

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the publisher
was aware of a trademark claim, the designations have been printed with initial capital letters
or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omis-
sions. No liability is assumed for incidental or consequential damages in connection with
or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom covers and
content particular to your business, training goals, marketing focus, and branding interests.
For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Hanson, J. Jeffrey.
Mashups : strategies for the modern enterprise / J. Jeffrey Hanson.

p. cm.
Includes index.
ISBN 978-0-321-59181-4 (pbk. : alk. paper) 1. Software engineering. 2. Mashups

(World Wide Web) 3. Web site development. I. Title.

QA76.758.H363 2009
006.7—dc22

2009004655

Copyright © 2009 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-321-59181-4
ISBN-10: 0-321-59181-X
Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, May 2009

Editor-in-Chief
Mark L. Taub

Acquisitions Editor
Trina MacDonald

Editorial Assistant
Olivia Basegio

Development Editor
Michael Thurston

Managing Editor
John Fuller

Full-Service
Production Manager
Julie B. Nahil

Copy Editor
Geneil Breeze

Indexer
Michael Loo

Proofreader
Linda Begley

Cover Designer
Chuti Prasertsith

Compositor
Rob Mauhar

xv

Preface

In this book I introduce you to a trend in software engineering that will perme-
ate several areas of software development for many years to come. This trend is
referred to as “mashups,” and in this book I discuss the concepts of mashup
implementations as they affect the enterprise.

The discussions and projects started while writing this book will continue to
be a work in progress as the mashup landscape evolves.

I chose the topic of mashups for this book because I am excited to see the
things that are being done with mashup development and to see this excitement
starting to crop up in the enterprise as organizations begin to adopt a mashup
development mindset. Companies such as JackBe, IBM, Microsoft, Yahoo!, and
others have developed powerful mashup tools and environments that are begin-
ning to show the power mashups can offer to an enterprise.

I have been privileged for a couple of decades to see many attempts to create
an environment in which existing UI artifacts and processes can be reused with
little or no programming intervention. Mashup development using semantic
technologies, reusable markup-based UI artifacts, and metadata-enabled data
formats has reached the point at which powerful applications and services can
be constructed with existing code, data, and UI components using very little
programming intervention.

Overview of This Book

This book discusses implementation strategies, frameworks, and code samples
for enterprise mashups. The term “mashup” originated from the music industry
to define the technique of producing a new song by mixing together two or
more existing songs. The term has been adopted by the software development
industry to define applications created by mixing user-interface artifacts, pro-
cesses, and/or content from multiple sources, typically using high-level web pro-
gramming languages such as HTML, JavaScript, and others.

A mashup infrastructure enables a development model that can produce new
pages, applications, and services rapidly with very little additional work. The use
and reuse of semantic web technologies, user interface artifacts, and loosely cou-
pled services provide a powerful domain for mashup application development.

xvi PREFACE

Mashups are being created at an almost unprecedented rate for different
consumer and social environments. This trend is starting to spill over into the
enterprise domain due to the power and speed with which development teams
can create new services, applications, and data transformations by exploiting
the agile and dynamic environment of mashup infrastructures. Some of the
more popular, publicly accessible mashups include HousingMaps, TwitterVision,
Big Contacts, Weather Bank, and others.

As mashups begin to migrate to the enterprise, more sophisticated program-
ming languages and constructs become involved. Lower-level concepts also
become involved including data mediation and transformations, interprocess
communications, single sign-on, governance, and compliance to name a few.

This book discusses how developers can create new user interfaces by reus-
ing existing UI artifacts using high-level web page markup and scripting lan-
guages such as HTML and JavaScript. Also discussed is the ability that a
mashup infrastructure gives to developers to integrate disparate data using
semantically rich data formats.

The ideas presented in this book are focused on implementation strategies
using such technologies as XML, Java, JavaScript, JSON, RDF, HTML, RSS,
and others. The discussions presented in this book look at programming and
scripting languages in a generic sense—that is, I do not attempt to address
mashup implementations across all popular frameworks. For example, I do not
delve into how mashups can be implemented using Spring, JSF, Struts, and so
on. However, whenever possible, I do mention some of the more prevalent
frameworks that can be used to address a specific need.

It is my hope that a reader of this book will gain a good understanding of the
main concepts of mashup development, particularly as applied to the enter-
prise. I present code examples and actual working mashups. I seek to provide a
reader with a running start into mashup development for the enterprise.

Target Audience for This Book

This book is intended for use by software/web developers as well as by manag-
ers, executives, and others seriously interested in concepts and strategies sur-
rounding mashups and enterprise mashups. The book strives to serve as an
instructive, reliable introduction to the enterprise mashup arena. I hope that the
book will answer many of the questions that might be asked by those seeking to
gain a good foundation for discovering the world of mashup development. This
book also describes solid business reasons for choosing enterprise mashups:
speed of implementation, quick results, and rapid value-add.

PREFACE xvii

To get the most use of this book, it is advisable that you briefly introduce
yourself to HTML, JavaScript, XML, Java, and the basics of the HTTP proto-
col. However, many of the abstract concepts of mashups and mashup develop-
ment can be garnered from this book without the need of programming skills.

About JSF, Spring, Hibernate, and Other Java
Frameworks

The goal of this book is to present the concepts and techniques for designing
and building enterprise mashups and enterprise mashup infrastructures. Con-
cepts and techniques for mashups and mashup infrastructures are topics broad
enough to discuss without attempting to weave in the specifics of multiple
frameworks such as Spring, JSF, Hibernate, and Struts. Also, many of the con-
cepts and techniques for mashups are currently realized using web page markup
and scripting languages such as HTML and JavaScript. However, where war-
ranted, I highlighted some frameworks that fill a specific niche for tasks such as
transforming data, authentication, manipulating XML, and providing kernel
functionality.

Frameworks such as Spring, JSF, Hibernate, Struts, EJB3, JPA, and others are
very powerful. For example:

• Spring provides libraries and frameworks for building rich web applica-
tions, integrating with BlazeDS, building document-driven web services,
securing enterprise applications, supporting Java modularity, integrating
with external systems, building model-view-controller (MVC) applica-
tions, and others. Spring also includes a popular MVC framework.

• JavaServer Faces (JSF) is a set of APIs and a custom JSP tag library for
building user interfaces for web applications, managing UI-component
state, handling UI events, validating input parameters, defining page navi-
gation, and other tasks.

• Struts is an MVC framework that extends the Java servlet API to allow
developers to build sophisticated web flows using the Java programming
language.

• Hibernate is an object-relational mapping (ORM) framework that allows
developers to map a Java-based object model to relational database tables.

These frameworks are ubiquitous and, of course, useful, and one might
expect to find a discussion of each of them in a book such as this. However,

xviii PREFACE

they are not mashup-oriented in nature at this point and would, therefore,
require the reader to have an in-depth knowledge of each framework to engage
the reader in a coherent discussion as they relate to mashups. With this in mind,
I have chosen to keep my discussions of mashups and the Java programming
language as generic as possible. A detailed discussion of building enterprise
mashups using frameworks such as these deserves a complete book for each.
Some enterprises purposely disallow JavaScript in user interfaces. It is a good
idea to explore JSF tools, such as JBoss Rich Faces, which includes artifacts that
intelligently manage JavaScript availability.

1

Introduction

The term “mashup” originated with the technique of producing a new song by
mixing together two or more existing songs. This was most notably referred to
in the context of hip-hop music. Mashup applications are composed of multiple
user interface components or artifacts and/or content from multiple data
sources. In the context of software engineering, the term “mashup” defines the
result of combining existing user interface artifacts, processes, services, and/or
data to create new web pages, applications, processes, and data sets.

Very rapid implementations of new functionality are afforded by mashups
via the use of semantic web technologies, reusable user interface artifacts, and
loosely coupled services. Many different consumer and social spaces use mashups.
However, enterprises are beginning to reap the benefits afforded by a mashup
environment. Mashups create an extremely agile and dynamic design and
implementation environment within the enterprise realm allowing users with
limited technical skills to develop powerful and useful applications and services.

In a mashup environment, users can create new user interfaces by reusing
existing UI artifacts using high-level scripting languages such as HTML and
JavaScript. Mashups also enable users to integrate disparate data very quickly
and easily using semantically rich data formats that don’t require complex program-
ming and middleware technologies. Services and processes are beginning to be
integrated with similar speed and ease using loosely coupled techniques inherited
from the lessons learned from service-oriented architecture (SOA) solutions.

Web 1.0 to Web 2.0 to Web 3.0

Technologies surrounding the presence of an organization or user have taken
two significant steps over time, transitioning from what is sometimes referred
to as “Web 1.0” to what has become known as “Web 2.0.” Web 1.0 began with
the first HTML-based browsers and, even though it still lingers in many web
sites, the Web 1.0 model has evolved rapidly towards a Web 2.0 model.

2 INTRODUCTION

Web 1.0 delivered content in a static manner using HTML markup and sim-
ple HTML forms. Applications written to a Web 1.0 model typically responded
to HTTP requests with entire web page updates created from data pulled from
relational tables and content management systems using standard web applica-
tion programming languages such as Perl, C, C++, Java, and others.

Web 2.0, fueled by ubiquitous access to broadband, originated soon after the
turn of the century and is in some form in most up-to-date web sites and web
applications today. Web 2.0 moves the online experience away from static con-
tent delivery towards a model based on interactive participation, blogging and
RSS feeds, search and tagging, AJAX and partial-page updates, collaboration
and social networking, wikis, online bookmarking and content sharing, and so
on. Web 2.0 turned the Internet into a true application platform. Technologies
surrounding Web 2.0 have led to the enablement of shareable and embeddable
UI artifacts such as widgets, dynamic JavaScript, videos, and HTML snippets.

Web 3.0 is a term that describes the next online evolutionary trend following
the Web 2.0 model. The model for Web 3.0 is emerging as a transformation to a
decentralized and adaptable framework across virtually any type of connected
entity including web browsers, desktops, handheld devices, and proprietary
firmware. Content and functionality are delivered in the Web 3.0 model via on-
demand software as a service (SaaS), cloud computing, open APIs, standard
web-based protocols, and semantically rich data formats. Content is secured
using open, decentralized, security protocols and standards. Web 3.0 is moving
organizations away from proprietary, closed systems to a model that encour-
ages sharing, collaboration, and reuse.

To many, mashups are becoming synonymous with Web 3.0. Mashups are
the embodiment of true open, reusable, web-based components and data. This
concept will certainly change the way organizations do business and yield a
flood of activity towards enterprise mashups.

Overview of Mashup Technologies

Technologies used today to produce a mashup application include HTML snippets,
widgets, dynamic JavaScript, AJAX, and semantic-web formats. Content for a
mashup is retrieved from internal systems as well as third-party web sites. Proto-
cols and data formats include HTTP, HTTPS, XML, SOAP, RDF, JSON, and others.

Mashups are created ad hoc most of the time. However, in the enterprise
realm, mashup applications must take into consideration such things as privacy,
authentication, governance, compliance, and other business-related constraints.

Mashups can combine data from disparate data sources, existing UI arti-
facts, and/or existing software processes or services. The specific design for a

OVERVIEW OF MASHUP TECHNOLOGIES 3

mashup depends on whether the mashup will be visual or nonvisual. In many
cases an enterprise mashup solution will be a combination of data, UI artifacts,
and software processes. The solution might be a combination of nonvisual and
visual efforts.

Ultimately, a mashup application exploits existing data, UI artifacts, and
software processes to create new applications and services that might also be
exploited as components for other mashup efforts. This propagation of reus-
able components or modules is creating a revolutionary atmosphere where
underlying programming frameworks and languages are irrelevant and higher-
level scripting languages, semantics, and UI components are emerging as the
primary application enablers.

Figure I.1 illustrates a shopping-specific mashup application that combines
data gathered from a geocoding site, a wholesaler site, a local database, and a
social networking site. The data is then mashed together inside a browser web
page to form the new application.

Figure I.1 A shopping-specific mashup application combining data within a browser
web page

Web
Browser

A
P

M
L

B
ro

w
se

r
M

ar
ku

p

JSON RSS

Mashup Server Data Local
Data Store

Geocoder
Site

Social
Networking

Site

Wholesaler
Site

4 INTRODUCTION

As shown in Figure I.1 data for a mashup can be retrieved from a number of
different locations and combined within a browser web page to create a new
application or interface. Building a mashup in this scenario typically uses Java-
Script processing and DOM manipulation within the browser page to create the
user interface for the new application.

Mashups can be created using traditional programming languages outside
the browser. Figure I.2 illustrates a shopping-specific mashup application that
combines data gathered from a geocoding site, a wholesaler site, a local data-
base, and a social networking site. The data is then mashed together inside a
mashup server to create the new application.

As shown in Figure I.2 data for a mashup can be retrieved from a number of
different locations and combined within a mashup server to create a new appli-
cation or interface. Building a mashup in this scenario typically uses traditional
programming languages such as Java, PHP, Python, C#, Perl, Ruby, and C++ to
integrate the data. The user interface for the new application is created using
traditional web frameworks such as JSP, ASP, Struts, and others.

Figure I.2 A shopping-specific mashup application combining data within a mashup
server

Web
Browser

Browser Markup

JSON

RSS

D
at

a

Geocoder
Site

Social
Networking

Site

Wholesaler
Site

Local
Data Store

Mashup Server

APML

ENTERPRISE MASHUP TECHNOLOGICAL DOMAINS 5

Enterprise Mashup Technological Domains

Mashup domains depend on what is to be “mashed” together. Generally, three
high-level categories of items can be mashed together—user interface artifacts
(presentation), data, and/or application functionality (processes). This might
include HTML snippets, on-demand JavaScript to access an external API, web
service APIs from one of your corporate servers, RSS feeds, and/or other data to
be mixed and mashed within the application or pages. The implementation style,
techniques, and technologies used for a given mashup depend on this determi-
nation. Once the items are determined, a development team can proceed with
applying languages, processes, and methodologies to the application at hand.

Technologies used to create a mashup also depend on the sources from
which the mashup items will be accessed, the talents a development staff needs
to build the mashup, and the services that need to be created or accessed to
retrieve the necessary artifacts for the mashup.

Mashups rely on the ability to mix loosely coupled artifacts within a given
technological domain. The requirements of the application determine what arti-
facts (UI, data, and/or functionality) are needed to build the mashup.

From a high-level perspective, the technological domain as applied to mashups
can be viewed as presentation-oriented, data-oriented, and process-oriented.
Different languages, methodologies, and programming techniques apply to
each technological domain.

