
Mashup Patterns
Designs and Examples for the
Modern Enterprise

Michael Ogrinz

Upper Saddle River, NJ • Boston • Indianapols • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

Ogrinz.book Page v Wednesday, February 25, 2009 10:15 AM

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the pub-
lisher was aware of a trademark claim, the designations have been printed with initial
capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom covers
and content particular to your business, training goals, marketing focus, and branding
interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Ogrinz, Michael.
Mashup patterns : designs and examples for the modern enterprise / Michael Ogrinz.

p. cm.
Includes index.
ISBN 978-0-321-57947-8 (pbk. : alk. paper)

1. Web 2.0. 2. Mashups (World Wide Web) 3. Business enterprises—Technological
innovations. 4. Application software—Development. I. Title.

TK5105.88817.O57 2009
005.7'2—dc22

 2008053762

Copyright © 2009 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671-3447

ISBN-13: 978- 0-321-57947-8
ISBN-10: 0-321-57947-X
Text printed in the United States on recycled paper at R.R. Donnelley in Crawfordsville,
Indiana.

First printing, March 2009

Editor-in-Chief
Mark Taub

Acquisitions Editor
Trina MacDonald

Development Editor
Songlin Qiu

Managing Editor
John Fuller

Project Editor
Anna V. Popick

Copy Editor
Jill Hobbs

Indexer
Michael Loo

Proofreader
Kelli Brooks

Cover Designer
Chuti Prasertsith

Composition
Rob Mauhar

Ogrinz.book Page vi Wednesday, February 25, 2009 10:15 AM

xiii

Preface

Once you understand the design patterns and have had an “Aha!” experience with them,
you won’t ever think about . . . design in the same way.1

The inspiration for writing this book came from my own “Aha!” moment. Ini-
tially I dismissed mashups as a hack best suited to consumer-focused sites that
did things like combine craigslist and Google Maps2 or merge local event calen-
dars. I couldn’t see how any public information on the Internet could benefit
my employer. I laughed behind the backs of vendors who tried to demonstrate
the promise of the technology based on examples that involved checking the
weather or searching for a used car.

I had my epiphany when I was meeting with some frustrated business associ-
ates one afternoon. They were performing a series of tedious actions that
seemed ripe for automation except for one problem: They had to repeatedly
consult an outside vendor’s Web site at each step of the process. The Web site
didn’t expose an application programming interface (API), so they mistakenly
thought that some degree of human interaction was inevitable. After all, Web
pages are just for people, right? It suddenly dawned on me that the mashup
tools I had dismissed could get around this problem. I could automatically
extract the data I needed from the site and write a small application to perform
the rest of the process. In essence, I could create an API where none existed
before. Once the “people requirement” was removed, the entire procedure was
easily offloaded to a computer.

Traditional approaches to application reuse require that a system or its con-
stituent parts be designed for inclusion in new solutions. While an admirable
goal, one limitation of this architecture is that it’s implemented “by developers,
for developers.” Mashups explode this narrow view of reuse. Mashups can cer-
tainly leverage open systems, but they can also reach deep into applications
where no API currently exists to grab data or automate processing. In addition,

1. Gamma, Erich, Richard Helm, Ralph Johnson, and John M. Vlissides. Design Pat-
terns. Addison-Wesley Professional, 1994.

2. Housingmap.com, created by Paul Rademacher, combined the craigslist.com and
Google Maps Web sites in what is considered the Web’s first mashup.

Ogrinz.book Page xiii Wednesday, February 25, 2009 10:15 AM

xiv PREFACE

many mashup tools leverage the latest advances in user interface design to make
the entire solution-building process accessible to the average user.

The goal of this book is to demonstrate situations where mashups can be
used to solve what appear to be intractable problems outside the realm of tradi-
tional solutions. Once you have a breakthrough moment similar to mine, you’ll
never look at application development the same way again. In learning about
how mashups foster efficiencies and inspire creativity, you may discover a path
that will lead your business toward profitable new areas.

There are many meanings of “pattern” in the world of software engineering.
In the classic text Design Patterns, the authors include the following disclaimer:

Point of view affects one’s interpretation of what is and isn’t a pattern. One person’s
pattern can be another person’s primitive building block.

In this book I am using a less rigorous interpretation of the term “pattern.” I
hope this will not prevent readers from exploring the text on mere ideological
grounds. My goal is not to provide an academic treatise on the subject, but
rather to provide a cookbook of ideas that will help you unlock the hidden
potential in the resources that surround you. Enterprise mashups present excit-
ing new opportunities for organizations to mine wikis, blogs, and other docu-
ment-centric Web content as first-class data. Firms can combine these resources
with others inside the corporation, such as databases and Web Services, in a
near-endless series of permutations.

Not all of the patterns presented here will fit perfectly within your com-
pany—but ideally they will trigger fresh ways of thinking that will lead you to
build exciting new solutions.

Who Should Read This Book

An understanding of mashup technology can spark new ideas for addressing
old or dismissed problems. This book caters to the broad community of skills
and abilities found within the next generation enterprise.

Software Developers

Each pattern is presented within a standard template that provides a technical
summary (diagram, problem statement, and solution) of that pattern. This sum-
mary will resonate most with developers, who are often accustomed to dealing
with abstractions as part of their normal course of work. Mashups can be a key
tool for personnel in an organization’s Information Technology (IT) department
to address the backlog of unmet or unfulfilled end-user requirements.

Ogrinz.book Page xiv Wednesday, February 25, 2009 10:15 AM

PREFACE xv

Content Creators

Content creators should also familiarize themselves with the examples provided
for each pattern, as these sections will provide insight into how their informa-
tion is being consumed. In the era of mashups, anything placed on the Web is
fair game not only for people, but also for software agents, automated bots,
Web scrapers, and crawlers.

Business Users and Executive Management

Mashups are sometimes viewed as part of an egalitarian new world where
information is freely shared. While that may be the case, they can also be used
to flat-out make money. The examples given for each pattern provide the lay-
person with details about how mashups help a business be more productive and
competitive.

The discussion of security in Chapter 10 is applicable to everyone. The ram-
pant adoption of any technology without appropriate controls for managing its
use is a recipe for failure. Almost every day a new headline cries out about how
an employee accidentally mishandled or abused data. This behavior can lead to
loss of trust or outright litigation between a company and its customers. Unless
we want mashups to become the latest high-profile failure, we must work to
supervise them correctly.

The organization of this book is designed to encourage browsing and self-

discovery. I encourage you to skip around and explore the numerous feats of
which mashups are capable. There is no “right way” to use them. When you
apply a mashup to solve a particularly thorny problem, you’ve succeeded!

How Patterns Are Presented

Each pattern is presented by means of a standard template:

• Name. The name is the most succinct summary of what the pattern actu-
ally does. Once a pattern enters common usage, it’s typically referenced in
conversation only by its name.

• Icon. To facilitate use of the patterns in architectural diagrams, each one
has been assigned a specific icon.

Ogrinz.book Page xv Wednesday, February 25, 2009 10:15 AM

xvi PREFACE

• Diagram. The diagram provides a visual representation of how the pattern
is constructed. The diagrams are especially useful to demonstrate how
multiple patterns interact (e.g., API Enabler and Competitive Analysis).

• Core Activities. Every mashup is associated with a set of highly generic
capabilities (data extraction, transformation, and so on). Not all mashup
products necessarily implement all of these features. Rather than redun-
dantly list each requirement with each pattern, they have been abstracted
into a set of core activities. When you attempt to use a pattern, you should
verify that your selected toolset supports the functionality of the requisite
core activities.

• Problem. This section explains the difficulty or opportunity that the pat-
tern seeks to address; it offers a short summary that explains the value
proposition of the pattern.

• Solution. This part addresses the problem identified earlier to show how
mashups can be used to create a solution. Success in implementing a solu-
tion may depend on the toolset you are using, the sites participating in the
mashup, and the pattern’s fragility rating.

• Related Patterns. The context in which a pattern is applied can have a
major impact on its description. This section references the use of similar
mashup features in other patterns. If the pattern described is a composite
of other patterns with new functionality, the leveraged patterns are listed
here as well.

• Fragility. Mashups may contain elements of instability based on the resources
they leverage. The degree of this fragility varies with each implementation.
In essence, mashups allow some fragility for the benefit of agility. This sec-
tion assigns a general risk rating to a particular pattern and provides a
brief explanation of how it was derived.

• Examples. These short vignettes illustrate uses of the particular pattern in
an enterprise context.

About the Pattern Examples

The most persuasive component of a pattern’s detail is an example. To drive
home the benefits regardless of the reader’s background, this book typically
presents more than one example of each pattern’s use that spans different indus-
tries. It’s my hope that as you peruse these examples some will resonate as

Ogrinz.book Page xvi Wednesday, February 25, 2009 10:15 AM

PREFACE xvii

potential opportunities within your organization. In addition, these sections
should serve to expand your knowledge regarding the flexibility and capabili-
ties of enterprise mashups.

In a divergence from some patterns books, Mashup Patterns does not supple-
ment the formal definitions with sample code. At this early stage of evolution,
no standard libraries or toolkits have been developed for mashups, and the
capabilities of off-the-shelf products vary greatly. In place of code, examples are
provided based on Web sites, applications, and other resources. Where an exam-
ple relies on interactions with external data sources and third-party applications
(e.g., API Enabler, Field Agent, Competitive Analysis, Usability Enhancer), sample
products were constructed from scratch. Any resemblance to actual software or
Web sites is purely coincidental.

The case studies presented in the book’s appendix illustrate how leading
organizations have used specific products to implement the patterns described
in the text. This material should neither be interpreted as an endorsement of
any particular product nor used as a substitute for conducting your own due-
diligence analysis. Rather, the case studies are intended to underscore the practi-
cal nature of the technology and to encourage you to explore mashups further.

Mashups aren’t just about Web sites, of course. Because the Internet is prob-
ably the richest source of raw material for their construction, however, I inevi-
tably used it as a primary ingredient in many of the examples. Please excuse
these momentary demonstrations of bias while I try and drive a larger point
home. Don’t forget that many mashup products support sources ranging from
Web Services, XML feeds, and databases to email and binary formats (e.g.,
Excel and PDF).

What You Will Gain from Reading This Book

The information contained in this book will help you unleash the potential of
enterprise mashups within your firm. The following topics are covered:

• An overview of Web 2.0 and Enterprise 2.0 and an exploration of how
mashups fit into this framework

• Familiarity with the technology that makes mashups work

• Perspectives on how mashups coexist with other IT tools and initiatives

• A collection of patterns and practical examples that both explain and dem-
onstrate the benefits of mashups in an enterprise context

Ogrinz.book Page xvii Wednesday, February 25, 2009 10:15 AM

xviii PREFACE

Other Resources

This book has a companion Web site, http://mashuppatterns.com, where you
can learn about new mashup patterns and contribute your own ideas and com-
ments. You may contact the author at mike@mashuppatterns.com. The site also
contains corrections to any errata discovered in this text. Please stop by and
share your experiences with enterprise mashups!

