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Foreword

Rails is more than a programming framework for creating web applications. It’s also
a framework for thinking about web applications. It ships not as a blank slate equally
tolerant of every kind of expression. On the contrary, it trades that flexibility for the
convenience of “what most people need most of the time to do most things.” It’s a
designer straightjacket that sets you free from focusing on the things that just don’t
matter and focuses your attention on the stuff that does.

To be able to accept that trade, you need to understand not just how to do something
in Rails, but also why it’s done like that. Only by understanding the why will you be able
to consistently work with the framework instead of against it. It doesn’t mean that you’ll
always have to agree with a certain choice, but you will need to agree to the overachieving
principle of conventions. You have to learn to relax and let go of your attachment to
personal idiosyncrasies when the productivity rewards are right.

This book can help you do just that. Not only does it serve as a guide in your
exploration of the features in Rails, it also gives you a window into the mind and soul
of Rails. Why we’ve chosen to do things the way we do them, why we frown on certain
widespread approaches. It even goes so far as to include the discussions and stories of
how we got there—straight from the community participants that helped shape them.

Learning how to do Hello World in Rails has always been easy to do on your own,
but getting to know and appreciate the gestalt of Rails, less so. I applaud Obie for trying
to help you on this journey. Enjoy it.

— David Heinemeier Hansson
Creator of Ruby on Rails
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Foreword

From the beginning, the Rails framework turned web development on its head with the
insight that the vast majority of time spent on projects amounted to meaningless sit-ups.
Instead of having the time to think through your domain-specific code, you’d spend the
first few weeks of a project deciding meaningless details. By making decisions for you,
Rails frees you to kick off your project with a bang, getting a working prototype out the
door quickly. This makes it possible to build an application with some meat on its bones
in a few weekends, making Rails the web framework of choice for people with a great
idea and a full-time job.

Rails makes some simple decisions for you, like what to name your controller actions
and how to organize your directories. It also gets pretty aggressive, and sets development-
friendly defaults for the database and caching layer you’ll use, making it easy to change
to more production-friendly options once you’re ready to deploy.

By getting so aggressive, Rails makes it easy to put at least a few real users in front
of your application within days, enabling you to start gathering the requirements from
your users immediately, rather than spending months architecting a perfect solution,
only to learn that your users use the application differently than you expected.

The Rails team built the Rails project itself according to very similar goals. Don’t try
to overthink the needs of your users. Get something out there that works, and improve
it based on actual usage patterns. By all accounts, this strategy has been a smashing
success, and with the blessing of the Rails core team, the Rails community leveraged the
dynamism of Ruby to fill in the gaps in plugins. Without taking a close look at Rails,
you might think that Rails’ rapid prototyping powers are limited to the 15-minute blog
demo, but that you’d fall off a cliff when writing a real app. This has never been true. In
fact, in Rails 2.1, 2.2 and 2.3, the Rails team looked closely at common usage patterns
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reflected in very popular plugins, adding features that would further reduce the number
of sit-ups needed to start real-life applications.

By the release of Rails 2.3, the Rails ecosystem had thousands of plugins, and ap-
plications like Twitter started to push the boundaries of the Rails defaults. Increasingly,
you might build your next Rails application using a non-relational database or deploy it
inside a Java infrastructure using JRuby. It was time to take the tight integration of the
Rails stack to the next level.

Over the course of 20 months, starting in January 2008, we looked at a wide range
of plugins, spoke with the architects of some of the most popular Rails applications, and
changed the way the Rails internals thought about its defaults.

Rather than start from scratch, trying to build a generic data layer for Rails, we took
on the challenge of making it easy to give any ORM the same tight level of integration
with the rest of the framework as Active Record. We accepted no compromises, taking
the time to write the tight Active Record integration using the same APIs that we now
expose for other ORMs. This covers the obvious, such as making it possible to generate
a scaffold using DataMapper or Mongoid. It also covers the less obvious, such as giving
alternative ORMs the same ability to include the amount of time spent in the model
layer in the controller’s log output.

We brought this philosophy to every area of Rails 3: flexibility without compromise.
By looking at the ways that an estimated million developers use Rails, we could hone in
on the needs of real developers and plugin authors, significantly improving the overall
architecture of Rails based on real user feedback.

Because the Rails 3 internals are such a departure from what’s come before, developers
building long-lived applications and plugin developers need a resource that comprehen-
sively covers the philosophy of the new version of the framework. The Rails™ 3 Way is
a comprehensive resource that digs into the new features in Rails 3 and perhaps more
importantly, the rationale behind them.

— Yehuda Katz
Rails Core



Introduction

As I write this new introduction in the spring of 2010, the official release of Rails 3.0
is looming, and what a big change it represents. The “Merb-ification” of Rails is almost
complete! The new Rails is quite different from its predecessors in that its underlying
architecture is more modular and elegant while increasing sheer performance signifi-
cantly. The changes to Active Record are dramatic, with Arel’s query method chaining
replacing hashed find parameters that we were all used to.

There is a lot to love about Rails 3, and I do think that eventually most of the
community will make the change. In most cases, I have not bothered to cover 2.x ways
of doing things in Rails if they are significantly different from the Rails 3 way—hence
the title change. I felt that naming the book “The Rails Way (Second Edition)” would
be accurate, but possibly misleading. This new edition is a fully new book for a fully new
framework. Practically every line of the book has been painstakingly revised and edited,
with some fairly large chunks of the original book not making the new cut. It’s taken
well over a year, including six months of working every night to get this book done!

Even though Rails 3 is less opinionated than early versions, in that it allows for easy
reconfiguration of Rails assumptions, this book is more opinionated than ever. The vast
majority of Rails developers use RSpec, and I believe that is primarily because it is a
superior choice to Test::Unit. Therefore, this book does not cover Test::Unit. I
firmly believe that Haml is vastly, profoundly, better than ERb for view templating, so
the book uses Haml exclusively.
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0.1 About This Book
This book is not a tutorial or basic introduction to Ruby or Rails. It is meant as a day-
to-day reference for the full-time Rails developer. The more confident reader might be
able to get started in Rails using just this book, extensive online resources, and his or her
wits, but there are other publications that are more introductory in nature and might be
a wee bit more appropriate for beginners.

Every contributor to this book works with Rails on a full-time basis. We do not spend
our days writing books or training other people, although that is certainly something
that we enjoy doing on the side.

This book was originally conceived for myself, because I hate having to use online
documentation, especially API docs, which need to be consulted over and over again.
Since the API documentation is liberally licensed (just like the rest of Rails), there are a
few sections of the book that reproduce parts of the API documentation. In practically
all cases, the API documentation has been expanded and/or corrected, supplemented
with additional examples and commentary drawn from practical experience.

Hopefully you are like me—I really like books that I can keep next to my keyboard,
scribble notes in, and fill with bookmarks and dog-ears. When I’m coding, I want to be
able to quickly refer to both API documentation, in-depth explanations, and relevant
examples.

0.1.1 Book Structure
I attempted to give the material a natural structure while meeting the goal of being
the best-possible Rails reference book. To that end, careful attention has been given
to presenting holistic explanations of each subsystem of Rails, including detailed API
information where appropriate. Every chapter is slightly different in scope, and I suspect
that Rails is now too big a topic to cover the whole thing in depth in just one book.

Believe me, it has not been easy coming up with a structure that makes perfect sense
for everyone. Particularly, I have noted surprise in some readers when they notice that
Active Record is not covered first. Rails is foremost a web framework and, at least to me,
the controller and routing implementation is the most unique, powerful, and effective
feature, with Active Record following a close second.

0.1.2 Sample Code and Listings
The domains chosen for the code samples should be familiar to almost all professional de-
velopers. They include time and expense tracking, auctions, regional data management,
and blogging applications. I don’t spend pages explaining the subtler nuances of the
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business logic for the samples or justify design decisions that don’t have a direct relation-
ship to the topic at hand. Following in the footsteps of my series colleague Hal Fulton
and The Ruby Way, most of the snippets are not full code listings—only the relevant code
is shown. Ellipses (. . . ) denote parts of the code that have been eliminated for clarity.

Whenever a code listing is large and significant, and I suspect that you might want to
use it verbatim in your own code, I supply a listing heading. There are not too many of
those. The whole set of code listings will not add up to a complete working system, nor
are there 30 pages of sample application code in an appendix. The code listings should
serve as inspiration for your production-ready work, but keep in mind that they often
lack touches necessary in real-world work. For example, examples of controller code are
often missing pagination and access control logic, because it would detract from the
point being expressed.

Some of the source code for my examples can be found at http://github.com/
obie/tr3w_time_and_expenses. Note that it is not a working nor complete applica-
tion. It just made sense at times to keep the code in the context of an application and
hopefully you might draw some inspiration from browsing it.

0.1.3 Concerning Third-Party RubyGems and Plugins
Whenever you find yourself writing code that feels like plumbing, by which I mean
completely unrelated to the business domain of your application, you’re probably doing
too much work. I hope that you have this book at your side when you encounter that
feeling. There is almost always some new part of the Rails API or a third-party RubyGem
for doing exactly what you are trying to do.

As a matter of fact, part of what sets this book apart is that I never hesitate in calling
out the availability of third-party code, and I even document the RubyGems and plugins
that I feel are most crucial for effective Rails work. In cases where third-party code is
better than the built-in Rails functionality, we don’t cover the built-in Rails functionality
(pagination is a good example).