As shown in Figure I.3, mashup categories can be divided according to pre-
sentation artifacts, data, and application functionality/processes.

Certain preparations must be made to design and implement a mashup that
is ready for the enterprise. Primary areas of concern are requirements and con-
straints, security, governance, stability, performance, data, implementation, and
testing. Certain aspects of each area of concern are unique to the environment
of enterprise mashups in respect to other enterprise software disciplines.

Figure I.3 Three primary mashup technological domains

Widgets/Gadgets/Chicklets
JavaScript
CSS
HTML/XHTML
Flash
Applets
ActiveX

Presentation-
Oriented

RSS
Atom
AJAX/XML
JSON
SOAP
Microformats
APML
RDF

Data-Oriented

Java/J2EE
PHP
Python
C#/.NET
Ruby/RoR
Perl
C/C++
MoM, pipes, RPC, etc.

Process-Oriented

6 INTRODUCTION

The requirements and constraints for an enterprise mashup must integrate
with the existing policies and practices of the environment for a company or
enterprise. Identifying the requirements and constraints for a mashup is an evo-
lutionary process, since the environment is bound to be affected by the mashup
community with which it will interact. However, there are some basic require-
ments and constraints of a mashup that can be identified and addressed. As the
mashup evolves these items will evolve or be replaced.

Preparing for enterprise mashup implementations involves a thorough
understanding of the processes and IT landscape unique to a given company
and/or industry. Techniques and technologies used for one company or industry
are generally transferable to another; however, some aspects are unique and
must not be overlooked. In fact, these very points of uniqueness typically create
the most value for an enterprise mashup. Effectively exposing the distinctive
facets of an organization is a primary goal of any online endeavor. Achieving
this goal with a mashup infrastructure can add value in ways that are not even
apparent until a given mashup community is exposed to the resources and arti-
facts you present. Once a community becomes actively involved with your
mashup infrastructure, the infrastructure itself evolves as a result of the com-
munity’s unified creativity. Therefore, it is very important for an organization to
make sure it has certain foundational preparations in place in anticipation of
this creative evolution.

Considerations Unique to the Enterprise Mashup
Domain

An enterprise mashup must heed a more restrictive set of considerations such as
compliance, standards, and security that public domain mashups are often free
to ignore. In addition, a company or enterprise mashup must not expose certain
types of intellectual property and/or protected information. This is similar to
the issues that service-oriented organizations face when exposing service APIs
to the web community. Enterprise mashups face the same issues as well as new
issues related to data and UI artifacts that may be used by the mashup community.

If the promise of mashups is realized and a company or enterprise does expe-
rience a viral wave of activity and popularity due to its mashup environment,
the company or enterprise must be ready to handle the surge of online activity.
This is why preparatory efforts relating to security, performance, and scalability
must be taken to ensure that your infrastructure will handle the surge. Every
aspect of an IT infrastructure should be optimized and modularized to enable
as much flexibility and, therefore, creativity as possible. The atmosphere of a

CONSIDERATIONS UNIQUE TO THE ENTERPRISE MASHUP DOMAIN 7

community-based creative mind can be created; not only in the presentation
domain, but in the data domain and process domain as well if you take the
proper steps to create an infrastructure that supports loosely coupled interac-
tions throughout.

Implicit to a loosely coupled infrastructure hoping to benefit from a viral
community is the importance of the ability of a company or enterprise to moni-
tor and manage the infrastructure effectively. As viral effects take place, it is
inevitable that bottlenecks in the infrastructure will be encountered even after
painstaking efforts are taken in the design and implementation of the infra-
structure. Therefore, it is vital that a potent monitoring and management
framework be in place to identify bottlenecks quickly so that they might be rec-
tified immediately.

As shown in Figure I.4, a typical loosely coupled enterprise architecture
embodies a number of different frameworks from which data, services, pro-
cesses, and user interface components emerge.

The need for an agile security model for an enterprise mashup cannot be
emphasized enough. Since the mashup infrastructure will need to handle
requests and invocations from a vast array of clients and environments, the
mashup infrastructure must be ready to handle many types of identity manage-
ment and access controls. Since it is impossible to know beforehand just how

Figure I.4 Typical loosely coupled enterprise architecture

Process Layer

Protocol
Adapter

Service
Module

Service
Module

data
protocol

security
protocol

security
protocol

data
protocol

Corporate
Data

Data
Layer

DAO

DAO

Security Layer

OAuth
Module

OpenID
ModuleHTTP

HTTP

Web
Page

Web
Browser

request/
response

Corporate
Services

External
Site2

External
Site1

Security
Adapter

8 INTRODUCTION

data modules, UI artifacts, and services will be used by the mashup community,
an organization must have an infrastructure in place that allows it to control
how its information is used without inhibiting creativity.

Being able to support an agile and viral environment is also very important
when it comes to deploying enterprise mashups and the components of the
mashups. Flexible deployment techniques and technologies must be used
throughout the scope of the infrastructure to allow updates and enhancements
to be deployed without affecting the mashup community’s interactions with the
mashup infrastructure. This includes activities related to editing and/or execu-
tion of the mashup artifacts.

Finally, the enterprise mashup and its artifacts must be tested. Testing enter-
prise mashups and mashup artifacts is one of the most important tasks a com-
pany or enterprise must address since the infrastructure and artifacts will be
exposed to such a dynamic and vast community. Methods and techniques for
testing mashups and mashup artifacts must be as agile and dynamic as the envi-
ronment in which they will operate.

Solving Technological Problems

An enterprise mashup infrastructure must present solutions for a very agile and
evolutionary environment. Data sources can change rapidly, services are added
and changed at any given time, presentation technologies are constantly being
integrated with the system, marketing and sales departments are eager to apply
the potential facilitated by the easy UI generation model, and so on.

The dynamic nature of an enterprise mashup environment must be flexible
and powerful enough to handle existing business operations as well as many
new operations that arise out of the dynamic nature of the mashup develop-
ment model.

An enterprise mashup infrastructure can be used to update, access, and inte-
grate unstructured and structured data from sources of all kinds. An enterprise
mashup infrastructure can apply structure to extracted data that was previously
unstructured. Such is the case when structure is applied to an ordinary HTML
page using screen-scraping techniques.

An enterprise mashup infrastructure presents views of existing resources and
data to other applications where they are restructured and aggregated to form
new composite views that may even create new semantic meaning for the com-
posite data and, therefore, for the enterprise itself.

As shown in Figure I.5, an enterprise mashup infrastructure provides a num-
ber of different frameworks and layers from which data, services, processes,
and user interface components are integrated.

SOLVING TECHNOLOGICAL PROBLEMS 9

An enterprise mashup infrastructure helps to solve nonvisual integration
problems as well as visually related problems. Nonvisual integration solutions
enabled using the resource-oriented and semantic nature of an enterprise
mashup infrastructure can be applied directly to specific business problems or
indirectly through the orchestration and aggregation of the reusable compo-
nents presented by the infrastructure.

Addressing mashups in a nonvisual sense relies on accurate and comprehen-
sive organization and structure of information using semantically rich data for-
mats to create an environment where content and data are easily discovered
and reused.

Figure I.5 High-level view of an enterprise mashup infrastructure

Relational
Data Store

Unstructured
Business

Documents

request/
response

Process Layer

Protocol
Adapter

Service
Module

Service
Module

security
protocol

Web
Browser

Mashup
Page

Security Layer

OAuth
Module

OpenID
Module

HTTP

request/
response

data
protocol

Corporate
Mashup
Server

Data
 Layer

Corporate
Data

Server

Corporate Security Server

External
Sites

Security
Adapter

DAO DAO DAO

Secured
ID Storage

10 INTRODUCTION

Structuring Semantic Data

As with any enterprise application environment, enterprise mashup infrastruc-
tures must address some fundamental concerns such as information manage-
ment, governance, and system administration to name a few. In addition to the
typical enterprise application concerns, mashup infrastructures must address an
environment that seeks to fulfill dynamic requirements and flexible solutions to
business issues.

One of the biggest challenges facing an enterprise is that issue of managing
and sharing data from disparate information sources. Legacy mechanisms for
managing and sharing information typically kept data and metadata (data
about the data) separated. Semantic techniques and technologies seek to bridge
the gap between data and metadata to present a more effective means for apply-
ing meaning to information.

Choosing the fundamental format for data within your mashup infrastruc-
ture should be one of the first areas that you address. Mashup infrastructures
derive much of their benefit from being able to apply and present semantic
meaning to data and content. This enables consumers of the data and content
to create aggregate components and content much more easily than traditional
application environments.

Applying semantics to an aggregate repository of corporate information
involves extending typical data stores and content sources to enable the infor-
mation stored within unstructured documents and files with structured mean-
ing, thereby giving the information sources features that enable both machines
and humans with a greater ability to understand the information. Once effec-
tive semantic meaning has been applied to an information source, the data
stored within can be discovered, aggregated, automated, augmented, and
reused more effectively.

As shown in Figure I.6, an enterprise mashup infrastructure can provide
components, modules, and frameworks to transform and enable data with
semantic richness.

Figure I.6 illustrates some of the disparate sources from which corporate
information is stored and how a mashup infrastructure might provide a solu-
tion for structuring the data from these sources with semantic meaning.

When determining a solution for building a semantic foundation, an organi-
zation should turn to formal specifications. These specifications currently
include XML, the Resource Description Framework (RDF), the Web Ontology
Language (OWL), RDF Schema (RDFS), microformats, and others.

EFFECTIVE DESIGN PATTERNS 11

Effective Design Patterns

Software design patterns present tested and proven blueprints for addressing
recurring problems or situations that arise in many different design and devel-
opment scenarios. By defining a design/development solution in terms of a pat-
tern, problems can be solved without the need to rehash the same problem over
and over in an attempt to provide a custom solution each time.

Using design patterns for software development is a concept that was bor-
rowed from architecture as it applied to building homes, workplaces, and cities.
The idea revolved around the concept that looking at problems abstractly pre-
sented common solutions to different architectural problems. The same concept
was applied to software engineering and proved to work equally as well.

Design and implementation efforts of a mashup share many of the same
development issues as traditional software engineering. Therefore, many of the
same techniques and methodologies that provide successful results to tradi-
tional software paradigms work equally as well with mashup development.
Software patterns are one of the most widely used methodologies in traditional
software engineering and are also strongly suggested as a mechanism for
addressing mashup design and development scenarios.

Figure I.6 High-level view of semantically enabled enterprise mashup infrastructure

Sales
Database

Unstructured
Business

Documents

Process Layer

Protocol
Adapter

Service
Module

Service
Module

Web
Browser

Mashup
Page

request/
response

data
protocol

Corporate
Mashup
Server

Data
 Layer

Corporate
Data

Server

DAODAODAO

Semantic
Transformation

Module

Corporate Accounting
Application

12 INTRODUCTION

Since mashups address many different, dynamic scenarios and technologies,
finding any sort of common ground on which to base design and implementa-
tion decisions can be a great help to software practitioners.

Mashups are very data-intensive. Therefore patterns that define common
solutions to the conversion or adaptation of different data formats offer a sub-
stantial benefit to developers. A pattern defining a common solution for enrich-
ing data as the data is transferred from one module to another offers significant
benefits, as well.

Mashups seek to provide rich experiences for client-side users. Therefore,
patterns defining common solutions applied to AJAX, JavaScript, XML, and
CSS can provide benefits to UI developers.

The following is a list of some of the mashup activities for which patterns
can offer useful design help:

• Semantic formats and patterns for data access and extraction

• Semantic formats and patterns for data transfer and reuse

• Patterns and methods for data presentation

• Patterns and methods for scheduling and observation

• Content reuse with clipping

• Data/content augmentation patterns for normalizing content

• Patterns and purposes for notifications and alerts

With many of the processes in a mashup running externally in the Internet
cloud, it is extremely desirable to find common patterns that address issues such
as scalability, security, and manageability within this nebulous environment.

Unique Security Constraints

A mashup development model is very open by definition. This openness intro-
duces many new security risks; therefore, security must be a primary concern
when developing a mashup infrastructure.

Traditional mechanisms such as firewalls and DMZs are not sufficient for
the granularity of access that mashups require for UI artifacts and data. The
mashup infrastructure itself must be prepared to deal with issues such as cross-
site request forgery (CSRF), AJAX security weaknesses, cross-site scripting, and
secure sign-on across multiple domains.

UNIQUE SECURITY CONSTRAINTS 13

The fact that a mashup is a page or application built typically using data
combined from more than one site, illustrates the manner in which security vul-
nerabilities can multiply quickly. As new invocations are added to access
resources or to call service API, new security vulnerabilities become possible. In
addition, external mashups can embed your components and UI artifacts,
thereby combining your functionality and data with components and UI arti-
facts of unknown origin. These wide-open integration possibilities make it
imperative to ensure that your data and functionality are not open to hacker
attempts and other forms of intrusion.

The most common attack scenarios within a mashup environment are cross-
site scripting, JSON hijacking, denial of service attacks, and cross-site request
forgeries.

The intrinsic openness of a mashup environment and the inability to predict
exactly how components of a mashup infrastructure will be used in the future
implies the need to address security at every aspect of the development lifecycle.
Therefore, security must be a primary part of a development team’s code review
and testing processes.

A mashup environment most likely uses components and UI artifacts devel-
oped externally. This means that testing external components must be included
in a development team’s testing process right alongside an organization’s own
components. External components should be tested individually and in aggre-
gate with other components of a given mashup.

One of the most important steps for any organization is to institute best
practices and mashup security policies based on standards established by indus-
try, government, and compliance groups.

When instituting a security policy, an organization should note the following
guidelines:

• Create a thorough security policy.

• Establish a proper authentication and authorization plan.

• Allow for flexibility.

• Employ message-level and transport-level security.

• Implement corporate standards for secure usage patterns.

• Support industry security standards.

14 INTRODUCTION

Conceptual Layers of an Enterprise Mashup

A mashup infrastructure must expose and support programming entities that
can be combined in a mashup. The infrastructure must also address the corre-
sponding issues and solutions for each type of entity. This is modeled as three
high-level categories of items: user interface artifacts (presentation), data
(resources), and/or application functionality (processes). UI artifacts include
such entities as HTML snippets, on-demand JavaScript, web service APIs, RSS
feeds, and/or other sundry pieces of data. The implementation style, techniques,
and technologies used for each category of mashup items present certain con-
straints and subtleties.

