

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have
been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of
any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential
damages in connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales, which
may include electronic versions and/or custom covers and content particular to your business, training goals, marketing
focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data
Hewardt, Mario.

Advanced .NET debugging / Mario Hewardt.
p. cm.

Includes index.
ISBN 978-0-321-57889-1 (pbk. : alk. paper) 1. Microsoft .NET. 2. Debugging in computer science.
I. Title.

QA76.76.M52H495 2010
004.2'4—dc22

2009035081

Copyright © 2010 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must be
obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or
by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-321-57889-1
ISBN-10: 0-321-57889-9
Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, November 2009

xix

FOREWORD

Last year, we celebrated the ten-year anniversary of the CLR group at Microsoft. The
purpose of the CLR was to provide a safe and robust environment that also enabled
great productivity for developers. Today, the CLR is used in a very wide range of sce-
narios from big server applications that have extremely high requirements of per-
formance and scalability, to desktop applications for daily uses. The popularity of the
CLR also poses challenges for people who build and support software on top of it
because their products might have to handle running on very different machine con-
figurations and networks, not to mention the fact that people build much more pow-
erful, more sophisticated software as hardware progresses at a fast speed. All this
means that when something is not working as expected, and you are the one respon-
sible for investigating and fixing the problem, knowledge and tools to help you do that
efficiently are invaluable.

To allow for increased productivity, the CLR takes over many mechanisms on
behalf of developers so they can focus on building their domain logic instead. It is
crucial to know some essential concepts that will best help you in analyzing problems
with your applications without spending a lot of time understanding all of the CLR
internal details. However, it’s not an easy task to know what these essential concepts
are. Many people acquire this knowledge by trial and error, which is time-consuming
and presents the risk of getting inaccurate answers.

Fortunately, Mario’s book combines just the right amount of explanation of the
runtime to help you understand his thought process and the techniques he uses to
solve problems with many practical and clever tricks learned from debugging real-
world applications. So if you want to quickly get up to speed debugging your CLR
applications, this is definitely the book to read. It covers many aspects of debugging
managed applications—in particular, it provides insights into areas that are hard to
diagnose, such as thread synchronization problems. The illustration of debugging
techniques is largely done with examples, which makes it easy to follow.

One of the debugging tools this book primarily focuses on is the SOS debugger
extension, which was written and is maintained by the CLR group. We update SOS
with each of our releases to make it more extensive and to give you a deeper look at
the new features. It is a powerful tool for finding out what’s going on in a managed

xx Foreword

process. Much of what it can do for you is not obtainable via other debugging tools.
For example, you can find out what root is keeping an object on the managed heap
live, which is a common issue for managed application developers to address. When
you familiarize yourself with this tool, you will find that you have a much better pic-
ture of how your application is working. I have yet to see another book that describes
it in nearly as much detail as this book does.

With the knowledge from this book, you will be able to get to root causes of issues
with much less time and effort. I hope you’ll have as much fun reading this book as I
did when I was reviewing the manuscript.

Patrick Dussud
Technical Fellow, CLR, .NET FX
Microsoft Corporation

xxi

PREFACE

Since the release of Advanced Windows Debugging at the end of 2007, I have received
many requests regarding an equivalent book focused on .NET. The initial outline for
Advanced Windows Debugging did contain a chapter on .NET debugging, but that
chapter was eventually cut—primarily due to my conviction that spending just one
chapter on it was not sufficient coverage and would confuse rather than enlighten
readers. Since then, .NET has become a very popular platform choice for developers.
Some statistics seem to show that the usage of C# is almost at the same levels as tra-
ditional C++. Knowing how to properly navigate some of the challenges involved with
.NET development is a key factor in achieving success.

Why is a book on .NET debugging using debuggers such as WinDbg, NTSD, and
CDB needed? There are obviously other debuggers available (some more user
friendly than others). Although using the native debuggers may seem daunting at
first, they pack such an incredible amount of firepower that, when fully realized, they
make finding the root cause of the nastiest bugs a less time-consuming task. That is
the case partly because when using the native debuggers it’s much easier to glean crit-
ical internal information about the CLR (the .NET runtime) itself and hence use that
information to troubleshoot problems. Examples of such detailed information are the
garbage collector, interoperability layer, synchronization primitives, and so on. Not
only is this information critical in a lot of debugging scenarios, but it is also quite edu-
cational as it provides a deeper look into how the runtime is designed. Finally, there
are times (more and more in today’s “connected” solutions) when utilizing a ZERO
footprint debugger is required. The “friendlier” debuggers typically force an explicit
and local install step, which copies the required binaries onto the target machine,
stores configuration in various places on the system, and so on. On a live machine
where configuration changes are prohibited (such as on a customer or data center
machine), the only viable option is to use the native debuggers since no configuration
changes are required.

The book you are holding serves to address the gap in the debugging literature
and focuses on teaching the power of the native debuggers within the context of the
CLR. The book takes a very focused and pragmatic approach and utilizes real-world
examples of debugging scenarios to ensure that you get not only an academic under-
standing but also a complete practical experience. I hope you will enjoy reading this
book as much as I enjoyed writing it.

xxii Preface

Who Should Read This Book?

Knowing which tools to use during root cause analysis and how to approach different
categories of problems can make the difference between shipping a high quality
product versus a product that will cost a lot of money to support. Even when every
effort has been put into making a product bug free, issues surface on customer
machines, and knowing how to troubleshoot a problem in that scenario is key to
avoiding customer headaches and downtime. It is the responsibility of all software
engineers to understand which tools to utilize in order to do root cause analysis in dif-
ferent environments. If you master the art of debugging, the quality of your product
will dramatically increase and your reputation for producing quality and reliable soft-
ware will increase.

Software Developers
Far too often, I see developers struggle with really tough bugs and end up spending
several days (sometimes weeks) trying to narrow down the problem and arrive at the
root cause. In many of these situations, I ask the developers which tools they used to
figure it out. The answer always comes back the same: code reviews and tracing,
followed by further code reviews and further tracing. Although code reviews and,
more specifically, tracing are important aspects of troubleshooting a bug, they can
also be very costly. Let’s face it; if we could trace absolutely everything we needed to
solve any given problem in our code, there would not be a need for debuggers. The
simple truth is that there are scenarios where tracing isn’t sufficient and attaching a
debugger to a misbehaving process is crucial. Many times after explaining that tool X
would have cut down on the time it took to troubleshoot a particular problem, devel-
opers are simply amazed that such a tool exists.

This book targets those developers who are tasked with developing code on the
.NET platform and resolving complex code issues. Gaining a solid understanding of
the tool set available to help developers troubleshoot complex and costly problems is
imperative to the success of a product. Knowing which tools to use and which instru-
mentation to enable throughout the development process is key to achieving success.

Quality Assurance
The quality assurance (QA) job is that of finding problems in code that developers
produce. Elaborate test plans and fully automated testing procedures allow QA engi-
neers to, in a very efficient manner, test components inside and out. Much in the same

Preface xxiii

way that it is critical for developers to know about the tools and instrumentation
available, so it is for QA engineers. During their testing they may encounter any given
problem, and having the right tools available and enabled during testing helps them,
as well as the developer, to resolve the problem in a time-efficient manner. Without
the right tool set in place while running tests, you may end up having to restart the test
(with the tool turned on) only to realize that it is not a systematically reproducible
problem. The debuggers and tools examined in this book will make QA engineers
more efficient and also help the overall product team achieve faster results.

Product Support Engineers
Product support engineers face very similar challenges as those faced by developers
and QA engineers. The key difference is the environment under which they operate.
Not only are they faced with resolving customer issues, but they often have to deal
with code from multiple sources (i.e., not just product-specific code). Additionally,
product support engineers typically work with static snapshots of processes and can’t
rely on a live process to debug, making it even harder to troubleshoot. Under these
conditions, knowing how to utilize the debuggers and associated tools can mean the
difference between going back and forth with the customer a number of times (often
a costly and frustrating proposition) and being able to resolve the problem right away.

Operations Engineers
As more and more software offerings are moving into the cloud (service-based offer-
ings), more and more code is run in dedicated data centers rather than on customer
machines. The group of engineers that makes sure that the services are up and run-
ning and in pristine shape are the operations engineers. One of the key challenges for
the operations engineers is to resolve all problems that cause the service to run
suboptimally. Quite often, this means solving the problem as quickly as possible. If a
particular problem cannot be solved by the operations team, the product team gets
involved, a process that can be time-consuming since it can involve going back and
forth, giving the operations team directions on how to troubleshoot the problem. By
utilizing the correct set of tools, the operations team can solve a lot of the problems
encountered without escalating the issue to the product team, thereby saving both
parties time; and most importantly, the customer will see less downtime.

xxiv Preface

Prerequisites

Although this book teaches you how to use the native debuggers, the focus is primarily
on how to debug .NET code and not on the basic operations of the native debuggers.
Topics such as how to attach the debugger to the target process, setting up symbol
paths, setting break points, and so on are covered briefly in Chapter 3, “Basic
Debugging Tasks,” but in-depth details are not covered. Further details on the native
debuggers and how they relate to native code debugging can be found in my previous
book, written with Daniel Pravat, Advanced Windows Debugging (Boston, MA:
Addison-Wesley, 2007).

A solid understanding of C# is required as all sample code is written in that
language. An excellent book on C# is Mark Michaelis’ Essential C# 3.0 (Boston, MA:
Addison-Wesley, 2009), and there is a new edition planned, Essential C# 4.0, for pub-
lication in January 2010.

Although C# is a prerequisite, intimate knowledge of the CLR is not. This book
doesn’t just cover how to debug .NET applications. It also gives in-depth explanations
of a lot of the core pieces of the .NET platform, a crucial foundation for successful
debugging.

Organization

At a high level, this book is organized into three parts: Part I, “Overview,” Part II,
“Applied Debugging,” and Part III, “Advanced Topics.” Each of these parts is defined
a bit in this section, as are the chapters that make them up.

Part I—-Overview
Part I consists of a set of chapters that guides the reader through the basics of .NET
debugging using the native debuggers. Topics such as all the tools that are required,
introduction to MSIL, basic debugging tasks, and so on are fully examined and illus-
trated. If you are familiarizing yourself with the debuggers for the first time, I rec-
ommend reading these chapters in sequence.

Chapter 1—–Introduction to the Tools
Chapter 1 provides a brief introduction to the tools used throughout the book, including
basic usage scenarios, download locations, and installation instructions. Among the tools
covered are: Debugger Tools for Windows, SOS, SOSEX, CLR Profiler, and more.

Preface xxv

Chapter 2—–CLR Fundamentals
This chapter discusses the core fundamentals of the .NET runtime. The chapter
begins with a high-level overview of the major runtime components and subsequently
drills down into the details and covers topics such as assembly loading, runtime meta-
data, and much more. The native debuggers and tools will be used to illustrate the
internal workings of the runtime.

Chapter 3—–Basic Debugging Tasks
This chapter introduces the reader to performing the most common debugging tasks
when debugging .NET applications using the native debuggers. Tasks related to
examining thread-specific data, the garbage collector heap, the .NET exceptions, the
basics of postmortem debugging, and much more are covered.

Part II—-Applied Debugging
Part II constitutes the meat of the material and examines core CLR components and
how to troubleshoot common problems related to those components. Each chapter
begins with an overview of the component, utilizing the debuggers to illustrate key
concepts. Following the overview is a set of real-world examples of common pro-
gramming mistakes utilizing that component. The thought process behind tackling
these bugs together with illustrative debug sessions is fully shown. The chapters in
Part II can be read in any order as they focus on component-specific problems com-
monly encountered.

Chapter 4—–Assembly Loader
The complexity of .NET applications can range from simple command-line applica-
tions to complex multiprocess/multimachine server applications with a large number
of assemblies living in harmony. To efficiently debug problems in .NET applications,
you must be careful to understand the dependencies of .NET assemblies. This chap-
ter takes a look at how the CLR assembly loader does its work and the common prob-
lems surrounding that area.

Chapter 5—–Managed Heap and Garbage Collection
Although .NET developers can enjoy the luxury of automatic memory management,
care must still be taken to avoid costly mistakes. The highly sophisticated CLR
garbage collector is an automatic memory manager that enables developers to focus
less on memory management and more on application logic. Even though the CLR
manages memory for the developer, care must be taken to avoid pitfalls that can

wreak havoc in your applications. In this chapter, we look at how the garbage
collector works, how to peek into the internals of the garbage collector, and some
common programming mistakes related to automatic garbage collection.

Chapter 6—–Synchronization
A multithreaded environment enables a great deal of flexibility and efficiency. With
this flexibility comes a lot of complexity in the form of thread management. To avoid
costly mistakes in your application, care must be taken to ensure that threads perform
their work in an orchestrated fashion. This chapter introduces the synchronization
primitives available in .NET and discusses how the debuggers and tools can be used
to debug common thread synchronization problems. Scenarios such as deadlocks and
thread pool problems are discussed.

Chapter 7—–Interoperability
.NET relies heavily on underlying Windows components. To invoke the native
Windows components, the CLR exposes two primary methods of interoperability:

■ Platform invocation
■ COM interoperability

Because the .NET and Win32 programming models are often very different, idio-
syncrasies often lead to hard-to-track-down problems. In this chapter, we look at
some very common mistakes made when working in the Interoperability layer and
how to use the debuggers and tools to troubleshoot the problems.

Part III—-Advanced Topics
Part III covers topics such as postmortem debugging, power tools, and new and
upcoming .NET enhancements.

Chapter 8—–Postmortem Debugging
Quite often, it’s not feasible to expect full access to a failing machine so that a prob-
lem can be debugged. Bugs that surface on production machines on customer sites
are rarely available for debugging. This chapter outlines the mechanisms for debug-
ging a problem without access to the physical machine. Topics discussed include the
basics of crash dumps, generating crash dumps, analyzing crash dumps, and so on.

xxvi Preface

Preface xxvii

Chapter 9—–Power Tools
In addition to the “standard” tools available during .NET debugging, there are sev-
eral other incredibly powerful tools available. This chapter introduces the reader to
these power tools such as PowerDBG (debugging via Powershell) and others.

Chapter 10—–CLR 4.0
With the imminent release of CLR 4.0, this chapter takes an abbreviated tour of the
CLR 4.0 enhancements. The chapter is structured so that each topic in previous
chapters of the book is covered from a CLR 4.0 perspective.

Conventions

Code, command-line activity, and syntax descriptions appear in the book in a mono-
spaced font. Many of the examples and walkthroughs in this book show a great deal
of what is known as “debug spew.” Debug spew simply refers to the output that the
debugger displays as a result of some action that the user takes. Typically, this debug
spew consists of information shown in a very compact and concise form. To effectively
reference bits and pieces of this data and make it easy for you to follow, the boldface
and italic types are used. Additionally, anything with the boldface type in the debug
spew indicates commands that you will be entering. The following example illustrates
the mechanism.

0:000> ~*kb

. 0 Id: 924.a18 Suspend: 1 Teb: 7ffdf000 Unfrozen

ChildEBP RetAddr Args to Child

0007fb1c 7c93edc0 7ffdf000 7ffd4000 00000000 ntdll!DbgBreakPoint

0007fc94 7c921639 0007fd30 7c900000 0007fce0 ntdll!LdrpInitializeProcess+0xffa

0007fd1c 7c90eac7 0007fd30 7c900000 00000000 ntdll!_LdrpInitialize+0x183

00000000 00000000 00000000 00000000 00000000 ntdll!KiUserApcDispatcher+0x7

0:000> dd 0007fd30

0007fd30 00010017 00000000 00000000 00000000

0007fd40 00000000 00000000 00000000 ffffffff

0007fd50 ffffffff f735533e f7368528 ffffffff

0007fd60 f73754c8 804eddf9 8674f020 85252550

0007fd70 86770f38 f73f4459 b2f3fad0 804eddf9

0007fd80 b30dccd1 852526bc b30e81c1 855be944

0007fd90 85252560 85668400 85116538 852526bc

0007fda0 852526bc 00000000 00000000 00000000

In this example, you are expected to type in ~*kb in the debug session. The result
of entering that command shows several lines with the most critical piece of infor-
mation being 0007fd30. Next, you should enter the dd 0007fd30 command illus-
trated to glean more information about the previously highlighted number
0007fd30.

All tools used in this book are assumed to be launched from their installation
folder. For example, if the Windows debuggers are installed in the C:\Program
Files\Debugging Tools for Windows folder, the command line for launching
windbg.exe will be shown as follows:

C:\>windbg

Required Tools

All of the tools utilized in this book are available for download free of charge. Chapter 1
outlines the tools used in the book and where to download them from.

Sample Code

The most efficient way to demonstrate how to debug problematic .NET code is to use
real-world examples. Unfortunately, including full-blown, real-world examples in a
book format is unfeasible and would make it hard to follow in a concise fashion. To that
extent, the sample problematic code accompanying the book has been reduced to the
bare essentials (although never at the expense of completeness). All sample code was
written using C# and .NET 2.0. Each of the sample scenarios can be downloaded from
the book’s Web site located at www.advanceddotnetdebugging.com. Associated with
each sample scenario is an MSBuild project file. MSBuild ships with the .NET SDK
2.0 and is a full-fledged, command-line-driven build environment that is compatible
with Microsoft Visual Studio. All debug sessions are illustrated using the 32-bit version
of the .NET framework.

xxviii Preface

www.advanceddotnetdebugging.com

Preface xxix

Support

Even after painstaking effort to make this book error free, errors will undoubtedly
be found. You can report errors either on the book’s Web site located at
www.advanceddotnetdebugging.com or by emailing me directly at marioh@
advanceddotnetdebugging.com. An errata sheet will be kept on the Web site with the
corresponding errors and fixes.

Summary

With today’s complex software solutions, ranging from standalone command-line
applications to highly interconnected systems communicating on a worldwide basis,
code issues will without question arise. The difficulty in ensuring that such products
are bug free may seem like a daunting task, but with the right set of tools and the
knowledge required to use those tools, a software engineer’s life can be made much
easier. Not only will these tools and the correct mindset help the troubleshooting
process become more effective, it will also save the company a ton of money and
potential loss of customers. This book was written to enable software engineers to
gain the knowledge and expertise needed to avoid devastating pitfalls and make the
troubleshooting process more productive and successful.

I welcome you to Advanced .NET Debugging.

Mario Hewardt
Redmond, WA
September 2009

www.advanceddotnetdebugging.com

203

C H A P T E R 5

MANAGED HEAP AND GARBAGE
COLLECTION

Manual memory management is a very common source of errors in applications
today. As a matter of fact, several online studies indicate that the most common
errors are related to manual memory management. Examples of such problems
include

■ Dangling pointers
■ Double free
■ Memory leaks

Automatic memory management serves to remove the tedious and error-prone
process of managing memory manually. Even though automatic memory manage-
ment has gained more attention with the advent of Java and the .NET platform, the
concept and implementation have been around for some time. Invented by John
McCarthy in 1959 to solve the problems of manual memory management in LISP,
other languages have implemented their own automatic memory management
schemes as well. The implementation of an automatic memory management com-
ponent has become almost universally known as a garbage collector (GC). The
.NET platform also works on the basis of automatic memory management and
implements its own highly performing and reliable GC. Although using a GC makes
life a lot simpler for developers and enables them to focus on more of the business
logic, having a solid understanding of how the GC operates is key to avoiding a set
of problems that can occur when working in a garbage collected environment. In
this chapter, we take a look at the internals of the CLR heap manager and the GC
and some common pitfalls that can wreak havoc in your application. We utilize the
debuggers and a set of other tools to illustrate how we can get to the bottom of the
problems.

204 Chapter 5 Managed Heap and Garbage Collection

Windows Memory Architecture Overview

Before we delve into the details of the CLR heap manager and GC, it is useful to
review the overall memory architecture of Windows. Figure 5-1 shows a high-level
overview of the various pieces commonly involved in a process.

As you can see from Figure 5-1, processes that run in user mode typically use one
or more heap managers. The most common heap managers are the Windows heap
manager, which is used extensively in most user mode applications, and the CLR heap
manager, which is used exclusively by .NET applications. The Windows heap manager
is responsible for satisfying most memory allocation/deallocation requests by allocating
memory, in larger chunks known as segments, from the Windows virtual memory man-
ager and maintaining bookkeeping data (such as look aside and free lists) that enable
it to efficiently break up the larger chunks into smaller-sized allocations requested by
the process. The CLR heap manager takes on similar responsibilities by being the one-
stop shop for all memory allocations in a managed process. Similar to the Windows
heap manager, it also uses the Windows virtual memory manager to allocate larger
chunks of memory, also known as segments, and satisfies any memory allocation/deal-
location requests from those segments. They key difference between the two heap
managers is how the bookkeeping data is structured to maintain the integrity of the
heap. Figure 5-2 shows a high-level overview of the CLR heap manager.

From Figure 5-2, you can see how the CLR heap manager uses carefully man-
aged larger chunks (segments) to satisfy the memory requests. Also interesting to
note from Figure 5-2 is the mode in which the CLR heap manager can operate.

Virtual Memory Manager

[NTDLL] Heap Manager

Application

[MSCORWKS] CLR Heap Manager

Figure 5-1 High-level overview of Windows memory architecture

205Windows Memory Architecture Overview

5.
M

ANAGED
H

EAP
AND

G
ARBAGECOLLECTION

Server Mode

Small Object Heap

Large Object Heap

Segment 2

Segment X

......

Segment 1

Segment X

......

CPU 1

Workstation Mode

Small Object Heap

Large Object Heap

Segment 2

Segment X

......

Segment 1

Segment X

......

Ephemeral Seg

Ephemeral Seg

CPU X

Small Object Heap

Large Object Heap

Segment 2

Segment X

......

Segment 1

Segment X

......

Ephemeral Seg

Figure 5-2 High-level overview of the CLR heap manager

There are two modes of operation: workstation and server. As far as the CLR heap man-
ager is concerned, the primary difference is that rather than having just one heap,
there is now one heap per processor, where the size of the heap segments is typically
larger than that of the workstation heap (although this is an implementation detail

206 Chapter 5 Managed Heap and Garbage Collection

that should not be relied upon). From the GC’s perspective, there are other funda-
mental differences between workstation and server primarily in the area of GC
threading models, where the server flavor of the GC has a dedicated thread for all GC
activity versus the workstation GC, which runs the GC process on the thread that per-
formed the memory allocation.

ARE THE IMPLEMENTATIONS FOR WORKSTATION AND SERVER IN DIFFERENT
BINARIES? Prior to version 2.0, the workstation GC was implemented in
mscorwks.dll and the server GC was implemented in mscorsvr.dll. In version 2.0,
the implementations were folded into one and the same binary (mscorwks.dll). Please
note that this is purely a merge at the binary level.

Each managed process starts out with two heaps with their own respective seg-
ments that are initialized when the CLR is loaded. The first heap is known as the
small object heap and has one initial segment of size 16MB on workstations (the
server version is bigger). The small object heap is used to hold objects that are less
than 85,000 bytes in size. The second heap is known as the large object heap (LOH)
and has one initial segment of size 16MB. The LOH is used to hold objects greater
than or equal to 85,000 bytes in size. We will see the reason behind dividing the heaps
based on object size limits later when we discuss the garbage collector internals. It is
important to note that when a segment is created, not all of the memory in that seg-
ment is committed; rather, the CLR heap manager reserves the memory space and
commits on demand. Whenever a segment is exhausted on the small object heap, the
CLR heap manager triggers a GC and expands the heap if space is low. On the large
object heap, however, the heap manager creates a new segment that is used to serve
up memory. Conversely, as memory is freed by the garbage collector, memory in any
given segment can be decommitted as needed, and when a segment is fully decom-
mitted, it might be freed altogether.

What’s in an Address?

Given an address, is there a way to find out the state of that memory? That is, is the mem-
ory reserved? Is the memory committed? Is it writable or just readable? The address com-
mand is an excellent command to answer those questions. Without any arguments, the
address command gives a detailed view of the memory activity in the process as well as a
summary. If an address is specified, the address command attempts to find information
about that particular address. For example, assume we have an object on the managed

207Windows Memory Architecture Overview

heap at address 0x01d96c58. If we run the address command on this address, it shows
the following:
0:000> !address 0x01d96c58
ProcessParameters 004d1668 in range 004d0000 0050b000
Environment 004d0808 in range 004d0000 0050b000

01d90000 : 01d90000 - 00012000
Type 00020000 MEM_PRIVATE
Protect 00000004 PAGE_READWRITE
State 00001000 MEM_COMMIT
Usage RegionUsageIsVAD

The address in question is an allocated and accessible memory location that is
read/write enabled and committed.

As briefly mentioned in Chapter 2, “CLR Fundamentals,” each object that
resides on the managed heap carries with it some additional metadata. More specifi-
cally, each object is prefixed by an additional 8 bytes. Figure 5-3 shows an example of
a small object heap segment.

In Figure 5-3, we can see that the first 4 bytes of any object located on the man-
aged heap is the sync block index followed by an additional 4 bytes that indicate the
method table pointer.

Allocating Memory
Now that we understand how the CLR heap manager, at a high level, structures
the memory available to applications, we can take a look at how allocation requests
are satisfied. We already know that the CLR heap manager consists of one or more

5.
M

ANAGED
H

EAP
AND

G
ARBAGECOLLECTION

S
yn

cb
lk

T
yp

e
H

an
dl

e

Object Instance
Object

Instance

S
yn

cb
lk

T
yp

e
H

an
dl

e

S
yn

cb
lk

T
yp

e
H

an
dl

e

Object Instance...

Syncblk
Table

Syncblk
Table

Method
Table

Method
Table

Method
Table

Syncblk
Table

Current allocation pointer

Committed/Reserved
Space

4 4 Size Size Size4 4 4 4

Figure 5-3 Example of a small object heap segment

208 Chapter 5 Managed Heap and Garbage Collection

segments and that memory allocations are allotted from one of the segments and
returned to the caller. How is this memory allocation performed? Figure 5-4 illus-
trates the process that the CLR heap manager goes through when a memory alloca-
tion request arrives.

In the most optimal case, when a GC is not needed for the allocation to suc-
ceed, an allocation request is satisfied very efficiently. The two primary tasks per-
formed in that scenario are those of simply advancing a pointer and clearing the
memory region. The act of advancing the allocation pointer implies that new allo-
cations are simply tacked on after the last allocated object in the segment. When
another allocation request is satisfied, the allocation pointer is again advanced, and
so forth. Please note that this allocation scheme is quite different than the Windows
heap manager in the sense that the Windows heap manager does not guarantee

Allocation Request Is GC needed? Invoke GC

Set allocation
pointer

Clear memory

Is object
finalizable?

