

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the pub-
lisher was aware of a trademark claim, the designations have been printed with initial capi-
tal letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omis-
sions. No liability is assumed for incidental or consequential damages in connection with or
arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk pur-
chases or special sales, which may include electronic versions and/or custom covers and
content particular to your business, training goals, marketing focus, and branding interests.
For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Drupal’s building blocks : quickly building web sites with cck, views,
and panels / Earl Miles ... [et al.].

p. cm.
Includes bibliographical references and index.
ISBN 978-0-321-59131-9 (pbk. : alk. paper)

1. Drupal (Computer file) 2. Web sites—Authoring programs. 3. Web
site development. I. Miles, Earl.
TK5105.8885.D78D77 2010
006.7'8—dc22

2010043527

Copyright © 2011 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited repro-
duction, storage in a retrieval system, or transmission in any form or by any means, elec-
tronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-321-59131-9
ISBN-10: 0-321-59131-3
Text printed in the United States on recycled paper at RR Donnelley in
Crawfordsville, Indiana.
First printing, December 2010

Associate
Publisher
Mark L. Taub

Executive Editor
Debra Williams
Cauley

Development
Editor
Michael Thurston

Managing Editor
John Fuller

Full-Service
Production
Manager
Julie B. Nahil

Project
Management
LaurelTech

Copy Editor
Jill E. Hobbs

Indexer
Jack Lewis

Proofreader
Charles
Roumeliotis

Technical Reviewers
Jen Lindner
Andy Wilson
Chris Hanson
Clay Robeson

Publishing
Coordinator
Kim Boedigheimer

Interior and Cover
Designer
Gary Adair

Compositor
LaurelTech

This page intentionally left blank

Contents at a Glance
Contents ix

Foreword xvii

Preface xix

Acknowledgments xxiii

About the Authors xxiv

I: Content Construction Kit

1 Introducing CCK and Nodes 3

2 Field Concepts 17

3 Deeper into Fields 39

4 Themes and CCK 59

5 CCK API 75

II: Views

6 Relational Databases 101

7 Creating Views 109

8 Arguments, Exposed Filters, and Relationships 137

9 Theming Views 153

10 Query Optimization 177

11 Views API 185

III: Panels

12 Introducing Panels 217

13 Creating Panels 225

14 Context, Relationships, and Arguments in Panels 257

15 Panels Theming 275

16 Site Deployment 291

IV: Appendices

A Other Useful Modules 303

B Reporting Issues 309

C Views API Handlers and Plugins 315

Index 327

viii Contents at a Glance

Contents
Foreword xvii

Preface xix

Acknowledgments xxiii

About the Authors xxiv

I: Content Construction Kit

1 Introducing CCK and Nodes 3
The Node System 3

Why Nodes Are Important 4

Default Content Types 4

Parts of a Node 5

Why Add Fields to Nodes? 7

Quest for the Grail: How CCK Was Born 8

Getting Started with CCK 10

Creating a New Content Type 11

Summary 15

2 Field Concepts 17

What You Should Know Before Creating Fields and
Content Types 17

The Content Type Pages 17

Identification 18

Submission Form Settings 19

Workflow Settings 21

Comment Settings 22

Fields, Export, and Import 22

Creating New Fields for Content 24

Adding Fields 24

Data Types 26

Widgets 29

Putting the Parts Together 30

Changing the Field Display 33

Sharing Fields 36

Summary 38

x Contents

3 Deeper into Fields 39

Choosing Field Types 39

Using Text 40

Using Numeric Types 40

Using Node Reference 41

User Reference 42

Constraining Data with Widgets 43

Date Module 48

Computed Fields 51

Link and Email Fields 54

Highly Visual Media 55

FileField 55

ImageField 56

ImageAPI, ImageCache, and ImageCache UI 56

Summary 57

4 Themes and CCK 59

Theme Basics 59

CCK Specific Theming 62

Formatters 62

Field Templates 62

Node Templates 65

Excluding Fields 68

Node Reference 68

Helper Modules 69

Theme Developer 70

Contemplate 71

Summary 73

5 CCK API 75

Using the CCK API 75

The Field Model 76

Creating New Field Types, Widget Types, and
Formatters 76

Creating Custom Field Types, Widget Types, or
Formatters 77

Field Type Modules 79

Widget Type Modules 85

Formatter Modules 87

Creating Field Instances Using Content Copy 91

Creating Field Instances with the CRUD API 91

Creating Data for CCK Fields 95

Miscellaneous Helper Functions 97

Summary 98

II: Views

6 Relational Databases 101

Drupal, SQL, and the Emergence of Views 101

Pronouncing SQL 101

The Drupal “Learning Cliff” 102

The Basics of Relational Databases 102

Rows and Fields 103

Keys 103

Filtering and Sorting 105

Filtering 105

Sorting 106

Joins 106

From SQL to Views to Human Language 107

Summary 108

7 Creating Views 109
Views UI 109

List 110

Add 112

Import 125

Tools 125

Showing Your Views to the World: Creating
Displays 131

Blocks 132

Pages 133

Attachments 135

Feed 135

Summary 136

xiContents

8 Arguments, Exposed Filters, and Relationships 137

Arguments 137

Arguments as Filters 138

Configuring an Argument 139

Using Arguments as Part of a View 142

Exposed Filters 145

Relationships 148

Summary 151

9 Theming Views 153

An Overview 153

Classes in Views 153

Template Files 156

The Display Templates 159

View Styles 160

The Row Templates 161

Other Templates 162

Working with Templates 164

Rescan the Template Files 165

Debugging 167

Printing Default Messages for Empty Fields 167

Grouping in a Template 169

Summary 175

10 Query Optimization 177

Balancing Development Time Against CPU Time 177

Sticking with What Views Gives You 177

When You Need More Than Views 178

Determining Query Performance 178

Embedding Queries 179

EXPLAIN 180

Indexing Versus Caching 182

Experimenting with Your Site 183

Summary 183

xii Contents

xiiiContents

11 Views API 185

Data Architecture 185

Object-Oriented Programming 186

Base Tables and Relationships 191

The Objects Involved in a View 192

The Views API 199

The Life Cycle of a View 201

View Execution Cycle 201

Executing a Views Display 203

Execution-Related Hooks 204

The Database Schema and Data Hook 206

Relating Tables to Each Other 206

Declaring Tables in hook_views_data() 207

Declaring Fields on Tables 209

Handlers Versus Plugins 210

Handlers 210

Plugins 212

Summary 213

III: Panels

12 Introducing Panels 217

Introduction to Panels 217

A Brief History of Panels 217

Push and Pull: How Panels Is Different 218

Point-and-Click Layout 219

Context 221

Pluggable Architecture 221

Modules 222

Panels Package 222

Chaos Tool Suite 223

Summary 224

13 Creating Panels 225

Your First Panel 225

The Panels Dashboard 226

Panel Pages 227

Panel Nodes 233

Mini-Panels 236

Adding Content to Panels 237

Adding Content Panes 238

Caching 242

Configuring Existing Content Panes 243

Access Rules 244

Overriding Core Display Pages 246

Node View 248

Taxonomy 251

User View 252

Overriding Core Node Editing Pages 253

Summary 255

14 Contexts, Relationships, and Arguments in Panels 257

Contexts 257

Contexts in Panel Pages 258

Taxonomy 262

Arguments in Panes 264

The Add Content Modal for Views 266

View Pane Displays 268

Relationships 271

Using Relationships 271

User Reference and Node Reference 272

Summary 274

15 Panels Theming 275

Layout 275

Flexible Layout 275

Changing Layouts 279

Stylizer 280

Working with Styles 282

CSS in the Panels UI 284

CSS in Source Code 285

Identifying a Particular Pane 286

Other Stylistic Changes 289

Summary 290

xiv Contents

xvContents

16 Site Deployment 291

Configuring Your Development Environment 291

Content Versus Structure 291

Source Control 292

Moving to Production 293

Keeping Development Separate from Production 293

Testing Your Changes 293

Documenting Your Work 294

Exporting Your Structures 294

Exporting CCK 295

Exporting Views 296

Exporting Panels 298

Helper Modules 299

Deploy 299

Features 299

Drush 299

Summary 300

IV: Appendices

A Other Useful Modules 303
Extending the Use of Your Modules 303

General Modules 303

Pathauto 303

Views 304

Views_or 304

Nodequeue 304

Flag 305

Views Slideshow 305

Views Bonus Pack 305

Views Attach 306

Views Import 306

ApacheSolr Views 306

SimpleViews 307

Views Bulk Operations 307

Views Datasource 307

xvi Contents

Sheetnode 307

CCK 307

Calendar 308

Panels 308

Advanced Profile Kit 308

Total Control Admin Dashboard 308

B Reporting Issues 309

Submit a Complete Report 309

Read the Documentation 310

Check Other Sources 311

Know the Difference between a Bug and a
Support Request 312

Stay on Topic 312

Understand the Life Cycle of a Bug 312

Be Patient 313

Remember That You’re Asking for Someone
Else’s Time 314

Contribute Back 314

C Views API Handlers and Plugins 315

Views Handlers 315

Field Handlers 315

Sort Handlers 316

Filter Handlers 316

Handlers for Arguments 316

Relationship Handlers 317

Views Plugins 317

Display Plugins 317

Style Plugins 317

Row Plugins 318

Views Classes 318

Index 327

Foreword
There was a time, in the 1950s, when to be a computer programmer you had to be
something of an electrical engineer. You had to be handy with wire cutters and strippers
and be willing to get your hands dirty—literally. That all changed over the decades, and
programming a computer became a simple feat by contrast. Still, it remained the domain
of only a few people with the proper education and technological sense. It was the
advent of microcomputers and the Internet that made the world of technology more
accessible, or at least began the process of attracting more people.

It was that time and those elements—that first major wave of public inclusion—that
called for easier methods and for better tools for programming, for making use of
computers, and for communicating information throughout the world.

It seems that each decade—perhaps not exactly in 10-year increments—brings with it
a new wave of technology that makes the use and manipulation of technology accessible
to more people. Each period begins with only people of certain technology prowess
being able to participate fully. But in time the demand becomes so great, and the desires
of the greater community so intense, that new innovations are achieved and new ways
are determined in which more people can be part of the creation process and not just be
on the receiving end.

It was just 15 years ago or so that Web design required an in-depth understanding of
HTML, skills in network configuration, and the ability to program using less-than-intuitive
programming languages to be able to do more than create a few flat Web pages. To be able
to create forms, allow users to enter information themselves on a site, and provide many of
the features that are commonplace today required the advanced and diverse programming
skills of a Web developer—not to mention a sense of design, an understanding of
marketing, and good writing abilities. So, many sites were either poorly constructed or else
were the result of a heavily orchestrated organization that employed many people from
diverse backgrounds. Web design was simply inaccessible for most people and
organizations.

That has all changed as well and is continuing to change. We’re in the middle of a
new period of accessible technology, it seems. Drupal is changing the way Web sites are
built. While Drupal can be used as a Web programming framework, it doesn’t have to be.
Unlike many other Web design tools, you don’t have to be a programmer to build a Web
site with Drupal.

In the Drupal world, many people build Web sites very easily. You just decide what
you want on your Web site—text, photographs, a blog, places for visitors to comment,
a feed from your Twitter account, and many, many other things—and then download the
modules you need based on your wish list (you can have all that you wish for now),
install each module, do a bit of configuring through your Web browser (mostly pointing
and clicking, with the occasional typing of content), and you’re done. Zero programming
is required. It’s that easy.

The Drupal community has created thousands of modules, all freely available from the
drupal.org Web site. It’s a credit to the collective efforts of thousands of smart people
working together for years, not only for their own interests, but even more so for the
benefit of others. Each module alters and extends Drupal’s core capabilities and adds new
functionality to a Drupal site. Owing to the vast amount of modules available from the
Drupal community, the number of distinctly different sites that can be built using Drupal
is unlimited, and the number that have already been built using Drupal is extensive. The
speed at which sites can be assembled using Drupal and Drupal modules is surprising
and unmatched. Not a single proprietary content management system has the depth and
breadth of Drupal—not to mention that it’s free.

Nevertheless, two contributed modules stand out from the rest: Content Construction
Kit (CCK) and Views. Not only are they the most popular modules, but they are also
two of the most flexible modules. I have repeatedly been surprised by how Web
developers use Drupal, and what they build using CCK and Views. More than once, I’ve
been shown “new tricks” of what can be done with CCK and Views without a single
line of programming. The world of CCK and Views is an interesting one. The true depth
and richness of these two modules have been mastered by only a few people, because
ultimately the limits of what you can do with these modules has more to do with the
data provided to them than it has to do with the capabilities of the site builder. The
Panels module, while not standing out quite as strongly as Views and CCK, allows site
builders the opportunity to tune their sites more carefully to look and feel the way they
want. It gives them large amounts of control and organization, again without needing to
write a single line of code. It, too, has allowed surprising systems with only a few tricks.

Behind the code that makes these modules work is a strong community of committed
volunteers. One of these people is Earl Miles, a coauthor of this book. As an active
member of the Drupal community for many years now, he has contributed a great deal to
the direction of Drupal. More specifically to the topic of this book, he is a key
contributor to CCK and the principal author of Views and Panels. I cannot think of a
better person to write about these particular modules. Coauthor Lynette Miles, in
contrast, is not a developer at all, and yet these modules have allowed her to contribute to
the Drupal project by providing support for the usage of these modules both on
drupal.org and in IRC. Her knowledge of the questions people ask when learning to use
these modules is instrumental in understanding how to explain these sometimes difficult
concepts to users.