Ogrinz.book Page xviii Wednesday, February 25, 2009 10:15 AM

1

Chapter 1

Understanding Mashup
Patterns

Collaborators welcome!1

Introduction

When the World Wide Web was first unveiled, “collaborators” referred to one
small segment of the population: nerds.2 The first browser ran on a computer
that almost no one outside of a university or research lab used.3 The Web itself
consisted of a lone site4 (WWW Growth, Figure 1.1). Yet from this singularity,
a new universe would soon emerge.

The amount of content didn’t grow much until two years later. That was
when the first of several “Big Bangs” would occur. In 1993, the first PC-based
program capable of browsing the Web was released.5 Its introduction instantly
put the Web within the reach of a far larger audience. Even so, Internet connec-
tivity remained largely restricted to universities, research institutes, and corpo-
rations. Consumers enjoyed online communities, but generally did so via
prepackaged, fenced-in services such as Compuserve, Prodigy, and America
Online (AOL). Connectivity was achieved through slow “dial-up” connections
over telephone lines. Access to content was typically billed at an hourly rate.

1. From Tim Berners-Lee’s first public Usenet post announcing the public availability of
the first Web server and browser in 1991.

2. A contingent of which I am proud to proclaim myself a member.

3. The NeXT workstation, conceived by computer luminary Steve Jobs.

4. Tim Berners-Lee invented the World Wide Web in 1989 while working at the CERN
Particle Physics Laboratory.

5. NCSA Mosaic, released in 1993.

Ogrinz.book Page 1 Wednesday, February 25, 2009 10:15 AM

2 CHAPTER 1 UNDERSTANDING MASHUP PATTERNS

By 1994, the first independent Internet service providers (ISPs) had begun to
pop up. By installing special software on their computers, consumers could
access the entire content of the Web (almost 1,000 sites!). AOL began to open
up Web access for its millions of subscribers. Prices universally moved to flat-
rate monthly charges. WYSIWYG (“What you see is what you get”) HTML
editors appeared and made creating Web pages just a bit easier. In response, the
second explosion in Web growth occurred. By 1996, corporations didn’t see a
Web presence as a luxury, but rather as a necessity. What better way to instantly
push content to the consumer? The Web was viewed as a new media channel
that offered endless opportunities for commercial success.

If the waning years of the past century had a motto, it certainly wasn’t “Col-
laborators welcome”; “Venture capital welcome” is probably more accurate.
Fueled by ill-conceived business plans and wild speculation, a worldwide
expansion of the Web’s underlying infrastructure took place. Meanwhile, the
browser jumped from home computers to cell phones and mobile devices for
the first time. High-speed cable and DSL “broadband” connectivity options
became ubiquitous. The third explosion was the popping of the Web bubble,
which saw these ventures implode en masse when they failed to turn a profit.
This event marked the end of the first wave of the Web’s evolution, which in
hindsight we label Web 1.0.

Web 2.0

In the aftermath of the Web 1.0 crash, the glut of infrastructure kept the costs
of going online low. That simple fact helped attract even more users to come

Figure 1.1 The growth of the World Wide Web: number of Web sites, 1990–2000

640,000,000

3,200,000

160,000

8,000

400

20

1
Dec.
1990

Sep.
1991

Jun.
1992

Mar.
1993

Sep.
1994

Jun.
1995

Mar.
1996

Dec.
1993

Sep.
2000

Dec.
1999

Sep.
1997

Jun.
1998

Mar.
1999

Dec.
1996

Ogrinz.book Page 2 Wednesday, February 25, 2009 10:15 AM

WEB 2.0 3

online. A few companies began to figure out how to leverage the Web without
going bankrupt. Collectively, their embrace of the Internet represented the slow
expansion of the Web from that last primordial blast. New marketplaces
evolved as sites like eBay linked buyers and sellers from around the globe.
These online flea markets, in turn, spawned communities that helped pioneer
the concepts behind new social networking sites like MySpace and Facebook.

By 2006, the firms that had simultaneously feared and tried to control Web
1.0 looked up from licking their wounds and saw the dawn of a new paradigm.
In a symbolic changing of the guard, “old media” giant Time magazine
announced the Person of the Year was “You.”6 There was no great single occur-
rence that made this milestone possible. Rather, the driving force was the con-
fluence of many events: the spread of cheap broadband access, the Web-
enabling of multiple devices, the arrival of new communication environments,
and the emergence of cooperative environments for organizing information.
Collaborators were finally running the show.

Industry figurehead Tim O’Reilly is credited with popularizing the term
“Web 2.0” to define this new age:

Web 2.0 is the business revolution in the computer industry caused by the move to
the Internet as platform, and an attempt to understand the rules for success on that
new platform.7

A simpler working definition is that Web 2.0 is a shift from transaction-
based Web pages to interaction-based ones. This is how the power of “You” is
mashed, mixed, and multiplied to create value. Social-networking sites, folksono-
mies (collaborative tagging, social bookmarking), wikis, blogs, and mashups
are just some of the components that make this possible. The success of sites
such as Facebook, wikipedia, flikr, and digg has demonstrated that democrati-
zation of content creation and manipulation is powering the latest wave of
Internet growth.

The underlying driver of Web 2.0 is flexibility. The one trait technologies
slapped with the Web 2.0 moniker share is that they are extremely (and perhaps
sometimes unintentionally) malleable. The successful products don’t break
when a user tries to extend them beyond their original design; they bend to
accept new uses. Two success stories of the new Web illustrate this principle:

flickr was started by Caterina Fake and Stewart Butterfield as an add-on feature for a
video game they were developing. The idea was to allow players to save and share
photos during gameplay. When they realized that bloggers needed a convenient way
to store and share photos, Fake and Butterfield started adding blog-friendly features.

6. Time magazine, December 13, 2006.

7. http://radar.oreilly.com/archives/2006/12/web-20-compact-definition-tryi.html

Ogrinz.book Page 3 Wednesday, February 25, 2009 10:15 AM

4 CHAPTER 1 UNDERSTANDING MASHUP PATTERNS

Opening up their architecture to allow users of the site to create custom enhance-
ments fueled their viral spread. The original game was ultimately shelved and flickr
was sold to Yahoo! a year later for an undisclosed sum.

Deli.cio.us grew from a simple text file that its founder, Joshua Schachter, used to
keep track of his personal collection of tens of thousands of Web site links. When the
site went public in 2003, it spawned a host of add-ons. The concept of associating
data with simple keywords to aid in organization wasn’t new, but the cooperative
“social tagging” aspect of deli.cio.us resonated with the frustrations of other Internet
users.

Enterprise 2.0

Inevitably, when people discover a useful tool outside the workplace, they want
to use it at the office as well. This happened years earlier when employees
began sneaking personal computers into their offices to make it easier to man-
age spreadsheets and documents. More recently, end users have imported
instant messaging and unlimited email8 services from external sources.

User demand for Web 2.0 technologies within existing corporate infrastruc-
ture is the catalyst for Enterprise 2.0.9 The challenge for firms is to integrate
these new peer-based collaboration models with legacy technologies and mind-
sets. Figure 1.2 illustrates three areas that established organizations have typi-
cally established to control how solutions are delivered.

Enterprise 2.0 breaks down traditional divisional barriers and encourages
building bridges. The managerial structure does not change, but the ability to
conceive solutions and access the technology to deliver them is available to
everyone (as shown in Figure 1.3).

Changing the social structure of a firm is termed “soft reorganization.” Its
consequence is movement away from fixed roles and responsibilities and
toward a more open and unrestricted workplace. The phrase “economies of
scale” refers to the cost advantages associated with large-scale production. We
term the benefits of Enterprise 2.0 the “economies of collaboration.” How are
they established?

8. When Gmail (Google Mail) was announced in April 2004, it offered 1 gigabyte of
message storage. This was well beyond the storage limit most corporate mail systems
impose on their employees.

9. McAfee, Andrew. “Enterprise 2.0: The Damn of Emergent Collaboration.” Sloan
Management Review, Vol. 47, Spring 2006.

Ogrinz.book Page 4 Wednesday, February 25, 2009 10:15 AM

ENTERPRISE 2.0 5

• Nontechnical users are empowered to create application solutions without
engaging management or IT personnel in the process. This agility leads to
shorter time-to-market cycles.

• Folksonomies replace strict taxonomies (see the “Folksonomies versus
Taxonomies” sidebar). Newly discovered connections between data and
processes can be exploited to add business value.

Figure 1.2 Typical organizational hierarchy

Figure 1.3 Traditional barriers to solution delivery are removed in Enterprise 2.0.
Each segment of an organization now has equal access to technology. To
leverage this new environment, powerful (yet user-friendly) tools are intro-
duced. These tools enable associates outside traditional IT to create their
own solutions.

Different data security and information protection concerns are addressed by each particular tier. IT views security
from a purely mechanical perspective (via the use of secure protocols, authentication, encryption, and so on).
Business users depend on education (e.g., not writing down passwords, not emailing confidential documents, pursuing
nondisclosure agreements). Management is concerned with making sure the firm is in conformance with any
regulatory or industry-specific policies.

A centralized IT department manages hardware and
development technology. Because IT is usually a cost center,
these personnel do not engage with users to build a solution
without the approval of Management.

Business users preform organizational functions that support
the corporate goals. They negotiate with Management to enlist
Technology if they have a business problem to solve. This
results in longer time-to-market cycles and potentially affects
bottom-line results.

This hierarchy of individuals sets corporate goals and balances
cost and revenue activities to achieve them.

Management

Business Associates

IT Department

Technology

S
ec

ur
ity

 and Governan
ceTechnology

Management

Business Users IT Department

Ogrinz.book Page 5 Wednesday, February 25, 2009 10:15 AM

6 CHAPTER 1 UNDERSTANDING MASHUP PATTERNS

• New communication tools mine “the wisdom of the crowd” to encourage
collaboration and innovation, a technique known as crowdsourcing (see
the “Crowdsourcing” sidebar).

Open interaction can help teams discover how the other lines of business
operate. This knowledge, in turn, leads to changes that strengthen relationships
across departments.

• IT must learn more about the business associates’ goals, and create an
environment that facilitates the rapid construction of products that they
require.

• Members of the business team must participate more directly in the engi-
neering process (either on their own or in partnership with IT), which
requires some knowledge about development best practices.

• Management needs to cede some control to other teams and should work
with all associates to encourage collaboration. This may entail:

° Funding the necessary infrastructure.

° Allowing cross-pollination between business teams.

° Being open to ideas from nontraditional sources.

Security becomes a universal concern as the lines between teams vanish. The
former “checks and balances” approach doesn’t work when small teams are
creating end-to-end solutions. In this collaborative milieu, firms have to strike a
balance between technical controls10 and education to mitigate risk.

Folksonomies versus Taxonomies

Taxonomies describe the organization of data within a strict hierarchy. In the business
world, they are typically artifacts of established corporate structures. The managerial
chain of command establishes processes for the composition, categorization, and flow
of information. The structure of a rigid taxonomy may be nonintuitive to outsiders and
consequently may restrict the sharing of useful information across the firm.

