

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

Figures 13.7 and A.3 are reproductions of Figure 29-1 from page 531 of Martin, R. C., D. Riehle, and
F. Buschmann. 1998. “Context-Setting Patterns.” In Pattern Languages of Program Design 3. Boston:
Addison-Wesley. Reproduced by permission of Pearson Education.

The authors and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed
for incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or spe-
cial sales, which may include electronic versions and/or custom covers and content particular to your busi-
ness, training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: www.informit.com/aw

Library of Congress Cataloging-in-Publication Data

Ackerman, Lee, 1971–
Patterns-based engineering : successfully delivering solutions via patterns / Lee Ackerman, Celso Gonzalez.

p. cm.
Includes bibliographical references and index.
ISBN 978-0-321-57428-2 (hardcover : alk. paper) 1. Computer software—Development. 2. Software

patterns. I. Gonzalez, Celso, 1969– II. Title.
QA76.76.D47A255, 2010
005.1—dc22

2010013630

Copyright © 2011 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or
likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-321-57428-2
ISBN-10: 0-321-57428-1
Text printed in the United States on recycled paper at Courier in Westford, Massachusetts.
First printing, June 2010

www.informit.com/aw

xix

Foreword

Developing, deploying, operating, and evolving software-intensive systems are prob-
lems of engineering: One must devise a solution that reasonably balances the forces
upon that system. Every individual system faces its own unique set of forces, and thus
every system presents a unique engineering problem. Nonetheless, these are not all
problems of singularity: Over time, common solutions to common problems emerge,
and these become part of the institutional memory of that system space. Insofar as we
can make those patterns manifest, we can improve the manner in which we develop,
deploy, operate, and evolve systems. Indeed, this too is the nature of engineering: For
every new system, we look back on things that didn’t work (and try alternatives) as
well as things that did (and improve them).

Lee and Celso have considerable industrial experience in delivering software-
intensive systems, and in this book they bring the best practices they have learned to
the problem of engineering software-intensive systems. If you are are unfamiliar with
the nature of patterns, this book will help you understand how to discover, design,
create, package, and consume these common solutions to common problems. Their
extended case study demonstrates how to pragmatically apply these ideas; their
guidelines offer patterns and antipatterns for engineering systems using patterns.
Finally, Lee and Celso attend to the softer issues of Patterns-Based Engineering: its
value, its risks, and its economic return.

As software-intensive systems continue to grow in complexity and in their impor-
tance to the world, it is our responsibility as software engineers to deliver systems of
quality. Lee and Celso’s work will help you along that path.

—Grady Booch
IBM Fellow
February 1, 2010

xxi

Preface

Increasing and unending pressure exists in software development to finish more
quickly, to produce higher-quality solutions, and to do so with fewer resources. We
can use patterns, proven best-practice solutions to known problems, as a powerful
tool to help address these challenges. However, if the answer were as simple as “Just
use patterns,” we would already have dealt with these challenges.

There is complexity, depth, and nuance to using patterns, and succeeding with
them requires knowledge, expertise, and guidance. And not only do we want to suc-
ceed with patterns, we want to do so in a fashion that is scalable, repeatable, and pre-
dictable. This book introduces an approach known as Patterns-Based Engineering
(PBE) that provides guidance on how to successfully incorporate and leverage pat-
terns in software development. We don’t just use patterns; we think, evaluate, create,
innovate, collaborate, abstract, simplify, justify, automate, and reuse.

Patterns-Based Engineering

PBE is a specialized approach to asset-based development that focuses on patterns, a
specific type of reusable asset. PBE provides guidance and support for using patterns
in a systematic, disciplined, and quantifiable way. With PBE an organization uses
patterns in multiple forms, for numerous purposes, and in a number of ways. More
specifically, we look at two specific types of patterns: pattern specifications and pat-
tern implementations. We use these types of patterns to support design, testing,
deployment, and other aspects of the software development lifecycle. In performing
these tasks, we use patterns in many ways such as documenting, generating, refactor-
ing, and harvesting. As a result, we are able to use patterns to boost productivity,
improve quality, leverage expertise, simplify, and improve communication within an
organization. The goal is to ensure that as we use and create patterns, we are doing
so in a way that adds value and boosts the agility of our projects and organization.

An important aspect of PBE is that it goes beyond just the technology. Success on a
project has never been and will never be just about the technology. We need to ensure
that the team is able to work together; that we all know the roles we are to play, the
tasks to be done, the work products to create along the way; and that we can com-
municate with one another.

xxii PREFACE

How to Read This Book

This section starts with an overview of the book’s structure. We then provide a guide
to reading the book based on role, and we finish with suggestions for the background
needed to get the most out of the book and a list of learning objectives.

Book Structure
This book is divided into four parts. Part I provides an introduction to PBE. Within
this part, Chapter 1 starts by defining PBE and Chapter 2 follows by providing some
examples of pattern implementations, as this is a new concept for most and is an
important aspect of PBE. Chapters 3 through 7 then show an example of PBE in
action through a case study. Chapter 8 concludes Part I with a discussion of the pro-
cess aspects of PBE and how it could fit into existing software development processes,
including coverage of Extreme Programming, Scrum, and OpenUP.

Part II describes some of the best practices related to PBE in the form of patterns
and guidelines. Chapter 9 explains the organization and summarizes each of the pat-
terns and guidelines. Chapters 10 through 16 detail the patterns and guidelines, each
chapter focusing on a specific category.

Part III covers additional topics that provide a deeper examination of PBE, partic-
ularly the nontechnical aspects. We detail some of the PBE benefits in Chapter 17,
move to the economic aspects of PBE in Chapter 18, and finish Part III with Chapter
19, which takes a look at some of the PBE misconceptions that may be faced in roll-
ing out PBE within an organization.

Part IV wraps up the book with a set of appendices that provide supporting mate-
rials and references. Appendix A summarizes the main PBE definitions to provide
quick access to some of the terms and concepts used throughout the book. Appendix
B takes a look at PBE in comparison to other software development approaches.
Appendix C provides a nonexhaustive list of tools available to help in applying PBE
within an organization. Appendix D provides a set of PBE Patterns and Guidelines
overview diagrams. Appendix E provides the pattern specification for the Subsystem
Façade pattern created and used in the case study. Appendix F serves as a companion
to Chapter 8, adding more details to support our understanding of the PBE Practice.

To get a high-level understanding of PBE, read all of Part I and Chapter 9 from
Part II, which provides a high-level summary of the PBE Patterns and Guidelines.

For a deeper understanding of PBE you should go at least once through the PBE
Patterns and Guidelines to get a better idea of what problems they address and the
associated solutions. And if you are interested in some of the nontechnical aspects of
PBE, Part III is a must read.

PREFACE xxiii

Who Should Read This Book
Patterns surface and are applicable throughout the development lifecycle and for
multiple purposes. Thus, there is a wide audience for this book, including

• Software architects, designers, and developers: Read all parts.

• Project managers: Read Part I, at least Chapter 1, and Part III.

• Process engineers: Read all parts with a focus on Chapter 8 and Appendix F.

• Analysts, including those responsible for testing, requirements, and business:
Read Part I, at least Chapter 1.

Suggested Background
To get the most from this book, we suggest that you have basic familiarity with the
following topics:

• Object-oriented programming with a language such as Java or C#

• Patterns

• Unified Modeling Language (UML)

• XML

Learning Objectives
Upon completion of the book, you will be able to

• Describe ways in which patterns can be leveraged in delivering software

• Describe the roles, tasks, work products, and best practices defined within PBE

• Describe the factors that help decision making about investments driven by PBE
as well as the expected implications of such decisions

• Describe the value and purpose of using patterns (implementations and
specifications)

• Successfully identify, specify, and implement patterns

• Understand that patterns are for all roles and projects

xxiv PREFACE

Why This Book?

So, why this book? Why does the world need another patterns book? Aren’t there
enough already? One way to answer these questions is to say that we do not like solv-
ing the same problems over and over again. As a matter of fact, we struggle a bit
dealing with the mechanical and mundane aspects of writing software. We are big
fans of trying to be creative and solving new and unique problems. And we like to
leverage automation to help us minimize and avoid having to work on those mechan-
ical and mundane tasks.

Another way to answer these questions is that it’s not enough to be passionate. It’s
not enough to be creative. It’s not enough to use tooling and automation. There’s
already content in many forms—books, courses, and articles—that touches upon
these topics. However, we were not able to find content that brings these ideas
together. A holistic approach is needed to discuss how we can use patterns more stra-
tegically, more systematically. We need to be able to scale the use of patterns across
the organization and ensure predictability and repeatability in our pattern-infused
projects.

Downloadable Content

There are three downloads associated with this book, available from www.Patterns
BasedEngineering.net. These downloads include

• Source artifacts for the pattern implementation that is discussed in the case study

• The source plug-in for a PBE Practice to be used with Eclipse Process Framework
Composer

• A published configuration of the PBE Practice composed of a set of HTML
pages that can be viewed with a standard web browser

Writing Style

Software development is a team sport; we present the rest of the book as a team
effort. We are in this together, having a chat about how we can better leverage pat-
terns in our projects.

www.PatternsBasedEngineering.net
www.PatternsBasedEngineering.net

3

Chapter 1

Defining Patterns-Based
Engineering

Beginnings are tough. Where to start? Is the necessary expertise available? Will we
finish on time? Will the quality be there? Will everyone on the project follow best
practices? Will the team get a chance to be creative while using and improving their
skills? Are the requirements really known and understood?

As software engineers, we find ourselves asking such questions whether we are
working on a greenfield project or maintaining a legacy application. Often the
answers are not to our liking. As we start the project, we often joke about missing
deadlines and are anxious about whether we will get the job done. Experience has
taught us that the road ahead is going to be difficult and frustrating. To quote Grady
Booch: “Software development has been, is, and will remain fundamentally hard.”1

We know that we are not alone. We need to improve how we deliver our software
projects. We need to improve productivity, enhance quality, hasten time to market,
have better governance, and do all of this while dealing with a challenging set of con-
straints,2 such as not enough expertise, daunting timelines, ambiguous and changing
requirements, and ever-increasing solution scope and complexity.

Over the years we have tried to take steps to address these issues. We’ve adopted
Agile processes, as who wouldn’t want their projects to be more agile? We’ve tried
model-driven development (MDD); as they say, “A picture is worth a thousand
words.” We’ve incorporated the leading industry frameworks, including .NET and
Java EE, as well as the frameworks within these domains that further support our
efforts, including Spring, Hibernate, and JavaServer Faces (JSF). We’ve adopted the
best approaches to development as they’ve emerged, such as object-oriented (OO),
component-based development (CBD), and service-oriented architecture (SOA).
We’ve outsourced and off-shored, looking outside our organization for support,

1. Booch (2007).

2. For a look at a selection of notable software failures, refer to Charette (2005).

4 CHAPTER 1 DEFINING PATTERNS-BASED ENGINEERING

skills, and cost management. However, we continue to come up short—all while the
complexity of what we are asked to build continues to advance.

This book discusses Patterns-Based Engineering (PBE), an approach to software
development. It is not the silver bullet; it is not the magic elixir that will cure all that
ails our projects. However, PBE, as demonstrated in real-world projects, takes a sys-
tematic and disciplined approach to using patterns—proven, best-practice solu-
tions—to deliver software. A key and unique aspect of this approach is that in
addition to using existing patterns from the community, we identify and create pat-
terns within the organization, codifying, automating, and leveraging our own best
practices. Organizations that have adopted this practice have seen improved produc-
tivity, increased quality, better utilization of expertise, and improved governance.