Even if you’re already a seasoned user of CCK, Views, or Panels, I have no doubt that
this book will provide you with several new techniques and methods for getting the
most out of these extremely essential modules. It certainly has for me.

Dries Buytaert
Founder and project lead of Drupal,

CTO of Acquia
October 2010

xviii Foreword

Preface
Drupal is an open source software package that is offered for free to download, modify,
and use. It has been implemented by thousands of people around the world and is used
by millions of people daily as the basis for discussion Web sites, community portals,
corporate intranets, e-commerce Web sites, vanity Web sites, resource directories, image
galleries, podcasts, and more. By choosing to use Drupal, you are accessing not only an
award-winning Web platform, but also its vibrant community.

Often referred to as “The Big Three,” the Content Construction Kit (CCK), Views,
and Panels modules have fundamentally changed the way developers, site builders, and
designers create Drupal Web sites—and yet they are all contributed modules. In this
book, the core contributors to these three suites of modules teach you how to build
better Web sites. The modules described are widely considered essential modules that will
be installed on almost every site. They allow for a level of customization that is
unparalleled in the market, and are a key reason that Drupal is being chosen over its
competition.

The book assumes you are familiar with how to install Drupal and enable modules.
Web developers and administrators of Drupal Web sites are the target audience, although
the book is written so that devoted Drupal enthusiasts can fully customize their sites
using the information provided here.

Part I—Content Construction Kit
Content Construction Kit is a module that allows you to define the data that makes up
your site’s content types. It lets you add new fields chosen from a variety of field types,
such as text, numbers, dates, and even references to other content. It handles input forms
and provides a variety of output styles for each field. Throughout the first part of this
book, you will learn how to use CCK to customize your data objects to conform to
your needs, rather than making your needs conform to the core content types.

Chapter 1
In Chapter 1, we explain the basic concepts needed to understand the powerful but
complicated creature known as CCK, including how it came to be, how the basic
Drupal structure is defined, and why the level of flexibility and customization offered by
the node system is important.

Chapter 2
Expanding on the general usage of content types and fields, Chapter 2 delves into how
CCK works its magic, both from an administrative user interface (UI) point of view and
within the Drupal database itself. To do so, we explore two potential Web sites: a
homebrewer’s journal and a T-shirt sales site.

Prefacexx

Chapter 3
There are an extensive number of ways you can use content fields to create your Web
site. Understanding and using fields and helpers for those fields creates possibilities for
any kind of data. In Chapter 3, we dig more into field types and consider why you
might want to use one type of field over another in your content type. We also look at
some field types that you might want to add, but that are not part of the core CCK
package.

Chapter 4
Now that your content is created, it’s time to make it look professional and easy to read.
CCK does a great job of allowing you to add plenty of customized content. What it
doesn’t do as well is display the data in a fashion that is clean and nicely readable for
users. In Chapter 4, we take a look at the theme system and how CCK interacts with it.

Chapter 5
CCK includes methods that PHP developers can use to create fields outside of the user
interface. This creates even more flexibility, but requires a definite knowledge of the PHP
language as well as familiarity with Drupal’s development style. In this chapter, we delve
into integrating CCK with other modules.

Part II—Views
The Views module is a powerful query builder designed to simplify the task of building
custom query displays. It accomplishes this feat by providing lists of all table and field
information that it knows of and letting the user assemble items from these lists together.
After a complete rewrite for Drupal 6, Views has a new interface with more options than
ever before. With the addition of a live preview and query display, site builders can nail
down their displays in a way that was previously impossible to do without making
changes that can affect all users.

Chapter 6
Drupal relies on an SQL database to store information, and it currently supports MySQL
and PostgreSQL. Properly using Views requires an understanding of how the database
stores data, how it is related across various tables, and how Drupal works with the
database to retrieve data. This chapter is directed toward newer users and programmers.

Chapter 7
In Chapter 7, we focus on the Views UI, including how each function works. We look at
how each piece creates part of a query, and how the results of those queries fit into pages
and blocks. We also discuss the most important filters you may need as well as how to
create relationships between node content that does not otherwise share information.

xx

Preface xxi

RSS, styles and fields, and the Views Bonus Pack are other important topics when
determining what you want out of your view; they are also covered in this chapter.

Chapter 8
Supplying arguments to Views is one of the ways the Views module becomes even more
powerful and flexible. Relationships bring data together in new ways, and expand the
information available to the rest of Views. Chapter 8 describes how to customize your
views even more through the power of relationships, arguments, and filters.

Chapter 9
Views can be themed just like anything else in Drupal. The Views module provides an
entirely new level of classes, theming templates, and strategies over its predecessor. In
Chapter 9, we discuss the template files and their contents, change some CSS, and look
at how we can approach rendering data by multiple methods.

Chapter 10
One of the biggest questions facing the developers of any software installation of any
kind is, “How much time will each part of this application take?” Entire software
packages exist to measure this kind of information. For some people, optimization is the
key to a well-run and well-maintained site. For others, this issue represents a giant hassle.
In Chapter 10, we provide a few suggestions as to when and why it might be
appropriate to do some customization to your Views-generated queries.

Chapter 11
In Chapter 11, we explore the nuts and bolts of how Views is put together—at the code
level. You will learn about the data architecture of Views, the life cycle of a view, and its
database schema. We also introduce the plugins and handlers needed to control custom
queries and formatted output.

Part III—Panels
Now it’s time to really customize how you want your site to look. The Panels module
supplies a group of standard layout templates. In this part of the book, you learn how to
create panels that override default page layouts, explore how to theme these layouts, and
get an introduction to the Panels API.

Chapter 12
The core functionality of the Panels module is layout; designing the layout is when
things start to look polished. With an understanding of Panels, administrators can create a
style that is easily applied to every page of a site, or a different style for every page.
Chapter 12 provides an introduction to how Panels works.

Preface

Chapter 13
In Chapter 13, we investigate the Panels UI, including how each part fits together to
create a wide range of panels. You learn how to create your very first panel, add content
to a range of panel types, and override the core display pages for each of your site’s
content types.

Chapter 14
Panels incorporates a few major features that can take you from the basics of Web site
development to real complexity. Using arguments, relationships, and contexts, you can
build connections between pieces of content in your panel layouts.

Chapter 15
We’ve come to the final steps of designing a Web site with Panels—theming. This
development phase puts the last touches on a Web site and brings everything together.
Chapter 15 covers styling that can be done from within the Panels UI. You also learn how
to apply custom CSS selectors that you can hook into from your own CSS files. Prepare
yourself to be amazed at the level of control Panels gives you for theming your site.

Chapter 16
Once a site is built, it must be deployed and made available for use. In Chapter 16, we
touch on some of the challenges and changes that come with moving a site from testing
to production. Views, Panels, and CCK all have the ability to export their structures,
giving you the most leverage over site control; in this chapter, you find out how.

Part IV—Appendices
The appendices cover a range of topics you’ll need to truly succeed with this suite of
modules. Appendix A covers other, relevant modules you’ll want to check out when
building a site with CCK, Views, and Panels. Appendix B teaches you the “best practices”
for reporting an issue. Appendix C gives you an overview of the plugin classes that are
available to programmers in the Views API.

xxii

7
Creating Views

In this chapter, we talk about the Views user interface (UI) and discover how each func-
tion works. We look at how each piece creates part of a query, and how the results of
those queries fit into pages and blocks. We also discuss the most important filters you
may need and explore how to create relationships between node content that does not
otherwise share information. RSS, styles and fields, and the Views Bonus pack are other
important topics when determining what you want out of your view.

Views UI
The Views 2 UI is significantly different from the original Views UI. The rewrite for
Drupal 6 allowed for a complete change of the Views control page, bringing the power
of AJAX to the Views creation system. The new interface is cleaner, is packed with a
large number of features, and gives a distinct clarity to each piece of functionality.

Users of the original versions of Views had to deal with arrows that moved parts of
the page around, fields that looked like they might work together but really didn’t, and
overall an interface that just wasn’t very clean. Moreover, when building a query, users
really couldn’t get a good idea of what the view would ultimately look like unless it was
out where other users could see it publicly. This could lead to some ugly or confusing
pages temporarily, until the view was completed. For the most part, Views represented a
huge step forward over having to custom build your own queries all the time, but there
was definitely significant room for improvement.

Several months were spent in the design of the Views 2 UI. The revised UI
is compact and clean, allowing users to easily see exactly which part of the view is
currently being worked on, which changes have been made, and, most importantly,
what the finished view will look like.

When Views is installed, it creates a new menu item under Administer >> Site
building >> Views. This menu item is the base Views page. The Views UI consists of
four main pages: List, Add, Import, and Tools.

Chapter 7 Creating Views110

Advanced Help
If you don’t have the Advanced Help module installed, now is a really good time to add
it to your system. Views takes advantage of Advanced Help to give tips and suggestions
throughout the UI. It creates a small pop-up window that contains information about the
page you are working on, allowing you to keep the working page available. Look for
small circle icons containing a question mark; each will take you to a specific topic in
the help system.

Advanced Help is not required to use Views, but Views will provide warning notices if
Advanced Help is not installed.

There are nearly limitless applications in the real world for Views. Any time you need a
list, Views is there. In regard to the examples introduced in this book, you could use Views
to create a list of the most recent recipes entered, the most recent batches brewed, shirts
available in a particular size, and so on. If you add pictures of a glass of your homebrew,
you could use Views to display only the batches for which you have uploaded pictures,
and more.

List
The landing page for Views is the List page. On this page is the list of default views
provided with the module install. By default, all of these views are disabled, allowing the
administrator to determine which views, if any, might be needed immediately. It also
prevents new items from displaying on pages where they may not be expected; the
frontpage view, for example, will override your front page. There is also a link to the
Getting Started page. It is an example of Advanced Help, and will guide you through
the creation of a simple view. Figure 7-1 is an example of what your default Views
landing page should look like.

Once you have created views of your own, they will also be listed here in alphabetical
order. This list can be modified through the group of drop-down menus found at the
top of the list. These drop-downs consist of filters and sorts for the Views themselves.

The first row of list drop-downs are the filters. They filter out any Views that do not
match the criteria given:

n Storage: Filters on whether the view is local and in your database (normal),
whether default views are stored only in code (default), or whether both code and
database are used for storage (overridden).

n Type: Different than the content type. This filter narrows down which sort of
content pieces are contained in the view.

n Tag: Lists all tags that are available for currently available views.
n Displays: Lists which type of content sections views can be displayed in.

Views UI 111

Two types of sorting criteria may be applied in Views. Sort by creates the list by a
single particular piece of information about the view, while Order creates an ascending
or descending list ordered by the rest of the drop-down choices.

Note that multiple filters as well as both sorting options can be used to change the
list of views, narrowing down that list considerably. This makes a case for sites with large
numbers of views in use to tag each view with keywords that make it easier to find; this
approach allows the Tag filter to be used to minimize the initial returned list. Clicking
the Apply button causes your sorts and filters to be executed, returning the list you
requested.

The list of default views available is intended to simulate some of the most basic tasks
a new Drupal site may need to accomplish. Each view gets a box of its own, displaying
the pertinent information about that view. Each view can have many pieces of
information, most of which can feed back into the filters.

Figure 7-1 The Views List page

Chapter 7 Creating Views112

The next thing to focus on in the Views list page is the title bar for one view.
This darker bar contains four pieces of information. In italics is the storage level of
the view—normal, default, or overridden. Next is the type of view, which is listed in
a normal font and affects the Type drop-down menu. Third is the emphasized text,
which is the actual view name. After that, in parentheses, is the tag that is used for that
particular view. At the end of the bar is a group of links: Edit, Export, Clone, Delete. For
a default view, only the Enable link will be available until the view is enabled. For
views that you create, all four links are present at all times. You cannot currently
disable a view that you have created.

Inside the box itself are up to four more pertinent Views clues to serve as
differentiators for each view. The left column may show the Title, Path, and Display,
assuming they have been configured for that view. Title is the human-readable name,
much like the Display Name for a field. Path defines the Drupal-specific URL that
would take you to a page that displays this information. In italics is the display type,
which may contain block, feed, page, or date browser. On the right side of the box is
a short description of the purpose of the view or its functionality. This area may also
provide prerequisite information on which modules need to be enabled to provide the
view with data.

Add
The Add pages are where all of your view definition takes place. This self-contained,
multi-step process keeps the majority of your work on the same page so that you can
easily see which parts of the view definition you have changed. The Views UI gives
clues as to what has or has not been changed in the display. In the default display for a
given view, when a change is made, the changed setting is highlighted and shown in
boldface until the changes are saved. Note that if any of the form settings are open for
editing in the view, the save button for the overall view will be disabled until the edit
itself is saved or cancelled. These pages are also where all of your edits for an existing
view will take place.

More clues come at the end of the submenu bar, which contains an italicized note
stating whether this is a new or a changed view. This message persists until the changes
are saved. The submenu bar is explicit, telling you exactly which view and display type
you are editing. At the end of the bar are links to export the view, to clone the view,
and, if you are editing, to look at the page in which the view will appear. Exporting a
view will give you the code to import the view into another installation. Cloning a view
is useful for experimentation. For example, you might want to try some different settings
on a view; cloning will let you do that while leaving your original view intact. Cloning
also gives you a base to work with if you want to create multiple similar views. For
instance, you may have a view of recent comments but also want a view with recent
comments for a particular node type. You might clone the recent comments view rather
than re-creating it.