In a folksonomy, the community takes responsibility for collectively classifying and
organizing information through a process known as “tagging.” Tagging simply entails

10. For example, putting a formal development process with relevant checkpoints and
milestones in place.

Ogrinz.book Page 6 Wednesday, February 25, 2009 10:15 AM

THE BIRTH OF MASHUPS 7

labeling content with a few relevant keywords that describe the information or the ways in
which it can be used. As more reviewers add and refine tags, it becomes easier to locate and
navigate large amounts of information. The process of tagging creates a dynamic knowl-
edge base of material that is not constrained by conventional organizational techniques.

Crowdsourcing

With crowdsourcing, a problem is framed so that it can be tackled by multiple teams or
individuals, working either competitively or as a group effort. User-driven mashups can
facilitate this type of mass collaboration in the enterprise, thereby resulting in far more
resources contributing to solutions besides traditional IT.

A danger of this approach is that a “herd mentality” might develop that stifles creativ-
ity. Some degree of oversight can offset this risk, but care must be taken not to discour-
age participation.

Crowdsourcing success stories include the Ansari X-Prize, which was designed to
encourage low-cost space travel, and Wikipedia, which benefits from the combined con-
tributions of thousands of users.

The Birth of Mashups
You can have it “good,” “fast,” or “cheap.” Pick any two of the three.

—Classic programmer’s adage

Quick, easy, and affordable application development has always been a goal of
software engineering. Reusing something that’s already been built, tested, and
paid for is one of the quickest ways to achieve this objective. From subroutines,
to external libraries, to object orientation, to templates, to Web Services, each
great advance in programming has been born from the desire to reuse material
instead of starting from scratch. The limitation inherent in each of these mile-
stones is that they were created by developers for the sole use by others in their
profession.

It seemed inevitable that with the vast amount of new material being placed
on the Web 2.0 every second, it could somehow evolve into raw material for
software development. Tim Berners-Lee envisioned this leap in Web reusability in
what he termed “the semantic Web,” which describes a platform for the universal

Ogrinz.book Page 7 Wednesday, February 25, 2009 10:15 AM

8 CHAPTER 1 UNDERSTANDING MASHUP PATTERNS

exchange of data, knowledge, and meaning.11 And while work continues to
define new languages and protocols to realize Sir Tim’s dream, mashups are
making this vision a reality now.

Mashups are an empowering technology. In the past, resources had to be
designed for reuse. Application program interfaces (APIs) had to be created,
packages compiled, documentation written. The application developers and
solution architects who recycled resources were subject to the whims of the
original designers. With mashups, you aren’t limited to reusing an existing API;
you can impose your own if none exists. So if an application or site offers no
API, or if you don’t like the access methods that are already in place, you can
design and implement your own (see the API Enabler pattern in Chapter 4 for
several examples). The promise of achieving programmatic access to almost
unlimited data is intoxicating. Even more exciting is the notion that the tools
for constructing mashups have begun to reach a level of usability where even
nontechnical users can build their own solutions.

Many popular definitions of a mashup would have you believe the term is
limited to a combination of Web-based artifacts: published APIs, RSS/Atom
feeds (see the “RSS and Atom” sidebar), and HTML “screen scraping.” Although
there are certainly valuable solutions in that space, a broader world of data can
be mashed up, including databases, binary formats (such as Excel and PDF),
XML, delimited text files, and more. The rush of vendors attempting to capital-
ize on the burgeoning market for enterprise solutions hasn’t helped bring clarity
to the field. To turn a classic phrase on its head, we have a ton of nails out
there, and everyone is trying to tell us that they have the best hammer.

RSS and Atom

RSS (also known as Rich Site Syndication or Real Simple Syndication) and Atom are
formats for publishing Web-based content in a manner consumable by special applica-
tions termed “feed readers.” Feed readers aggregate multiple feeds (or “subscriptions”)
so that a user can view updates to numerous Web pages from a single environment.

Before RSS and ATOM existed, users had to manually visit each site and check for
any new updates. Feeds also serve as a popular method for allowing Web sites to
dynamically incorporate content from external information providers. Regardless of their
originally intended purpose, because feeds are created using a well-structured format
(XML), mashups can easily consume them as a data source.

11. Berners-Lee, Tim, James Hendler, and Ora Lassila. “The Semantic Web.” Scientific
American, May 17, 2001.

Ogrinz.book Page 8 Wednesday, February 25, 2009 10:15 AM

TYPES OF MASHUPS 9

Another common misconception is that mashups combine at least two dis-
parate sites to form a brand-new “composite” application, complete with a
neat new user interface. That’s certainly possible, but mashups need not be an
end in themselves. It is more accurate to say that all composite applications are
mashups, but not all mashups are composite applications. The enterprise
mashup creator can use the technology to transform the Web into his or her
own private information source. This data can be used for strategic planning or
analysis in systems like Excel or MATLAB. Mashups may also be used to access
a single resource at superhuman levels to mine data or migrate content. Creat-
ing mashups is all about finding data, functionality, and services and using them
to both solve problems and create opportunities.12

Types of Mashups

Mashups have several different colloquial interpretations, which has resulted in
some confusion regarding the term and its use. The word originated in the
music industry, where a mashup was a combination of two or more songs to
create a new experience. Typically, the vocal track of one song was combined
with the instrumental background of another in this process.

The technology industry extended this definition to encompass a new appli-
cation genus that described the combination of two or more sources into an
integrated site. This technique of development hybridization can be roughly
split into two separate categories: consumer mashups and enterprise mashups.

Consumer mashups are generally associated with Web 2.0. They require a
lesser amount of programming expertise because they rely on public Web sites
that expose well-defined APIs and feeds (see Figure 1.4).

The output is usually created by one of the sites participating in the mashup.
In the classic “show craigslist listings on a Google map,”13 the API of Google
Maps is used to plot and present the feed obtained from craigslist.com. The lim-
itation of this approach was that resources had to be “mashup ready.”

Enterprise 2.0 mashups (sometimes referred to as data mashups) are more
complex. Depending on which solution a firm deploys, enterprise mashups can
emerge in several ways:

• Mashups are used solely by IT to rapidly deliver products. Application
developers use both internal and external sources to create data mashups

12. This naturally presents potential legal complications, as discussed in Chapter 10.

13. http://housingmaps.com

Ogrinz.book Page 9 Wednesday, February 25, 2009 10:15 AM

10 CHAPTER 1 UNDERSTANDING MASHUP PATTERNS

and employ traditional coding techniques to create the user interface
around them. Users aren’t directly involved in the construction process but
they benefit from IT’s ability to provide solutions more quickly.

• IT creates a set of “mashable” components and gives end users a sand-box
environment where they can freely mix and match the pieces together
themselves. If users need new components, they have to solicit IT help to
create them.

• An organization deploys an environment that lets anyone create and com-
bine his or her own mashups. This approach is the most difficult imple-
mentation to manage, but probably has the greatest impact. To understand
the challenge of this approach, consider the use of Microsoft Excel in
many firms. Users can create spreadsheet-based applications and pass
them around without any central oversight of what exists, how it is used,
or if it was tested. This friction-free creation and distribution model
spreads good solutions as quickly as bad ones.

Whether mashups are used by IT, business associates, or both, their agile
nature makes them a key enabler of Enterprise 2.0. Unfortunately, they are not
without potential downsides. In an attempt to “deconstruct” the success of
Google, the Harvard Business Review points out several pitfalls14 that can
hinder success in a culture of open development:

• As people spend more time experimenting, productivity in other areas can
suffer.

Figure 1.4 A small number of sites with public APIs account for the majority of con-
sumer-created mashups. Source: http://www.programmableweb.com/apis

14. Iyer, Bala, and Thomas H. Davenport. “Reverse Engineering Google’s Innovation
Machine.” Harvard Business Review, April 2008.

GoogleMaps (46%)

Flickr (11%)

YouTube (9%)

Amazon (8%)

VirtualEarth (4%)

eBay (4%)

YahooMaps (3%)

del.icio.us (3%)

411Sync (3%)

Google (3%)

Ogrinz.book Page 10 Wednesday, February 25, 2009 10:15 AM

TYPES OF MASHUPS 11

• Poor coordination across groups can lead to duplication of efforts and
repeated mistakes.

• A constant stream of new products may confuse the organization and its
employees.

Despite these potential hazards, the authors indirectly identify the virtuous
circle of Enterprise 2.0 (Figure 1.5). As diverse products are combined to create
useful new resources, they themselves become fodder for the next generation of
useful products. In principle, this process isn’t very different from the long-
standing goal of reusability that firms have strived for in their applications and
architecture. Three important differences arise this time around, however:

1. In the age of mashups “reuse” is no longer an ivory-tower concept
restricted to the purview of application architects. Because end users and
developers alike will be creating solutions, everyone will engage in the
practice of reuse.

Figure 1.5 The virtuous circle of mashups

Time Saved
Encourages

New
Exploration

Opportunity
Identified

Resources
Gathered
(New and
Existing)

Solution
Assembled

Contributed
to

Community

Ogrinz.book Page 11 Wednesday, February 25, 2009 10:15 AM

12 CHAPTER 1 UNDERSTANDING MASHUP PATTERNS

2. The existing approach to reuse front-loads development efforts with addi-
tional planning and coding to create open APIs and extra documentation
that may never be used. Because mashups impose reusability “after the
fact,” their creators will build their own APIs and include only the mini-
mum functionality needed.

3. Traditional reuse practices don’t require that a system that leverages exist-
ing code or libraries is itself reusable. This leads to implementations that
are essentially “dead ends.” Mashups are implicitly reusable, which cre-
ates a never-ending cycle of potential associations and recombination.

Acquiring Data from the Web
Need input, More Input, MORE INPUT!

—Johnny Five, Short Circuit, 1986

As we saw in the last section, the majority of consumer mashups use the public
APIs of a handful of Web sites. In the enterprise model, the best potential
sources for mashup data may not be as forthcoming. In these situations, it
becomes necessary to employ creative techniques to extract information. One
of the most common and controversial techniques is often referred to as “screen
scraping.” This derogatory phrase carries a long sullied history and is thrown
around by detractors seeking to undermine this approach.

Traditional “screen scraping” owes its origins to the early days of desktop
computing, when IT departments developed various techniques to migrate
“dumb terminal” mainframe applications to end-user computers. Rather than
tackle the costly and time-consuming task of rewriting or replacing existing
applications, many IT departments used special PC-based applications that
emulated the original terminals.15 These applications could receive the data
from the mainframe and extract the contents of the forms presented on the old
green-screen systems. User keystrokes were likewise emulated to send input
back to the original application. This technique relied on developer-created
templates and was both highly position-sensitive and extremely unforgiving.
The smallest alteration in the mainframe display would break the predefined
template and break the new application.