Asset-Based Development

A good place to start in gaining an understanding of PBE is to look at asset-based
development (ABD). There is a strong connection between PBE and ABD. ABD is
focused on how to leverage investments made in software artifacts in future projects.
However, the guidance related to ABD is typically focused on assets in general, which
is useful when the focus is on promoting reuse across many types of artifacts. PBE
builds on the foundation provided by ABD and provides guidance for how we can
succeed with a specific type of asset—specifically, patterns. With this relationship in
mind, let’s take a more detailed look at ABD.

ABD includes four major areas—process, standards, tooling, and assets—all of
which are focused on how to successfully reuse and benefit from assets. An asset is “a
collection of artifacts that provides a solution to a problem. The asset has instruc-
tions on how it should be used and is reusable in one or more contexts, such as a
development or a runtime context. The asset may also be extended and customized
through variability points.”3 A variability point is a part of the asset that is purposely
provided by the creator of the asset and allows for later configuration or extension of
the asset. Variability points are key to success with ABD, and in turn PBE, as they
allow us to take a proven solution and easily tailor, customize, and adapt it to the
specifics of our situation.

Generally a team produces numerous different types of artifacts as they look to
deliver software solutions, ranging from requirements, to models, code, tests, and
even deployment scripts. Each of these investments could potentially become a reus-
able asset. We need to evaluate specific instantiations of these artifacts to determine
which would warrant an investment.

3. Larsen (2006).

ASSET-BASED DEVELOPMENT 5

As shown in Figure 1.1,4 when following an ABD approach, we look at four areas
of effort related to the assets, including

• Asset identification. We need to identify potential assets and determine which
are suitable for investment.

• Asset production. After we have identified candidate assets, we need to produce
those assets.

• Asset management. As assets are produced, we take appropriate steps to man-
age them and make them available for others to reuse. This includes support for
searching, reviewing, and providing feedback. An asset repository is typically
used to assist with this effort.

• Asset consumption. Once a set of assets is made available, the team accesses the
asset repository and reuses the assets in their projects. Users of the assets are
expected to provide feedback to the asset producers. This feedback is used to
improve the assets and increase their value to the organization.

Typically, we consider ABD from two perspectives. In one perspective we are con-
cerned with the available tools, processes, standards, and assets. In the other perspective

4. Larsen (2003).

Figure 1.1 Overview of major areas of effort related to asset-based development
Credit: Grant J. Larsen, IBM.

Asset Production

Asset Management

Asset Consumption

feedback

feedback

Asset Identification

asset

asset

6 CHAPTER 1 DEFINING PATTERNS-BASED ENGINEERING

we focus on the efforts that we put into the identification, production, management,
and consumption of assets.

If an organization already has an ABD program in place, PBE is a quick addition
to the effort. If an organization has not yet adopted ABD, PBE is a very good place to
start learning, adopting, and succeeding with assets.

Patterns

Let’s take a look at what a pattern is and why it is important. A simple definition that
we can start with is this: A pattern is a proven best-practice solution to a known,
recurring problem within a given context. This definition still leaves a bit of ambigu-
ity about patterns. There are many best-practice solutions out there that apply to a
context but may not be considered to be patterns. To help further refine and expand
our understanding of what a pattern is, we can refer to some of the work done by
Christopher Alexander. The patterns movement started with his book The Timeless
Way of Building. In the book Alexander looks at how we can build better architec-
tures. Although the book addresses civil architecture and not software architecture,
its ideas and guidance can be adapted and applied to software. In a subsequent book,
titled A Pattern Language, Alexander states that a pattern

. . . describes a problem which occurs over and over again in our environment, and then
describes the core of the solution to that problem, in such a way that you can use this solu-
tion a million times over, without ever doing it the same way twice.5

At this point we are starting to get a more precise definition. A key idea that surfaces
from Alexander’s statement is that a pattern can be used many times. However, when
applying it, we can adapt it so that it suits the needs of a particular situation. Although
we may use the pattern multiple times, each instance of the pattern is unique.

Building on this definition, we can add a few ideas provided by John Vlissides.6 He
points out that a pattern needs to support teaching and have a name. In this way we
can refer to the entire pattern by just its name and still convey meaning. The detail
provided with the pattern can also be used to teach the pattern user about the best
practices associated with the pattern, when to use the pattern, and the implications of
doing so.

In the software world, the most-referenced book on patterns is Design Patterns:
Elements of Reusable Object-Oriented Software written by Erich Gamma, Richard

5. Alexander (1977).

6. Vlissides (1998).

PATTERNS-BASED ENGINEERING 7

Helm, Ralph Johnson, and John Vlissides—known as the Gang of Four (GoF).7 This
book contains 23 design patterns that are widely used and referenced, including pat-
terns such as Abstract Factory, Bridge, and Observer. These patterns and others are
often embedded within the frameworks that we depend upon for building our solu-
tions, like the Model-View-Controller pattern, which is the basis of Struts and JSF.
Odds are that we’ve already been using patterns in our projects.

Engineering

As we build a definition of PBE, let’s next define engineering. Engineering is “the
application of a systematic, disciplined, quantifiable approach to structures,
machines, products, systems, or processes.”8

As we are dealing with software, it makes sense to look at a definition that is a lit-
tle more targeted to the work we do. So software engineering is defined as “the appli-
cation of a systematic, disciplined, quantifiable approach to the development,
operation, and maintenance of software; that is, the application of engineering to
software.”9

With definitions of patterns and engineering as they relate to software develop-
ment in mind, we are now in a position to consider a definition for Patterns-Based
Engineering.

Patterns-Based Engineering

Let’s start with a short definition. PBE is

a systematic, disciplined, and quantifiable approach to software development that leverages
the use of pattern specifications and implementations throughout the software development
and delivery process.10

7. Gamma et al. (1995).

8. IEEE Standard Glossary of Software Engineering Terminology, www2.computer.org/portal/
web/seonline/glossary.

9. Ibid.

10. This definition reflects this book’s focus on the use of patterns for building software solu-
tions. However, we could replace the term software development in this definition with
enterprise architecture or operational modeling, for example. The use of patterns is appli-
cable across many aspects of the IT domain.

www2.computer.org/portal/web/seonline/glossary
www2.computer.org/portal/web/seonline/glossary

8 CHAPTER 1 DEFINING PATTERNS-BASED ENGINEERING

When we dig into this definition, a number of key ideas surface:

• PBE augments the overall software development and delivery process. We take a
wide view of how patterns support us in developing and delivering software.

• PBE unifies the use of patterns in their different forms, using pattern specifica-
tions as blueprints as well as using pattern implementations to automate the
application of those blueprints.

• PBE focuses on the systematic, disciplined use of patterns while enabling us to
quantify the impact of using the patterns.

Pattern Specifications and Pattern Implementations
Design patterns from the GoF book were the first patterns to gain significant atten-
tion. Since that time, many other patterns have been identified and documented, as
evidenced by the large number of results from online pattern searches. Generally,
these patterns are presented in formal, written documentation that explains the pat-
tern. We refer to these documents as pattern specifications.

There is some variation in how pattern specifications appear, but the following
information is usually included:

• The name of the pattern

• A description of the problem the pattern solves

• A description of the solution that the pattern provides

• A discussion of the consequences, the advantages and disadvantages, of apply-
ing the pattern

Pattern specifications provide a great deal of value, as they

• Support learning about the best-practice-based approach to a recurring problem

• Simplify communication, since the name of the pattern can be used in place of
repeating all of the pattern details

• Enable people to easily read and learn about a pattern

• Detail a best-practice approach to solving a recurring problem

However, there are a number of limitations to just using pattern specifications:

• Pattern Users need to be aware of what patterns exist and how they can be applied.

PATTERNS-BASED ENGINEERING 9

• Because patterns are tailored to the context in which they are used, it is highly
likely that each person who uses a pattern will create slightly different solutions.

• If a pattern needs to be reapplied to a solution, it is a manual effort to update all
the areas of the solution that leverage the pattern.

• Because the pattern is applied manually, human error is likely to creep into the
application of the pattern. Even a small percentage of errors become significant
over a large number of applications.

• It is difficult for individuals and teams to use a selection of patterns together. All
the complexity of the combination surfaces as we are unable to easily encapsu-
late and shield Pattern Users from such complexity.

With the limitations of pattern specifications in mind, we are left to wonder how
tooling and automation could assist. To that end, we look to the idea of pattern
implementations. A pattern implementation automates the application of a pattern in
a particular environment. Thus, patterns become tools themselves, concrete artifacts
within the development environment.

From a Pattern User perspective, there are a number of different ways in which a
pattern implementation can be manifested. A pattern implementation may surface as
a wizard, a model transformation, a UML pattern, a web page, or even something as
simple as a right-click with the mouse.

Benefits of using pattern implementations include

• Increased productivity. Using pattern implementations simplifies and accelerates
how we deliver software. We are able to automate our best practices, which
allows us to dramatically reduce repetitive and manual efforts. In addition, we
reduce the skill requirements for working with and applying a pattern correctly.

• Increased quality. Pattern implementations allow us to consistently create solu-
tions that adhere to architectural, design, and coding standards. In addition, as
the pattern implementation embodies our best-practice approach to solving a
problem, we are by definition increasing the quality of our solutions.

• Better leveraging of skills and expertise. With a pattern implementation we are
able to capture our best practices and then make them available to the rest of
the team for reuse. Others easily reuse the expertise that goes into the pattern,
without the need for the experience, trial and error, and research that went into
creating the pattern.

• Improved governance. Not only are we able to use tooling to apply our best
practices, but we can also check that the resulting solution adheres to these best
practices.

10 CHAPTER 1 DEFINING PATTERNS-BASED ENGINEERING

• Reduced cost. We can reduce the cost of the solutions we build as we are able to
be more productive, increase quality, better leverage skills, and improve the gov-
ernance associated with best practices.

A Model for Succeeding with PBE

With this background in mind, we can state that a pattern is a specific type of asset,
and we can state that PBE is a specialized form of ABD. The main difference is that
we focus on a specific type of asset, namely, a pattern. We still look at and work with
all of the other types of artifacts that could be assets, such as requirements, models,
code, tests, deployment scripts, and so on. Within PBE, these other types of assets
either are used in association with patterns or are used as input into our efforts to
create new patterns.

However, we still need to find answers to questions such as these:

• How do we perform PBE? That is, how can we take a systematic, disciplined,
and quantifiable approach to using patterns to develop and deliver software?

• How do we succeed in taking on a PBE approach and improving how we deliver
software?

• What are the best practices associated with PBE?

• What are the roles and tasks associated with PBE?

• How can we adopt and succeed with PBE as a team?

As we work our way through the rest of the book, we will discuss answers to these
questions. As is the case with ABD, we can consider PBE from two perspectives. First,
we are concerned with the available tools, processes, standards, and assets. Second,
we look at the effort that we put into the identification, production, management,
and consumption of patterns.

We can also leverage a model, as shown in Figure 1.2, to help us understand and
position the content found in the rest of the book. The elements in the model build
out from the base, leveraging the elements contained within. Starting with the inner-
most circle, we can see that there is a set of PBE Core Values. These core values form
the basis of how we approach PBE. The goal is to ensure that we are able to quickly
understand, remember, and relate a small and simple set of values that will influence
all of our PBE efforts.