Exercise 7-1
Enabling and Changing the Default View

In this exercise, we’ll enable a default view and make a small change to become familiar
with the Edit page.

1. Navigate to Administer >> Site building >> Views.

2. Scroll down to the Glossary view.

3. Click the Enable link on the right side of the title bar.

It will take a moment for the view to become enabled. When it does, the page will
refresh and the view will move up in the list and into the enabled views, which are
sorted alphabetically by default.

4. Click the Edit link next to the view (Figure 7-2).

113Views UI

Figure 7-2 Edit: one of the available options for an enabled view

5. Under the “View Settings” box, click the word “default” next to “Tag.”

6. Scroll down the page to the “View details” box (Figure 7-3) and change the word
“default” to anything else. You can change the tag or remove it all together.

Figure 7-3 Changing the tag for the view

7. Click the update button.

Your change has not yet become permanent; Views allows you to make multiple
edits before saving the view. It will let you know that you’ve made changes.
Figure 7-4 shows you what your submenu may look like after you have updated
but not yet saved the changes to the view.

114 Chapter 7 Creating Views

Figure 7-4 Changing the tag for a default view turns it into a new view

Figure 7-5 Icons used to add, rearrange, and configure parts of a view

You can scroll down to the bottom of the page for a look at the preview; we’ll dis-
cuss this feature later in the chapter.

8. Click the Cancel button at the bottom of the edit section. We don’t actually want
to change the tag.

When you add a display type, all settings appear in a lighter, italicized font until
changes are made. If a change is made to a setting so that it differs from the default, that
setting will then appear in a normal-weight, non-italicized font. This system enables you
to quickly identify exactly which parts of the view have been modified. The “gear” icons
indicate styling options are available for that setting. Some boxes for settings have a plus
sign (+) in the box title bar (as seen in Figure 7-5); clicking it automatically opens a cor-
responding add menu that allows you to select and configure a new option for that set
of configuration options. For example, click the plus sign next in the Filters title bar to
add a new filter to your view. In the same title box, a small up/down arrow icon will
appear when two or more options are available in that section. Click this icon to
rearrange the items within that group of settings.

Views Add Creation Page
The Views Add creation page is the first page you encounter when you are creating a
new view. It requires two pieces of information, view name and view type, and suggests
two others, view description and view tag. The view name can be a combination of
alphanumeric characters and underscores; names should use all lowercase letters for
consistency. The view description is a text field where you should enter a sentence or
two to describe the purpose of the view. A view tag is useful for grouping or separating
your views if you are using them for specific topics or purposes. Finally, each view must
have a type that determines which content it will look at to create the view. The type
determines the primary table that Views will access for data.

Here are the types of views:
n Node: Node views are likely to be the most common type of view on a site.

The node type creates lists of any node content.
n Comment: Comment lists can be retrieved from nodes, but there may be times

when you want only comment information. The view may be faster, but there is a
tradeoff in security.

n File: File limits views to information about uploaded files. It is useful for seeing
which files are taking up space in your installation.

n Node revision: This limits the view to revision information—useful for determin-
ing which users are making changes, and which changes are being made.

n Term: Use this view type with taxonomy; it helps to create lists of taxonomy
terms.

n User: This type breaks down user information and helps with showing which users
have accounts, and what they are doing.

n Access log: This view can show what your users are accessing, and what they are
having trouble accessing. An access log view can help filter down the log so it
becomes easier to spot site problems.

Once a view is created, the type of view cannot be changed. If the basic definition
is not correct for your needs, the view will have to be re-created. Choosing a particular
type means that only certain filters, fields, and other Views functionality will be available
once that type is chosen. Figure 7-6 shows the form used to create a new view.

Left-Side Tabs
Along the left side of the UI is a group of tabs (or drawers). These tabs show which
displays the view currently has configured and give you the ability to add new displays.
A display is a place or way the view may be shown to users of the Web site. All views have a
default display. The default display contains the initial and any edited settings for that view.
The default display is not actually used anywhere within Drupal itself—something that may
confuse new users. It simply is a container, the initial state of the view.

115Views UI

Four display types are used for actual visual placement:
n Page: Displays the view as an entire page complete with a menu and URL.
n Feed: Helps set up the format for an RSS feed.
n Block: Creates a view that will be placed within a block.
n Attachment: Helps to add a view to another view.

The first tab will be the default setting for the view; if you are not sure which display
you are editing, the main window will provide this information. Figure 7-7 shows an

116 Chapter 7 Creating Views

Figure 7-6 Creating a new view

117Views UI

Figure 7-7 The default display for the archive view

example of one of the views included with the Views module. It has been edited; yours
may not look exactly the same.

New displays are created by using the drop-down menu and can be an attachment,
block, feed, or page. Adding a display allows you to refine the view for that type of dis-
play. For example, you may wish to use a view within a block; you could create a display
setting specifically to format for a block. You could then create a page display and use the
same view, but format it differently to take advantage of the greater space allotted to a
page. Choose a display type you want to add, and click the “Add display” button.

The last drawer is the Analyze button. At this time Analyze has only a minor level of
functionality, but like the rest of Drupal, it is very pluggable and can be expanded by
those developers who wish to do so. Its purpose is to do a low level of error checking
on your view to see if anything is obviously wrong. The Analyze feature was originally
added to ensure that a view has content that will display. Some members of the Drupal
community suggested that a view should contain a filter that required the content being
displayed to be published. There are reasons why this approach is not necessarily a good
idea, so the filter is not present. Analyze will notice when you have not set a filter that
displays some amount of data and warn you of this potential problem.

View Settings
View settings is the first box in the first column of the main display. It appears only in
the default view settings, as it is pertinent to the entire view for all display types. This
box contains the Tag field, which can be edited to add or remove tags even after the

view is being used. To change the tag, click on the tag itself—this will allow you to
change both the tag and the description of the view.

Basic Settings
The basic settings are the first level of definitions. They define the core of what your
view will look like, and may occasionally have slightly different effects depending on the
display type. Notice the italicized lettering for the display in Figure 7-8. Most settings for
a display will be italicized unless you modify this default behavior.

Name is the name for this particular display. Only the administrative interface sees
this name.

118 Chapter 7 Creating Views

Figure 7-8 Basic settings box for a page display

Title is the displayed title of the view itself and will show wherever the view is. It will
be the block title in a block view, or the title of the page if the view is an entire page. You
may leave it as “Title” for a default view, but you may want to name it if it is a display, or if
you are using a cloned view and the title will be the same wherever it is used on the site.

Style determines how the view itself will actually appear; it does not affect the rest of
the page. Your view can be shown in a grid, list, table, or unformatted. Any style other
than unformatted will be associated with further settings that customize that style; these
options are reached by changing the style or by using the gear icon. Choosing a style
determines the look of the view. Each style can be formatted in different ways, from
completely unformatted, to a basic list to a neatly stacked grid. Each style type has the
ability to group the output by one of the fields that are being displayed; if the post date
is in the view, grouping by that date will gather all content added on the same day into
one group. Also note that for styles (and for row styles), you can change the look by
using template files to specify exactly what you want—more on that topic when we talk
about theming in Chapter 9.

The grid style allows you to choose a number of columns that will appear on the
view. You may choose to align your view horizontally (top left to bottom right) or
vertically (column A from top to bottom, column B from top to bottom).

Lists can be either ordered or unordered. Ordered lists will number the view results.
An unordered list provides output similar to the unformatted style. It is significantly
cleaner and easier to read than an unformatted view, however, thanks to the bullets that
appear next to each entry returned.

Tables are the most complex output format. The table display is clean and easily under-
standable by most users. By default, each column in a table display contains one field.
Columns can be changed to use multiple fields if this formatting is desired. In the style
options (which become available when you click the gear icon), choose a field. In the
Column drop-down menu next to that field is a list of all other fields available—assuming
you have already added fields. Change the drop-down choice to one of the other available
fields. This step can be repeated so that all of your fields are in the same column, but only
the main column item can be sorted. When multiple values appear in the same column,
the Separator field can be used to distinguish between the fields in the column. Separator
may use regular characters or HTML. If multiple values are being used, it is highly rec-
ommended that you use the (single space) for separation, if nothing else. Bullets
and the pipe (|) character are also common and valid separators, although it is recom-
mended that be placed around these characters for additional readability.

Tables can also be sorted by column, which creates a clickable header. You may
choose a column to be the default column on which the table sorts and specify whether
the sort is ascending or descending.

The unformatted style provides a simple, basic list of all items that match the query. Each
row is a returned field, but lacks any special spacing or styling. This style is potentially useful
for lists of names, but may be hard to read for many users if multiple fields are returned.

Row style determines how each row in the view itself will be styled—as a node or as
a field. If the Style setting is using Table, Row style will be missing from the Basic

119Views UI

settings box. Row styles may use fields or nodes, with each type displaying one per row.
When using fields, you have the option of making each of the fields appear inline rather
than stacked, and you can provide a separator just as the full view style does. The node
style is exclusive to using selected fields (the fields box), and gives you the option of
showing just the teaser instead of the full node. In addition, you can put comment links
or comments themselves in the view.

AJAX may be available for use in some cases. The “Use AJAX” option specifies whether
you will use AJAX in the view for exposed filters, table sorting, and paging. Be aware that
using AJAX will keep the entire page from refreshing, which may cause issues with links.

Pagers make it easy for your users to skip forward and backward in your view, which
is a very useful ability within large views. Two types of pagers are available, should they
be needed. A mini-pager shows the current page of total pages and uses forward and
backward arrows (<< 1 of 6 >>). Mini-pagers are well suited for use within block
displays because they fit more cleanly than a full pager. A full pager displays a list of page
numbers plus first, previous, next, and last options so that users may easily jump multiple
pages. Pager element is a number that can be used to identify a pager within each page.
If multiple pagers are used within a page, each one needs to have a different identifier.

Every view needs to have a number of items to return by default. The “Items per
page” option sets this number, and can provide a helpful limit. Using a set number can
increase the return time of a page—something most Web sites see as a critical function.
You can also offset or skip some number of items in your view.

Views can have multiple displays, which may be linked together easily by using the
More link. Checking this box will add a More link to the bottom of the view. On a
block display, such a link will take the user to the page display version of that view,
which may contain significantly more data. This capability could be used to link a teaser
to a full article, link the archive of this month’s posts to the full archive, or link a short
block of recent comments to a full page of recent comments.

Distinct adds the SQL statement DISTINCT to your query, which attempts to remove
any duplicated records from the view. Completion of the Distinct operation takes time,
which may be considered a performance problem in some cases.

Access places restrictions on what users can see the view, either by user role or by
general permissions. You can create roles for users or change user permissions under
Administer >> User management >> Roles or Permissions.

Caching is one of the newest features to Views. This pluggable cache is not the same
as the overall Views caching. Rather, it lets you cache each display separately if you wish,
or cache the entire set via the default. The standard options are the ability to cache the
query results and/or the entire rendered output. You may cache one and not the other.
In addition, you may assign different lengths of time to each cache; the menus provide
options ranging from 1 minute to 6 days.

The Header adds a header to the view. A header is simply some text that will appear
above the view. It can be set to appear even if the view has no results for display, which
helps let the user know that the page did display, even if no actual data was returned. The
Footer is essentially the same as the header, except that it appears at the bottom of the

120 Chapter 7 Creating Views

view. Either of these elements can be used to provide an explanation of the view or
other pertinent information about the view.

Empty text is text that can be displayed if the view returns no results. It lets the user
know that the view has completed its processing. Such text is more useful than just
returning an empty result, and is clearer than using just a header or footer. In essence, this
text lets the user know that the query mechanism did not crash; there are simply no results.

Finally, there’s the theme. Theme is not actually a setting; it is informational in nature. It
lists template files that the different parts of the view may be using. This display is similar in
nature to what you would see if you looked at a page with the Devel module. The template
in use by each piece of the view appears in bold font, so you can see exactly which files are
being used. You may have display, overall style, and row style themes within the same view.
You can also rescan the template files in case you make changes to the names of .tpl files.
Clicking the “Rescan template files” button will clear the theme registry.

Display Specific Settings
Each display type also has a settings box in the first column that appears below the Basic
settings box. Figure 7-9 shows one example of display settings.

121Views UI

Figure 7-9 Display-specific settings for the archive view

Page has two settings, path and menu. Path is the Drupal-specific path to the page that
contains the view. Remember that this path is not a full URL; http://www.example.com/
is assumed to be the base URL, with additional information being tacked on to the end of
this URL. When you click on the path setting, you will see the entire base URL but you
must enter the remainder of the path. The path statement can take arguments.

Menu gives you options for adding a menu item as a normal menu entry, a tab, or a
default menu tab; you can also not add any menu item at all. When creating a menu
item link, you should give it a title and determine whether it should have a weight. The
menu also has further options that become available when you click the gear icon,
which determine exactly where that menu item should go.

Block has only one setting: admin. This simple description of the block is intended to
make it more easily findable in the Administer >> Site building >> Blocks page. The
admin setting is a name, and should be relatively short and clear.