Because of these drawbacks, screen scraping was generally viewed as a hack
and a last resort. The negative experiences associated with this approach con-
tinue to haunt any solution that promises to extract raw data from a user inter-

15. Such as an IBM 3270 or VT220.

Ogrinz.book Page 12 Wednesday, February 25, 2009 10:15 AM

ACQUIRING DATA FROM THE WEB 13

face. Before organizations feel comfortable with mashups, users will need to
understand how modern methods differ from the brittle approaches of the past.

Too many of us have forgotten that the “L” in HTML stands for “Language.”
In HTML, the description of the presentation and the presentation itself are
inexorably bound in most people’s minds. Many view HTML and what is dis-
played in their browser as two sides of the same coin.

In fact, it is the underlying Document Object Model (DOM) that makes
mashup “screen scraping” something that should more appropriately be
referred to as “Web harvesting” or “DOM parsing.” When HTML is read by a
browser, it is internally organized into a hierarchal structure. The underlying
data structure is tree based and much more organized than what the user sees
(see “The Structure of HTML” sidebar). HTML elements may contain addi-
tional nonvisual information such as the id and class attributes (see “The class
and id Attributes” sidebar).

The Structure of HTML

Consider the following simple Web form:

This is the underlying HTML:

<form method="POST">
<table border="0" width="250">
 <tr>
 <td width="85">User Name</td>
 <td><input id="user1" type="text" name="user_field" size="20"></td>
 </tr>
 <tr>
 <td width="85">Password</td>
 <td><input id="pw" type="password" name="password_field" size="20"></td>
 </tr>
</table>
<input type="submit" value="Logon" name="B1">
</form>

When parsed by a browser, this HTML is internally organized into a hierarchical
structure known as the Document Object Model (DOM). The DOM is more conducive to
automated analysis than the presentation users receive.

Ogrinz.book Page 13 Wednesday, February 25, 2009 10:15 AM

14 CHAPTER 1 UNDERSTANDING MASHUP PATTERNS

The class and id attributes

The ubiquitous use of id and class in HTML make them ideal markers for Web scrapers
to identify document elements.

Uses of id:

A style sheet selector

<P id=”bigheader”>Important Update</P>

A target anchor for hypertext links:

<H1 id=”news”>Today’s Top Stories</H1>

A means to identify an element in JavaScript:

document.getElementById("news");

Used to name a declared OBJECT element:

<OBJECT declare
 id="newyork.declaration"
 data="city.mpeg"
 type="application/mpeg">
 A tour of Manhattan.
</OBJECT>

Uses of class:

Assign one or more CSS styles to an element:

p.error {font-size: 18px; color: red;}
<p class="error">Incorrect Password</p>

Ogrinz.book Page 14 Wednesday, February 25, 2009 10:15 AM

ACQUIRING DATA FROM THE WEB 15

Beyond their original intent within HTML, id and class attributes can also
serve as “markers” for general-purpose processing by other applications/agents
(e.g., mashups). Unlike the screen scrapers of the past that relied solely on posi-
tional information to parse screen content, mashups are able to examine the
underlying attributes used to build the presentation. Although not a foolproof
approach, this data changes much less frequently than the look and feel of a
site, as demonstrated in the sidebar “Presentation Changes Don’t Break Object
Discovery.” While consumer mashup builders queue up and wait for content
providers to expose an API, enterprise teams are using Web harvesting to grab
whatever data they want.

Presentation Changes Don’t Break Object Discovery

This example shows a sample Web page before and after a radical redesign. Although a
visitor might be disoriented by the drastic changes, similarities in the underlying HTML
(and resulting DOM tree) will not slow down a mashup that examines the site.

Before

As part of a larger system, a mashup is created to sign in to a Web site by supplying
a “Sign On ID” and a “Password.” The form attributes and DOM information are displayed
following the screenshot.

Ogrinz.book Page 15 Wednesday, February 25, 2009 10:15 AM

16 CHAPTER 1 UNDERSTANDING MASHUP PATTERNS

...
<td width=”74” height="25"><div class="fixedfont">Sign On ID: </div></td>
<td width=”89” height="25">
<p align=”right”><input maxlength=”20” name=”username” size=”10”
 style="font-family: courier"></p></td></tr>
<p align=”center”>
<tr>
<td width=”74” height="5"><div class="fixedfont"> </div></td>
<td width=”89” height="5"><div class="fixedfont"> </div></td></tr>
<tr>
<td width=”74” height="25"><div class="fixedfont">Password:</div></td></p>
<td width=”89” height="25">
<p align=”right”><input maxlength=”20” name=”password” size=”10”
 style="font-family: courier" type=”password”></p></td></tr>
<tr>
...

After

Ogrinz.book Page 16 Wednesday, February 25, 2009 10:15 AM

ACQUIRING DATA FROM THE WEB 17

Even though the site has been radically redesigned, it still contains form elements for
“Sign On ID” and “Password.” A peek at the underlying HTML and DOM shows that
these fields retain the same attributes. A mashup most likely will not have a problem rec-
ognizing the new design, even though a human might take some time to become accus-
tomed to the new interface.

...
<tr>
<td width="70" class="text_boxsubtitle">Sign-On ID:</td>
<td><input type="text" maxLength="20" name="username" size="10"
style='width:122px;FONT-FAMILY: Courier'/></td>
</tr>
<tr>
<td width="70" class="text_boxsubtitle">Password:</td>
<td><input maxLength="20" name="password" size="10" type="password"
style=”width:122px;FONT-FAMILY: Courier”/></td>
</tr>
...

Enterprise mashups are not restricted to skimming content from HTML:
They can leverage more structured formats such as XML (RSS, ATOM), Web
Services, or even binary formats such as Excel and PDF (as shown in Figure 1.6).
Nevertheless, the great promise of enterprise mashups derives from their ability
to treat the entire World Wide Web as a first-class data source.

Figure 1.6 Enterprise mashups can consume a variety of different data sources.

Enterprise
Mashup

RSS/Atom
Feeds

Binary Formats
(xls, doc, pdf)

Email
(IMAP, POP3)

Web Services

XML

CSV, Text

Databases

Web Pages

Ogrinz.book Page 17 Wednesday, February 25, 2009 10:15 AM

18 CHAPTER 1 UNDERSTANDING MASHUP PATTERNS

The Long Tail

Although first coined to describe customers who purchase hard-to-find items,16

the phrase “the Long Tail” has come to have a special meaning in the world of
software. Traditionally, application development dollars are directed toward
those projects and enhancements demanded by the largest group of users. This
practice of catering to the masses doesn’t necessarily lead to an outcome with
the greatest positive impact on productivity. Unfortunately, because of the huge
effort involved in developing applications, it is often impractical to provide cus-
tom solutions to a lone employee or a small team, even if it would greatly
increase their efficiency (Figure 1.7). Thus only the “head” of the application
demand curve is ever addressed. The exact cutoff point isn’t fixed and will vary
by organization, although the Pareto principle17 or “80-20” rule suggests that
80% of application development efforts will benefit only 20% of your users.

The cumulative potential of unfulfilled Long Tail opportunities exceeds that
of the “head” of the curve. Alas, fulfilling the requirements of the remaining
80% of your staff might seem an impossible goal. Most technology depart-
ments do not have enough staff to meet the needs of each individual user.
Unless there is a way for developers to become drastically more productive or
for end users to solve their own problems, the prospects for meeting unmet
demand seem bleak.

16. Anderson, Chris. “The Long Tail.” Wired, October 2004.

17. The Pareto principle is based on empirical observation and isn’t a mathematical cer-
tainty in all cases.

Figure 1.7 The Long Tail

A B

IT focuses on the 20% of known problems that affect the most users (A).
The 80% of potential solutions (B) that serve a smaller audience are unaddressed.

Ogrinz.book Page 18 Wednesday, February 25, 2009 10:15 AM

MEETING USER DEMAND 19

Meeting User Demand
Give me a place to stand on, and I will move the Earth.

—Archimedes

Enter the mashup. Armed with powerful new tools that leverage the resources of
the Internet, developers and power users can quickly assemble products to target
the Long Tail. We are witness to the dawn of a new era in technology. Mashups are
making IT more agile and empowering individuals to create their own solutions.

The Long Tail is useful from an analysis standpoint only if it represents the
universe of possible solutions that can be constructed. Consider the mashup
example in “A Sample Mashup Use Case.”

A Sample Mashup Use Case

There are countless examples where mashups can benefit an enterprise, and they
needn’t be complex. Consider the following example.

Every day, the employees of a firm have numerous conference calls to discuss
project planning, resource management, and corporate strategy. Whenever someone
new joins the conference, there is a “beep” that announces that individual’s presence.
The first ten minutes of every call go something like this:

“Beep.”
“Hi, who’s on the line?”

“It’s me, Rob.”
“Beep.”
“Hi, who’s on the line?”

“It’s me, Maureen.”

On each call, valuable time is wasted while the moderator takes attendance and furi-
ously scribbles down names. Later on, he may try and match those (frequently mis-
spelled) names to an email address or telephone number.

We can save time and expedite the meeting with a simple mashup. First, we visit the
conference call Web site and grab the participant’s caller ID directly from the Web page.
Next, we look up those numbers in the firm’s online corporate directory (where we also
get the corresponding email addresses). Finally, in case someone is dialing in from his
or her home telephone, we use the search form on a public Internet site (such as whitep-
ages.com) to look up any unresolved numbers.

The entire process is hidden behind a simple Web front end with a single button, labeled
“Get Attendees.” No more misspelled names or missed participants. No more pausing to
ask latecomers to introduce themselves. Meetings start on time and everyone is happy.

As if this capability wasn’t enough of a breakthrough, it opens up new possibilities for
behavior tracking (also known as reality mining). You can click the “Get Attendees” button

Ogrinz.book Page 19 Wednesday, February 25, 2009 10:15 AM

20 CHAPTER 1 UNDERSTANDING MASHUP PATTERNS

multiple times during the call to see not only who is present, but for how long. Perhaps
you can tie that “duration” data to other sources. You might find that callers drop off the
line in coordination with weather, traffic patterns, or surf reports.

Although the “conference call attendance” issue was experienced by almost
all employees of the firm, it was never identified as a business problem. This is
because developers and business users are conditioned to view their actions in
discrete, isolated chunks:

• First, I sign into Application A to locate a customer’s account.

• Second, I sign into Application B to check item inventory.

• Third, I sign into Application C to create a purchase order for the client.

If you accept that Applications A, B, and C are immutable (perhaps because
they were purchased from an external vendor), then you will never envision a
solution where you can sign into Application D once and perform these three
actions in a single step. The opportunity never appears on the Long Tail.

The greatest benefit of mashups may be their influence on our thought pro-
cess. When we cast off our biases about the role of technology in the work-
place, we discover the folly in applying IT to only the most obvious and well-
understood problems. Once the blinders have been removed, you’ll discover a
world of missed and previously unknown challenges that you can tackle. Rec-
ognizing these opportunities is just the first stage. If you don’t do something
about them, then you’ve simply added to the tangle of unmet expectations. To
achieve continuous innovation, it is essential to look outside the existing meth-
ods of measuring and meeting user demand.