A MODEL FOR SUCCEEDING WITH PBE 11

There is then a set of PBE Patterns that build upon the PBE Core Values. These
patterns, as expected, provide a set of proven best-practice solutions to recurring PBE
problems. There are patterns that support us in identifying, producing, managing,
and consuming patterns.

Beyond the PBE Patterns there are PBE Guidelines to further assist us in perform-
ing PBE. The PBE Guidelines provide advice on PBE, including how to use the pat-
terns and core values.

The final element shown in Figure 1.2 is the PBE Practice. In general, a practice is
a process component; that is, it is a building block to help in building out a software
development process. Typically a software development process is composed of a
number of process components. Some of the components are focused on testing, oth-
ers on deployment; in this case we will look at a process component focused on PBE.
The PBE Practice looks at the tasks, work products, roles, artifacts, and associated
guidance, patterns, and core values that we can use in successful PBE efforts.

The following sections take a closer look at each of the constructs from Figure 1.2.

PBE Core Values
With an overall model of PBE in place, we can now start to take a more in-depth look
at each of the components within that model. We start with the PBE Core Values, as
they serve as the basis for the other elements. These are the PBE Core Values:

1. Patterns are best used in combination, rather than in isolation. When building a
solution, we expect to use many patterns. The patterns selected will vary in size
and occur at multiple levels of abstraction, so we expect that the patterns will
both connect and overlap. As stated by Christopher Alexander: “But it is also
possible to put patterns together in such a way that many patterns overlap in the

Figure 1.2 A model bringing together the key elements that support our PBE efforts

Core
Values

Patterns

Guidelines

Practice

12 CHAPTER 1 DEFINING PATTERNS-BASED ENGINEERING

same physical space: the building is very dense; it has many meanings captured
in a small space; and through this density, it becomes profound.”11

2. Always identify and build new patterns. We need to always be on the lookout
for potential pattern opportunities across repetitive scenarios, repetitive code,
repetitive solutions, and areas where we are just mechanically participating in
the development effort.

3. Patterns can be built and used within the same project. A challenge that has tra-
ditionally surfaced in building reusable assets is determining when we should
harvest them. Harvesting, whereby we identify and then extract reusable assets
from existing solutions, is a significant effort and expense. We thus look for
ways to justify the time and monetary expenditure for the asset harvesting.
Often we decide that we should just wait until the end of the project and then
harvest the assets for reuse on a later project. With PBE we can identify and
build patterns within the current project. The assets thus pay for themselves
during the current project and are then also available for other projects to use.

4. Make your patterns live. A good place to start with this principle is with a quote
from Christopher Alexander: “You see then that the patterns are very much
alive and evolving. In fact, if you like, each pattern may be looked upon as a
hypothesis like one of the hypotheses of science.”12 Much like our development
efforts, when we build patterns we leverage an iterative and incremental
approach with a focus on always delivering value. In addition to building a bet-
ter pattern over time, this approach also allows us the opportunity to look at ways
in which we can increase the scope of the pattern. This also reduces pressure—
we do not need to produce the perfect pattern on the first attempt. We are also
able to collect feedback from the Pattern Users, leading to enhancements in future
releases. As a result, the portfolio of patterns will grow and mature over time.

5. Focus on making patterns consumable. All the effort of identifying and building
patterns is pointless if Pattern Users are unable to work with the patterns. Pat-
tern consumability touches upon many aspects such as ease of use, enablement
materials, and the ability to find the right pattern at the right time.

6. PBE can fit into many different development processes. PBE itself is not a process.
It is a development practice that can be combined with and leveraged by other
practices and processes. The PBE Core Values, Patterns, Guidelines, and Practice
can be leveraged within most other modern software development processes.

11. Alexander (1977).

12. Ibid.

A MODEL FOR SUCCEEDING WITH PBE 13

PBE Patterns and Guidelines
The PBE Patterns and Guidelines support us in identifying, producing, consuming,
and managing patterns. The patterns and guidelines support one another. The guide-
lines help us to succeed with the patterns, and the patterns in turn help with the
guidelines. Why patterns and guidelines? PBE has a set of patterns that have surfaced
over the years. It makes sense to discuss patterns that can help us follow PBE; think
of them as metapatterns. Also, it is important to see that new patterns are discovered
and created; we are not restricted to using patterns that have been discovered by others.
Patterns are for everyone; we all need to be on the lookout for pattern opportunities.

Guidelines are also needed to provide advice on how to successfully apply PBE.
Not everything needs to be or should be a pattern. We need to evaluate and review
patterns to ensure that they are worthy of the name and add value. We don’t want to
get into a situation where everything is a pattern (think Maslow’s Hammer13) and
end up diminishing the value of the term and concept.

Additional details for each of the patterns and guidelines are provided in Part II.
More specifically, Chapter 9 provides an overview of the entire set of patterns and
guidelines. The following chapters then provide details on each of the patterns and
guidelines based on categories, including foundational patterns, pattern discovery
and identification, designing patterns, creating patterns, pattern packaging, using
domain-specific languages (DSLs) and patterns, and consuming patterns.

PBE Practice
Typically, a software development process provides guidance regarding the roles,
tasks, work products, and workflow needed to develop software. However, PBE is
not a full-fledged process; it is a practice. In essence, a practice is a process compo-
nent that is used in conjunction with other process components (practices) to create a
process. The practice still looks at the roles, tasks, work products, and workflows
needed; however, the focus is entirely on PBE and not all of the other things that you
would normally do when developing software. If we view the software development
process as a set of components—some on testing, others on writing code, and some
on source code management—we will focus on the PBE component. To that end we
will look at the roles, tasks, work products, and workflows associated with PBE.

13. The idea that if all you have is a hammer then everything looks like a nail is referred to as
Maslow’s Maxim or Maslow’s Hammer. More information regarding Abraham Maslow
and Maslow’s Hammer is available at www.abraham-maslow.com/m_motivation/Maslows_
Hammer.asp.

www.abraham-maslow.com/m_motivation/Maslows_Hammer.asp
www.abraham-maslow.com/m_motivation/Maslows_Hammer.asp

14 CHAPTER 1 DEFINING PATTERNS-BASED ENGINEERING

The PBE Practice is available in source form that can be modified, configured, and
integrated with other practices. Figure 1.3 provides a view of a published default con-
figuration of the PBE Practice. This published configuration is a set of interconnected
HTML pages that can be viewed through a standard web browser. As seen in the fig-
ure, we are able to use the navigation tree on the left-hand side of the screen to
quickly access information about the concepts, roles, tasks, work products, tool list,
checklists, and templates that the practice provides. Chapter 8, “PBE and the Soft-
ware Development Process,” provides more details on the elements in the PBE Prac-
tice and how to integrate this practice with a software development process.

Examples of PBE Results

Chapters 3 through 7 present a case study in which a fictional organization leverages
PBE in delivering a software solution. The case study is valuable because it pulls

Figure 1.3 A view of the published PBE Practice from within a standard web browser

EXAMPLES OF PBE RESULTS 15

together a range of real-world experiences, ideas, and guidance within the context of
one example. However, it has the disadvantage of being a fictional example.

This section provides a brief discussion of real-world examples where teams and
organizations have used PBE Core Values, Patterns, Guidelines, and aspects of the
Practice in delivering solutions. Each of the examples comes from real-life projects;
however, the names of the companies have been left out.

Services Team: Portlet Proof of Concepts
In the first example, a software vendor’s services team needed to build custom port-
lets to support proof-of-concept engagements. Before they used patterns, the work
was performed manually, and it would take about 40 hours to create and test a cus-
tom portlet. In a proof-of-concept environment, this is unacceptable as it significantly
increases the cost and time to complete the proof of concept. This was identified as
an opportunity to build a pattern as there was an existing and recognized best prac-
tice that was used many times. The pattern was responsible for creating a large num-
ber of files (approximately 95) needed for the portlet, code was added to handle
common configurations and errors, and the pattern would also generate optimized
and tested code. After the pattern was applied, the Pattern User would add business
logic to the portlet. Using the pattern to build the portlet took approximately 20 min-
utes, and the majority of that time was spent on adding the business logic and then
deploying the portlet. The pattern was used over a number of years and resulted in
over 80 portlets being generated, saving over 3,000 hours of development time.

Software Vendor: Product Update
The second example is based on a team working for a software vendor. The applica-
tion that they worked on needed to meet a hard deadline for a customer and ship
with a set of 130 SOA-based services that adhered to the OAGIS message format. A
significant number of steps were needed to create each of the services, resulting in
over 100 pages of documentation. The team discovered that performing this work
manually would push them three months beyond the customer-imposed deadline.

The team spent a day learning how to create pattern implementations and then
went to work applying those skills. The resulting pattern generated a significant por-
tion of the required code, including data objects, client code, server code, and even
unit tests. When using the patterns, the team was able to reduce the documentation
from over 100 pages to 2 pages. They were able to save over 1,400 hours in their
project and deliver the solution to the customer in time to meet the deadline. They
also ended up shipping the patterns with the product, enabling customers and busi-
ness partners to benefit from the patterns.

16 CHAPTER 1 DEFINING PATTERNS-BASED ENGINEERING

Entertainment Industry: Enhancing MDD
Let’s take a look at a couple of additional examples that go beyond companies that
sell and service software.14 First we’ll look at a company in the entertainment indus-
try. In this case the organization was following an MDD approach. More specifically,
the team used a UML modeling tool for creating models that would then drive their
development. The models were used for documentation, and a manual effort was
required to follow through and create the solution. The organization had concerns
about productivity, quality, and governance. Some patterns were used, but only man-
ually, and they needed interpretation in the transition to development. Development
phases were too long, and transcription errors occurred when moving from the mod-
els to code. In addition, adherence to corporate architecture standards was inconsis-
tent, and best practices were not always followed.

The organization performed an analysis of its development approach, models, and
resulting artifacts. As a result of this analysis a set of patterns was identified and then
delivered as pattern implementations. By using these patterns, it was estimated that
the architects in the organization were able to achieve up to 50% improvement in
productivity, resulting in millions in development savings. In addition, they were able
to eliminate many defects from the resulting solution by using automation in place of
manual efforts.

Government: Integrating Departments
The last example we’ll look at in this section is based on work completed for a Euro-
pean government department. The department was required to externalize its data
via SOA-based services so that it could be shared and integrated across the govern-
ment. Within the department there were multiple divisions, and each was expected to
meet this requirement. The planned strategy was to use an enterprise service bus
(ESB) to assist in externalizing the services and support integration and sharing. In
creating a solution, the department required a development platform that all of its
employees could use that would be simple, agile, and highly productive. In addition,
they required a strong level of governance and high quality; each member of the team
had to adhere to the corporate architectural standards.

During the analysis of the situation it was determined that supporting the integra-
tions would take three days of effort from a highly skilled resource for each of the
services. There were a significant number of services to create. Each of the services
would be created according to a specific best-practice-based approach. Recognizing a

14. For another example from the software vendor realm, we encourage you to read Siddle
and Draper (2008).

WHY DO WE NEED PBE? 17

recurring best-practice approach, they leveraged the work done in the analysis and
recognized the opportunity to create a set of patterns to generate the required inte-
grations. Using pattern implementations, rather than performing the work manually,
allowed each of the services to be completed in approximately ten minutes and
required a much lower skill level. The organization expected to save over 50 person-
years of effort by the switch to using pattern implementations.

Why Do We Need PBE?