An average developer might see his or her productivity double with Rails, but I’ve
seen serious Rails developers achieve gains that are much, much higher. That’s because we
follow the Don’t Repeat Yourself (DRY) principle religiously, of which Don’t Reinvent
The Wheel (DRTW) is a close corollary. Reimplementing something when an existing
implementation is good enough is an unnecessary waste of time that nevertheless can be
very tempting, since it’s such a joy to program in Ruby.

Ruby on Rails is actually a vast ecosystem of core code, official plugins, and third-
party plugins. That ecosystem has been exploding rapidly and provides all the raw

http://github.com/obie/tr3w_time_and_expenses
http://github.com/obie/tr3w_time_and_expenses
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technology you need to build even the most complicated enterprise-class web appli-
cations. My goal is to equip you with enough knowledge that you’ll be able to avoid
continuously reinventing the wheel.

0.2 Recommended Reading and Resources
Readers may find it useful to read this book while referring to some of the excellent
reference titles listed in this section.

Most Ruby programmers always have their copy of the “Pickaxe” book nearby,
Programming Ruby (ISBN: 0-9745140-5-5), because it is a good language reference.
Readers interested in really understanding all of the nuances of Ruby programming
should acquire The Ruby Way, Second Edition (ISBN: 0-6723288-4-4).

I highly recommend Peepcode Screencasts, in-depth video presentations on a va-
riety of Rails subjects by the inimitable Geoffrey Grosenbach, available at http://

peepcode.com

Ryan Bates does an excellent job explaining nuances of Rails development in his
long-running series of free webcasts available at http://railscasts.com/

Last, but not least, this book’s companion website at http://tr3w.com is the
first place to look for reporting issues and finding additional resources, as they become
available.

Regarding David Heinemeier Hansson, a.k.a. DHH

I had the pleasure of establishing a friendship with David Heinemeier Hansson, creator of Rails,
in early 2005, before Rails hit the mainstream and he became an International Web 2.0 Superstar.
My friendship with David is a big factor in why I’m writing this book today. David’s opinions
and public statements shape the Rails world, which means he gets quoted a lot when we discuss
the nature of Rails and how to use it effectively.
David has told me on a couple of occasions that he hates the “DHH” moniker that people tend to
use instead of his long and difficult-to-spell full name. For that reason, in this book I try to always
refer to him as “David” instead of the ever-tempting “DHH.” When you encounter references
to “David” without further qualification, I’m referring to the one-and-only David Heinemeier
Hansson.
There are a number of notable people from the Rails world that are also referred to on a first-name
basis in this book. Those include:

• Yehuda Katz

• Jamis Buck

• Xavier Noria

http://peepcode.com
http://peepcode.com
http://railscasts.com/
http://tr3w.com


Introduction xli

0.3 Goals
As already stated, I hope to make this your primary working reference for Ruby on
Rails. I don’t really expect too many people to read it through end to end unless they’re
expanding their basic knowledge of the Rails framework. Whatever the case may be,
over time I hope this book gives you as an application developer/programmer greater
confidence in making design and implementation decisions while working on your day-
to-day tasks. After spending time with this book, your understanding of the fundamental
concepts of Rails coupled with hands-on experience should leave you feeling comfortable
working on real-world Rails projects, with real-world demands.

If you are in an architectural or development lead role, this book is not targeted to
you, but should make you feel more comfortable discussing the pros and cons of Ruby
on Rails adoption and ways to extend Rails to meet the particular needs of the project
under your direction.

Finally, if you are a development manager, you should find the practical perspective
of the book and our coverage of testing and tools especially interesting, and hopefully
get some insight into why your developers are so excited about Ruby and Rails.

0.4 Prerequisites
The reader is assumed to have the following knowledge:

• Basic Ruby syntax and language constructs such as blocks

• Solid grasp of object-oriented principles and design patterns

• Basic understanding of relational databases and SQL

• Familiarity with how Rails applications are laid out and function

• Basic understanding of network protocols such as HTTP and SMTP

• Basic understanding of XML documents and web services

• Familiarity with transactional concepts such as ACID properties

As noted in the section “Book Structure,” this book does not progress from easy material
in the front to harder material in the back. Some chapters do start out with fundamental,
almost introductory material and push on to more advanced coverage. There are def-
initely sections of the text that experienced Rails developer will gloss over. However,
I believe that there is new knowledge and inspiration in every chapter, for all skill
levels.
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CHAPTER 9
Advanced Active Record

Active Record is a simple object-relational mapping (ORM) framework compared to
other popular ORM frameworks, such as Hibernate in the Java world. Don’t let that
fool you, though: Under its modest exterior, Active Record has some pretty advanced
features. To really get the most effectiveness out of Rails development, you need to have
more than a basic understanding of Active Record—things like knowing when to break
out of the one-table/one-class pattern, or how to leverage Ruby modules to keep your
code clean and free of duplication.

In this chapter, we wrap up this book’s comprehensive coverage of Active Record by
reviewing callbacks, observers, single-table inheritance (STI), and polymorphic models.
We also review a little bit of information about metaprogramming and Ruby domain-
specific languages (DSLs) as they relate to Active Record.

9.1 Scopes
Scopes (or “named scopes” if you’re old school) allow you define and chain query criteria
in a declarative and reusable manner.

class Timesheet < ActiveRecord::Base
scope :submitted, where(:submitted => true)
scope :underutilized, where('total_hours < 40')

To declare a scope, use the scope class method, passing it a name as a symbol and some
sort of query definition. If your query is known at load time, you can simply use Arel
criteria methods like where, order, and limit to construct the definition as shown in
the example. On the other hand, if you won’t have all the parameters for your query
until runtime, use a lambda as the second parameter. It will get evaluated whenever the
scope is invoked.
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class User < ActiveRecord::Base
scope :delinquent, lambda { where('timesheets_updated_at < ?',

1.week.ago)}

Invoke scopes as you would class methods.

>> User.delinquent
=> [#<User id: 2, timesheets_updated_at: "2010-01-07 01:56:29"...>]

9.1.1 Scope Parameters
You can pass arguments to scope invocations by adding parameters to the lambda you
use to define the scope query.

class BillableWeek < ActiveRecord::Base
scope :newer_than, lambda { |date| where('start_date > ?', date) }

Then pass the argument to the scope as you would normally.

BillableWeek.newer_than(Date.today)

9.1.2 Chaining Scopes
One of the beauties of scopes is that you can chain them together to create complex
queries from simple ones:

>> Timesheet.underutilized.submitted
=> [#<Timesheet id: 3, submitted: true, total_hours: 37 ...

Scopes can be chained together for reuse within scope definitions themselves. For in-
stance, let’s say that we always want to constrain the result set of underutilized to
submitted timesheets:

class Timesheet < ActiveRecord::Base
scope :submitted, where(:submitted => true)
scope :underutilized, submitted.where('total_hours < 40')

9.1.3 Scopes and has many
In addition to being available at the class context, scopes are available automatically on
has many association attributes.

>> u = User.find 2
=> #<User id: 2, login: "obie"...>

>> u.timesheets.size
=> 3
>> u.timesheets.underutilized.size
=> 1
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9.1.4 Scopes and Joins
You can use Arel’s join method to create cross-model scopes. For instance, if we gave
our recurring example Timesheet a submitted_at date attribute instead of just a
boolean, we could add a scope to User allowing us to see who is late on their timesheet
submission.

scope :tardy, lambda {
joins(:timesheets).
where("timesheets.submitted_at <= ?", 7.days.ago).
group("users.id")

}

Arel’s to_sql method is useful for debugging scope definitions and usage.

>> User.tardy.to_sql
=> "SELECT users.* FROM users

INNER JOIN timesheets ON timesheets.user_id = users.id
WHERE (timesheets.submitted_at <= '2010-07-06 15:27:05.117700')
GROUP BY users.id" # query formatted nicely for the book

Note that as demonstrated in the example, it’s a good idea to use unambiguous column
references (including table name) in cross-model scope definitions so that Arel doesn’t
get confused.

9.1.5 Scope Combinations
Our example of a cross-model scope violates good object-oriented design principles: it
contains the logic for determining whether or not a Timesheet is submitted, which
is code that properly belongs in the Timesheet class. Luckily we can use Arel’s merge
method (aliased as &) to fix it. First we put the late logic where it belongs, in Timesheet:

scope :late, lambda { where("timesheet.submitted_at <= ?", 7.days.ago) }

Then we use our new late scope in tardy:

scope :tardy, lambda {
joins(:timesheets).group("users.id") & Timesheet.late

}

If you have trouble with this technique, make absolutely sure that your scopes’ clauses
refer to fully qualified column names. (In other words, don’t forget to prefix column
names with tables.) The console and to_sql method is your friend for debugging.
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9.1.6 Default Scopes
There may arise use cases where you want certain conditions applied to the finders for
your model. Consider our timesheet application has a default view of open timesheets—
we can use a default scope to simplify our general queries.

class Timesheet < ActiveRecord::Base
default_scope :where(:status => "open")

end

Now when we query for our Timesheets, by default the open condition will be
applied:

>> Timesheet.all.map(&:status)
=> ["open", "open", "open"]

Default scopes also get applied to your models when building or creating them,
which can be a great convenience or a nuisance if you are not careful. In our previous
example, all new Timesheets will be created with a status of “open.”

>> Timesheet.new
=> #<Timesheet id: nil, status: "open">
>> Timesheet.create
=> #<Timesheet id: 1, status: "open">

You can override this behavior by providing your own conditions or scope to override
the default setting of the attributes.