If your display type is a feed, two options can be changed. Path is the same as it is for
page settings; this time it is the path to the XML feed page, whose filename often ends
in .xml. The second option is “attach to,” which creates the feed as part of one of the
other displays. This gives feeds a similarity to attached views.

http://www.example.com/

The settings for attachments also are different from the settings for other displays, as
they are not actually changing the display of the attached view. Instead, the attachment
settings determine where the attached view will be placed and which information will
be inherited from the view it is attached to. Arguments and exposed filters may or may
not be inherited from the parent view. Exposed filters comprise any of the filters in the
view that are made available to the person looking at the view; they can be changed
when they are displayed. The attachment can be positioned before the parent view, after
this view, or both before and after the view. This group of settings also has an “attach to”
option, but it is used to attach the view to one or more displays or to make it part of the
default display. Every view built on the default would then have the secondary view
attached.

Relationships
Relationships is the first box in the second column. This and all remaining boxes to set
up views have clickable titles. Clicking the title will tell you if that group is using the
settings from the default view or if it is using an override. With relationships, you can
create links between data that may not be otherwise related. A complex structure can be
created by using relationships.

Clicking the plus sign (+) opens the section for adding a new relationship. The differ-
ent types of content (not content types!) that can be added are grouped together. A
drop-down menu allows you to choose which items are available for relationships so that
you can more easily find the piece you are looking for. Many groups may be available,
and the list changes depending on which content types are available on your site and
which other modules you have enabled.

When you add relationships, the number of fields available may increase significantly.
For example, you may want users to rate your content. Modules are available to perform
this task. However, Views doesn’t have a good way to link the various kinds of data
together on its own; it needs a relationship. You can create a relationship between voting
data and node data, for example, so that they can be displayed together in the list.

Arguments
The section for adding an argument looks very similar to the section for adding a rela-
tionship. The main difference is that many more types or pieces of content can be added
as arguments. Arguments act in a fashion similar to filters, but with more exposure to the
user. Chapter 8, which is devoted to arguments, discusses this issue in depth.

Fields
The setup for fields looks significantly like that for arguments and relationships. The
fields settings, however, add the actual fields that will be available in your view. This is
where you determine which pieces of information will appear in the view and which
order they will appear in. Using this feature, you might give a short preview of a group
of stories or see a list of recent comments. Fields do not have to be visible to a user to
be included in a view.

122 Chapter 7 Creating Views

Sort Criteria
SQL’s sorting mechanisms come into play in the Sort criteria settings. You may sort
your view by one or more fields. If you do not specify a sorting criterion, the view
will sort itself in ascending alphabetical or numerical order on the first field available to
the view. If you wanted to see content posted by users per day, you would add the
sorting criteria User: Name, and then Node: Post date, as shown in Figure 7-10. You
may also add the criteria in the opposite order, as they can be rearranged using the
rearrangement tool.

123Views UI

Figure 7-10 Adding a sort by posting date

Filters
Filters can be used to limit the fields returned for your view. Note that this limit is
based on actual data, unlike the “items to display” link in the Basic settings box,
which puts a straight limit on the number of fields. This area is where some
especially important criteria for your views are stored. If you wish to publish a
view for general use, any information obtained from nodes will usually be taken
from published nodes.

Warning
By default, the Node: Published filter is not on. In most cases, you need to add this filter.
This group of settings is where the Analyze tool is telling you to go when it cannot find data
to publish publicly.

It has been suggested that the Node: Published filter be the default. Security concerns dic-
tate that it not be a default filter, however. This is part of the reason why the Analyze tool
warns you that no filter is available for published nodes.

Overrides
Overrides are another part of a change from the default setting. If a setting is changed,
it may need to be overridden. Each of the clickable box titles (relationships, arguments,
filters, sort criteria, and fields) allows you to override the default display. When you click
on the title, the box at the bottom of the configuration screen tells you whether you are
using the default display. From here, when you update the settings, the update will be
pushed to the default display. If you want this change to affect only the current display,
you must override the defaults.

Note
All of these settings can be overridden only as a group, on a per-group basis. An override
will take effect for all relationships, for all arguments, for all filters, and so on. Remember
that an override is overriding the default!

This behavior may have unintended consequences. Always double-check your results.

Validation
Many of the parts that you can use to define a view require a setting, especially for dis-
plays other than the default. If your view does not have the correct settings selected, a
red warning box, similar to Figure 7-11, will appear. It indicates which settings are miss-
ing or set incorrectly. In other cases, such as when no content is available to the general
user base being made available for display, a yellow warning box will appear to inform
you of that fact. Until the validation errors are corrected, the live preview function will
be unable to display a view.

124 Chapter 7 Creating Views

Figure 7-11 Validation errors

Live Preview
The live preview feature represents one of the biggest steps forward in usability for
those individuals who are new to using Views. Live preview shows you exactly what
your view will look like to your Web site visitors, allowing for changes to be made
quickly and easily without needing to click back and forth and constantly reload
pages (see Figure 7-12).

125Views UI

Figure 7-12 A live preview of the archive view

Other basic information about the view is also presented as part of the preview.
This information includes the query that is used to create the view, the title and path,
and statistics on how long it takes the query to actually build and execute as well as
how long it takes the view to fully render.

Import
The Import page has a simple purpose: to import a view from another site or
installation of Drupal. If you have exported a view, you may enter a new name if you
wish, or leave the view Name field blank. Remember that the view name must con-
sist of alphanumeric characters, but may use underscores. Paste the exported view
into the text box and click the Import button. Views will then attempt to import the
view. If this operation is successful, the Edit page will appear, allowing you to cus-
tomize the view.

Tools
The Tools pages provide help with troubleshooting and updating your views to the new
version. There are two subtabs within the Tools section: Basic and Convert.

Basic
The Basic tab comprises a list of check boxes that can be selected to enable features that
are helpful for performance optimization, troubleshooting, or general placement of some
of the query information within the user interface. This page also contains the highly
important Clear Views’ Cache button. If you are changing your views, and they are not
appearing correctly on your actual displayed pages even though they worked perfectly in
the preview, you may need to clear the cache. At the bottom of the page is a drop-down
menu that allows you to select where the performance statistics should be placed; this
location is entirely up to you.

The check boxes on the Basic tab are documented within the page display itself, and
should be easily understood in general. Many of these features are designed to work with
the Devel module or to turn off functionality that may be causing problems either for
the view or for the browser itself.

“Add Views signature to all SQL queries” tacks an additional field that does not need
processing onto the SQL query when it is being built. When looking at an SQL WHERE
clause, you will see a 'VIEWS' = 'VIEWS' string that indicates Views was used to build
the query. When you are searching through an extensive log file to determine which
queries may be causing problems, this string makes a Views query easily identifiable. It is
recommended that this flag be used only during troubleshooting, even though it does
not appreciably change the query. Why process more than you have to?

Views caching can be disabled across your site with the “Disable Views data caching”
check box. This setting may be useful during the creation of new views and especially
during the retooling of an existing view. Views may cache a tremendous amount of data
in an effort to quickly display a view; this data can come from multiple tables, other
modules, or other existing views. Trying to maintain this cache can place a significant
burden on performance. If the cache is not used, Views is forced to rebuild each view
every time it will be displayed on a page. If that view has to call other views and other
modules to return information, things can get very ugly, very quickly.

Note
Selecting the “Disable Views data caching” check box does not clear pluggable caches
(found under the Basic settings); Views does not know where those caches store their
data and cannot effectively clear them.

If you need to turn off the pluggable cache, it is best to do so from the view itself while you
are developing the Web site. Turn it on when you’re ready to deploy a Web page, and
always retest the page to make sure it works correctly.

The next two boxes deal with queries and live preview. We’ve already seen that the
live preview shows you what your view is supposed to look like. Normally, your preview
will be displayed and the query used to create that view and its corresponding details
will appear below it. These settings boxes allow you to put the query above the preview
(“Show query above live preview”) and to show all of the queries that are run to create

126 Chapter 7 Creating Views

the view (“Show other queries run during render during live preview”). When trou-
bleshooting, these settings can help you determine if a query is being called multiple
times when it should not be.

If you have created a view and have the ability to edit it, you may see [Edit],
[Export], and [Clone] links over the top of a view that appears in the public section of
your site. These are called hover links. You can turn them off by selecting the “Do not
show hover links over views” check box. Hover links are useful for quickly reaching
the Edit page for the view directly from the view itself. This is much quicker than
digging into admin/build/views/, finding the correct view, and hoping you’ve got
the right one.

Web site developers should be concerned with the performance of their sites, espe-
cially if the site is professional in nature. Views can interact with the Devel module and
provide performance and query statistics. Such data helps you determine how long your
view and its container are taking to render—again helping you find bottlenecks in sys-
tem response.

The last check box continues a core tenet within Drupal development—that the
entire user interface should work without JavaScript. If you are having problems with
using the Views UI because of your browser, or you’re just that concerned about
JavaScript security, you can turn off JavaScript for views. The interface should degrade
and be completely usable without it; it just won’t be as pretty or as easy to use.

Bulk Export
The Bulk export page provides a method for exporting all of the code that creates a
particular view. Figure 7-13 is part of this page. Quite simply, you can choose one or
more views to export, and have the code available and easy to store in the source control
repository.

At the bottom of this page is a box labeled “Module name.” This box’s purpose is to
help you export a view that you can then easily import directly into a module. If you
enter a module name, parts of the code will contain pertinent hooks into the module.

Convert
The Convert tab is likely to greatly interest users of Views 1. Views 1 is not being
converted to Drupal 6, and Views 2 is not being backported to Drupal 5. This leaves
users in the unenviable position of having to upgrade their Drupal version as well as
Views at the same time to maintain a functioning Web site.

The Convert tool checks the database to see if it contains any Views 1 views and then
gives you the opportunity to convert each such view to the Views 2 format. It is highly
recommended that you use a test site to do so. Using a test bed to convert the view
means that you can then export it and later import to the live site once it is upgraded.
You have to do the conversion only once, and it can be perhaps ahead of time; this eases
the pain of upgrading.

127Views UI

Be aware that due to the extensive changes made between Views 1 and Views 2, the
actual views are likely to be altered somewhat by the conversion process. You will
need to spend some time examining each converted view to ensure that it still shows
(or doesn’t show) what is expected. If you have not yet upgraded to Views 2, consider
exporting your views from the previous version. Once the upgrade is complete, you
can import these views via the Import tab. It will take you directly to the editor and
give you a clear idea immediately if the view needs work before being made public
once more.

With all of these boxes, check boxes, and settings, it’s easy to lose track of where
you’re going. The next exercise takes you through the creation of a new view.

Exercise 7-2
Creating a View: Recent Content

In this exercise, you will create a simple view. Before proceeding with this exercise,
make sure you have several nodes created for one of your content types. This example
will create a default view for use in displaying the most recent content of all types.

128 Chapter 7 Creating Views

Figure 7-13 Views Bulk export page

1. Navigate to Home >> Administer >> Site building >> Views and click the Add
tab.

2. Use the following values to populate the initial view creation page:

129Views UI

Field Value

View name recent_items

View description Most recent items posted

View tag base

View type Node

Notice that this data doesn’t actually say “shirts” or identify any other content type
specifically. We are creating a more generic view that can apply to all content
types—giving us something we can clone later to create a view for a specific con-
tent type. For now, we’ll use the “base” tag to indicate it’s a view we intend to start
from to create others.

3. Click the Next button to proceed.

4. In the View settings box, notice that our tag “base” is now shown. To change the
tag later, come back to this page and click the word “base.”

5. Under the Basic settings, do not change Name or Title. When we are doing a dis-
play, we might want to change these settings, but not yet.

6. Change the Style to an HTML list and update the settings. This action will bring
up the style settings. The default is an unordered list; leave it alone, and update the
settings. Notice one of the red warning boxes at the bottom of the page: Display
Defaults uses fields but there are none defined for it or all are excluded.

7. Row styles are set to fields by default. For now, leave this setting as is. Attempting
to update this choice will also generate an error message.

8. Skip to the Fields box. Click the + sign to add two fields: Node: Post date and
Node: Title (you can access the Groups drop-down menu and choose Node to
find these fields more quickly).

9. You will be presented with the configuration screen for Node: Post date. Use these
values to configure the field, and then update the settings:

Field Value

Label Clear the label—by default, this says “Post date”

Exclude from display Unchecked (this is the default)

Date format Custom

Custom date format F j, Y

11. Live preview should now be displaying data. Use the up/down arrow on the Fields
box, and switch the order of the field display so that Title is first, followed by Post
date. Update the settings, and review how the live preview has changed.

12. Click the + next to Sort criteria and choose Node: Post date. Change the sort
order to descending and day. These criteria force the most recent posts to be
displayed first.

13. Click the + next to Filters. Choose Node: Published. Checking the box on the
configure page means that only published nodes will be displayed in the filter for
any user.

Your default display is now complete. Your live preview should now display a list of all
nodes and dates on which those nodes were published. Each node title should also
link directly to that node.

130 Chapter 7 Creating Views

Field Value

Label Clear the label—by default, this says “Title”

Exclude from display Unchecked

Link this field to its node Checked

10. The UI will immediately take you to the configure screen for Node: Title. Use
these values for the fields, and then update the settings:

Figure 7-14 An example of the recent_items view

Now that you have completed development of a base view, you can clone the view
and set filters so that only one type of node is displayed in the view. At this point, we
also need to create displays for the view so that it can be placed into Web pages.