Mashups and the Corporate Portal

The concept of aggregating data from multiple sites inside and outside the
workplace isn’t new. As companies struggled to share all of their disparate
applications and information resources directly with their employees, many
embarked upon a quest to create a single corporate portal. An organization’s
portal typically provides several features:

• Single sign-on (SSO), which allows users to authenticate only once to
obtain access to multiple applications.

Ogrinz.book Page 20 Wednesday, February 25, 2009 10:15 AM

MASHUPS AND THE CORPORATE PORTAL 21

• Multiple “portlets” or “islands” that expose information and functional-
ity from disparate systems.

• Interaction (or integration), which allows portals to influence one
another’s behavior. For example, a search portlet may cause the contents
of other portlets to be filtered.

• Access control, which provides for the centralized administration of which
information a user may access. A user’s permissions on the portal are at
least as restrictive as what the user would receive if he or she logged into
the underlying application directly. Portals are unique in that they may
bring content together from multiple sources wherein the user has varied
entitlements.

• Personalization, which allows the user limited ability to customize the layout
and presentation of the site to suit his or her own specific tastes and needs.

Of course, as our examination of the “80-20” rule suggests, portals will
never meet the requirements of all users, all of the time. At best, they may meet
the lowest set of common requirements across a broad audience (the 80%). The
most specific requirements are typically the least general (the 20%), which explains
why most corporate portals typically confine themselves to broadcasting company
news, managing health and benefits information, and tracking the holiday cal-
endar. Personalization, the latecomer to the portal infrastructure, was a desperate
attempt to address this shortcoming. Unfortunately, users typically don’t get a say
in choosing which content can be personalized or how it can be manipulated.

At my daughters’ nursery school, their teacher maintains order by telling the
children, “You get what you get and you don’t get upset.” Those days in com-
puting are passé. Whether we are talking about the corporate business user who
wants to come to the office each day to a personalized workstation or a cus-
tomer who wants to view your company’s information in a certain fashion that
suits his Web-based applications, this is the age of individualized construction.

When the popular social networking sites MySpace and Facebook published
open APIs to leverage their data and create interfaces around it, thousands of users
became bona fide developers. They quickly learned to build their own personal
portals. This same demographic is just now beginning to enter the Enterprise
2.0 workforce. They won’t be content to operate within the confines of a single,
stoic portal that restricts how they consume and manipulate information.

A new metaphor for user interaction has recently emerged that, combined
with mashups, threatens the relevance of the enterprise portal. Whether you
know them as widgets, gadgets, or snippets, they are the small plug-in components
that originated on the Web and have migrated to the desktop (e.g., Apple Dash-
board, Yahoo Widgets, Google Gadgets, Microsoft Vista Desktop Widgets).

Ogrinz.book Page 21 Wednesday, February 25, 2009 10:15 AM

22 CHAPTER 1 UNDERSTANDING MASHUP PATTERNS

The tools for creating these “mini-applications” have become easier to use and
more familiar to a much broader audience.

If enterprise mashups are the path to user-created data and widget platforms
are the environment for presenting that information, the combination of the
two represent the death knell for the corporate portal. At best, it will morph
into a set of core services that provide information to mashup-powered per-
sonal environments.

Mashups and Service-Oriented Architecture

Service-oriented architecture (SOA) has come to be associated with Web Ser-
vices, but at its core it is more mindset than methodology. The “service” in SOA
shouldn’t be thought of in terms of a particular technology, but rather as a busi-
ness task. The tasks are implemented in an environment that facilitates loose
coupling with other services. This combination, in turn, fosters an atmosphere
where developers can create new applications that reuse and recombine existing
functionality. Because the services are based on open standards, they can be
consumed equally well across independent development platforms.

The promise of SOA is that it addresses the Sisyphean18 labor of building
duplicate, siloed functionality across the enterprise. Better yet, you don’t have
to build services yourself; you can discover and use third-party solutions. SOA
is the equivalent of a home improvement store for application development.
You simply fill up your shopping cart with all the raw materials and glue and
nail them together in your basement to create a shiny new product. Using a tra-
ditional development mindset would place the burden on you to chop down
trees for lumber or smelt the iron for nails.

The Common Object Request Broker Architecture (CORBA) was an early
stab at implementing SOA—so early, in fact, that it predates the Internet explo-
sion of the mid-1990s and even the SOA acronym itself. The level of complexity
required to work with this technology was often found to outweigh its benefits,
and while CORBA struggled to find its footing, newer technologies such as
SOAP, XML, and Java (Enterprise Java Beans) arrived on the scene. They began
to address the problems associated with CORBA’s steep learning curve and
security shortcomings.

18. Sisyphus was a Greek who was condemned by the gods to ceaselessly roll a rock to
the top of a mountain, only to have it fall back of its own weight.

Ogrinz.book Page 22 Wednesday, February 25, 2009 10:15 AM

MASHUPS AND SERVICE-ORIENTED ARCHITECTURE 23

Web Services emerged as a technology-agnostic interoperable solution based
on open standards such as XML, WSDL, UDDI, and SOAP. Although far from
perfect,19 SOAP-based Web Services have become the industry-preferred
method for implementing SOA. The most popular method for exposing SOAP
services across the enterprise is via a custom infrastructure known as an enter-
prise service bus (ESB). The ESB can provide additional data transformation
capabilities, security, transaction support, and scalability, all while simulta-
neously reducing the degree of complexity exposed to service reusers. In an
attempt at product differentiation, some ESB offerings service-enabled existing
corporate resources (such as databases) and were themselves progenitors of the
data mashup.

One point should be clear: SOA is not a revolutionary milestone but an evo-
lutionary one. Open communication and technology standards, combined with
the ubiquity of the protocols that power the Web, have finally helped SOA
reach a level of maturity where its benefits exceed its costs.

Mashups represent the next leap in reuse. They initially came about when
developers combined the published APIs of different Web applications to create
interesting new content. The limitation of this approach was that resources had
to be “mashup ready.” Robust SOA environments were a hothouse for mashup
growth, as they exposed componentized functionality that could be mixed
together to provide new services.

You may be wondering if mashups are the latest harbinger of SOA, or the
beneficiary of it. The answer is a resounding “Both!” With most vendors now
using the terms “SOA” and “Web Services” interchangeably, it has become
obvious that for most corporations, implementing a successful SOA will require
the service-enablement of their existing applications. Mashups are a completely
valid method of accomplishing this (see the “API Enabler” section in Chapter 4
and the discussion of the Quick Proof-of-Concept pattern in Chapter 7). Most
mashup products allow you to create and publish Web Services either directly
or via a third-party application container (e.g., WebSphere or JBoss). Likewise,
mashups are voracious consumers of Web Services. Mashups gladly leverage the
Web Services that SOA-centric organizations already have in place. Because
mashups can produce services with the same agility that they consume them,
they are a valuable addition to any service-oriented environment.

How do SOA patterns and mashup patterns relate to each other? SOA gener-
ally focuses on server-side architecture and internal corporate resources,
whereas everything is fair game with mashups. Because of SOA’s maturity and

19. Problems include interoperability issues and platform-specific implementation, test-
ing, and security challenges.

Ogrinz.book Page 23 Wednesday, February 25, 2009 10:15 AM

24 CHAPTER 1 UNDERSTANDING MASHUP PATTERNS

association with Web Services, it has achieved greater clarity regarding its capa-
bilities, protocols, implementation, and use. This allows SOA pattern discus-
sions to focus on high-level abstractions. Indeed, several excellent Web sites and
books20 discuss the process of SOA-enabling the enterprise. Mashup patterns,
which remain in a nascent stage of development, must focus on more practical
examples. This will drive broader adoption, which in turn should to lead to
consolidation and standardization similar to what SOA has achieved.

Mashups and EAI/EII

Enterprise application integration (EAI) is the practice of connecting corporate
systems at the application level rather than at the data level. EAI solutions seek
to streamline business processes and transactions, whereas mashups typically
combine applications with the goal of providing new functionality. EAI tools
rely on support for open standards such as Web Services or CORBA. If an
application doesn’t expose an API, one needs to be constructed programmati-
cally. As systems and requirements evolve, there is an inevitably large carrying
cost to maintain the custom integration code. When managed and funded cor-
rectly, EAI can provide the most rock-solid method of application integration.
For business-critical solutions, EAI is recommended over mashups, which per-
mit some fragility as a trade-off for the benefit of agility.

Enterprise information integration (EII) is a data management strategy for
providing uniform access to all the data within an organization. The rise of “big
box” stores that sell everything from baby clothing to car tires has demon-
strated that patrons appreciate the convenience of one-stop shopping. Collect-
ing data from multiple sources and providing a single point of access has similar
appeal in the enterprise. EII is often easier to achieve than EAI because it simply
attempts to unify information and not applications. If you think this approach
sounds similar to a data mashup, you’re correct. A mature EII implementation
can provide new insights into data associations and facilitate rapid solution
delivery. EII tools have historically focused only on back-end databases,21

which limits the range of information that can be collected. By comparison,
mashups surpass EII in their ability to obtain data from both structured and
unstructured sources.

20. Author Thomas Erl has written several good books on this subject, including SOA
Design Patterns.

21. These databases include relational databases, message queues, and data warehouses.

Ogrinz.book Page 24 Wednesday, February 25, 2009 10:15 AM

MASHUPS AND SOFTWARE AS A SERVICE 25

The knowledge requirement for successfully applying EII technology is
higher than that for mashups, but as with EAI the advantage is stability. You
can measure the benefits of a complex EAI/EII project empirically by developing a
quick mashup-based prototype (see “Quick Proof-of-Concept,” Chapter 7).
This effort may help determine whether the potential benefits justify the consid-
erable cost and time required to carry out a formal implementation.

Mashups and Software as a Service

In contrast to the architectural style and Web Service implementation strategy
of SOA, software as a service (SaaS) is a business model. SaaS is the latest incar-
nation of the Internet-boom idea of an application service provider (ASP).
Under the SaaS plan, businesses do not invest money to develop and host appli-
cations internally, but instead rent the functionality they need from an external
service provider. End-user interaction with applications typically occurs via a
prebuilt Web interface. The customer’s business data is then fed into the system
manually, using Web forms, or programmatically, using a Web Service API.

To appeal to as broad a market base as possible, most SaaS providers have
focused on generic services and priced them competitively (a fee of less than $100
per service is not uncommon). Exposing macro capabilities and parameterizing
functionality allows customers to achieve some degree of customization.

One of the most prominent success stories in SaaS is Salesforce.com. This
“zero-infrastructure” customer relationship management (CRM) platform pro-
vides services to thousands of businesses worldwide. Small and large customers
alike are able to start using the hosted service almost immediately without
deploying custom hardware. The success of Salesforce.com has led many to
assume SaaS is particularly well suited to CRM and sales force automation. In
reality, this isn’t the case. WebEx, a Web-based conference and collaboration
solution, has achieved adoption on an even larger scale. Google Apps is an
example of a viable alternative to traditional desktop software. It serves up a
business-focused mail, spreadsheet, and word processing suite at a fraction of
the cost of Microsoft Office. Many commercial vendors are exploring SaaS to
create new revenue streams.