As with most types of reusable assets, the more generic the asset, the lower the return
that each reuse will provide. Many books since the original GoF book have provided
guidance on these first 23 patterns. These books have mapped the patterns to numer-
ous languages, detailed the designs of the patterns, and used the patterns to detail
how to perform object-oriented development. In addition, many more patterns have
been created and shared. A search of the web or a bookstore will lead you to numer-
ous results that list patterns and pattern-related documents. For instance, the Hand-
book of Software Architecture website15 has cataloged 2,000 patterns so far. So if we
have all of these patterns available to us, you might leap to the conclusion that our
problems in delivering software have been alleviated. Unfortunately, that is not the
situation; the answer is not as simple as just saying, “Use patterns.”

As patterns have been available for use in software development for quite some
time now, one would expect that there would be a very high adoption rate and that
we would have already reached a very high level of maturity in using them success-
fully. Unfortunately, we have run into a number of issues in using patterns. In prac-
tice, we see that

• There is little methodology that actually shows how to use and leverage multiple
patterns within a solution. This leads to random and nonstrategic use of patterns.

• Most of the patterns that people use are the GoF patterns.

• In cases where other patterns are used, they are often used in isolation rather
than being woven together as part of a larger solution.

• There is little skill in identifying and formalizing patterns that are unique within
an organization. In addition, there is little focus on such patterns.

• If patterns are used, they are used only for forward-engineering a solution.

15. www.handbookofsoftwarearchitecture.com.

www.handbookofsoftwarearchitecture.com

18 CHAPTER 1 DEFINING PATTERNS-BASED ENGINEERING

• Abstraction is put to limited use.

• There is concern that restricting the creativity of the developers within the orga-
nization will diminish job satisfaction.

• The patterns used are often invented elsewhere.16

Would the application of a systematic, disciplined, and quantifiable approach to
pattern use solve some of the issues that have limited their success to date?

The Importance of Creativity, Constraints, Rules, and
Assumptions
Popular business literature stresses the importance of creativity, and we expect and
value it in new team members. However, unmanaged and unfocused creativity can be
detrimental to a project. We need to channel and focus the creativity of the team; we
want creativity with purpose, creativity that helps us to reach our goals.

We use platform decisions, architectural styles, architectural patterns, and so forth
as mechanisms for narrowing the solution space in a collaboratively disciplined way.
To support both the production and consumption of patterns, we seek to leverage
constraints, rules, and assumptions. To ensure that we are all on the same page, let’s
take a quick look at the definitions associated with these terms:

• Creativity: “Characterized by originality and expressiveness; imaginative”17

• Constraint: “The state of being restricted or confined within prescribed bounds”18

• Rule: “A principle or regulation governing conduct, action, procedure, arrange-
ment, etc.”19

• Assumption: “A statement that is assumed to be true and from which a conclu-
sion can be drawn”20

16. For additional discussion of some of the challenges regarding the use of patterns, see
Manolescu et al. (2007).

17. American Heritage Dictionary of the English Language, Fourth Edition. Retrieved July 1,
2008, from http://dictionary.reference.com/browse/creativity.

18. American Heritage Dictionary of the English Language, Fourth Edition. Retrieved June
24, 2008, from http://dictionary.reference.com/browse/constraint.

19. Dictionary.com Unabridged (v 1.1). Retrieved June 24, 2008, from http://dictionary.reference
.com/browse/rule.

20. WordNet 3.0. Retrieved June 24, 2008, from http://dictionary.reference.com/browse/assumption.

http://dictionary.reference.com/browse/creativity
http://dictionary.reference.com/browse/constraint
http://dictionary.reference.com/browse/rule
http://dictionary.reference.com/browse/rule
http://dictionary.reference.com/browse/assumption

IMPORTANT DEFINITIONS 19

In addition to using patterns to focus the creativity of the team, we also want to
support the consumption of the patterns. Where’s the value in cases where a Pattern
User is unable to use a pattern? To help support consumption we provide constraints
and rules. Constraints and rules ensure that the pattern is used correctly. In the case
of a pattern implementation, the assumptions that are found within the pattern help
to reduce the amount of information the user of the pattern needs to provide.

When we turn our focus to the building of patterns, we similarly need to look for
ways to manage our creativity. We can use patterns to guide us in identifying, docu-
menting, and building patterns. In addition, we need to leverage the creativity of the
team to identify, document, and build the patterns that our organization needs.

Important Definitions

The terms defined in this section, as shown in Figure 1.4, are important to PBE and
will be referred to in the rest of the book. This section provides brief definitions of
these terms to ensure a common understanding. Additional details on these terms and
supporting definitions are provided in Appendix A, “PBE Definitions.”

Figure 1.4 also shows that there is a relationship between these elements. We use
metamodels, DSLs, and patterns to represent solutions within a model. Models that
are recognized as representing a best-practice solution are exemplars. With an exem-
plar in hand, we are able to create a new pattern that can be used to specify future
solutions. With these relationships in mind, let’s take a look at the definitions for
each of these terms.

Figure 1.4 Overview of key concepts related to PBE

• Metamodel
• Domain-Specific

Language
• Patterns

Used to Represent
Solutions

• Model

Identified as Best
Practice

• Exemplar

Serves as Basis for

• Pattern

Used to Create
Future Solutions

20 CHAPTER 1 DEFINING PATTERNS-BASED ENGINEERING

Model
Key to working with patterns is the use of models. Simply put, a model is an abstrac-
tion or a simplification of reality. A good model includes elements that are relevant at
a given level of abstraction, while hiding or ignoring details that are not relevant. A
model may be structural, emphasizing the organization of a solution, or behavioral,
emphasizing the dynamics of a solution.

Metamodel
The language used within a model can be formalized textual, formalized graphical, or
natural language. A formalized language—one that has a detailed and precise
description—is helpful in creating models that support communication between peo-
ple as well as communication with machines. A metamodel is a key mechanism we
use in building a formal language. A metamodel is a special type of model that
describes and specifies a modeling language. Essentially, we use a more abstract
model to define the language that is used in another, more concrete model.

Exemplar
When we want to create a new pattern (whether a specification or an implementa-
tion), we need to keep in mind that patterns are discovered rather than invented. To
this end, we often look for representative reference solutions that we can analyze and
use as the basis for the pattern. We call such a reference solution an exemplar.

To identify a possible pattern, we are on the lookout for both exemplars and situ-
ations where the “Rule of Three” applies. The Rule of Three is used to judge where a
possible pattern may exist; in this case we are looking for situations where the same
problem/solution set has occurred in three unique situations.

As noted at the beginning of this chapter, starting a project is full of difficulties,
including concerns about available expertise. However, what if we take the idea of
exemplars and the Rule of Three into consideration? Can we use these ideas to help
us find patterns to use on the project? Some of the sources to which we could apply these
ideas include past project designs and implementations, as well as some of the artifacts
of the current project. For instance, with the current project, we could examine the
architectural mechanisms, key use cases, recurring aspects of the solution, and so on.

Domain-Specific Languages
A domain-specific language (DSL) is “a programming language or specification lan-
guage dedicated to a particular problem domain, a particular problem representation

SUMMARY 21

technique, and/or a particular solution technique.”21 More simply put, a DSL is a
language that we can use to describe a solution that allows us to use terminology
from the domain in which we are working.

There are a number of reasons to use DSLs along with PBE, some of which are
these:

• We are trying to simplify the lives of pattern consumers and enable them to
structure the input model to the pattern in the simplest manner possible.

• Ideally we are able to automate the use of the patterns via the creation and use
of pattern implementations.

• DSLs and their underlying metamodels support communication between people
as well as with machines.

• A DSL enables us to both speak in terms of the problem domain and to operate
at higher levels of abstraction.

Summary

If there is one key idea that you should take away from this book, it is that patterns
are for everyone. Whether you are working as an architect, developer, tester, or busi-
ness analyst, you should be looking at what patterns can be reused and what oppor-
tunities present themselves for new patterns. You need to be aware of the best-
practice-based solutions and repeating situations where you can apply these best
practices. Don’t worry about finding the perfect pattern that will work for everyone
in all situations. As stated by Alexander:

You see then that the patterns are very much alive and evolving. In fact, if you like, each
pattern may be looked upon as a hypothesis like one of the hypotheses of science.

In this sense, each pattern represents our current best guess as to what arrangement . . . will
work to solve the problem presented.22

Patterns represent the best thinking currently available. Patterns are alive; they do
not start out as perfect entities but improve in quality over time as the community of
software engineers investigates and refines them.

21. http://en.wikipedia.org/wiki/Domain-specific_language.

22. Alexander (1977).

http://en.wikipedia.org/wiki/Domain-specific_language

22 CHAPTER 1 DEFINING PATTERNS-BASED ENGINEERING

As you start your journey with PBE, you can leverage tools, processes, standards,
and patterns, with a focus on how to identify, produce, manage, and consume pat-
terns. Leveraging the PBE Core Values, Patterns, Guidelines, and associated Practice
provides a set of materials you can use to guide you in adopting and succeeding with
PBE.

If you already have started an ABD program, PBE makes a logical and easy addi-
tion to your efforts. If you have not yet started with ABD, PBE is a great initiative to
use to get things going.

425

Index

Numbers
80/20 rule, in pattern development, 170

A
ABD (asset-based development)

identification, production, management, and
consumption of assets, 5

key areas of, 137
overview of, 4, 357
PBE as specialized form of, 10
two perspectives on, 5–6

Abstract classes, adding support for, 84–85
Abstract Factory pattern, UML patterns, 24–25
Abstraction

MDD (model-driven development) and, 214,
222

recurring solutions and, 190
Abstraction blinders, pitfalls of Pattern

Opportunity pattern, 188
Activity diagrams, 138
Actors, LogoAuction application, 49–50
Agile development

approaches to software development, 3
OpenUP and, 146
Oslec Software using, 39
XP (Extreme Programming) and, 147

Alexander, Christopher, 6, 11–12, 292, 298, 312
Analysis patterns, applying to LogoAuction

application, 47
AndroMDA, 366
Antipattern pattern

context, problem, forces, and solution, 184–185
example and related patterns and guidelines,

185
overview of, 157

Architectural design, pattern categories, 353–354
Architectural Discovery feature, RSA (Rational

Software Architect), 341
Architecture, LogoAuction application

data architecture, 63–64
deployment architecture, 59–63
logical architecture, 56–59
overview of, 55–56

Artifacts
code generators producing, 347
exemplar as key artifact, 242
relationship to binaries, 259
significance in exemplar analysis, 204
storing source and development, 118
text-based, 226

Asset-based development. see ABD (asset-based
development)

Asset Librarian role, 385–386
Asset repository

capturing pattern relationships in, 253
choosing solution for, 259
deploying patterns to, 410–411
features to consider, 326–327
integration of asset repository with

organizational uses, 249
overview of, 118
searching for requirements, 294
Use an Asset Repository guideline, 299–301
versioning and, 261

Assets
identification, production, management, and

consumption, 5, 137
integration of asset repository with

organizational uses, 249
metadata, 119–120
reusable, 356
review process, 120–121
timing reuse of, 308
training for managing, 329

Assumptions
defined, 18–19
points of variability and, 210

Attributes
dynamically building for entities, 96
identifying entity roles for Subsystem Façade

pattern, 81–82
Auction Management subsystem

areas of responsibility in LogoAuction
application, 57–58

entities and projects, 115
implementation of, 113
Start Auction and Close Auction use cases, 124