Showing Your Views to the World:
Creating Displays
Now that you have a view, you will want to turn it into something usable that you can
place on your Web site somewhere for visitors to see. This requires creating a display,
placing it into some type of Drupal container, and positioning that container in a partic-
ular place. This operation may sound complex, but it does not have to be. We’ve already
talked about the various display-specific settings that you can set during creation or
editing of a display. It’s now time to look at those displays and put them to use.

Views provides four types of displays: block, page, attachment, and feed. We’ve
talked about the specific settings for those types already, but we haven’t delved into the
process of using them to create Web pages or parts of Web pages. In the following
exercise, we’ll create a display using a block—Drupal provides blocks as part of the core
functionality.

Exercise 7-3
Creating a Block Display

Every view needs a display before it can be inserted on an actual page for use. A block is
the easiest type of display to create and understand.

1. Open the view created in Exercise 7-2 (recent_items) by going to its Edit page.

2. In the left-hand drawers, change the drop-down choice to Block, and click the
“Add display” button. You should now see a new drawer under Default that says
Block. Note that if you do not save the view before exiting this page, your new
display will be lost.

3. In the Basic settings box, notice the Name field. It says Block, which matches the
display type. For the base view that you’ll be cloning, you can leave this name
alone. For a cloned view (e.g., for Joe’s Shirts), you might want to name it some-
thing more specific, such as Block_shirts.

4. Change the display-specific setting if desired. You can give the block an administra-
tive title, making it easier to find in the blocks administration page. You can also set
up caching here for the block. Note that this is Drupal core’s block caching, not
Views based.

5. Save your changes.

Now you have a display that can be shown as a block. It can be administered from the
Blocks page.

With the creation of a base view and block display, you are ready to clone that view
for use and make it exactly what you want with only a few modifications, rather than
having to re-create the entire view every time you want to customize it.

131Showing Your Views to the World: Creating Displays

Exercise 7-4
Cloning a View to Create More Specific Content

Cloning a view creates an exact duplicate of an existing view. You are required to give a
new name to the cloned view to ensure its uniqueness, and you are allowed to change
the description and tag. If you haven’t created any entries for Joe’s Shirts, please do so
before continuing with this exercise.

1. Open the recent_items view.

2. Choose the Clone item in the menu bar.

3. You will be taken to the Add screen. Change the view name to
recent_items_shirts.

4. Change the view description to “Most recent shirts posted.”

5. Click the Next button.

6. In the Filters box, click the + sign to add a new filter.

7. Choose the filter Node: Type.

8. Choose the Operator “Is one of” and the Node type “Joe’s Shirts.”

9. Update the settings.

10. Save your changes.

This set of steps creates a view that displays only Joe’s T-shirts. The displays from the base
view are copied to the new view as well, and are ready to be put onto pages.

Now you have a base view and a specific view. Both of these views use the very
basics of Views functionality. Of course, having a view defined doesn’t do your users any
good if it’s not shown to them. At this point, we need to create a place for the view to
be contained. One of the easiest ways to do so is to create a block.

Blocks
Blocks are a core Drupal containment system. It’s necessary to know about them to use
Views effectively, although we cannot hope to cover every use of blocks within this
book. Blocks are one of the most common containers for content in Drupal. They can
be placed on your page and hold many types of content. For example, blocks can be
easily placed within the left or right sidebars, the header or footer, or the main page
content. Even more helpfully, the Blocks page under Administer >> Site building >>
Blocks has small boxes on the page to show you exactly which region is which.

The process of creating a block display with Views does not just create a display; it
also creates the block for you. Blocks containing views are administered just like any
other block in Drupal. In some respects, a block looks very much like a node. Blocks
were originally used for customization purposes—using them was an easier way to

132 Chapter 7 Creating Views

embed custom PHP code into a Web site. As time has passed, this characteristic has
become less useful; PHP embedded in blocks is not easily upgraded, nor is it stored in
source control. Source control is critical for many organizations, especially those that are
doing serious code development work.

To embed a view into a block using the UI, you must create a block display within
the Views interface. The blocks UI does not allow you to import a view into a block.

Exercise 7-5
Working with Blocks

In this exercise, we will place a block that contains a view in the right sidebar of the
page.

1. Navigate to Administer >> Site building >> Blocks.

2. Review the list of available blocks. In the lower section of the page is the Disabled
blocks list. Locate the recent_items_shirts block.

3. Use the drop-down menu options to choose a placement or use the grab handle to
drag the block into the region where you want the block to appear. For this exer-
cise, choose the right sidebar. If you use the drop-down menu, the block will
immediately jump to the selected region.

4. Save the block. If you forget to save the block and continue working, the block
will remain disabled.

5. Choose the configure link to the right of the block name.

6. Change the block title to “Newest shirts!”

7. Save the block.

Observe your page. You should see a section in the right sidebar that contains your new
block, and a list of the most recent shirts added.

Using this type of block view can be very useful. Blocks can be configured so that
they are shown only to certain users, only to users who are authenticated, only on
certain pages, and so forth. With just a few small changes, you could create two similar
views and place them in the same location, where site visitors would see a view with an
article name and a teaser, but authenticated users or subscribers could have that same
view link to a full article.

Pages
A view can be created as an entire page. We’ve already created a block view for Joe’s most
recent items, and one for just his shirts. Users may want to see a full list of shirts, however,
and the block view can link to the full page view. The page display automatically creates an
alias that can be used in the URL to take you directly to the page containing that view.

133Showing Your Views to the World: Creating Displays

Pages are a place where overrides really start coming into play with Views, and it
becomes very important to understand exactly how they work. In a block display, a
limited amount of information should be presented; presenting too much information
crowds the block and overwhelms the user. However, a full page view is where users
expect to get a majority, if not all, of the information they are seeking.

Exercise 7-6
Creating and Using a Page Display

In this exercise, we will create a page display to go along with our recent shirt block. We
want to allow users to see all of Joe’s shirts, so we’ll need to let them page through the
list. We might also want to take a look at the formatting to see if another option would
be cleaner for displaying this information on a full page than a basic list.

1. Navigate to Administer >> Site building >> Views and choose Edit next to
recent_items_shirts.

2. In the default display, under Basic settings, change the More link to “yes,” if it is
not already set.

3. Change the Items to display to 5; now only five items will be shown on the page.

4. Save the view.

5. In the “Add display” drop-down menu, select Page. Click the “Add display” button.

6. Now you will have a page display available. Highlight the page display so that you
can make changes to it.

7. Under the Basic settings, Items to display is set to 5. Click the 5, and look down to
the box. Change the setting to 15, and click first Override and then Update. Now, for
this display only, 15 items will be displayed. Notice that the status changes to “using
overridden values” and the button changes to “Use default,” as seen in Figure 7-15.

134 Chapter 7 Creating Views

Figure 7-15 Configuration box changes after overriding the default

8. Now that there are more items on the page, it might be useful to add a pager.
Change the Use pager setting to “Full pager.”

9. Under Page settings, change the Path variable to “shirts” and update the settings.

10. In the Fields box, you may choose to add extra fields—you may have a purchase
price, an image of the shirt, comments about it, and so on. If you add any fields,
click Override.

11. Save the view.

If you navigate to http://www.example.com/?q=shirts now, you will see a full page of
shirt content. If more than 15 items are available, a pager will appear that helps you to
navigate through all of the pages. Thus your users can scroll through all the available
shirts easily. If you have enough shirts to pass the block’s display limit, your block will
display a “More” link that takes you directly to the shirts page.

Attachments
Attachments, put simply, embed a view within another view. The glossary view is the
most obvious example of an attachment. Within the glossary view, the page view is the
list of nodes; along the top is the attached view, which summarizes how many nodes
begin with a particular letter and number.

Another use for attached views is to embed an archive of recent activity within the
content page. Most archive listings appear in sidebars or on their own pages. This format
represents a change from the more typical river of news style employed by many sites.

Attachments can inherit arguments from the view they are attached to. This capability
gives you the ability to filter the entries displayed.

Feed
RSS feeds are the most common way to notify people of new content on a site. Most
blogs use a feed, which lets their readers follow the blog in their choice of blog reader,
lets readers easily keep track of which posts have been read, and, most importantly, lets
readers easily get information pushed to them rather than forcing readers to seek it out.

Creating a feed view is almost as straightforward as it gets. Feeds do not allow for
field selection, eliminating that list of choices. The feed style gives you two options:
use the site’s mission statement for the feed description or enter your own. Only the
Row style: Node can be used with feeds, and the style options are to use the default
RSS settings, send the node title, send the title and teaser, or send the full node. The
feed display does not override any of the default options. Feeds are not generally user
visible and are certainly not easily readable by the user owing to their XML-based
output.

135Showing Your Views to the World: Creating Displays

http://www.example.com/?q=shirts

Summary
This chapter covered the basics of creating a view and developing a display. Views has a
large number of options and capabilities packed into a small user interface. By employing
the power of Views, you can create lists of almost anything you can imagine, in many
different fashions.

136 Chapter 7 Creating Views

Index

A
abstraction, in object-oriented

programming, 186

ABV (alcohol by volume), 53–54

ABW (alcohol by weight), 53–54

access, Views UI

access log view in Views Add Creation
page, 115

plugins, 193
restrictions, 120

access rules, Panels UI

adding access controls, 245–246
overriding core display pages, 247
overview of, 244–245
selection rules as form of, 230

Acquia Drupal stack, 11

Add content

access controls, 245
arguments in panes, 265
arguments in panes with views, 269
content panes, 238–242
contexts, 259, 261
in Flexible panel layouts, 278
node in Node Reference field as

context, 272
node override page, 249–250
node views, 248
relationships, 272
styles to panel regions and panes, 283
taxonomy overrides, 252

Add content (continued)

taxonomy terms, 263–264

views in panes, 266–268

Add Content Type page

adding new types with, 17–18

creating field with complex
settings, 30

creating new content type, 13

Add display button

adding page display to
arguments, 143–144

creating block display, 131

creating page display, 134

using view pane display with
argument, 270

Views UI, 117

Add pages, Views, 112

Add Variant option, Panels UI

defined, 230

node override, 249

taxonomy override, 252

add_field(), query object, 198

add_groupby(), query object, 199

add_having(), query object, 198

add_orderby(), query object, 199

add_relationship(), query object, 197

add_table(), query object, 197–198

add_where(), query object, 198

Additional Display Settings,
Date module, 49–50

add-on field modules, 14

add-on helper modules, 14

adjust_join(), query object, 197

Admin title, pane settings in Views, 268

administrators

dashboard, 308

menu links for Panels, 225

Advanced Help

Calendar, 308
overview of, 110
reading as documentation for module

you are reporting, 310
Views, 208

Advanced Profile Kit (APK), 308

AJAX, Basic settings in Views UI, 120

alcohol by volume (ABV), 53–54

alcohol by weight (ABW), 53–54

aliases

execution-related hooks and, 205
for query object, 198–199
referring to given nodes, 5
using in URL to go to page

containing view, 133

Allow settings, Pane settings, 268, 271

Allowed Block content, Panel settings, 227

Allowed values setting, fields, 29, 31, 33

Analyze button, View left-side tabs, 117

anonymous page caching, 182

ApacheSolr module, 306

APIs (application programming
interfaces)

CCK. See CCK API
developing CCK with consistent, 8
flexibility of node, 4
Views. SeeViews API

APK (Advanced Profile Kit), 308

architecture

data, 185
Drupal core procedural, 186–188
Panels pluggable, 221
Views using object-oriented, 185

arg() function, 144–145

argument default plugins, Views, 193, 212

Argument input, Pane settings, 268

328 Add content

argument validator plugins, Views, 193, 212

arguments

adding, 141–142
configuring, 139–141
expanding and stacking, 144–145
as filters, 138–139
handlers for, 316
introducing with Views, 264–265
not passing to blocks, 144–145
overview of, 137
as part of view, 142–143
using feeds with, 143–144
in view execution cycle, 201–203
View UI settings for, 122

arguments in panes

Add content modal for views,
266–267

adding view, 265–266
overview of, 264–265
using view pane display with,

270–271
using with view, 269–270
view pane displays, 268–269

Arguments text box, Pane settings, 269

ascending sort order, 106

attached views, 306

attachment display

defined, 116
display-specific settings for, 122
overview of, 135
user feeds with arguments, 144
workflow settings, 21

.attachment-after class, 155

.attachment-before class, 155

attributes, node, 6–7

Authoring information

adding new nodes, 235–236

changing using Views Bulk
Information, 307

as node content, 6
overriding core node editing

pages, 253
query displaying, 107
using relationship for node, 271–272

autocomplete widget, 45–46

B
backup, site, 292

base tables

concept of, 183
declaring tables in
hook_views_data() as, 208–209

overview of, 191
relating tables to each other, 206–207
and relationships, 191–192

base theme, preserving, 60–61

Basic page, Display fields, 34–35

Basic settings, Panels UI, 230

Basic settings, Views UI

creating page display, 134
determining themes views are

using, 156–157
overview of, 118–121
user feeds with arguments, 144

Basic tab, Views UI, 126–127

block displays

creating, 131
creating blocks with, 132–133
defined, 116
display-specific settings for, 121
mini-pagers suited for, 120

blocks

not passing arguments to, 144–145
overview of, 132–133

329blocks

blocks (continued)

pushing into page template, 218
working with, 133

blogs

Blog entry content type, 5
blog_rss view, 309
taxonomy used in, 262

body field, of nodes, 7, 20

Book outline settings, panel nodes, 235

Book page content type, 5, 36

book parents, 272

breadcrumb trail

arguments modifying, 202
changing in Panels dashboard, 226
editing mini-panel using, 237
executing views display, 203–204
how it works, 30
Node Reference tool and, 42
wildcards and, 140

bugs, reporting issues, 312

build() method, view execution
cycle, 202–203

Bulk Export module, CTSuite, 222

Bulk export page, Views UI, 127

C
caching

Clear Views’ Cache button, 126
clearing if field settings change, 98
creating data for fields, 95
CSS, 285
disabling pluggable, 126
disabling Views, 126
for each view display, 120
hooks to improve performance, 201
panels, 221, 242
query optimization with, 181–182
saving views, 142