Content and UI artifacts used to build a mashup are gathered from a number
of different sources including third-party sites exposing web service APIs, wid-
gets, and on-demand JavaScript. RSS and Atom feeds are also common places
from which mashup content is retrieved. Some tools are now exposing services
that will glean content and information from any existing site using screen-
scraping techniques.

The three-category architecture of mashup web applications is discussed
next.

Presentation Layer

The presentation layer for a mashup can pull from a local service platform,
publicly available APIs, RSS data feeds, dynamic JavaScript snippets, widgets,
badges, and so on. The presentation layer uses technologies and techniques for
viewing disparate data in a unified manner. This unified view integrates UI arti-
facts representing business documents, geocoded maps, RSS feeds, calendar
gadgets, and others.

The presentation layer for an agile and powerful enterprise mashup applica-
tion depends on a modular and flexible infrastructure. The foundation for an
effective enterprise mashup infrastructure is typically structured around a mul-
tilayered platform. The layers for the mashup infrastructure can be imple-
mented as interconnected modules that manage service registrations, service un-
registrations, and service lifecycles.

Since mashups are based on principles of modularity and service-oriented
concepts, a modular technology is warranted that combines aspects of these
principles to define a dynamic service deployment framework facilitating
remote management.

CONCEPTUAL LAYERS OF AN ENTERPRISE MASHUP 15

Data Layer

UI artifacts and processes for a mashup infrastructure rely on content and data
from multiple sources. Content and data are modeled as resources. Resources
can be retrieved using a REST (Representational State Transfer)-based invoca-
tion model. In other words, resources are created, retrieved, updated, and
deleted using a simple syntax that relies on URIs to define the location of each
resource.

A mashup infrastructure should provide a mashup data layer that can access
data from multiple sources perhaps using a REST-based invocation model. The
resources can then be serialized to a mashup application or page in different
semantic formats.

The data layer for a mashup infrastructure combines data in one of two
ways: client-side data integration or server-side data integration, as discussed
next.

Client-Side Data Integration
In client-side data integration, data is retrieved from multiple sites and mixed
together in a client-side application pane or web page typically using scripting
techniques and languages such as JavaScript, AJAX, and DOM manipulation.
In this type of mashup, data is returned from a site or server in the form of
XML, RSS, JSON, Atom, and so on. Much of the data returned originates from
data-oriented services sometimes referred to as Data-as-a-Service (DaaS). DaaS
describes a data-oriented service API that can be called without relying on
third-party processes or components between the service provider and the ser-
vice consumer.

Figure I.7 illustrates data being integrated on the client in a mashup infra-
structure.

Server-Side Data Integration
In server-side data integration, data is retrieved and mixed at the server using
technologies such as Java, Python, Perl, and C++, among others. In this style,
mashup data is retrieved from one or more sites/servers and used as values or
configuration settings to create new data models within a server-side process.

Figure I.8 illustrates data being integrated on the server in a mashup infra-
structure.

Process Layer

Processes in the mashup infrastructure can be encapsulated as independent ser-
vices. Each service can be defined and deployed within the context of a module

16 INTRODUCTION

managed by a service container. Service modules might consist of one or more
services that are deployed automatically to the service container.

The process layer will combine functionality together in one or more aggre-
gate processes using programming languages such as Java, PHP, Python, C++,
and so on. Mashups built for enterprise applications or web applications can
involve frameworks such as JEE, .NET, and Ruby on Rails.

Figure I.7 Client-side data integration

Figure I.8 Server-side data integration

Original
Host

External
Host

External
Host

External
Host

Web
Browser

Web Page

JavaScript,
AJAX, DOM

manipulation,
etc.

Internal Data
Source

External
Host

External
Host

External
Host

Web
Browser

Web Page

Mashup
Server
Data
Layer

data
protocol

Mashup
Server

Process
Layer

UI artifacts over
HTTP/HTTPS

USING REST PRINCIPLES FOR ENTERPRISE MASHUPS 17

In the process layer, functionality is combined using interprocess/interthread
communication techniques such as shared memory, message queues/buses, and
remote procedure calls (RPC), to name a few. The aggregate result of the pro-
cess layer differs from the data layer in that the data layer derives new data
models, whereas the process layer derives new processes and/or services.

Due to the number of disparate sources from which functionality and data
are typically retrieved for an enterprise mashup, enterprises often employ a
hybrid approach when building a mashup infrastructure.

Using REST Principles for Enterprise Mashups

Interactions within an enterprise mashup often involve the exchange of data
from one or more hosts. Data is often referred to as a resource. Therefore, it is
important to provide coherent interfaces for resources exposed by an enterprise
mashup infrastructure. The resource-oriented architecture defined by Roy Tho-
mas Fielding in his Representational State Transfer (REST) dissertation is a
model used by many mashup frameworks and platforms.

REST is a model for interacting with resources using a common, finite set of
methods. For the HTTP protocol, this is embodied in the standard methods GET,
POST, PUT, DELETE, and sometimes HEAD. In a REST-based application or interaction,
resources are identified by a URI. The response for REST-based invocation is
referred to as a representation of the resource.

To help define interfaces for accessing resources in a mashup infrastructure,
an understanding of how the interfaces will be accessed is needed. An examina-
tion of REST-based interactions across the HTTP request/response space can
help to understand the interactions for services and resources in an enterprise
mashup.

• HTTP GET—Retrieves resources identified by URIs (Universal Resource
Identifiers), named in a consistent manner for an organization.

• HTTP POST—Creates a resource identified by the data contained in the
request body. Therefore, to create the resource named myfeed.rss, the URI
shown for the HTTP GET request would be used in an HTTP POST request
along with the additional POST data needed to create the resource.

• HTTP PUT—Updates the resource identified by the request URI using the
data contained in the request body.

• HTTP DELETE—Deletes the resource that is identified by the request URI.

18 INTRODUCTION

In a REST model, content and data are modeled as resources. Resources are
retrieved using a REST-based invocation model—that is, resources are created,
retrieved, updated, and deleted using a simple syntax that relies on URIs to
define the location of each resource.

The significance of REST is being made apparent by the vast number of web
service API providers promoting REST as the invocation model for their APIs.
Many of these same service providers are using semantically rich data formats
such as RDF, RSS, and Atom as responses to service invocations.

With REST being supported by so many API providers, mashup infrastruc-
tures supporting REST-based invocations and semantic data formats will be
highly adaptable to interactions with external hosts and service providers.

Emerging Mashup Standards

Standards for mashup development are just beginning to emerge. In the mean-
time, standards based on open data exchange, semantically rich content, and
open security models are driving mashup implementations.

The following list shows some of the more prominent standards influencing
mashup application development:

• XML (eXtensible Markup Language)—A general-purpose markup lan-
guage for representing data that is easy for humans to read and under-
stand. Data formatted as XML is easy to transform into other formats
using tools that are available in nearly every programming language. XML
supports schema-based validation and is supported by many formal enter-
prise data-format standards. XML supports internationalization explicitly
and is platform and language independent and extensible.

• XHTML (eXtensible HyperText Markup Language)—A standard intro-
duced in 2000 to form an integration of XML and HTML. XHTML
embodies a web development language with a stricter set of constraints
than traditional HTML.

• OpenSocial API—A unified API for building social applications with ser-
vices and artifacts served from multiple sites. The OpenSocial API relies on
standard JavaScript and HTML as the platform languages developers can
use to create applications and services that interconnect common social
connections. OpenSocial is being developed by an extensive community of
development partners. This community partnership is leading to a plat-
form that exposes a common framework by which sites can become

EMERGING MASHUP STANDARDS 19

socially enabled. Some of the sites currently supporting OpenSocial include
iGoogle, Friendster, LinkedIn, MySpace, Ning, Plaxo, Salesforce.com, and
others.

• The Portable Contacts specification—Targeted at creating a standard,
secure way to access address books and contact lists using web technolo-
gies. It seeks to do this by specifying an API defining authentication and
access rules, along with a schema, and a common access model that a com-
pliant site provides to contact list consumers. The Portable Contacts speci-
fication defines a language neutral and platform neutral protocol whereby
contact list consumers can query contact lists, address books, profiles, and
so on from providers. The protocol defined by the specification outlines
constraints and requirements for consumers and providers of the specifica-
tion. The specification enables a model that can be used to create an
abstraction of almost any group of online friends or user profiles that can
then be presented to consumers as a contact list formatted as XML or
JSON data.

• OpenSAM (Open Simple Application Mashups)—A set of open, best prac-
tices and techniques for integrating software as a service (SaaS) applica-
tions into applications to enable simple connectivity between platforms
and applications. OpenSAM is supported by a number of high-profile web
application leaders such as EditGrid, Preezo, Jotlet, Caspio, and others.

• Microformats—An approach to formatting snippets of HTML and
XHTML data to create standards for representing artifacts such as calen-
dar events, tags, and people semantically in browser pages.

• Data portability—Introduced in 2007 by a concerted group of engineers
and vendors to promote and enable the ability to share and manipulate
data between heterogeneous systems. Data in this context refers to videos,
photos, identity documents, and other forms of personal data.

• RSS and Atom—XML-based data formats for representing web feeds such
as blogs and podcasts. RSS and Atom are ideally suited for representing
data that can be categorized and described using channels, titles, items,
and resource links. An RSS or Atom document contains descriptive infor-
mation about a feed such as a summary, description, author, published
date, and other items.

• OPML (Outline Processor Markup Language)—An XML dialect for
semantically defining generic outlines. The most common use for OPML
at this time is for exchanging lists of web feeds between feed-aggregator

20 INTRODUCTION

services and applications. OPML defines an outline as a simple, hierarchi-
cal list of elements.

• APML (Attention Profiling Markup Language)—Seeks to facilitate the
ability to share personal attention profiles so that interests might be easily
shared between users. An Attention Profile is a type of inventory list of the
topics and sources in which a user is interested. Each topic and/or source
in the profile contains a value representing the user’s level of interest.
APML is represented as an XML document containing implicit interests,
explicit interests, source rankings, and author rankings.

• RDF (Resource Description Framework)—A standard built on the notion
that all resources are to be referenced using URIs. RDF also attempts to
promote semantic meaning to data. This idea is central to the mashup
environment, where data is a collection of loosely coupled resources. With
respect to this knowledge, RDF makes a great fit as a universal data model
for the data layer of your mashup infrastructure. RDF describes data as a
graph of semantically related sets of resources. RDF describes data as sub-
ject-predicate-object triples, where a resource is the subject and the object
shares some relation to the subject. The predicate uses properties in the
form of links to describe the relationship between the subject and object.
This interconnecting network of resources and links forms the graph of
data that RDF seeks to define.

• JSON (JavaScript Object Notation)—A JavaScript data format that offers
the advantage of easy accessibility and parsing from within a JavaScript
environment. JSON supports a limited number of simple primitive types
allowing complex data structures to be represented and consumed easily
from standard programming languages.

• OpenID—A free service that allows users to access multiple secured sites
with a single identity. Sites enabled to use OpenID present a form to a user
where the user can enter a previously registered OpenID identifier such as
jdoe.ids.example.com. The login form information is passed on to an
OpenID client library where it is used to access the web page designated by
the OpenID identifier—in this case, http://jdoe.ids.example.com. An
HTML link tag containing a URL to the OpenID provider service is read
from the web page. The site hosting the client library then establishes a
shared secret with the OpenID provider service. The user is then prompted
to enter a password or other credentials. The client library site then validates
the credentials with the OpenID provider service using the shared secret.

http://jdoe.ids.example.com

SOLVING BUSINESS PROBLEMS 21

• OAuth—A protocol for handling secure API authentication by invoking
service invocations on behalf of users. OAuth-enabled sites direct users
and associated OAuth request tokens to authorization URLs where the
users log in and approve requests from the OAuth-enabled sites. OAuth
uses a key, such as an OpenID identifier to enable authentication without
passing around usernames and passwords.

• WS-Security—Specifies extensions to SOAP messaging to ensure message
content integrity and message confidentiality using a variety of security
models such as PKI, SSL, and Kerberos. The WS-Security specification is
the result of work by the WSS Technical Committee to standardize the
Web Service Security (WS-Security) Version 1.0 recommendation. The WS-
Security specification defines message integrity, message confidentiality,
and the ability to send security tokens as part of a message. These defini-
tions are to be in combination with other web service standards, specifica-
tions, and protocols to support a variety of security models and
technologies.

Solving Business Problems

Mashups are beginning to play a big role in the business domain. Some of the
most prominent uses for mashups within the context of a business are emerging
in the space of business process management and IT asset management. The
reason for this lies in the ease in which mashups can be created along with the
reduced investment needed to adopt the technology.

The nature of mashup development is to use existing technologies such as
JavaScript, HTML, XML, and others. This reduces or eliminates the need for
large investments in IT retooling and makes a significant difference on the bot-
tom line of organizational staffing, especially in terms of the money saved on
integration projects.

Since mashups can retrieve data and UI artifacts from multiple sources, they
help to reduce the workload shouldered by a single organization. Mashups pro-
mote reuse by definition; therefore, they also reduce the workload for an orga-
nization by enforcing reuse within the organization.

Mashup efforts across the enterprise are creating applications and services
that complement existing business activities such as business process manage-
ment (BPM), IT asset management, enterprise information services (EIS), and
software as a service (SaaS). How mashups complement business activities can
be seen in the following trends:

22 INTRODUCTION

• BPM—Mashups enable business experts to organize workflow and pro-
cess management activities without relying on highly skilled IT resources,
thereby allowing workflows to be modified as needed to meet business
requirements.

• EIS—Properly architected mashup infrastructures provide semantically
rich data layers that allow disparate data to be integrated from multiple
sources with little or no help from skilled IT staff. In addition, intuitive
user interfaces can be provided using mashup technologies to further sim-
plify the complexities of data integration.

• IT asset management—Mashups enable business users with the power to
wire UI artifacts, processes, and data together in a graphical manner. Fur-
thermore, mashups allow the creation of applications using components
linked to low-level IT functionality. IT asset management is exploiting this
model to provide IT asset management components exposing such func-
tionality as time-series data, resource monitoring, and device deployment,
to name a few.

• SaaS—Mashups flourish in service-oriented and resource-oriented envi-
ronments. As more businesses move towards a mashup model, on-demand
services will become second nature and ubiquitous across the enterprise.
This will lead tool vendors to drive SaaS as a prominent model for distrib-
uting value.

A mashup environment promotes reuse of existing data, UI artifacts, and
software processes to create new applications and services, which might also be
reused as components for other mashups. This model is creating a revolution-
ary atmosphere where underlying programming frameworks and languages are
irrelevant, and higher-level scripting languages, semantics, and UI components
are emerging as drivers for creating new application functionality.