>> Timesheet.where(:status => "new").new
=> #<Timesheet id: nil, status: "new">
>> Timesheet.where(:status => "new").create
=> #<Timesheet id: 1, status: "new">

There may be cases where at runtime you want to create a scope and pass it around
as a first class object leveraging your default scope. In this case, Active Record provides
the scoped method.

>> timesheets = Timesheet.scoped.order("submitted_at DESC")
=> [#<Timesheet id: 1, status: "open"]
>> timesheets.where(:name => "Durran Jordan")
=> []

There’s another approach to scopes that provides a sleeker syntax, scoping, which
allows the chaining of scopes via nesting within a block.

>> Timesheet.order("submitted_at DESC").scoping do
>> Timesheets.all
>> end
=> #<Timesheet id: 1, status: "open">
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That’s pretty nice, but what if we don’t want our default scope to be included in our
queries? In this case Active Record takes care of us through the unscoped method.

>> Timesheet.unscoped.order("submitted_at DESC")
=> [#<Timesheet id: 2, status: "submitted">]

Similarly to overriding our default scope with a relation when creating new objects,
we can supply unscoped as well to remove the default attributes.

>> Timesheet.unscoped.new
=> #<Timesheet id: nil, status: nil>

9.1.7 Using Scopes for CRUD
You have a wide range of Active Record’s CRUD methods available on scopes, which
gives you some powerful abilities. For instance, let’s give all our underutilized timesheets
some extra hours.

>> u.timesheets.underutilized.collect(&:total_hours)
=> [37, 38]

>> u.timesheets.underutilized.update_all("total_hours = total_hours + 2")
=> 2

>> u.timesheets.underutilized.collect(&:total_hours)
=> [37, 38] # whoops, cached result

>> u.timesheets(true).underutilized.collect(&:total_hours)
=> [39] # results after telling association to reload

Scopes including a where clause using hashed conditions will populate attributes of
objects built off of them with those attributes as default values. Admittedly it’s a bit
difficult to think of a plausible use case for this feature, but we’ll show it in an example.
First, we add the following scope to Timesheet:

scope :perfect, submitted.where(:total_hours => 40)

Now, building an object on the perfect scope should give us a submitted timesheet
with 40 hours.

> Timesheet.perfect.build
=> #<Timesheet id: nil, submitted: true, user_id: nil, total_hours: 40
...>

As you’ve probably realized by now, the new Arel underpinnings of Active Record
are tremendously powerful and truly elevate the Rails 3 platform.
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9.2 Callbacks
This advanced feature of Active Record allows the savvy developer to attach behavior at
a variety of different points along a model’s life cycle, such as after initialization, before
database records are inserted, updated or removed, and so on.

Callbacks can do a variety of tasks, ranging from simple things such as logging and
massaging of attribute values prior to validation, to complex calculations. Callbacks can
halt the execution of the life-cycle process taking place. Some callbacks can even modify
the behavior of the model class on the fly. We’ll cover all of those scenarios in this
section, but first let’s get a taste of what a callback looks like. Check out the following
silly example:

class Beethoven < ActiveRecord::Base
before_destroy :last_words

protected

def last_words
logger.info "Friends applaud, the comedy is over"

end
end

So prior to dying (ehrm, being destroy’d), the last words of the Beethoven class will
always be logged for posterity. As we’ll see soon, there are 14 different opportunities to
add behavior to your model in this fashion. Before we get to that list, let’s cover the
mechanics of registering a callback.

9.2.1 Callback Registration
Overall, the most common way to register a callback method is to declare it at the top of
the class using a typical Rails macro-style class method. However, there’s a less verbose
way to do it also. Simply implement the callback as a method in your class. In other
words, I could have coded the prior example as follows:

class Beethoven < ActiveRecord::Base

protected

def before_destroy
logger.info "Friends applaud, the comedy is over"

end
end

This is a rare case of the less-verbose solution being bad. In fact, it is almost always
preferable, dare I say it is the Rails way, to use the callback macros over implementing
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callback methods, for the following reasons:

• Macro-style callback declarations are added near the top of the class definition,
making the existence of that callback more evident versus a method body potentially
buried later in the file.

• Macro-style callbacks add callback methods to a queue. That means that more than
one method can be hooked into the same slot in the life cycle. Callbacks will be
invoked in the order in which they were added to the queue.

• Callback methods for the same hook can be added to their queue at different levels
of an inheritance hierarchy and still work—they won’t override each other the way
that methods would.

• Callbacks defined as methods on the model are always called last.

9.2.2 One-Liners
Now, if (and only if) your callback routine is really short,1 you can add it by passing a
block to the callback macro. We’re talking one-liners!

class Napoleon < ActiveRecord::Base
before_destroy { logger.info "Josephine..." }
...

end

As of Rails 3, the block passed to a callback is executed via instance_eval so that
its scope is the record itself (versus needing to act on a passed in record variable). The
following example implements “paranoid” model behavior, covered later in the chapter.

class Account < ActiveRecord::Base
before_destroy { update_attribute(:deleted_at, Time.now); false }
...

9.2.3 Protected or Private
Except when you’re using a block, the access level for callback methods should always
be protected or private. It should never be public, since callbacks should never be called
from code outside the model.

1. If you are browsing old Rails source code, you might come across callback macros receiving a short string of
Ruby code to be evaluated in the binding of the model object. That way of adding callbacks was deprecated in
Rails 1.2, because you’re always better off using a block in those situations.
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Believe it or not, there are even more ways to implement callbacks, but we’ll cover
those techniques further along in the chapter. For now, let’s look at the lists of callback
hooks available.

9.2.4 Matched before/after Callbacks
In total, there are 14 types of callbacks you can register on your models! Twelve of
them are matching before/after callback pairs, such as before_validation and
after_validation. (The other two, after_initialize and after_find, are spe-
cial, and we’ll discuss them later in this section.)

List of Callbacks
This is the list of callback hooks available during a save operation. (The list varies
slightly depending on whether you’re saving a new or existing record.)

• before_validation

• before_validation_on_create

• after_validation

• after_validation_on_create

• before_save

• before_create (for new records) and before_update (for existing records)

• (Database actually gets an INSERT or UPDATE statement here)

• after_create (for new records) and after_update (for existing records)

• after_save

Delete operations have their own two callbacks:

• before_destroy

• (Database actually gets a DELETE statement here)

• after_destroy is called after all attributes have been frozen (read-only)

Additionally transactions have callbacks as well, for when you want actions to occur
after the database is guaranteed to be in a permanent state. Note that only “after” callbacks
exist here because of the nature of transactions—it’s a bad idea to be able to interfere
with the actual operation itself.
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• after_commit

• after_commit_on_create

• after_commit_on_update

• after_commit_on_destroy

• after_rollback

• after_rollback_on_create

• after_rollback_on_update

• after_rollback_on_destroy

9.2.5 Halting Execution
If you return a boolean false (not nil) from a callback method, Active Record halts
the execution chain. No further callbacks are executed. The save method will return
false, and save! will raise a RecordNotSaved error.

Keep in mind that because the last expression of a Ruby method is returned implicitly,
it is a pretty common bug to write a callback that halts execution unintentionally. If
you have an object with callbacks that mysteriously fails to save, make sure you aren’t
returning false by mistake.

9.2.6 Callback Usages
Of course, the callback you should use for a given situation depends on what you’re
trying to accomplish. The best I can do is to serve up some examples to inspire you with
your own code.

Cleaning Up Attribute Formatting withbefore—validate—on—create
The most common examples of using before_validation callbacks have to do with
cleaning up user-entered attributes. For example, the following CreditCard class cleans
up its number attribute so that false negatives don’t occur on validation:

class CreditCard < ActiveRecord::Base

...

def before_validation_on_create
# Strip everything in the number except digits
self.number = number.gsub(/[^0-9]/, "")

end
end
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Geocoding with before—save
Assume that you have an application that tracks addresses and has mapping features.
Addresses should always be geocoded before saving, so that they can be displayed rapidly
on a map later.2

As is often the case, the wording of the requirement itself points you in the direction
of the before_save callback:

class Address < ActiveRecord::Base
include GeoKit::Geocoders

before_save :geolocate
validates_presence_of :street, :city, :state, :zip
...

def to_s
"#{street} #{city}, #{state} #{zip}"

end

protected

def geolocate
res = GoogleGeocoder.geocode(to_s)
self.latitude = res.lat
self.longitude = res.lng

end
end

Before we move on, there are a couple of additional considerations. The preceding code
works great if the geocoding succeeds, but what if it doesn’t? Do we still want to allow
the record to be saved? If not, we should halt the execution chain:

def geolocate
res = GoogleGeocoder.geocode(to_s)
return false if not res.success # halt execution

self.latitude = res.lat
self.longitude = res.lng

end

The only problem remaining is that we give the rest of our code (and by extension,
the end user) no indication of why the chain was halted. Even though we’re not in a
validation routine, I think we can put the errors collection to good use here:

def geolocate
res = GoogleGeocoder.geocode(to_s)

2. I recommend the excellent GeoKit for Rails plugin available at http://geokit.rubyforge.org/.

http://geokit.rubyforge.org/
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if res.success
self.latitude = res.lat
self.longitude = res.lng

else
errors[:base] << "Geocoding failed. Please check address."
return false

end
end

If the geocoding fails, we add a base error message (for the whole object) and halt
execution, so that the record is not saved.

Exercise Your Paranoia with before_destroy
What if your application has to handle important kinds of data that, once entered,
should never be deleted? Perhaps it would make sense to hook into Active Record’s
destroy mechanism and somehow mark the record as deleted instead?