Calendar module, 307–308

Canvas menu, Flexible panel layout, 277

Cascading Style Sheets. See CSS
(Cascading Style Sheets)

Category, Pane settings in Views, 268

CCK (Content Construction Kit) module

adding fields with, 7

Calendar module, 307–308

creating new content type, 11–15

defined, 1

development of, 8–10

Drupal version numbers and, 10

exporting, 295–296

forum on status of, 9

getting started with, 10–11

CCK API

creating data for fields, 95–97

creating field instances using Content
Copy, 91

creating field instances using CRUD
API, 91–95

field model. See field model

formatter modules, 87–91

helper functions, 97–98

using, 75–76

widget type modules, 85–87

/cck/theme directory, 59–60

Center region, Flexible panel layout, 277

Chaffer, Jonathan (JonBob), 9

Chaos Tool Suite. See CTools (Chaos Tool
Suite) module

check boxes/radio button widget,
45–46

check_markup() function,
Contemplate, 72–73

check_plain(), Contemplate
module, 72–73

check_plain(), dsm() function,
167

330 blocks

Choose Layout option

node override, 249

taxonomy override, 252

classes

in Panels-based CSS, 286, 289

in Views, 153–156, 163–164, 318–326

Clear Views’ Cache button, 126

Clone option, Panels UI, 229, 260

cloning views, 112, 132

code flows, handlers, 210

Column menu, Flexible panel layout, 277

columns, table style of view, 114

comments

for content types page, 22–23

for node contexts, 261

for node overrides, 250

for node view page override,
248–249

for panel nodes, 235

template for, 164

view, 115

Computed Code field, 51

Computed Field module, 51–54

construct() method, 195, 201

constructors, object-oriented
programming, 190

Contemplate (Content Templates) module,
themes, 71–73

content

adding to panels, 237–242

changing layouts and, 279–280

configuring development environ-
ment, 291

node override, 249–250

tagging to build taxonomy, 262

taxonomy override, 252

Content Construction Kit. See CCK (Content
Construction Kit) module

Content Copy module, 14, 91

Content module, 14

content panes

adding, 238–242
configuring existing, 243–244
enabling views on Panel dashboard

as, 226–227
introducing arguments with, 265

Content Permissions module, 14

Content Profile module, 272

Content setting, Variants tab of Panel UI, 231

Content Templates (Contemplate) module,
themes, 71–73

content types

adding fields to, 24–29
advantages of CCK, 9–10
creating fields for existing, 27–29
creating new, 11–15
creating new, with Flexinode, 8–9
default, 4–5
Drupal basic, 4
limiting links to specific, 46
sharing fields between, 29
what to know before

creating, 17

content types page

Comment settings, 22–23

creating new content type, 11–12

Export tab, 22

Fields tab, 22

Identification settings, 18–19

Import tab, 22

overview of, 17–18

Submission form settings, 19–21

Workflow settings, 21–22

$content variable, 68

content_clear_type_cache(), 98

content_database_info(), 97

331content_database_info()

content_field_instance_
create(), 91–92

content_field_instance_
read(), 94

content_field_instance_
update(), 94

_content_field_invoke(), 77

content_fields(), 97

content_format(), 97

content_write_record(), 98

content.crud.inc, 92

contexts

adding, 260–262

creating in panels, 221

designing page content/layouts
with, 280

overview of, 257–258

in Panel pages, 258–259

taxonomy in, 262–264

taxonomy override, 251–252

User Reference and Node
Reference, 272–273

Contexts setting, Variants tab of Panel UI,
230

Convert tab, Views UI, 127–128

copying template files, 156

COUNT function, query object, 198–199

CPU time, development time vs., 177

Create new revision option, Workflow, 21–22

Create Panel screen, panel nodes, 234–235

Create Variant

node override, 249

taxonomy override, 252

CRUD (Create, Read, Update, Delete) API, for
field instances, 91–95

CSS (Cascading Style Sheets)

caching, 285

creating new panel style, 282–283

grouping fields in template, 172–173
identifying particular pane for styling,

286–289
in Panels UI, 284–285
setting properties within panels using

Stylizer, 280
in source code, 285–289
theming a fieldgroup, 66–68

CTools (Chaos Tool Suite) module

contexts. See contexts
downloading, 222
history of, 218
managing access rules with Page

Manager, 244–246
overview of, 223

Custom content panes, CTSuite, 222

custom pages, 228

Custom rulesets, CTSuite, 222

Customize date parts, Date module, 49

Customize Default Value, relative
dates, 48–49

D
data

creating for CCK fields, 95–97
Views API architecture, 185

data types

CCK, 26–27
choosing field for, 39–43
converting in development

site, 294
for field in Type fields, 25
relational database fields, 103
widgets for, 44–47

database columns operation,
hook_field_settings(), 80–81

database schema

declaring fields on tables, 209–210

332 content_field_instance_create()

declaring tables in
hook_views_data(), 207–209

overview of, 206
relating tables to each other, 206–207

database storage, 8–9

Date module

Date field, 50–51
defined, 14
overview of, 48–49
required by Calendar, 308

Datestamp field type, 48

Datetime field type, 48

db_query(), query object, 198–199

db_rewrite_sql(), view execution
cycle, 203

Decimal field type

defined, 26, 46
working with, 40

Decimal marker setting, widget types, 46

default content types, 4–5

default display

creating view, 128–130
Date setting, 49–50
default template vs., 158
in Views UI, 115–117

default options, Workflow, 21

default templates, 156–159

default views

enabling and changing, 113–114
view execution cycle checking

for, 201
View settings, 117–118

$definition array, views_object, 194

Delete operations

content type List page, 18
hook_field(), 82
Panels UI, 229

Deploy module, for site migration, 299

deployment. See site deployment

descending sort order, 106

DESCRIBE statement, vs. EXPLAIN in
MySQL, 180–182

Description field, Identification setting,
18–19

design, Web site, 14–15

destroy() method

view execution cycle, 203
views_object, 195

destructors, object-oriented
programming, 190

Devel module, installing Theme Developer
with, 70–71

development environment, configuring,
291–293

development time, CPU time vs., 177

directories

installing modules into, 11
themes, 59–60
views, 156

Disable option, Panels UI, 230

display

modules in Panels, 222
overriding. See overriding core display

pages
Panel content screen settings, 238
point-and-click layout in Panels, 219
templates, 159–160

Display Fields tab

adding fields, 24–25
adjusting display, 34–35
excluding fields, 68

display plugins, Views API

defined, 192, 212
instantiating in initialization, 201
list of, 317

$display variable, PHP, Computed Code
field, 51

333$display variable, PHP, Computed Code field

displays, Views UI

adding views to panel pane with,
268–269

Basic settings, 118–121

block displays, 131–133

defined, 115

executing, 203–204

page displays, 133–135

of specific settings, 121–122

types of, 116–117

using attachments, 135

using feeds, 135

using left-side tabs to add, 115–116

View settings, 117–118

viewing on Views list page, 111

DISTINCT statement

query object, 197–199

removing duplicated records from
view, 120

documentation

from development to production, 294

reading for module you are
reporting, 310–311

drag and drop, of existing content
panes, 244

Drupal

development of CCK, 8–9

installing for CCK, 10–11

layouts, 218

“learning cliff ” of, 102

version numbers, 10

drupal_execute(), 95–96

drupal_render(), 88

drupal_set_message(), 167

drupal_write_ record(), 98

Drush module, for site migration, 299

dsm() function, 165, 167

E
Edit operation, content type List page, 18

editing

enabling and changing default view,
113–114

of existing view in Add page, 112
mini-panels, 237
overriding core node editing pages,

253–255
panel content, 238
panel nodes, 236

Email module, 55

embedding queries, 179–180

empty text, 121

encapsulation, 186, 189

ensure_table(), query object, 197–198

Exclude option, Display Fields tab, 68

execute(), view execution cycle, 203

execute_display(), Views, 203

Existing field, field display, 34

expanding arguments, 144–145

EXPLAIN statement, query
optimization, 180–182

explicit relationships

overview of, 192
relating tables to each other as,

206–207
Export option, Panels UI, 229

Export tab, content types page, 22

exporting structures

CCK, 295–296
Panels, 298–299
site deployment and, 294–295
Views, 296–297

exporting views, 112, 305

exposed filters, 145–147, 163

Extra column, EXPLAIN statement, 181

334 displays, Views UI

F
feature requests, 312

Features module, site migration with, 299

feed display

adding to arguments, 144
defined, 116
display-specific settings for, 121
overview of, 135

.feed-icon class, 155

feeds, using with arguments, 143–144

field handlers, Views API, 315–316

field IDs, field names vs., 158

field instances

creating using Content Copy module,
91

creating using CRUD API, 91–95
defined, 17, 37
overview of, 38

field model

for custom field types, widget types or
formatters, 77–79

field type modules, 79
hook_field functions, 80–84
for new field types, widget types and

formatters, 76–77
overview of, 76

field modules, 13–14

field names, vs. field IDs, 158

field templates

changing parts of themes, 64–65
creating themes, 61
files and filenames for, 63
variables available in, 63–64

field type modules

hook_content_generate(), 84
hook_content_is_empty(), 84
hook_field(), 82–83

hook_field_info(), 79–80

hook_field_settings(), 80–82

field types

creating custom, 77–79

creating field instances using, 91

creating new, 76–77

defined, 17

modules defining, 79

field_name, creating field instances, 91

$FIELD_NAME, node templates, 65–66

Fieldgroup module, 14

fieldgroups, themes for, 66–68

fields

adding complex settings, 30–33

adding to content types, 24–26

adding to content types with CCK,
13–15

adding to content types with
Flexinode, 8–9

adding to existing content types,
27–29

adding to nodes, 7

building SQL queries in Views using,
107–108

CCK fields composed of, 76

changing display of, 33–36

choosing types, 39–43

Computed Field module, 51–54

concepts, 17

for content type pages. See content
types page

creating data for CCK, 95–97

data types, 26–27

Date module, 48–51

declaring table, 209–210

defined, 17

exporting CCK, 296

335fields

fields (continued)

filtering and sorting, 105–106
identifying insecure, 72
Link and Email, 54–55
migration of existing settings not

supported for, 294
overriding core node editing pages, 253
for panel nodes, 235
retrieving settings, 97
row style template file, 161–162
rows made up of, 103
sharing, 36–38
for simple view, 129–130
template, 167–174
using widgets, 29, 43–47
View UI settings for, 122
visual media, 55–56
what to know before creating, 17

Fields tab, content types page, 22

File attachments, panel nodes, 235

File field type, 56

File views, 115

FileField module, 55–56

files, adding to themes, 68

filter handlers, Views API, 316

filtered text, 40, 46

filters

arguments used as, 138
building SQL queries in Views, 107
creating simple view, 130
for criteria in Views list

page, 110–111
exposed, 145–147
relational database, 105–106
sorting panel page, 228
Views UI, 123–124

Flag module, 305

Flexible layouts, 275–278

Flexinode module, 8–9

Float field type

available widget types, 46

defined, 26

working with, 40

Force single setting, exposed filters,
146–147

foreign keys, 104–105

form operation, hook_field_
settings(), 80

formatter modules, 87–91

formatter_info(), 88–89

formatters

CCK fields composed of, 76

changing how field is displayed, 24

creating field instances, 91

creating new, 76–77

creating themes, 61

customizing, 77–79

formatting content, 97

Forum topic content type, 5

forums

getting help with Drupal, 311

on status of CCK, 9

Full node menu, Display fields, 35

full node view, 6

Full pager setting, Views UI, 120, 135

functions, theme, 59

G
Garland, 59–61

General setting, Variants tab of Panel UI,
230

Getting Started page, Views list, 110

global null variable, arguments, 137

336 fields

337hook_widget_settings()

global settings

Computed Code field, 53
Date module, 49–50
fields across all node types, 43–45

grab handles, moving field into
content type, 25–26

Granularity setting, Date, 49–50

grid style, views, 114, 160

GROUP BY clause, query object, 199

grouping in template

grouping fields, 170–174
overview of, 169–170
second method for, 174–175

groups

adding relationships in View, 122
changing field display in, 33–34
creating computed value, 52
creating with User Reference, 42–43
field management, 25

guidelines, module, 309–310

H
handbooks

reading Drupal documentation in, 311
writing pages for, 314

handlers

naming conventions, 193–194
plugins vs., 210–212
properties and methods for query

object, 195–199
properties and methods for
views_object, 194–195

utilized in Views, 193, 315–317
Views classes for, 318–324

headers, adding to views, 120–121

helper functions, for custom
programming, 97–99

helper modules

add-on, 14
defined, 13
Panels, 222
for site deployment, 299
for themes, 69–73
types of, 14