Assuming SaaS products can meet technical and functional user require-
ments, two key challenges must be overcome before SaaS can succeed as a gen-
eral distribution model. First, firms must be comfortable with the notion that
their data is housed externally to the organization. It seems that there’s a new
story almost every day in the press about missing hard drives or accidentally

Ogrinz.book Page 25 Wednesday, February 25, 2009 10:15 AM

26 CHAPTER 1 UNDERSTANDING MASHUP PATTERNS

leaked personal information. SaaS providers may have better security than
many of their clients, but the abdication of data management to a third party is
still a tough pill for many corporations to swallow. The second obstacle for
SaaS is availability. For mission-critical applications, the network remains a
potentially dangerous point of failure.22

Mashups are a natural complement to SaaS. Perhaps there are SaaS solutions
that appeal to your organization, but you have held back on implementing
them because you couldn’t get exactly the functionality you required from a sin-
gle provider. Maybe the SaaS product is extensible, but you don’t want to invest
time and money in duplicating functionality you’ve already built internally.
Mashup patterns such as Workflow (see Chapter 5) and Content Integration
(see Chapter 6) can be used to link an external solution and internal products
together. With SaaS and mashups, you may be able to maintain the bulk of your
confidential data internally and send the hosted application only small subsets
of data for processing. If the network link to the SaaS vendor fails, at least you
will still have local access to your data.

If you’re thinking about testing the SaaS waters as a vendor, then applying
SOA via mashups can help you get started. The API Enabler (see Chapter 4)
and Quick Proof-of-Concept (see Chapter 7) patterns are excellent means of
creating a Web interface to your existing resources. You can use the Load Test-
ing pattern (see Chapter 8) to see how your systems scale under heavy user
activity.

SaaS shares another characteristic with mashups: It may already be in use in
your company without your knowledge. Because this model requires only a
Web browser and no special infrastructure, it is easy for end users to circum-
vent IT and obtain applications directly. It is crucial that an IT department
doesn’t have a monitoring and enforcement policy based solely on policing
internal data centers. IT personnel need to engage with the business users and
educate them about the risks and rewards of SaaS and the effects these decisions
will have on future growth. Internal checkpoints with purchasing and legal
departments are a necessity, too. All service level agreements (SLAs) should be
reviewed and signed by appropriate parties, and attempts to expense software
purchases that have not been vetted by IT should raise a warning flag. Other-
wise, SaaS can sneak into your organization on a corporate credit card.

22. Service level agreements (SLAs) should be in place to ensure your applications are
available when needed.

Ogrinz.book Page 26 Wednesday, February 25, 2009 10:15 AM

MASHUPS AND THE USER 27

Mashups and the User

Make no mistake about it—despite the recent buzz around Enterprise 2.0, peo-
ple have been creating mashups for many years. Of course, the process to this
point has been overwhelmingly manual. Microsoft Excel is arguably the father
of the corporate data mashup. For years, Excel end users have cut-and-pasted
data to feed their calculation engines. Spreadsheet-based solutions have spread
throughout the enterprise without the involvement of IT. Mashup tools enable
the automation of this aggregation process, and a new clan of users is poised to
run wild with the technology.

A culture of individualism is clearly emerging in today’s world. People no
longer plan their evenings around what TV networks schedule for them to
watch, for example. Instead, they record their favorite shows onto digital video
recorders (DVRs) or watch movies and shows on their computers and mobile
devices. Similarly, the recording industry no longer has a stranglehold over
music distribution. Newspaper readership is down, as more individuals choose
to consult RSS feeds and blogs instead of purchasing the printed documents.
People can even create personalized clothing and sneakers online.23 Members of
the public have evolved from docile consumers into “prosumers.”24 Products
and services are moving away from mass markets and being shaped by the peo-
ple who consume them. Likewise, a fundamental shift has occurred in software
development. Armed with new tools and the skills to use them, users aren’t
waiting for IT to build solutions—they’re doing it themselves.

Should organizations facilitate these individuals’ efforts, or rein them in? For
years, the mantra of professional software development was “Separate business
logic from presentation logic.” Programmers religiously structured their code
around that principle but ignored the logical conclusion: The best shepherd of
business expertise is not the IT department, but the business users themselves.

The inclination for IT departments to view user-led efforts in an adversarial
light increases when IT experts believe that their “home turf”—application
development—is threatened. IT needs the occasional reminder that in any
development effort, it is the users who are the key to defining metrics for suc-
cess. Besides, users are already creating mashups anyway, albeit human-
powered ones.

23. Nike iD lets you design custom shoes and clothing (http://nikeid.nike.com).

24. Toffler, Alvin. The Third Wave. 1980.

Ogrinz.book Page 27 Wednesday, February 25, 2009 10:15 AM

28 CHAPTER 1 UNDERSTANDING MASHUP PATTERNS

Gartner has said mashups will make IT even more critical to business opera-
tions,25 so a knee-jerk rejection to their emergence is not necessarily in the best
interests of the firm. Rather than deny business users the tools that can increase
their productivity, IT needs to embrace a new model. Besides, starting with a
mashup product won’t get you a business solution any more than staring at a
word processor will get you the next great novel.26 Because IT personnel clearly
cannot scale to meet the requirements of each particular user, they should lever-
age the potential of mashups and work in partnership with the business associ-
ates to train a new class of self-serve builders. This effort is akin to adding
hundreds of new developers at virtually no additional cost.

It’s a common assumption that the latest generation of developers is intuitively
suited to filling this role. Affectionately termed the “Millennials” or “Genera-
tion Y,” these individuals came of age during the Internet boom of the last decade
and are inherently comfortable with technology. Millennials, green with inexpe-
rience and giddy about tinkering, question everything. This behavior stands in
stark contrast to that of the entrenched workforce, whose habits of working in
a particular manner condition them to no longer question the “why.”

Many companies are rushing to embrace Web 2.0 ideals such as mashups,
social networks, wikis, and blogs not because they have inherent value, but
rather because the firms think this practice will attract the “new thinkers.” In
reality, instead of abdicating responsibility for innovation to a younger genera-
tion or applying technology Band-Aids, firms need to cultivate an environment
of creativity and collaboration for their employees regardless of their physical
age. Any firm can realize the value of mashups and Enterprise 2.0 so long as its
managers are capable of taking a critical look at their workplace and realizing
they don’t need to settle for “good enough” any more.

The “guerrilla-style” approach of mashup development is not without its
drawbacks, of course. Most business users do not fully grasp the challenges in
providing scalability, reliability, business continuity, disaster recovery, security,
and fault tolerance. If users are permitted to develop ad hoc solutions, IT must
provide an environment that cultivates these best practices.

A Patterns Primer

The benefits of enterprise mashups are communicated through a concept
known as a pattern. If you’ve ever baked holiday cookies, then you already

25. David Cearley, Gartner analyst.

26. Or a Mashup Patterns book—trust me, I’ve tried.

Ogrinz.book Page 28 Wednesday, February 25, 2009 10:15 AM

THE FRAGILITY FACTOR 29

have some idea of what a pattern is and how it works. Suppose you want to
make a tray of chocolate-chip heart-shaped cookies. After you mix the dough,
you roll it out and grab your cookie cutter. You use the cutter to press out a
series of identical shapes. Afterward, you decide some oatmeal raisin hearts
would be nice, so you mix a fresh batch of ingredients and cut out another
series of hearts. The cookie cutter is a form of pattern. The different types of
dough are the specific situations, or “use cases,” where the pattern is applied. A
pattern doesn’t solve a problem in itself. It’s just a general form that helps you
think about the structure of the solution (what shaped cookie, in this example).

The remaining chapters of this book present a number of patterns, along
with some examples to illustrate how they work in an enterprise context. Don’t
throw out the pattern if you don’t like the dough! Every business has a different
flavor, and the key to success with patterns is figuring out which one is yours.
You can use the samples that fill out this book to help identify the mashup
ingredients your organization already has. Apply the appropriate mashup pat-
tern and you have a recipe for success.27

The Fragility Factor

It may seem that the title of this book is an oxymoron. How can something as
ad hoc and unstructured as Web scraping be coupled with something so formal
and structured as a pattern? Ideally, the previous discussion of how mashups work
under the hood will have made you more comfortable with the technology.

If you think reverse-engineering Web pages still doesn’t sound like the type of
rock-solid approach that a professional developer should be using, I don’t
blame you. One of the core tenets of software engineering is that applications
should behave in a reliable and predictable manner. Web harvesting—although
a great deal more reliable than screen scraping—is inherently unstable if you
don’t control the Web sites from which you extract data. Because you can’t
determine when a scrape-based solution might break, you should never employ
this approach on a mission-critical system.

If you have the chance to help your firm gain a competitive advantage or
reduce costs—even if just for a limited time—you should explore the opportunity.

27. The classic reference for pattern-based design is Christopher Alexander’s seminal
text The Timeless Way of Building (Oxford Press, 1979). Buildings, like software
components and cooking ingredients, can be combined in an almost endless variety.
Nevertheless, certain basic concepts govern which elements work well together and
which don’t.

Ogrinz.book Page 29 Wednesday, February 25, 2009 10:15 AM

30 CHAPTER 1 UNDERSTANDING MASHUP PATTERNS

There is nothing wrong with an application that has a short lifespan, so long as
you don’t create a situation where the cost of remediating or retiring the solu-
tion exceeds the achieved benefit. The rapid speed with which mashups can be
developed means occasional remediation isn’t a time-consuming task. Plus,
quick release cycles translate into more chances for exploratory development,
which in turn can lead to the discovery of new uses or solutions.

The patterns in this book all adhere to this basic premise. You won’t find
examples of settling stock trades or sending online payments, even though
mashups can facilitate those tasks. It’s simply irresponsible to use the technol-
ogy in this manner. Like any development effort, a mashup solution will require
regular maintenance over its lifetime. Unlike with traditional applications, you
may not be able to determine the time when this work will be required. Web
Service APIs can change, RSS feeds can be restructured, or site redesigns may
temporarily toss a monkey-wrench into your application’s internal workings.
Because of these possibilities, you should implement mashup-based solutions
only where you can tolerate temporary downtime that may occur at unexpected
intervals.

The fragility score is an ad hoc28 rating based on a number of factors:

• A mashup pattern that relies on a single Web site (e.g., Infinite Monkeys,
Time Series, Feed Factory, Accessibility, API Enabler, Filter, Field Medic) is
less fragile because there is only a single point of potential failure.

• A multisite-based pattern (e.g., Workflow, Super Search, Location Map-
ping, Content Migration) is more fragile with each additional site that it
leverages.

• Mashups that employ Web harvesting are generally more fragile than
those that use feeds (RSS, Atom). Feeds are, in turn, more fragile than Web
Service APIs. APIs are the most stable integration point because they
reflect a site’s commitment to expose data and functionality.

• Mashups that mine data from “hobby” sources have a greater risk of fail-
ing. For example, obtaining local weather data from the U.S. government-
funded National Oceanic and Atmospheric Administration’s (NOAA)
weather site (http://www.nws.noaa.gov/) is probably a safer bet than
obtaining the information from your local high school or radio station.