Add to GC
bookkeeping

Yes

No

Yes

No

Figure 5-4 Memory allocation process in the CLR heap manager

209Windows Memory Architecture Overview

locality of objects on the heap in the same fashion. An allocation request on the
Windows heap manager can be satisfied from any given free block anywhere in the
segment. The other scenario to consider is what happens when a GC is required
due to breaching a memory threshold. In this case, a GC is performed and the allo-
cation attempt is tried again. The last interesting aspect from Figure 5-4 is that of
checking to see if the allocated object is finalizable. Although not, strictly speaking,
a function of the managed heap, it is important to call out as it is part of the alloca-
tion process. If an object is finalizable, a record of it is stored in the GC to properly
manage the lifetime of the object. We will discuss finalizable objects in more detail
later in the chapter.

Before we move on and discuss the garbage collector internals, let’s take a look at
a very simple application that performs a memory allocation. The source code behind
the application is shown in Listing 5-1.

Listing 5-1 Simple memory allocation

using System;

using System.Text;

using System.Runtime.Remoting;

namespace Advanced.NET.Debugging.Chapter5

{

class Name

{

private string first;

private string last;

public string First { get { return first; } }

public string Last { get { return last; } }

public Name(string f, string l)

{

first = f; last = l;

}

}

class SimpleAlloc

{

static void Main(string[] args)

5.
M

ANAGED
H

EAP
AND

G
ARBAGECOLLECTION

(continues)

210 Chapter 5 Managed Heap and Garbage Collection

Listing 5-1 Simple memory allocation (continued)

{

Name name = null;

Console.WriteLine("Press any key to allocate memory");

Console.ReadKey();

name = new Name("Mario", "Hewardt");

Console.WriteLine("Press any key to exit");

Console.ReadKey();

}

}

}

The source code and binary for Listing 5-1 can be found in the following folders:

■ Source code: C:\ADND\Chapter5\SimpleAlloc
■ Binary: C:\ADNDBin\05SimpleAlloc.exe

The source code in Listing 5-1 is painfully simple, but the more interesting question
is, how do we find that particular memory allocation on the managed heap using the
debuggers? Fortunately, the SOS debugger extension has a few handy commands that
enable us to gain some insight into the contents of the managed heap. The command we
will use in this particular example is the DumpHeap command. By default, the DumpHeap
command lists all the objects that are stored on the managed heap together with their
associated address, method table, and size. Let’s run our 05SimpleAlloc.exe applica-
tion under the debugger and break execution when the Press any key to allocate
memory prompt is shown. When execution breaks into the debugger, run the DumpHeap
command. A partial listing of the output of the command is shown in the following:

0:004> !DumpHeap

Address MT Size

790d8620 790fd0f0 12

790d862c 790fd8c4 28

790d8648 790fd8c4 32

790d8668 790fd8c4 32

790d8688 790fd8c4 28

790d86a4 790fd8c4 24

790d86bc 790fd8c4 24

…

…

…

211Windows Memory Architecture Overview

total 2379 objects

Statistics:

MT Count TotalSize Class Name

79119954 1 12 System.Security.Permissions.ReflectionPermission

79119834 1 12 System.Security.Permissions.FileDialogPermission

791032a8 1 128 System.Globalization.NumberFormatInfo

79100e38 3 132 System.Security.FrameSecurityDescriptor

791028f4 2 136 System.Globalization.CultureInfo

791050b8 4 144 System.Security.Util.TokenBasedSet

790fe284 2 144 System.Threading.ThreadAbortException

79102290 13 156 System.Int32

790f97c4 3 156 System.Security.Policy.PolicyLevel

790ff734 9 180 System.RuntimeType

790ffb6c 3 192 System.IO.UnmanagedMemoryStream

7912d7c0 11 200 System.Int32[]

790fd0f0 17 204 System.Object

79119364 8 256 System.Collections.ArrayList+SyncArrayList

79101fe4 6 336 System.Collections.Hashtable

79100a18 10 360 System.Security.PermissionSet

79112d68 18 504

System.Collections.ArrayList+ArrayListEnumeratorSimple

79104368 21 504 System.Collections.ArrayList

7912d9bc 6 864 System.Collections.Hashtable+bucket[]

7912dae8 8 1700 System.Byte[]

7912dd40 14 2296 System.Char[]

7912d8f8 23 17604 System.Object[]

790fd8c4 2100 132680 System.String

Total 2379 objects

The output of the DumpHeap command is divided into two sections. The first
section contains the entire list of objects located on the managed heap. The
DumpObject command can be used on any of the listed objects to get further infor-
mation about the object. The second section contains a statistical view of the managed
heap activity by grouping related objects and displaying the method table, count, total
size, and the object’s type name. For example, the item

79100a18 10 360 System.Security.PermissionSet

indicates that the object in question is a PermissionSet with a method descrip-
tor of 0x79100a18 and that there are 10 instances on the managed heap with a
total size of 360 bytes. The statistical view can be very useful when trying to
understand an excessively large managed heap and which objects may be causing the
heap to grow.

The DumpHeap command produces quite a lot of output and it can be difficult to
find a particular allocation in the midst of all of the output. Fortunately, the DumpHeap

5.
M

ANAGED
H

EAP
AND

G
ARBAGECOLLECTION

212 Chapter 5 Managed Heap and Garbage Collection

command has a variety of switches that makes life easier. For example, the –type and
–mt switches enable you to search the managed heap for a given type name or a
method table address. If we run the DumpHeap command with the –type switch look-
ing for the allocation our application makes, we get the following:

0:003> !DumpHeap -type Advanced.NET.Debugging.Chapter5.Name

Address MT Size

total 0 objects

Statistics:

MT Count TotalSize Class Name

Total 0 objects

The output clearly indicates that there are no allocations on the managed heap of
the given type. Of course, this makes perfect sense because our sample application has
not performed its allocation. Resume execution of the application until you see
the Press any key to exit prompt. Again, break execution and run the DumpHeap
command again with the –type switch:

0:004> !DumpHeap –type Advanced.NET.Debugging.Chapter5.Name

Address MT Size

01ca6c7c 002030cc 16

total 1 objects

Statistics:

MT Count TotalSize Class Name

002030cc 1 16 Advanced.NET.Debugging.Chapter5.Name

Total 1 objects

This time, we can see that we have an instance of our type on the managed
heap. The output follows the same structure as the default DumpHeap output by
first showing the instance specific data (address, method table, and size) followed
by the statistical view, which shows the managed heap only having one instance of
our type.

The DumpHeap command has several other useful switches depending on the
debugging scenario at hand. Table 5-1 details the switches available.

This concludes our high-level discussion of the Windows memory architecture
and how the CLR heap manager fits in. We’ve looked at how the CLR heap manager
organizes memory to provide an efficient memory management scheme as well as the
process that the CLR heap manager goes through when a memory allocation request
arrives at its doorstep. The next big question is how the GC itself functions, its rela-
tionship to the CLR heap manager, and how memory is freed after it has been con-
sidered discarded.

213Garbage Collector Internals

ARE THERE OTHER TYPES OF CLR HEAPS? In addition to the CLR heap, which is the
heap typically used during “day-to-day” memory allocations, there are other types of heaps.
For example, when the JIT compiler translates IL to machine code, it uses its own heap.
Another example is the CLR loader, which utilizes yet another heap. The internals of these
heaps are for the most part undocumented and typically not traversed (outside of SOS) dur-
ing a debug session.

Garbage Collector Internals

The CLR GC is a highly efficient, scalable, and reliable automatic memory man-
ager. Much time and effort went into researching the optimal behavioral charac-
teristics of the GC. Before delving into the details of the CLR GC, it is important
to state the definition of what the GC is and also what assumptions were made dur-
ing its design and implementation. Let’s begin by looking at some of the key
assumptions.

5.
M

ANAGED
H

EAP
AND

G
ARBAGECOLLECTION

Switch Description

-stat Limits output to managed heap statistics
-strings Limits output to strings stored on the managed

heap
-short Limits output to just the address of the objects

on the managed heap
-min Filters based on the minimum object size

specified
-max Filters based on the maximum object size

specified
-thinlock Outputs objects with associated thinlocks
-startAtLowerBound Begin walking the heap at a lower bound
-mt Limit output to the specified method table
-type Limit output to the specified type name

(substring match)

Table 5-1 DumpHeap Switches

214 Chapter 5 Managed Heap and Garbage Collection

■ The CLR GC assumes that everything is garbage unless otherwise told. This
means that the GC is ready to collect all objects on the managed heap unless
told otherwise. In essence, it implements a reference tracking scheme for all live
objects in the system (we will define what live means shortly) where objects
without any references to them are considered garbage and can be collected.

■ The CLR GC assumes that all objects on the managed heap will be short lived
(or ephemeral). In other words, the GC attempts to collect short-lived objects
more often than long-lived objects operating under the assumption that if an
object has been around for a while, chances are it will be around for a little
longer and there is no need to attempt to collect that object again.

■ The CLR GC tracks an object’s age via the use of generations. Young objects
are placed in generation 0 and older objects in generations 1 and 2. As an
object grows older, it is promoted from one generation to the next. As such, a
generation can be said to define the age of an object.

Based upon the assumptions above, we can arrive at a definition of the CLR GC:
It is a reference tracking and generational garbage collector.

Let’s look at each of the parts of the definition more concretely and begin with
how generations define the age of an object.

Generations
The CLR GC defines three generations very innovatively called generation 0, genera-
tion 1, and generation 2. Each of the generations contains objects of a certain age
where generation 0 contains newly allocated objects and generation 2 contains the old-
est of objects. An object moves from one generation to the next by surviving a garbage
collection. By surviving, it’s implied that the object was still being referenced (or is still
rooted) at the time of the garbage collection. Each of the generations can be garbage
collected at any time, but the frequency of garbage collections depend on the genera-
tion. Remember from the previous section that one of the assumptions that the CLR
makes is that most objects are going to be short-lived (i.e., live in generation 0). Due
to that assumption, generation 0 is collected far more frequently than generation 2 in
hopes to prune these short-lived objects quicker. Figure 5-5 shows the overall algo-
rithm when it comes to how the generations are garbage collected.

In Figure 5-5, we can see that the triggering of a garbage collection is by new allo-
cation request and when the budget for generation 0 has been exceeded. If so, the
garbage collector collects all objects that have no roots associated with them and pro-
motes all objects with roots to generation 1. Much in the same way that generation 0
has a budget defined, so does generation 1; and if, as part of promoting objects from
generation 0 to generation 1, the budget is exceeded, the GC repeats the process of

215Garbage Collector Internals

5.
M

ANAGED
H

EAP
AND

G
ARBAGECOLLECTION

Allocation Request Gen 0 budget
exceeded?

Collect objects
that are not

rooted

Yes

Allocate memory
and advance

current
allocation pointer

No

Promote objects
that are rooted

to Gen 1

Gen 1 budget
exceeded?

Collect objects
that are not

rooted

Promote objects
that are rooted

to Gen 2

Gen 2 budget
exceeded?

Yes

Collect objects
that are not

rooted

Yes

No

Figure 5-5 High-level overview of generational garbage collection algorithm

216 Chapter 5 Managed Heap and Garbage Collection

collecting objects with no roots in generation 1 and promoting objects with roots to
generation 2. The process repeats itself for generation 2. If, while promoting to gen-
eration 2, the GC cannot collect any objects and the budget for generation 2 is
exceeded, the CLR heap manager tries to allocate another segment that will hold gen-
eration 2 objects. If the creation of a new segment fails, an OutOfMemoryException
is thrown. The CLR heap manager also releases segments if they are not in use any-
more; we will discuss this process in more detail later in the chapter.

WHAT ELSE CAN TRIGGER A GARBAGE COLLECTION? In addition to a garbage
collection occurring due to the allocation of memory and exceeding the thresholds for
generation 0, 1, and 2, respectively, a couple of other scenarios exist that can cause it to
happen. First, a garbage collection can be forced via the GC.Collect and related APIs.
Secondly, the garbage collector is very cognizant of memory usage in the system as a whole.
Through careful collaboration with the operating system, the garbage collector can kick start
a collection if the system as a whole is found to be under extreme memory pressure.

Let’s take a practical look at how an object is collected and promoted. Listing 5-2
shows the source code behind the application we will use to illustrate the generational
concepts.

Listing 5-2 Example source code to illustrate generational concepts

using System;

using System.Text;

using System.Runtime.Remoting;

namespace Advanced.NET.Debugging.Chapter5

{

class Name

{

private string first;

private string last;

public string First { get { return first; } }

public string Last { get { return last; } }

public Name(string f, string l)

{

first = f; last = l;

}

}

217Garbage Collector Internals

class Gen

{

static void Main(string[] args)

{

Name n1 = new Name("Mario", "Hewardt");

Name n2 = new Name("Gemma", "Hewardt");

Console.WriteLine("Allocated objects");

Console.WriteLine("Press any key to invoke GC");

Console.ReadKey();

n1 = null;

GC.Collect();

Console.WriteLine("Press any key to invoke GC");

Console.ReadKey();

GC.Collect();

Console.WriteLine("Press any key to exit");

Console.ReadKey();

}

}

}

The source code and binary for Listing 5-2 can be found in the following folders:

■ Source code: C:\ADND\Chapter5\Gen
■ Binary: C:\ADNDBin\05Gen.exe

In Listing 5-2, we have defined a simple type called Name. In the Main method,
we instantiate two instances of the Name type, both of which end up going to gener-
ation 0 as new allocations. When the user has been prompted to Press any key
to invoke GC, we set the n1 instance to null, which indicates that it can be
garbage collected because it no longer has any roots. Next, the garbage collection
occurs and collects n1 and promotes n2 to generation 1. Finally, the last garbage col-
lection promotes n2 to generation 2 because it is still rooted.

Let’s run the application under the debugger and see how we can verify our
theories on how n1 and n2 are collected and promoted. When the application is
running under the debugger, resume execution until the first Press any key to
invoke GC prompt. At that point, we need to break execution and find the addresses

5.
M

ANAGED
H

EAP
AND

G
ARBAGECOLLECTION

218 Chapter 5 Managed Heap and Garbage Collection

to the two object instances, which can easily be done via the ClrStack command as
shown in the following:

0:000> !ClrStack -a

OS Thread Id: 0x1c0c (0)

ESP EIP

0028f3b4 77709a94 [NDirectMethodFrameSlim: 0028f3b4]

Microsoft.Win32.Win32Native.ReadConsoleInput(IntPtr, InputRecord ByRef, Int32,

Int32 ByRef)

0028f3cc 793e8f28 System.Console.ReadKey(Boolean)

PARAMETERS:

intercept = 0x00000000

LOCALS:

<no data>

0x0028f3dc = 0x00000001

<no data>

<no data>

<no data>

<no data>

<no data>

<no data>

<no data>

<no data>

0028f40c 793e8e33 System.Console.ReadKey()

0028f410 003000f3 Advanced.NET.Debugging.Chapter5.Gen.Main(System.String[])

PARAMETERS:

args = 0x01c55818

LOCALS:

<CLR reg> = 0x01da5938

<CLR reg> = 0x01da5948

0028f65c 79e7c74b [GCFrame: 0028f65c]

The addresses of the two objects on the managed heap are 0x01da5938 and
0x01da5948. How can we figure out which generation objects on the managed heap
belong to? The answer to that lies in understanding the correlation between managed
heap segments and generations. As previously discussed, each managed heap consists
of one or more segments where the objects reside. Furthermore, part of the seg-
ment(s) is dedicated to a given generation. Figure 5-6 shows an example of a hypo-
thetical managed heap segment.

In Figure 5-6, the managed heap segment is divided into three generations, each
with its own starting address managed by the CLR heap manager. Generations 0 and
1 are part of a single segment known as the ephemeral segment where short-lived
objects live. Because the GC goes under the assumption that most objects are short

219Garbage Collector Internals

lived, most objects are not expected to live past generation 0 or, at a maximum, gen-
eration 1. Objects that live in generation 2 are the oldest objects and get collected
very infrequently. It is possible that generation 2 can also be part of the ephemeral
segment even though generation 2 is not collected as often. By looking at an object’s
address and knowing the address ranges for each of the generations, we can find out
which generation an object belongs to. How do we know what the generational start-
ing addresses for the CLR heap manager are? The answer lies in a command called
eeheap. The eeheap command displays various memory statistics of data consumed
by internal CLR data structures. By default, eeheap displays verbose data, meaning
that information related to the GC as well as the loader is displayed. To display infor-
mation only about the GC, the –gc switch can be used. Let’s run the command in our
existing debug session and see what we get:

0:004> !eeheap -gc

Number of GC Heaps: 1

generation 0 starts at 0x01da1018

generation 1 starts at 0x01da100c

generation 2 starts at 0x01da1000

ephemeral segment allocation context: none

segment begin allocated size

002c7db0 790d8620 790f7d8c 0x0001f76c(128876)

01da0000 01da1000 01da8010 0x00007010(28688)

Large object heap starts at 0x02da1000

segment begin allocated size

02da0000 02da1000 02da3250 0x00002250(8784)

Total Size 0x289cc(166348)

–––––––––––––––––––––––––––––

GC Heap Size 0x289cc(166348)

5.
M

ANAGED
H

EAP
AND

G
ARBAGECOLLECTION

Obj I Obj H Obj G Obj F Obj E Obj D Obj C Obj B Obj A

Gen 2
0 3 01c51000

Gen 1
0 3 01c5100c

Gen 0
0 3 01c51018

Seg 0 (Ephemeral Segment)

Seg 1
OBJ

Q
Obj P Obj O Obj N Obj M Obj L Obj K Obj J

Gen 2

Figure 5-6 Hypothetical managed heap segment

220 Chapter 5 Managed Heap and Garbage Collection

Part of the output shows clearly the starting addresses of each of the generations.
If we look at the object addresses in the debug session of our sample application, we
can see the following:

<CLR reg> = 0x01da5938

<CLR reg> = 0x01da5948

Both of these addresses corresponding to our objects fall within the address range
of generation 0 (starting at 0x01da1018), hence we can conclude that both of them
live within the realm of that generation. This makes perfect sense because we are
currently in the code flow where the objects were just allocated and we are pending
a garbage collection. If we resume execution of the application and subsequently
break execution again the next time we see the Press any key to invoke GC,
we should see some difference in which generation the objects belong to. If we look
at the source code, we can see that prior to invoking a garbage collection, we set the
n1 reference to null, which in essence makes the object rootless and one that
should be garbage collected. Furthermore, n2 is still rooted and as such should be
promoted to generation 1 during the garbage collection. Let’s take a look by follow-
ing the same process as earlier: find the object addresses, use the eeheap command
to find the generational address ranges, and see which generation the object falls into:

0:000> !ClrStack -a

OS Thread Id: 0x1910 (0)

ESP EIP

0021f394 77709a94 [NDirectMethodFrameSlim: 0021f394]

Microsoft.Win32.Win32Native.ReadConsoleInput(IntPtr, InputRecord

ByRef, Int32, Int32 ByRef)

0021f3ac 793e8f28 System.Console.ReadKey(Boolean)

PARAMETERS:

intercept = 0x00000000

LOCALS:

<no data>

0x0021f3bc = 0x00000001

<no data>

<no data>

<no data>

<no data>

<no data>

<no data>

<no data>

<no data>

221Garbage Collector Internals

0021f3ec 793e8e33 System.Console.ReadKey()

0021f3f0 01690111 Advanced.NET.Debugging.Chapter5.Gen.Main(System.String[])

PARAMETERS:

args = 0x01da5818

LOCALS:

<CLR reg> = 0x00000000

<CLR reg> = 0x01da5948

0021f644 79e7c74b [GCFrame: 0021f644]

0:000> !eeheap -gc

Number of GC Heaps: 1

generation 0 starts at 0x01da6c00

generation 1 starts at 0x01da100c

generation 2 starts at 0x01da1000

ephemeral segment allocation context: none

segment begin allocated size

002c7db0 790d8620 790f7d8c 0x0001f76c(128876)

01da0000 01da1000 01da8c0c 0x00007c0c(31756)

Large object heap starts at 0x02da1000

segment begin allocated size

02da0000 02da1000 02da3240 0x00002240(8768)

Total Size 0x295b8(169400)

––––––––––––––––––––––––––––––

GC Heap Size 0x295b8(169400)

The most interesting part of the output is in the eeheap command output. We
can see now that the generational address ranges have changed slightly. More specif-
ically, the starting address of generation 0 has changed from 0x01da1018 to
0x01da6c00, which in essence implies that generation 1 has become bigger (because
the starting address of generation 1 remains unchanged). If we correlate the address
of our n2 object (0x01da5948) with the generational address ranges that the eeheap
command displayed, we can see that the n2 object falls into generation 1. Again, this
is fully expected because n2 previously lived in generation 0 and was still rooted at
the time of the garbage collection, thereby promoting the object to the next genera-
tion. I will leave it as an exercise to you to see what happens on the final garbage col-
lection in the sample application.

Although the SOS debugger extension provides the means of finding out which
generation any given object belongs to, it is a somewhat tedious process as it requires
that addresses be checked against potentially changing generational addresses within
any given managed heap segment. Furthermore, there is no concrete way to list all the
objects that fall into any given generation, making it hard to get an overall picture of
the per generation utilization. Fortunately, the SOSEX extension comes to the rescue

5.
M

ANAGED
H

EAP
AND

G
ARBAGECOLLECTION

222 Chapter 5 Managed Heap and Garbage Collection

with a command named dumpgen. With the dumpgen command, you can easily get a
list of all objects that belong to the generation specified as an argument to the com-
mand. For example, using the same sample application as shown in Listing 5-2, here
is the output when running dumpgen:

0:000> !dumpgen 0

01da6c00 12 **** FREE ****

01da6c0c 68 System.Char[]

2 objects, 80 bytes

0:000> !dumpgen 1

01da100c 12 **** FREE ****

01da1018 12 **** FREE ****

01da1024 72 System.OutOfMemoryException

01da106c 72 System.StackOverflowException

01da10b4 72 System.ExecutionEngineException

01da10fc 72 System.Threading.ThreadAbortException

01da1144 72 System.Threading.ThreadAbortException

01da118c 12 System.Object

01da1198 28 System.SharedStatics

01da11b4 100 System.AppDomain

...

...

...

01da5948 16 Advanced.NET.Debugging.Chapter5.Name

01da5958 28 Microsoft.Win32.Win32Native+InputRecord

01da5974 12 System.Object

01da5980 20 Microsoft.Win32.SafeHandles.SafeFileHandle

01da5994 36 System.IO.__ConsoleStream

01da59b8 28 System.IO.Stream+NullStream

…

…

…

We can see that there aren’t a lot of objects in generation 0; instead, we have a
ton of objects in generation 1 including our n2 instance at address 0x01da5948. The
dumpgen command really makes life easier when looking at generation specific data.

What About GC.Collect()?

As you have seen, the source code in Listing 5-2 (as well as throughout the chapter)
contains calls to GC.Collect(). The GC.Collect() API does pretty much what the
name implies. It forces a garbage collection to occur irrespective of whether it is needed.
The last part of the previous statement is extremely important: irrespective of whether it is

223Garbage Collector Internals

needed. The GC continuously fine tunes itself throughout the execution of the application to
ensure that it behaves optimally under the application’s circumstances. By invoking
GC.Collect(), and thereby forcing a garbage collection, it can wreak havoc with the
GC’s fine-tuning algorithm. Under normal circumstances, it is therefore highly recommended
not to use the API. The usage of the API in the book is solely to make the examples more
deterministic.

So far, we have discussed how objects live in managed heap segments divided into
generations and how these objects are either garbage collected or promoted to the
next generation, depending on if they are still referenced (or still rooted). One ques-
tion that still remains is what it means for an object to be rooted. The next section
introduces the notion of roots, which are at the heart of the decision-making process
the GC uses to determine if an object can be collected.

Roots
One of the most fundamental aspects of a garbage collection is that of being able to
determine which objects are still being referenced and which objects are not and can
be considered for garbage collection. Contrary to popular belief, the GC itself does
not implement the logic for detecting which objects are still being referenced; rather,
it uses other components in the CLR that have far more knowledge about the life-
times of the objects. The CLR uses the following components to determine which
objects are still referenced:

■ Just In Time compiler. The JIT compiler is the component responsible for
translating IL to machine code and has detailed knowledge of which local vari-
ables were considered active at any given point in time. The JIT compiler
maintains this information in a table that it subsequently references when the
GC asks for objects that are still considered to be alive.

RETAIL VERSUS DEBUG BUILDS Please note that there can be a difference between
retail and debug builds when it comes to the JIT compiler tracking the aliveness of local
variables. In retail builds, the JIT compiler can get rather aggressive and consider a
local variable dead even before it goes out of scope (assuming it is not being used).
This can present some really interesting challenges when debugging, and the decision
was therefore made to keep all local variables alive until the end of the scope in debug
builds.

5.
M

ANAGED
H

EAP
AND

G
ARBAGECOLLECTION

224 Chapter 5 Managed Heap and Garbage Collection

■ Stack walker. This comes into play when unmanaged calls are made to the exe-
cution engine. During these calls, it is imperative that any managed objects
used during the call also be part of the reference tracking system.

■ Handle table. The CLR maintains a set of handle tables on a per application
domain basis that can contain, for example, pointers to pinned reference types
on the managed heap. During a GC inquiry, these handle tables are probed for
live references to objects on the managed heap.

■ Finalize queue. We will discuss the notion of object finalizers shortly, but for
the time being, view objects with finalizers as objects that can be considered
dead from an application’s perspective but still need to be kept alive for
cleanup purposes.

■ If the object is a member of any of the above categories.

During the probing phase, the GC also marks all the objects according to their
state (rooted). When all components have been probed, the GC goes ahead and starts
the garbage collection of all objects by promoting all objects that are still considered
rooted. An interesting question in regards to roots is, Given an address to an object on
the managed heap, is it possible to see if the object is rooted or not; and if so, what the
reference chain of object is? Again, we turn to the SOS extension and a command
named gcroot. The gcroot command uses a technique similar to the earlier one uti-
lized by the GC to find the aliveness of the object. Let’s take a look at some sample
code. Listing 5-3 shows the source code of an application that defines a set of types
and references to those types at various scopes.

Listing 5-3 Sample application to illustrate object roots

using System;

using System.Text;

using System.Threading;

namespace Advanced.NET.Debugging.Chapter5

{

class Name

{

private string first;

private string last;

public string First { get { return first; } }

public string Last { get { return last; } }

public Name(string f, string l)

225Garbage Collector Internals

{

first = f; last = l;

}

}

class Roots

{

public static Name CompleteName = new Name ("First", "Last");

private Thread thread;

private bool shouldExit;

static void Main(string[] args)

{

Roots r = new Roots();

r.Run();

}

public void Run()

{

shouldExit = false;

Name n1 = CompleteName;

thread = new Thread(this.Worker);

thread.Start(n1);

Thread.Sleep(1000);

Console.WriteLine("Press any key to exit");

Console.ReadKey();

shouldExit = true;

}

public void Worker(Object o)

{

Name n1 = (Name)o;

Console.WriteLine("Thread started {0}, {1}",

n1.First,

n1.Last);

while (true)

{

// Do work

5.
M

ANAGED
H

EAP
AND

G
ARBAGECOLLECTION

(continues)

226 Chapter 5 Managed Heap and Garbage Collection

Listing 5-3 Sample application to illustrate object roots (continued)

Thread.Sleep(500);

if (shouldExit)

break;

}

}

}

}

The source code and binary for Listing 5-3 can be found in the following folders:

■ Source code: C:\ADND\Chapter5\Roots
■ Binary: C:\ADNDBin\05Roots.exe

The source code in Listing 5-3 declares a static instance of the Name type. The
main part of the application declares a reference to the static instance in the Run
method as well as starts up a thread passing the reference to the newly created
thread. The method that the new thread executes uses the reference passed to it until
the user hits any key, at which point both the worker thread and the application ter-
minate. The object we are interested in tracking for this exercise is the
CompleteName static field. From the source code, we can glean the following char-
acteristics about CompleteName:

■ We have a static reference to the object instance at the Roots class level serv-
ing as our first root to the object.

