authentication),
129-131

input, 142-143
key management, 141
network connections

and, 126-127
output, 144-145
sensitive data, 137-140
service connections and,

145
session management,

132-134
validation, 142-143

incident response, 90
individuals, deployment

and, 217
information harvesting,

abuse case analysis
and, 81

infrastructure integration,
200-204

injection, 145
flaws, 39
log injection, 234
miscellaneous attacks,

235
SQL, 235
XSS and, 145

input
implementation and,

142-143

9780321604118_Book 1.indb 2979780321604118_Book 1.indb 297 11/11/14 11:37 AM11/11/14 11:37 AM

298 Index

positive input validation,
142

servlets, 164-165
insecure direct object

reference, 40
integration

information security and
DevOps, 228

infrastructure, 200-204
internal deployment, secu-

rity testing and, 176
internal security require-

ments, 88
access control, 92
account management, 91
authentication, 88
business continuity

requirements, 89
change management, 94
disaster recovery, 89
encryption standards, 93
event logging, 89
identification, 88
incident response, 90
patching, 94
session management, 92

Internet
history, 25-29
infrastructure, 32

Internet-related crime, 21
interviews, postmortem,

289-291
intrusion detection

NIDS (Network Intru-
sion Detection
Sensors), 203

NIPS (Network Intru-
sion Prevention
Sensors), 203

IS (Informational Security)
testing team,
175-176, 183-184

versus development
team, 35

ISMS (Information Secu-
rity Management
System), 281

ISO 27001/2, 286-287
ISOA, 27

ISO (International
Organization for
Standardization),
281

IT (Information Technol-
ogy)

deployment and, 37
testing team, 183-184
versus development

team, 35

J-K

Java source code release,
28

keys
booting and, 141
implementation and, 141
management, design

and, 102
password-based key

derivation function,
141

PBE (Password-Based
Encryption), 141

L

layered security, 40
legacy components, 216
legacy software, mainte-

nance and, 258
legacy systems, 45
legal counsel as stakehold-

ers, 60
licensing, confluence and,

278
lockout, threshold adjust-

ment, 226
logging

events
application level, 163
design and, 104
requirements, 89

third-generation tools,
213

logout, threshold adjust-
ment, 226

logs
event logging, 136-137
injection, 234
overflow, 234

low security tier, 72
Lyon, Gordon, 29

M

maintenance, 45, 241
confluence and, 248
design and, 244
evolving threats, moni-

toring, 251-253
frameworks, 243
history, importance of,

249-251
legacy software, 258
life cycle, 43
mobile, 261
open source software,

257-258
SDLCs and, 259-260
third-party components

and, 243
third-party software and,

256-257
McCool, Rob, 28
McGraw, Gary, 29
medium security tier, 72
meetings, confluence and,

277
messages, threshold adjust-

ment, 224
MIDAS, 27
Mitnick, Kevin, 26
mobile deployment,

218-219
mobile maintenance, 261
mobile operations, 239
Morris, Robert, 25
Morris Worm, 26
Mosaic browser, 28
mutual SSL authentication,

127

N

NADIR, 27
Nessus, 29

9780321604118_Book 1.indb 2989780321604118_Book 1.indb 298 11/11/14 11:37 AM11/11/14 11:37 AM

Index 299

Netherlands ISP case study,
212-213

NetRanger, 27
Netscape Navigator, 28
network administrators as

stakeholders, 58
network connections,

implementation and,
126-127

Network Intrusion
Detection Sensors.
See NIDS

Network Intrusion
Prevention Sensors.
See NIPS

networks
confluent, 265

developing, 269-273
design and, 103

Neumann, Peter, 26
NIDS (Network Intrusion

Detection Sensors),
infrastructure inte-
gration and, 203

NIPS (Network Intrusion
Prevention Sensors),
infrastructure
integration and, 203

NIST (National Institute
of Cybersecurity
Framework), 281

SP 800-53, 287-289
NIST (National Institute

of Standards and
Technology), 140

NMAP, 29
notification of authorities,

threshold adjust-
ment, 225

NW3C (National White
Collar Crime
Center), 21

O

OAuth, 206-207
one-way SSL authentica-

tion, 127

open source software,
maintenance and,
257-258

operations planning, 49
deployment and, 115

output, implementation
and, 144-145

over engineering, 106
OWASP (Open Web

Application Security
Project)