426 INDEX

Auction subsystem, 104–105
Authoring

pattern implementation and pattern
specification, 72

Pattern Implementation Author role, 388
Pattern Specification Author role, 387
software development process and, 168

Automate Creation of Pattern Implementations
guideline

creating patterns, 160
related patterns and guidelines, 235
summary, introduction, and explanation,

234–235
Automation

forming foundation for exemplars, 214
globalization and, 317
harvested patterns and, 195
leveraging, 316
of model consumption, 272
pattern implementation and, 168, 207, 247,

310

B
Bean Factory pattern, model-to-text patterns,

31–32
Benefits of PBE

combining patterns, 309–310
communication improvements, 312–314
globalization of development, 317
governance improvements, 316–317
overview of, 307
pattern implementation and, 310–311
productivity, 307
quality, 311–312
reuse, 307–308
skills and expertise leveraged, 314–316
summary, 318
systematic, disciplined, and quantifiable nature

of PBE, 309
Binaries, relationship to artifacts, 259
Booch, Grady, 3, 180, 312
Bottom-up design, 206
Browse Items use case, Auction Management

subsystem, 113
Build a Pattern Implementation task

mapping to PBE phases, 141
in pattern production, 401–402
summary of, 142

Business impacts. see Determine Business Impact
guideline

C
Candidate patterns

evaluating, 66–69, 396–397
selecting, 65–66
work products in PBE, 391

Capture Reuse Metrics task, in pattern
management, 141, 143, 413–414

Cardinality, pattern selection criteria, 322
Case studies

compared with real-world examples, 14–15
Oslec Software case study. see Oslec Software

case study
Category, pattern selection criteria, 322
Change, cultural changes needed for adoption of

PBE, 329
Class body, identifying entity roles for Subsystem

Façade pattern, 81
Class Table Inheritance pattern, 64, 86, 127
Close Auction use case, Auction Management

subsystem, 124
Code generators, 347
Code review, harvested patterns and, 196
Collaboration, in Oslec Software case study, 40–41
Combining patterns. see also Compound Pattern

pattern
benefits of PBE, 309–310
tooling support for, 328

Communicate Design with Patterns guideline
applying to Subsystem Façade pattern, 127
consuming patterns, 163
related patterns and guidelines, 289
summary, introduction, and explanation,

282–289
Communication

benefits of PBE, 312–314
globalization and, 317
metamodels supporting, 352

Communities, as pattern source, 321, 324
Composite Cheat Sheet mechanism, Eclipse,

247–248
Compound Pattern pattern

applying to Subsystem Façade pattern, 383
context, problem, forces, and solution,

200–201
creating compound patterns, 255
designing patterns, 158
example and related patterns and guidelines,

201–202
productivity and, 310
simplification from use of, 86, 257
tooling support for, 327

INDEX 427

Connectivity, nonfunctional requirements in
LogoAuction application, 55

Consistency, quality and, 311
Constraints

defined, 18–19
detailing and enforcing in UML, 25–26

Constraints Patterns, 26
Consumability, testing and, 240
Consuming patterns

Communicate Design with Patterns guideline,
282–289

Design Solutions with Patterns guideline,
290–291

guidelines for, 163–164
high-level overview of PBE, 138
locating patterns, 404–406
mapping tasks to phases of PBE, 140–141
modeling pattern use, 408–409
overview of, 155, 281–282
Pattern Density guideline, 291–294
Pattern Selection Driven by Requirements

guideline, 294–295
phases of PBE, 139
providing feedback on patterns, 409
Refactor with Patterns guideline, 295–296
Select Large-Scope Patterns First guideline,

296–299
summary, 303–304
Use an Asset Repository guideline, 299–301
Use Pattern Definitions to Understand Existing

Solutions guideline, 301–302
Use Patterns to Find Patterns guideline,

302–303
using pattern implementation, 407–408
using patterns, 406–407

Consuming patterns (Iteration 3)
applying pattern implementation to User

Management subsystem, 126–128
installing pattern implementation to be used

with new subsystem, 125–126
overview of, 123–125
providing feedback on patterns, 129
refactoring Items Management subsystem,

129–132
searching for/using patterns in new subsystem,

125
summary, 132–133

Continuous integration, in development approach,
40

Core Values
Compound Pattern supporting and building

on, 200

guidance and support in, 143
guiding creation of pattern implementations, 330
over formalization and, 339
overview of, 11–12
patterns and guidelines built upon, 154

Costs
criteria guiding pattern implementations, 330
pattern selection criteria, 323
reduction due to pattern implementation, 9

Create a DSL guideline
applying, 162
related patterns and guidelines, 274
summary, introduction, and explanation,

273–274
Create a Pattern Specification task, in pattern

production, 400–401
Create Account use case, User Management

subsystem, 124
Create, read, update, delete (CRUD) operations,

57–58
Creating patterns

Automate Creation of Pattern
Implementations guideline, 234–235

guidelines for, 160
lifecycle for. see Pattern Creation Lifecycle

guideline
Model-to-Model Pattern Implementation

pattern, 221–225
Model-to-Text Pattern Implementation

pattern, 225–230
overview of, 155, 221
Pattern Specification guideline, 235–240
Pattern Testing guideline, 240–243
patterns for, 159–160
software solutions, 176
summary, 243–244
UML Pattern Implementation pattern, 230–234

Creating patterns (iteration 1)
analyzing exemplar for, 77–79
creating JET component, 90
creating JET elements, 91–93
creating pattern specification, 87
designing pattern implementation, 86–87
detailed inspection of exemplar for, 79–85
developing DSL for, 102–104
finding exemplar for, 76–77
implementing UML front end for, 101–102
launching, 71–72
Model-Mapping component for, 105–109
overview of, 71
summary, 111
test-driven development applied to, 87–89, 105

428 INDEX

Creating patterns (iteration 1) (continued)
Test project, 100–101
testing full pattern implementation, 110–111
understanding Subsystem Façade pattern, 73–76
unit-testing JET implementation, 99–100
unit-testing Model-Mapping component for, 109
updating JET elements templates, 93–99

Creativity
defined, 18–19
misconception regarding in PBE, 335–336
project risk and, 336

CRUD (create, read, update, delete) operations,
57–58

Culture
creating culture of pattern production, 168
economics of PBE and, 329

Custom extractors, RSA Model Mapping
Authoring, 106

D
DAO (Data Access Object) pattern, 73–74, 383
Data architecture, in envisioning iteration, 63–64
Déjà vu, recurring solutions and, 189
Dependencies, adding support for, 83–85
Deploy Pattern to Asset Repository task, in

pattern management, 410–411
Deployment architecture, in envisioning iteration,

59–63
Derivations, points of variability and, 210–211
Design a DSL guideline

applying, 162
related patterns and guidelines, 277
summary, introduction, and explanation,

275–277
Design a Pattern task

mapping tasks to PBE phases, 140
in pattern production, 399–400
roadmap for, 72
summary of, 142

Design patterns, as pattern category, 353–354
Design Patterns: Elements of Reusable Object-

Oriented Software (Gamma, Helm,
Johnson, Vlissides), 6–7, 24, 320

Design Solutions with Patterns guideline
applying, 163
related patterns and guidelines, 291
summary, introduction, and explanation,

290–291
Designing patterns

communicating. see Communicate Design with
Patterns guideline

Compound Pattern pattern, 200–202
Exemplar Analysis pattern, 202–205
guidelines for, 159
Limited Points of Variability guideline, 209–211
Meet-in-the-Middle pattern, 205–207
misconception that PBE is for design only,

340–341
overview of, 155, 199
Pattern Creation Lifecycle guideline, 212–215
pattern implementation and, 392
Pattern Implementation Extensibility guideline,

215–216
Pattern Implementation pattern, 207–209
pattern production tasks, 399–400
patterns for, 158–159
summary, 220
Team Pattern Implementation Use guideline,

217–219
top-down, bottom-up, and meet-in-the-middle

approaches, 206
Detecting patterns, software solutions for, 175
Determine Business Impact guideline

overview of, 157
related patterns and guidelines, 192
summary, introduction, and explanation,

190–192
Development approaches, alternatives to PBE

ABD (asset-based development). see ABD
(asset-based development)

MDA (Model-Driven Architecture). see MDA
(Model-Driven Architecture)

MDD (model-driven development). see MDD
(model-driven development)

SF (software factory). see SF (software factory)
Development process, for Oslec Software case

study, 39–40
Development team, for Oslec Software case study,

38–39
Diagrams. see Models
Disciplined nature, of PBE

as counter to patterns everywhere and all the
time, 338

overview of, 309
quality and, 311

Discovering patterns
Antipattern pattern, 184–185
Determine Business Impact guideline, 190–193
guidelines for, 157–158
overview of, 155, 183
Pattern Description guideline, 193–194
Pattern Harvest guideline, 194–196
Pattern Opportunity pattern, 186–188

INDEX 429

patterns for, 156–157
Recurring Solutions pattern, 188–190
searching for patterns in asset repository, 300
summary, 198
Update Existing Patterns guidelines, 196–197
Use Patterns to Find Patterns guideline, 302–303

Document Object Model (DOM), 91
Document Pattern guideline

applying, 116–117
packaging patterns and, 161
related patterns and guidelines, 252
summary, introduction, and explanation,

250–252
Document Pattern Relationships guideline

packaging patterns and, 161
related patterns and guidelines, 254
summary, introduction, and explanation,

252–254
Documentation

accessibility of. see Make Pattern
Documentation Easily Accessible guideline

of application at project end, 313
determining what to include in harvested

patterns, 195
Document Pattern guideline, 116–117
pattern implementation and, 246–247, 392
of relationships between patterns. see

Document Pattern Relationships guideline
tooling support for, 327
visual modeling of patterns. see Use Models in

Documenting Patterns guideline
DOM (Document Object Model), 91
Domain-Driven Patterns guideline

overview of, 156
related patterns and guidelines, 178
summary, introduction, and explanation,

176–178
Domain model

adding support for abstract classes, 84–85
analyzing, 103
reviewing/updating in envisioning iteration, 52–54

Domains
DSLs and patterns overlapping with, 270–271
of patterns in exemplar analysis, 203

DSL Model Template pattern
applying, 162
context, problem, forces, and solution, 265–267
example and related patterns and guidelines,

267–269
DSLs (domain specific languages)

benefits of, 349
Create a DSL guideline, 273–274

defined, 20–21
Design a DSL guideline, 275–277
developing based on UML Profile, 102–104
DSL Model Template pattern, 265–269
generic and top-down, 185
Integrated Patterns and DSLs pattern, 269–273
Meaningful Icons in a DSL guideline, 278–279
overview of, 265, 348–349
simplification and, 172
summary, 280
using with patterns, 155, 162–163
visual modeling with, 230
work products in PBE, 391

E
e-Business patterns, 47
Eclipse

Composite Cheat Sheet mechanism, 247–248
features for packaging related plug-ins, 117
mechanism for extension points, 216
plug-ins containing pattern sets, 249–250
Process Framework Composer and Rational

Method Composer, 135
rule of thumb for working with Eclipse

projects, 91
testing plug-ins, 243
UML pattern implementations as Eclipse

plug-in, 231
Eclipse Modeling Framework. see EMF (Eclipse

Modeling Framework)
Eclipse Process Framework, 144
Eclipse Process Framework Composer. see EPF