■ In the Run method, we assign a local variable reference (n1) to the object
instance serving as our second root. The n1 local variable is not used after the
thread has started and is subject to becoming invalid even before the end of the
method scope (in retail builds). In debug builds, the reference is guaranteed to
remain valid until the end of the scope is reached.

■ In the Run method, we pass the local variable reference n1 to the thread
method during thread startup serving as our third root.

Let’s run the application under the debugger and manually break execution when
the Press any key to exit prompt is displayed. The first thing we need to find
is the address to the object we are interested in (and dumping the object for good
measure) followed by running the gcroot command on the address:

227Garbage Collector Internals

0:005> ~0s

eax=002cef9c ebx=002cef94 ecx=792274ec edx=79ec9058 esi=002cedf0 edi=00000000

eip=77709a94 esp=002ceda0 ebp=002cedc0 iopl=0 nv up ei pl zr na pe nc

cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00000246

ntdll!KiFastSystemCallRet:

77709a94 c3 ret

0:000> !ClrStack -a

OS Thread Id: 0x2358 (0)

ESP EIP

002cef6c 77709a94 [NDirectMethodFrameSlim: 002cef6c]

Microsoft.Win32.Win32Native.ReadConsoleInput(IntPtr, InputRecord ByRef, Int32,

Int32 ByRef)

002cef84 793e8f28 System.Console.ReadKey(Boolean)

PARAMETERS:

intercept = 0x00000000

LOCALS:

<no data>

0x002cef94 = 0x00000001

<no data>

<no data>

<no data>

<no data>

<no data>

<no data>

<no data>

<no data>

002cefc4 793e8e33 System.Console.ReadKey()

002cefc8 00890212 Advanced.NET.Debugging.Chapter5.Roots.Run()

PARAMETERS:

this = 0x01c758e0

LOCALS:

<CLR reg> = 0x01c758d0

002cefe8 0089013f Advanced.NET.Debugging.Chapter5.Roots.Main(System.String[])

PARAMETERS:

args = 0x01c75888

LOCALS:

<CLR reg> = 0x01c758e0

002cf208 79e7c74b [GCFrame: 002cf208]

0:000> !do 0x01c758d0

Name: Advanced.NET.Debugging.Chapter5.Name

MethodTable: 001b311c

5.
M

ANAGED
H

EAP
AND

G
ARBAGECOLLECTION

228 Chapter 5 Managed Heap and Garbage Collection

EEClass: 001b13a0

Size: 16(0x10) bytes

(C:\ADNDBin\05Roots.exe)

Fields:

MT Field Offset Type VT Attr Value Name

790fd8c4 4000001 4 System.String 0 instance 01c75898 first

790fd8c4 4000002 8 System.String 0 instance 01c758b4 last

0:000> !gcroot 0x01c758d0

Note: Roots found on stacks may be false positives. Run "!help gcroot" for

more info.

Scan Thread 0 OSTHread 2358

ESP:2cefbc:Root:01c758d0(Advanced.NET.Debugging.Chapter5.Name)

Scan Thread 1 OSTHread 1630

Scan Thread 3 OSTHread 254c

ESP:47df428:Root:01c758d0(Advanced.NET.Debugging.Chapter5.Name)

ESP:47df42c:Root:01c758d0(Advanced.NET.Debugging.Chapter5.Name)

ESP:47df438:Root:01c758d0(Advanced.NET.Debugging.Chapter5.Name)

ESP:47df4d0:Root:01c75984(System.Threading.ThreadHelper)->

01c758d0(Advanced.NET.Debugging.Chapter5.Name)

ESP:47df4d8:Root:01c75984(System.Threading.ThreadHelper)->

01c758d0(Advanced.NET.Debugging.Chapter5.Name)

ESP:47df4f4:Root:01c75984(System.Threading.ThreadHelper)->

01c758d0(Advanced.NET.Debugging.Chapter5.Name)

ESP:47df500:Root:01c75984(System.Threading.ThreadHelper)->

01c758d0(Advanced.NET.Debugging.Chapter5.Name)

ESP:47df5c0:Root:01c758d0(Advanced.NET.Debugging.Chapter5.Name)->

01c758d0(Advanced.NET.Debugging.Chapter5.Name)

ESP:47df5c4:Root:01c75998(System.Threading.ParameterizedThreadStart)->

01c75984(System.Threading.ThreadHelper)

ESP:47df754:Root:01c758d0(Advanced.NET.Debugging.Chapter5.Name)->

01c75984(System.Threading.ThreadHelper)

ESP:47df758:Root:01c75998(System.Threading.ParameterizedThreadStart)->

01c75984(System.Threading.ThreadHelper)

ESP:47df764:Root:01c75998(System.Threading.ParameterizedThreadStart)->

01c75984(System.Threading.ThreadHelper)

ESP:47df76c:Root:01c758d0(Advanced.NET.Debugging.Chapter5.Name)->

01c75984(System.Threading.ThreadHelper)

DOMAIN(0037FCF8):HANDLE(Pinned):a13fc:Root:02c71010(System.Object[])->

01c758d0(Advanced.NET.Debugging.Chapter5.Name)

As you can see from the gcroot output, the command scans a number of
different sources to find and build the reference chain to the object specified.
Regardless of the source, the output of the GCRoot command results in the
following general format:

229Garbage Collector Internals

<root>-><reference 1>-><reference 2>-><reference X>-><object>

Depending on the source probed, each of the elements takes on a slightly differ-
ent format as shown.

■ Local variables on a threads stack. The root element typically looks like the
following: <stack register>:<stack pointer>:Root:<object>. The
stack register depends on the architecture. For example, on x86 machines
it shows as ESP and on x64 machines it shows as RSP. The stack pointer
shows the location on the stack where the object is rooted, and the object
address is the address of the object that is holding a reference to the next
object in the reference chain. Let’s take a look at an example:

ESP:47df428:Root:01c758d0(Advanced.NET.Debugging.Chapter5.Name)

We can see that there is a local variable located on stack (ESP) location
0x047df428. Furthermore, the output tells us that this constitutes a root to
the object at address 0x01c758d0, which is a reference to the
Advanced.NET.Debugging.Chapter5.Name type.

■ Handle tables. All handle tables are scanned as part of GCRoot execution looking
for references to the specified object. If a reference is found, the output of the
command takes on the following general syntax:
DOMAIN(<address>):HANDLE(<type>):<handleaddress>:Root:
<object>. The domain address field indicates the address of the application
domain to which the handle reference belongs. The handle type specifies
the type of the handle. The possible handle types are Weak, WeakTrac
Resurrection, Normal, and Pinned.

Next is the handle address, which is the address to the handle itself.
Please keep in mind that the handle type is a value type and if you want to
dump out the contents you must use the DumpVC command rather than
DumpObj. Finally, the root object address is shown. Let’s take a look at an
example:

DOMAIN(002EFCD8):HANDLE(Pinned):2813fc:Root:02c81010

(System.Object[])->01c858d0(Advanced.NET.Debugging.

Chapter5.Name)

The preceding output indicates that the object at address 0x01c858d0 is rooted
by an object that resides in the handle table corresponding to the application

5.
M

ANAGED
H

EAP
AND

G
ARBAGECOLLECTION

230 Chapter 5 Managed Heap and Garbage Collection

domain with address 0x002efcd8. Furthermore, the address of the handle
value holding the reference is located at address 0x002813fc and the type of
the handle value is pinned. Lastly, the actual object that holds the reference is at
address 0x02c81010, which is of type System.Object[].

■ F-reachable queue. The f-reachable queue is scanned to see if there are any
references to the specified object. If a root reference to the object is found on
the f-reachable queue, it will be displayed in the following general format:
Finalizer queue:Root:<object address>(<object type>). The first
part of the output indicates that the source of the root is the f-reachable queue.
Next, the address of the referenced object is displayed, followed by the object
type. What follows is an example of the output of GCRoot when run against an
object that is on the f-reachable queue:

Finalizer

queue:Root:01d15750(Advanced.NET.Debugging.Chapter5.Name)

In the preceding output, we can see that the object at address 0x01d15750
of type Advanced.NET.Debugging.Chapter5.Name is rooted by the
f-reachable queue.

■ The last source of output for the GCRoot command is if an object is a member
of any of the preceding categories.

One of the potential problems with gcroot and local variables is that it may not
always be accurate, thereby producing false positives. To convince ourselves that the
stack locations listed in the output are accurate, we have to manually inspect the stack
location and correlate it to source code so that we can see whether the local variable
is in fact still referencing the object. For example, assume we have the following very
simple function:

public void Run()

{

Name n1 = new Name("A", "B");

Console.WriteLine("Press any key to exit");

Console.ReadKey();

}

In the source code, we have a simple instance of the Name class assigned to the
n1 local variable. If we ran the GCRoot command on the n1 reference, we would
expect to only see one reference on the thread stack:

231Garbage Collector Internals

0:000> !GCRoot 0x01e9580c

Note: Roots found on stacks may be false positives. Run "!help gcroot" for

more info.

Scan Thread 0 OSTHread 1638

ESP:1df29c:Root:01e9580c(Advanced.NET.Debugging.Chapter5.Name)

ESP:1df2a0:Root:01e9580c(Advanced.NET.Debugging.Chapter5.Name)

Scan Thread 2 OSTHread 14ac

The output clearly shows that thread 0 apparently has two references to the object
on the thread stack. How is this possible? The way that the GCRoot command works
is by assuming that every address on the stack is an address to an object. It tries to ver-
ify this assumption by utilizing various metadata information. In light of this, objects
that are (or were) previously present on the stack are treated as first class references
to those objects and listed in the output of GCRoot. If you suspect that the output of
GCRoot, in as far as thread stacks is concerned, is incorrect, the best approach is to use
the U command to unassemble the stack frames and correlate the stack registers in the
GCRoots output to the unassembled code to see which objects are truly valid.

Finalization
The garbage collection mechanism described so far assumes that objects that are col-
lected do not require any special cleanup code. At times, objects that encapsulate
other resources require that these resources be cleaned up as part of object destruc-
tion. A great example is an object that wraps an underlying native resource such as a
file handle. Without explicit cleanup code, the memory behind the managed object is
cleaned up by the GC, but the underlying handle that the object encapsulates is not
(because GC has no special knowledge of native handles). The net result is naturally
a resource leak. To provide a proper cleanup mechanism, the CLR introduces what
is known as finalizers. A finalizer can be compared to destructors in the native C++
world. Whenever an object is freed (or garbage collected), the destructor (or final-
izer) is run. In C#, a finalizer is declared very similarly to a C++ destructor by using
the ~<class name>() notation. An example is shown in the following listing:

public class MyClass

{

…

…

…

~MyClass()

{

// Cleanup code

}

}

5.
M

ANAGED
H

EAP
AND

G
ARBAGECOLLECTION

232 Chapter 5 Managed Heap and Garbage Collection

When the class is compiled into IL, the finalize method gets translated into a func-
tion called Finalize. The key thing about objects with finalizers is that the garbage col-
lector treats them a little differently than other objects. Because the garbage collector is
in fact an automatic memory manager, it also has the responsibility of executing all final-
ization code that an object may have during a garbage collection. To keep tabs on which
objects have finalizers, the garbage collector maintains a queue called a finalization
queue. Objects that are created on the managed heap and contain finalizers are auto-
matically placed on the finalization queue during creation. Please note that the finaliza-
tion queue does not contain objects that are considered garbage, but rather it contains
all objects with finalizers that are alive on the managed heap. When an object with a
finalizer becomes rootless and a garbage collection occurs, the GC places the object on
a different queue known as the f-reachable queue. This queue contains all objects with
defined finalizers that are considered to be garbage and need to have their finalizers exe-
cuted. All objects on the f-reachable queue are considered roots to those objects, mean-
ing that the object is still alive. It is important to note that the finalizer code for each of
the objects on the f-reachable queue is not executed as part of the garbage collection
phase. Instead, each .NET process contains a special thread known as the finalization
thread. The finalization thread wakes up, on request of the GC, and checks the state
of the f-reachable queue. If there are any objects on the f-reachable queue, the final-
ization thread picks them up one by one and executes the finalize methods.

WHY NOT EXECUTE THE FINALIZE METHODS AS PART OF THE GARBAGE
COLLECTION? Because finalize methods contain managed code and during a GC
managed code threads are suspended, the finalizer thread runs outside of the boundary
of the GC.

When the garbage collection finishes, objects with finalizers are on the f-reach-
able queue (rooted and alive) until the finalization thread executes the finalize meth-
ods. At that point, the object is removed from the f-reachable queue, is considered
rootless, and can be truly reclaimed by the garbage collector. The next time a garbage
collection is started, the objects are collected. Figure 5-7 illustrates an example of the
finalization process.

Step 1 in Figure 5-7 consists of allocating Obj D and Obj E, both of which con-
tain finalize methods. As part of the allocation, the objects are placed on the managed
heap as well as on the finalization queue to indicate that the objects need to be final-
ized when no longer in use. In step 2, Obj D and Obj E have both become rootless
when a garbage collection occurs. At that point, both objects are moved from the
finalization queue to the f-reachable queue to indicate that the finalize methods are

233Garbage Collector Internals

now ready to be run. At some point in the future (nondeterministic), step 3 is exe-
cuted and the finalizer thread wakes up and starts running the finalize methods for
both of the objects. Even after the finalizer has finished, both objects are still rooted
on the f-reachable queue. Lastly, in step 4, another garbage collection occurs and the
objects are removed from the f-reachable queue (no longer rooted) and then col-
lected from the managed heap by the garbage collector.

An interesting aspect of having a dedicated thread executing the finalize methods
is that the CLR does not place any guarantees when the thread wakes up and executes.
As such, it is possible that it will take some time before an object with a finalizer is

5.
M

ANAGED
H

EAP
AND

G
ARBAGECOLLECTION

GC Occurs

GC Occurs

F-Reachable Queue

Step 2 – Obj D and Obj E Rootless

Step 3

Finalize Thread

Step 4

Step 1 – Allocation Obj D and Obj E

Obj A Obj B Obj C

Obj A Obj B Obj C

Obj A Obj B Obj C

Obj D
(finalize
method)

Obj E
(finalize
method)

Finalization Queue

Finalization Queue
Empty

Finalization Queue
Empty

F-Reachable Queue
Empty

Managed heap

Managed heap

Managed heap

Obj D
(finalize
method)

Obj E
(finalize
method)

Obj D
(finalize
method)

Obj E
(finalize
method)

Obj D
(finalize
method)

Obj E
(finalize
method)

Obj D
(finalize
method)

Obj E
(finalize
method)

Figure 5-7 Example of finalization process

234 Chapter 5 Managed Heap and Garbage Collection

actually cleaned up. When dealing with objects that aggregate scarce resources, it may
not always be feasible to wait for a long period of time for the resource to be reclaimed.
In such situations, it is best to implement an explicit and deterministic cleanup pattern
such as the IDisposable and/or Close patterns. Finally, having a dedicated thread
also means that you have no control over the state of that thread, and making assump-
tions based on state can break your application.

Let’s take a look at a concrete example of an object with a finalize method and see
if we can track the object during a garbage collection. Listing 5-4 shows the source
code of the application we will be utilizing.

Listing 5-4 Simple object with a finalize method

using System;

using System.Text;

using System.Runtime.InteropServices;

namespace Advanced.NET.Debugging.Chapter5

{

class NativeEvent

{

private IntPtr nativeHandle;

public IntPtr NativeHandle { get { return nativeHandle; } }

public NativeEvent(string name)

{

nativeHandle = CreateEvent(IntPtr.Zero,

false,

true,

name);

}

~NativeEvent()

{

if(nativeHandle!=IntPtr.Zero)

{

CloseHandle(nativeHandle);

nativeHandle=IntPtr.Zero;

}

}

235Garbage Collector Internals

[DllImport("kernel32.dll")]

static extern IntPtr CreateEvent(IntPtr lpEventAttributes,

bool bManualReset,

bool bInitialState,

string lpName);

[DllImport("kernel32.dll")]

static extern IntPtr CloseHandle(IntPtr lpEvent);

}

class Finalize

{

static void Main(string[] args)

{

Finalize f = new Finalize();

f.Run();

}

public void Run()

{

NativeEvent nEvent = new NativeEvent("MyNewEvent");

//

// Use nEvent

//

nEvent = null;

Console.WriteLine("Press any key to GC");

Console.ReadKey();

GC.Collect();

Console.WriteLine("Press any key to GC");

Console.ReadKey();

GC.Collect();

Console.WriteLine("Press any key to exit");

Console.ReadKey();

}

}

}

5.
M

ANAGED
H

EAP
AND

G
ARBAGECOLLECTION

236 Chapter 5 Managed Heap and Garbage Collection

The source code and binary for Listing 5-4 can be found in the following folders:

■ Source code: C:\ADND\Chapter5\Finalize
■ Binary: C:\ADNDBin\05Finalize.exe

The source code in Listing 5-4 declares a type called NativeEvent that simply
wraps the creation of a Windows event using the .NET interoperability services.
Because the net result of creating a native event is a handle, the handle must be
closed during object destruction to avoid a handle leak in the application. The clos-
ing of the handle is implemented in the NativeEvent finalize method. The main
part of the application is implemented in the Finalize class. More specifically, the
Run method declares an instance of the NativeEvent class, sets the local variable
reference to null (indicating that it can be garbage collected), followed by a couple
of forced garbage collections. What do we expect to happen to the NativeEvent
instance we declared at the point of the first garbage collection? From our previous
discussion, we expect that prior to the garbage collection, the object is in the final-
ization queue. Furthermore, when the garbage collection occurs, the object is
deemed rootless and moved to the f-reachable queue where it maintains a reference
to the object so that the finalization thread can run the Finalize method. It’s
important to remember that the execution of the finalization thread does not happen
during the garbage collection, but rather it happens out of band at any time. When
the Finalize method has run, the object can be fully collected during the next
garbage collection. Let’s see if we can use the debuggers to verify our earlier theory.
Run 05Finalize.exe under the debugger and break execution when the first
Press any key to GC prompt appears. When we have broken into the debugger,
we can use the FinalizeQueue command to show the state of the finalizable
objects in the process:

0:004> !FinalizeQueue

SyncBlocks to be cleaned up: 0

MTA Interfaces to be released: 0

STA Interfaces to be released: 0

––––––––––––––––––––––––––––––––––

generation 0 has 6 finalizable objects (003d3160->003d3178)

generation 1 has 0 finalizable objects (003d3160->003d3160)

generation 2 has 0 finalizable objects (003d3160->003d3160)

Ready for finalization 0 objects (003d3178->003d3178)

Statistics:

MT Count TotalSize Class Name

00123128 1 12 Advanced.NET.Debugging.Chapter5.NativeEvent

7911c9c8 1 20 Microsoft.Win32.SafeHandles.SafePEFileHandle

237Garbage Collector Internals

791037c0 1 20 Microsoft.Win32.SafeHandles.SafeFileMappingHandle

79103764 1 20 Microsoft.Win32.SafeHandles.SafeViewOfFileHandle

79101444 1 20 Microsoft.Win32.SafeHandles.SafeFileHandle

790fe704 1 56 System.Threading.Thread

Total 6 objects

There are several pieces of useful information in the output. First, the finalization
queues for each generation are shown. In this particular case, generation 0 has 6 final-
izable objects and generations 1 and 2 have none. For each of the finalization queues,
the FinalizeQueue command also shows the address range of the queue itself for
that particular generation. For example, generation 0’s finalization queue starts at
address 0x003d3160 and ends at address 0x003d3178. We can use the dd command
to dump the queue as shown here:

0:004> dd 003d3160 l6

003d3160 01fc1df0 01fc5090 01fc5964 01fc5998

003d3170 01fc683c 01fc6850

The elements in the queue can be looked at further by using the do command. If
we want to look at the object at address 0x01fc5964 in more detail, we would use
the command shown here:

0:004> !do 01fc5964

Name: Advanced.NET.Debugging.Chapter5.NativeEvent

MethodTable: 00123128

EEClass: 00121804

Size: 12(0xc) bytes

(C:\ADNDBin\05Finalize.exe)

Fields:

MT Field Offset Type VT Attr Value Name

791016bc 4000001 4 System.IntPtr 1 instance 1f0 nativeHandle

The next piece of useful information from the FinalizeQueue command is the
f-reachable queue, which is shown in the following output:

Ready for finalization 0 objects (000c3178->000c3178)

The output indicates that at this point there are no objects that are ready to be
finalized. This makes perfect sense because a garbage collection has not yet occurred.

The final piece of output in the FinalizeQueue command is the statistics sec-
tion, which shows a summarized list of all objects in either the finalization queue or
the f-reachable queue.

5.
M

ANAGED
H

EAP
AND

G
ARBAGECOLLECTION

238 Chapter 5 Managed Heap and Garbage Collection

Before we resume execution, we need to discuss the magic finalization thread
that exists in all managed processes. What does the stack trace of this thread look like?
To find the answer, use the ~*kn command to display the stack traces of all the
threads in the process including frame numbers. In the output, one thread in partic-
ular looks interesting:

2 Id: 1a10.c10 Suspend: 1 Teb: 7ffdd000 Unfrozen

ChildEBP RetAddr

00 011cf604 77709254 ntdll!KiFastSystemCallRet

01 011cf608 7618c244 ntdll!ZwWaitForSingleObject+0xc

02 011cf678 79e789c6 KERNEL32!WaitForSingleObjectEx+0xbe

03 011cf6bc 79e7898f mscorwks!PEImage::LoadImage+0x1af

04 011cf70c 79e78944 mscorwks!CLREvent::WaitEx+0x117

05 011cf720 79ef2220 mscorwks!CLREvent::Wait+0x17

06 011cf73c 79fb997b mscorwks!WKS::WaitForFinalizerEvent+0x4a

07 011cf750 79ef3207 mscorwks!WKS::GCHeap::FinalizerThreadWorker+0x79

08 011cf764 79ef31a3 mscorwks!Thread::DoADCallBack+0x32a

09 011cf7f8 79ef30c3 mscorwks!Thread::ShouldChangeAbortToUnload+0xe3

0a 011cf834 79fb9643 mscorwks!Thread::ShouldChangeAbortToUnload+0x30a

0b 011cf85c 79fb960d mscorwks!ManagedThreadBase_NoADTransition+0x32

0c 011cf86c 79fba09b mscorwks!ManagedThreadBase::FinalizerBase+0xd

0d 011cf8a4 79f95a2e mscorwks!WKS::GCHeap::FinalizerThreadStart+0xbb

0e 011cf93c 76184911 mscorwks!Thread::intermediateThreadProc+0x49

0f 011cf948 776ee4b6 KERNEL32!BaseThreadInitThunk+0xe

10 011cf988 776ee489 ntdll!__RtlUserThreadStart+0x23

11 011cf9a0 00000000 ntdll!_RtlUserThreadStart+0x1b

Frames 6 and 7 in the stack trace indicate that in fact this is the finalizer thread
for the process. Frame 6 in particular shows that the thread is currently waiting for
finalizer events (or objects that need to be finalized). Let’s set a breakpoint on the
return address of frame 6 (0x79fb997b), which will trigger any time the finalizer
thread is awakened to perform work:

bp 79fb997b

When the breakpoint is set, resume execution and press any key to trigger the first
garbage collection. You’ll notice that a breakpoint is hit, as shown in the following:

0:003> g

Breakpoint 0 hit

eax=00000001 ebx=00000001 ecx=7618c42d edx=77709a94 esi=00000000 edi=00493a48

eip=79fb997b esp=00b7f768 ebp=00b7f770 iopl=0 nv up ei pl nz na po nc

cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00000202

mscorwks!WKS::GCHeap::FinalizerThreadWorker+0x79:

79fb997b 3bde cmp ebx,esi

239Garbage Collector Internals

The breakpoint corresponds to the finalizer thread breakpoint set earlier and
indicates that the finalizer is ready to execute the Finalize methods on the objects in
the f-reachable queue. How do we find out what objects are in the f-reachable
queue? You guessed it: by using the FinalizeQueue command:

0:002> !FinalizeQueue

SyncBlocks to be cleaned up: 0

MTA Interfaces to be released: 0

STA Interfaces to be released: 0

––––––––––––––––––––––––––––––––––

generation 0 has 0 finalizable objects (003d3170->003d3170)

generation 1 has 4 finalizable objects (003d3160->003d3170)

generation 2 has 0 finalizable objects (003d3160->003d3160)

Ready for finalization 2 objects (003d3170->003d3178)

Statistics:

MT Count TotalSize Class Name

00123128 1 12 Advanced.NET.Debugging.Chapter5.NativeEvent

7911c9c8 1 20 Microsoft.Win32.SafeHandles.SafePEFileHandle

791037c0 1 20 Microsoft.Win32.SafeHandles.SafeFileMappingHandle

79103764 1 20 Microsoft.Win32.SafeHandles.SafeViewOfFileHandle

79101444 1 20 Microsoft.Win32.SafeHandles.SafeFileHandle

790fe704 1 56 System.Threading.Thread

This time, the output states that there are two objects in the f-reachable queue,
starting at address 0x003d3160, that the finalization thread is about to execute. If we
dump out the contents of the f-reachable queue and each of the objects, we can see
the following:

0:002> dd 003d3170 l2

003d3170 01fc5090 01fc5964

0:002> !do 01fc5090

Name: Microsoft.Win32.SafeHandles.SafePEFileHandle

MethodTable: 7911c9c8

EEClass: 791fb61c

Size: 20(0x14) bytes

(C:\Windows\assembly\GAC_32\mscorlib\2.0.0.0__b77a5c561934e089\mscorlib.dll)

Fields:

MT Field Offset Type VT Attr Value Name

791016bc 40005c1 4 System.IntPtr 1 instance 3eab28 handle

79102290 40005c2 8 System.Int32 1 instance 4 _state

7910be50 40005c3 c System.Boolean 1 instance 1 _ownsHandle

7910be50 40005c4 d System.Boolean 1 instance 1

_fullyInitialized

0:002> !do 01fc5964

Name: Advanced.NET.Debugging.Chapter5.NativeEvent

5.
M

ANAGED
H

EAP
AND

G
ARBAGECOLLECTION

240 Chapter 5 Managed Heap and Garbage Collection

MethodTable: 00123128

EEClass: 00121804

Size: 12(0xc) bytes

(C:\ADNDBin\05Finalize.exe)

Fields:

MT Field Offset Type VT Attr Value Name

791016bc 4000001 4 System.IntPtr 1 instance 1f0 nativeHandle

The first object is of type SafePEFileHandle and the second object is of type
NativeEvent, which happens to be the object we are interested in. If we resume
execution, the finalizer thread executes the Finalize method of our NativeEvent
class. What happens to the objects on the f-reachable queue after finalization has
completed? Well, the objects are removed from the f-reachable queue, which renders
them rootless; they will be collected during the next garbage collection.