The following example depends on the accounts table having a deleted_at date-
time column.

class Account < ActiveRecord::Base

...

def before_destroy
update_attribute(:deleted_at, Time.now)
false

end

end

I chose to implement it as a callback method so that I am guaranteed it will execute
last in the before_destroy queue. It returns false so that execution is halted and the
underlying record is not actually deleted from the database.3

It’s probably worth mentioning that there are ways that Rails allows you to unin-
tentionally circumvent before_destroy callbacks:

• The delete and delete_all class methods of ActiveRecord::Base are almost
identical. They remove rows directly from the database without instantiating the
corresponding model instances, which means no callbacks will occur.

3. Real-life implementation of the example would also need to modify all finders to include deleted_at
is NULL conditions; otherwise, the records marked deleted would continue to show up in the applica-
tion. That’s not a trivial undertaking, and luckily you don’t need to do it yourself. There’s a Rails plugin
named ActsAsParanoid by Rick Olson that does exactly that, and you can find it at http://svn.techno-
weenie.net/projects/plugins/acts_as_paranoid.

http://svn.technoweenie.net/projects/plugins/acts_as_paranoid
http://svn.technoweenie.net/projects/plugins/acts_as_paranoid
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• Model objects in associations defined with the option :dependent => :delete_

all will be deleted directly from the database when removed from the collection
using the association’s clear or delete methods.

Cleaning Up Associated Files with after—destroy
Model objects that have files associated with them, such as attachment records and
uploaded images, can clean up after themselves when deleted using the after_destroy
callback. The following method from Rick Olson’s old AttachmentFu4 plugin is a good
example:

# Destroys the file. Called in the after_destroy callback
def destroy_file

FileUtils.rm(full_filename)
...

rescue
logger.info "Exception destroying #{full_filename ... }"
logger.warn $!.backtrace.collect { |b| " > #{b}" }.join("\n")

end

9.2.7 Special Callbacks: after—initialize
and after—find

The after_initialize callback is invoked whenever a new Active Record model is
instantiated (either from scratch or from the database). Having it available prevents you
from having to muck around with overriding the actual initialize method.

The after_find callback is invoked whenever Active Record loads a model object
from the database, and is actually called before after_initialize, if both are imple-
mented. Because after_find and after_initialize are called for each object found
and instantiated by finders, performance constraints dictate that they can only be added
as methods, and not via the callback macros.

What if you want to run some code only the first time that a model is ever instantiated,
and not after each database load? There is no native callback for that scenario, but you
can do it using the after_initialize callback. Just add a condition that checks to see
if it is a new record:

def after_initialize
if new?

...
end

end

4. Get AttachmentFu at http://svn.techno-weenie.net/projects/plugins/attachment_fu.

http://svn.techno-weenie.net/projects/plugins/attachment_fu
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In a number of Rails apps that I’ve written, I’ve found it useful to capture user preferences
in a serialized hash associated with the User object. The serialize feature of Active
Record models makes this possible, since it transparently persists Ruby object graphs to
a text column in the database. Unfortunately, you can’t pass it a default value, so I have
to set one myself:

class User < ActiveRecord::Base
serialize :preferences # defaults to nil
...

protected

def after_initialize
self.preferences ||= Hash.new

end
end

Using the after_initialize callback, I can automatically populate the preferences
attribute of my user model with an empty hash, so that I never have to worry about it being
nil when I access it with code such as user.preferences[:show_help_text] =

false.
Ruby’s metaprogramming capabilities combined with the ability to run code when-

ever a model is loaded using the after_find callback are a powerful mix. Since we’re
not done learning about callbacks yet, we’ll come back to uses of after_find later on
in the chapter, in the section “Modifying Active Record Classes at Runtime.”

9.2.8 Callback Classes
It is common enough to want to reuse callback code for more than one object that Rails
gives you a way to write callback classes. All you have to do is pass a given callback queue
an object that responds to the name of the callback and takes the model object as a
parameter.

Here’s our paranoid example from the previous section as a callback class:

class MarkDeleted
def self.before_destroy(model)

model.update_attribute(:deleted_at, Time.now)
return false

end
end

The behavior of MarkDeleted is stateless, so I added the callback as a class method.
Now you don’t have to instantiate MarkDeleted objects for no good reason. All you
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do is pass the class to the callback queue for whichever models you want to have the
mark-deleted behavior:

class Account < ActiveRecord::Base
before_destroy MarkDeleted
...

end

class Invoice < ActiveRecord::Base
before_destroy MarkDeleted
...

end

Multiple Callback Methods in One Class
There’s no rule that says you can’t have more than one callback method in a callback
class. For example, you might have special audit log requirements to implement:

class Auditor
def initialize(audit_log)

@audit_log = audit_log
end

def after_create(model)
@audit_log.created(model.inspect)

end

def after_update(model)
@audit_log.updated(model.inspect)

end

def after_destroy(model)
@audit_log.destroyed(model.inspect)

end
end

To add audit logging to an Active Record class, you would do the following:

class Account < ActiveRecord::Base
after_create Auditor.new(DEFAULT_AUDIT_LOG)
after_update Auditor.new(DEFAULT_AUDIT_LOG)
after_destroy Auditor.new(DEFAULT_AUDIT_LOG)
...

end

Wow, that’s ugly, having to add three Auditors on three lines. We could extract a local
variable called auditor, but it would still be repetitive. This might be an opportunity
to take advantage of Ruby’s open classes, the fact that you can modify classes that aren’t
part of your application.
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Wouldn’t it be better to simply say acts_as_audited at the top of the model that
needs auditing? We can quickly add it to the ActiveRecord::Base class, so that it’s
available for all our models.

On my projects, the file where “quick and dirty” code like the method in Listing 9.1
would reside islib/core_ext/active_record_base.rb, but you can put it anywhere
you want. You could even make it a plugin (as detailed in Chapter 19, “Extending Rails
with Plugins”).

Listing 9.1 A quick-and-dirty ‘‘acts as audited’’method

class ActiveRecord::Base
def self.acts_as_audited(audit_log=DEFAULT_AUDIT_LOG)

auditor = Auditor.new(audit_log)
after_create auditor
after_update auditor
after_destroy auditor

end
end

Now, the top of Account is a lot less cluttered:

class Account < ActiveRecord::Base
acts_as_audited

Testability
When you add callback methods to a model class, you pretty much have to test that
they’re functioning correctly in conjunction with the model to which they are added.
That may or may not be a problem. In contrast, callback classes are super-easy to test in
isolation.

def test_auditor_logs_created
(model = mock).expects(:inspect).returns('foo')
(log = mock).expects(:created).with('foo')
Auditor.new(log).after_create(model)

end

9.3 Calculation Methods
All Active Record classes have a calculatemethod that provides easy access to aggregate
function queries in the database. Methods for count, sum, average, minimum, and
maximum have been added as convenient shortcuts.
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Options such as conditions, :order, :group, :having, and :joins can be
passed to customize the query.

There are two basic forms of output:

Single aggregate value The single value is type cast to Fixnum for COUNT, Float for
AVG, and the given column’s type for everything else.

Grouped values This returns an ordered hash of the values and groups them by the
:group option. It takes either a column name, or the name of a belongs_to

association.

The following options are available to all calculation methods:

:conditions An SQL fragment like "administrator = 1" or [ "user_name =

?", username ]. See conditions in the intro to ActiveRecord::Base.

:include Eager loading, see Associations for details. Since calculations don’t load
anything, the purpose of this is to access fields on joined tables in your conditions,
order, or group clauses.

:joins An SQL fragment for additional joins like "LEFT JOIN comments ON

comments.post_id = id". (Rarely needed). The records will be returned read-
only since they will have attributes that do not correspond to the table’s columns.

:order An SQL fragment like "created_at DESC, name" (really only used with
GROUP BY calculations).

:group An attribute name by which the result should be grouped. Uses the GROUP BY

SQL-clause.

:select By default, this is * as in SELECT * FROM, but can be changed if you, for
example, want to do a join, but not include the joined columns.

:distinct Set this to true to make this a distinct calculation, such as SELECT

COUNT(DISTINCT posts.id) ...

The following examples illustrate the usage of various calculation methods.

Person.calculate(:count, :all) # The same as Person.count

# SELECT AVG(age) FROM people
Person.average(:age)

# Selects the minimum age for everyone with a last name other than
'Drake'

Person.minimum(:age).where('last_name <> ?', 'Drake')
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# Selects the minimum age for any family without any minors
Person.minimum(:age).having('min(age) > 17').group(:last_name)

9.3.1 average(column—name, *options)
Calculates the average value on a given column. The first parameter should be a symbol
identifying the column to be averaged.

9.3.2 count(column—name, *options)
Count operates using three different approaches. Count without parameters will return
a count of all the rows for the model. Count with a column_name will return a count of
all the rows for the model with the supplied colum present. Lastly, count using :options
will find the row count matched by the options used. In the last case you would send an
options hash as the only parameter. 213

total_contacts = person.contacts.count(:from => "contact_cards")

Options are the same as with all other calculations methods with the additional option
of :from which is by default the name of the table name of the class, however it can
be changed to a different table name or even that of a database view. Remember that
Person.count(:all) will not work because :all will be treated as a condition, you should
use Person.count instead.

9.3.3 maximum(column—name, *options)
Calculates the maximum value on a given column. The first parameter should be a
symbol identifying the column to be calculated.

9.3.4 minimum(column—name, *options)
Calculates the minimum value on a given column. The first parameter should be a
symbol identifying the column to be calculated.