Enterprises are exploiting the mashup revolution in many different ways to
drive down the cost of IT resources and to increase the time-to-market for new
business services.

Summary

Mashups allow rapid implementations of new functionality via the use of
semantic web technologies, reusable user interface artifacts, and loosely cou-
pled services. Mashups are used in many different consumer and social spaces.

SUMMARY 23

However, enterprises are beginning to reap the benefits afforded by a mashup
environment. Mashups are creating an extremely agile and dynamic design and
implementation environment within the enterprise realm allowing users with
limited technical skills to develop powerful and useful applications and services.

Mashups enable users to create new user interfaces by reusing existing UI
artifacts using high-level scripting languages such as HTML and JavaScript.
Mashups also enable users to integrate disparate data very quickly and easily
using semantically rich data formats that don’t require complex programming
and middleware technologies. Services and processes are beginning to be inte-
grated with similar speed and ease using loosely coupled techniques inherited
from the lessons learned from service-oriented architecture (SOA) solutions.

This introduction discussed some of the high-level concepts surrounding
enterprise mashups. In the following chapters I expand on these concepts to
guide you through the design and implementation of mashups and mashup
infrastructures.

25

Chapter 1

Mashup Styles, Techniques,
and Technologies

To begin design work on a mashup, you must determine what is to be
“mashed” together. Three high-level categories of items can be mashed
together—user interface artifacts (presentation), data, and/or application func-
tionality (processes). This might include HTML snippets, on-demand Java-
Script to access an external API, web service APIs from one of your corporate
servers, RSS feeds, and/or other data to be mixed and mashed within the appli-
cation or pages. The implementation style, techniques, and technologies used
for a given mashup depend on this determination. Once the items are deter-
mined, your development team can proceed with applying languages, processes,
and methodologies to the application at hand.

In this chapter, I point out some of the most widely used styles, techniques, and
technologies to build mashups for each of the three primary categories or items.

Determining the Technological Domain for a Mashup

Along with determining what is to be mashed, you must also determine the
sources from which the mashup items will be accessed; the style, technologies,
and techniques your staff needs to build the mashup; and what services you
need to build or access to retrieve the necessary artifacts for your mashup.

Mashups rely on the ability to mix loosely coupled artifacts within a given
technological domain. The requirements of the application determine what arti-
facts (UI, data, and/or functionality) will be needed to build the mashup.

From a high-level perspective, the technological domain as applied to mashups
can be viewed as presentation-oriented, data-oriented, and process-oriented.
Different languages, methodologies, and programming techniques apply to
each technological domain.

26 CHAPTER 1 MASHUP STYLES, TECHNIQUES, AND TECHNOLOGIES

As shown in Figure 1.1, mashup categories can be divided according to pre-
sentation artifacts, data, and application functionality/processes. Each of these
categories requires specific skills and programming technologies, as discussed next.

Presentation-Oriented

A presentation-oriented mashup mixes different user interface (UI) artifacts
together to create a new application or page. Typically, this type of mashup
aims to create an application or page displaying UI artifacts in a manner similar
to a conventional portal. That is, each artifact is to be displayed in a separate
small area on an application pane or page in a segregated manner in relation to
the other artifacts. Very little or no interaction takes place between the UI arti-
facts in a presentation-oriented mashup.

Technologies used in a presentation-oriented mashup can include

• Gadgets and widgets—User interface components that can be placed on an
application pane or page independent of other items on the application
pane or page. Legacy definitions of widgets referred to them in a more
fine-grained manner as applied to desktop components, for example, but-
tons, scrollbars, sliders, and toolbars. The definition has been expanded in
relation to web pages and mashups to include components comprised of
more complex and self-contained functionality such as a clock, calculator,
weather information, and so on. Gadgets and widgets may or may not
retrieve data from an external site.

• On-demand JavaScript, JavaScript snippets, and badges—Small sections of
JavaScript code that can be inserted within an application pane or page to
create user interface components. Typically, the JavaScript relies on inter-
action with a web service API that returns data and functionality used to
build the user interface artifact.

Figure 1.1 Three primary mashup technological domains

Widgets/Gadgets/Chicklets
JavaScript
CSS
HTML/XHTML
Flash
Applets
ActiveX

Presentation-
Oriented

RSS
Atom
AjJAX/XML
JSON
SOAP
Microformats
APML
RDF

Data-Oriented

Java/J2EE
PHP
Python
C#/.NET
Ruby/RoR
Perl
C/C++
MoM, pipes, RPC, etc.

Process-Oriented

DETERMINING THE TECHNOLOGICAL DOMAIN FOR A MASHUP 27

• CSS/HTML/XHTML—Snippets that can be inserted to create segregated
user interface components that can be reused without regard to the appli-
cation domain.

• Flash components/Java applets/ActiveX controls—Self-contained user inter-
face components that rely on proprietary container technologies such as a
virtual machine or runtime that is embedded within the application pane
or browser page.

A presentation-oriented mashup is usually the easiest and quickest type of
mashup to build. Since there is little or no interaction between the mashed
items, the mashup developer can simply worry about placing the items on the
application pane or page in the desired location with the desired UI theme.

Data-Oriented

Data-oriented mashups (in-process or out-of-process) involve combining data
from one or more externally hosted sites together in an application pane or web
page typically using scripting techniques and languages such as JavaScript,
JScript, and others. In this type of mashup, data is returned from a site or server
in the form of XML, RSS, JSON, Atom, and so on. Much of the data returned
originates from data-oriented services sometimes referred to as Data-as-a-Service
(DaaS). DaaS describes a data-oriented service API that can be called without
relying on third-party processes or components between the service provider
and the service consumer.

In-Process Data-Oriented Mashups
In-process data-oriented mashups rely on data being mixed together using
application or browser technologies such as JavaScript, AJAX, or the Docu-
ment Object Model (DOM). In this style of mashup data is retrieved from one
or more sites/servers and used as values or configuration settings to build user
interface artifacts within an application process or browser page.

Out-of-Process Data-Oriented Mashups
Out-of-process data-oriented mashups rely on data being mixed together using
technologies such as Java, Python, Perl, C++, XML, and XSLT, to name a few.
In this style of mashup data is retrieved from one or more sites/servers and used
as values or configuration settings to create new data models within a server-
side process or separate client-side process.

28 CHAPTER 1 MASHUP STYLES, TECHNIQUES, AND TECHNOLOGIES

Process-Oriented

Process-oriented mashups (out-of-process) involve combining functionality
together in one or more external processes using programming languages such
as Java, PHP, Python, and C++. Mashups built for enterprise applications or web
applications can involve frameworks such as JEE, .NET, and Ruby on Rails.

In a process-oriented mashup, functionality is combined using interprocess/
interthread communication techniques such as shared memory, message queues/
buses, remote procedure calls (RPC), and so on. Even though data is exchanged
between processes and threads in a process-oriented mashup, the end result dif-
fers from a data-oriented mashup in that the data-oriented mashup seeks to
derive new data models, whereas a process-oriented mashup seeks to derive
new processes and/or services.

More often than not, enterprises require a hybrid approach when building a
mashup. This is due to the number of disparate sources from which functionality
and data are retrieved such as geocoding sites, RSS feeds, and corporate data stores.

So, when preparing to build a mashup you must first determine what is to be
mashed, the technological domain in which to build the mashup, and the
sources from which the mashup artifacts will be accessed. With this informa-
tion in hand you can then determine whether your development staff possess
the skills to employ the techniques and technologies needed to build the
mashup. The skills of your staff have a big impact on the decision of which
mashup style you choose. The following section discusses the reasons for choos-
ing different mashup styles and/or domains.

Choosing a Mashup Style

There are some clear reasons for picking one mashup style/domain over
another. Depending on the goal of the mashup, you should weigh the pros and
cons of each mashup style before beginning work.

Pros and Cons of Presentation-Oriented Mashups

Presentation-oriented mashups are popular because they are quick and easy to
build. They rely primarily on data and UI artifacts retrieved from sites using ser-
vice APIs, data feeds, and so on. This model is often referred to as a Software-
as-a-Service (SaaS) model, although many of the artifacts used in this model are
not technically services. Presentation-oriented mashups often require no preau-
thorization, no installation steps, and no other technologies than those found
within any standard web browser.

CHOOSING A MASHUP STYLE 29

It is easy to implement presentation-oriented mashups because you can usu-
ally use services, components, and script libraries that are publicly accessible
without requiring you to install application platforms or tools. In this model,
you can simply embed or include the scripting code or service call right in an
HTML page as needed. Many publicly available scripting components today
allow you to customize the look-and-feel of the UI artifacts that they generate.

Presentation-oriented mashups typically don’t require any service coding or
deployment; all service coding is provided by external processes/sites to be used
by service consumers at will.

Performance is typically quite responsive with presentation-oriented mash-
ups, since all requests are made directly to a service provider or script provider.
This direct-access model eliminates any interactions with an intermediary pro-
cess through which data is retrieved or functionality is derived. However, this
also creates a direct coupling to the service or services that can eventually turn
into broken links, partially drawn pages, and/or slowly drawn pages if one or
more of the services fail or become nonperforming.

Relying on presentation-oriented techniques and technologies, enterprise
mashups can reduce the load that might otherwise be shouldered by one or
more corporate servers. Since requests are made directly between a service or
data consumer and the provider, the use of presentation-oriented techniques
and technologies in at least part of a mashup places the processing burden out-
side the corporate development domain.

One of the biggest challenges with presentation-oriented mashups is attempt-
ing to access services hosted on a site other than the site from which the original
page was retrieved. Most standard web browsers enforce a sandbox security
model in which a given web page is not allowed to access a site/service located
external to the host in which the page originated. This is referred to by a num-
ber of names including the server-of-origin policy, the browser security sandbox,
the same-origin policy, and the same-domain policy.

The browser security sandbox is in place as an attempt to secure sensitive
information and ward off attacks from rogue scripts and components attempt-
ing to violate privacy and security. Figure 1.2 illustrates the browser security
sandbox.

Many mashups employ the use of AJAX to communicate with a server and
retrieve data. AJAX is a technology that uses a standard JavaScript object—
XMLHttpRequest—to pass data from the JavaScript container (browser) to a web
host. AJAX enables web pages to perform in a manner more similar to desktop
applications, for example, less page refreshing and use of dynamic data updat-
ing. However, this dynamic communication model opens the door to malicious
scripts; hence the need for the browser security sandbox. The browser security

30 CHAPTER 1 MASHUP STYLES, TECHNIQUES, AND TECHNOLOGIES

sandbox only allows JavaScript code to use the XMLHttpRequest object to commu-
nicate with the host or domain from which the containing page originated. This
restriction is a major constraint for building mashups. Therefore, alternative
mechanisms are needed if a presentation-oriented mashup is to incorporate
data and services from multiple sites. Alternatives have been developed, specifi-
cally the use of a technique known as “on-demand scripting” or “dynamic
scripting.” This technique, which I talk about in detail later, exploits the incli-
nation of a browser to execute JavaScript as it is encountered in the process of
interpreting an HTML page.

Pros and Cons of Data-Oriented Mashups

Data-oriented mashups present their own set of challenges and benefits. Primar-
ily, a data-oriented mashup must deal with the intrinsic requirement to act as
the data mediator and/or broker. The mashup in this model must take data
from multiple sites and mix it together in a form that will be useful to the
mashup application or page. As a data broker/integrator, the mashup must deal
with multiple data formats and, possibly, communication protocols, such as
office document formats, message queue exchange protocols, and HTTP.

In-Process
Mashing data together within a web browser can be a formidable task.
Depending on the type of data, browser-based scripts and technologies are not
particularly suited for data integration. Most data-mashing techniques per-
formed within a browser involve manipulating XML-based or JSON-based

Figure 1.2 The browser security sandbox

Original
Host

External
Host

External
Host

External
Host

Web
Browser

Original
Web Page access blockedaccess blockedaccess blockedaccess blocked

access blockedaccess blockedaccess blockedaccess blocked

access blockedaccess blockedaccess blockedaccess blocked

access allowed

CHOOSING A MASHUP STYLE 31

(http://json.org/) data using various JavaScript techniques and applying the
results to the web page using DOM manipulation.

Figure 1.3 illustrates the flow of data in an in-process mashup. As illustrated,
data is received from multiple sites/hosts and is processed using scripting tech-
nologies within a browser page.

Out-of-Process
Mashing data together outside a web browser is nothing new. Any web applica-
tion or desktop application framework will provide some form of time-tested
data integration technology. Frameworks for processing plain text, comma-sep-
arated text, XML, relational data, and so forth have been around for decades
and optimized to process heterogeneous data very efficiently. New technologies
built specifically for disparate data integration, such as enterprise service buses,
are also available in this mashup model.

Figure 1.4 illustrates the flow of data in an out-of-process mashup. As illus-
trated in the figure, a mashup server receives data from multiple sites/hosts and
integrates the data using languages, libraries, and frameworks well-suited for
data parsing, assembly, mediation, and so on.

Mashing data out-of-process can typically handle many more data formats
and apply more robust transformations and data-augmentation techniques than
an in-process model.

Figure 1.3 Flow of data in an in-process mashup

Original
Host

External
Host

External
Host

External
Host

Web
Browser

Web Page

JavaScript,
Jscript,

ActionScript,
etc.

data over
HTTP/HTTPS

data over
HTTP/HTTPS

data over
HTTP/HTTPS

data over
HTTP/HTTPS

http://json.org/

32 CHAPTER 1 MASHUP STYLES, TECHNIQUES, AND TECHNOLOGIES

Out-of-process data mashing offers the advantage of evaluating the data
payload before returning the result to the mashup client. In this model a
mashup server can monitor a data feed for just the data updates and return the
updates to the client rather than the entire payload.

Data caching at the mashup server and returning results directly to the client
rather than invoking the data request on a remote host is also a benefit of mash-
ing data out-of-process.

Pros and Cons of Process-Oriented Mashups

In a process-oriented mashup, service requests are transmitted from a mashup
client to the mashup server in the same fashion as an out-of-process data-oriented
mashup. So, from the perspective of the mashup client, the process is the same.
However, from the perspective of the mashup server, things change.

A process-oriented mashup server deals with integration of data as well as
integration of services and processes. Just as data can be retrieved from multiple
different internal and external sources in a data-oriented mashup, services and
processes can be invoked on multiple different internal and external service
hosts and/or processes.