This concludes our discussion of finalization. As you can see, there is a lot of
work being done under the hood whenever a finalizable type comes into play. Not
only does the CLR need additional data structures (such as the finalization queue
and f-reachable queue), but it also spins up a dedicated thread to run the Finalize
methods for each object that is being collected. Furthermore, an object with a
Finalize does not get collected in just one garbage collection, but rather two,
which in essence means that the objects with Finalize methods always get pro-
moted to generation 1 before they are truly dead, making it a far more expensive
object to work with.

Reclaiming GC Memory
We have discussed the GC in quite a bit of detail. We now know exactly what the GC
does when an object is considered garbage. The one missing piece of information is
what the GC does with the memory that becomes available after an object is garbage
collected. Does the memory get put on some sort of free list and then reused when
another allocation request arrives? Does the memory get freed? Is fragmentation
ever a problem on the managed heap? The answer is a combination of all three. If a
collection that occurs in generations 0 and 1 leaves a gap on the managed heap, the
garbage collector compacts all live objects so that they reside next to each other and
coalesces any free blocks on the managed heap into a larger block that is located after
the last live object (starting at the current allocation pointer). Figure 5-8 shows an
example of the compacting and coalescing.

In Figure 5-8, the initial state of the managed heap contains five rooted objects
(A through E). At some point during execution, objects B and D become rootless and
are candidates to be reclaimed during a garbage collection. When the garbage col-
lection occurs, the memory occupied by objects B and D is reclaimed, which leads to

241Garbage Collector Internals

gaps on the managed heap. To remove these gaps, the garbage collector compacts the
remaining live objects (Obj A, C, and E) and coalesces the two free blocks (used to
hold Obj B and D) into one free block. Lastly, the current allocation pointer is
updated as a result of the compacting and coalescing.

The ephemeral segment contains both generation 0 and generation 1 (and also
part of generation 2), but generation 2 can consist of multiple managed heap seg-
ments. As more and more objects make it to generation 2, the need to grow
generation 2 also increases. The way that the CLR heap manager grows generation 2
is by allocating more segments. When objects in generation 2 are collected, the CLR
heap manager decommits memory in the segments, and when a segment is no longer
needed, it is entirely freed. In certain situations and allocation patterns, generation 2
grows and shrinks quite frequently, leading to a large number of calls to allocate and
free virtual memory (VirtualAlloc and VirtualFree APIs). Two common draw-
backs of this approach are that these calls can be expensive because a transition to
kernel mode is required as well as the potential to fragment the VM address space.
As such, CLR 2.0 introduces a feature called VM hoarding, which essentially does not
free segments but rather keeps the segments on a standby list that can be utilized
when more memory is required. To utilize the VM hoarding feature, the CLR host
itself must specify that it wants to use the feature.

5.
M

ANAGED
H

EAP
AND

G
ARBAGECOLLECTION

Obj A Obj B Obj C Obj D Obj EGC Occurs

Step 2 – Obj B and Obj D Rootless

Step 3 – GC Finished

Step 1 – Initial State

Obj A Obj B Obj C Obj D Obj E

Managed heap

Managed heap

Obj A Obj C Obj E Free

Managed heap

Figure 5-8 Garbage collection compacting and coalescing phase

242 Chapter 5 Managed Heap and Garbage Collection

FULL VERSUS PARTIAL GARBAGE COLLECTION A garbage collection that collects all
three generations due to breaching all three generational thresholds is known as a full
garbage collection. In contrast, garbage collection in only generation 0 or generation 0
and 1 is simply known as a garbage collection.

Because the cost of a compaction is directly proportional to the size of the object
(the bigger the object, the costlier the compaction), the garbage collector introduces
another type of heap called the large object heap (LOH). Objects that are large
enough to severely hurt the performance of a compaction are placed on the LOH,
which we will discuss next.

Large Object Heap
The large object heap (LOH) consists of objects that are greater than or equal to
85,000 bytes in size. The decision to separate objects of that size into its own heap is
related to the fact that during the compacting phase of a garbage collection, the cost
of compacting an object is directly proportional to the size of the object being com-
pacted. Rather than having large objects on the standard heap eating up garbage col-
lection time during compaction, the LOH was created. The LOH is best viewed as an
extension of generation 2, and a collection of the LOH can only be done after a gen-
eration 2 collection has occurred, implying that a collection of the LOH is only done
during a full garbage collection. Because compacting large objects is very expensive,
the GC avoids compacting the LOH altogether and instead uses a process known as
sweeping that keeps a free list that is used to keep track of available memory in the
LOH segment(s). Figure 5-9 shows an example of a LOH with two segments.

Busy Free Busy Busy Busy

Busy Free Busy Busy BusyLOH Seg 0

LOH Seg 1

Free List

Figure 5-9 LOH example

243Garbage Collector Internals

Please note that although the LOH does not perform any compaction, it does do
coalescing of adjacent free blocks. That is, if you ever end up with two free adjacent
blocks, the GC coalesces those blocks into a larger block and adds it to the free list
(while also removing the two smaller blocks).

To find out the current state of the LOH in the debugger, we can again use the
eeheap –gc command, which includes details on the LOH:

0:004> !eeheap -gc

Number of GC Heaps: 1

generation 0 starts at 0x01fc6c18

generation 1 starts at 0x01fc100c

generation 2 starts at 0x01fc1000

ephemeral segment allocation context: none

segment begin allocated size

00308030 790d8620 790f7d8c 0x0001f76c(128876)

01fc0000 01fc1000 01fc8c24 0x00007c24(31780)

Large object heap starts at 0x02fc1000

segment begin allocated size

02fc0000 02fc1000 02fc3240 0x00002240(8768)

Total Size 0x295d0(169424)

––––––––––––––––––––––––––––––

GC Heap Size 0x295d0(169424)

The LOH section in the command output shows the starting point of the LOH as
well as per-segment information such as the segment, start, and end address of the
segment and total size of the segment. In the preceding example, we can see that the
LOH has one segment (0x02fc000) starting at address 0x02fc1000 and ending at
0x02fc3240 with a total size of 0x00002240. The last piece of information is the
total size of all segments in the LOH. One interesting question related to the LOH is
how the contents of the LOH can be dumped. There are a couple of options that both
revolve around using DumpHeap command switches. The first switch of interest is the
–min switch, which tells the DumpHeap command that you are only interested in
objects of the specified size. Because we know that LOH objects are greater than or
equal to 85,000 bytes in size, we can use the following command:

0:004> !DumpHeap -min 85000

Address MT Size

02c53250 7912dae8 100016

total 1 objects

Statistics:

MT Count TotalSize Class Name

7912dae8 1 100016 System.Byte[]

5.
M

ANAGED
H

EAP
AND

G
ARBAGECOLLECTION

244 Chapter 5 Managed Heap and Garbage Collection

Here, we can see that there is one object of size 100016 on the LOH. You can
verify or convince yourself that the object is in fact on the LOH by looking at the
address. If the address of the object falls within the LOH segments addresses, it must
be located on the LOH (with the exception of free objects, which can reside both in
the SOH as well as the LOH).

The next option we have is to specify a starting address for the DumpHeap com-
mand. If we specify the starting address of the LOH, we can ask the command to
dump out all objects on the LOH. The switch to use is the –startAtLowerBound
switch, which takes the address as a parameter. Using the same LOH as earlier, the
following command can be used:

0:004> !DumpHeap -startAtLowerBound 02c51000

Address MT Size

02c51000 002a6360 16 Free

02c51010 7912d8f8 4096

02c52010 002a6360 16 Free

02c52020 7912d8f8 4096

02c53020 002a6360 16 Free

02c53030 7912d8f8 528

02c53240 002a6360 16 Free

02c53250 7912dae8 100016

02c6b900 002a6360 16 Free

total 9 objects

Statistics:

MT Count TotalSize Class Name

002a6360 5 80 Free

7912d8f8 3 8720 System.Object[]

7912dae8 1 100016 System.Byte[]

Total 9 objects

Again, we see the object of size 100016, but even more interesting is that we see
objects that are smaller than 85,000 bytes on the LOH. What are these objects and how
did they end up on the LOH? The answer is that these very, very small objects are
placed there by the CLR heap manager, which uses them for its own purposes.
Generally speaking, you always see a select few objects with a size less than 85,000
bytes exclusively used by the GC.

Let’s take a look at a small sample application that allocates a single large object
of size 10,000 bytes (see Listing 5-5). We will then use the debuggers to see if we
can locate the object on the LOH and see what happens when the object is
collected.

245Garbage Collector Internals

Listing 5-5 Sample application demonstrating LOH

using System;

using System.Text;

using System.Runtime.InteropServices;

namespace Advanced.NET.Debugging.Chapter5

{

class LOH

{

static void Main(string[] args)

{

LOH l = new LOH();

l.Run();

}

public void Run()

{

byte[] b = null;

Console.WriteLine("Press any key to allocate on LOH");

Console.ReadKey();

b = new byte[100000];

Console.WriteLine("Press any key to GC");

Console.ReadKey();

b = null;

GC.Collect();

Console.WriteLine("Press any key to exit");

Console.ReadKey();

}

}

}

The source code and binary for Listing 5-5 can be found in the following folders:

■ Source code: C:\ADND\Chapter5\LOH
■ Binary: C:\ADNDBin\05LOH.exe

5.
M

ANAGED
H

EAP
AND

G
ARBAGECOLLECTION

246 Chapter 5 Managed Heap and Garbage Collection

Let’s run the application in the debugger and break execution when the Press
any key to allocate on LOH is displayed. At this point, we haven’t yet created
our big allocation, but it never hurts to take a look at the LOH heap to see what, if any-
thing, is already on it:

0:004> !eeheap -gc

Number of GC Heaps: 1

generation 0 starts at 0x01f01018

generation 1 starts at 0x01f0100c

generation 2 starts at 0x01f01000

ephemeral segment allocation context: none

segment begin allocated size

004a8008 790d8620 790f7d8c 0x0001f76c(128876)

01f00000 01f01000 01f5c334 0x0005b334(373556)

Large object heap starts at 0x02f01000

segment begin allocated size

02f00000 02f01000 02f03250 0x00002250(8784)

Total Size 0x7ccf0(511216)

––––––––––––––––––––––––––––––

GC Heap Size 0x7ccf0(511216)

0:004> !dumpheap -startatlowerbound 02f01000

Address MT Size

02f01000 00496360 16 Free

02f01010 7912d8f8 4096

02f02010 00496360 16 Free

02f02020 7912d8f8 4096

02f03020 00496360 16 Free

02f03030 7912d8f8 528

02f03240 00496360 16 Free

total 7 objects

Statistics:

MT Count TotalSize Class Name

00496360 4 64 Free

7912d8f8 3 8720 System.Object[]

Total 7 objects

We start by finding the starting point of the LOH by using the eeheap
command. The starting point in this case is 0x02f01000. Then, we feed the start-
ing address to the dumpheap command using the –startatlowerbound switch to
output all objects on the LOH. In the output, we can see that the only objects that
are on the LOH are the mysterious object arrays that are smaller than 85,000 bytes.
Other than that, we have no other objects present. Next, resume execution
and again manually break execution when the Press any key to GC is shown.

247Garbage Collector Internals

We issue the same dumpheap command as before to see if we can spot our 100KB
allocation:

0:003> !dumpheap -startatlowerbound 02f01000

Address MT Size

02f01000 00496360 16 Free

02f01010 7912d8f8 4096

02f02010 00496360 16 Free

02f02020 7912d8f8 4096

02f03020 00496360 16 Free

02f03030 7912d8f8 528

02f03240 00496360 16 Free

02f03250 7912dae8 100016

02f1b900 00496360 16 Free

total 9 objects

Statistics:

MT Count TotalSize Class Name

00496360 5 80 Free

7912d8f8 3 8720 System.Object[]

7912dae8 1 100016 System.Byte[]

Total 9 objects

We can see that our allocation is stored at address 0x02f03250 on the LOH. Next,
we resume execution until we see the Press any key to exit prompt. At this point,
a garbage collection has occurred, so let’s see what the LOH looks like by using the
same dumpheap command again:

0:003> !dumpheap -startatlowerbound 02f01000

Address MT Size

02f01000 00496360 16 Free

02f01010 7912d8f8 4096

02f02010 00496360 16 Free

02f02020 7912d8f8 4096

02f03020 00496360 16 Free

02f03030 7912d8f8 528

total 6 objects

Statistics:

MT Count TotalSize Class Name

00496360 3 48 Free

7912d8f8 3 8720 System.Object[]

This time, we can see how the object has been removed from the LOH and the
free blocks available as a result of the collection.

5.
M

ANAGED
H

EAP
AND

G
ARBAGECOLLECTION

248 Chapter 5 Managed Heap and Garbage Collection

Pinning
As we saw in the Releasing GC Memory section, the garbage collector employs a
technique known as compaction to reduce fragmentation on the GC heap. When a
compaction occurs, objects may end up moving around on the heap so that they can
be placed together, thereby avoiding gaps. As part of the object move, because the
address of the object changes, all references to the object are also updated. This
works well assuming all references to the object are contained within the CLR, but
quite often it is necessary for .NET applications to work outside of the boundary of
the CLR by using the interoperability services (such as platform invocation or COM
interoperability). If a reference to a managed object is passed to an underlying native
API, the object might be moved while the native API is reading and/or writing to the
memory, causing serious problems because the CLR clearly cannot notify the native
API of the address change. Figure 5-10 illustrates the problem.

Step 1: Initial state of managed
heap

Obj A Obj B Obj C Obj D Obj E

Step 3: Obj A and Obj B become rootless and GC occurs (incl compaction and coalescing)

FreeObj C Obj D Obj E

Step 2: Obj C address passed to asynchronous native
API

Address: 0 x 02000000

Address: 0 x 02000090

Address: 0 x 02000000

P/Invoke(reference to Obj C @ 0 x 02000090)

Step 4: Asynchronous native API resumes

Reference to Obj C @ 0 x 02000090 is accessed and written to

Figure 5-10 Interoperability services and GC compaction problem

249Garbage Collector Internals

From the flow in Figure 5-10, we can see that the initial state of the managed
heap includes five objects starting with Obj A at address 0x02000000. At a certain
point, a platform invocation call to an asynchronous native API is required.
Furthermore, the address of Obj C (0x02000090) needs to be passed to the
API. Upon successfully calling the asynchronous native API, a garbage collection
occurs causing Obj A and Obj B to be collected. This leaves a gap of two free
objects on the managed heap and the garbage collector dutifully rectifies the
problem by compacting the managed heap and therefore moving Obj C to address
0x02000000. It also coalesces the two free blocks and places them at the end of the
heap. After the garbage collection has finished, the asynchronous API call we made
earlier decides to write to the address initially passed to it (0x02000090), which
originally held Obj C. As you can see, with the asynchronous API writing to that
address, we will experience a managed heap corruption as the memory is no longer
occupied by Obj C.

Because the invocation of native code is such a common task, a solution had to be
devised that allowed for safe invocation in light of a compacting garbage collector. The
solution is called pinning and refers to the capability to pin specific objects on the man-
aged heap. When an object is pinned, the garbage collector will not move the object for
any reason until the object is unpinned. If Obj C in Figure 5-10 was pinned prior to
invoking the asynchronous native API, the managed heap corruption would not have
occurred due to the garbage collector not moving Obj C during the compaction phase.

Let’s take a look at an example of a simple application that performs pinning
and see what it looks like in the debugger. Listing 5-6 shows the source code of the
application.

Listing 5-6 Sample application using pinning

using System;

using System.Text;

using System.Runtime.InteropServices;

namespace Advanced.NET.Debugging.Chapter5

{

class Pinning

{

static void Main(string[] args)

{

Pinning p = new Pinning();

p.Run();

}

5.
M

ANAGED
H

EAP
AND

G
ARBAGECOLLECTION

(continues)

250 Chapter 5 Managed Heap and Garbage Collection

Listing 5-6 Sample application using pinning (continued)

public void Run()

{

SByte[] b1 = null;

SByte[] b2 = null;

SByte[] b3 = null;

Console.WriteLine("Press any key to alloc");

Console.ReadKey();

b1 = new SByte[100];

b2 = new SByte[200];

b3 = new SByte[300];

GCHandle h1 = GCHandle.Alloc(b1, GCHandleType.Pinned);

GCHandle h2 = GCHandle.Alloc(b2, GCHandleType.Pinned);

GCHandle h3 = GCHandle.Alloc(b3, GCHandleType.Pinned);

Console.WriteLine("Press any key to GC");

Console.ReadKey();

GC.Collect();

Console.WriteLine("Press any key to exit");

Console.ReadKey();

h1.Free(); h2.Free(); h3.Free();

}

}

}

The source code and binary for Listing 5-6 can be found in the following folders:

■ Source code: C:\ADND\Chapter5\Pinning
■ Binary: C:\ADNDBin\05Pinning.exe

The sample application shown in Listing 5-6 illustrates how to use the GCHandle
type to pin objects. The Run method declares three arrays of the SByte type and cre-
ates GCHandles for each of the allocations specifying that the objects be pinned. The
application then forces a garbage collection and exits. Let’s run the application under
the debugger and see if we can track the allocated memory and how it gets pinned.

251Garbage Collector Internals

Resume execution of the application until you see the Press any key to GC
prompt. At this point, we manually break execution and use a command called
GCHandles. The GCHandles command displays a list of all the handles available in the
process:

0:004> !GCHandles

GC Handle Statistics:

Strong Handles: 15

Pinned Handles: 7

Async Pinned Handles: 0

Ref Count Handles: 0

Weak Long Handles: 0

Weak Short Handles: 1

Other Handles: 0

Statistics:

MT Count TotalSize Class Name

790fd0f0 1 12 System.Object

790feba4 1 28 System.SharedStatics

790fcc48 2 48 System.Reflection.Assembly

790fe17c 1 72 System.ExecutionEngineException

790fe0e0 1 72 System.StackOverflowException

790fe044 1 72 System.OutOfMemoryException

790fed00 1 100 System.AppDomain

790fe704 2 112 System.Threading.Thread

79100a18 4 144 System.Security.PermissionSet

790fe284 2 144 System.Threading.ThreadAbortException

7912ee44 3 636 System.SByte[]

7912d8f8 4 8736 System.Object[]

Total 23 objects

The GCHandles command walks the handle tables and looks for all types of dif-
ferent handles (strong, weak, pinned, etc.) and displays a summary of the results as
well as a statistical section with detailed information on each type found. In the pre-
ceding output, we can see that we have 15 strong handles, 7 pinned handles, and
1 weak short handle. In addition, in the Statistics section, we can see the three
SByte arrays that we allocated and pinned. The GCHandles command provides a
good overview of the handle activity in any given process, but if further information
is required, such as the type of handle for each of the types listed in the Statistics
section, we have to use an additional command called objsize. One of the functions
of the objsize command is to output the size of the object passed in as an argument.
If no arguments are specified, it scans all the referenced objects in the process and
outputs the size as well as other useful information:

5.
M

ANAGED
H

EAP
AND

G
ARBAGECOLLECTION

252 Chapter 5 Managed Heap and Garbage Collection

0:004> !objsize

Scan Thread 0 OSTHread 2558

ESP:2fed54: sizeof(01d9599c) = 20 (0x14) bytes

(Microsoft.Win32.SafeHandles.SafeFileHandle)

ESP:2fee18: sizeof(01d96d9c) = 312 (0x138) bytes (System.SByte[])

ESP:2fee20: sizeof(01d96c58) = 112 (0x70) bytes (System.SByte[])

ESP:2fee24: sizeof(01d96cc8) = 212 (0xd4) bytes (System.SByte[])

ESP:2fee30: sizeof(01d958b4) = 12 (0xc) bytes

(Advanced.NET.Debugging.Chapter5.Pinning)

…

…

…

Scan Thread 2 OSTHread 2c80

DOMAIN(004DFD10):HANDLE(Strong):1c119c: sizeof(01d958a4) =

16 (0x10) bytes (System.Object[])

…

…

…

DOMAIN(004DFD10):HANDLE(WeakSh):1c12fc: sizeof(01d91de8) =

56 (0x38) bytes (System.Threading.Thread)

DOMAIN(004DFD10):HANDLE(Pinned):1c13e4: sizeof(01d96d9c) =

312 (0x138) bytes (System.SByte[])

DOMAIN(004DFD10):HANDLE(Pinned):1c13e8: sizeof(01d96cc8) =

212 (0xd4) bytes (System.SByte[])

DOMAIN(004DFD10):HANDLE(Pinned):1c13ec: sizeof(01d96c58) =

112 (0x70) bytes (System.SByte[])

DOMAIN(004DFD10):HANDLE(Pinned):1c13f0: sizeof(02d93030) =

708 (0x2c4) bytes (System.Object[])

DOMAIN(004DFD10):HANDLE(Pinned):1c13f4: sizeof(02d92020) =

4276 (0x10b4) bytes (System.Object[])

DOMAIN(004DFD10):HANDLE(Pinned):1c13f8: sizeof(01d9118c) =

12 (0xc) bytes (System.Object)

DOMAIN(004DFD10):HANDLE(Pinned):1c13fc: sizeof(02d91010) =

19332 (0x4b84) bytes (System.Object[])

The output has been abbreviated, but clearly shows that our SByte arrays have
been pinned as shown by HANDLE(Pinned).

Although the notion of pinning objects solves the problem of movable objects dur-
ing native code invocations, it does present a problem to the garbage collector; the
problem is that of fragmentation (one of the problems that compaction is meant to
solve). If there are a lot of interleaved pinned objects on the managed heap, situations
may occur where there isn’t enough contiguous free space available. Figure 5-11 shows
a hypothetical example of a fragmented managed heap due to excessive pinning.

In the layout illustrated in Figure 5-11, we can see that we have several free
smaller blocks intertwined with live objects (Obj A through D). If a garbage collection

253Garbage Collector Internals

should occur, the layout of the managed heap will remain unchanged. The reason for
that is simple: The garbage collector cannot perform a compaction due to all live
objects being pinned and hence not movable. Because the free blocks are not adjacent,
it also cannot perform coalescing. Even though we have free blocks available, memory
allocation requests may in fact fail if the size of the requested allocation is greater than
32 bytes. We will take a look at a real-world managed heap fragmentation problem in
detail later in the chapter.

WHAT ABOUT THE LOH? Earlier, we discussed the LOH and how it is swept rather
than compacted. This essentially means that objects on the LOH never move. Does that mean
that we can skip pinning objects on the LOH? The answer is a resounding no! If you don’t
pin objects on the LOH, you are making a very dangerous implementation assumption that
the LOH will never ever utilize compaction. That is an implementation detail that can
change between CLR versions. It is therefore imperative that objects on the LOH always be
pinned in case the implementation changes.

Garbage Collection Modes
The last topic we will discuss are the modes that the garbage collector runs in. There
are three primary modes of operation:

■ Nonconcurrent workstation
■ Concurrent workstation
■ Server

We’ve already discussed the difference between server and workstation in gen-
eral, and it boils down to the server mode creating one heap and one GC thread per
processor. All garbage collection related activities are performed by the dedicated GC
thread on the processor it is assigned to. What we haven’t discussed is the notion of
concurrent and nonconcurrent garbage collections. In the nonconcurrent workstation

5.
M

ANAGED
H

EAP
AND

G
ARBAGECOLLECTION

Obj A
(pinned)

Free
Obj B

(pinned)
Free

Obj C
(pinned) Free

Obj D
(pinned) Free

24 bytes 32 bytes 24 bytes 32 bytes

Figure 5-11 Hypothetical example of a fragmented managed heap

254 Chapter 5 Managed Heap and Garbage Collection

mode, the garbage collector suspends all managed threads for the entire duration of
the garbage collection. Only when the garbage collection is finished does it resume
all the managed threads in the process. This may work fine if there isn’t a need for
super-fast responsiveness, but in cases such as GUI applications, quick response times
are very critical. Hence, the introduction of the concurrent workstation mode where,
during a garbage collection, the managed threads are not suspended for the entire
duration of the garbage collection but are allowed to wake up periodically and do
work before being put back to sleep again for the garbage collector to do some more
work. This increases the responsiveness of the application but can make garbage col-
lection slightly slower.

Debugging Managed Heap Corruptions

A heap corruption is best defined as a bug that violates the integrity of the heap and
causes strange behaviors to occur in an application. The symptoms of a heap cor-
ruption are vast and can range from subtle and random behaviors or a flat-out crash
that stops an application in its tracks. For example, consider an application that has
an object whose state controls the frequency with which work items are pulled from
a queue. If a thread inadvertently changes the frequency due to corrupting the
memory of the object, work items may be pulled off much quicker than the system
can handle, or, conversely, work items may not be pulled out at all, causing pro-
cessing delays. In a situation like this, tracking down the culprit can be difficult
because the behavior is exhibited after the corruption has already taken place. In
fact, when working with heap corruptions, the best case scenario is a crash that hap-
pens as close to the source of the corruption as possible, eliminating the need for a
lot of painful historic back tracking of how the heap ended up being corrupted in
the first place.

Due to the subtle nature of heap corruption symptoms, it is also one of the
trickiest categories of bugs to debug. To begin with, what causes a heap corruption
to occur? Generally speaking, there are probably as many different causes for heap
corruptions as there are symptoms, but one very common cause is that of not
properly managing the memory that the application owns. Problems such as reuse
after free, dangling pointers, buffer overruns, and so on can all be possible heap
corruption culprits. The good news is that the CLR eliminates many of these
problems by effectively managing the memory on the application’s behalf. For
example, reuse after free is no longer possible because an object isn’t collected

255Debugging Managed Heap Corruptions

while rooted, buffer overruns are trapped and surfaced as an exception, and dan-
gling pointers are not easily achieved. Although the CLR very effectively elimi-
nates a lot of the heap corruption culprits, it does so only when the code runs
within the confines of the managed execution environment. Often, it is necessary
for a managed code application to call into native code and pass data to the native
API. The second that the code transitions into the native world, the data that
reside on the managed heap and are passed to the native code are no longer under
the protection of the CLR and can cause all sorts of problems unless carefully
managed before making the transition. For example, buffer overruns are no longer
trapped and the compacting nature of the GC can cause pointers to become stale.
The managed to native code interaction is one of the biggest heap corruption cul-
prits in the managed world.