(Eclipse Process Framework) Composer
Economics of PBE

adopting PBE approach and, 325–326
costs of acquiring, supporting, and developing

patterns, 329–330
cultural change and, 329
enhancing practice methodologies, 328
ISV (independent software vendors) and, 332
IT organization and, 332
overview of, 319–320
pattern implementation and, 330–331
pattern selection criteria, 322–324
pattern source recommendations, 325
projects and, 331
SIs (system integrators) and, 331
sources of patterns for, 320–322
summary, 332–333
tooling and, 326–328
training and, 328–329

430 INDEX

Education resources, pattern selection criteria, 322
EJB (Enterprise JavaBeans)

Auction Management subsystem and, 91
identifying roles for Subsystem Façade pattern,

78
using for Business layer components, 58

Embedded Pattern Implementation Guidance
pattern

context, problem, forces, and solution, 246–247
documentation and, 117
example and related patterns and guidelines,

247–248
packaging patterns and, 161

Embedded Value pattern
dealing with one-to-one relationships between

objects, 63
used with Subsystem Façade pattern, 82

EMF (Eclipse Modeling Framework)
creating DSLs, 274
defining metamodels, 223
model-to-text pattern implementations and, 227
modeling UML front end with, 101
tooling options, 365
tools for implementing DSLs, 349

Enablement, in Oslec Software case study, 40–41
End-to-End Pattern Use pattern

context, problem, and forces in, 166
example, 168–169
as foundational patterns, 155
related patterns and guidelines, 169
solution, 167–168

Engineering, defined, 7
Enterprise Architect, from Sparx, 366–367
Enterprise integration patterns, applied to

LogoAuction application, 48
Enterprise JavaBeans. see EJB (Enterprise JavaBeans)
Enterprise service bus (ESB), 16
Entertainment industry, PBE examples, 16
Entities

dynamically building attributes for, 96
identifying roles for Subsystem Façade pattern, 78
managing many-to-many and one-to-one

relationships, 97
mapping, 107
working with entity-dependent elements, 92–93

Envisioning (iteration 0)
data architecture, 63–64
deployment architecture, 59–63
domain model, reviewing/updating, 52–54
elaborating architecture in, 55–56
evaluating candidate patterns, 66–69
functional requirements, 48–51

getting started, 46
logical architecture, 56–59
nonfunctional requirements, 55
overview of, 45
Pattern Search guideline, 47–48
recording patterns used, 65
roadmap for, 46
selecting candidate patterns, 65–66
summary, 69–70

EPF (Eclipse Process Framework) Composer
authoring processes via set of practices, 144
PBE Practice and, 135
as tooling option, 367

ESB (enterprise service bus), 16
Estimation, project estimation as organizational

issue, 332
Evaluate Candidate Patterns task, in pattern

identification, 396–397
Evocative Pattern Name pattern, 238
Examples, compared with case studies, 14–15
Exemplar Analysis pattern

applying to Subsystem Façade pattern, 77–79
context, problem, forces, and solution,

202–205
designing patterns, 158
example and related patterns and guidelines, 205

Exemplar Authoring
building exemplar analysis with, 228–229
creating JET component, 90, 92
EMF model generated by, 101
viewing subsystem-dependent elements, 94

Exemplars
analyzing, 77–79
characteristics of good, 350
defined, 20
detailed inspection of, 79–85
finding, 76–77
overview of, 349–350
testing, 241–242
tooling support for, 327–328
work products in PBE, 391

Experience, recurring solutions and, 189
Expertise, leveraging, 9, 314–316
Exposed Broker ESB pattern, 60–62
Extensibility, Pattern Implementation Extensibility

guideline, 159, 215–216
Extension management, 249
Extension points

Eclipse mechanism for, 216
Pattern Implementation Extensibility guideline

and, 215–216
External Pattern Thumbnail pattern, 238

INDEX 431

F
Façade pattern. see Subsystem Façade pattern
Façade role, 78
Factory patterns

Abstract Factory pattern, 24–25
Bean Factory pattern, 31–32

Feedback
asset repository supporting, 326
finding/using patterns and, 129
giving feedback and rating patterns, 300, 409
pattern specification and, 236
reviewing, 411–412

Find Project Patterns task
mapping to PBE phases, 140
in pattern identification, 395–396
summary of, 141

Findable Sections pattern, in pattern specification,
238

Finding project patterns. see Pattern identification
Fit criteria, in pattern selection, 323
Foreign Key Mapping pattern, 63
Formality, misconceptions regarding PBE, 339
Formats, pattern specification and, 236
Forward engineering, misconceptions regarding

PBE, 341–342
Foundational patterns and guidelines

Domain-Driven Patterns guideline, 176–178
End-to-End Pattern Use pattern, 166–169
guidelines, 156
overview of, 155, 165
Pattern Search guideline, 178–181
patterns, 155–156
Piecemeal Pattern Creation pattern, 169–171
Simple Solution Space pattern, 171–174
Single Pattern-Varied Use Cases pattern,

174–176
summary, 181

Functional requirements. see also Pattern Selection
Driven by Requirements guideline

in envisioning (iteration 0) phase, 48–51
gathering for LogoAuction application, 52–54

G
Gamma, Erich, 6–7
Gang of Four. see GoF (Gang of Four)
Getting started with PBE, 139–140
Globalization of development, benefits of PBE, 317
GMF (Graphical Modeling Framework), 349
GoF (Gang of Four)

how GoF patterns were developed, 337
Oslec Software development approach and, 40

overview of, 7
patterns applied to LogoAuction application, 47
popularity of GoF patterns, 17

GoF Pattern Specification template, 238
Governance

asset repository supporting, 327
benefits of pattern implementation, 9
benefits of PBE, 316–317
review process and, 300

Government departmental integration example,
16–17

Granularity, DSL design and, 276
Graphical Modeling Framework (GMF), 349
Guidelines, DSLs

Create a DSL guideline, 273–274
Design a DSL guideline, 275–277
Meaningful Icons in a DSL guideline, 278–279

Guidelines, foundational
Domain-Driven Patterns guideline, 176–178
Pattern Search guideline, 60, 178–181

Guidelines, generally. see PBE Patterns and
Guidelines

Guidelines, pattern consumption
Communicate Design with Patterns guideline,

127, 282–289
Design Solutions with Patterns guideline,

290–291
overview of, 163–164
Pattern Density guideline, 291–294
Pattern Selection Driven by Requirements

guideline, 59, 294–295
Refactor with Patterns guideline, 295–296
Select Large-Scope Patterns First guideline, 55,

296–299
Use an Asset Repository guideline, 299–301
Use Pattern Definitions to Understand Existing

Solutions guideline, 301–302
Use Patterns to Find Patterns guideline,

302–303
Guidelines, pattern creation

Automate Creation of Pattern
Implementations guideline, 234–235

Pattern Specification guideline, 74, 235–240
Pattern Testing guideline, 240–243

Guidelines, pattern design
Limited Points of Variability guideline,

209–211
Pattern Creation Lifecycle guideline, 212–215
Pattern Implementation Extensibility guideline,

215–216
Team Pattern Implementation Use guideline,

87, 99, 217–219

432 INDEX

Guidelines, pattern discovery
Determine Business Impact guideline, 190–193
Pattern Description guideline, 66, 193–194
Pattern Harvest guideline, 194–196
Update Existing Patterns guidelines, 196–197

Guidelines, pattern packaging
Document Pattern guideline, 116–117, 250–252
Document Pattern Relationships guideline,

252–254
Make Pattern Documentation Easily

Accessible guideline, 254–256
Package Related Patterns Together guideline,

256–258
Pattern Packaging guideline, 116, 258–260
Pattern Version guideline, 260–261
Use Models in Documenting Patterns

guideline, 261–262

H
Handbook of Software Architecture website, 17, 180
Harvesting patterns. see also Pattern Harvest

guideline, 175–176
Helm, Richard, 6–7
Hibernate pattern

Model-to-Text implementations, 32–33
timing reuse of assets and, 308

Hillside.net pattern collection, 180
HTML

content published as, 135
pattern specification in, 41

I
IBM

e-Business patterns from, 47
RSA (Rational Software Architect). see RSA

(Rational Software Architect)
RUP (Rational Unified Process) and RMC

(Rational Method Composer), 367–368
SOA Reference Architecture, 76

Idioms, pattern categories, 353–354
Imports, identifying entity roles for Subsystem

Façade pattern, 81
Increase Pattern Scope task, in pattern

identification, 397–398
Incremental development. see Iterative and

incremental development
Independent software vendors (ISV), 332
Inheritance

adding attributes supporting, 84–85
Class Table Inheritance pattern, 86, 127

Input models
analyzing, 103
creating, 226
in exemplar analysis, 204
stereotypes and, 103
tooling support for, 327
trade off between detail and intelligence in, 208
as work product in PBE, 392

Installations, tooling support for, 327
Instantiation, modeling for patterns, 284–287
Integrated Patterns and DSLs pattern

context, problem, forces, and solution,
269–272

example and related patterns and guidelines,
272–273

using DSLs with patterns, 162
Integration of processes, project risk and, 336
Interactive pattern implementation example, 247
Internationalization/localization, nonfunctional

requirements and, 55
ISV (independent software vendors), 332
IT organizations, economics of PBE and, 332
Items Management subsystem

areas of responsibility in LogoAuction
application, 57–58

designing, 76–77
Put Item Up for Auction use case, 71
refactoring for consistency with, 129–132
refactoring for synchronization with

Subsystem Façade pattern, 129–132
team ownership of, 123

Iterations, Oslec Software case study
consuming patterns. see Consuming patterns

(Iteration 3)
creating the pattern. see Creating patterns

(iteration 1)
envisioning. see Envisioning (iteration 0)
overview of, 42–43
packaging patterns. see Packaging patterns

(Iteration 2)
Iterative and incremental development

Oslec Software using in development
approach, 39

project risk and, 336
reapplying pattern implementation and, 226
refactoring and, 295
XP (Extreme Programming) and, 147

J
J2EE patterns, applying to LogoAuction

application, 47

INDEX 433

Java Emitter Template. see JET (Java Emitter
Template)

Java Persistence API. see JPA (Java Persistence API)
JavaServer Faces (JSF), 59
JET (Java Emitter Template)

creating JET component, 90
creating JET elements, 91–93
Model-to-Text implementations and, 31, 227–229
text-based artifacts created with, 86
tooling options, 365
unit-testing JET implementation, 99–100
updating JET elements templates, 93–99

Johnson, Ralph, 6–7
JPA (Java Persistence API)

JPA entities in Subsystem Façade pattern, 80–81
JPA manager provider by, 74
using for Data Access components, 58

JSF (JavaServer Faces), 59
JUnit tests, 79

K
Keywords, defined and compared with

stereotypes, 24

L
Layers pattern

structuring logical architecture with, 56
vs. singleton pattern, 292

Legal review, in pattern review process, 120
Lifecycle, of patterns. see Pattern Creation

Lifecycle guideline
Limited Points of Variability guideline

designing patterns, 159
related patterns and guidelines, 211
summary, introduction, and explanation,

209–211
Localization/internationalization, nonfunctional

requirements and, 55
Locate a Pattern task, in pattern consumption,

404–406
Log In use case, User Management subsystem, 124
Logical architecture, in envisioning iteration, 56–59
LogoAuction application (Oslec Software case study)

actors, 49–50
architecture, 55–56
data architecture, 63–64
deployment architecture, 59–63
domain model, reviewing/updating, 52–54
evaluating candidate patterns, 66–69
functional requirements, 48–51

logical architecture, 56–59
nonfunctional requirements, 55
Pattern Search guideline applied to, 47–48
recording patterns used, 65
selecting candidate patterns, 65–66
use cases, 50–51