As illustrated in Figure 1.5, a process-oriented mashup server deals with inte-
gration of processes and services from many different internal and external pro-
cesses and hosts. Since this situation exists in most standard web application or
server-oriented environments, it is inevitably encountered in most mashup envi-
ronments where any form of processing takes place outside the mashup client
(browser). The pros and cons of this model are also shared with standard ser-

Figure 1.4 Flow of data in an out-of-process mashup

Internal Data
Host

External
Host

External
Host

External
Host

Web
Browser

Web Page

Mashup
Server

Processes

UI artifacts
over

HTTP/HTTPS

data over
local data
protocol

data over
HTTP, FTP, etc.

data over
HTTP, FTP, etc.

data over
HTTP, FTP, etc.

PRESENTATION-ORIENTED MASHUP TECHNIQUES 33

vice-oriented server environments, including the intricacies of IPC, transaction
management, and service availability.

Process-oriented mashups and out-of-process data-oriented mashups allow
you to deal with shared security keys, tokens, credentials, and so on using many
currently available technologies and frameworks such as SAML, OpenID, and
OAuth. Shared security mechanisms are becoming available more and more
from an in-process mashup domain, but server technologies still dominate.
Handling data security at the server level also allows you to incorporate data-
retrieval and security in the same step resulting in fewer hops from client to
server.

Out-of-process, data-oriented mashups and process-oriented mashups allow
data and services to be processed asynchronously, often resulting in a more effi-
cient use of processing power and time. Browser-based concurrency is usually
limited to far fewer calls than server-based concurrency.

Presentation-Oriented Mashup Techniques

When you work with a mashup in the presentation domain, you are con-
strained to an environment that has evolved in a hodge-podge way from pro-
cessing simple text and graphics pages to one that is on the verge of offering as
many or more features as a complex desktop application framework. This
messy evolution has suffered because of the mismatch between the free-natured
needs of the web environment and the restricted nature of the few primary

Figure 1.5 Flow of services and processes in a process-oriented mashup

Internal
Process/
Service

External
Host

External
Host

External
Host

Web
Browser

Web Page

Mashup
Server

Processes

UI artifacts
over

HTTP/HTTPS

interprocess
communication

(IPC)

service
request/response

service
request/response

service
request/response

34 CHAPTER 1 MASHUP STYLES, TECHNIQUES, AND TECHNOLOGIES

browser vendors. Nevertheless, standards and best practices are emerging that
offer sanity to the mess. The following sections discuss some of the popular
techniques and technologies being used to produce mashups in the presentation
domain.

Mashing Presentation Artifacts

The easiest form of presentation-oriented mashup involves aggregation of UI arti-
facts within a web page in a portal-like manner—that is, completely segregated
from each other using discrete areas within a single HTML page. In this model,
UI artifacts such as gadgets, widgets, HTML snippets, JavaScript includes, and
on-demand JavaScript are embedded within an HTML document using layout
elements and techniques such as HTML tables and CSS positioning.

When mashing together UI artifacts in a web page using browser layout tech-
niques, each artifact typically resides in its own separate area, as illustrated in
Figure 1.6

As illustrated in Figure 1.6, a mashup using aggregated UI artifacts refer-
ences one or more web sites from a web page and retrieves UI code that builds
each artifact as a separate component in a separate area on the browser page.

Mashing Presentation Data

A browser page can also build and modify UI artifacts using data retrieved from
multiple sources using such data formats as XML, RSS, Atom, and JSON. In
this model, the data is retrieved from one or more sites and parsed by the

Figure 1.6 Mashed presentation artifacts

Web
Browser

Web Page

On-demand JavaScript

HTML
Snippet

Gadget

Widget Widget

External
Web Site

Service
Platform

Data
Platform

Data StoreService
Code

(Java/J2EE,
Python, PHP,
etc.)

(RDBMS,
XML DB, MoM,
file system, EIS,
etc.)

HTTP/HTTPS data protocol

HTTP/HTTPS

PRESENTATION-ORIENTED MASHUP TECHNIQUES 35

browser, and UI artifacts are created or updated using scripting techniques such
as DOM manipulation to alter the resulting HTML document.

Figure 1.7 illustrates the flow of data from service hosts and external sites to a
mashup created by aggregation of data in the presentation domain (browser page).

This model is more complex than mashing together UI artifacts. In this
model, the scripting code that processes the data must be robust enough to han-
dle multiple data formats or restrict the page to accessing services that only sup-
port the formats supported by the page. However, since the scripting code will
be parsing the data to a fine-grained level, the UI can be created and updated to
create a more sophisticated user experience. This model offers more flexibility
at the cost of additional complexity.

Using AJAX and the XMLHttpRequest Object

Asynchronous JavaScript and XML (AJAX) is a set of technologies and tech-
niques used for handling data feeds using JavaScript and for creating dynamic
web pages with a sophisticated look and feel. One feature of AJAX is the use of
JavaScript and CSS techniques to update a UI artifact on a web page without
refreshing the entire page. AJAX also features a JavaScript-based HTTP
request/response framework that can be used within a web page.

The HTTP request/response framework provided by AJAX is enabled by a
component known as the XMLHttpRequest object. This object is supported by most

Figure 1.7 Mashed presentation data

Web
Browser

Web Page

DOM Element

Data processing logic

DOM
Element

DOM
Element

DOM
Element

DOM
Element

External
Web Site

Service
Platform

Data
Platform

Data StoreService
Code

(Java/J2EE,
Python, PHP,
etc.)

(RDBMS,
XML DB, MoM,
file system, EIS,
etc.)

HTTP/
HTTPS

Data
protocol

HTTP/HTTPS

36 CHAPTER 1 MASHUP STYLES, TECHNIQUES, AND TECHNOLOGIES

browsers and offers the ability to pass data to an external host and receive data
from an external host using the HTTP protocol. Requests can be made synchro-
nously or asynchronously. Asynchronous AJAX requests are made in the back-
ground without affecting the web page from which the request is made.

The AJAX framework can send and receive virtually any data format. How-
ever, XML-based data and JSON data are the most frequent payloads used for
various reasons discussed elsewhere in this chapter. Once data is received it is
parsed and applied to the page, typically by manipulating the DOM.

Figure 1.8 illustrates the process through which data flows within a web
page using the AJAX framework. As illustrated, when using AJAX, data is
received by the XMLHttpRequest object. UI artifacts can then be created and modi-
fied using the data.

Document Object Model (DOM)
Every JavaScript-enabled web page is represented internally to a browser as an
instance of the W3C Document Object Model (DOM). DOM is a platform-
independent and language-neutral object model for representing XML-based
documents that allows programs and scripts to dynamically access and update
the content, structure, and style of a document.

The HTML DOM is part of the official DOM specification that defines a
standard model for HTML documents. The HTML DOM facilitates accessing
and manipulating HTML elements in a given web page. The HTML DOM pre-
sents web page as a node-based tree structure containing elements, attributes,

Figure 1.8 Presentation data mashup using AJAX

Web
Browser

Web Page

DOM Element

XMLHttpRequest
object

DOM
Element

DOM
Element

DOM
Element

DOM
Element

External
Site

External
Site

Atom over
HTTP/HTTPS

RSS feed over
HTTP/HTTPS

Geocoding XML over
HTTP/HTTPS

JSON over
HTTP/HTTPS

External
Site

External
Site

PRESENTATION-ORIENTED MASHUP TECHNIQUES 37

and text. Every element on a web page (for example, div, table, image, or para-
graph) is accessible as a DOM node. JavaScript allows the manipulation of any
DOM element on a page dynamically. This allows you to perform such opera-
tions as hiding elements, adding or removing elements, and altering their
attributes (color, size, position, and so on).

Listing 1.1 presents a simple HTML document.

Listing 1.1 Simple HTML Document
<html>
<head>
<title>A simple HTML doc</title>
</head>
<body>
 <p>
 This is a simple HTML document.
 </p>

 <img id="image1"
 src="http://example.com/image1.png"
 width="250"
 height="350"/>
</body>
</html>

Listing 1.2 is an example of a JavaScript function that changes the width and
height of the image () element with an id of image1 in the preceding example:

Listing 1.2 JavaScript Manipulation of DOM
function changeImageSize()
{
 var anIMGElement = document.getElementById("image1");
 anIMGElement.width = "400";
 anIMGElement.height = "300";
}

As shown in Listing 1.2, the DOM can be accessed by the global “docu-
ment” variable. With a reference to the document variable, you can traverse the
nodes of the DOM to find any element by name or id.

Extensible Markup Language (XML)
XML (eXtensible Markup Language) is a specification and standard for creating
self-describing markup languages. It is extensible in that it allows you to define
your own elements. It is used extensively in data transformation and integration
frameworks to facilitate the transfer and integration of structured data across
disparate systems and applications. XML is used in many web-enabled environ-
ments as a document annotation standard and as a data serialization format.

38 CHAPTER 1 MASHUP STYLES, TECHNIQUES, AND TECHNOLOGIES

Listing 1.3 is an example of a simple XML document.

Listing 1.3 Simple XML Document
<?xml version="1.0" encoding="UTF-8"?>
<contacts>
 <contact>
 <name>John Doe</name>
 <address1>123 anywhere st.</address1>
 <address2>Apt 456</address2>
 <city>Yourtown</city>
 <state>CA</state>
 <zip>12345</zip>
 <country>USA</country>
 </contact>
 <contact>
 <name>Jane Doe</name>
 <address1>456 S 789 W</address1>
 <address2>Suite 987</address2>
 <city>Mytown</city>
 <state>NY</state>
 <zip>54321</zip>
 <country>USA</country>
 </contact>
</contacts>

Presentation-oriented mashups consume XML and XML derivatives returned
from service hosts and web sites. Once XML is received, it is parsed and
applied to a given web page. As XML is parsed, DOM manipulation techniques
are usually applied to update UI artifacts.

JavaScript Object Notation (JSON)
JSON (JavaScript Object Notation) is a simple, string-based, data-interchange
format derived from JavaScript object literals. JSON is very easy for users to
read and write and for JavaScript engines to parse. Strings, numbers, Booleans,
arrays, and objects can all be represented using string literals in a JSON object.

Listing 1.4 is an example of a simple JSON object:

Listing 1.4 JavaScript Object Notation (JSON) Object
{
 'contacts':
 [{
 'name':'John Doe',
 'address1':'123 anywhere st.',
 'address2':'Apt 456',
 'city':'Yourtown',
 'state':'CA',

PRESENTATION-ORIENTED MASHUP TECHNIQUES 39

 'zip':'12345',
 'country':'USA'
 },
 {
 'name':'Jane Doe',
 'address1':'456 S 789 W',
 'address2':'Suite 987',
 'city':'Mytown',
 'state':'NY',
 'zip':'54321',
 'country':'USA'
 }]
}

Presentation-oriented mashups also consume JSON objects returned from
service hosts and web sites. Once a JSON object is received, it must be parsed in
order to apply to a given web page. Since JSON is pure JavaScript, it is easily
parsed using standard JavaScript utilities. As with XML, DOM manipulation
techniques are usually applied to update UI artifacts once a JSON object is
parsed.

Sidestepping the Browser Security Sandbox

Perhaps the biggest challenge in doing a presentation-oriented mashup is con-
tending with the browser security sandbox, which is in place to keep sensitive
information secure. To protect against malicious scripts, most browsers only
allow JavaScript to communicate with the host/server from which the page was
loaded. If a mashup requires access to a service from an external host, there is
no easy way to access it using the XMLHttpRequest object.

When an attempt is made to access a host/server external to the host/server
from which a web page was loaded, an error similar to the following will be
encountered:

Error: uncaught exception: Permission denied to call method XMLHttpRequest.open.

Therefore, a mechanism is needed through which services can be accessed
without violating the browser security sandbox. JSONP provides one solution.

JSON with padding (JSONP) or remote JSON is an extension of JSON
where the name of a JavaScript callback function is specified as an input param-
eter of a service call. JSONP allows for retrieving data from external hosts/serv-
ers. The technique used by JSONP is referred to as dynamic or on-demand
scripting. Using this technique, you can communicate with any domain and in
this way avoid the constraints of the browser security sandbox.

Listing 1.5 is an example of using on-demand JavaScript to retrieve data
from an external site.

40 CHAPTER 1 MASHUP STYLES, TECHNIQUES, AND TECHNOLOGIES

Listing 1.5 On-Demand JavaScript
function retrieveExternalData()
{
 var script = document.createElement("script");
 script.src =
 'http://www.example.com/aservice?output=json&
 callback=aJSFunction';
 script.type = 'text/javascript';
 document.body.appendChild(script);
}

Listing 1.5 illustrates how to dynamically add a <script> tag into a page by
manipulating the DOM so that the page can load and call another web site. The
<script> tag executes on-demand and makes the service request to the site speci-
fied. If the service response is in JSONP format the JavaScript interpreter con-
verts the response object into a JavaScript object. When a script element is
inserted into the DOM the JavaScript interpreter automatically evaluates the
script. JSONP responses wrap JSON data in a JavaScript function call using the
name of the callback parameter. The JavaScript function is then called and any
objects defined in the JSONP response are passed.

The following is an example of an evaluated JSONP response:

aJSFunction({ "item 1":"value 1", "item 2":"value 2" });

As shown in the preceding line of code, the response returned from the ser-
vice is formatted as a JSON object wrapped in a JavaScript function call with
the callback parameter name. The script is evaluated and the JavaScript func-
tion is called, completing the service request/response interaction.

Data-Oriented Mashup Techniques

Data can be mashed together in-process or out-of-process. These two domains
typically equate with a web browser and a remote server application, respec-
tively. Many times data will be mashed in a hybrid approach using both in-pro-
cess and out-of-process techniques.

This section discusses in depth some of the techniques used for both in-pro-
cess and out-of-process data mashups.

Mashing Data In-Process

Mashing data in-process involves applying data integration techniques in the
same process as the mashup page. This is typically accomplished with scripting

DATA-ORIENTED MASHUP TECHNIQUES 41

code such as JavaScript and JScript. However, proprietary component technolo-
gies such as Java applets and ActionScript can be used.

During the process of mashing data in this model, a request is made to a ser-
vice and data is returned in the service response. The data is then parsed, pro-
cessed, and applied to UI artifacts in the page. DOM manipulation is typically
used to apply the processed data.

Mashing XML Data In-Process
All standard web browsers expose an XML-parser object to JavaScript that can
be used to load and parse XML data. Each parser reads XML data from a
string; therefore, a string response returned from a service call can be passed to
the XML parser and processed as needed.