CAN THERE BE MANAGED HEAP CORRUPTIONS WITHOUT NATIVE CODE
INVOLVEMENT? Although it is possible for a managed heap to become corrupted with-
out any native code interactions, it is a very rare occurrence and usually indicates a bug in
the CLR itself.

In this part of the chapter, we will look at an example of an application that suffers
from a heap corruption. Listing 5-7 illustrates the application’s source code.

Listing 5-7 Example of an application that suffers from a heap corruption

using System;

using System.Text;

using System.Runtime.InteropServices;

namespace Advanced.NET.Debugging.Chapter5

{

class Heap

{

static void Main(string[] args)

{

Heap h = new Heap();

h.Run();

}

public void Run()

{

5.
M

ANAGED
H

EAP
AND

G
ARBAGECOLLECTION

(continues)

256 Chapter 5 Managed Heap and Garbage Collection

Listing 5-7 Example of an application that suffers from a heap corruption (continued)

byte[] b = new byte[50];

for (int i = 0; i < 50; i++)

b[i] = 15;

Console.WriteLine("Press any key to invoke native method");

Console.ReadKey();

InitBuffer(b, 50);

Console.WriteLine("Press any key to exit");

Console.ReadKey();

}

[DllImport("05Native.dll")]

static extern void InitBuffer(byte[] buffer, int size);

}

}

The source code and binary for Listing 5-7 can be found in the following folders:

■ Source code: C:\ADND\Chapter5\Heap
■ Binary: C:\ADNDBin\05Heap.exe and C:\ADNDBin\05Native.dll

Note that to better illustrate the debug session, the native source code is not shown.
The application in Listing 5-6 allocates a byte array (50 elements) and calls into a

native API to initialize the memory by passing in the byte array as well as the size of
the array. If we run the application under the debugger, we can very quickly see that
an access violation occurs:

…

…

…

Press any key to invoke native method

ModLoad: 71190000 711ab000 C:\ADNDBin\05Native.dll

ModLoad: 63f70000 64093000 C:\Windows\WinSxS\x86_microsoft.vc90.debugcrt

_1fc8b3b9a1e18e3b_9.0.21022.8_none_96748342450f6aa2\MSVCR90D.dll

(1b00.26e4): Access violation - code c0000005 (first chance)

First chance exceptions are reported before any exception handling.

This exception may be expected and handled.

eax=77767574 ebx=00000001 ecx=01c659a4 edx=01c66ad8 esi=01c66868 edi=00000017

eip=7936ab16 esp=0031edac ebp=00000017 iopl=0 nv up ei pl nz na pe nc

257Debugging Managed Heap Corruptions

cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00010206

*** WARNING: Unable to verify checksum for

C:\Windows\assembly\NativeImages_v2.0.50727_32\

mscorlib\5b3e3b0551bcaa722c27dbb089c431e4\mscorlib.ni.dll

mscorlib_ni+0x2aab16:

7936ab16 ff90a4000000 call dword ptr [eax+0A4h] ds:0023:77767618=????????

0:000> !ClrStack

OS Thread Id: 0x26e4 (0)

ESP EIP

0031edac 7936ab16 System.IO.StreamWriter.Flush(Boolean, Boolean)

0031edcc 7936b287 System.IO.StreamWriter.Write(Char[], Int32, Int32)

0031edec 7936b121 System.IO.TextWriter.WriteLine(System.String)

0031ee04 7936b036 System.IO.TextWriter+SyncTextWriter.WriteLine(System.String)

0031ee10 793e9d86 System.Console.WriteLine(System.String)

0031ee1c 00810171 Advanced.NET.Debugging.Chapter5.Heap.Run()

0031ee48 008100a7 Advanced.NET.Debugging.Chapter5.Heap.Main(System.String[])

0031f068 79e7c74b [GCFrame: 0031f068]

What is interesting about the access violation is the stack trace of the offending
thread. It looks like the access violation occurred while making our second call to the
Console.WriteLine method (right after our call to the native InitBuffer API).
Even if we assume that a heap corruption is taking place, why is it failing in some seem-
ingly random place in the code base? Again, it is important to remember that a heap
corruption rarely breaks at the point of the corruption; rather, it breaks at some seem-
ingly random place later in the execution flow. This would certainly qualify as random
because we certainly do not expect a call to Console.WriteLine to ever fail with an
access violation. Armed with the knowledge that an access violation has occurred and
that the access violation occurred in a rather strange part of the execution flow, we can
now theorize that we have a possible heap corruption on our hands. The big question is,
how do we verify our theory? Remember our earlier definition of a heap corruption: a
violation of the integrity of the heap. If we can walk all objects on the heap, and verify
the validity of each object, we can say for sure whether the integrity has been violated.
Although it’s possible to walk the entire managed heap by hand, it is a time-consuming
process to say the least. Fortunately, the SOS VerifyHeap command automates this
process for us. The VerifyHeap command walks the entire managed heap, validating
each object along the way, and reports the results of the validation. If we run the com-
mand in our debug session, we can see the following:

0:000> !VerifyHeap

-verify will only produce output if there are errors in the heap

object 01c65968: does not have valid MT

curr_object : 01c65968

Last good object: 01c65928

5.
M

ANAGED
H

EAP
AND

G
ARBAGECOLLECTION

258 Chapter 5 Managed Heap and Garbage Collection

––––––––––––––––

object 02c61010: bad member 01c65968 at 02c61084

object 02c61010: bad member 01c65984 at 02c6109c

object 02c61010: bad member 01c659fc at 02c61444

object 02c61010: bad member 01c659e4 at 02c61448

object 02c61010: bad member 01c659f0 at 02c6144c

object 02c61010: bad member 01c659c8 at 02c6158c

curr_object : 02c61010

Last good object: 02c61000

––––––––––––––––

In the preceding output, we can see that there seems to be a number of problems
with our managed heap. More specifically, the first error encountered seems to be
with the object located at address 0x01c65968 not having a valid MT (method table).
We can easily verify this by hand by dumping out the contents of that address using
the dd command:

0:000> dd 01c65968 l1

01c65968 3b3a3938

0:000> dd 3b3a3938 l1

3b3a3938 ????????

The method table of the object located at address 0x01c65968 seems to be
0x3b3a3938, which furthermore is shown to be an invalid address. At this point, we
know we are working with a corrupted heap starting with an object at address
0x01c65968, but what we don’t know yet is how it got corrupted. A useful technique
in situations like this is to investigate objects surrounding the corrupted memory area.
For example, what does the previous object look like? The output of VerifyHeap
shows the address of the last good object to be 0x01c65928. If we dump out the con-
tents of that object, we can see the following:

0:000> !do 01c65928

Name: System.Byte[]

MethodTable: 7912dae8

EEClass: 7912dba0

Size: 62(0x3e) bytes

Array: Rank 1, Number of elements 50, Type Byte

Element Type: System.Byte

Fields:

None

0:000> !objsize 01c65928

sizeof(01c65928) = 64 (0x40) bytes (System.Byte[])

259Debugging Managed Heap Corruptions

The object in question appears to be a byte array with 50 elements, which also
looks very similar to the byte array that we created in our application. Furthermore,
because the do command is capable of displaying details of the object, the object’s
metadata seems to be structurally intact. Please note that the objsize command
was used to get the total size (including members of the object) of the object (64).
The next interesting piece of information to look at is the contents of the array
itself. We can use the dd command to display the entire object in raw memory
form:

0:000> dd 01c65928

01c65928 7912dae8 00000032 03020100 07060504

01c65938 0b0a0908 0f0e0d0c 13121110 17161514

01c65948 1b1a1918 1f1e1d1c 23222120 27262524

01c65958 2b2a2928 2f2e2d2c 33323130 37363534

01c65968 3b3a3938 3f3e3d3c 43424140 47464544

01c65978 4b4a4948 4f4e4d4c 53525150 57565554

01c65988 5b5a5958 5f5e5d5c 63626160 67666564

01c65998 6b6a6968 6f6e6d6c 73727170 77767574

In the output, we can see that the 64 bytes that the object occupies begin with
the method table indicating the type of the array followed by the number of elements
in the array followed by the array contents itself. The next object begins at address
0x01c65928 ((starting address of object)+0x40(total size of object)). If we look at
the contents of the last good object (0x01c65928), we can see that the array contains
incremental integer values. Furthermore, when the end of the last good object is
reached, we still see a progression of the incremental integer values spilling over to
what is considered the next object on the heap (0x01c65968). This observation
yields a very important clue as to what may potentially be happening. If the object at
address 0x01c65928 was incorrectly written and allowed to write past the end of the
object boundary, we would corrupt the next object in the heap. Figure 5-12 illustrates
the scenario.

5.
M

ANAGED
H

EAP
AND

G
ARBAGECOLLECTION

T
yp

e
H

an
dl

e

A
rr

ay
 S

iz
e

0,1,2,3,4…,55

56
,5

7,
58

,5
9

60
,6

1,
62

,6
3

64,65,66,......

0x 01c65928 0x 01c65968

Committed/Reserved
Space

4 4 Size 5 64 4 4

Figure 5-12 Managed heap corruption

260 Chapter 5 Managed Heap and Garbage Collection

At this point, we have a pretty good understanding of the data shown to us in the
debugger. By code reviewing the parts of the application that manipulate our byte
array, we can see that when we pass the byte array to the native InitBuffer API
the function does not respect the boundaries of the object and writes past the end
of the object, causing the subsequent object on the heap to become corrupted
(as output by the VerifyHeap command).

There is one additional piece of information that was displayed by the
VerifyHeap command earlier:

object 02c61010: bad member 01c65968 at 02c61084

object 02c61010: bad member 01c65984 at 02c6109c

object 02c61010: bad member 01c659fc at 02c61444

object 02c61010: bad member 01c659e4 at 02c61448

object 02c61010: bad member 01c659f0 at 02c6144c

object 02c61010: bad member 01c659c8 at 02c6158c

curr_object : 02c61010

Last good object: 02c61000

VerifyHeap is telling us that there exists an object located at address
0x02c61010 that contains a member that references the corrupted object starting at
address 0x01c65968. As a matter of fact, there are multiple lines stating that the
same object is referencing a number of different members of the corrupted object at
various addresses (0x01c65968, 0x01c65984, 0x01c659fc, etc). In essence,
VerifyHeap not only tells us which object is corrupted, but any other object on any
of the heaps that references the corrupt object will also be displayed.

VerifyHeap and GC Interference

We have seen how the VerifyHeap command can make troubleshooting managed heap
corruptions more efficient by walking the heap and reporting inconsistencies that can be a
result of a heap corruption. There are times, however, when VerifyHeap can yield results
that may not be as a result of a heap corruption. An example of that is if the CLR is in the
middle of doing a garbage collection. During a garbage collection, the GC may end up
compacting the heap, which involves moving objects around. For example, if a move was
currently in progress, the VerifyHeap command may very well fail or give inaccurate
information due to the heap being reorganized.

One of the built-in diagnostic aids that the garbage collector includes is the capability
to perform heap verification before and after garbage collection occurs. To enable these
diagnostics, set the environment variable COMPLUS_HeapVerify=1.

261Debugging Managed Heap Corruptions

The sample application we used to demonstrate how the managed heap can
become corrupted was based on using the interoperability services to invoke native
code. Depending on how the heap is corrupted by the native code, as well as the tim-
ing of garbage collections, there may not be any signs of a heap corruption being pres-
ent until much later after the native code has already done the damage, making it
difficult to backtrack to the source of the problem. To aid in this troubleshooting
process, an MDA was added called the gcUnmanagedToManaged MDA. Essentially,
the MDA aims at reducing the time gap between when the corruption actually occurs
in native code and when the next GC occurs. The way this is accomplished is by forc-
ing a garbage collection when the interoperability call transitions back from unman-
aged to managed code, thereby pinpointing the problem much earlier in the process.
Let’s enable the MDA (please see Chapter 1, “Introduction to the Tools” on how to
enable MDAs) and rerun our sample application under the debugger to see if we can
trap the heap corruption earlier:

…

…

…

Press any key to invoke native method

ModLoad: 71190000 711ab000 C:\ADNDBin\05Native.dll

ModLoad: 63f70000 64093000 C:\Windows\WinSxS\x86_microsoft.vc90.

debugcrt_1fc8b3b9a1e18e3b_9.0.21022.8_none_96748342450f6aa2\MSVCR90D.dll

(19d8.258c): Access violation - code c0000005 (first chance)

First chance exceptions are reported before any exception handling.

This exception may be expected and handled.

eax=3b3a3938 ebx=02d81010 ecx=00960184 edx=01d8598c esi=00020000 edi=00001000

eip=79f66846 esp=0025ec54 ebp=0025ec74 iopl=0 nv up ei pl nz na po nc

cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00010202

mscorwks!WKS::gc_heap::mark_object_simple+0x16c:

79f66846 0fb708 movzx ecx,word ptr [eax] ds:0023:3b3a3938=????

0:000> k

ChildEBP RetAddr

0025ec74 79f66932 mscorwks!WKS::gc_heap::mark_object_simple+0x16c

0025ec88 79fbc552 mscorwks!WKS::GCHeap::Promote+0x8d

0025eca0 79fbc3c9 mscorwks!PinObject+0x10

0025ecc4 79fc37b9 mscorwks!ScanConsecutiveHandlesWithoutUserData+0x26

0025ece4 79fba942 mscorwks!BlockScanBlocksWithoutUserData+0x26

0025ed08 79fba917 mscorwks!SegmentScanByTypeMap+0x55

0025ed60 79fba807 mscorwks!TableScanHandles+0x65

0025edc8 79fbb9a2 mscorwks!HndScanHandlesForGC+0x10d

0025ee0c 79fbaaf8 mscorwks!Ref_TracePinningRoots+0x6c

0025ee30 79f669f6 mscorwks!CNameSpace::GcScanHandles+0x60

0025ee70 79f65d57 mscorwks!WKS::gc_heap::mark_phase+0xae

5.
M

ANAGED
H

EAP
AND

G
ARBAGECOLLECTION

262 Chapter 5 Managed Heap and Garbage Collection

0025ee94 79f6614c mscorwks!WKS::gc_heap::gc1+0x62

0025eea8 79f65f5d mscorwks!WKS::gc_heap::garbage_collect+0x261

0025eed4 79f6dfa1 mscorwks!WKS::GCHeap::GarbageCollectGeneration+0x1a9

0025eee4 79f6df4b mscorwks!WKS::GCHeap::GarbageCollectTry+0x2d

0025ef04 7a0aea3d mscorwks!WKS::GCHeap::GarbageCollect+0x67

0025ef8c 7a12addd mscorwks!MdaGcUnmanagedToManaged::TriggerGC+0xa7

0025f020 79e7c74b mscorwks!FireMdaGcUnmanagedToManaged+0x3b

0025f030 79e7c6cc mscorwks!CallDescrWorker+0x33

0025f0b0 79e7c8e1 mscorwks!CallDescrWorkerWithHandler+0xa3

0:000> !ClrStack

OS Thread Id: 0x258c (0)

ESP EIP

0025efdc 79f66846 [NDirectMethodFrameStandalone: 0025efdc]

Advanced.NET.Debugging.Chapter5.Heap.InitBuffer(Byte[], Int32)

0025efec 00a80165 Advanced.NET.Debugging.Chapter5.Heap.Run()

0025f018 00a800a7 Advanced.NET.Debugging.Chapter5.Heap.Main(System.String[])

0025f240 79e7c74b [GCFrame: 0025f240]

We can see here that the native stack trace that caused the access violation looks
a lot different than our earlier stack trace. It now looks like we are hitting the prob-
lem during a garbage collection. Where in our managed code flow did the garbage
collection occur? If we look at the managed code stack trace, we can see that we now
get the access violation during our call to the native InitBuffer API.

If you ever suspect that a heap corruption might be taking place due to a native
API invocation, enabling the gcUnmanagedtoManaged MDA can save a ton of
debugging time.

Debugging Managed Heap Fragmentation

Earlier in the chapter, we described a phenomenon known as heap fragmentation, in
which free and busy blocks are arranged and interleaved on the managed heap in
such a way that they can cause problems in applications that surface as
OutOfMemory exceptions; in reality, enough memory is free, just not in a contiguous
fashion. The CLR heap manager utilizes a technique known as compacting and coa-
lescing to reduce the risk of heap fragmentation. In this section, we will take a look at
an example that can cause heap fragmentation to occur and how we can use the
debuggers to identify that a heap fragmentation is in fact occurring and the reasons
behind it. The example is shown in Listing 5-8.

263Debugging Managed Heap Fragmentation

Listing 5-8 Heap fragmentation example

using System;

using System.Text;

using System.Runtime.InteropServices;

namespace Advanced.NET.Debugging.Chapter5

{

class Fragment

{

static void Main(string[] args)

{

Fragment f = new Fragment();

f.Run(args);

}

public void Run(string[] args)

{

if (args.Length < 2)

{

Console.WriteLine("05Fragment.exe <alloc. size> <max mem in MB>");

return;

}

int size = Int32.Parse(args[0]);

int maxmem = Int32.Parse(args[1]);

byte[][] nonPinned = null;

byte[][] pinned = null;

GCHandle[] pinnedHandles = null;

int numAllocs=maxmem*1000000/size;

pinnedHandles = new GCHandle[numAllocs];

pinned = new byte[numAllocs / 2][];

nonPinned = new byte[numAllocs / 2][];

for (int i = 0; i < numAllocs / 2; i++)

{

nonPinned[i] = new byte[size];

pinned[i] = new byte[size];

pinnedHandles[i] =

GCHandle.Alloc(pinned[i], GCHandleType.Pinned);

}

5.
M

ANAGED
H

EAP
AND

G
ARBAGECOLLECTION

(continues)

264 Chapter 5 Managed Heap and Garbage Collection

Listing 5-8 Heap fragmentation example (continued)

Console.WriteLine("Press any key to GC & promo to gen1");

Console.ReadKey();

GC.Collect();

Console.WriteLine("Press any key to GC & promo to gen2");

Console.ReadKey();

GC.Collect();

Console.WriteLine("Press any key to GC(free non pinned");

Console.ReadKey();

for (int i = 0; i < numAllocs / 2; i++)

{

nonPinned[i] = null;

}

GC.Collect();

Console.WriteLine("Press any key to exit");

Console.ReadKey();

}

}

}

The source code and binary for Listing 5-8 can be found in the following folders:

■ Source code: C:\ADND\Chapter5\Fragment
■ Binary: C:\ADNDBin\05Fragment.exe

The application enables the user to specify an allocation size and the maximum
amount of memory that the application should consume. For example, if we want the
allocation size to be 50,000 bytes and the overall memory consumption limit to be
100MB, we would run the application as following:

C:\ADNDBIN\05Fragment 50000 100

The application proceeds to allocate memory, in chunks of the specified alloca-
tion size, until the limit is reached. After the allocations have been made, the appli-
cation performs a couple of garbage collections to promote the surviving objects to

265Debugging Managed Heap Fragmentation

generation 2 and then makes the nonpinned objects rootless, followed by another
garbage collection that subsequently releases the nonpinned allocations. Let’s take a
look by running the application under the debugger with an allocation size of 50000
and a max memory threshold of 1GB.

After the Press any key to GC and promo to Gen1 prompt is displayed,
the application has finished allocating all the memory and we can take a look at the
managed heap using the DumpHeap –stat command:

0:004> !DumpHeap -stat

total 22812 objects

Statistics:

MT Count TotalSize Class Name

79119954 1 12 System.Security.Permissions.ReflectionPermission

79119834 1 12 System.Security.Permissions.FileDialogPermission

791197b0 1 12 System.Security.PolicyManager

…

…

…

791032a8 2 256 System.Globalization.NumberFormatInfo

79101fe4 6 336 System.Collections.Hashtable

7912d9bc 6 864 System.Collections.Hashtable+bucket[]

7912dd40 10 2084 System.Char[]

00395f68 564 13120 Free

7912d8f8 14 17348 System.Object[]

791379e8 1 80012 System.Runtime.InteropServices.GCHandle[]

79141f50 2 80032 System.Byte[][]

790fd8c4 2108 132148 System.String

7912dae8 20002 1000240284 System.Byte[]

Total 22812 objects

The output of the command shows a few interesting fields. Because we are looking
specifically for heap fragmentation symptoms, any listed Free blocks should be carefully
investigated. In our case, we seem to have 564 free blocks occupying a total size of
13120. Should we be worried about these free blocks causing heap fragmentation?
Generally speaking, it is useful to look at the total size of the free blocks in comparison
to the overall size of the managed heap. If the size of the free blocks is large in compar-
ison to the overall heap size, heap fragmentation may be an issue and should be investi-
gated further. Another important consideration to be made is that of which generation
the possible heap fragmentation is occurring in. In generation 0, fragmentation is typi-
cally not a problem because the CLR heap manager can allocate using any free blocks
that may be available. In generation 1 and 2 however, the only way for the free blocks to
be used is by promoting objects to each respective generation. Because generation 1 is

5.
M

ANAGED
H

EAP
AND

G
ARBAGECOLLECTION

266 Chapter 5 Managed Heap and Garbage Collection

part of the ephemeral segment, which there can only be one of, generation 2 is most
commonly the generation of interest when looking at heap fragmentation problems.
Let’s take a look at what our heap looks like by using the eeheap –gc command:

0:004> !eeheap -gc

Number of GC Heaps: 1

generation 0 starts at 0x56192a54

generation 1 starts at 0x55d91000

generation 2 starts at 0x01c21000

ephemeral segment allocation context: none

segment begin allocated size

003a80e0 790d8620 790f7d8c 0x0001f76c(128876)

01c20000 01c21000 0282db84 0x00c0cb84(12635012)

04800000 04801000 05405ee4 0x00c04ee4(12603108)

05800000 05801000 06405ee4 0x00c04ee4(12603108)

06a50000 06a51000 07655ee4 0x00c04ee4(12603108)

07a50000 07a51000 08655ee4 0x00c04ee4(12603108)

…

…

…

4fd90000 4fd91000 50995ee4 0x00c04ee4(12603108)

50d90000 50d91000 51995ee4 0x00c04ee4(12603108)

51d90000 51d91000 52995ee4 0x00c04ee4(12603108)

52d90000 52d91000 53995ee4 0x00c04ee4(12603108)

53d90000 53d91000 54995ee4 0x00c04ee4(12603108)

54d90000 54d91000 55995ee4 0x00c04ee4(12603108)

55d90000 55d91000 5621afd8 0x00489fd8(4759512)

Large object heap starts at 0x02c21000

segment begin allocated size

02c20000 02c21000 02c23250 0x00002250(8784)

Total Size 0x3ba38e90(1000574608)

––––––––––––––––––––––––––––––

GC Heap Size 0x3ba38e90(1000574608)

The last line of the output tells us that the total GC Heap Size is right around
1GB. You may also notice that there is a rather large list of segments. Because we
are allocating a rather large amount of memory, the ephemeral segment gets filled
up pretty quickly and new generation 2 segments get created. We can verify this by
looking at the starting address of generation 2 in the preceding output
(0x01c21000) and correlating the start addresses of each segment in the segment
list. Let’s get back to the free blocks we saw earlier. In which generations are they
located? We can find out by using the dumpheap –type Free command. An abbre-
viated output follows:

267Debugging Managed Heap Fragmentation

0:004> !DumpHeap -type Free

Address MT Size

01c21000 00395f68 12 Free

01c2100c 00395f68 24 Free

01c24c44 00395f68 12 Free

01c24c50 00395f68 12 Free

01c24c5c 00395f68 6336 Free

01e299d0 00395f68 12 Free

0202a6f4 00395f68 12 Free

0222b418 00395f68 12 Free

0242c13c 00395f68 12 Free

0262ce60 00395f68 12 Free

04801000 00395f68 12 Free

0480100c 00395f68 12 Free

04a01d30 00395f68 12 Free

04c02a54 00395f68 12 Free

04e03778 00395f68 12 Free

0500449c 00395f68 12 Free

052051c0 00395f68 12 Free

05801000 00395f68 12 Free

0580100c 00395f68 12 Free

05a01d30 00395f68 12 Free

05c02a54 00395f68 12 Free

05e03778 00395f68 12 Free

0600449c 00395f68 12 Free

062051c0 00395f68 12 Free

06a51000 00395f68 12 Free

06a5100c 00395f68 12 Free

06c51d30 00395f68 12 Free

06e52a54 00395f68 12 Free

07053778 00395f68 12 Free

0725449c 00395f68 12 Free

074551c0 00395f68 12 Free

07a51000 00395f68 12 Free

07a5100c 00395f68 12 Free

07c51d30 00395f68 12 Free

07e52a54 00395f68 12 Free

08053778 00395f68 12 Free

0825449c 00395f68 12 Free

084551c0 00395f68 12 Free

08a51000 00395f68 12 Free

08a5100c 00395f68 12 Free

08c51d30 00395f68 12 Free

08e52a54 00395f68 12 Free

09053778 00395f68 12 Free

0925449c 00395f68 12 Free

5.
M

ANAGED
H

EAP
AND

G
ARBAGECOLLECTION

268 Chapter 5 Managed Heap and Garbage Collection

094551c0 00395f68 12 Free

09a51000 00395f68 12 Free

09a5100c 00395f68 12 Free

09c51d30 00395f68 12 Free

09e52a54 00395f68 12 Free

0a053778 00395f68 12 Free

0a25449c 00395f68 12 Free

0a4551c0 00395f68 12 Free

0aee1000 00395f68 12 Free

0aee100c 00395f68 12 Free

0b0e1d30 00395f68 12 Free

0b2e2a54 00395f68 12 Free

0b4e3778 00395f68 12 Free

…

…

…

55192a54 00395f68 12 Free

55393778 00395f68 12 Free

5559449c 00395f68 12 Free

557951c0 00395f68 12 Free

55d91000 00395f68 12 Free

55d9100c 00395f68 12 Free

55f91d30 00395f68 12 Free

56192a54 00395f68 12 Free

02c21000 00395f68 16 Free

02c22010 00395f68 16 Free

02c23020 00395f68 16 Free

02c23240 00395f68 16 Free

total 564 objects

Statistics:

MT Count TotalSize Class Name

00395f68 564 13120 Free

Total 564 objects

By looking at the address of each of the free blocks and correlating the address to
the segments from the eeheap command, we can see that a great majority of the free
objects reside in generation 2. With a total free size of 13120 in a heap that is right
around 1GB in size, the fragmentation now is only a small fraction of one percent.
Nothing to worry about (yet). Let’s resume the application and keep pressing any key
when prompted until you see the Press any key to exit prompt. At that point,
break into the debugger and again run the DumpHeap –stat command to get another
view of the heap:

269Debugging Managed Heap Fragmentation

0:004> !DumpHeap -stat

total 22233 objects

Statistics:

MT Count TotalSize Class Name

79119954 1 12 System.Security.Permissions.ReflectionPermission

79119834 1 12 System.Security.Permissions.FileDialogPermission

791197b0 1 12 System.Security.PolicyManager

00113038 1 12 Advanced.NET.Debugging.Chapter5.Fragment

791052a8 1 16 System.Security.Permissions.UIPermission

79117480 1 20 System.Security.Permissions.EnvironmentPermission

791037c0 1 20 Microsoft.Win32.SafeHandles.SafeFileMappingHandle

79103764 1 20 Microsoft.Win32.SafeHandles.SafeViewOfFileHandle

…

…

…

7912d8f8 12 17256 System.Object[]

791379e8 1 80012 System.Runtime.InteropServices.GCHandle[]

79141f50 2 80032 System.Byte[][]

790fd8c4 2101 131812 System.String

00395f68 10006 496172124 Free

7912dae8 10002 500120284 System.Byte[]

Total 22233 objects

This time, we can see that the amount of free space has grown considerably. From
the output, there are 10006 instances of free blocks occupying a total of 496172124
bytes of memory. To find out how this total amount correlates to our overall heap size,
we once again use the eeheap –gc command:

0:004> !eeheap -gc

Number of GC Heaps: 1

generation 0 starts at 0x55d9100c

generation 1 starts at 0x55d91000

generation 2 starts at 0x01c21000

ephemeral segment allocation context: none

segment begin allocated size

003a80e0 790d8620 790f7d8c 0x0001f76c(128876)

01c20000 01c21000 02821828 0x00c00828(12585000)

04800000 04801000 053f9b88 0x00bf8b88(12553096)

…

…

…

54d90000 54d91000 55989b88 0x00bf8b88(12553096)

55d90000 55d91000 562190b0 0x004880b0(4751536)

Large object heap starts at 0x02c21000

segment begin allocated size

5.
M

ANAGED
H

EAP
AND

G
ARBAGECOLLECTION

270 Chapter 5 Managed Heap and Garbage Collection

02c20000 02c21000 02c23240 0x00002240(8768)

Total Size 0x3b6725f4(996615668)

––––––––––––––––––––––––––––––

GC Heap Size 0x3b6725f4(996615668)

The total GC heap size is reported as 996615668 bytes. Overall, we can say that
the heap is approximately 50% fragmented. This can easily be verified by looking at
the verbose output of the DumpHeap command:

0:004> !DumpHeap

Address MT Size

…

…

…

55ff381c 7912dae8 50012

55fffb78 00395f68 50012 Free

5600bed4 7912dae8 50012

56018230 00395f68 50012 Free

5602458c 7912dae8 50012

560308e8 00395f68 50012 Free

5603cc44 7912dae8 50012

56048fa0 00395f68 50012 Free

560552fc 7912dae8 50012

56061658 00395f68 50012 Free

5606d9b4 7912dae8 50012

56079d10 00395f68 50012 Free

5608606c 7912dae8 50012

560923c8 00395f68 50012 Free

5609e724 7912dae8 50012

560aaa80 00395f68 50012 Free

560b6ddc 7912dae8 50012

560c3138 00395f68 50012 Free

560cf494 7912dae8 50012

560db7f0 00395f68 50012 Free

560e7b4c 7912dae8 50012

560f3ea8 00395f68 50012 Free

56100204 7912dae8 50012

5610c560 00395f68 50012 Free

…

…

…

From the output, we can see that a pattern has emerged. We have a block of size
50012 that is allocated and in use followed by a free block of the same size that is
considered free. We can use the DumpObj command on the allocated object to find
out more details:

271Debugging Managed Heap Fragmentation

0:004> !DumpObj 5606d9b4

Name: System.Byte[]

MethodTable: 7912dae8

EEClass: 7912dba0

Size: 50012(0xc35c) bytes

Array: Rank 1, Number of elements 50000, Type Byte

Element Type: System.Byte

Fields:

None

This object is a byte array, which corresponds to the allocations that our appli-
cation is creating. How did we end up with such an allocation pattern (allocated,
free, allocated, free) to begin with? We know that the garbage collector should per-
form compacting and coalescing to avoid this scenario. One of the situations that
can cause the garbage collector not to compact and coalesce is if there are objects
on the heap that are pinned (i.e., nonmoveable). To find out if that is indeed the
case in our application, we need to see if there are any pinned handles in the
process. We can utilize the GCHandles command to get an overview of handle
usage in the process:

0:004> !GCHandles

GC Handle Statistics:

Strong Handles: 15

Pinned Handles: 10004

Async Pinned Handles: 0

Ref Count Handles: 0

Weak Long Handles: 0

Weak Short Handles: 1

Other Handles: 0

Statistics:

MT Count TotalSize Class Name

790fd0f0 1 12 System.Object

790feba4 1 28 System.SharedStatics

790fcc48 2 48 System.Reflection.Assembly

790fe17c 1 72 System.ExecutionEngineException

790fe0e0 1 72 System.StackOverflowException

790fe044 1 72 System.OutOfMemoryException

790fed00 1 100 System.AppDomain

790fe704 2 112 System.Threading.Thread

79100a18 4 144 System.Security.PermissionSet

790fe284 2 144 System.Threading.ThreadAbortException

7912d8f8 4 8744 System.Object[]

7912dae8 10000 500120000 System.Byte[]

Total 10020 objects

5.
M

ANAGED
H

EAP
AND

G
ARBAGECOLLECTION

272 Chapter 5 Managed Heap and Garbage Collection

The output of GCHandles tells us that we have 10004 pinned handles. Further
more, in the statistics section, we can see that 10,000 of those handles are used
to pin byte arrays. At this point, we are almost there and can do a quick code review
that shows that half of the byte array allocations made in the application are explicitly
pinned, causing the heap to get fragmented.

Excessive or prolonged pinning is one of the most common reasons behind
fragmentation of the managed heap. If pinning is necessary, the developer must
ensure that pinning is short lived in order not to interfere too much with the garbage
collector.

How Much Is Too Much?

In our preceding example, initially, the heap fragmentation was a fraction of one percent.
At that point, we really didn’t have to pay too much attention to it as it was too small to
concern us. Later, we noticed that the fragmentation grew to 50%, which caused an
in-depth investigation to figure out the reason for it. Is there a magical percentage of when
one should start worrying? There is no hard number, but generally speaking if the heap is
between 10% and 30% fragmented, due diligence should be exercised to ensure that it is
not a long-running problem.

In the preceding example, we looked at fragmentation as it relates to the man-
aged heap. It is also possible to encounter situations where the virtual memory man-
aged by the Windows virtual memory manager gets fragmented. In those cases, the
CLR heap manager may not be able to grow its heap (i.e., allocate new segments) to
accommodate allocation requests. The address command can be used to get
in-depth information on the systems virtual memory state.

Debugging Out of Memory Exceptions

Even though the CLR heap manager and the garbage collector work hard to ensure
that memory is automatically managed and used in the most efficient way possible, bad
programming can still cause serious issues in .NET applications. In this part of the
chapter, we will take a look at how a .NET application can exhaust enough memory to
fail with an OutOfMemoryException and how we can use the debuggers to figure
out the source of the problem. It is important to note that the example we will use

273Debugging Out of Memory Exceptions

illustrates how memory can be exhausted in the managed world and does not cover the
various ways in which resources can be leaked in native code when invoked via the
interoperability services layer. In Chapter 7, “Interoperability,” we will look at an
example of a native resource leak caused by improper invocations from managed code.

The application we will use to illustrate the problem is shown in Listing 5-9.

Listing 5-9 Example of an application that causes an eventual OutOfMemoryException

using System;

using System.IO;

using System.Xml.Serialization;

namespace Advanced.NET.Debugging.Chapter5

{

public class Person

{

private string name;

private string social;

private int age;

public string Name

{

get { return name; }

set { this.name=value;}

}

public string SocialSecurity

{

get { return social; }

set { this.social= value; }

}

public int Age

{

get { return age; }

set { this.age = value; }

}

public Person() {}

public Person(string name, string ss, int age)

5.
M

ANAGED
H

EAP
AND

G
ARBAGECOLLECTION

(continues)

274 Chapter 5 Managed Heap and Garbage Collection

Listing 5-9 Example of an application that causes an eventual
OutOfMemoryException (continued)

{

this.name = name; this.social = ss; this.age = age;

}

}

class OOM

{

static void Main(string[] args)

{

OOM o = new OOM();

o.Run();

}

public void Run()

{

XmlRootAttribute root = new XmlRootAttribute();

root.ElementName = "MyPersonRoot";

root.Namespace = "http://www.contoso.com";

root.IsNullable = true;

while (true)

{

Person p = new Person();

p.Name = "Mario Hewardt";

p.SocialSecurity = "xxx-xx-xxxx";

p.Age = 99;

XmlSerializer ser = new

XmlSerializer(typeof(Person), root);

Stream s = new

FileStream("c:\\ser.txt", FileMode.Create);

ser.Serialize(s, p);

s.Close();

}

}

}

}

The source code and binary for Listing 5-9 can be found in the following folders:

■ Source code: C:\ADND\Chapter5\OOM
■ Binary: C:\ADNDBin\05OOM.exe

275Debugging Out of Memory Exceptions

The application is pretty straightforward and consists of a Person class and an
OOM class. The OOM class contains a Run method that sits in a tight loop creating
instances of the Person class and serializes the instance into XML stored in a file
on the local drive. When we run this application, we would like to monitor the
memory consumption to see if it steadily increases over time, which could eventu-
ally lead to an OutOfMemoryException being thrown. What tools do we have at
our disposal to monitor the memory consumption of a process? We have several
options. The most basic option is to simply use task manager (shortcut SHIFT-
CTRL-ESC). Task manager can display per-process memory information such as
the working set, commit size, and paged/nonpaged pool. By default, only the
Memory (Private Working Set) is enabled. To enable other process information,
the Select Columns menu choice on the View menu can be used. The Windows
Task Manager has several different tabs, and the tab of most interest when looking
at per-process details is the Processes tab. The Processes tab shows a number of
rows where each row represents a running process. Each of the columns in turn
shows a specific piece of information about the process. Figure 5-13 shows an
example of Windows Task Manager with a number of different memory details
enabled in the Processes tab.

5.
M

ANAGED
H

EAP
AND

G
ARBAGECOLLECTION

Figure 5-13 Example of Windows Task Manager Processes tab

276 Chapter 5 Managed Heap and Garbage Collection

In Figure 5-13, we can see, for example, that explorer.exe’s working set size is
37,420K. Before we can move forward and effectively utilize Windows Task Manager
for memory-related investigations, we have to have a clear understanding of what
each of the possible memory-related columns means. Table 5-2 details the most com-
monly used columns and their descriptions.

PRE-WINDOWS VISTA TASK MANAGER Some much-needed changes were
made in Windows Vista and later versions to better capture the memory-related
process information. Prior to Windows Vista, Windows Task Manager had a column
named VM size, which, contrary to popular belief, indicated the amount of private
bytes a process was consuming. Similarly, the Mem Usage column corresponds to the
working set (including shared memory) of the process. Finally, a feature we will utilize
in Chapter 8, “Postmortem Debugging,” is the capability to create dump files simply by
right-clicking on the process and choosing the Create Dump File item.

Let’s run 05OOM.exe and watch the Memory – Working Set, Memory – Private
Working Set, and Memory – Commit Size columns. Table 5-3 shows the results taken
at periodic (approximately 60-second) intervals.

Table 5-2 Windows Task Manager Memory-Related Columns

Column Description

Memory – Working Set Amount of memory in the private working set
as well as the shared memory

Memory – Peak Working Set Maximum amount of working set used by
the process

Memory – Working Set Delta Amount of change in the working set
Memory – Private Working Set Amount of memory the process is using minus

shared memory
Memory – Commit Size Amount of virtual memory committed by

the process

277Debugging Out of Memory Exceptions

Table 5-3 Memory Usage of 005OOM.exe

5.
M

ANAGED
H

EAP
AND

G
ARBAGECOLLECTION

Interval Working Set (K) Private Working Set (K) Commit Size (K)

1 18,000 7,000 16,000
2 24,000 11,000 19,000
3 28,000 13,000 22,000
4 33,000 16,000 25,000
5 38,000 19,000 28,000
6 42,000 22,000 30,000

From Table 5-3, we can see that we have a steady increase across the board. Both
the working set sizes as well as the commit size are continuously growing. If this
application is allowed to run indefinitely, chances are high that it could eventually run
out of memory and an OutOfMemoryException would be thrown. Although using
the Windows Task Manager is useful to get an overview of the memory consumed,
what information does it present to us as far as figuring out the source of the exces-
sive memory consumption? Is the memory located on the native heap or the managed
heap? Is it located on the heap period or elsewhere?

To find the answers to those questions, we need a more granular tool to aid us: the
Windows Reliability and Performance Monitor. The Windows Reliability and
Performance Monitor tool is a powerful and extensible tool that can be used to inves-
tigate the state of the system as a whole or on a per-process basis. The tool uses sev-
eral different data sources such as performance counters, trace logs, and configuration
information. During .NET debug sessions, performance counters is the most com-
monly used data source. A performance counter is an entity that is responsible for pub-
lishing a specific performance characteristic of an application or service at regular time
intervals or under specific conditions. For example, a Web service servicing credit card
transactions can publish a performance counter that shows how many failed transac-
tions have occurred over time. The Windows Reliability and Performance tool knows
where to gather the performance counter data and displays the results in a nice graph-
ical and historical view. To run the tool, click the Windows Start button and type
perfmon.exe in the search tool (prior to Windows Vista, select run and then type
perfmon.exe). Figure 5-14 shows an example of the start screen of the tool.

The left-hand pane shows the different data sources available to the tool. As men-
tioned earlier, performance counters are used heavily when diagnosing .NET appli-
cations and are located under the Monitoring Tools node under Performance
Monitor. The right-hand pane shows the data associated with the current data source

278 Chapter 5 Managed Heap and Garbage Collection

selected. When first launched, the tool shows an overview of the system state includ-
ing CPU, Disk, Memory, and Network utilization. Figure 5-15 shows the tool after
the Performance Monitor item is selected.

The right-hand pane now displays a visual representation of the selected perform-
ance counters over time. By default, the Processor Time counter is always selected
when the tool is first launched. To add counters, right-click in the right pane and select
Add Counters, which brings up the Add Counters dialog shown in Figure 5-16.

The Add Counters dialog has two parts. The first part is the left side’s Available
Counters options, which shows a drop-down list of all available counter categories as
well as the instances of the available objects that the performance counters can col-
lect and display data on. For example, if the .NET CLR Memory performance
counter category is selected, the list of available instances shows the processes that
are available. The right pane simply shows all the performance counters that have
been added.

Figure 5-14 Windows Reliability and Performance Monitor

279Debugging Out of Memory Exceptions

5.
M

ANAGED
H

EAP
AND

G
ARBAGECOLLECTION

Figure 5-15 Performance Monitor

Now that we know how to add and display performance counters in the tool, let’s
try it out on our sample application. The first question we have to answer before
blindly adding random performance counters is, which CLR counters are we specifi-
cally interested in based on the symptoms we are seeing? Table 5-4 shows the avail-
able CLR performance counter categories as well as their associated descriptions.

Based on the plethora of available categories, in our specific example, we are
interested in finding out more details on the memory consumption (.NET CLR
Memory) of our sample application. Table 5-5 shows the specific counters available in
this category as well as their descriptions.

To monitor our sample application’s memory usage, let’s pick the # total bytes
counter as well as the # total committed bytes counter. This can give us valuable clues
as to whether the memory is on the managed heap or elsewhere in the process. Start
the 05OOM.exe application followed by launching the Windows Reliability and
Performance Monitoring tool. Add the two counters and specify the 05OOM.exe
instance in the list of available instances. Figure 5-17 shows the output of the tool
after about two minutes of 05OOM.exe runtime.

280 Chapter 5 Managed Heap and Garbage Collection

Figure 5-16 Add Counters dialog

The counters look pretty stable with no major uptick. Yet, if we look at the
05OOM process in Windows Task Manager, we can see that memory consumption is
increasing quite a bit. Where is the memory coming from? At this point, we have elim-
inated the managed heap as being the cause for memory usage growth, and our strat-
egy is now to use the other various counters available to see if we can spot an uptick.
For example, let’s choose the bytes in loader heap and current assemblies (both under
the .NET CLR Loading category) and see what the output shows. (See Figure 5-18.)

Note that you may have to change the vertical scale maximum (under properties)
to a larger number depending on how long the application has been executing. In
Figure 5-18, the vertical scale maximum has been set to 5000. This time, we can see
some more interesting data. Both the bytes in loader heap and current assemblies
performance counters are slowly increasing over time. One of our theories is that we
are looking at a potential assembly leak. To verify this, we can attach the debugger to
the 05OOM.exe process (ntsd –pn 05oom.exe) and use the eeheap -loader
command:

281Debugging Out of Memory Exceptions

5.
M

ANAGED
H

EAP
AND

G
ARBAGECOLLECTION

Table 5-4 CLR-Specific Performance Counters Categories

Category Description

.NET CLR Data Runtime statistics on data (such as SQL)
performance

.NET CLR Exceptions Runtime statistics on CLR exception handling
such as number of exceptions thrown

.NET CLR Interop Runtime statistics on the interoperability
services such as number of marshalling operations

.NET CLR Jit Runtime statistics on the Just In Time
compiler such as number of methods JITTED

.NET CLR Loading Runtime statistics on the CLR class/assembly
loader such as total number of bytes in the
loader heap

.NET CLR LocksAndThreads Runtime statistics on locks and threads such as
the contention rate of a lock

.NET CLR Memory Runtime statistics on the managed heap and
garbage collector such as the number of
collections in each generation

.NET CLR Networking Runtime statistics on networking such as
datagrams sent and received

.NET CLR Remoting Runtime statistics on remoting such as remote
calls per second

.NET CLR Security Runtime statistics on security the total number
of runtime checks

Table 5-5 .NET CLR Memory Performance Counters

Performance Counter Description

Bytes in all heaps The total number of bytes in all heaps
(gen 0, gen 1, gen 2, and large object heap).

GC Handles Total number of GC handles.
Gen 0 collections Total number of generation 0 garbage collections.
Gen 1 collections Total number of generation 1 garbage collections.
Gen 2 collections Total number of generation 2 garbage collections.

(continues)

282 Chapter 5 Managed Heap and Garbage Collection

Performance Counter Description

Induced GC Total number of times a call to GC.Collect has
been made.

Pinned objects Total number of pinned objects in the managed heap
during the last garbage collection. Please note that it
only displays the number of pinned objects from the
generations that were collected. As such, if a garbage
collection resulted in only generation 0 being collected,
this number only states how many pinned objects were
in that generation.

of Sink blocks in use Current number of sync blocks in use. Useful
when diagnosing performance problems related to
heavy synchronization usage.

Total committed bytes Total number of virtual bytes committed by the
CLR heap manager.

Total reserved bytes Total number of virtual bytes reserved by the
CLR heap manager.

% Time in GC Percentage of total elapsed time spent in the
garbage collector since the last garbage collection.

Allocated bytes/sec Number of allocated bytes per second. Updated
at the beginning of every garbage collection.

Finalization Survivors The number of garbage-collected objects that
survives a collection due to waiting for finalization.

Gen 0 heap size Maximum number of bytes that can be allocated
in generation 0.

Gen 0 Promoted bytes/sec Number of promoted bytes per second in generation 0.
Gen 1 heap size Current number of bytes in generation 1.
Gen 1 Promoted bytes/sec Number of promoted bytes per second in generation 1.
Gen 2 heap size Current number of bytes in generation 1.
Large object heap size Current size of the large object heap.
Process ID Process identifier of process being monitored.
Promoted finalization – The number of bytes that are promoted to generation 1
Memory from gen 0 due to waiting to be finalized.
Promoted memory The number of bytes promoted from generation 0 to
from Gen 0 generation 1 (minus objects that are waiting to be

finalized).
Promoted memory The number of bytes promoted from generation 1 to
from Gen 1 generation 2 (minus objects that are waiting to be finalized).

Table 5-5 .NET CLR Memory Performance Counters (continued)

283Debugging Out of Memory Exceptions

0:003> !eeheap -loader

Loader Heap:

––––––––––––––––––––––––––––––––––––––

System Domain: 7a3bc8b8

LowFrequencyHeap: Size: 0x0(0)bytes.

HighFrequencyHeap: 002a2000(8000:1000) Size: 0x1000(4096)bytes.

StubHeap: 002aa000(2000:2000) Size: 0x2000(8192)bytes.

Virtual Call Stub Heap:

IndcellHeap: Size: 0x0(0)bytes.

LookupHeap: Size: 0x0(0)bytes.

ResolveHeap: Size: 0x0(0)bytes.

DispatchHeap: Size: 0x0(0)bytes.

CacheEntryHeap: Size: 0x0(0)bytes.

Total size: 0x3000(12288)bytes

––––––––––––––––––––––––––––––––––––––

Shared Domain: 7a3bc560

LowFrequencyHeap: 002d0000(2000:1000) Size: 0x1000(4096)bytes.

HighFrequencyHeap: 002d2000(8000:1000) Size: 0x1000(4096)bytes.

StubHeap: 002da000(2000:1000) Size: 0x1000(4096)bytes.

Virtual Call Stub Heap:

IndcellHeap: 00870000(2000:1000) Size: 0x1000(4096)bytes.

LookupHeap: 00875000(2000:1000) Size: 0x1000(4096)bytes.

ResolveHeap: 0087b000(5000:1000) Size: 0x1000(4096)bytes.

DispatchHeap: 00877000(4000:1000) Size: 0x1000(4096)bytes.

CacheEntryHeap: 00872000(3000:1000) Size: 0x1000(4096)bytes.

Total size: 0x7000(28672)bytes

––––––––––––––––––––––––––––––––––––––

Domain 1: 304558

LowFrequencyHeap: 002b0000(2000:2000) 00ca0000(10000:10000) 01cf0000(10000:10000)

04070000(10000:10000) 04170000(10000:10000)

…

…

…

165e0000(10000:10000) 166b0000(10000:10000) 16770000(10000:10000)

16830000(10000:10000) 16900000(10000:10000) 169c0000(10000:10000)

16a80000(10000:a000) Size: 0x16fc000(24100864)bytes.

HighFrequencyHeap: 002b2000(8000:8000) 03e50000(10000:10000) 04370000(10000:10000)

046c0000(10000:10000) 04a10000(10000:10000)

…

…

…

15bf0000(10000:10000) 15f30000(10000:10000) 16270000(10000:10000)

165a0000(10000:10000) 168f0000(10000:a000) Size: 0x572000(5709824)bytes.

StubHeap: 002ba000(2000:1000) Size: 0x1000(4096)bytes.

Virtual Call Stub Heap:

IndcellHeap: Size: 0x0(0)bytes.

LookupHeap: Size: 0x0(0)bytes.

5.
M

ANAGED
H

EAP
AND

G
ARBAGECOLLECTION

284 Chapter 5 Managed Heap and Garbage Collection

ResolveHeap: 002ca000(6000:1000) Size: 0x1000(4096)bytes.

DispatchHeap: 002c7000(3000:1000) Size: 0x1000(4096)bytes.

CacheEntryHeap: 002c2000(4000:1000) Size: 0x1000(4096)bytes.

Total size: 0x1c71000(29822976)bytes

––––––––––––––––––––––––––––––––––––––

Jit code heap:

LoaderCodeHeap: 165f0000(10000:b000) Size: 0xb000(45056)bytes.

LoaderCodeHeap: 15de0000(10000:10000) Size: 0x10000(65536)bytes.

LoaderCodeHeap: 15600000(10000:10000) Size: 0x10000(65536)bytes.

…

…

…

LoaderCodeHeap: 04710000(10000:10000) Size: 0x10000(65536)bytes.

LoaderCodeHeap: 009e0000(10000:10000) Size: 0x10000(65536)bytes.

Total size: 0x23b000(2338816)bytes

––––––––––––––––––––––––––––––––––––––

Module Thunk heaps:

Module 790c2000: Size: 0x0(0)bytes.

Module 002d2564: Size: 0x0(0)bytes.

…

…

…

Module 168f8e40: Size: 0x0(0)bytes.

Module 168f93b8: Size: 0x0(0)bytes.

Module 168f9930: Size: 0x0(0)bytes.

Total size: 0x0(0)bytes

––––––––––––––––––––––––––––––––––––––

Module Lookup Table heaps:

Module 790c2000: Size: 0x0(0)bytes.

Module 002d2564: Size: 0x0(0)bytes.

Module 002d21d8: Size: 0x0(0)bytes.

…

…

…

Module 168f93b8: Size: 0x0(0)bytes.

Module 168f9930: Size: 0x0(0)bytes.

Total size: 0x0(0)bytes

––––––––––––––––––––––––––––––––––––––

Total LoaderHeap size: 0x1eb6000(32202752)bytes

=======================================

The first two domains (system and shared) seem to look reasonable, but the
default application domain has a ton of data in it. More specifically, it contains the
bulk of the overall loader heap (size 32202752). Why does the application domain
contain so much data? We can get further information about the default application

285Debugging Out of Memory Exceptions

5.
M

ANAGED
H

EAP
AND

G
ARBAGECOLLECTION

domain by using the DumpDomain command and specifying the address of the default
application domain (found in output from the previous eeheap command):

0:003> !DumpDomain 304558

––––––––––––––––––––––––––––––––––––––

Domain 1: 00304558

LowFrequencyHeap: 0030457c

HighFrequencyHeap: 003045d4

StubHeap: 0030462c

Stage: OPEN

SecurityDescriptor: 00305ab8

Name: 05OOM.exe

Assembly: 0030d1b0

[C:\Windows\assembly\GAC_32\mscorlib\2.0.0.0__b77a5c561934e089\mscorlib.dll]

ClassLoader: 002fc988

SecurityDescriptor: 0030dfd8

Module Name

790c2000 C:\Windows\assembly\GAC_32\mscorlib\2.0.0.0__b77a5c561934e089\mscorlib.dll

002d2564 C:\Windows\assembly\GAC_32\mscorlib\2.0.0.0__b77a5c561934e089\sortkey.nlp

002d21d8 C:\Windows\assembly\GAC_32\mscorlib\2.0.0.0__b77a5c561934e089\sorttbls.nlp

Assembly: 0032f1b8 [C:\ADNDBin\05OOM.exe]

ClassLoader: 002fd168

SecurityDescriptor: 00330f30

Module Name

002b2c3c C:\ADNDBin\05OOM.exe

Assembly: 0033bb98

[C:\Windows\assembly\GAC_MSIL\System.Xml\2.0.0.0__b77a5c561934e089\System.Xml.dll]

ClassLoader: 002fd408

SecurityDescriptor: 00326b18

Module Name

639f8000

C:\Windows\assembly\GAC_MSIL\System.Xml\2.0.0.0__b77a5c561934e089\System.Xml.dll

…

…

…

Assembly: 00346408 [4ql4a3hq, Version=0.0.0.0, Culture=neutral,

PublicKeyToken=null]

ClassLoader: 003423a8

SecurityDescriptor: 00346380

Module Name

002b46f8 4ql4a3hq, Version=0.0.0.0, Culture=neutral, PublicKeyToken=null

286 Chapter 5 Managed Heap and Garbage Collection

Assembly: 003465a0 [lx4qjutk, Version=0.0.0.0, Culture=neutral, PublicKeyToken=null]

ClassLoader: 00342488

SecurityDescriptor: 00346518

Module Name

002b4ce4 lx4qjutk, Version=0.0.0.0, Culture=neutral, PublicKeyToken=null

Assembly: 003466b0 [uds1hfbo, Version=0.0.0.0, Culture=neutral, PublicKeyToken=null]

ClassLoader: 003424f8

SecurityDescriptor: 00346628

Module Name

002b5258 uds1hfbo, Version=0.0.0.0, Culture=neutral, PublicKeyToken=null

…

…

…

As we can see, there are numerous assemblies loaded into the default applica-
tion domain. Furthermore, the names of the assemblies seem rather random. Why
are all these assemblies being loaded? Our code in Listing 5-9 certainly doesn’t
directly load any assemblies, which means that these assemblies have to be dynami-
cally generated. To further investigate what these assemblies contain, we can pick
one of them and dump out the associated module information using the
DumpModule command:

0:003> !DumpModule 002b5258

Name: uds1hfbo, Version=0.0.0.0, Culture=neutral, PublicKeyToken=null

Attributes: PEFile

Assembly: 003466b0

LoaderHeap: 00000000

TypeDefToMethodTableMap: 00ca2df8

TypeRefToMethodTableMap: 00ca2e10

MethodDefToDescMap: 00ca2e6c

FieldDefToDescMap: 00ca2ed0

MemberRefToDescMap: 00ca2ef8

FileReferencesMap: 00ca2fec

AssemblyReferencesMap: 00ca2ff0

MetaData start address: 00cc07c8 (4344 bytes)

Next, we dump the metadata of the module using the dc command specifying
the starting address and the ending address (starting address + size of metadata):

0:003> dc 00cc07c8 00cc07c8+0n4344

00cc07c8 424a5342 00010001 00000000 0000000c BSJB............