M
Maintenance team, documentation and, 252
Make Pattern Available for Reuse task, in pattern

production, 402–403
Make Pattern Documentation Easily Accessible

guideline
packaging patterns, 161
related patterns and guidelines, 255–256
summary, introduction, and explanation,

254–255
Many-to-many relationships

entities, 97
Foreign Key Mapping pattern for, 63

Mapping capabilities, of RSA, 223–225
Maslow's Hammer, 13
Master-Detail pattern, in UML pattern

implementations, 28–29, 232–233
Maturity criteria, in pattern selection, 322
MDA (Model-Driven Architecture). see also MDD

(model-driven development)
creating patterns as alternative to, 183
overview of, 359–360
relationship to PBE, 360–361
tooling options, 366–367

MDD (model-driven development)
approaches to software development, 3
creating patterns as alternative to, 183
entertainment industry example, 16
levels of abstraction in, 214
leveraging models at multiple levels of

abstraction, 222
MDA as implementation of. see MDA (Model-

Driven Architecture)
overview of, 358–359
relationship to PBE, 359
SF (software factory) and, 362

Meaningful Icons in a DSL guideline
related patterns and guidelines, 279
summary, introduction, and explanation,

278–279
using DSLs with patterns, 163

Meet-in-the-middle design approach
DSL design and, 276–277
overview of, 206

434 INDEX

Meet-in-the-Middle pattern
context, problem, forces, and solution,

205–206
designing patterns, 158
example and related patterns and guidelines,

206–207
Metadata, pattern, 118–120
MetaEdit tool, for implementing DSLs, 349
Metamodels

defined, 20
model-to-model pattern implementation and,

222–223
overview of, 350–352

Metrics, capturing reuse metrics, 141, 143,
413–414

Microsoft
"Testing Software Patterns," 242
tools for implementing DSLs, 349

Microsoft Pattern Specification template, 239
Microsoft Visual Studio, 366
Misconceptions, regarding PBE

creativity eliminated, 335–336
design focus only, 340–341
forward engineering and, 341–342
models and modeling and, 342–343
over formalization, 339
overview of, 335
pattern identification and, 337–338
patterns everywhere and all the time, 338–339
project risk introduced, 336–337
summary, 343–344
tooling and, 343

Model Pattern Use task, in pattern consumption,
408–409

Model-to-Model Pattern Implementation pattern
automating pattern implementation, 208
context, problem, forces, and solution,

221–223
creating patterns, 159–160
example and related patterns and guidelines,

223–225
implementing for Subsystem Façade pattern,

105–109
overview of, 29
System Use Case to Service Collaboration

pattern, 29–31
types of pattern implementations, 23
unit-testing and, 109

Model-to-Text Pattern Implementation pattern
applying to Subsystem Façade pattern, 86
Bean Factory pattern, 31–32

combining pattern implementations, 34
context, problem, forces, and solution,

225–227
creating patterns, 160
example, 227–230
Hibernate pattern, 32–33
overview of, 31
related patterns and guidelines, 230
types of pattern implementations, 23

Model transformation, vs. pattern
implementation, 347–348

Model-View-Controller patterns. see MVC
(Model-View-Controller) patterns

Models. see also UML (Unified Modeling
Language)

for applying PBE, 10–11
benefits of DSLs for, 271–272
DSL design and, 277
mapping system use case model to service

model, 29–31
mapping with RSA, 86
metamodels. see Metamodels
misconceptions regarding PBE, 342–343
overview of, 352
pattern definitions, 287–289
pattern instantiations, 284–287
pattern use and, 408–409
synchronizing with code, 313
templates, 266
visual modeling of patterns. see Use Models in

Documenting Patterns guideline
working with patterns and, 20

Money pattern
replacing Quantity pattern, 64
used with Subsystem Façade pattern, 83

MVC (Model-View-Controller) patterns
JET following, 227
logical architecture of LogoAuction

application, 58–59
Oslec Software using in development

approach, 40

N
Naming guidance, model templates and, 268
No Cyclic Dependency pattern, UML pattern

implementations, 25–27
Nonfunctional requirements

in envisioning (iteration 0), 55
Pattern Selection Driven by Requirements

guideline, 294–295

INDEX 435

O
OCL (Object Constraint Language), 25–27
OMG (Object Management Group)

MDA (Model-Driven Architecture), 359–361
RAS (Reusable Asset Specification), 357

One-to-one relationships
Embedded Value pattern for dealing with, 63
entities and, 97

OpenUP
integrating PBE with, 147
phases of, 146–147

Operations, identifying entity roles for Subsystem
Façade pattern, 81–82

Opportunity identification. see Pattern
Opportunity pattern

Optional Elements When Helpful pattern, pattern
specification and, 237

Organization
integration of asset repository with

organizational uses, 249
internal organization as pattern source,

321–322, 324
project estimation and, 332

Organizational chart, for Oslec development
team, 39

Oslec Software case study
development process, 39–40
development team, 38–39
overview of, 37–38
pattern use and, 40
road map for and iterations in, 41–43
summary, 43
tool selection, collaboration, and enablement,

40–41

P
Package Related Patterns Together guideline

packaging patterns, 161
related patterns and guidelines, 258
summary, introduction, and explanation,

256–258
Packages

creating, 117–118
identifying entity roles for Subsystem Façade

pattern, 80–81
Packaging patterns

Document Pattern guideline, 116–117, 250–252
Document Pattern Relationships guideline,

252–254
Embedded Pattern Implementation Guidance

pattern, 246–248

guidelines for, 161–162
Make Pattern Documentation Easily

Accessible guideline, 118–119, 254–256
overview of, 155, 245–246
Package Related Patterns Together guideline,

256–258
Pattern Packaging guideline, 116, 258–260
Pattern Version guideline, 260–261
patterns for, 160–161
Provisionable Pattern Implementation pattern,

248–250
summary, 262–263
tooling support for, 249, 327
Use Models in Documenting Patterns

guideline, 261–262
Packaging patterns (Iteration 2)

applying to Subsystem Façade pattern to
Auction Management subsystem, 114–115

creating package, 117–118
Document Pattern guideline, 116–117
Make Pattern Documentation Easily

Accessible guideline, 118–119
metadata, 119–120
overview of, 113–114
Pattern Packaging guideline, 116
review process, 120–121
summary, 122

The Pattern Almanac, 180
Pattern Author role, in PBE Practice, 386–387
Pattern catalogs, 353
Pattern categories

leveraging, 309–310
list of, 154–155
overview of, 353–354

Pattern Creation Lifecycle guideline
designing patterns, 159
related patterns and guidelines, 215
summary, introduction, and explanation,

212–214
Pattern definitions, 301–302
Pattern Density guideline

consuming patterns, 163
related patterns and guidelines, 294
summary, introduction, and explanation,

291–293
Pattern Description guideline

discovering patterns and, 157
evaluating candidate patterns, 66
related patterns and guidelines, 194
summary, introduction, and explanation,

193–194
Pattern description, work products in PBE, 391

436 INDEX

Pattern Harvest guideline
guidelines for discovering patterns, 157
related patterns and guidelines, 196
summary, introduction, and explanation,

194–196
Pattern identification

evaluating candidate patterns, 66–68, 396–397
finding project patterns, 395–396
high-level overview of PBE, 138
increasing pattern scope, 397–398
mapping tasks to phases of PBE, 140–141
misconception that only a few people can

define patterns, 337–338
overview of, 394–395
phases of PBE, 139
recording patterns used, 65
selecting candidate patterns, 65–66
training for, 328
unit testing, 68–69

Pattern implementation
Abstract Factory pattern, 24–25
automating, 160, 168, 207–208, 234–235
Bean Factory pattern, 31–32
benefits of PBE, 310–311
building, 401–402
combining, 34
creativity and, 335
designing, 86–87
documentation in, 392
economics of PBE and, 330–331
guidance. see Embedded Pattern

Implementation Guidance pattern
Hibernate pattern, 32–33
Master-Detail pattern, 28–29
Model-to-Model implementations, 29
Model-to-Text implementations, 31
No Cyclic Dependency pattern, 25–27
overview of, 9–10
Requester Side Caching pattern

implementation, 34–35
roadmap for, 72
Service Provider pattern, 27–28
summary, 34–35
System Use Case to Service Collaboration

pattern, 29–31
Team Pattern Implementation Use guideline,

87, 99, 217–219
testing, 110–111, 241
tooling support for, 327
training for creating, 328
types of, 23–24
UML implementations, 24

using, 407–408
vs. transformations, 347–348
work products in PBE, 391

Pattern Implementation Author role, in PBE
Practice, 388

Pattern Implementation Extensibility guideline
designing patterns, 159
related patterns and guidelines, 216
summary, introduction, and explanation,

215–216
Pattern Implementation pattern

context, problem, forces, and solution, 207–208
designing patterns, 158–159
example and related patterns and guidelines,

208–209
Pattern Implementation Use guideline, 159
A Pattern Language (Alexander), 6, 298
Pattern languages, 354–355
Pattern Languages of Programs (PLoP), 337
Pattern management

capturing reuse metrics, 413–414
deploying pattern to asset repository, 410–411
high-level overview of PBE, 138
mapping tasks to phases of PBE, 140–141
overview of, 410
phases of PBE, 139
reviewing pattern feedback, 411–412
updating development process, 414–415

Pattern Opportunity pattern
context, problem, forces, and solution,

186–187
discovering patterns, 157
pitfalls, example, and related patterns and

guidelines, 188
for selecting candidate patterns, 63, 65

Pattern Packaging guideline
packaging patterns, 161
related patterns and guidelines, 260
reuse and, 116
summary, introduction, and explanation,

258–260
Pattern production

building pattern implementation, 401–402
creating pattern specification, 400–401
designing patterns, 399–400
documentation and, 252
high-level overview of PBE, 138
making patterns available for reuse, 402–403
mapping tasks to phases of PBE, 140–141
overview of, 399
phases of PBE, 139
testing patterns, 403

INDEX 437

Pattern Search guideline
applying to LogoAuction application, 47–48
applying to LogoAuction application

deployment architecture, 60
foundational guidelines, 156
related patterns and guidelines, 181
summary, introduction, and explanation,

178–181
Pattern Selection Driven by Requirements guideline

consuming patterns, 163
LogoAuction application and, 59
related patterns and guidelines, 295
summary, introduction, and explanation,

294–295
Pattern specification

creating, 400–401
creating for Subsystem Façade pattern, 87
creativity and, 335
in HTML, 41
overview of, 8–9
roadmap for, 72
Subsystem Façade pattern, 373–382
template, 41
training for writing, 328
work products in PBE, 392

Pattern Specification Author role, in PBE Practice,
387

Pattern Specification guideline
creating patterns, 160
PBE Patterns and Guidelines, 74
related patterns and guidelines, 240
summary, introduction, and explanation,

235–240
Pattern Tester role, in PBE Practice, 388
Pattern Testing guideline

creating patterns, 160
related patterns and guidelines, 243
summary, introduction, and explanation,

240–243
Pattern User role, in PBE Practice, 389
Pattern Users

accessibility of documentation. see Make
Pattern Documentation Easily Accessible
guideline

awareness of pattern relationships, 253
consuming multiple related patterns.