9.3.5 sum(column—name, *options)
Calculates a summed value in the database using SQL. The first parameter should be a
symbol identifying the column to be summed.
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9.4 Observers
The single responsibility principle is a very important tenet of object-oriented program-
ming. It compels us to keep a class focused on a single concern. As you’ve learned in
the previous section, callbacks are a useful feature of Active Record models that allow
us to hook in behavior at various points of a model object’s life cycle. Even if we pull
that extra behavior out into callback classes, the hook still requires code changes in the
model class definition itself. On the other hand, Active Record gives us a way to hook
in to models that is completely transparent: Observers.

Here is the functionality of our old Auditor callback class as an observer of Account
objects:

class AccountObserver < ActiveRecord::Observer
def after_create(model)

DEFAULT_AUDIT_LOG.created(model.inspect)
end

def after_update(model)
DEFAULT_AUDIT_LOG.updated(model.inspect)

end

def after_destroy(model)
DEFAULT_AUDIT_LOG.destroyed(model.inspect)

end
end

9.4.1 Naming Conventions
When ActiveRecord::Observer is subclassed, it breaks down the name of the subclass
by stripping off the “Observer” part. In the case of our AccountObserver in the preced-
ing example, it would know that you want to observe the Account class. However, that’s
not always desirable behavior. In fact, with general-purpose code such as our Auditor,
it’s positively a step backward, so it is possible to overrule the naming convention with the
use of the observe macro-style method. We still extend ActiveRecord::Observer,
but we can call the subclass whatever we want and tell it explicitly what to observe using
the observe method, which accepts one or more arguments.

class Auditor < ActiveRecord::Observer
observe Account, Invoice, Payment

def after_create(model)
DEFAULT_AUDIT_LOG.created(model.inspect)

end
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def after_update(model)
DEFAULT_AUDIT_LOG.updated(model.inspect)

end

def after_destroy(model)
DEFAULT_AUDIT_LOG.destroyed(model.inspect)

end
end

9.4.2 Registration of Observers
If there weren’t a place for you to tell Rails which observers to load, they would never
get loaded at all, since they’re not referenced from any other code in your application.
Register observers with the following kind of code in an initializer:

# Activate observers that should always be running
ActiveRecord::Base.observers = Auditor

9.4.3 Timing
Observers are notified after the in-object callbacks are triggered.5 It’s not possible to act
on the whole object from an observer without having the object’s own callbacks executed
first.

Durran says . . .

For those of us who love to be organized, you can now put your observers in a separate directory
under app if your heart desires. You won’t need to perform custom loading anymore since Rails
now loads all files under the app directory automatically.

9.5 Single-Table Inheritance (STI)
A lot of applications start out with a User model of some sort. Over time, as different
kinds of users emerge, it might make sense to make a greater distinction between them.
Admin and Guest classes are introduced, as subclasses of User. Now, the shared behavior
can reside in User, and subtype behavior can be pushed down to subclasses. However,
all user data can still reside in the users table—all you need to do is introduce a type
column that will hold the name of the class to be instantiated for a given row.

5. https://rails.lighthouseapp.com/projects/8994/tickets/230 contains an interesting discussion
about callback execution order.

https://rails.lighthouseapp.com/projects/8994/tickets/230
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To continue explaining single-table inheritance, let’s turn back to our example of
a recurring Timesheet class. We need to know how many billable_hours are out-
standing for a given user. The calculation can be implemented in various ways, but in
this case we’ve chosen to write a pair of class and instance methods on the Timesheet
class:

class Timesheet < ActiveRecord::Base
...

def billable_hours_outstanding
if submitted?

billable_weeks.map(&:total_hours).sum
else

0
end

end

def self.billable_hours_outstanding_for(user)
user.timesheets.map(&:billable_hours_outstanding).sum

end

end

I’m not suggesting that this is good code. It works, but it’s inefficient and that
if/else condition is a little fishy. Its shortcomings become apparent once require-
ments emerge about marking a Timesheet as paid. It forces us to modify Timesheet’s
billable_hours_outstanding method again:

def billable_hours_outstanding
if submitted? && not paid?

billable_weeks.map(&:total_hours).sum
else

0
end

end

That latest change is a clear violation of the open-closed principle,6 which urges
you to write code that is open for extension, but closed for modification. We
know that we violated the principle, because we were forced to change the
billable_hours_outstanding method to accommodate the new Timesheet sta-
tus. Though it may not seem like a large problem in our simple example, consider the
amount of conditional code that will end up in the Timesheet class once we start having
to implement functionality such as paid_hours and unsubmitted_hours.

6. http://en.wikipedia.org/wiki/Open/closed_principle has a good summary.

http://en.wikipedia.org/wiki/Open/closed_principle
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So what’s the answer to this messy question of the constantly changing conditional?
Given that you’re reading the section of the book about single-table inheritance, it’s prob-
ably no big surprise that we think one good answer is to use object-oriented inheritance.
To do so, let’s break our original Timesheet class into four classes.

class Timesheet < ActiveRecord::Base
# non-relevant code ommitted

def self.billable_hours_outstanding_for(user)
user.timesheets.map(&:billable_hours_outstanding).sum

end
end

class DraftTimesheet < Timesheet
def billable_hours_outstanding

0
end

end

class SubmittedTimesheet < Timesheet
def billable_hours_outstanding

billable_weeks.map(&:total_hours).sum
end

end

Now when the requirements demand the ability to calculate partially paid timesheets,
we need only add some behavior to a PaidTimesheet class. No messy conditional
statements in sight!

class PaidTimesheet < Timesheet
def billable_hours_outstanding

billable_weeks.map(&:total_hours).sum - paid_hours
end
end

9.5.1 Mapping Inheritance to the Database
Mapping object inheritance effectively to a relational database is not one of those prob-
lems with a definitive solution. We’re only going to talk about the one mapping strategy
that Rails supports natively, which is single-table inheritance, called STI for short.

In STI, you establish one table in the database to holds all of the records for any
object in a given inheritance hierarchy. In Active Record STI, that one table is named
after the top parent class of the hierarchy. In the example we’ve been considering, that
table would be named timesheets.
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Hey, that’s what it was called before, right? Yes, but to enable STI we have to add a
type column to contain a string representing the type of the stored object. The following
migration would properly set up the database for our example:

class AddTypeToTimesheet < ActiveRecord::Migration
def self.up

add_column :timesheets, :type, :string
end

def self.down
remove_column :timesheets, :type

end
end

No default value is needed. Once the type column is added to an Active Record model,
Rails will automatically take care of keeping it populated with the right value. Using the
console, we can see this behavior in action:

>> d = DraftTimesheet.create
>> d.type
=> 'DraftTimesheet'

When you try to find an object using the find methods of a base STI class, Rails
will automatically instantiate objects using the appropriate subclass. This is especially
useful in polymorphic situations, such as the timesheet example we’ve been describing,
where we retrieve all the records for a particular user and then call methods that behave
differently depending on the object’s class.

>> Timesheet.find(:first)
=> #<DraftTimesheet:0x2212354...>

Sebastian says . . .

The word “type” is a very common column name and you might have plenty of
uses for it not related to STI—which is why it’s very likely you’ve experienced an
ActiveRecord::SubclassNotFound error. Rails will read the “type” column of your
Car class and try to find an “SUV” class that doesn’t exist.The solution is simple: Tell Rails to
use another column for STI with the following code:

set_inheritance_column "not_sti"
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Note

Rails won’t complain about the missing column; it will simply ignore it. Recently, the error
message was reworded with a better explanation, but too many developers skim error messages
and then spend an hour trying to figure out what’s wrong with their models. (A lot of people
skim sidebar columns too when reading books, but hey, at least I am doubling their chances of
learning about this problem.)

9.5.2 STI Considerations
Although Rails makes it extremely simple to use single-table inheritance, there are a few
caveats that you should keep in mind.

To begin with, you cannot have an attribute on two different subclasses with the
same name but a different type. Since Rails uses one table to store all subclasses, these
attributes with the same name occupy the same column in the table. Frankly, there’s not
much of a reason why that should be a problem unless you’ve made some pretty bad
data-modeling decisions.

More importantly, you need to have one column per attribute on any subclass and
any attribute that is not shared by all the subclasses must accept nil values. In the
recurring example, PaidTimesheet has a paid_hours column that is not used by any
of the other subclasses. DraftTimesheet and SubmittedTimesheet will not use the
paid_hours column and leave it as null in the database. In order to validate data for
columns not shared by all subclasses, you must use Active Record validations and not
the database.

Third, it is not a good idea to have subclasses with too many unique attributes. If
you do, you will have one database table with many null values in it. Normally, a tree
of subclasses with a large number of unique attributes suggests that something is wrong
with your application design and that you should refactor. If you have an STI table that
is getting out of hand, it is time to reconsider your decision to use inheritance to solve
your particular problem. Perhaps your base class is too abstract?

Finally, legacy database constraints may require a different name in the database for
the type column. In this case, you can set the new column name using the class method
set_inheritance_column in the base class. For the Timesheet example, we could
do the following:

class Timesheet < ActiveRecord::Base
set_inheritance_column 'object_type'

end



274 Chapter 9: Advanced Active Record

Now Rails will automatically populate the object_type column with the object’s
type.

9.5.3 STI and Associations
It seems pretty common for applications, particularly data-management ones, to have
models that are very similar in terms of their data payload, mostly varying in their
behavior and associations to each other. If you used object-oriented languages prior
to Rails, you’re probably already accustomed to breaking down problem domains into
hierarchical structures.