00cc07d8 302e3276 3730352e 00003732 00050000 v2.0.50727......

00cc07e8 0000006c 00000528 00007e23 00000594 l...(...#~......

287Debugging Out of Memory Exceptions

5.
M

ANAGED
H

EAP
AND

G
ARBAGECOLLECTION

Figure 5-17 Monitoring 05OOM.exe total and committed bytes

00cc07f8 0000077c 72745323 73676e69 00000000 |...#Strings....

…

…

…

00cc0d58 00000000 6f4d3c00 656c7564 6475003e <Module>.ud

00cc0d68 66683173 642e6f62 58006c6c 65536c6d s1hfbo.dll.XmlSe

00cc0d78 6c616972 74617a69 576e6f69 65746972 rializationWrite

00cc0d88 72655072 006e6f73 7263694d 666f736f rPerson.Microsof

00cc0d98 6d582e74 65532e6c 6c616972 74617a69 t.Xml.Serializat

00cc0da8 2e6e6f69 656e6547 65746172 7734164 ion.GeneratedAss

00cc0db8 6c626d65 6d580079 7265536c 696c6169 embly.XmlSeriali

00cc0dc8 6974617a 65526e6f 72656461 73726550 zationReaderPers

00cc0dd8 58006e6f 65536c6d 6c616972 72657a69 on.XmlSerializer

00cc0de8 65500031 6e6f7372 69726553 7a696c61 1.PersonSerializ

00cc0df8 58007265 65536c6d 6c616972 72657a69 er.XmlSerializer

288 Chapter 5 Managed Heap and Garbage Collection

00cc0e08 746e6f43 74636172 73795300 2e6d6574 Contract.System.

00cc0e18 006c6d58 74737953 582e6d65 532e6c6d Xml.System.Xml.S

00cc0e28 61697265 617a696c 6e6f6974 6c6d5800 erialization.Xml

00cc0e38 69726553 7a696c61 6f697461 6972576e SerializationWri

00cc0e48 00726574 536c6d58 61697265 617a696c ter.XmlSerializa

00cc0e58 6e6f6974 64616552 58007265 65536c6d tionReader.XmlSe

00cc0e68 6c616972 72657a69 6c6d5800 69726553 rializer.XmlSeri

…

…

…

Now we are getting somewhere. From the output of the metadata, we can see that
the module associated with the assembly contains references to some form of XML
serialization. Furthermore, it seems that the module contains XML serialization types
that are specific to the serialization of the Person class in our code. Based on this evi-
dence, we can now hypothesize that the XML serialization code in our application is
causing all of these dynamic assemblies to be generated. The next step is the docu-
mentation for the XmlSerializer class. MSDN clearly states that using the
XmlSerializer class for performance reasons may in fact create a specialized
dynamic assembly to handle the serialization. More specifically, seven of the
XmlSerializer constructors result in dynamic assemblies being generated, whereas
the remaining two have reuse logic that reduces the number of dynamic assemblies.

The preceding scenario illustrates how we can use the Windows Task Manager to
monitor the overall memory usage of a .NET application and the Windows Reliability
and Performance Monitor tool to drill down into the CLR specifics. The scenario
assumes that we had the luxury of running and monitoring the application live. In
many cases, the application simply runs until it runs out of memory and throws an
OutOfMemoryException. If we let our sample application run indefinitely, the
OutOfMemoryException would have been reported as follows:

(1830.1f20): CLR exception - code e0434f4d (first/second chance not available)

eax=0027ed2c ebx=e0434f4d ecx=00000001 edx=00000000 esi=0027edb4 edi=00338510

eip=775842eb esp=0027ed2c ebp=0027ed7c iopl=0 nv up ei pl nz na po nc

cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00000202

*** ERROR: Symbol file could not be found. Defaulted to export symbols for

kernel32.dll -

kernel32!RaiseException+0x58:

289Debugging Out of Memory Exceptions

5.
M

ANAGED
H

EAP
AND

G
ARBAGECOLLECTION

Figure 5-18 Monitoring 05OOM.exe current assemblies and bytes in loader heap
performance counters

As discussed earlier, to get further information on the managed exception, we can
use the PrintException command:

0:000> kb

ChildEBP RetAddr Args to Child

0027ed7c 79f071ac e0434f4d 00000001 00000001 kernel32!RaiseException+0x58

0027eddc 79f0a780 51e10dac 00000001 00000000

mscorwks!RaiseTheExceptionInternalOnly+0x2a8

*** WARNING: Unable to verify checksum for System.ni.dll

0027ee80 7a53e025 0027f14c 79f0a3d9 0027f338 mscorwks!JIT_Rethrow+0xbf

0027ef4c 7a53d665 51df597c 00000000 51de0050 System_ni+0xfe025

0027ef80 7a4d078a 51df597c 51de0050 638fcb39 System_ni+0xfd665

*** WARNING: Unable to verify checksum for System.Xml.ni.dll

0027efec 638fb6e5 00000000 51de02cc 00000000 System_ni+0x9078a

290 Chapter 5 Managed Heap and Garbage Collection

0027f078 638fa683 51ddff88 00000000 51de02cc System_Xml_ni+0x15b6e5

0027f09c 63960d09 00000000 00000000 00000000 System_Xml_ni+0x15a683

0027f0c4 6396090c 00000000 00000000 00000000 System_Xml_ni+0x1c0d09

0027f120 79e7c74b 00000000 0027f158 0027f1b0 System_Xml_ni+0x1c090c

00000000 00000000 00000000 00000000 00000000 mscorwks!CallDescrWorker+0x33

0:000> !PrintException 51e10dac

Exception object: 51e10dac

Exception type: System.OutOfMemoryException

Message: <none>

InnerException: <none>

StackTrace (generated):

SP IP Function

0027EE94 7942385A mscorlib_ni!System.Reflection.Assembly.Load

(Byte[], Byte[], System.Security.Policy.Evidence)+0x3a

0027EEB0 7A4BF513 System_ni!Microsoft.CSharp.CSharpCodeGenerator.FromFileBatch

(System.CodeDom.Compiler.CompilerParameters, System.String[])+0x3ab

0027EF00 7A53E025 System_ni!Microsoft.CSharp.CSharpCodeGenerator.FromSourceBatch

(System.CodeDom.Compiler.CompilerParameters, System.String[])+0x1f1

0027EF58 7A53D665 System_ni!Microsoft.CSharp.CSharpCodeGenerator.System.CodeDom.

Compiler.ICodeCompiler.CompileAssemblyFromSourceBatch

(System.CodeDom.Compiler.CompilerParameters, System.String[])+0x29

0027EF8C 7A4D078A System_ni!System.CodeDom.Compiler.CodeDomProvider.

CompileAssemblyFromSource(System.CodeDom.Compiler.CompilerParameters,

System.String[])+0x16

0027EF98 638FCB39 System_Xml_ni!System.Xml.Serialization.Compiler.Compile

(System.Reflection.Assembly, System.String,

System.Xml.Serialization.XmlSerializerCompilerParameters,

System.Security.Policy.Evidence)+0x269

0027F000 638FB6E5

System_Xml_ni!System.Xml.Serialization.TempAssembly.GenerateAssembly

(System.Xml.Serialization.XmlMapping[], System.Type[], System.String,

System.Security.Policy.Evidence,

System.Xml.Serialization.XmlSerializerCompilerParameters,

System.Reflection.Assembly, System.Collections.Hashtable)+0x7e9

0027F094 638FA683 System_Xml_ni!System.Xml.Serialization.TempAssembly..ctor

(System.Xml.Serialization.XmlMapping[], System.Type[], System.String, System.String,

System.Security.Policy.Evidence)+0x4b

0027F0B4 63960D09 System_Xml_ni!System.Xml.Serialization.XmlSerializer..ctor

(System.Type, System.Xml.Serialization.XmlAttributeOverrides, System.Type[],

System.Xml.Serialization.XmlRootAttribute, System.String, System.String,

System.Security.Policy.Evidence)+0xed

0027F0E4 6396090C System_Xml_ni!System.Xml.Serialization.XmlSerializer..ctor

(System.Type, System.Xml.Serialization.XmlRootAttribute)+0x28

0027F0F4 009201D6 05OOM!Advanced.NET.Debugging.Chapter5.OOM.Run()+0xe6

0027F118 009200A7

05OOM!Advanced.NET.Debugging.Chapter5.OOM.Main(System.String[])+0x37

291Summary

5.
M

ANAGED
H

EAP
AND

G
ARBAGECOLLECTION

StackTraceString: <none>

HResult: 8007000e

There are nested exceptions on this thread. Run with -nested for details

At this point, the application has already failed and we can’t rely on runtime mon-
itoring tools to gauge the application’s memory usage. In situations like this, we have
to rely solely on the debugger commands to analyze where the memory is being con-
sumed. Unfortunately, there is no single cookbook recipe on the exact commands and
steps to take, but as a general rule of thumb, utilizing the various diagnostics com-
mands (such as eeheap, dumpheap, dumpdomain, etc.) can give invaluable clues as
to where in the CLR the memory is being consumed. The excessive memory con-
sumption can, of course, also be as a result of a native code leak, which we will see an
example of in Chapter 7, “Interoperability.”

Immediately Break on OutOfMemoryException

When a process gets into a situation where it is running out of memory, things can get very
tricky and the application may not be able to properly handle the condition. Because an
OutOfMemoryException gets propagated up the chain and does not fault the process until
the exception is deemed unhandled, a lot of code may still get executed as part of the
unwinding making troubleshooting more difficult in certain situations. Furthermore, if the code
is hosted in a process that it does not own, the process may catch all kinds of exceptions and
continue running. To ensure that an OutOfMemoryException always breaks under the
debugger, the CLR introduced a registry value called GCBreakOnOOM (DWORD) under the
following registry path: HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\.NET
Framework. The value can be set to 1, in which case an event log message is logged; it
can be set to 2, in which case the out of memory condition causes a break in the debugger;
or it can be set to 4, in which case a more extensive event log is written that includes mem-
ory statistics at the point where the out of memory condition was encountered.

Summary

Effective debugging of tricky application problems in the managed heap and garbage
collector requires a solid internal understanding of how these components work. In
this chapter, we took a detailed tour of how the CLR heap manager and garbage col-
lector functions. We started by looking at the high-level architecture and how the

292 Chapter 5 Managed Heap and Garbage Collection

CLR heap manager fits into the overall Windows memory architecture followed by an
in-depth discussion of the various concepts (generations, roots, finalization, etc.) uti-
lized by the garbage collector. Sample code was shown in tandem with the debugger
and associated tools to illustrate how these concepts work in practice. Lastly, we
looked at a number of examples of common programming mistakes and how they
manifest themselves in the CLR. The examples included how to track down the
source of heap corruptions on the managed heap, how to track down the source of
out-of-memory situations, and how to debug faulty finalization code.

INDEX

487

A
Ad-hoc code reviews, 3
address command, viewing memory activity

with, 206–207
ADPlus

description of, 393
generating dump files, 401–403
switches, 403

AeDebug
CLR 4.0 and, 484
debugging native code applications, 399

Analyze-PowerDbgThreads command,
441–443

AnalyzeOOM command, in CLR 4.0,
477–478

Application domains
default, 37–38
dumpdomain command for viewing, 35
finding application domain of an object,

149–150
getting information about, 139
loading assemblies into, 39
overview of, 33
processes and, 34
shared, 37
system, 37
types of, 36

Arrays, 116–123
DumpArray command, 121–123
dumpmt command, 119–120
dumpobj command and, 116–119
memory layout of, 119–120

Assemblies
default load context, 177–178
identity of, 170–174
load failure, 179–185
load-from context, 178

load-without context, 179
loader for. See CLR loader
loading, 30–33
overview of, 38–39
setting breakpoints on precompiled, 98–101

Assembly manifest, 39–41
Assembly.Load API, 177
Asynchronous operations, 364–365
AsyncProcess, 364–365
Auto reset, event objects, 300
Automated deadlock detection, 159–161

B
Background garbage collection, in CLR 4.0,

478–480
Barriers, in CLR 4.0, 481–482
Base Class Libraries (BCL), 24
BCL (Base Class Libraries), 24
Bind logging, 184–185
bp (breakpoint) command

CLR versions and, 98
setting breakpoints in notepad.exe, 90–92

bpmd command
setting breakpoints on fully qualified names,

96–98
setting breakpoints on generic methods,

102
bpsc command

breakpoint hit with, 153–154
setting breakpoints, 46, 152

Break execution, in debugging, 77
Break instruction exceptions, execution

stopped due to, 71
Breakpoints

avoiding initial and exit breakpoints, 80
bpsc command for setting, 46, 152–154
breaking debugger execution with, 77

488 Index

Breakpoints (Contd.)
extended breakpoint support in SOSEX, 151
for finalizer thread, 238–239
on functions not yet JIT compiled, 96–98
on generic methods, 101–103
on JIT compiled functions, 93–96
mbl command for displaying all, 152
mbm for setting breakpoints on IL offset, 154
mbp command for setting, 152
overview of, 90–93
in precompiled assemblies, 98–101
setting in AddAndPrint function, 80–82

build.xml file, 6

C
C#, 66
Calling conventions, in P/Invoke, 359–364
CCW (COM Callable Wrappers), 313
cdb

as console-based native debugger, 467
in Debugging Tools for Windows package, 4

CLI (Common Language Infrastructure)
CLR implementation of, 24
Mono implementation of, 25
overview of, 24

CLR 4.0
AnalyzeOOM command, 477–478
background garbage collection, 478–480
barriers, 481–482
CountdownEvent class, 482
Debugging Tools for Windows, 471
extended diagnostics, 473
FindRoots command, 474–475
GCWhere command, 476
HeapStat command, 475–476
interoperability, 483–484
ListNearObj command, 476–477
managed heap and garbage collection, 472
ManualResetEventSlim class, 482
monitors, 481
in .NET 4.0 redistributable package, 472
overview of, 471
postmortem debugging, 484–485
SemaphoreSlim class, 482
SOS and, 472–473
SpinWait and SpinLock classes, 482–483

summary, 485
synchronization, 480
thread pools and tasks, 480
VerifyObj command, 473–474

CLR (Common Language Runtime)
application domains, 33–36
assembly manifest, 39–41
assembly overview, 38–39
assigning value types to reference types, 108
controlling CLR debugging

(mscordacwks.dll), 90
default application domain, 37–38
EEClass and, 66–68
generics mechanism of, 101
getting version information, 146–147
heap. See Managed heaps
high-level overview, 23–26
loading native images, 28–29
loading .NET assemblies, 30–33
metadata tokens, 64–66
method descriptors, 59–61
modules, 61–63
overview of, 23
shared application domain, 37
summary, 68
sync block table, 49–53
system application domain, 37
type handle, 53–59
type metadata, 42–49
Windows loader and, 26–27

CLR internal commands
dumping garbage collector and managed

heap information, 148–149
dumping method table of an object, 148
dumping sync block of an object, 148
finding method descriptor from

names, 147
getting CLR version, 146–147
overview of, 146

CLR loader
assembly identity and, 170–174
debugging light weight code generation,

197–202
default load context, 177–178
GAC (Global Assembly Cache) and,

174–177

Index 489

interoperability and
DLLNotFoundException, 195–197

load context failure, 185–195
load-from context, 178
load-without context, 179
overview of, 169–170
simple assembly load failure, 179–185
summary, 202

CLR Profiler, 11–13
features of, 11–12
graph views, 465–467
histogram views, 464–465
installing and starting, 12–13
limitations of, 467
overview of, 460
running, 460–461
storing profiling data, 462
summary view, 462–464

ClrStack extension command, 95, 110–111
displaying managed code call stack, 132–133
getting thread managed code call stack, 51–52
switches, 133–135
viewing P/Invoke calls with, 347

cmdtree command, 467–468
Code inspection

getting method descriptor from a code
address, 144–145

overview of, 143
showing intermediate language (IL)

instructions, 145–146
unassembling code, 143–144

CodeGen, for generating code on-the-fly, 197
COM Callable Wrappers (CCW), 313
COM (Component Object Model)

early release of COM objects, 388
overview of, 352–353
registering COM binaries, 354

COM interop
CLR 4.0 and, 483–484
debugging finalization, 378–388
overview of, 352–353
P/Invoke and, 197
PIA (primary interop assembly), 355
RCWs (Runtime Callable Wrappers),

355–358
registering COM binaries, 354

Commands
extension commands. See Extension

commands
meta-commands, 85

Common Language Infrastructure. See CLI
(Common Language Infrastructure)

Compaction technique, in GC, 242, 248
Company accounts, WER enrollment,

413–414
Component Object Model. See COM

(Component Object Model)
COMState command

getting COM interop information, 358
overview of, 142

Concurrent workstation, GC modes, 253
Connect-WinDbg cmdlet, 441
Context switches, processors, 293
Controlling execution, in debugging

breaking, 77
exiting, 85
overview of, 77
resuming, 78–80
stepping through code, 80–85

cordll command, 405–406
CountdownEvent class, in CLR 4.0, 482
Counters, performance, 278
Crash dump files, 163–165
Crash mode, ADPlus, 401
CTP3 (Customer Technology Preview

release version 3), PowerShell, 439
CTRL-C, for manually breaking debugger

execution, 77
Customer Technology Preview release ver-

sion 3 (CTP3), PowerShell, 439

D
d (display memory) command, for dumping

raw memory, 106–108
DAC (Data Access Layer), 404–407
cordll command, 405–406
SOS and, 404

Dangling points, problems related to manual
memory management, 203

Data Access Layer. See DAC (Data Access
Layer)

Data types. See Type metadata

490 Index

DbgJITDebugLaunchSettings, 400
DbgManagedDebugger

CLR 4.0 and, 484
generating dump files with, 399–400

dc command, dumping metadata of modules
with, 286–288

dd command
dumping finalization queue with, 237
dumping heap contents with, 258–259

Deadlocks, 316–325
analyzing cause of, 320–324
dlk command for analyzing, 324–325
dumping all currently running threads for

finding, 319–320
example of, 317–318
overview of, 316–317

Debuggers
breaking execution, 77
console-based native debuggers, 467
controlling executable path in, 407
DbgManagedDebugger in CLR 4.0, 484
in Debugging Tools for Windows package, 4
dumping value and reference types, 44–47
loading SOS debugger extension, 449–450
looking at method tables in, 54–56
meta-commands used in native debuggers, 85
reason for not breaking on CLR exceptions,

130–131
resuming execution, 78–80
target, 69–73
viewing object sync block data in debugger,

49–53
Windows Debuggers. See Windows

debuggers
Debugging tasks

CLR internal commands for. See CLR
internal commands

controlling CLR debugging
(mscordacwks.dll), 90

debugger and debugger target, 69–73
diagnostic commands. See Diagnostic

commands
execution control. See Controlling

execution, in debugging
extension DLLs for. See Extension commands
inspecting code. See Code inspection

inspecting objects. See Object inspection
noninvasive debugging, 74
overview of, 69
setting breakpoints. See Breakpoints
SOSEX extension commands. See SOSEX
symbols in, 74–77
thread operations. See Threads

Debugging Tools for Windows package
CLR 4.0, 471
overview of, 3–4

Default application domain, 37–38
Delegates, P/Invoke, 364–372

creating delegate instance, 364–365
default calling convention for, 372
privileged exception thrown during

delegation process, 366
Diagnostic commands

finding application domain of an object,
149–150

getting process information, 150–151
overview of, 149

dlk command, analyzing deadlocks with,
324–325

DLL (dependency) hell, 169
DllImport attribute, 195
DLLNotFoundException, 195–197
DLLs. See also Extension commands

P/Invoke calls into exported DLL
functions, 345

P/Invoke interacting with native code
modules, 353

do command
detecting thin locks with, 315–316
inspecting event objects, 300
inspecting objects in finalization

queue, 237
inspecting semaphores, 302–303

Double free, problems related to manual
memory management, 203

Dr. Watson
error reporting and, 412
generating dump files with, 397–398
message box, 409

dt command, object inspection with,
158–159

dump command, 164

Index 491

.dump command
generating dump files with, 395
options of, 396

Dump files
analyzing for unhandled .NET exception,

407–409
debugging, 403–404
generating with ADPlus utility, 401–403
generating with debuggers, 394–399
overview of, 392–394
storing process state in, 164–165
tools for generating, 393
Visual Studio 2010 feature for debugging

managed dump files, 456–457
dump-module command, 63
DumpArray command, 121–123
dumpassembly command, 39
dumpdomain command, 150, 194

getting extended information about
application domains, 139

inspecting application domain when looking
for OutOfMemoryException, 285–286

showing application domains with, 35, 39
dumpgen command

for determining generational status,
222–223

displaying object generation with, 162
dumpheap command, 451–452

analyzing finalizer hangs, 340–341
dumping objects in LOH, 244, 246–247
inspecting heap fragmentation, 270
-stat for checking heap fragmentation,

263–264, 269
switches, 213
-thinlock with, 316
-type Free for checking heap fragmentation,

266–268
viewing memory allocation with, 210–212

DumpIL command, 145
DumpMD command, getting method descrip-

tor from a code address, 145
DumpModule command, 286
dumpmt command

dumping arrays, 119–120
dumping object method table, 148
-md switch for finding method descriptors, 60

dumpobj command
dumping arrays, 116–123
dumping exceptions, 127–129
dumping reference types, 116
field details, 114
finding object sizes, 125–126
getting information about mutex fields,

301–302
heap fragmentation and, 270–271
reference types and, 109
working with type metadata, 46

DumpStack command, 139–141
dumpstackobjects command, 123–125,

328–329
dumpvc command

displaying value types, 115
working with type metadata, 47

dv command, for displaying function
address, 361

E
ECMA standard, for .NET, 24
EEClass, 66–68
eeheap-gc command

analyzing finalizer hangs, 339–340
determining generational address ranges,

220–221
determining generational status, 219–220
getting details about LOH, 243, 246
inspecting heap fragmentation, 266,

269–270
viewing statistics of managed heap, 383

eeheap-loader command
analyzing finalizer hangs, 338–339
finding assembly leak, 280, 283–284

EEStack command, 141–142
EEVersion command

getting CLR version, 146–147
using SOS extension command, 451–452

End User License Agreement (EULA), for
source level debugging in .NET
Framework, 455

Enrollment process, WER, 412–418
billing information, 416
creating company accounts, 413–414
creating user accounts, 412–413

492 Index

Enrollment process, WER (Contd.)
downloading binary for, 414–415
profile information, 417

esp register, 112
EULA (End User License Agreement), for

source level debugging in .NET
Framework, 455

Eventlists, on WER web site, 419
Events, as synchronization primitive, 299–301
Exceptions

analyzing unhandled .NET exception, 407–409
DLLNotFoundException, 195–197
dumping, 126–131
FileNotFoundException, 180–182, 191
handling CLR exceptions in Visual Studio

2010, 460
OutOfMemoryException. See

OutOfMemoryException
PrintException command, 289–291
privileged exception thrown during

delegation process, 366
SEH (Structured Exception Handling), 126

exepath command, for controlling
executable path in debuggers, 407

Extended diagnostics, in CLR 4.0, 473
Extension commands

loading SOS extension DLL, 86–88
loading SOSEX extension DLL, 89
overview of, 85–86
SOS. See SOS
SOSEX. See SOSEX

F
Farah, Roberto, 17
FileNotFoundException, 180–182, 191
Finalization, COM interop, 378–388
eeheap-gc command for viewing managed

heap statistics, 383
example with finalizable objects, 378–381
Finalize methods for cleaning up native

resources, 384
FinalizeQueue command showing

statistics on pending objects, 384–385
overview of, 378–379
threads command for identifying finalizer

threads, 387–388

viewing memory consumption, 382
Finalization process, in memory management,

231–240
dd command for dumping finalization

queue, 237
do command for inspecting objects in

finalization queue, 237
example of, 233
f-reachable queue and, 239–240
FinalizeQueue command for showing

state of finalizable objects, 236–237
overview of, 231–232
setting breakpoint for finalizer thread,

238–239
simple object with finalize method, 234–235
stack trace indicating finalizer thread, 238

Finalize methods
analyzing finalizer hangs, 342–344
for cleaning up native resources, 384

Finalize queues, determining object root
state in garbage collection, 224

FinalizeQueue command
analyzing finalizer hangs, 341–342
showing state of finalizable objects, 236–237
showing statistics on objects still pending

Finalize execution, 384–385
Finalizer hangs, 335–344
dumpheap -stat command for analyzing,

340–341
dumpheap -type command for

analyzing, 341
eeheap -gc command for analyzing,

339–340
eeheap -loader command for analyzing,

338–339
Finalize methods and, 342–344
FinalizeQueue command for analyzing,

341–342
sample application exhibiting memory leak

symptoms, 335–337
Finalizers, debugging COM interop

finalization, 378–388
FindAppDomain command, 149–150
FindRoots command, CLR 4.0, 474–475
Fragmentation. See Heap fragmentation
Frameworks, 25. See also .NET framework