In Listing 1.6, an XML parser is created and used to parse the XML docu-
ment string defined previously in Listing 1.3. As each contact item is encoun-
tered, a new paragraph element is created using DOM manipulation, and the
element is added to the web page.

Listing 1.6 Parsing XML Using JavaScript
<script>
function parseXMLData(xmlString)
{
 var xmlDoc;

 if (document.implementation.createDocument)
 {
 // Create the Mozilla DOM parser
 var domParser = new DOMParser();
 // Create the XML document object
 xmlDoc = domParser.parseFromString(xmlString, "text/xml");
 }
 else if (window.ActiveXObject)
 {
 // Create the Microsoft DOM parser
 xmlDoc = new ActiveXObject("Microsoft.XMLDOM");
 xmlDoc.async = "false";
 // Create the XML document object
 xmlDoc.loadXML(xmlString);
 }

 // get root node
 var contactsNode = xmlDoc.getElementsByTagName('contacts')[0];

 // traverse the tree
 for (var i = 0; i < contactsNode.childNodes.length; i++)

42 CHAPTER 1 MASHUP STYLES, TECHNIQUES, AND TECHNOLOGIES

 {
 var contactNode = contactsNode.childNodes.item(i);
 for (j = 0; j < contactNode.childNodes.length; j++)
 {
 var itemNode = contactNode.childNodes.item(j);
 if (itemNode.childNodes.length > 0)
 {
 var itemTextNode = itemNode.childNodes.item(0);
 var paraEl = document.createElement("p");
 var textEl =
 document.createTextNode(itemNode.nodeName + ":"
 + itemTextNode.data);
 paraEl.appendChild(textEl);
 var bodyEl =
 document.getElementsByTagName("body").item(0);
 bodyEl.appendChild(paraEl);
 }
 }
 }
}
</script>

In the preceding listing a DOM parser is instantiated and is accessed to get
the root node. Each node is then traversed via its child nodes until the desired
text data node is found. Note that there is a different parser used for Microsoft
Internet Explorer and Mozilla.

Mashing JSON Data In-Process
Since JSON is pure JavaScript, a string containing JSON data can simply be
evaluated to create a JavaScript object. Then the JavaScript object can be
accessed using normal JavaScript. For example, suppose that you are working
with a string containing the JSON data shown previously in Listing 1.4. You
can pass that string to the JavaScript eval function as follows:

var jsonObj = eval("(" + jsonString + ")");

This creates a JavaScript object on which we can operate using standard Java-
Script techniques. For example, you can access the name field for the first con-
tact using the following snippet:

jsonObj.contacts[0].name

Typically, you know the structure of the data beforehand. However, you
might not know the length of array data within the structure. In that case, the
JSON object must be traverse and array data parsed dynamically.

In Listing 1.7, a string containing JSON data, as defined previously in Listing
1.4, is evaluated and parsed. As each array element is encountered, a new para-

DATA-ORIENTED MASHUP TECHNIQUES 43

graph element is created using DOM manipulation and the element is added to
the web page:

Listing 1.7 Processing JSON Using JavaScript
function parseJSONData(jsonString)
{
 var jsonObj = eval("(" + jsonString + ")");

 for (var x in jsonObj)
 {
 // ignore properties inherited from object
 if (jsonObj.hasOwnProperty(x))
 {
 if (jsonObj[x] instanceof Array)
 {
 // handle arrays
 for (var i = 0; i < jsonObj[x].length; i++)
 {
 var bodyEl =
 document.getElementsByTagName("body").item(0);

 // create name element
 var paraEl = document.createElement("p");
 var textEl = document.createTextNode("Name: "
 + jsonObj[x][i].name);
 paraEl.appendChild(textEl);
 bodyEl.appendChild(paraEl);

 // create address 1 element
 paraEl = document.createElement("p");
 textEl = document.createTextNode("Address 1: "
 + jsonObj[x][i].address1);
 paraEl.appendChild(textEl);
 bodyEl.appendChild(paraEl);

 // create address 2 element
 paraEl = document.createElement("p");
 textEl = document.createTextNode("Address 2: "
 + jsonObj[x][i].address2);
 paraEl.appendChild(textEl);
 bodyEl.appendChild(paraEl);

 // create city element
 paraEl = document.createElement("p");
 textEl = document.createTextNode("City: "
 + jsonObj[x][i].city);
 paraEl.appendChild(textEl);
 bodyEl.appendChild(paraEl);

44 CHAPTER 1 MASHUP STYLES, TECHNIQUES, AND TECHNOLOGIES

 // create state element
 paraEl = document.createElement("p");
 textEl = document.createTextNode("State: "
 + jsonObj[x][i].state);
 paraEl.appendChild(textEl);
 bodyEl.appendChild(paraEl);

 // create zip element
 paraEl = document.createElement("p");
 textEl = document.createTextNode("Zip: "
 + jsonObj[x][i].zip);
 paraEl.appendChild(textEl);
 bodyEl.appendChild(paraEl);

 // create country element
 paraEl = document.createElement("p");
 textEl = document.createTextNode("Country: "
 + jsonObj[x][i].country);
 paraEl.appendChild(textEl);
 bodyEl.appendChild(paraEl);
 }
 }
 }
 }
}

With the ability to parse data returned from a service and to manipulate ele-
ments of the HTML DOM with the parsed data, you can dynamically create
and modify UI artifacts to fit the needs of your mashup.

Mashing Data Out-of-Process

Mashing data out-of process involves applying data integration techniques in a
separate process, typically on a remote host/server. In this mashup model, a
remote software module receives requests from a client and takes the necessary
steps to gather and transform the data needed to formulate a response.

Technologies and techniques in this approach overlap with enterprise data
integration technologies and techniques, the scope of which is beyond this dis-
cussion. However, the following presents a high-level view of some of the more
common approaches to enterprise data transformation and integration cur-
rently in use:

• Brute-force data conversion—This technique involves converting one data
format to another using proprietary conversion tools or a custom byte-for-
byte conversion program. Proprietary applications often offer an exten-
sion framework allowing third parties to build components or plug-ins
that will convert one data format to another.

PROCESS-ORIENTED MASHUP TECHNIQUES 45

• Data mapping—Data mapping involves the creation and application of a
map of data elements between two disparate data models—source and
destination. The map is used by conversion programs to determine how an
element from the source dataset applies to the destination dataset. Extensi-
ble Stylesheet Language Transformations (XSLT) is often used in this
approach to convert XML data from one form to another.

• Semantic mapping—This approach uses a metadata registry containing
synonyms for data elements that can be queried by conversion tools that
use the synonyms as a guide for converting one data element to another.

Process-Oriented Mashup Techniques

A process-oriented mashup involves mashing together services and/or pro-
cesses. Techniques used for this model range from simply combining method
calls in an object to a complex, structured workflow system.

In Figure 1.9, object2 is interacting with a number of different services and
processes. It is interacting with object1 using a standard method call and an
external site using a service call over a web protocol. object2 is also interacting
with an internal workflow system using asynchronous messaging. The results
from these calls are then mashed together to formulate the response that will
ultimately be returned to the mashup client (web page).

Figure 1.9 Process-oriented mashup architecture

Service
Platform

Service
Layer

object1

method
call

object2

External
Site

Internal
Workflow
System

Web
Browser

Web Page

(HTML, CSS,
JavaScript, etc.)

Data
Platform

Data Store

(RDBMS,
XML DB, MoM,
file system, EIS,
etc.)

HTTP/HTTPS
data protocol

HTTP/HTTPS
FTP

SMTP

asynchronous
message

asynchronous
response

46 CHAPTER 1 MASHUP STYLES, TECHNIQUES, AND TECHNOLOGIES

Hybrid Mashups

In actuality, enterprise mashups usually involve techniques and technologies for
each of the three mashup domains. Widgets, gadgets, or dynamic scripts will be
retrieved using presentation-oriented techniques. Data will be retrieved using
in-process data-oriented techniques. More data will be retrieved on the server
using out-of-process techniques. Services and processes will be aggregated to
formulate responses on the server that will be returned to the mashup client
results from service API requests.

Figure 1.10 illustrates a typical enterprise mashup environment where data
and services are accessed from a web page (in-process) and from the service
platform (on the server, out-of-process). Presentation-oriented techniques, data-
oriented techniques, and process-oriented techniques must all be employed to
handle the needs for this environment.

The techniques and mashup domains discussed in this chapter are discussed
further in subsequent chapters. For now, I demonstrate some of the easier tech-
niques of a presentation-oriented mashup in a small example in the next section.

Figure 1.10 Hybrid mashup architecture

Web
Browser

Web Page

DOM Element

XMLHttpRequest
object

DOM
Element

DOM
Element

DOM
Element

DOM
Element

RSS feed over
HTTP/HTTPS

Service
Platform

Data
Platform

Data Store

(RDBMS,
XML DB, MoM,
file system, EIS,
etc.)

HTTP/HTTPS

Service
Layer

object1

method
call

object2

External
Site

External
Site

Internal
Workflow
System

data protocol

HTTP/HTTPS
FTP

SMTP

asynchronous
message

asynchronous
response

IMPLEMENTING A SIMPLE MASHUP 47

Implementing a Simple Mashup

This section demonstrates the application of concepts discussed in this chapter
to create a simple presentation-oriented mashup. Apart from a local service
platform, the sources used for the mashup are publicly available and provide
either a service API, an RSS data feed, or a dynamic script feed. This section
does not discuss issues such as application keys, security, and governance for
this mashup; these topics are discussed in depth in later chapters.

For the sake of complete coverage of the mashup domains discussed, the
mashup will make service calls and retrieve data from external sites as well as a
local service platform that operates around the model illustrated in Figure 1.11.

Figure 1.11 illustrates a service platform that uses only a small number of
primary components to process service and resource requests. The platform
uses the Representational State Transfer (REST) approach (to be discussed
later) for service and resource request/responses. The service platform provides
access to services and uses a simple resource framework to create, retrieve,
update, and delete resources.

The application (shown in Listing 1.8 and in Figure 1.12) allows users to view
disparate data that might be available in a typical enterprise. The data is pre-
sented in a portal-like manner to simplify the layout and UI-management code.
The application integrates a list of corporate documents, a map feed, an RSS

Figure 1.11 Services platform architecture

Resource
Framework

Resource
Adapter

Resource
Cache

Service
Platform

Protocol
Adapter

Service
Cache

Service

data protocol

Service API
Requests

Service API
Responses

Resource

(RDBMS, XML DB,
MoM, file system,
EIS, RSS feed, etc.)

48 CHAPTER 1 MASHUP STYLES, TECHNIQUES, AND TECHNOLOGIES

feed, a calendar gadget, a Twitter counter chicklet, and a Twitter archive list
delivered as RSS.

Listing 1.8 Presentation-Oriented Mashup Using Aggregated UI Artifacts
<html>
<head>
<!-- Include Google Maps Javascript Library -->
<script type="text/javascript" src="http://maps.google.com/maps?file=api&v=1& key=
ABQIAAAA01HpWF7mf2aW91RNaGDc7xTfGML3OZxtDDthfq-aZ1uFtrk9MRS_VWEizymnfki_h89lqU7A0ts2PA">
</script>

<script type="text/javascript">

Figure 1.12 illustrates the final result of the presentation-oriented mashup
example discussed in this section.

The load function in Listing 1.9 retrieves a hard-coded Google map and
applies it to the map div element in the HTML DOM.

Listing 1.9 Applying a Google Map to a Web Page
 function load()
 {
 if (GBrowserIsCompatible())
 {

Figure 1.12 Presentation-oriented mashup example

IMPLEMENTING A SIMPLE MASHUP 49

 // create map component in div with the id = "map"
 var map = new GMap2(document.getElementById("map"));
 // create map components components
 map.addControl(new GSmallMapControl());
 map.addControl(new GMapTypeControl());
 // create center point when map is displayed
 map.setCenter(new GLatLng(37.4419, -122.1419), 13);
 map.openInfoWindow(map.getCenter(),
 "Your Company Here");
 // re-open the info balloon if they close it
 var point = new GLatLng(37.395746, -121.952234);
 map.addOverlay(createMarker(point, 1));
 }
 }

 function createMarker(point, number)
 {
 var marker = new GMarker(point);
 // create clickable point with title for address
 GEvent.addListener(marker, "click", function()
 {
 marker.openInfoWindowHtml("Your Company Here");
 });
 return marker;
 }

 function retrieveExternalData()
 {
 var script = document.createElement("script");
 script.src =
 'http://www.example.com/mashups/someservice';
 script.type = 'text/javascript';
 document.body.appendChild(script);
 }

</script>
</head>
<body onload="load()">

In the example shown in Listing 1.10 a div element is added to contain a list of
corporate documents retrieved from a Google Docs account using dynamic script.

Listing 1.10 Dynamic Script to Show a List of Documents
 <!-- div to hold documents -->
 <div id="docs"
 style="border-style:ridge; position: absolute;
 left: 10px; top: 10px; width:200px; height:930px">
 <script src="http://gmodules.com/ig/ifr?
 url=http://www.google.com/ig/modules/docs.xml

50 CHAPTER 1 MASHUP STYLES, TECHNIQUES, AND TECHNOLOGIES

 &up_numDocuments=9&up_showLastEdit=1
 &synd=open&w=180&h=860
 &title=Company+Documents
 &lang=en&country=ALL
 &border=%23ffffff%7C3px%2C1px+solid+%23999999
 &output=js"></script>
 </div>

Listing 1.11 illustrates a div element that will hold the results from the Goo-
gle map retrieval.

Listing 1.11 Element to Contain a Google Map
 <div id="map"
 style="border-style:ridge; position: absolute;
 left: 220px; top: 10px; width:400px; height:300px">
</div>

In Listing 1.12 a div element is added to contain an RSS feed using dynamic
script.