Take for instance, a Rails application that deals with the population of states, coun-
ties, cities, and neighborhoods. All of these are places, which might lead you to define an
STI class named Place as shown in Listing 9.2. I’ve also included the database schema
for clarity:7

Listing 9.2 The places database schema and the place class

# == Schema Information
#
# Table name: places
#
# id :integer(11) not null, primary key
# region_id :integer(11)
# type :string(255)
# name :string(255)
# description :string(255)
# latitude :decimal(20, 1)
# longitude :decimal(20, 1)
# population :integer(11)
# created_at :datetime
# updated_at :datetime

class Place < ActiveRecord::Base
end

Place is in essence an abstract class. It should not be instantiated, but there is no
foolproof way to enforce that in Ruby. (No big deal, this isn’t Java!) Now let’s go ahead

7. For autogenerated schema information added to the top of your model classes, try Dave Thomas’s annotate
models plugin at http://svn.pragprog.com/Public/plugins/

http://svn.pragprog.com/Public/plugins/
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and define concrete subclasses of Place:

class State < Place
has_many :counties, :foreign_key => 'region_id'

end

class County < Place
belongs_to :state, :foreign_key => 'region _id'
has_many :cities, :foreign_key => 'region _id'

end

class City < Place
belongs_to :county, :foreign_key => 'region _id'

end

You might be tempted to try adding a cities association to State, knowing that
has_many :through works with both belongs_to and has_many target associations.
It would make the State class look something like this:

class State < Place
has_many :counties, :foreign_key => 'region_id'
has_many :cities, :through => :counties

end

That would certainly be cool, if it worked. Unfortunately, in this particular case, since
there’s only one underlying table that we’re querying, there simply isn’t a way to distin-
guish among the different kinds of objects in the query:

Mysql::Error: Not unique table/alias: 'places': SELECT places.* FROM
places INNER JOIN places ON places.region_id = places.id WHERE
((places.region_id = 187912) AND ((places.type = 'County'))) AND
((places.`type` = 'City' ))

What would we have to do to make it work? Well, the most realistic would be to use
specific foreign keys, instead of trying to overload the meaning of region_id for all the
subclasses. For starters, the places table would look like the example in Listing 9.3.

Listing 9.3 The places database schema revised

# == Schema Information
#
# Table name: places
#
# id :integer(11) not null, primary key
# state_id :integer(11)
# county_id :integer(11)
# type :string(255)
# name :string(255)
# description :string(255)
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# latitude :decimal(20, 1)
# longitude :decimal(20, 1)
# population :integer(11)
# created_at :datetime
# updated_at :datetime

The subclasses would be simpler without the :foreign_key options on the associ-
ations. Plus you could use a regular has_many relationship from State to City, instead
of the more complicated has_many :through.

class State < Place
has_many :counties
has_many :cities

end

class County < Place
belongs_to :state
has_many :cities

end

class City < Place
belongs_to :county

end

Of course, all those null columns in the places table won’t win you any friends with
relational database purists. That’s nothing, though. Just a little bit later in this chapter
we’ll take a second, more in-depth look at polymorphic has_many relationships, which
will make the purists positively hate you.

9.6 Abstract Base Model Classes
In contrast to single-table inheritance, it is possible for Active Record models to share
common code via inheritance and still be persisted to different database tables. In fact,
every Rails developer uses an abstract model in their code whether they realize it or not:
ActiveRecord::Base.8

The technique involves creating an abstract base model class that persistent subclasses
will extend. It’s actually one of the simpler techniques that we broach in this chapter.
Let’s take the Place class from the previous section (refer to Listing 9.3) and revise it to

8. http://m.onkey.org/2007/12/9/namespaced-models

http://m.onkey.org/2007/12/9/namespaced-models
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be an abstract base class in Listing 9.4. It’s simple really—we just have to add one line
of code:

Listing 9.4 The abstract place class

class Place < ActiveRecord::Base
self.abstract_class = true

end

Marking an Active Record model abstract is essentially the opposite of making it an
STI class with a type column. You’re telling Rails: “Hey, I don’t want you to assume
that there is a table named places.”

In our running example, it means we would have to establish tables for states,
counties, and cities, which might be exactly what we want. Remember though, that we
would no longer be able to query across subtypes with code like Place.all.

Abstract classes is an area of Rails where there aren’t too many hard-and-fast rules
to guide you—experience and gut feeling will help you out.

In case you haven’t noticed yet, both class and instance methods are shared down the
inheritance hierarchy of Active Record models. So are constants and other class members
brought in through module inclusion. That means we can put all sorts of code inside
Place that will be useful to its subclasses.

9.7 Polymorphic has many Relationships
Rails gives you the ability to make one class belong_to more than one type of another
class, as eloquently stated by blogger Mike Bayer:

The “polymorphic association,” on the other hand, while it bears some resemblance to the regular
polymorphic union of a class hierarchy, is not really the same since you’re only dealing with a
particular association to a single target class from any number of source classes, source classes
which don’t have anything else to do with each other; i.e., they aren’t in any particular inheri-
tance relationship and probably are all persisted in completely different tables. In this way, the
polymorphic association has a lot less to do with object inheritance and a lot more to do with
aspect-oriented programming (AOP); a particular concept needs to be applied to a divergent set
of entities which otherwise are not directly related. Such a concept is referred to as a cross-cutting
concern, such as, all the entities in your domain need to support a history log of all changes to
a common logging table. In the AR example, an Order and a User object are illustrated to both
require links to an Address object.9

9. http://techspot.zzzeek.org/?p=13

http://techspot.zzzeek.org/?p=13
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In other words, this is not polymorphism in the typical object-oriented sense of the
word; rather, it is something unique to Rails.

9.7.1 In the Case of Models with Comments
In our recurring Time and Expenses example, let’s assume that we want both
BillableWeek and Timesheet to have many comments (a shared Comment class).
A naive way to solve this problem might be to have the Comment class belong to
both the BillableWeek and Timesheet classes and have billable_week_id and
timesheet_id as columns in its database table.

class Comment < ActiveRecord::Base
belongs_to :timesheet
belongs_to :expense_report

end

I call that approach is naive because it would be difficult to work with and hard to
extend. Among other things, you would need to add code to the application to ensure
that a Comment never belonged to both a BillableWeek and a Timesheet at the same
time. The code to figure out what a given comment is attached to would be cumbersome
to write. Even worse, every time you want to be able to add comments to another
type of class, you’d have to add another nullable foreign key column to the comments
table.

Rails solves this problem in an elegant fashion, by allowing us to define
what it terms polymorphic associations, which we covered when we described the
:polymorphic => true option of the belongs_to association in Chapter 7, Active
Record Associations.

The Interface
Using a polymorphic association, we need define only a single belongs_to and add a
pair of related columns to the underlying database table. From that moment on, any class
in our system can have comments attached to it (which would make it commentable),
without needing to alter the database schema or the Comment model itself.

class Comment < ActiveRecord::Base
belongs_to :commentable, :polymorphic => true

end

There isn’t a Commentable class (or module) in our application. We named the associ-
ation :commentable because it accurately describes the interface of objects that will be
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associated in this way. The name :commentable will turn up again on the other side of
the association:

class Timesheet < ActiveRecord::Base
has_many :comments, :as => :commentable

end

class BillableWeek < ActiveRecord::Base
has_many :comments, :as => :commentable

end

Here we have the friendly has_many association using the :as option. The :as marks
this association as polymorphic, and specifies which interface we are using on the other
side of the association. While we’re on the subject, the other end of a polymorphic
belongs_to can be either a has_many or a has_one and work identically.

The Database Columns
Here’s a migration that will create the comments table:

class CreateComments < ActiveRecord::Migration
def self.up

create_table :comments do |t|
t.text :body
t.integer :commentable
t.string :commentable_type

end
end

end

As you can see, there is a column called commentable_type, which stores the class name
of associated object. The Migrations API actually gives you a one-line shortcut with the
references method, which takes a polymorphic option:

create_table :comments do |t|
t.text :body
t.references :commentable, :polymorphic => true

end

We can see how it comes together using the Rails console (some lines ommitted for
brevity):

>> c = Comment.create(:text => "I could be commenting anything.")
>> t = TimeSheet.create
>> b = BillableWeek.create
>> c.update_attribute(:commentable, t)
=> true
>> "#{c.commentable_type}: #{c.commentable_id}"
=> "Timesheet: 1"
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>> c.update_attribute(:commentable, b)
=> true
>> "#{c.commentable_type}: #{c.commentable_id}"
=> "BillableWeek: 1"

As you can tell, both the Timesheet and the BillableWeek that we played with in the
console had the same id (1). Thanks to the commentable_type attribute, stored as a
string, Rails can figure out which is the correct related object.

has—many :through and Polymorphics
There are some logical limitations that come into play with polymorphic associations.
For instance, since it is impossible for Rails to know the tables necessary to join through a
polymorphic association, the following hypothetical code, which tries to find everything
that the user has commented on, will not work.

class Comment < ActiveRecord::Base
belongs_to :user # author of the comment
belongs_to :commentable, :polymorphic => true

end

class User < ActiveRecord::Base
has_many :comments
has_many :commentables, :through => :comments

end

>> User.first.comments
ActiveRecord::HasManyThroughAssociationPolymorphicError: Cannot have
a has_many :through association 'User#commentables' on the polymorphic
object 'Comment#commentable'.