AppSensor, 223-224
ESAPI (Enterprise Secu-

rity API), 149-151
vulnerabilities list, 39-43

P

password-based key deri-
vation function, 141

passwords, PBE
(Password-Based
Encryption), 141

patches, 94, 254-256
PBE (Password-Based

Encryption), 141
PCI-DSS requirements, 99
PDP (Policy Decision

Point), 136
penetration testing,

173-174
QA, 174
servlets, 159-160
team, 174

PEP (Policy Enforcement
Point), 136

Perl, 26
PGP (Pretty Good

Privacy), 27
PK (public key), 33
policies, confluence and,

274-275
policy/compliance group as

stakeholders, 62-63
Policy Decision Point

(PDP), 136
Policy Enforcement Point,

136

politics, security team and,
65

positive input validation,
142

servlets, 164-165
positive practices, focusing

on, 124-125
postmortem interviews,

289-291
predeployment review, 37
programming cookbooks,

151
project inception, 33

development team and,
35-36

project managers as stake-
holders, 54

project security team
need for, 42
tasks, 43-47

protecting data, design
and, 104

Q

QA
coding skills and, 180
context and, 181
regular, 174
security, 174
SQA comparison, 175
test timing, 181

R

Ranum, Marcus, 27
redirects, unvalidated, 42
regulatory auditors as

stakeholders, 61
regulatory regimes, 45-47
regulatory requirements,

85-88
remediation strategy,

deployed system
design review, 114

reporting requirements, 86
requirements gathering,

development team
and, 35

9780321604118_Book 1.indb 2999780321604118_Book 1.indb 299 11/11/14 11:37 AM11/11/14 11:37 AM

300 Index

reusing code. See code
reuse

reviewing code, 154-157
risk assessment, deployed

system design
review, 114

Roesch, Martin, 29
routers, infrastructure inte-

gration and, 202
Rugged DevOps, 222

S

sabotage, abuse case
analysis, 82

Salzer, J.H., 25
SAMM (Software Assur-

ance Maturity
Model), 284-286

Sarbanes-Oxley Act of
2002, 46

SA (security advisor), 77
SATAN security scanner,

28
SCA (Fortify), 48
Schroeder, M.D., 25
SDLC (software develop-

ment life cycle), 75
maintenance and,

259-260
SQA and, 176

SDL (Secure Development
Lifecycle), 76

asset inventory, 84
SEC (Securities and

Exchange Commis-
sion), 46

security
events

access control failures,
233

authentication, repeat-
ed failures, 233

flaws in applications,
34-38

log injection, 234
log overflow, 234
SQL injections, 235

layered, 40
misconfiguration, 41
patches. See patches
requirements, 47
tools, emergence, 29

security architecture
review, 48

security operations staff as
stakeholders, 58-59

security operations team,
deployment and,
38-40

security team
advisor, 52
budgeting, 64
organizing, 51
politics of company, 65
SSG (Software Security

Group), 52
stakeholders and, 52-63

security testing, 189-191
architectural diagrams,

170
data diagrams, 170
deployment diagrams,

172
internal deployment, 176
IS (Informational Securi-

ty) team, 175-176
length of time, 177-180
pentesting, 173-174
pentesting team, 174
use cases, 172

security tiers, 72
implementing, 152-154
reasons for, 73-74

SEIM (security incident
and event manage-
ment) systems,
200-201

senior executives as stake-
holders, 53

sensitive data
design and, 104
protection, 140
protection mechanisms,

137-139
servers, Apache web server,

28

server-to-server
connections, certifi-
cates, 127

service connections, imple-
mentation and, 145

servlets, 157-165
session fixation, 133
sessions

design and, 104
logout, threshold adjust-

ment, 226
management, 92

implementation and,
132-134

vulnerabilities, 39
SGG, 124
shutdown, threshold ad-

justment, 226
SIEMs (Security Incident

and Event Monitor-
ing), 209-212

SiteMinder, 135
small shops

deployment and, 217
DevOps, 238

SNORT, 29
software security flaws,

34-38
software security history,

25
SOGP (Standard of Good

Practice), 281
source code, Java release,

28
SP 800-53 (NIST),

287-289
Splunk, 214-215
SQA (Security Quality

Assurance)
engineers, 175-176

SSG (Software Security
Group), 34, 52, 77,
265-268

SSL (secure socket layer),
126

attacks and, 253
I & A (identification and

authentication), 130

9780321604118_Book 1.indb 3009780321604118_Book 1.indb 300 11/11/14 11:37 AM11/11/14 11:37 AM

Index 301

mutual authentication,
127

network communication
encryption, 131

one-way authentication,
127

staff availability, collabora-
tion and, 232

stakeholders, 52
administrative users,

55-56
developers, 62
end users, 56
end-user support, 57-58
financial auditors, 61
Help desk, 57-58
legal counsel, 60
network administrators,