28. Translation: “Your mileage may vary.” The fragility score is based on unpublished
observations of the technology and will vary according to the resources you incorpo-
rate in your specific implementations.

Ogrinz.book Page 30 Wednesday, February 25, 2009 10:15 AM

THE FUTURE OF MASHUPS 31

For-profit sites may exert legal pressure to halt mashups (see the Sticky
Fingers anti-pattern).

• Mashups that use boutique data not widely available on the Internet are at
high risk. What are your alternatives if the site suddenly vanishes one day?

Each pattern template described in this book contains a fragility score rang-

ing from 1 glass (the least fragile) to 5 glasses (the

most fragile). No pattern receives a score of zero, because even the most rigor-
ously tested mashup-backed application always has some degree of brittleness.

The fragility score is ultimately intended to encourage thought about
mashup stability. It’s possible to have five sites in a multisite pattern that change
less frequently than an individual Web page used in a single-site pattern. This is
particularly true when vendor products and internally created systems are
involved. The user interfaces of commercial and in-house applications aren’t
frequently redesigned. Public Web sites, in contrast, must constantly reinvent
themselves in the battle to attract eyeballs.

If you create a mashup-based solution and don’t acknowledge that it encap-
sulates some degree of uncertainty, you are just kidding yourself. Worse, you
are deceiving your users, who will not be pleased when the system “mysteri-
ously” fails one day.

In case you think only mashups have this Achilles’ heel, keep in mind that
any distributed system (which is what a mashup is) contains an inherent level of
risk. Each additional component and the infrastructure that connects it repre-
sent another potential point of failure. So before you think, “Why the heck
would I build something that might break?” consider how you have handled
similar situations in the past. You can address many of these fragility issues by
thinking about redundancy, monitoring, and notification up front.

The Future of Mashups
Mashups aren’t just about mixing Web sites together to create new solutions—

they’re a tool for unlocking the treasure chest of data right under your nose.

The primary goal of this book is for the reader to scan at least one pattern and
realize, “I never thought you could do that!” The examples that accompany the
patterns are aimed at both the business end user and the technical user. When
you understand how mashups can be used to mine new information or auto-
mate traditionally manual activities, you’ll never look at your workplace in

Ogrinz.book Page 31 Wednesday, February 25, 2009 10:15 AM

32 CHAPTER 1 UNDERSTANDING MASHUP PATTERNS

quite the same way. The morass of daily problems suddenly becomes visible—
but now you’ll have the inspiration and knowledge to tackle them. As with the
classic Design Patterns text, Mashup Patterns is intended to provide a general
language that developers and the business can use to succinctly communicate
about a solution (“Oh, we can use a Time Series mashup here”).

It’s not every day that we witness a groundbreaking advancement in applica-
tion development. Most improvements occur gradually and can take years to
snowball into something useful. They may require costly new investments in
infrastructure or reengineering of existing resources. Or they may be confined
to a narrow niche in our industry. Only the naive overlook the dangers that
come with any great leap; only the foolish cite those risks as reason enough to
ignore the potential benefits.

Don’t let the hype surrounding mashups cause you to abandon the best prac-
tices that guide good development. Likewise, be open to thinking creatively
about the problems that exist around you. Employees who face seemingly
intractable problems or whose careers have trained them to ignore the break-
downs in their organization will be delighted to discover that practical solutions
are now available. The patterns in this book will help you get started by dem-
onstrating how mashups can help you achieve the following goals:

• Make money for your organization

• Fill gaps not met by the existing IT infrastructure

• Create a quick proof-of-concept to explore new solutions

• Gain a competitive advantage

• Avoid “information overload”

• Expose your applications to a wider audience

and more!
Enterprise 2.0 is all about You. And the potential benefits from mashups are

as big as anything you can imagine.

Ogrinz.book Page 32 Wednesday, February 25, 2009 10:15 AM

393

Index

A
Access control, 21
Accessibility pattern

described, 123–125
sample uses of, 125–128, 350, 390

Address validation, 237
Advertising, assessing impact of, 88
Aerospace contractor case study, 382–384
Afni case study, 349–352
Agent Community GEN2 (Connotate),

354, 380
AJAX, 45
Alerter pattern, 43, 70–71

sample uses of, 71–75, 359, 368, 381,
387

Alexander, Christopher, 29
America Online (AOL), 1, 125
Americans with Disabilities Act (ADA),

125
Ansari X-Prize, 7
Anti-patterns, 311–312

examples of, 313–335
API Enabler pattern, 26, 36, 250

described, 76–78
features of, 69–70
sample uses of, 79–82, 264, 360, 368

APIs (application program interfaces), 8
reuse of, 9–10, 11–12

Application service providers (ASPs), 25
Application usability, 300
Applications

assuming reliability of, 329–331
customization of, 153–154
enhancing usability of, 173–175
obsolescence of, 121–122
taking advantages of changes of,

211–212

Aspect-Oriented Mashup. See Audit
pattern.

Aspect-Oriented Programming (AOP),
294

Assemble patterns, 37
purposes of, 189–190
types of, 191–244

Assembly canvas, 63–64
concerns regarding, 64–65

Associated Press case study, 353–355
ATOM, 8, 129–130
Audi case study, 356–357
Audit pattern

described, 292–296
raw materials for, 293
sample uses of, 297–298, 365

Author filtering, 229
Availability, 299

B
Badger, Jeff, 352
Behavior trends, detecting, 119–120
Behavioral modeling, 102
Berners-Lee, Tim, 1, 7, 345
Binary data, 46

dealing with, 59
mashing up, 338–340

Blogs, 3
Breakstone, Warren, 371, 372, 373
Broadband, 2
Broadcast pattern, 248
Bugs, communication about, 230
Business planning, data gathering for,

118–119
Business process management (BPM), 180
Butterfield, Stewart, 3

Ogrinz.book Page 393 Wednesday, February 25, 2009 10:15 AM

394 INDEX

C
Capability Maturity Model Integration

(CMMI), 362
CAPTCHA, 341
Cascading Style Sheets (CSS), 56
Case, manipulating, 58
Chaining, 160
class attributes, 14
Clinton, Bill, 125
Clipping, 54–56, 264–265

pitfalls of, 332–335
Cockpit pattern, 255
Color theory, 155–156
Comet, 45
Common desktop environment (CDE), 202
Common Object Request Broker

Architecture (CORBA), 22
Communication and Collaboration

pattern
described, 191–193
sample uses of, 194–198, 372, 390

Community development, 194–197
Compatibility, 37
Competitive Analysis pattern

described, 83–85
sample uses of, 85–89, 387

Competitors
assessing actions of, 88
monitoring innovations of, 88–89

Computer virus warnings, 229–230
Concerns, 294
Conference calls, monitoring, 104–105
Connotate Technologies, 354, 380, 386
Consumer mashups, 9
Content Aggregation pattern

described, 199–202
with navigation. See Distributed Drill-

Down (DDD) pattern.
sample uses of, 202–206, 350, 357,

365, 372
Content Integration pattern, 36, 43

described, 207–209
sample uses of, 209–212, 351, 354

Content Migration pattern
described, 248–251
sample uses of, 251–254, 351, 362

Content Separation, 239

Content theft, 317–319
prevention of, 319–320

Core activities, 41
Corporate earnings, tracking, 74–75
Corporate portal, 20–22
Corporate relationships, uncovering, 95
Crawlers, 341
Credit union case study, 377–378
Cross-cutting concerns, 294
Crowdsourcing, 6–7

leveraging, 145
Customer contact, 92–94
Customer education, 266–268, 286–288

at point of sale, 87
Customer experience, monitoring,

258–260
Customer relationship management

(CRM), 25
Customer support, and cross-selling,

215–217

D
Dashboard pattern, 51

described, 255–258
sample uses of, 258–261, 360

Data casting, 57–58
Data Collection Edition (Kapow), 367,

368
Data entry, 48–49, 265

and data extraction, 50–51
Data extraction, 44, 265

alternative views and, 46
from binary sources, 46
of hidden data, 46–47
locating material, 45
pitfalls of, 329–331
sources for, 45–47

Data visualization, 51
Data warehousing (DW), 239–240
Database lookup and enrichment, 58
Defense Intelligence Agency case study,

358–360
Del.icio.us, 4
Dial-up, 2
Digg, 3
Dijkstra, Edsger, 290

Ogrinz.book Page 394 Wednesday, February 25, 2009 10:15 AM

INDEX 395

Dirty Laundry anti-pattern
described, 324–326
remediation of, 326

Disabilities, users with, 125–127
Disaster Relief Volunteering Map, 223
Distance, calculating, 236
Distributed Drill-Down (DDD) pattern

described, 213–215
sample uses of, 215–217, 350, 384

DOC format, 339
Document Object Model (DOM), 13
Dojo, 343, 344
Donnelly, Bernie, 364, 365, 366
Drinking Seawater anti-pattern

described, 315–316
remediation of, 316

E
eBay, 3
Economies of collaboration, 4
Economies of scale, 4
Educational desktop, 206–206
Emergency alerts, issuing, 223–225
Emergency Response pattern

described, 218–223
sample uses of, 223–225, 383

Employee activity, auditing, 296–297
Employee productivity, monitoring,

107–108
Enabler pattern, 43
Enhance patterns, 37

purposes of, 121–122
types of, 123–187

Enterprise 2.0, 4
advantages of, 5–6

Enterprise application integration (EAI),
24–25

pattern, 36
Enterprise information integration (EII),

24–25
Enterprise mashups, 9–10
Erl, Thomas, 24
ESB (enterprise service bus), 23
Ethics codes, monitoring compliance

with, 261
Excel (Microsoft), 9, 27

External resources, leveraging, 80–81
Extraction. See Data extraction.