Hidden option, Display Fields tab, 68

hook_content_build_modes(), 98

hook_content_generate(), 84

hook_content_is_empty(), 84

hook_content_notify(), 78

hook_field(), 82–83

hook_field_info(), 79–80

hook_field_settings(), 80–82

hook_form validation and submission
hooks, 95

hook_form_alter(), 77

hook_formatter_info(), 88–89

hook_theme(), 90–91

hook_views_admin_links_alter
hook, 205

hook_views_data() method, 206–209

hook_views_handlers,
views_object, 194

hook_views_plugins, views_
object, 194

hook_views_pre_build hook,
202–203, 205

hook_views_pre_execute
hook, 203, 205

hook_views_pre_render
hook, 203, 205

hook_views_pre_view hook, 205

hook_views_query_alter hook, 205

hook_widget(), 87

hook_widget_info(), 85–86

hook_widget_settings(), 86–87

338 hooks

hooks

CCK’s API using, 75
creating custom field types, widget

types or formatters, 77–78
database schema and, 206–210
defined, 76
execution-related, 204–205
field type module. See field type modules
finding source of, 76
formatter module, 88–91
.install file for modules, 78–79
overview of, 200
Views implementing, 200–201
widget type module, 85–87

hooks_views_handlers(), registering
handlers, 211

hooks_views_plugins(), registering
plugins, 212–213

HTML files, 156

I
icons, styling views, 114

Identification, content types page, 18–19

Image field type, Email, 55

Image modules, 55–56

ImageAPI module, 56

ImageCache module, 56

ImageCache UI module, 56

ImageField module, 56

implicit relationships, 191, 206

importing

content types page Import tab, 22
Import/Export tool, 281
Panels UI Import variant option, 230
variants for taxonomy override, 251
Views Import module for, 306
Views UI Import page, 125

indexing

query optimization with, 182

relational databases, 103

$info array, CRUD API, 91–92

.info file, 61

informational messages, Flexible
layouts, 275

inheritance, in object-oriented
programming, 189–190

init(), view execution cycle, 201

initialization, view execution
cycle, 201–203

inner joins, 106–107

Input format, node content, 7

insert operation, hook_field(), 82

.install file, 78–79

Integer field type

available widget types, 46

defined, 26, 40

IRC, getting help with Drupal, 311

issue queues, 311, 314

Items per page option, Views, 120

J
JavaScript, Basic tab settings for, 127

JOIN statement

query object, 196
sharing fields between content

types, 36
joins

base tables and
relationships, 191–192

complex, 208–209
relational database, 106–107

JonBob (Jonathan Chaffer), 9

jQuery UI, for Panels in-place
editor, 222

339Menu settings

K
keys

registering handlers, 211
relational database, 103–105

L
Label field

changing field display, 33–34
creating field with complex

settings, 31
field management, 25

layout

changing, 279–280
node override, 249
using Flexible, 275–278
using Panels for. See Panels
using templates for, 156
Views Bonus Pack pre-created

panel, 306
layout designer, 279

layout manager, 276–277, 279–280

Layout setting, Variants tab of Panel UI, 231

“learning cliff,” Drupal, 102

left joins, 106–107

left-side tabs, Views, 115–117

life cycle, bugs, 312–313

life cycle, Views, 201–203

Limit list to selected items, exposed
filters, 146

Link module, 54–55

Link to view, Pane settings in Views, 268

links

creating reverse, 43
in full node view, 6
in new content type, 12
in title bar on Views list page, 112

List page

content types, 18
Panel pages, 228
Views, 110–112

list style, Views, 114, 160

live preview, Views UI

Basic tab settings, 126–127
creating simple view, 130
overview of, 125
user feeds with arguments, 144

load operation, hook_field(), 81

local tasks (tabs), full node view, 6

locked value, field instances with
CRUD API, 93

locks, overriding core display pages, 247

M
machine names, 24

mailto:link option, Email module, 55

maintenance, and embedded queries, 180

Manage fields, content type List
page, 18

Manage Fields tab

adding fields, 24–25
adding form elements to, 98
changing field display in, 33–36
creating field for existing content

type, 27–29
Maximum length, creating field

with, 31–32

Maximum setting, widget types, 46

media, creating highly visible, 55–56

Menu module, 4

Menu settings

Pages, 121
panel nodes, 235
Panels UI, 230

340 methods

methods

object-oriented programming,
186–187

query object, 194–195
views_object, 194–195

Mini panels tab, Panels dashboard, 227

Minimum number of words field, Submission
forms, 20–21

Minimum setting, widget types, 46

Mini-pager setting, Views UI, 120

mini-panels

content editing, 238
context editing, 258–259
creating, 220, 237
creating from Panels dashboard, 226
editing, 237
overview of, 236–237
Panels package, 222

Module name box, Bulk export page, 127

modules

Advanced Profile Kit for Panels, 308
ApacheSolr, 306
Calendar, 308
CCK. See CCK (Content

Construction Kit) module
Computed Field, 51–54
CTools. See CTools (Chaos Tool Suite)

module
Date. See Date module
Email, 55
field type. See field type modules
Flag, 305
formatter, 87–91
helper. See helper modules
Image, 55–56
importance of nodes in, 4
Link, 54–55
Menu, 4

Nodequeue, 304–305
Panels. See Panels module
Pathauto, 303–304
reporting issues about. See reporting

issues
Sheetnode, 307
SimpleViews, 307
themes directory in, 59
Total Control Admin Dashboard for

Panels, 308
types used primarily in this book,

10–11
Upload, 4
Views. SeeViews module
Views Attach, 306
Views Bonus pack, 305–306
Views Bulk Operations (VBO), 307
Views Datasource, 307
Views Import, 306
Views Slideshow, 305
Views_or, 304
widget type, 85–87

More link, 120, 163

multiple-value formatters, 88–90

multi-row text area widget, 45, 46

MySQL, as install-ready database, 101

N
Name field

changing field display, 33–34

field management, 25

Identification, 18–19

naming conventions

field templates, 62–63

fields, 79

handlers, 193–194, 212

hooks, 200

341objects, in Views

indexes, 103
plugins, 193–194, 213
Views classes, 154
Views templates, 157–158
widgets, 79

New content behavior, Panel, 227

New field setting

changing display of, 34
with complex settings, 30
for existing content type, 27
management, 25

New group

changing field display, 34
field management, 25

new keyword, instantiating
constructors, 190

news sites, using taxonomy terms, 262

node, 7

Node add form context, 262

node author relationship, 272

Node content, node override, 249

node contexts

adding, 260–262
defined, 258
in Panel pages, 258–259

Node data type, 26

Node Reference field type

available widget types, 46
choosing, 39
creating, 41–42
defined, 26
relationships and, 272–273
working with, 41

Node Revision views, 115

node templates, creating themes, 65–66

node view, 115, 248–250

node_add_form context, 258

node_edit_form context, 258

node_load(), 95–97

node_revisions table, 7, 191

node_save(), 95–97

node_submit(), 97

node/NID, 5–6

Nodequeue module, 304–305

Nodereference module, 14

nodes

adding as content, 239
adding fields to, 7
creating data for CCK fields, 95–97
default content types, 4–5
importance of, 4
overview of, 3
parts of, 5–7
settings for fields, 43–44
template for, 164
turning user profiles into, 272

node.tpl.php, 65–66

nofollow option, Link module, 54

Number fields, 40, 76

Number module, 14

Number of values setting

Date module, 49–50
field for existing content type, 29
field with complex settings, 31–32

numbers

field types for storing, 40–41
sorting string fields with, 106

numeric data types, 103, 106

O
object-oriented architecture, in

Views, 185

object-oriented programming, 186–190

objects, in Views, 192–193

342 online references

online references

add-on modules, 14
CTools, 222
EXPLAIN statement, 181–182
getting help with Drupal, 311
installing Drupal, 10–11
Organic Groups, 42
Panels package download, 222
source control software, 292
Views modules, 304–307

option_definition(),
views_object, 194

Optional setting, exposed filters, 146

$options array, views_object, 194

ORDER BY statement, SQL queries in
Views, 107

Organic Groups, 42

Override setting, Views UI, 124, 134

overriding

core node editing pages, 253–255
handlers, 210
in object-oriented programming,

189–190
overriding core display pages

node view, 248–250
overview of, 246–247
taxonomy, 251–252
user view, 252–253

P
Page caching, anonymous, 182

Page content type, 4

Page display

creating, 133–135
creating template with default

message, 168
defined, 116
display-specific settings for, 121

grouping fields in template, 170
user feeds with arguments, 143–144

Page manager, CTSuite, 222

Pager settings, Views UI, 120

Pane settings, in Views, 268–269

Panel content screen
settings, 238, 250, 252

panel nodes

content editing screen, 238
creating, 233–236
creating from Panels dashboard, 226
editing, 236
overriding core editing pages,

253–255
overview of, 233
Panels package, 222
tab on Panels dashboard, 227

panel pages

content editing screen, 238
context editing, 258–259
creating, 231–233
creating from Panels dashboard,

226–227
overview of, 227–229
user interface, 229–231

panel panes, adding views to, 266–267

panel regions

applying styles, 283–284
Panel content screen settings, 238
point-and-click layout in Panels,

219–220
panels

access rules for, 244–246
adding content, 237–242
caching, 242
configuring existing content panes,

243–244
mini-panels, 236–237

343plugins

overriding core display pages, 246–253
overriding core node editing pages,

253–255
panel nodes, 233–236
panel pages. See panel pages
Panels dashboard, 225–227
your first panel, 225

Panels dashboard, 226–227

Panels in-place editor, 222–223

Panels module

arguments in panes, 264–271
brief history of, 217–218
Chaos Tool Suite (CTools), 223
contexts. See contexts
creating contexts, 221
exporting, 298–299
as modules, 222–223
Panels package, 222
pluggable architecture, 221
point-and-click layout, 219–221
purpose of, 217
push and pull, 218–219
relationships, 271–273
theming. See theming Panels

panels_admin stylesheet, 285

panels_dashboard stylesheet, 285, 286

panels_dnd stylesheet, 285

panels_page stylesheet, 286

parent directive, plugins, 213

patches, writing, 313–314

Path, Views list page, 112

path directive, plugins, 213

Path module, 4

path setting, Page, 121

Pathauto module, 308–309

paths, node, 5

patience, reporting issues and, 313

performance

Basic tab settings, 126–127
caching hooks to improve, 201
determining query, 178–179
embedding queries for, 179–180
sharing fields between content

types, 36
using EXPLAIN for query, 180–182

permissions

to access published content, 6
changing user roles or, 120
Content Permissions module, 14
managing access rules, 244–246
node view, 248
overriding core display pages, 247
overriding core node editing

pages, 254
Panels UI settings, 230–231
User Reference vs. Node

Reference, 43
view pane displays, 269

PHP

CCK’s API using, 75
Computed Field module requiring,

51–54
creating relative dates with, 48–49
embedding queries, 179–180
templates and, 156

plain text

Text field type, 40
widget for Email module, 55
widget options for Text field type, 46

players, adding with User Reference, 42–43

plugins

handlers vs., 210–212
naming conventions, 193–194
Panels architecture, 221
Panels styles, 290

344 plugins

plugins (continued)

properties and methods for query
object, 195–199

properties and methods for
views_object, 194–195

Views, 192–193
Views API, 317–318
Views classes for, 324–326

podcasts, getting help using, 311

point-and-click layout, Panels, 219–221

Poll content type, 5

polymorphism, in object-oriented
programming, 189

possible_keys, query optimization, 181

Post date, node content, 6

PostgreSQL, 101

posts, nodes as, 3

pre_execute(), view execution
cycle, 202

pre_query(), view execution cycle, 202

pre_render(), view execution cycle, 203

<pre> tag, HTML, 165

Precision setting, widget types, 46

Prefix setting, widget types, 46

prepare translation,
hook_field(), 82

preprocessors, for themes, 164

presave operation, hook_field(), 82

Preview, node override, 250

preview(), executing views display, 204

Preview ,Variants tab of Panel UI, 231

primary keys, 103–105

Print page, Display fields, 35–36

printing, default messages for empty fields,
167–169

procedural architecture, 185–188

production, moving from development to,
293–294

profiles

creating specific user, 308
turning into nodes, 272

Promoted to front page option

node content, 6
Workflow, 21

properties

field, 24
query object, 194–195
views_object, 194–195

Published filter, 124

Published option

node content, 6
panel nodes, 236
Workflow settings, 21

pulling in needed content, Panel layout, 219

pushing in needed content, Drupal
layout, 218

Q
queries, SQL

Basic tab settings, 126–127
constraining with primary keys,

103–105
filtering and sorting, 105–106
joins and, 106–107
in Views, 102, 107–108

query() method, query object, 196

query object

properties and methods, 195–199
view execution cycle, 203

query optimization

determining query performance,
178–179

development time vs. CPU time
in, 177

embedding queries for, 179–180

345river of news listings

experimenting with, 183
EXPLAIN statement, 180–182
indexing vs. caching, 182
not worrying about, 177–178
overview of, 177