58
policy/compliance group,

62-63
project managers, 54
regulatory auditors, 61
security operations staff,

58-59
senior executives, 53
system administrators,

58
system testers, 63

Stalker, 27
Stoll, Cliff, The Cuckoo’s

Egg, 26
system administrators as

stakeholders, 58
system lockout, threshold

adjustment, 226
system shutdown, thresh-

old adjustment, 226
system testers as stake-

holders, 63

T

test beds, collaboration
and, 231

testing, 49
bug life cycle, 185-189
functional testers, 49
grey box, 182

IS teams, 183-184
IS testing team, 175-176
IT teams, 183-184
patches, 256
penetration servlets,

159-160
pentesting, 173-174
security testing, 189-191

architectural diagrams,
170

data diagrams, 170
deployment diagrams,

172
length of time,

177-180
use cases, 172

tools, collaboration and,
232

theft, abuse case analysis,
82

third-party components,
216

maintenance and, 243
threshold adjustment,

226-228
third-party software,

maintenance and,
256-257

Thompson, Ken, 25
threat modeling, deployed

system design re-
view, 114

threat profiles, 107
threats, changes, monitor-

ing , 251-253
threat-specific decisions in

deployment,
198-199

threshold adjustments,
222-229

TIS Firewall Toolkit, 27
training

confluence and, 273-274
for confluence, 277

try block, 153

U

under engineering, 106
USAF Logic Support

Center, 26
U.S. Dept. of Defense

“Rainbow Series,”
26

use cases, testing and, 172
user credentials, protection

mechanisms, 139

V

Valgrind versus Debian
OpenSSL, 247

validation
design practices, 105
implementation and,

142-143
input, positive, 142
positive input validation,

servlets, 164-165
servlets, 163

Vaskovich, Fyodor, 29
Venema, Wietse, 28
vulnerabilities, 39-43

W

WAFs (web application
firewalls), 227

infrastructure integra-
tion and, 204

Wall, Larry, 26
warning messages, thresh-

old adjustment, 224
Weblogic, 135
web servers, infrastructure

integration and, 204

X-Y-Z

XSS (Cross-Site Scripting),
145

vulnerabilities, 40

Zimmerman, Phil, 27
zones, design and, 110

9780321604118_Book 1.indb 3019780321604118_Book 1.indb 301 11/11/14 11:37 AM11/11/14 11:37 AM

Register the Addison-Wesley, Exam
Cram, Prentice Hall, Que, and
Sams products you own to unlock
great benefi ts.

To begin the registration process,
simply go to informit.com/register
to sign in or create an account.
You will then be prompted to enter
the 10- or 13-digit ISBN that appears
on the back cover of your product.

informIT.com
THE TRUSTED TECHNOLOGY LEARNING SOURCE

Addison-Wesley | Cisco Press | Exam Cram

IBM Press | Que | Prentice Hall | Sams

SAFARI BOOKS ONLINE

About InformIT — THE TRUSTED TECHNOLOGY LEARNING SOURCE

INFORMIT IS HOME TO THE LEADING TECHNOLOGY PUBLISHING IMPRINTS
Addison-Wesley Professional, Cisco Press, Exam Cram, IBM Press, Prentice Hall

Professional, Que, and Sams. Here you will gain access to quality and trusted content and

resources from the authors, creators, innovators, and leaders of technology. Whether you’re

looking for a book on a new technology, a helpful article, timely newsletters, or access to

the Safari Books Online digital library, InformIT has a solution for you.

Registering your products can unlock
the following benefi ts:

• Access to supplemental content,
including bonus chapters,
source code, or project fi les.

• A coupon to be used on your
next purchase.

Registration benefi ts vary by product.
Benefi ts will be listed on your Account
page under Registered Products.

informit.com/register

THIS PRODUCT

aw_regthisprod_7x9.125.indd 1aw_regthisprod_7x9.125.indd 1 12/5/08 3:36:19 PM12/5/08 3:36:19 PM

9780321604118_Book 1.indb 3029780321604118_Book 1.indb 302 11/11/14 11:37 AM11/11/14 11:37 AM

	Contents
	Preface
	3 Design Activities
	Security Tiers
	On Confluence
	Requirements
	Specifications
	Design and Architecture
	It’s Already Designed
	Deployment and Operations Planning
	Summing Up
	Endnotes

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X-Y-Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Web Coated \050Ad\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200066006f007200200052005200200044006f006e006e0065006c006c0065007900200042006f006f006b00200070006c0061006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