If you really need it, has_many :through is possible with polymorphic associations,
but only by specifying exactly what type of polymorphic associations you want. To do
so, you must use the :source_type option. In most cases, you will also need to use the
:source option, since the association name will not match the interface name used for
the polymorphic association:

class User < ActiveRecord::Base
has_many :comments
has_many :commented_timesheets, :through => :comments,

:source => :commentable, :source_type => 'Timesheet'
has_many :commented_billable_weeks, :through => :comments,

:source => :commentable, :source_type => 'BillableWeek'
end
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It’s verbose, and the whole scheme loses its elegance if you go this route, but it works:

>> User.first.commented_timesheets
=> [#<Timesheet ...>]

9.8 Foreign-key Constraints
As we work toward the end of this book’s coverage of Active Record, you might have
noticed that we haven’t really touched on a subject of particular importance to many
programmers: foreign-key constraints in the database. That’s mainly because use of
foreign-key constraints simply isn’t the Rails way to tackle the problem of relational
integrity. To put it mildly, that opinion is controversial and some developers have
written off Rails (and its authors) for expressing it.

There really isn’t anything stopping you from adding foreign-key constraints to your
database tables, although you’d do well to wait until after the bulk of development is
done. The exception, of course, is those polymorphic associations, which are probably
the most extreme manifestation of the Rails opinion against foreign-key constraints.
Unless you’re armed for battle, you might not want to broach that particular subject
with your DBA.

9.9 Using Value Objects
In Domain Driven Design10 (DDD), a distinction is drawn between Entity Objects
and Value Objects. All model objects that inherit from ActiveRecord::Base could be
considered Entity Objects in DDD. An Entity object cares about identity, since each
one is unique. In Active Record uniqueness is derived from the primary key. Comparing
two different Entity Objects for equality should always return false, even if all of its
attributes (other than the primary key) are equivalent.

Here is an example comparing two Active Record Addresses:

>> home = Address.create(:city => "Brooklyn", :state => "NY")
>> office = Address.create(:city => "Brooklyn", :state => "NY")
>> home == office
=> false

In this case you are actually creating two new Address records and persisting them to the
database, therefore they have different primary key values.

Value Objects on the other hand only care that all their attributes are equal.
When creating Value Objects for use with Active Record you do not inherit from

10. http://www.domaindrivendesign.org/

http://www.domaindrivendesign.org/


282 Chapter 9: Advanced Active Record

ActiveRecord::Base. Instead you make them part of a parent model using the
composed_of class method. This is a form of composition, called an Aggregate in DDD.
The attributes of the Value Object are stored in the database together with the parent
object and composed_of provides a means to interact with those values as a single object.

A simple example is of a Person with a single Address. To model this using com-
position, first we need a Person model with fields for the Address. Create it with the
following migration:

class CreatePeople < ActiveRecord::Migration
def self.up

create_table :people do |t|
t.string :name
t.string :address_city
t.string :address_state

end
end

end

The Person model looks like this:

class Person < ActiveRecord::Base
composed_of :address, :mapping => [%w(address_city city),

%w(address_state state)]
end

We’d need a corresponding Address object which looks like this:

class Address
attr_reader :city, :state

def initialize(city, state)
@city, @state = city, state

end

def ==(other_address)
city == other_address.city && state == other_address.state

end
end

Note that this is just a standard Ruby object that does not inherit from
ActiveRecord::Base. We have defined reader methods for our attributes and are
assigning them upon initialization. We also have to define our own == method for use
in comparisons. Wrapping this all up we get the following usage:

>> gary = Person.create(:name => "Gary")
>> gary.address_city = "Brooklyn"
>> gary.address_state = "NY"
>> gary.address
=> #<Address:0x20bc118 @state="NY", @city="Brooklyn">
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Alternately you can instantiate the address directly and assign it using the address accessor:

>> gary.address = Address.new("Brooklyn", "NY")
>> gary.address
=> #<Address:0x20bc118 @state="NY", @city="Brooklyn">

9.9.1 Immutability
It’s also important to treat value objects as immutable. Don’t allow them to be changed
after creation. Instead, create a new object instance with the new value instead. Active
Record will not persist value objects that have been changed through means other than
the writer method.

The immutable requirement is enforced by Active Record by freezing any ob-
ject assigned as a value object. Attempting to change it afterwards will result in a
ActiveSupport::FrozenObjectError.

9.9.2 Custom Constructors and Converters
By default value objects are initialized by calling the new constructor of the value class
with each of the mapped attributes, in the order specified by the :mapping option, as
arguments. If for some reason your value class does not work well with that convention,
composed_of allows a custom constructor to be specified.

When a new value object is assigned to its parent, the default assumption is that the
new value is an instance of the value class. Specifying a custom converter allows the new
value to be automatically converted to an instance of value class (when needed).

For example, consider the NetworkResource model with network_address and
cidr_range attributes that should be contained in a NetAddr::CIDR value class.11

The constructor for the value class is called create and it expects a CIDR address string
as a parameter. New values can be assigned to the value object using either another
NetAddr::CIDR object, a string or an array. The :constructor and :converter

options are used to meet the requirements:

class NetworkResource < ActiveRecord::Base
composed_of :cidr,

:class_name => 'NetAddr::CIDR',
:mapping => [ %w(network_address network), %w(cidr_range

bits) ],
:allow_nil => true,

11. Actual objects from the NetAddr gem available at http://netaddr.rubyforge.org

http://netaddr.rubyforge.org
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:constructor => Proc.new { |network_address, cidr_range|
NetAddr::CIDR.create("#{network_address}/#{cidr_range}") },

:converter => Proc.new { |value|
NetAddr::CIDR.create(value.is_a?(Array) ? value.join('/') : value) }
end

# This calls the :constructor
network_resource = NetworkResource.new(:network_address => '192.168.0.1',
:cidr_range => 24)

# These assignments will both use the :converter
network_resource.cidr = [ '192.168.2.1', 8 ]
network_resource.cidr = '192.168.0.1/24'

# This assignment won't use the :converter as the value is already an
instance of the value class
network_resource.cidr = NetAddr::CIDR.create('192.168.2.1/8')

# Saving and then reloading will use the :constructor on reload
network_resource.save
network_resource.reload

9.9.3 Finding Records by a Value Object
Once a composed_of relationship is specified for a model, records can be loaded from
the database by specifying an instance of the value object in the conditions hash.
The following example finds all customers with balance_amount equal to 20 and
balance_currency equal to "USD":

Customer.where(:balance => Money.new(20, "USD"))

The Money Gem
A common approach to using composed_of is in conjunction with the money gem.12

class Expense < ActiveRecord::Base
composed_of :cost,
:class_name => "Money",
:mapping => [%w(cents cents), %w(currency currency_as_string)],
:constructor => Proc.new do |cents, currency|

Money.new(cents || 0, currency || Money.default_currency)
end

end

Remember to add a migration with the 2 columns, the integer cents and the string
currency that money needs.

12. http://github.com/FooBarWidget/money/

http://github.com/FooBarWidget/money/
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class CreateExpenses < ActiveRecord::Migration
def self.up

create_table :expenses do |table|
table.integer :cents
table.string :currency

end
end
def self.down

drop_table :expenses
end

end

Now when asking for or setting the cost of an item would use a Money instance.

>> expense = Expense.create(:cost => Money.new(1000, "USD"))
>> cost = expense.cost
>> cost.cents
=> 1000
>> expense.currency
=> "USD"

9.10 Modules for Reusing Common Behavior
In this section, we’ll talk about one strategy for breaking out functionality that is shared
between disparate model classes. Instead of using inheritance, we’ll put the shared code
into modules.

In the section “Polymorphic has_many Relationships,” we described how to add
a commenting feature to our recurring sample Time and Expenses application. We’ll
continue fleshing out that example, since it lends itself to factoring out into modules.

The requirements we’ll implement are as follows: Both users and approvers should be
able to add their comments to a Timesheet or ExpenseReport. Also, since comments
are indicators that a timesheet or expense report requires extra scrutiny or processing
time, administrators of the application should be able to easily view a list of recent
comments. Human nature being what it is, administrators occasionally gloss over the
comments without actually reading them, so the requirements specify that a mechanism
should be provided for marking comments as “OK” first by the approver, then by the
administrator.

Again, here is the polymorphic has_many :comments, :as => :commentable

that we used as the foundation for this functionality:

class Timesheet < ActiveRecord::Base
has_many :comments, :as => :commentable

end
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class ExpenseReport < ActiveRecord::Base
has_many :comments, :as => :commentable

end

class Comment < ActiveRecord::Base
belongs_to :commentable, :polymorphic => true

end

Next we enable the controller and action for the administrator that list the 10 most
recent comments with links to the item to which they are attached.

class Comment < ActiveRecord::Base
scope :recent, order('created_at desc').limit(10)

end

class CommentsController < ApplicationController
before_filter :require_admin, :only => :recent
expose(:recent_comments) { Comment.recent }

end

Here’s some of the simple view template used to display the recent comments.

%ul.recent.comments
- recent_comments.each do |comment|

%li.comment
%h4= comment.created_at
= comment.text
.meta

Comment on:
= link_to comment.commentable.title, comment.commentable Yes, this

would result in N+1 selects.

So far, so good. The polymorphic association makes it easy to access all types of comments
in one listing. In order to find all of the unreviewed comments for an item, we can use
a named scope on the Comment class together with the comments association.

class Comment < ActiveRecord::Base
scope :unreviewed, where(:reviewed => false)

end

>> timesheet.comments.unreviewed

Both Timesheet and ExpenseReport currently have identical has_many methods for
comments. Essentially, they both share a common interface. They’re commentable!