R
radio button widget, 45–46

records of data. See rows

Reference data type, 26

Region menu, Flexible panel layout, 277

registering

handlers, 211
plugins, 212

registry, rebuilding theme, 68

relational databases

emergence of Views for, 102
filtering, 105–106
joins, 106–107
keys, 103–105
rows and fields, 103
sorting, 106
SQL and, 101
from SQL to Views to human

language, 107–108
relationships

adding, 122
base tables and, 191–192
building SQL queries, 107
creating display using, 150–151
designing page content and layouts

using, 280
with foreign keys, 104–105
handlers for, 317
joins and, 106–107
overview of, 148–149
in Panels, 271–273

query object, 196–198
relating tables to each other, 206–207
in taxonomy override page, 251

relative dates, creating, 48–49

release notes, reporting issues, 311

Remember setting, exposed filters, 146

render() method, view execution
cycle, 203

reporting issues

asking for another’s time and, 314
bug requests vs. support requests, 312
checking other sources, 311–312
contribute back, 314
life cycle of bugs, 312–313
overview of, 309
patience, 313
reading documentation, 310–311
staying on topic, 312
submitting complete report, 309–310

reports, submitting complete, 309–310

Required setting

creating field for existing content
type, 29

creating field with complex settings,
31–32

Date module, 49–50
Rescan template files

creating template with default
message, 168

finding new template files with, 156
grouping fields in template, 171
overview of, 165–166

reverse links, creating, 43

revision control, 292

revision ID (tid) primary key, 103–104

Revision information settings, panel
nodes, 235

river of news listings, 6

346 roles

roles

creating for views, 120
User Reference and limitations on

user, 43
Row menu, Flexible panel layout, 277

Row style plugin, 212

row styles, Views

defined, 114–115
overview of, 193
template files, 161–162

rows

in relational database tables, 103
reliance on keys, 103–105
simple views with, 129

RSS feeds

with arguments, 143–144
creating feed view, 135
display template for, 159
row style template file, 162

RSS page, Display fields, 34–36

S
sanitize operation, hook_field(), 82

Save content type button, 22

save operation, hook_field_
settings(), 80

saving views, 142, 144

screencasts, for help with Drupal, 311

select list widget, 45–46

SELECT statement, SQL queries, 107

selection rules, 230, 247

Send arguments, Pane setting in Views, 269

Separator field, table style view, 114

set_arguments(), view execution
cycle, 201

set_where_group(), query object, 198

Settings tab, Panels dashboard, 226–227

Settings tab, Panels UI, 230

sharing, fields between content
types, 29, 36–38

Sheetnode module, 307

SimpleViews, 307

single on/off check box widget, 45–46

single-value formatters, 88–89

site deployment

configuring development
environment, 291–293

exporting CCK, 295–296
exporting panels, 298–299
exporting views, 296–297
exporting your structures, 294–295
helper modules for themes, 299
moving to production, 293–294

/sites/all/themes directory, base
theme, 60–61

slider bar, Flexible panel layout, 277–289

slideshows, creating, 305

Sort Criteria settings

creating simple view, 130
defined, 123
user feeds with arguments, 143

sort handlers, Views API, 315–316

sorting

criteria applied in Views list
page, 111

relational database, 106
tables by columns, 114

source code, CSS in, 285–289

source control, configuring development
environment, 292–293

special characters, Name and
Type fields, 19

spreadsheets, creating, 307

SQL (Structured Query Language)

emergence of Views, 102

347Tag, Views list page title bar

filtering and sorting, 105–106
joins, 106–107
relational database basics, 102–105
relational databases and, 101
using CCK’s API, 75
to Views to human language, 107–108

stacking arguments, 144–145

stay on topic, in reporting issues, 312

Sticky, node content, 6

Sticky at top of lists, Workflow settings, 21

storage, database, 8–9

Story content type, 4–5

string context, 258

string data types, 103, 106

strtotime function, PHP, 48–49

structures

changing when sharing fields between
content types, 36

configuring development
environment, 291

exporting. See exporting structures
style plugins

defined, 212
Panels, 290
Views, 193, 317–318

styles, Panel

applying, 283–284
creating new, 282–283
CSS in, 284–285
other stylistic changes, 289–290
Panels module supporting, 221
sharing, 281
using Stylizer, 280–281

styles, View

Basic settings, 119–120
creating simple view, 129
feed display, 135

icons for setting, 114
overview of, 160
in themes, 61

stylesheets, 285–286

Stylizer

creating new panel style, 282–283
defined, 222
overview of, 280–281

submenu bar, Views Add page, 112

Submission form settings, content types
page, 19–21

Suffix setting, widget types, 46

suggestions, overriding default theme
files, 62

Summary setting, Variants tab of
Panel UI, 230

Summary tab, Panels UI, 230

summary views, templates for, 164

support requests, bug reports vs., 312

system pages, 228

T
table style, Views, 114, 160–161

tables

declaring fields on, 209–210
declaring in hook_views_data(),

207–209
defined, 103
filtering and sorting fields, 105–106
joins, 106–107
keys, 103–105
relating to each other, 206–207
rows and fields, 103

tabs

Panels UI, 230
Views left-side, 115–116

Tag, Views list page title bar, 112

348 tags

tags

changing for default view, 113–114
editing for default view settings,

117–118
tasks, 312

taxonomy

adding term to pane, 263–264
child vs. sibling terms, 264
creating list of terms, 115
overriding core display pages, 251–252
overriding title, 264
using arguments for depth of, 137
using panels with, 262
using relationships in panels, 272

teams, creating, 42–43

Teaser

Display fields, 35
node content, 7

teaser view, node view as, 6

templates, theme

changing, 68–69
field, 61–64
node, 65–66
overview of, 59–60
using Theme Developer, 70–71
viewing with Contemplate module,

71–73
templates, Views

debugging, 167
display, 159–160
grouping, 169–175
listing default, 156–157
looking inside, 166–167
other, 162–164
printing default messages for empty

fields, 167–169
Rescan template files, 165–166

row, 161–162

view styles, 160–161

working with, 164–165

Term views, 115

term(s) context, 258

testing

on non-production site, 293–294

query performance, 178–179

text, title bar on Views list page, 112

Text field type

available widget types, 46

defined, 26

working with, 40

text field widget, 45–46

Text module, 14

Text processing setting, 31–32

Theme Developer, 70–71

theme.inc file, /views/theme
directory, 165

themes

adding files to, 68

basics, 59–60

changing parts of, 64–65

excluding fields from, 68

field templates creating, 61–64

for fieldgroups, 66–68

formatters creating, 61

helper modules for, 69–73

node templates creating, 65–66

nodes enabling, 4

overview of, 59

preserving base theme, 60–61

refining master layout, 218

settings in View, 121

templates. See templates, theme

using Node Reference, 68–69

349user interface (UI), Panels

theming Panels

changing layouts, 279–280

CSS classes, 289

CSS in Panels UI, 284–285

CSS in source code, 285–286

Flexible layout, 275–278

identifying particular pane, 286–288

other stylistic changes, 289–290

using Stylizer, 280–284

theming Views

classes, 153–156

overview of, 153

template files. See templates, Views

$this variable, OOP, 186–187

tid (revision ID) primary key, 103–104

Time zone handling field, Date, 49–50

title

Basic settings for Views UI, 119

configuring arguments for, 140

executing views display for page,
203–204

node content, 6

Panel content screen settings, 238

Submission form settings, 19

Views list page, 112

To Date setting, Date module, 49–50

Tools pages, Views UI, 125–126

topic, reporting issues by staying on, 312

Total Control Admin Dashboard, 308

.tpl.php extension, themes

field templates, 62

node templates, 65–66

overview of, 59

tutorials

creating page, 254

getting help with Drupal, 311

Type field

adding fields, 25
changing field display, 33–34
Identification, 18–19

type setting, CRUD API, 92

type_name, CRUD API, 91

U
UI (user interface), Panels, 229–231

UI flow, handlers, 210

uid (user ID) primary key, 103–105

underscores, in machine names, 24

unformatted style, Views, 114, 161

Unlock operator, exposed filters, 146

updates

hook_field(), 82
node content, 6
node override, 250
Panel content screen settings, 238

Upload module, 4

URLs

creating readable and memorable,
308–309

node, 5–6
not passing arguments to blocks with,

144–145
overriding using Pane settings in

Views, 269
path settings, creating panel nodes, 235
taxonomy override page and, 251
using arguments to hide/remove

information in, 137
Use Ajax option, Views UI, 120

Use panel path option, Pane settings in
Views, 268

user context, 258

user interface (UI), Panels, 229–231

350 user profiles

user profiles

creating specific, 308

turning into nodes, 272

User Reference field type

available widget types, 46

choosing, 39

defined, 26

and relationships, 272–273

working with, 42–43

user view

defined, 115

overriding core display pages, 252–253

Userreference module, 14

users, reporting issues. See reporting issues

V
validate operation, hooks, 80, 82

validation

of arguments, 140

Views UI, 124

validator plugins, Views, 193

variables

changing theme with Node
Reference, 68–69

field template, 63–64

variants

node override, 249–250

taxonomy override, 251–252

Variants tab, Panels UI, 230

version control, using source control, 293

version numbers, Drupal and, 10

vid (version ID) primary key, 103–104

view building flow, handlers, 210

View Bulk Operations (VBO), 307

view execution cycle, 201

view object, Views, 192

view pane displays, 268–271

view_pre_view hook, 202

.view-content class, 154

.view-empty class, 154

.view-filters class, 154

.view-footer class, 154

.view-header class, 154

Views API

base tables and relationships, 191–192

classes, 318–326

data architecture, 185

database schema and data hook,
206–210

executing views display, 203–204

execution-related hooks, 204–205

handlers, 210–212, 315–317

life cycle of view, 201–203

object-oriented programming,
186–190

objects involved in a View, 192–199

overview of, 199–201

plugins, 212–213, 317–318

Views Attach module, 306

Views Bonus pack, 297, 305–306

Views content panes, CTSuite, 222, 226

views data operation,
hook_field_settings(), 81

Views Datasource module, 307

Views Datasource plugins, 307

views directory, 156

Views Import module, 306

Views module

Add content modal for, 266–267

Add creation page, 115–116

birth of Views 2, 102

Calendar module requiring, 308

creating. SeeViews UI

351views-ui-*.tpl.php file

emergence of, 102
exporting, 296–297
exposed filters, 145–147
filters, 40
node, 6
overview of, 107–108
Pane settings, 268–269
query optimization. See query

optimization
relationships, 148–151
saving, 142
settings, 117–118
simplifying queries with, 107
templates. See templates, Views
theming. See theming Views
using arguments. See arguments
Views API. SeeViews API

Views modules

ApacheSolr, 306
Flag, 305
Nodequeue, 304–305
Sheetnode, 307
SimpleViews, 306
View Bulk Operations (VBO), 307
Views Attach, 306
Views Bonus Pack, 305–306
Views Datasource, 307
Views Import, 306
Views Slideshow, 305
Views_or, 304

Views Slideshow module, 305

Views UI

Add pages, 112
arguments, 122
Basic settings, 118–121
Basic tab, 126–127
Bulk Export page, 127

Convert tab, 127–128
creating feed view, 135
creating simple view, 128–130
display specific settings, 121–122
embedding view within view using

attachments, 135
enabling and changing default view,

113–114
fields, 122
filters, 123–124
Import page, 125
left-side tabs, 115–117
List page, 110–112
live preview, 125
overrides, 124
overview of, 131–135
relationships, 122
sort criteria, 123
Tools pages, 125–127
using Advanced Help module for, 110
validation, 124
View settings, 117–118
Views 2 UI vs. original, 109–110
Views Add page, 115–116

Views_bookmark module, 305

views_embed_view(), 204

views_get_current_view(), 202

views_handler, 193

views_handler_filter_in_operator
handler, 211

views_object, properties and methods
for, 194

Views_or module, 304

views_plugin, 193

views-exposed-form.tpl.php
file, 163

views-more.tpl.php file, 163

views-ui-*.tpl.php file, 163

352 views-view-fields.tpl.php file

views-view-fields.tpl.php file,
161–162, 166, 170–171

views-view-field.tpl.php file, 164,
168–169

views-view-grid.tpl.php file, 160

views-view-list.tpl.php file, 160

views-view-row-comment.tpl.php
file, 164

views-view-row-node.tpl.php
file, 164

views-view.rss.tpl file, 159

views-view-rss.tpl.php file, 162

views-view-summary.tpl.php file, 164

views-view-summary-
unformatted.tpl.php file, 164

views-view-table.tpl.php file,
160–161

views-view.tpl.php file, 158–159

views-view-unformatted.tpl.php
file, 160–161

visibility rules. See access rules, Panels UI

vocabularies

adding taxonomy term to pane,
263–264

building with taxonomy, 262
vocabulary context, 258

W
Web search, for help with Drupal, 311

WHERE statement

building SQL queries in Views, 107

with EXPLAIN for query optimization,
181–182

implementing filters in SQL,
105–106

widget types

changing, 47
creating custom, 77–79
creating field instances with, 91
creating new, 76–77
modules, 85–87
and settings per field type, 29, 46

widget_type setting, 92

widgets

in CCK at install, 45
in CCK fields, 76
constraining data with, 43–45
creating field with complex

settings, 31
Date module, 48
Email module, 55
FileField module, 56
overview of, 29
template, 163

wildcards

as shortcut for arguments, 140
taxonomy override page and, 251

Workflow, content types page, 21–22

X
XAMPP stacks, installing Drupal, 10

	Contents
	Foreword
	Preface
	7 Creating Views
	Views UI
	Showing Your Views to the World: Creating Displays
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