Listing 1.12 Element to Contain an RSS Feed
 <!-- div to hold RSS feed -->
 <div id="feed"
 style="border-style:ridge; position: absolute;
 left: 630px; top: 10px; width:400px; height:300px">
 <script src="http://gmodules.com/ig/ifr?
 url=http://customrss.googlepages.com/customrss.xml
 &up_rssurl=http%3A%2F%2Fwww.javaworld.com%2Findex.xml
 &up_title=CustomRSS
 &up_titleurl=http%3A%2F%2Fcustomrss.googlepages.com
 &up_num_entries=10&up_linkaction=showdescription
 &up_background=E1E9C3&up_border=CFC58E
 &up_round=1&up_fontfamily=Arial
 &up_fontsize=8pt&up_openfontsize=9pt
 &up_itempadding=3px&up_bullet=icon
 &up_custicon=Overrides%20favicon.ico
 &up_boxicon=1&up_opacity=20
 &up_itemlinkcolor=596F3E&up_itemlinkweight=Normal
 &up_itemlinkdecoration=None&up_vlinkcolor=C7CFA8
 &up_vlinkweight=Normal&up_vlinkdecoration=None
 &up_showdate=1&up_datecolor=9F9F9F
 &up_tcolor=1C57A9&up_thighlight=FFF19D
 &up_desclinkcolor=1B5790&up_color=000000
 &up_dback=FFFFFF&up_dborder=DFCE6F
 &up_desclinkweight=Bold&up_desclinkdecoration=None
 &synd=open&w=380&h=240&title=JavaWorld
 &border=%23ffffff%7C3px%2C1px+solid+%23999999
 &output=js"></script>
 </div>

IMPLEMENTING A SIMPLE MASHUP 51

Listing 1.13 shows a div element to contain a Google calendar retrieved
using a JavaScript badge.

Listing 1.13 Google Calendar Element
 <!-- div to hold calendar -->
 <div id="calendar"
 style="border-style:ridge; position: absolute;
 left: 220px; top: 320px; width:810px; height:620px">
 <iframe src="http://www.google.com/calendar/embed?
 src=o78s3eqe3ov403cpuav2bje5ja9j1tp2%40
 import.calendar.google.com&ctz=America/Denver"
 style="border: 0"
 width="800" height="600" frameborder="0" scrolling="no">
 </iframe>
 </div>

Shown in Listing 1.14 is a div element to contain the Twitter counter chicklet.

Listing 1.14 A div Element to Contain a Twitter Chicklet
 <!-- div to hold the Twitter counter chicklet -->
 <div id="chicklet"
 style="border-style:ridge; position: absolute;
 left: 1040px; top: 10px; width:200px; height:40px">
 <a href="http://twittercounter.com/?username=jhanson583"
 title="TwitterCounter for @jhanson583"><img src="http://twittercounter.com/
counter/?username=jhanson583"
 width="88"
 height="26"
 style="border:none;"
 alt="TwitterCounter
for @jhanson583" />
 </div>

Listing 1.15 illustrates the div element to contain the Twitter RSS feed using
dynamic script.

Listing 1.15 Twitter RSS Feed div Element
 <!-- div to hold twitter feed -->
 <div id="ufbadge"
 style="border-style:ridge; position: absolute;
 left: 1040px; top: 60px; width:200px; height:880px">
 <script src="http://pipes.yahoo.com/js/listbadge.js">
 {"pipe_id":"dq0Qhuqp3BG1psChjtzu1g",
 "_btype":"list",
 "pipe_params":{
 "urlRSS":"http:\/\/twitter.com
 \/statuses\/user_timeline\/10852552.rss"},
 "width":"190",
 "height":"870"}

52 CHAPTER 1 MASHUP STYLES, TECHNIQUES, AND TECHNOLOGIES

 </script>
 </div>

In Listing 1.16 I add the div element to contain the local RSS feed using
dynamic script.

Listing 1.16 RSS Feed Element
 <!-- div to hold local RSS feed -->
 <div id="localfeed"
 style="border-style:ridge; position: absolute;
 left: 10px; top: 950px; width:1210px; height:200px">
 <script src="http://localhost:8080/mashups/js/rssbadge.js">
 {"urlRSS":"http:\/\/localhost:8080
 \/mashups\/services\/feeds\/zurn.rss"}
</script>
 </div>
</body>
</html>

The mashup in the preceding example illustrates many different techniques
and technologies as applied to a simple presentation-oriented mashup. In the
next chapter I discuss the preparations that need to be made before building an
enterprise mashup.

Summary

In this chapter, I discussed some of the styles, techniques, and technologies that
are used to build mashups for each of the three primary mashup domains—pre-
sentation, data, and process.

I discuss how to determine the domain for your mashup by analyzing the
artifacts and data that are to be mashed. The domain is determined by analyz-
ing user interface artifacts (presentation), data, and/or application functionality
(processes).

The implementation style, techniques, and technologies used for a given
mashup depend on the domain of the mashup determined by the analysis of
artifacts and data. The techniques and technologies also depend on where pro-
cessing will occur—in-process or out-of-process.

Once the domain is determined and the sources for the artifacts and data are
established, you can proceed to apply languages, processes, and methodologies
to the task of designing and building the mashup.

369

Index

A
Abort, 201
Access control, 67
ActiveX controls, in presentation-

oriented mashup, 27
addBundlePollerListener method, 278
addInterval method, 186, 190
addServicePollerListener method, 123
addTask method, 193
addTimeSeriesChangeListener method, 186
Administration consoles, 134
ADO.NET Data Services, 88
Adobe AIR, 341–342
Adobe Flex, 88
ADP Employease HR Management, 94
AJAX (asynchronous JavaScript and

XML), 29, 35–36, 232
advantages of, 59–60, 353–354
described, 87, 353
disadvantages of, 60–61, 354–355
libraries in, 87–88

AJAX front-controller servlet, 237–239
ajax.js script, 233–234
ajaxGet method, 243–247
ajaxSyncRequest function, 234
Alerter mashup pattern, 175–176
Alerts, 171–172
Amanda Enterprise, 317
Amazon Associates Web Service, 360
Amazon S3, 317
Android platform, 333

applications for, 334
architecture of, 334
developing applications for, 335

AOL Open Authentication API, 94
Apache Felix, 90, 106

API key, presenting, 241–242
API providers, 55–56, 169

registering with, 93–94
APIs, 102–103

list of, 359–363. See also Service APIs
APML (Attention Profiling Markup

Language), 20
Aptana Studio, 88
Arrowpointe Maps, 317
ASP.NET Caching, 89
Asynchronous interactions, 77
Atom, 19

advantages of, 61
described, 83–85, 126–127, 356–357
disadvantages of, 62
uses of, 79

Attensa Managed RSS platform, 309–311
Audit module, implementation of, 148
Audit module factory, 145–146
Auditing, data, 130
Authentication and authorization, 205,

220–221, 325–326

B
Badges, 58, 59

in presentation-oriented mashup, 26
Bandwidth, 103
BBAuth, 67–68
Big Contacts, 318–319
Browser security sandbox, 29, 30

sidestepping, 39–40
BufferedReader class, 250
Bundle poller, 274–276

lifecycle methods for, 277–278
BundleActivator interface, 267–269

370 INDEX

BundleContext instance, 269
BundlePoller instance, 278
BundlePollerEvent object, 276
Bundling, of services, 269–271
Business intelligence (BI), 322–323
Business process management (BPM), 21,

22, 340–341
BuySAFE eCommerce Trust API, 94

C
Caching, importance of, 76
Change management, 72–73, 74
Class relations, OWL and, 126
Client-side data integration, 15, 16
Component interfaces, 137–138
Configuration management, 74, 132–134
Connected Device Configuration (CDC),

340
Connected Limited Device Configuration

(CLDC), 340
Constraints, 126
ContactsValidator class, 222, 224–226
Content internalization, testing, 91
Content providers, for mashups, 55–56
Cross-site request forgeries, 13, 208

mechanism of, 212
preventing, 211–212

Cross-site scripting, 13, 208, 211
CSS, 104

in presentation-oriented mashup, 27
Customer analysis, mashups for, 99
Customer service, mashups for, 99

D
Dapper service for API creation, 94
Data

analyzing, 322
collection of, 169, 322
dynamically generated, 209
format of, 10–11, 125
integration of, 323
management of, 322
mashing of, 34–35
mediation of, 128–130
normalization of, 76, 81, 82, 86, 94–

95, 170

portability of, 19
presentation of, 168–169
securing, 208, 217–218
structuring and managing, 125–128
transfer and reuse of, 168, 170

Data caching, 32
Data federation mashup pattern, 181–182
Data layer, 15, 16

building, 278–291
caching of, 89
data handling in, 80–86
governance of, 72
implementation of, 88–89
optimizing performance of, 76
protocols for, 61–62
reliability and stability of, 74
security for, 68–69
testing of, 92

Data layer mashup pattern, 175
Data mapping, 45
Data models, 104
Data sets, size of, 74
Data snapshots, 74, 76, 86
Data-oriented mashup domains, 5

in-process vs. out-of-process, 27
pros and cons of, 30–32
techniques for, 40–45

Debugging, 75
of presentation layer, 91–92

Definitions
of services, resources, and

components, 136
XML Schema and, 126

DELETE method, 17, 62, 138, 139
Denial of service attacks, 13
Denodo platform, 311–314
Design patterns, 11–12
Design Patterns (Gamma, Helm, Johnson

& Vlissides), 166
Development environments, 88
div element, 243
Doba eCommerce services, 94
Document Object Model (DOM), 36–37
doGet method, 260, 261
dojo, 87
DOM tree access, 67
DreamFace Interactive, 366
Dynamic deployment of services, 77

INDEX 371

Dynamic scripts, malicious, 208–210
Dynamic service, 75
dynamicallyInvokeService method, 273,

274

E
eBay APIs, 361
Eclipse, 88
Eclipse Equinox, 89
Economic analysis, mashup use in, 100
Ehcache, 90
End, 201
Enterprise information services (EIS), 21,

22
Enterprise mashups

business process management (BPM)
for, 340–341

considerations unique to, 6–8, 54–55
dynamic nature of, 324–325
environment for, 324–325
extensibility of, 326
infrastructure of, 8–9, 54
infrastructure management for, 7, 54
and mobile computing, 331–340
performance and availability issues,

326
planning of, 325
problem solving using, 322–324
social platforms and, 326–331
types of, 5
uses of, 321

Error handling, testing, 91
Event firing, 276–277
Event manager, command-line, 152

implementation of, 154–158
output from, 153

Event manager factory, 153–154
Event protocol adapter, 158–162
execute method, 193, 197, 266

F
Facebook, 327
Facebook APIs, 330, 359–360
Feed factory mashup pattern, 179–180
Feeds, 132–133

Fiddler, 92
Fielding, Roy Thomas, 17, 138
fieldNames method, 224, 226
FileSystemResourceCache, 288
Financial analysis and reporting, mashups

for, 98
Firebug, 91
fireBundleAdded method, 276
fireBundleChanged method, 276
fireBundleRemoved method, 276
Flakes, 58, 59
Flash

components, in presentation-oriented
mashup, 27

CS3 Professional, 342
described, 358–359

Flickr APIs, 360
FlowUI RIA Enterprise Mashup

Framework, 314–317
Form validation, 228–232
FriendFeed, 327
Friendster developer platforms, 329–330
Front controller servlet, 237–239,

260–263
FrontController class, 226–227

G
Gadgets, 58, 59, 359

in presentation-oriented mashup, 26
Gamma, Erich, 165
GET method, 17, 62, 138, 139
GET request, 249–250
getInstance method, 280
getPeriod method, 188
getTask method, 193
getTasknames method, 193
getValue method, 188
Google AJAX Feed API, 94
Google Apps user provisioning, 94
Google Calendar, 51
Google G1, 331
Google Gears, 342
Google map

interfacing with, 263–266, 296–298
retrieving, 50, 242–249

Google Mashup Editor, 88, 364–365

372 INDEX

Governance
of data layer, 72, 134
framework for, 135
importance of, 70–71, 136–137
of presentation layer, 71–72
of process layer, 72–73
of security, 134–136
tools for, 71

GRDDL (Gleaning Resource Descriptions
from Dialects of Languages), 85–86

H
hCard microformat, 79
HEAD method, 17, 138, 139
Helm, Richard, 165
Hibernate, 88
Hierarchies, RDF Schema and, 126
HTML

described, 351–352
in presentation-oriented mashup, 27
sanitizing, 217–218
and special characters, 209

HttpURLConnection class, 249
Human resources, mashups for, 99
Hybrid mashups, 46

desktop/web, 341–342

I
iBatis, 88
IBM Mashup Starter, 366
Identity

management, 67–68
secure storage of, 68–69

iframe
code for swapping, 67
example of, 218
securing, 218–220

In-process data-oriented mashups, 27
data flow in, 31
mashing data in, 40–41
mashing JSON data in, 42–44
mashing XML data in, 41–42
pros and cons of, 30–31

index.jsp listing, 234–236
initialize method, 193, 197

Input, securing data, 208, 217
Input validation

framework for, 222–232
testing, 91

installService method, 114
Instrumentation, of services, 76
Intel Mash Maker, 366
Intelligence gathering, mashup use in, 100
Interfaces

component, 137–138
resource, 138–139
service, 137–138

Interval interface, 187
IntervalAdded method, 189
Inventory control, mashups for, 98
invokeService method, 115–116
iPhone, 331
iPhone OS, 335

architecture of, 336
compatibilities of, 337
described, 335–336
developing applications for, 337

Isolation, of transactions, 74
Issue management, 74
IT Asset Management, 21, 22
IT departments, mashup use by, 99

J
JackBe Presto, 88, 293–296
Java applets, in presentation-oriented

mashup, 27
Java J2ME (Micro Edition)

architecture of, 339
described, 338–339
developing applications for, 339–340

Java Management Extensions (JMX),
105

Java.util.Map interface, 200
Java.util.Properties instance, 200
JavaScript

compressing, 76
editors for, 88
on-demand, 26, 39–40, 213–214,

357–358
testing performance of, 91
validation of, 228–232

INDEX 373

JavaScript snippets, in presentation-
oriented mashup, 26

JBoss Cache, 89
Jena, 94–95
Johnson, Ralph, 165
jQuery, 87
JSON (JavaScript Object Notation), 20,

81
advantages of, 61
data conversion to, 95–96
described, 38–39, 127, 357
disadvantages of, 62
example object in, 214, 216
with padding (JSONP), 39–40
processing, 42–44
securing, 214–217, 232–239
uses of, 78–79

JSON hijacking, 13
JSON.parse method, 236
JsUnit, 92
JsUnit 1.3, 92

K
Kapow Mashup Server, 305–307,

348–351
Kerberos, 326
Kernels, OSGi

class structure of, 107
daemon for, 106–109
embedded, 252
event listener support in, 123
event-firing methods in, 121–122
initializing, 252–254
lifecycle methods of, 113–114, 122,

254–255
operation of, 251
service deployment methods of,

114–115
service invocation method for,

115–116
service methods of, 111–112
service polling in, 116–120
starting, 251–254, 255
stopping, 255, 256–260
structure of, 109–111