To minimize duplication, we could specify common interfaces that share code in
Ruby by including a module in each of those classes, where the module contains the code
common to all implementations of the common interface. So, mostly for the sake of
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example, let’s go ahead and define a Commentable module to do just that, and include
it in our model classes:

module Commentable
has_many :comments, :as => :commentable

end

class Timesheet < ActiveRecord::Base
include Commentable

end

class ExpenseReport < ActiveRecord::Base
include Commentable

end

Whoops, this code doesn’t work! To fix it, we need to understand an essential aspect of
the way that Ruby interprets our code dealing with open classes.

9.10.1 A Review of Class Scope and Contexts
In many other interpreted OO programming languages, you have two phases of
execution—one in which the interpreter loads the class definitions and says “this is
the definition of what I have to work with,” followed by the phase in which it executes
the code. This makes it difficult (though not necessarily impossible) to add new methods
to a class dynamically during execution.

In contrast, Ruby lets you add methods to a class at any time. In Ruby, when you
type class MyClass, you’re doing more than simply telling the interpreter to define a
class; you’re telling it to “execute the following code in the scope of this class.”

Let’s say you have the following Ruby script:

1 class Foo < ActiveRecord::Base
2 has_many :bars
3 end
4 class Foo < ActiveRecord::Base
5 belongs_to :spam
6 end

When the interpreter gets to line 1, you are telling it to execute the following code (up
to the matching end) in the context of the Foo class object. Because the Foo class object
doesn’t exist yet, it goes ahead and creates the class. At line 2, we execute the statement
has_many :bars in the context of the Foo class object. Whatever the has_manymethod
does, it does right now.

When we again say class Foo at line 4, we are once again telling the interpreter
to execute the following code in the context of the Foo class object, but this time, the
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interpreter already knows about class Foo; it doesn’t actually create another class. There-
fore, on line 5, we are simply telling the interpreter to execute the belongs_to :spam

statement in the context of that same Foo class object.
In order to execute the has_many and belongs_to statements, those methods

need to exist in the context in which they are executed. Because these are defined as
class methods in ActiveRecord::Base, and we have previously defined class Foo as
extending ActiveRecord::Base, the code will execute without a problem.

However, when we defined our Commentable module like this:

module Commentable
has_many :comments, :as => :commentable

end

. . . we get an error when it tries to execute the has_many statement. That’s because the
has_many method is not defined in the context of the Commentable module object.

Given what we now know about how Ruby is interpreting the code, we now realize
that what we really want is for that has_many statement to be executed in the context
of the including class.

9.10.2 The included Callback
Luckily, Ruby’s Module class defines a handy callback that we can use to do just that.
If a Module object defines the method included, it gets run whenever that module
is included in another module or class. The argument passed to this method is the
module/class object into which this module is being included.

We can define an included method on our Commentable module object so that
it executes the has_many statement in the context of the including class (Timesheet,
ExpenseReport, and so on):

module Commentable
def self.included(base)

base.class_eval do
has_many :comments, :as => :commentable

end
end

end

Now, when we include the Commentable module in our model classes, it will execute
the has_many statement just as if we had typed it into each of those classes’ bodies.
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The technique is common enough, within Rails and plugins, that it was added as a
first-class concept in the Rails 3 ActiveSupport API. The above example becomes shorter
and easier to read as a result:

module Commentable
extend ActiveSupport::Concern
included do

has_many :comments, :as => :commentable
end

end

Whatever is inside of the included block will get executed in the class context of the
class where the module is included.

has_many :comments, :as => :commentable, :extend => Commentable

Courtenay says . . .

There’s a fine balance to strike here. Magic like include Commentable certainly saves on
typing and makes your model look less complex, but it can also mean that your association code is
doing things you don’t know about. This can lead to confusion and hours of head-scratching while
you track down code in a separate module. My personal preference is to leave all associations in
the model, and extend them with a module. That way you can quickly get a list of all associations
just by looking at the code.

9.11 Modifying Active Record Classes at Runtime
The metaprogramming capabilities of Ruby, combined with the after_find callback,
open the door to some interesting possibilities, especially if you’re willing to blur your
perception of the difference between code and data. I’m talking about modifying the
behavior of model classes on the fly, as they’re loaded into your application.

Listing 9.5 is a drastically simplified example of the technique, which assumes the
presence of a config column on your model. During the after_find callback, we
get a handle to the unique singleton class13 of the model instance being loaded. Then
we execute the contents of the config attribute belonging to this particular Account
instance, using Ruby’s class_eval method. Since we’re doing this using the singleton
class for this instance, rather than the global Account class, other account instances in
the system are completely unaffected.

13. I don’t expect this to make sense to you, unless you are familiar with Ruby’s singleton classes,
and the ability to evaluate arbitrary strings of Ruby code at runtime. A good place to start is
http://whytheluckystiff.net/articles/seeingMetaclassesClearly.html.

http://whytheluckystiff.net/articles/seeingMetaclassesClearly.html
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Listing 9.5 Runtime metaprogramming with after_find

class Account < ActiveRecord::Base

...

protected

def after_find
singleton = class << self; self; end
singleton.class_eval(config)

end
end

I used powerful techniques like this one in a supply-chain application that I wrote
for a large industrial client. A lot is a generic term in the industry used to describe a
shipment of product. Depending on the vendor and product involved, the attributes
and business logic for a given lot vary quite a bit. Since the set of vendors and products
being handled changed on a weekly (sometimes daily) basis, the system needed to be
reconfigurable without requiring a production deployment.

Without getting into too much detail, the application allowed the maintenance
programmers to easily customize the behavior of the system by manipulating Ruby code
stored in the database, associated with whatever product the lot contained.

For example, one of the business rules associated with lots of butter being shipped
for Acme Dairy Co. might dictate a strictly integral product code, exactly 10 digits in
length. The code, stored in the database, associated with the product entry for Acme
Dairy’s butter product would therefore contain the following two lines:

validates_numericality_of :product_code, :only_integer => true
validates_length_of :product_code, :is => 10

9.11.1 Considerations
A relatively complete description of everything you can do with Ruby metaprogramming,
and how to do it correctly, would fill its own book. For instance, you might realize
that doing things like executing arbitrary Ruby code straight out of the database is
inherently dangerous. That’s why I emphasize again that the examples shown here are
very simplified. All I want to do is give you a taste of the possibilities.

If you do decide to begin leveraging these kinds of techniques in real-world ap-
plications, you’ll have to consider security and approval workflow and a host of other
important concerns. Instead of allowing arbitrary Ruby code to be executed, you might
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feel compelled to limit it to a small subset related to the problem at hand. You might
design a compact API, or even delve into authoring a domain-specific language (DSL),
crafted specifically for expressing the business rules and behaviors that should be loaded
dynamically. Proceeding down the rabbit hole, you might write custom parsers for your
DSL that could execute it in different contexts—some for error detection and others for
reporting. It’s one of those areas where the possibilities are quite limitless.

9.11.2 Ruby and Domain-Specific Languages
My former colleague Jay Fields and I pioneered the mix of Ruby metaprogramming,
Rails, and internal14 domain-specific languages while doing Rails application develop-
ment for clients. I still occasionally speak at conferences and blog about writing DSLs
in Ruby.

Jay has also written and delivered talks about his evolution of Ruby DSL techniques,
which he calls Business Natural Languages (or BNL for short15). When developing
BNLs, you craft a domain-specific language that is not necessarily valid Ruby syntax,
but is close enough to be transformed easily into Ruby and executed at runtime, as shown
in Listing 9.6.

Listing 9.6 Example of business natural language

employee John Doe
compensate 500 dollars for each deal closed in the past 30 days
compensate 100 dollars for each active deal that closed more than
365 days ago
compensate 5 percent of gross profits if gross profits are greater than
1,000,000 dollars
compensate 3 percent of gross profits if gross profits are greater than
2,000,000 dollars
compensate 1 percent of gross profits if gross profits are greater than
3,000,000 dollars

The ability to leverage advanced techniques such as DSLs is yet another powerful
tool in the hands of experienced Rails developers.

14. The qualifier internal is used to differentiate a domain-specific language hosted entirely inside of a general-
purpose language, such as Ruby, from one that is completely custom and requires its own parser implementation.
15. Googling BNL will give you tons of links to the Toronto-based band Barenaked Ladies, so you’re better
off going directly to the source at http://bnl.jayfields.com.

http://bnl.jayfields.com
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9.12 Conclusion
With this chapter we conclude our coverage of Active Record. Among other things,
we examined how callbacks and observers let us factor our code in a clean and object-
oriented fashion. We also expanded our modeling options by considering single-table
inheritance, abstract classes and Active Record’s distinctive polymorphic relationships.

At this point in the book, we’ve covered two parts of the MVC pattern: the model
and the controller. It’s now time to delve into the third and final part: the view.

Courtenay says . . .

DSLs suck! Except the ones written by Obie, of course. The only people who can read and write
most DSLs are their original authors. As a developer taking over a project, it’s often quicker to just
reimplement instead of learning the quirks and exactly which words you’re allowed to use in an
existing DSL.In fact, a lot of Ruby metaprogramming sucks, too. It’s common for people gifted
with these new tools to go a bit overboard. I consider metaprogramming, self.included,
class_eval, and friends to be a bit of a code smell on most projects.If you’re making a web
application, future developers and maintainers of the project will appreciate your using simple,
direct, granular, and well-tested methods, rather than monkeypatching into existing classes, or
hiding associations in modules.That said, if you can pull it off . . . your code will become more
powerful than you can possibly imagine.
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