F
Facebook, 3, 21, 119
Fake, Caterina, 3
Federal Emergency Management Agency

(FEMA), 220–222
Feed Factory pattern, 36, 43

described, 129–131
sample uses of, 131–134, 384, 390

Feeds, 265
documentation of, 321–323
RSS, 8, 129–130, 228–229
splitting into locally useful data,

243–244
Few, Stephen, 256
Field Medic pattern

described, 135–136
sample uses of, 136–140

File modification, alerts of, 134
Filter pattern, 36

described, 226–228
sample uses of, 228–232, 359

Financial publisher case study, 379–381
First-mover advantage, 248
Fiscal analysis, 94–95
Flickr, 3–4
Folksonomies, 3, 5, 7
Folksonomy Enabler pattern

described, 141–143
sample uses of, 143–145, 355

Format masks, 58
Fragility, 29–30

assessing, 30–31
Fragility Reducer pattern

described, 146–148
sample uses of, 148–150

G
Gadgets, 21
Gartner Research, 28
General Electric, 118
Generation Y, 28
Gmail, 4

Ogrinz.book Page 395 Wednesday, February 25, 2009 10:15 AM

396 INDEX

Goldman Sachs, 181
Google Charts, 52
Google Maps, 224, 225
Google Suggest, 151
GoogleApps, 25
Governance changes, tracking, 72–73

H
Harris, Jonathan, 111
Harvest patterns, 36

types of, 70–119
uses of, 67–69

Hastings-Kimball, John, 371, 373
Help desk alerts, communication about, 230
Hewlett-Packard, 114
Hierarchy, of traditional organization, 5
Hopper, Grace, 322
Housing trends, tracking, 98–99
HTML (HyperText Markup Language)

dealing with, 59
hyperlinks in, 47
malformed, 342
structure of, 13
use of class and id in, 14–17

Human–computer interaction (HCI), 151
Hyperlinks, HTML, 47

I
id attributes, 14
Individualism, and mashups, 27
Industry performance, tracking, 97–98
Infinite Monkeys pattern, 48, 250

described, 70, 90–91
sample uses of, 91–95, 368, 387

Information overload (IO), 191, 226–227
combating, 230–231

Information underload, 192
Interfaces

tailoring to experience level of user,
177–179

updating, 175–177
Internationalization, 166
Internet service providers (ISPs), early, 2
Interruption overload, 192
Inventory, alerts about, 230

Inventory data, enhancing, 144
Investment bank case study, 385–388

J
JackBe, 359, 375
Java Beans, 22
JavaScript, dealing with, 56
jCOM1, 356
JMS (Java), 60
Jobs, Steve, 1
JSR-168 (Java Portlets), 54, 263, 264

K
Kamvar, Sep, 111
Kapow Technologies, 356, 367, 368, 377
Katrina, Hurricane, 221–222, 223–224
Keyword filtering, 228
Knowledge management (KM), 191
Knowledge management platforms,

integrating, 251–254
Kramm, Anton Hermann, 357

L
Language Converter, 165
Leading Indicator pattern

described, 96–97
sample uses of, 99–101, 360, 387

Legacy systems
creating multiple feeds from, 242–243
exporting data from, 254

Linthicum, David, 250
Load Balancer, 146
Load Testing pattern, 26

described, 299–302
sample uses of, 302–304

Localization, 166
of applications, 167–168

Locating resources, 237–238
Location Mapping pattern

described, 233–237
sample uses of, 237–239, 360, 375,

384, 391
Long tail, 18–20
Lookup tables, 58

Ogrinz.book Page 396 Wednesday, February 25, 2009 10:15 AM

INDEX 397

M
Malicious Hitchhiker anti-pattern

described, 332–333
remediation of, 333–335

Manage patterns, 37
purposes of, 246–247
types of, 248–288

Management changes, tracking, 72–73
Marketing, audience of, 132–134
MashupOS, 343–344
Mashups, 3

benefits from, 32
blocking, 340–343
and EAI/EII, 24–25
connotation of term, 33–35
core activities for, 41–66
empowering nature of, 8
evolutionary nature of, 344–345
fragility of, 30–31
future of, 31–32, 346
leveraging Web services by, 23
optimizing, 148–150
origin of, 7–9
publication of, 62–63
relationships among, 36–38
and SaaS, 25–26
securing, 343–344
simple example of, 19
and SOA, 22–24
targeting long tail, 18–20
troubleshooting, 150
types of, 9–17
and users, 27–28
virtuous circle of, 11

Master/detail information, 213–214
Math, in mashups, 58
MATLAB, 9
MICROS Systems case study, 361–363
Millennials, 28
Mobile Web browsing, 127–128
MOM (message-oriented middleware),

60
Morville, Peter, 227
Motorola, 118
MSMQ (Microsoft), 60
MySpace, 3, 21

N
National Federation for the Blind, 125
Navigation, of Web, 48–49
NCSA Mosaic, 1
News feeds, managing, 228–229
NeXT, 1
Nike iD, 27

O
Occupational Safety and Health

Administration (OSHA), 220
Office 2007 (Microsoft), HCI in, 152
On-the-fly translation, 167
One-Hit Wonder anti-pattern

described, 329–330
remediation of, 330–331

Open APIs, 42
Open Kimono anti-pattern

described, 327–328
remediation of, 328

Open standards, 23
importance of, 42–43

OpenSpan, 349, 352
Oracle, 125
Order status, communication about, 230
O'Reilly, Tim, 3
Organization, traditional hierarchy of, 5
Outsourcing, emotional effect of, 112–113
Overwatch, 359, 360

P
Parent/Child pattern, 215
Pareto principle, 18
Password management. See Single Sign-

On pattern.
Patterns, 28–29

connotation of term, 34, 35
types of, 36–37

PDF format, 339
Philadelphia Stock Exchange case study,

364–366
Platform compatibility, 127–128
Plug-ins, 21
Polling, 59–60

Ogrinz.book Page 397 Wednesday, February 25, 2009 10:15 AM

398 INDEX

Portal Content Edition (Kapow), 356
Portal Enabler pattern, 51, 262

description, 262–265
sample uses of, 266–268, 356

Portlets, 20, 203, 263–268
Predictive Aiding, 151
Presearch, 232
Presto (JackBe), 359, 375
Price analysis, 85–87
Price changes, emotional responses to,

113–114
Price fluctuations, tracking, 74
Product recalls, tracking, 74–75
Product reviews, leveraging, 79–80
Profanity filtering, 229
Propagation pattern, 248
Prototype, 269
Public relations problems, uncovering,

114–115

Q
Quick Proof-of-Concept pattern, 26

described, 269–272
sample uses of, 356, 368
universality of, 272–273

R
Rating, filtering by, 229
RDL (Resource Description Framework),

345
Reaction, filtering by, 229
ReadyAmerica, 220
Reality Mining pattern

described, 102–103
resources for, 103–104
sample uses of, 104–108, 360, 375

Regression Testing pattern
described, 305–309
sample uses of, 309–310

Regular expressions (regex), 45
Repeatability, 37
Reports, correcting math errors on,

139–140
Reputation Management pattern, 51

described, 109–111
sample uses of, 111–114

ResearcherID, 374–375

Resource management, 117–118
Retail performance, tracking, 99–101
Rich Internet applications (RIAs), 45, 126
Risk management, 81–82
Robots, 341
robots.txt, 341
RSS (Rich Site Syndication; Real Simple

Syndication), 8, 129–130
managing news feeds, 228–229

RSS Enabler, 129

S
Sales, color theory applied to, 156–157
Sales leads, finding, 91–92
Sales opportunities, notifications of,

131–132
Sales presentations, enhancing, 155
Salesforce.com, 25
Sarbanes-Oxley Act, 181
Scalability, 37
Schaap, Jos, 361, 363
Schacter, Joshua, 4
Scheduling, 53
Screen scraping, 12
Search engines, 44–45
Search queries, clarification of, 168–170
Second-mover advantage, 249
Security

and Dirty Laundry anti-pattern,
324–326

importance of, 6
issues with SSO, 277
issues with widgets, 284–285
and mashups, 340–344
and Open Kimono anti-pattern,

327–328
Semantic Web, 345
Sentiment analysis, 109
Serena Business Mashups, 361, 371–372
Serena Mashup Composer, 361, 363,

365, 366, 371, 373
Service level agreements, 26
Service-oriented architecture (SOA), 22

mashups and, 22–24, 42
Shadow Integration anti-pattern

described, 321–322
remediation of, 323

Simple Mail Transfer Protocol (SMTP), 61

Ogrinz.book Page 398 Wednesday, February 25, 2009 10:15 AM

INDEX 399

Simple Network Management Protocol
(SNMP), 60

Simply Hired case study, 367–369
Single Sign-On pattern

described, 274–278
sample uses of, 278–280
security issues of, 277

Situational interface, 119
Situational marketing, 119
Six Sigma, 118
Skinny Window anti-pattern

described, 313–314
remediation of, 314

Smart Suggestions pattern
described, 151–153
sample uses of, 153–157

SMASH, 343
Smith, Gene, 142
SOAP, 22

as standard, 23
Social networking, 3
Social relationships, uncovering, 95
Soft reorganization, 4
Software bugs, dealing with, 135–136,

138–139
Software releases, tracking, 71–72
Software as a Service (SaaS), 25–26

searching products, 163–164
Software usability, 171–179
Sony BMG, 114
Southwest Airlines, 126
Spambots, 342
SPARQL, 345
Spatial visualization, 238–239
Spiders, 341
Splinter pattern, 36

described, 239–242
sample uses of, 242–244, 357

Spreadsheets, optimal use of, 205
SSO (single sign-on), 20

provision of, 278–280
Sticky Fingers anti-pattern

described, 317–319
remediation of, 319–320

Super Search pattern
described, 158–160
sample uses of, 160–164, 360, 381,

384, 390
Suppliers, networking of, 197–198

Surveillance, 54
Swivel-chair automation, 288
System downtime notifications, 230
System stability, 300
System updates, communication about,

230
System usage, analyzing, 297–298
System useful lifetime, extension of,

209–210

T
Tagging, 7
Task switching, optimization of, 202–204
Taxonomies, 7
Telecommunications provider case study,

389–391
Test-driven development, 305
Testing patterns, 37

purposes of, 289–291
types of, 292–310

Thomson Financial case study, 370–373
Thomson Reuters case study, 374–376
Time Series pattern, 51

described, 115–117
sample uses of, 117–119, 360, 368,

375, 387
Toffler, Alvin, 27
Transformation, 57

types of, 57–58
Translation pattern

described, 165–167
sample uses of, 167–170, 357

U
Unified Modeling Language (UML), 38
Usability Enhancer pattern

described, 171–173
sample uses of, 173–179, 350, 375,

378, 384
User interface, fixing, 136–138
User roles, and workflow, 183–187

V
Visualization. See Data visualization.
Volunteer opportunities, 224–225
VolunteerMatch, 223, 224

Ogrinz.book Page 399 Wednesday, February 25, 2009 10:15 AM

400 INDEX

W
We Feel Fine, 111
Web 2.0, 2–3

and Enterprise 2.0, 4
Web pages

aids to creating, 2
interaction-based vs. transaction-

based, 3
Web services. See Service-oriented

architecture (SOA).
Web site responsiveness, measuring,

302–304
WebEx, 25
Weck, Peter, 368
Welch, Jack, 118
Widget Enabler pattern, 51

described, 281–286
inter-widget communication in, 285
personalization issues in, 285
sample uses of, 286–288, 375, 391
security issues in, 284–285

Widgets, 21
viral propagation of, 287–288

Wikipedia, 3, 7
Wikis, 3
Wolf, Michael, 128
Workflow pattern

described, 180–183
sample uses of, 183–187, 351, 362,

365, 372, 378, 381
World Wide Web

as data source, 17
early browsers of, 1
growth of, 1
navigating, 48–49
publication on, 62
reusability of, 7

WSRP (Web Services for Remote
Portlets), 54, 263

WWW. See World Wide Web; Web pages.

X
XLS format, 339–340
XML, 23

stability of, 104

Ogrinz.book Page 400 Wednesday, February 25, 2009 10:15 AM

	Preface
	Chapter 1: Understanding Mashup Patterns
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.10000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.10000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile true
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