Index 493

Full dumps, types of dump files, 392
Fusion. See CLR loader
fuslogvw.exe, 182–184

G
g (go) command, for resuming debugger

execution, 78–80
GAC (Global Assembly Cache), 174–177

browsing with Windows Explorer, 176
identity of dependent assemblies and,

176–177
loading shared assemblies from, 175
shared assemblies located in, 169
subfolders of, 174–175

Garbage Collection Statistics, CLR
Profiler, 463

Garbage Collector Generation Sizes, CLR
Profiler, 463

GC (garbage collector)
automation of memory management, 203
commands, 161–163
dumping garbage collector information,

148–149
finalization process, 231–240
full vs. partial garbage collection, 242
generations, 214–223
internals, 213–214
LOH (large object heap), 242–247
modes, 253–254
object root states and, 223–231
pinning and, 248–253
reclaiming memory, 240–242
type management with, 42
what triggers garbage collection, 216

GC (garbage collector), in CLR 4.0
AnalyzeOOM command, 477–478
background garbage collection,

478–480
extended diagnostics, 473
FindRoots command, 474–475
GCWhere command, 476
HeapStat command, 475–476
ListNearObj command, 476–477
overview of, 472
VerifyObj command, 473–474

GC Handle Statistics, CLR Profiler, 463

gcgen command, finding generation of
objects in managed heap, 161–162

GCHanldes command
heap fragmentation and, 271–272
pinning with, 250–252

gcroot command, determining object root
state in garbage collection, 224

GCWhere command, CLR 4.0, 476
Generations, GC (garbage collector),

214–223
determining which generation managed

objects belong to, 218–219
dumpgen command for determining

generational status, 222–223
eeheap-gc command for determining

generational address ranges, 220–221
eeheap-gc command for determining

generational status, 219–220
Garbage Collector Generation Sizes, 463
overview of, 214–216
process of garbage collection and, 217–218
source code illustrating, 216–217

Generics
in CLR, 101
setting breakpoints on generic methods,

101–103
GetDate function, invoking with

P/Invoke, 377
Global Assembly Cache. See GAC (Global

Assembly Cache)
Graph views, CLR Profiler, 465–467

H
Handle tables

determining object root state in garbage
collection, 224

gcroot command scanning, 229
Hang mode, ADPlus utility, 401
Headers, object, 307–308
Heap corruptions

access violation, 256–257
dd command for dumping heap contents,

258–259
example application, 255–256
MDAs (Managed Debugging Assistants) for,

261–262

494 Index

Heap corruptions (Contd.)
objsize command, 259
overview of, 254–255
VerifyHeap command for, 257–260

Heap fragmentation, 262–272
dumpheap command, 270
DumpHeap -stat, 263–265, 269
dumpheap -type Free command, 266–268
dumpobj command, 270–271
eeheap-gc command for inspecting, 266,

269–270
example of, 263–264
GCHanldes command, 271–272
overview of, 262–263
pinning and, 252–253

Heap Graph view, CLR Profiler, 465–466
Heap managers. See Managed heaps
Heap Statistics, CLR Profiler, 462
HeapStat command, CLR 4.0, 475–476
help command, get list of meta-commands

with, 85
High-level view, of .NET

components, 24
frameworks, 25
source code, 26
as virtual runtime environment, 23

Histogram by Age view, CLR Profiler, 466
Histogram views, CLR Profiler, 464–465
Historical debugging, in Visual Studio 2010,

457–459
Hotlists, on WER web site, 419
HTTPS (HTTP Secure), 409–410

I
IDL (interface definition), 353–354
IL (intermediate language). See also MSIL

(Microsoft Intermediate Language)
showing IL instructions, 145–146
translating into machine code, 92

ILDasm, viewing assembly manifest with,
40–41

Immediate Window, Visual Studio,
449–450

Independent software vendors (ISVs), 410
Interface definition (IDL), 353–354

Intermediate language (IL)
showing IL instructions, 145–146
translating into machine code, 92

Interop leaks, debugging, 373–378
Interoperability

calling conventions in P/Invoke, 359–364
CLR 4.0 and, 483–484
COM objects and, 197, 352–355
debugging COM interop finalization, 378–388
debugging interop leaks, 373–378
debugging P/Invoke calls, 358–359
delegates in P/Invoke, 364–372
DLLNotFoundException and, 195–197
GC compaction and, 248
logs in P/Invoke, 372–373
overview of, 345
P/Invoke, 345–352
RCWs (Runtime Callable Wrappers), 355–358
summary, 388

Interpreters, CLR compared with, 23
IP2MD (instruction pointer to method

descriptor) command, 145
Isolation layers, in Windows OS, 33
ISVs (independent software vendors), 410

J
JIT (Just-In-Time) compiler

as CLR component, 26
determining object root state in garbage

collection, 223
setting breakpoints on functions not yet JIT

compiled, 96–98
setting breakpoints on JIT compiled

functions, 93–96
translating intermediate language into

machine code, 92
Johnson, Steve, 89
Just-In-Time compiler. See JIT (Just-In-Time)

compiler

K
k command

for displaying stack trace, 441
overview of, 139

kb command, stack traces with, 157

Index 495

kd command, in Debugging Tools for
Windows package, 4

kn command, example of managed code call
stack using, 131–132

L
LCG (light weight code generation), 197–202

debugging, 199–202
example of, 198
overview of, 197–198

LeakDiag, 377
light weight code generation. See LCG (light

weight code generation)
lines command, outputting source code

and line information with, 360–361
ListNearObj command, in CLR 4.0, 476–477
lm f (list modules) command, displaying

loaded modules with, 175
ln command, viewing function addresses

with, 348
load command

loading SOS debugger extension, 86–88,
449–450

loading SOSEX debugger extension, 89, 153
Load contexts

dangers of mixing, 172–174
default load context, 177–178
failure, 185–195
load-from context, 178
load-without context, 179
shared vs. private assemblies and, 169

loadby command, loading SOS extension
DLL, 87, 472

Loader, assembly. See CLR loader
loadFromContext, MDAs, 195
Locks. See also Deadlocks

monitors creating, 303–304
orphaned, 325–331
sync blocks and, 309–313
thin locks, 313–316
thread abortion and, 331–335

Logging
enabling, 182–183
FusionLog property, 191–193
P/Invoke, 372–373

Logical isolation, via application domains,
33–36

LOH (large object heap)
dumpheap command for dumping objects

in, 244, 246–247
eeheap-gc command for details about,

243, 246
HeapStat command, 475
overview of, 206, 242
sample application illustrating, 245

M
Managed code
ClrStack command displaying managed

code call stack, 132–135
COM interop and, 345
debugging, 131
sample managed code using COM object, 354

Managed Debugging Assistants. See MDAs
(Managed Debugging Assistants)

Managed heaps
AnalyzeOOM command, 477–478
CLR 4.0 and, 472
commands, 161–163
comparing Windows OS and CLR heap

managers, 204–206
dumping managed heap information, 148–149
finalizer hangs. See Finalizer hangs
FindRoots command, 474–475
fragmentation, 262–272
GC and, 214
GCWhere command, 476
heap corruptions, 254–262
HeapStat command, 475–476
ListNearObj command, 476–477
memory allocation process, 207–209
VerifyObj command, 473–474

Manual reset, event objects, 300
ManualResetEventSlim class, CLR 4.0, 482
Mappings, managing on WER web site, 420
Marshalling, by P/Invoke, 348–349
mbl command, displaying all breakpoints, 152
mbm command

setting breakpoints, 154
setting breakpoints on IL offset, 154

496 Index

mbp command, for setting breakpoints, 152
McCarthy, John, 203
MDAs (Managed Debugging Assistants)

enabling, 363–364, 371–372
MDAs

for heap corruptions, 261–262
loadFromContext, 195
overview of, 18–21
pInvokeLog, 372–373
troubleshooting loader problems, 193–195

mdt command, inspecting objects, 158–159
mdv command, interrogating managed code

call stacks, 158
Memory leaks, related to manual memory

management, 203
Memory management

allocating memory, 207–212
CLR Profiler. See CLR Profiler
DumpHeap switches, 213
finalization process, 231–240
garbage collection modes, 253–254
garbage collector internals, 213–214
generations in garbage collector, 214–223
LOH (large object heap), 242–247
managed heap corruptions, 254–262
managed heap fragmentation, 262–272
object root states and, 223–231
OutOfMemoryException, 272–291
overview of, 203
pinning and, 248–253
reclaiming GC memory, 240–242
Windows OSs memory architecture, 204–207

Meta-commands, used in native debugger, 85
Metadata

streams, 47–49
tables, 65
tokens, 64–66
type, 42–49

Method descriptors, 59–61
finding from names, 147
getting from a code address, 144–145

Method tables. See MT (method table)
Methods, setting breakpoints on generic,

101–103
mframe command, interrogating managed

code call stacks, 158

Microsoft Intermediate Language
(MSIL). See also IL (intermediate
language)

compiling .NET source code into, 26
reproducing code into higher languages, 15

Microsoft Product Feedback Mapping Tool,
420–421

Microsoft Windows. See Windows OSs
Mini dumps, types of dump files, 392
Mixed mode debugging, in Visual Studio

2010, 460
mk command

interrogating managed code call stacks,
157–158

for stack traces, 157–158
mln command, 156
Modules

CLR pointers to, 61–63
dc command for dumping metadata of,

286–288
displaying loaded modules with lm f

command, 175
DumpModule command, 286
P/Invoke interacting with native code

modules, 353
Monitoring Tools node, Windows Reliability

and Performance Monitor, 277
Monitors

CLR 4.0, 481
ReaderWriterLock(Slim) compared with,

304–305
as synchronization primitive, 303–304

Mono implementation, of CLI, 25
mpm command, for setting breakpoints, 155
MRA (multi threaded apartments), in

COM, 142
MSBUILD utility

in .NET 2.0, 6–7
in .NET 4.0, 457

mscordacwks.dll
controlling CLR debugging, 90
SOS debugging and, 406–407

mscorwks.dll
loading SOS extension DLL,

87–88
loading SOSEX extension DLL, 89

Index 497

MSIL (Microsoft Intermediate Language)
compiling .NET source code into, 26
reproducing code into higher languages, 15

MT (method table)
dumping, 148
looking at in debugger, 54–56
output of dumpvc command, 115
type handles and, 56–59

MTA (multi thread apartments), COM
and, 357

Multithreading, synchronization and, 293
Mutexes, as kernel mode synchronization

construct, 301–302
mx command, for managing metadata, 156

N
Name2ee command, finding method

descriptor from names, 147
Names, assembly, 171
.NET framework

analyzing unhandled exceptions,
407–409

assemblies. See Assemblies
ECMA standard for, 24
high-level view of, 23–24
.NET 2.0 redistributable package, 4–5
.NET 2.0 SDK, 5–7
.NET 4.0 MSBUILD utility, 457
.NET 4.0 redistributable package, 472
reflector, 15–16
source code, 26
source level debugging, 451–456
versions, 5, 471

ngen.exe
Debugging tasks, 99
generation of native images, 99
precompiled assemblies and, 98–99

Noncurrent workstation, GC modes, 253
Noninvasive debugging, 74
Nonsignaled state, events, 299
NoPIA, CLR 4.0, 483
ntsd.exe

as console-based native debugger, 467
debugging simple application with, 70
user mode debugger in Debugging Tools for

Windows package, 4

O
Object headers

functions of, 313
as synchronization internal, 307–308

Object inspection
dt command, 158–159
dumping arrays, 116–123
dumping exceptions, 126–131
dumping raw memory, 106–108
dumping reference types, 116
dumping stack objects, 123–125
dumping value types, 108–116
finding object sizes, 125–126
mdt command, 158–159
overview of, 103–106

Object-oriented languages, 66
Objects

for achieving generality, 101
determining which generation managed

objects belong to, 218–219
dumping method table of, 148
finalizable objects, 236–237
finding application domain of, 149–150
finding generation of objects in managed

heap, 161–162
finding object sizes, 125–126
inspecting event objects, 300
instances, 48
large object heap. See LOH (large object

heap)
lock status of, 160–161
root states. See Root states, objects
small object heap. See SOH (small object

heap)
VerifyObj command for checking for

corrupt, 473–474
viewing object sync block data in debugger,

49–53
objsize command

finding object sizes, 125–126
heap corruptions and, 259

Orphaned locks, 325–331
dumpstackobjects command for

analyzing, 328–329
example application, 325–327
overview of, 325

498 Index

Orphaned locks (Contd.)
syncblk command for getting lock

information, 329
thread abortion and, 331–335
threads command for examining

unreleased locks, 329–331
viewing thread state of sample application,

327–328
Out-of-memory diagnosis, AnalyzeOOM

command, 477
OutOfMemoryException

counters for monitoring, 279–282
dc command for dumping metadata of

modules, 286–288
dumpdomain command for inspecting

application domain, 285–286
DumpModule command for determining

why assemblies are not loading, 286
eeheap -loader command for finding

assembly leak, 280, 283–284
example application, 273–275
overview of, 272–273
PrintException command for getting

exception information, 289–291
Task Manager for monitoring memory

consumption of a process, 275–277
Windows Reliability and Performance

Monitor, 277–278

P
P/Invoke Interop Assistant tool, 483–484
P/Invoke (Platform Invocation Services)

calling conventions in, 359–364
calls into exported DLL functions, 345
debugging P/Invoke calls, 358–359
delegates in, 364–372
dv command for displaying function

parameters, 352
enhancements in CLR 4.0, 483–484
examples, 195–197, 346, 349–351
logs in, 372–373
marshalling by, 348–349
overview of, 345–346
sample of managed application using,

376–377

p (step) command, stepping through code,
80, 82–83

Parse-PowerDbg cmdlets, 444–445
Parse-PowerDbgHandle cmdlet,

446–447
pc command, stepping through code until

next call instruction, 83
PE (Portable Executable) file format

form of executables, 30
loading native PE images, 28–29
structure of, 26–27

Pending (deferred) breakpoints, 97
Performance counters

adding, 278–280
categories, 14
CLR memory categories, 281–282
CLR performance categories, 281
overview of, 14–15

Performance Monitor, 278–279
PIA (primary interop assembly)

CLR 4.0, 483
overview of, 355

Pinning
fragmentation and, 252–253
GCHanlde for, 250–252
heap fragmentation and, 272
interoperability and GC compaction

and, 248
sample application illustrating, 249–250

pInvokeLog, 372–373
Platform Invocation Services. See P/Invoke

(Platform Invocation Services)
Portable Executable (PE) file format

form of executables, 30
loading native PE images, 28–29
structure of, 26–27

Postmortem debugging. See also WER
(Windows Error Reporting)

analyzing dump files for unhandled .NET
exception, 407–409

in CLR 4.0, 484–485
DAC (Data Access Layer) and, 404–407
DbgJITDebugLaunchSettings, 400
DbgManagedDebugger, 399–400
dump files and, 392–394, 403–404

Index 499

generating dump files with ADPlus utility,
401–403

generating dump files with debuggers,
394–399

overview of, 391–392
setting up, 398

Power tools
CLR Profiler. See CLR Profiler
overview of, 439
PowerDbg. See PowerDbg
summary, 469
Visual Studio. See Visual Studio
WinDbg and cmdtree command, 467–468

PowerDbg
Analyze-PowerDbgThreads command,

441–443
extending, 445–448
installing, 439–441
overview of, 16–18, 439
Parse-PowerDbg cmdlets, 444–445
Send-PowerDbgCommand, 443–444

PowerShell, 17, 439
Precompiled assemblies, setting breakpoints

on, 98–101
Primary interop assembly (PIA)

CLR 4.0, 483
overview of, 355

PrintException command, 289–291
Private assemblies

overview of, 38
vs. shared assemblies, 169

Probing logic, default load context and,
177–178

Processes
application domains and, 34
finding process IDs, 72
getting process information, 150–151
Windows implementation of isolation levels, 33

Processes tab, Task Manager, 275
ProcInfo command, getting process

information, 150–151
Profiling Statistics, CLR Profiler, 463
prolog function, 82
pt command, stepping through code until

next ret instruction, 84

Q
q (quit) command, exiting debugging

session, 85
qd (quit and detach) command, exiting

debugging session, 85

R
r command, dumping registers, 112
Raw memory, dumping, 106–108
RCWCleanupList command, 484
RCWs (Runtime Callable Wrappers)

overview of, 355–358
RCWCleanupList command, 484
syncblk command returning information

regarding, 313
ReaderWriterLock(Slim), as synchronization

primitive, 304–305
Reference tracking, in GC, 214
Reference types, 42

arrays as, 116–117
assigning value types to, 108
casting value types to, 101
debugger dumping, 44–47
dumping, 116
dumpobj command and, 109
examples of, 42–43

Reflector for .NET, 15–16
Relative Virtual Address (RVA), 28–29
Reporting and Subscriptions, WER

(Windows Error Reporting),
430–431

Responses, managing on WER web
site, 420

Resume execution, in debugging, 78–80
Root states, objects

components for determining which objects
are still referenced, 223–224

FindRoots command, 474–475
gcroot command building reference chain

to objects, 226–231
marking, 224
sample application illustrating, 224–226

Runtime Callable Wrappers. See RCWs
(Runtime Callable Wrappers)

RVA (Relative Virtual Address), 28–29

500 Index

S
Script execution policy, PowerShell, 440
SDKs (software development kits)

.NET 2.0, 5–7
developing extension commands with, 85

SEH (Structured Exception Handling), 126
Semaphores, as kernel mode synchroniza-

tion construct, 302–303
SemaphoreSlim class, in CLR 4.0, 482
Send-PowerDbgCommand, 443–444
Server mode, of GC, 253
Shared application domain, 37
Shared assemblies

loading from GAC, 175
overview of, 38
vs. private assemblies, 169

Signaled state, events, 299
Silverlight, 89
Single threaded apartments (STA), COM,

142, 357
Small object heap (SOH)
HeapStat command, 475
overview of, 206–207

Software development kits (SDKs)
.NET 2.0, 5–7
developing extension commands with, 85

SOH (small object heap)
HeapStat command, 475
overview of, 206–207

SOS
CLR 4.0 and, 472–473
CLR Profiler and, 467
DAC (Data Access Layer) and, 404
dumpassembly command, 39
dumpdomain command, 35
integration with Visual Studio, 448–451
loading, 8–10, 86–88, 449–450, 472
Mscordacwks.dll and, 406–407
overview of, 8
Silverlight and, 89
using, 451–452

SOSEX
automated deadlock detection, 159–161
dlk command for analyzing deadlocks,

324–325
dt command for object inspection, 158–159

extended breakpoint support, 151
.load command for loading SOSEX

extension, 153
loading SOSEX extension DLL, 89
loading sosex.dll, 44–47
managed heap and garbage collector

commands, 161–163
mbl for displaying all breakpoints, 152
mbm for setting breakpoints on IL offset, 154
mbp for setting breakpoints, 152
mk command for stack traces, 157–158
mpm for setting breakpoints on Main

method, 155
mx command for managing metadata, 156
overview of, 10–11

Source code, .NET, 26
Source level debugging, in .NET

Framework, 451–456
EULA (End User License Agreement), 455
getting symbol files for, 452–454
overview of, 451–452
setting breakpoints and debugging, 454–455

SpinLock class, CLR 4.0, 482–483
SpinWait class, CLR 4.0, 482–483
STA (single threaded apartments), COM,

142, 357
Stack objects, dumping, 123–125
Stack traces

displaying, 441
displaying with write-host command, 444
indicating finalizer thread, 238

Stack walker, determining object root state
in garbage collection, 224

States
in Analyze-PowerDbgThreads

command, 442
events, 299

Stepping through code, 80–85
StopOnException command, for investigat-

ing exceptions, 130
strings command, searching for strings on

managed heap, 163
Structured Exception Handling (SEH), 126
Subscriptions, WER (Windows Error

Reporting), 430–431
Summary view, CLR Profiler, 462–464

Index 501

sxe command, loading SOS with, 87–88
Symbol files, 74–77

available on symbol server, 455
defining, 74
displaying, 91
loading and using, 76
metadata for enhancing debugging, 71
private and public, 75
for source level debugging, 452–454
sympath and symfix commands, 75–77

symfix command, 76–77, 441
sympath command, 75–77
Sync block tables, 49–53
Sync blocks (synchronization blocks)

algorithm for determining when to use,
314–315

dumping, 148
locks and, 309–313
object headers and, 308
object lock status and, 160–161
overview of, 48
viewing object sync block data in debugger,

49–53
syncblk command, 160–161

analyzing orphaned locks, 329
column descriptions and sync blocking

information, 312–313
dumping sync block of an object, 148
getting COM interop information, 357–358
getting sync block information with,

310–311
Synchronization

deadlocks and, 316–325
events, 299–301
finalizer hangs, 335–344
monitors, 303–304
mutexes, 301–302
object headers, 307–308
orphaned locks, 325–331
overview of, 293
ReaderWriterLock(Slim), 304–305
semaphores, 302–303
summary, 344
synch blocks, 309–313
synchronization internals, 306
thin locks, 313–316

thread abortion, 331–335
thread pool, 305–306
thread synchronization primitives, 294–299

Synchronization, in CLR 4.0
barriers, 481–482
CountdownEvent class, 482
ManualResetEventSlim class, 482
monitors, 481
overview of, 480
SemaphoreSlim class, 482
SpinWait and SpinLock classes, 482–483
thread pools and tasks, 480

Synchronization internals
object headers, 307–308
overview of, 306
synch blocks, 309–313
thin locks, 313–316

System application domain, 37

T
t (trace) command, stepping through code,

80, 84–85
Target, debugger, 69–73
Task Manager

memory-related columns, 276–277
Processes tab, 275
viewing memory consumption with, 277,

382
Task Parallel library (TPL), 480
TCP port, installing PowerDbg, 440–441
teb command, 445–446
TEB (thread execution block)

extending PowerDbg, 445–446
Windows OSs representing threads in, 294

Thin locks, 313–316
algorithm for determining when to use,

314–315
dlk command not working with, 325
do command for detecting presence of,

315–316
overview of, 313

Thread class, in CLR, 294–296
Thread execution block (TEB)

extending PowerDbg, 445–446
Windows OSs representing

threads in, 294

502 Index

Thread synchronization primitives
events, 299–301
monitors, 303–304
mutexes, 301–302
overview of, 294–299
readerWriterLock(Slim), 304–305
semaphores, 302–303
thread pools, 305–306

Thread.Abort method, 331
ThreadPool class, 305–306
threadpool command, 306
Threads

aborting, 331–335
Analyze-PowerDbgThreads command,

441–443
ClrStack command displaying thread

ID, 133
ClrStack command for displaying

managed code call stack, 132–135
COMState command, 142
DumpStack command, 139–141
EEStack command, 141–142
enumerating all managed code threads,

136–139
local variables on threads stacks, 229
overview of, 131–132
pools, 305–306, 480

threads command
analyzing orphaned locks, 329–331
enumerating all managed code threads,

136–139
getting COM interop information, 357
identifying finalizer thread with,

387–388
investigating exceptions, 129–130
outputting summary of CLR threads, 295
switches, 139

ThreadState enumeration, 297–298
tlist.exe, finding process ID with, 72
Tools

CLR Profiler, 11–13
Debugging Tools for Windows

package, 3–4
Managed Debugging Assistants (MDAs),

18–21

.NET 2.0 Redistributable
component, 4–5

.NET 2.0 SDK, 5–7
overview of, 3
performance counters, 14–15
PowerDbg, 16–18
Reflector for .NET, 15–16
SOS, 8–10
SOSEX, 10–11
summary, 21

TPL (Task Parallel library), 480
TraverseHeap command, 467
Type handles, 53–59

looking at method tables in debugger, 54–56
method tables and, 53–54, 56–59
overview of, 48

Type metadata, 42–49
debugger dumping value and reference

types, 44–47
describing metadata streams, 47–49
examples of value types and reference types,

42–43
generics and, 101–102
overview of, 42

U
u (unassemble) command, 58

disassembling JIT generated code, 94–95
getting method descriptor from a code

address, 144–145
unassembling code, 143–144

UMDH, leak detection utility, 377–378
User accounts, WER enrollment, 412–413

V
Value types, 42

assigning to reference types, 108
displaying, 115
dumping, 44–47
dumpobj command and, 109–115
dumpvc command for displaying, 115–116
examples of, 42–43
generics and, 101
overview of, 108–109
vs. reference types, 108–109

Index 503

VerifyHeap command, for Heap
corruptions, 257–260

VerifyObj command, in CLR 4.0, 473–474
Versions

CLR, 146–147
.NET, 5

Virtual execution engines, 24
Virtual memory (VM)

hoarding, 241
reclaiming GC memory, 241

Visual Studio
fixes/improvements in Visual Studio 2010,

456–460
overview of, 448
SOS integration with, 448–451
source level debugging, 451–456

Visual Studio 2010, 456–460
CTP release of, 456
debugging managed dump files,

456–457
handling CLR exceptions in, 460
historical debugging in, 457–459
mixed mode debugging in, 460

VM (virtual memory)
hoarding, 241
reclaiming GC memory, 241

W
waitHandles

events, 301
mutexes, 302

WCF (Windows Communication
Foundation), 25

WER (Windows Error Reporting)
architecture of, 410–412
description of, 393
enrolling in, 412–418
mapping binaries to products, 420–424
navigating to WER web site, 419–420
overview of, 409–410
programmatic access to, 431–438
querying WER service, 424–428

Reporting and Subscriptions, 430–431
responding to customers regarding WER

events, 428–430
WinDbg

as GUI version of native debugger, 467–468
user mode debugger in Debugging Tools for

Windows package, 4
Windows Communication Foundation

(WCF), 25
Windows debuggers
DbgManagedDebugger, 399–400
description of, 393
generating dump files with, 394–399
setting up for postmortem debugging, 398

Windows Error Reporting. See WER
(Windows Error Reporting)

Windows Error Reports section, of WER
site, 419

Windows Explorer, browsing GAC with, 176
Windows heap. See Managed heaps
Windows loader

loading native PE images, 28–29
loading .NET assemblies, 30–33
PE (Portable Executable) file format, 26–27

Windows OSs
CLR 4.0 debugging tools for, 471
COM and, 352–353
memory architecture of, 204–207
preemptive and multithreaded, 293
Task Manager and, 276

Windows Reliability and Performance
Monitor

adding performance counters, 278–280
CLR memory categories, 281–282
CLR performance categories, 281
overview of, 277–278
Performance Monitor, 278–279

Windows Vista, Task Manager and, 276
write-host command, 444

X
X (examine symbols) command, 91

	Foreword
	Preface
	Chapter 5: Managed Heap and Garbage Collection
	Windows Memory Architecture Overview
	Garbage Collector Internals
	Debugging Managed Heap Corruptions
	Debugging Managed Heap Fragmentation
	Debugging Out of Memory Exceptions
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