Knoplerfish, 90

L
LatitudeLongitude class, 249
Liberty Alliance, 205
Lifecycle methods, 277–278
LinkedIn, 327
Listing, of documents, 49
load function, 242–243
Load testing, 73

of UI artifacts, 75
Location data, getting, 247–249
locationToLatLong method, 263
Logging, data, 130
Look-and-feel, 104

consistency of, 103
Lotus Mashups, 366–367

M
ManagementEventSource interface, 151
MapQuest, 317
Marketing, use of mashups by, 323
Mashup Hub, 366
Mashup infrastructure

building foundation of, 251–255
described, 97, 105
foundation of, 104–123
functions of, 97–98
OSGi implementation of, 104–106,

109–123
Mashup pages, 133
Mashup Patterns (Ogrinz), 165, 177
Mashup servers, 345–351
MashupMaker, 88
Mashups

ad hoc nature of, 2
administration consoles, 134
APIs for, 102–103, 359–363
benefits of, 1
building process for, 93–96
business applications of, 21–22. See

also Enterprise mashups
client execution environments for,

57–58
components of, 5, 170–171
core activities of, 167–172
data layer of. See Data layer
design tips for, 103–104

374 INDEX

Mashups (continued)
determining technical domain for,

25–28
developing uses for, 101–102
design patterns for, 11–12
development environments for, 88
editors for, 363–367
emerging standards in, 18–21
ensuring stability and reliability of,

73–75
etymology of term, 1
example architecture of, 3–4
function of, 97–98
governance of, 70–73, 134–137
hybrid, 46
implementation strategy for, 86–90
information sources for, 102
infrastructure of. See Mashup

infrastructure
management and monitoring of,

130–132
optimizing performance of, 75–77
patterns for. See Patterns
preparing for, 6
presentation layer of. See Presentation

layer
process layer of. See Process layer
protocol agnosticity of, 57–58
requirements and constraints of, 6,

55–63
sample implementation of, 47–52
scalability of, 8
security for, 7–8, 54, 64–70, 221–240,

325–326
style for, 28–46
technologies used in, 2, 5, 351–359
testing issues for, 8, 54–55
user interface artifacts in, 34, 58–59,

75, 93–94
uses of, 98–101
visual vs. nonvisual, 3

Maven POM file, 269–271
MediateMessage method, 142
Mediation

auditing, 130
framework for, 129, 139–140
functions of, 128–129

logging, 130
managing flows and configurations, 133

Mediator, implementation of, 143–145
Mediator factory, 142–143
Mediator interface, 143
Message mediator client, 140–142
Message-level security, 205
Metadata, 10, 132, 171
Microformats, 10, 19, 79–80, 126
Microsoft Managed Services Engine, 90
Microsoft Popfly, 88, 365
Mobile computing

devices for, 331–332
importance of, 331
mashup design for, 332–333
platforms for, 333–340

Modular service design, 74
MOM (Message-Oriented Middleware),

171, 172
monitorEvents method, 152
Monitoring

framework for, 131, 151–162
importance of, 130
performance, 73, 77, 131–132

MooTools, 88
MyOpenID.com, 221
MySpace, 327

application platform of, 330–331

N
Name property, 197
National digital forecast database, 94
.NET Compact Framework, 337–338
Notifications, 171–172

O
OASIS, 205
OAuth, 21, 68, 220
Observation, patterns for, 169
Ogrinz, Michael, 165, 177
On-demand JavaScript, 39–40

described, 357–358
in presentation-oriented mashup, 26
securing, 213–214
vulnerabilities of, 213

INDEX 375

Open SAM (Open Simple Application
Mashups), 19

Open Web Application Security Project, 205
OpenID, 20, 68, 220–221
OpenSocial API, 18–19, 328–329, 359
OPML (Outline Processor Markup

Language), 19–20
Oracle E-Business Application Suite, 298
OSCache, 89
OSGi Service Platform, 104

benefits of, 106
described, 104–105
functions of, 106, 251
kernels in, 106–109, 251

Out-of-process data-oriented mashups, 27
brute-force data conversion in, 44
data flow in, 32
data mapping in, 45
pros and cons of, 31–32
semantic mapping in, 45

Output encoding, 209

P
Patterns, 165

application of, 183–201
history of, 165–166
importance of, 166–167
standard format of, 166
types of, 172–183

Payload size, 76
Pear DB_DataObject, 88
Pentaho Google Maps Dashboard,

296–298
Performance monitoring, 73, 77,

131–132, 326
Personnel recruitment, mashups for, 99
Pipes and filters mashup pattern, 181
PKI, 326
Platform as a Service (PaaS), 301
Plaxo, 327
Plug-ins, specifying, 271
Pools, managing, 76
Portable Contacts specification, 19, 329
POST method, 17, 62, 138, 139
POX (Plain Old XML). See XML

(eXtensible Markup Language)

Presentation layer, 14
API providers for, 55–56
building, 241–250
content providers for, 55–56
data handling in, 77–80
debugging of, 91–92
governance of, 71–72
implementation of, 87–88
optimizing performance of, 75–76
reliability and stability of, 73–74
security for, 66–68
testing of, 91

Presentation logic, 104
Presentation layer mashup pattern,

173–174
Presentation-oriented mashup domains,

5, 25–27
performance of, 29
pros and cons of, 28–30
sample implementation of, 47–52
security issues of, 29–30
techniques for, 33–40

Presto (JackBe), 88, 293–296
Presto Mashup Server, 345–346
Process layer, 15–17

building, 256–278
data handling in, 86
governance of, 72–73
implementation of, 89–90
optimizing performance of, 76–77
reliability and stability of, 74–75
security for, 69–70
testing of, 92–93

Process layer mashup pattern, 174–175
Process-oriented mashup domains, 5, 28

architecture of, 45
flow of processes and services in, 33
pros and cons of, 32–33
techniques for, 45

ProcessInboundMessage, 150
Protocol adapter, 158–162
Protocol agnosticity, 57–58
prototypejs library, 87
Publishing, 167
Purchasing predictions, mashups for,

98
PUT method, 17, 62, 138, 139

376 INDEX

Q
QEDWiki, 366
Queries, SPARQL and, 126

R
R&D, mashup use by, 99
RDF Schema (RDFS), 10, 126
RDFTransformModule, 150
Redfin, 319–320
registerService method, 269
Regression testing, 73
Relationships, RDF and, 126
Release management, 74
removeBundlePollerListener method, 278
removeServicePollerListener method, 123
removeTimeSeriesChangeListener

method, 186
Representational State Transfer (REST)

model, 17–18, 86, 138–139
described, 355–356
interactions in, 62–63
using, 47

Research, mashups for, 98
Resource cache

HTTP adapter for, 286–288
methods for, 279–286
public interface for, 279

Resource Description Framework (RDF),
10, 20, 126

converting to JSON, 95–96
described, 356
normalizing data to, 94–95
as universal data model, 80–81

ResourceAdapter class, 286, 288
Resources

implementation of, 289–291
serialization of, 288–289

Reuse, 103, 168, 170
Rogue Wave HydraSCA, 90
RSS, 19, 171

advantages of, 61
code for element containing feed, 50,

52
described, 126–127, 356–357
disadvantages of, 62
uses of, 79, 81–83

Rule Interchange Format (RIF), 126
Rules, 126

S
SaaS (Software as a Service), 21, 22, 28
Sales forecasting, mashups for, 98
Salesforce AppExchange, 301–305
Salesforce.com, 317

developersource CRM services of, 94
Same-origin policy, 66
SAML tokens, 326
Scheduling, patterns for, 169
Schemas, common, 74
Screen scraping, 56–57, 355
script.aculo.us, 88
Scripting libraries, optimizing, 75
Searching, mashup pattern for, 178
Security

applying to mashup structure, 221–239
authentication and authorization, 205,

220–221, 325–326
common attack scenarios, 13
configurations, 133
importance of, 64, 325
for data layer, 68–69
ensuring, 134–136, 136–137
guidelines for, 13, 205–208
message-level, 205
methods for, 64–66, 208–221
need for, 203–204
policy for, 205
for presentation layer, 66–68
for process layer, 69–70
sandbox model of, 29, 30
standards of, 205
transport-level, 205
unique issues for enterprise mashups,

7–8, 11–12, 54
Security Assertion Markup Language

(SAML), 207
Security module factory, 146–147
Semantic mapping, 45
Semantics, 126
Serena Business Mashups, 298–301
Serializing, of results, 261–262
Server-side data integration, 15

INDEX 377

ServerPollerListener method, 116–117
Service APIs

identifying, 102–103
providers of, 55–56, 93–94
tips about, 89–90

Service cache, 262–263
Service interfaces, 137–138, 261

asynchronous, 138
Service level agreements (SLAs), 72, 137,

326
Service lifecycle, 77, 136
Service platform architecture, 47
serviceAdded method, 118
serviceChanged method, 118
ServicePoller instance, 277
serviceRemoved method, 118
Services

bundling of, 269–271
dynamically invoking logic of, 271–274
implementation of, 263–269

Session fixation, 210–211
Shipping industry, mashup use in, 100
SimpleContext class, 198–200
SimpleResource class, 291
SimpleTask class, 197–198
SimpleWorkflow class, 192, 193–197
SMTP (Simple Mail Transfer Protocol),

171, 172
SNMP (Simple Network Management

Protocol), 171–172
SOAP, 205

advantages of, 62
disadvantages of, 62

Social platforms, 326
APIs for, 328–331
importance of, 327–328
integration with, 327
listed, 327

Software
design patterns for, 11–12

Software as a service (SaaS) mashup
pattern, 182–183

SPARQL, 126
Special characters, in scripts, 209
Spring Dynamic Modules for OSGi

Service Platforms, 90
Spring Framework, 211
SQL injection, 208

Standards
emerging, 18–21
importance of, 326
security, 205
use of, 103

Stateless services, 77
Static service, 75
Super search mashup pattern, 178
SWF (Shockwave Flash), 358
Systemation Corizon, 308–309

T
Task interface, 197

implementation of, 197–198
Task-execution schedules, 169
Testing, 75, 136

of data layer, 92
load, 73, 75
of presentation layer, 91
of process layer, 92–93
regression, 73
strategy for, 90

testResultHandler function, 234
Time series mashup pattern, 176–178
TimePeriod interface, 187
TimeSeries class, 184–186

interaction with, 188–190
TimeSeriesChangedEvent object, 189
TimeSeriesChangeListener interface,

188–189, 190
TimeStamp property, 187
Transformation module, 148–150
transmitData method, 219
Transport protocol, 138
Transport-level security, 205
Triple store method, 81
Trucking industry, mashup use in, 100
Trusted Computing Group, 205
Twitter, interfacing with, 266–267
Twitter checklist, 51
Twitter RSS feed, 51

U
UI artifact mashup pattern, 172–173
UI artifacts, 58–59

assembly of, 171

378 INDEX

UI artifacts (continued)
load testing of, 75
mashing of, 34
providers of, 93–94

uninstallService method, 114
Unitask Object Migration Manager

(OMM), 298, 299
User interfaces

artifacts in. See UI artifacts
component interfaces, 137–139
protocol agnosticity, 57–58

USPS Web Tools, 94

V
validate method, 224, 226
ValidateFormInput function, 232
Validator interface, 222, 224
ValidatorFactory class, 223–224
Venkman, 91
Visual Studio, 338
Vlissides, John, 166

W
W3C, 205
Web, evolution of, 1, 2
Web Ontology Language (OWL), 10,

126
Web Service Interoperability, 205
Widgets, 58, 59, 359

management of, 133
in presentation-oriented mashup, 26

Windows Gadgets, 342
Windows Mobile

architecture of, 338
described, 337
developing applications for, 337–

338
Workflow

sample of, 200–201
testing of, 201–202

Workflow framework, 190–191
Workflow interface, 192–193

implementation of, 193–197
Workflow mashup pattern, 180–181
WorkflowContext interface, 198
WorkflowFactory class, 191–192
WS-Federation, 207

WS-SecureConversation, 207
WS-SecurePolicy, 207
WS-Security (Web Service Security), 21,

205–206
WS-Trust, 207
WSO2 Mashup Server, 346–348
WSO2 Web Services Framework for PHP,

90
WSO2 Web Services Framework for

Ruby, 90

X
XACML, 207
Xcode, 337
XHTML (eXtensible HyperText Markup

Language), 18
described, 351–352
in presentation-oriented mashup, 27

XML (eXtensible Markup Language), 10,
18, 126, 205

advantages of, 61
converting to JSON, 95–96
described, 37–38, 127, 352–353
disadvantages of, 62
parsing, 41–42
uses of, 78

XML Digital Signature, 207
XML Encryption, 207
XML Key Management (XKMS), 207
XML Schema, 126
XMLHttpRequest object, 35–36, 60,

243–246
XSLT (Extensible Stylesheet Language

Transformations), 45

Y
Yahoo! Browser-based authentication

service, 94
Yahoo! Pipes, 88, 363–364
Yahoo! User Interface Library (YUI), 87
YouTube APIs, 362–363

Z
Zend_Cache, 89
Zmanda Internet Backup to Amazon S3,

317–318

	Preface
	Introduction
	Web 1.0 to Web 2.0 to Web 3.0
	Overview of Mashup Technologies
	Enterprise Mashup Technological Domains
	Considerations Unique to the Enterprise Mashup Domain
	Solving Technological Problems
	Structuring Semantic Data
	Effective Design Patterns
	Unique Security Constraints
	Conceptual Layers of an Enterprise Mashup
	Presentation Layer
	Data Layer
	Process Layer

	Using REST Principles for Enterprise Mashups
	Emerging Mashup Standards
	Solving Business Problems
	Summary

	Chapter 1: Mashup Styles, Techniques, and Technologies
	Determining the Technological Domain for a Mashup
	Presentation-Oriented
	Data-Oriented
	Process-Oriented

	Choosing a Mashup Style
	Pros and Cons of Presentation-Oriented Mashups
	Pros and Cons of Data-Oriented Mashups
	Pros and Cons of Process-Oriented Mashups

	Presentation-Oriented Mashup Techniques
	Mashing Presentation Artifacts
	Mashing Presentation Data
	Using AJAX and the XMLHttpRequest Object
	Sidestepping the Browser Security Sandbox

	Data-Oriented Mashup Techniques
	Mashing Data In-Process
	Mashing Data Out-of-Process

	Process-Oriented Mashup Techniques
	Hybrid Mashups
	Implementing a Simple Mashup
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