see Package Related Patterns Together
guideline

documentation assisting, 117, 250–252
influencing pattern output, 214
making patterns easy to find and use, 119

packaging patterns for easy consuming and
sharing, 258

pattern implementation guidance, 246–247
plug-ins and, 249–250
skills and expectations of, 168
validating patterns with end users, 211
versioning and, 260

Pattern Version guideline
packaging patterns, 162
related patterns and guidelines, 261
summary, introduction, and explanation,

260–261
Pattern Writing Checklist, 242–243
Patterns

candidate. see Candidate patterns
combining, 309–310, 328
consuming. see Consuming patterns
costs of acquiring, supporting, and developing,

329–330
creating. see Creating patterns
defined, 6–7
designing. see Designing patterns
discovering. see Discovering patterns
in envisioning iteration, 70
feedback regarding finding/using, 129
graphical view of, 370
identifying. see Pattern identification
implementing. see Pattern implementation
issues regarding use of, 17–18
managing. see Pattern management
metadata, 118–120
in Oslec Software case study, 40
packaging. see Packaging patterns
PBE Core Values, 11–12
producing. see Pattern production
review process, 120–121
selection criteria, 322–324
sources of, 320–322, 325
specifying. see Pattern specification
training for applying, 329
types of uses for, 282

Patterns, DSLs
DSL Model Template pattern, 265–269
Integrated Patterns and DSLs pattern, 269–273

Patterns, foundational
End-to-End Pattern Use pattern, 166–169
Piecemeal Pattern Creation pattern, 169–171
Simple Solution Space pattern, 171–174
Single Pattern-Varied Use Cases pattern,

174–176
Patterns of Software Architecture (POSA), 48

438 INDEX

Patterns, pattern creation
Model-to-Model Pattern Implementation

pattern, 221–225
Model-to-Text Pattern Implementation

pattern, 225–230
UML Pattern Implementation pattern,

230–234
Patterns, pattern design

Compound Pattern pattern, 200–202
Exemplar Analysis pattern, 202–205
Meet-in-the-Middle pattern, 205–207
Pattern Implementation pattern, 207–209

Patterns, pattern discovery
Antipattern pattern, 184–185
Pattern Opportunity pattern, 186–188
Recurring Solutions pattern, 188–190

Patterns, pattern packaging
Embedded Pattern Implementation Guidance

pattern, 246–248
Provisionable Pattern Implementation pattern,

248–250
PBE Patterns and Guidelines

applying to LogoAuction application, 47
categories of, 154–155
communication improvements and, 314
consuming patterns, 163–164
creating patterns, 159–160
creativity-related, 336
designing patterns, 158–159
discovering patterns, 156–158
DSL use with patterns, 162–163
in envisioning iteration, 70
expertise leveraged by, 316
foundational patterns, 155–156
globalization supported by, 317
governance supported by, 317
graphical view of guidelines, 371
for managing formality and overhead in

development, 339
in model for applying PBE, 11, 13
Oslec Software case study using, 42
overcoming bias against modeling or

association, 343
overcoming misconception regarding tooling

and vendors, 343
overcoming misconception that patterns are

for design only, 341
overcoming patterns everywhere and all the

time misconception, 339
overview of, 153
packaging patterns, 160–162
patten implementation and, 310–311

patterns that aid in getting more from patterns,
342

quality and, 311–312
relationship to other elements of PBE,

153–154
reuse and, 308–309
risk management-related, 337
summary, 164

PBE (Patterns-Based Engineering), introduction to
ABD (asset-based development) and, 4–6
benefits of PBE. see Benefits of PBE
core values of PBE, 11–12
creativity, constraints, rules, and assumptions,

18–19
defined, 153
definitions of important terms, 19–21
economic aspects of. see Economics of PBE
engineering defined, 7
entertainment industry example, 16
government departmental integration example,

16–17
high-level overview, 138
misconceptions. see Misconceptions, regarding

PBE
model for applying, 10–11
overview of, 3–4
pattern specifications and implementations, 8–10
Patterns and Guidelines, 13
Patterns-Based Engineering defined, 7–8
patterns defined, 6–7
practice of PBE, 13–14
reasons why PBE is needed, 17–18
software vendor examples, 15
summary, 21–22

PBE Practice
Asset Librarian role, 385–386
downloading, 137
enhancing practice methodologies, 328
introduction to, 135–136
leveraging PBE practices within other

processes, 143–144
main work products, 389–393
in model for applying PBE, 11
overview of, 13–14, 385
Pattern Author/Subject Matter Expert (SME)

roles, 386–387
pattern consumption tasks, 404–409
pattern identification tasks, 394–398
Pattern Implementation Author role, 388
pattern management tasks, 410–415
pattern production tasks, 399–404
Pattern Specification Author role, 387

INDEX 439

Pattern Tester role, 388
Pattern User role, 389
roles, 385
task order, 393–394

Perfect Pattern, types of antipatterns, 185
Performance, nonfunctional requirements in

LogoAuction application, 55
Perspectives, model templates and, 268
Phases, mapping to PBE tasks, 137–139, 394
Piecemeal Pattern Creation pattern

context, problem, and forces in, 169–170
example and related patterns and guidelines, 171
foundational patterns, 156
solution, 170–171

Place a Bid use case, Auction Management
subsystem, 113

PLoP (Pattern Languages of Programs), 337
Plug-ins

automating pattern implementation, 208
Eclipse mechanism for containing pattern sets,

249–250
testing, 243

Points of variability. see also Limited Points of
Variability guideline

in exemplar analysis, 203
Pattern Users influencing pattern output, 214

Portability, nonfunctional requirements in
LogoAuction application, 55

Portlet, 15
POSA (Patterns of Software Architecture), 48
Practice. see PBE Practice
Processes

integration of, 336
PBE as practice not process, 13–14
software development. see Software

development process
Product update, software vendor example, 15
Productivity

benefits of pattern implementation, 9
benefits of PBE, 307
Compound Pattern pattern and, 310
reuse increasing, 314–315

Projects
economics of PBE and, 331
risk and, 336–337

Proof of concept, for software vendor services
team, 15

Provide Feedback on a Pattern task, 409–410
Provisionable Pattern Implementation pattern

context, problem, forces, and solution,
248–249

creating pattern package and, 117

example and related patterns and guidelines,
249–250

packaging patterns, 161
Put Item Up for Auction use case

finishing implementation of, 124
Items Management and, 71

Q
Quality

beauty of software architecture and, 312
benefits of pattern implementation, 9
benefits of PBE, 311–312
testing and, 240

Quantifiable nature, of PBE, 309, 338
Quantity pattern

assigning units and amounts to currency, 54
Money pattern replacing, 64

Queries, identifying entity roles for Subsystem
Façade pattern, 81

R
RAS (Reusable Asset Specification), 357
Rational Method Composer, Eclipse, 135
Rational Method Composer (RMC), 366–367
Rational Software Architect. see RSA (Rational

Software Architect)
Rational Unified Process (RUP), 367–368
Readable References to Patterns pattern, 238
Recording patterns, used in envisioning (iteration 0),

65
Recovery, project risk and, 337
Recurring Solutions pattern

context, problem, forces, and solution,
188–190

discovering patterns, 157
example and related patterns and guidelines, 190

Refactor with Patterns guideline
consuming patterns, 163
related patterns and guidelines, 296
summary, introduction, and explanation,

295–296
Refactoring patterns, software solutions for, 175
Relationship to Other Patterns pattern, 238
Relationships

asset, 119
documenting pattern relationships. see

Document Pattern Relationships guideline
finding related patterns, 300
pattern selection criteria, 322
in pattern sets, 257

440 INDEX

Remove Item from Auction use case, 124
Repository, assets. see Asset repository
Repository, SCM (software configuration

management), 118
Requester Side Caching pattern implementation,

34–35
Requirements

functional. see Functional requirements
nonfunctional. see Nonfunctional

requirements
Requirements gathering, LogoAuction application

domain model, reviewing/updating, 52–54
functional requirements, 48–51
nonfunctional requirements, 55

Responsibility, areas of
distributing use cases by, 57–58
in domain model, 53

Reusable Asset Specification (RAS), 357
Reusable assets

overview of, 356
work products in PBE, 393

Reuse
capturing reuse metrics, 413–414
making patterns available for, 118–119,

402–403
packaging patterns and, 259
Pattern Packaging guideline and, 116
pattern review process and, 120
patterns and, 307
timing of, 307–308

Review Feedback task, in pattern management,
411–413

Review process
governance, 300
patterns, 118, 120–121

Risk, misconception that PBE introduces project
risk, 336–337

RMC (Rational Method Composer), 366–367
Role pattern

assigning areas of responsibility, 53–54
identifying roles for Subsystem Façade pattern,

78
Roles

Asset Librarian, 385–386
assigning elements to, 126
in envisioning iteration, 70
in exemplar analysis, 203–204
overview of, 385
Pattern Author/Subject Matter Expert (SME),

386–387
in pattern implementation, 72
Pattern Implementation Author, 388

Pattern Specification Author, 387
Pattern Tester, 388
Pattern User, 389
separation of, 166
In software development process, 137–139
in transitioning exemplar to pattern, 202
UML pattern implementations and, 231

RSA Model Mapping Authoring, 106
RSA (Rational Software Architect)

Abstract Factory pattern, 25
Architectural Discovery feature, 341
Exemplar Authoring, 228–229
JET (Java Emitter Template). see JET (Java

Emitter Template)
model-mapping capabilities of, 86, 223–225
No Cyclic Dependency pattern, 26
Software Services Profile, 267, 278–279
as tooling option, 365–366
tools selection in Oslec Software case study, 41
UML pattern implementations, 24, 231–232

Rule of Three, 189, 350
Rules, defined, 18–19
RUP (Rational Unified Process), 367–368

S
Scalability, nonfunctional requirements in

LogoAuction application, 55
SCM (software configuration management), 118
Scope

DSL design and, 276
increasing pattern scope, 397–398
leveraging pattern categories and, 309–310
Select Large-Scope Patterns First guideline,

296–298
Scrum

integrating PBE with, 145
project management framework, 144–145

Searching for assets, 326
Searching for patterns. see Discovering patterns
Security, nonfunctional requirements in

LogoAuction application, 55
Select Large-Scope Patterns First guideline

consuming patterns, 163
elaborating architecture for LogoAuction

application, 55
related patterns and guidelines, 298–299
summary, introduction, and explanation,

296–298
Selection criteria, patterns, 322–324
Self-Service pattern, 60–61
Semantic completeness, DSL design and, 276

INDEX 441

Service oriented architecture. see SOA (service
oriented architecture)

Service Provider pattern, UML pattern
implementations, 27–28

Services
Façade pattern and, 74
mapping system use case to service model, 29–31

Session Façade pattern, 73–74, 383
SF (software factory)

overview of, 361–362
relationship to PBE, 363

Simple Solution Space pattern
context, problem, and forces in, 171–172
example, 173–174
foundational patterns, 156
related patterns and guidelines, 174
solution, 172–173

Simplification
compound patterns and, 86, 257
DSLs and, 270–271
recurring solutions and, 190
Simple Solution Space pattern, 172

Single Pattern-Varied Use Cases pattern
context, problem, and forces in, 174–176
example and related patterns and guidelines, 176
foundational patterns, 156
solution, 174–176

Singleton pattern, vs. Layers pattern, 292
SIs (system integrators), 331
Sketches, DSL design and, 277
Skills, leveraging, 9, 314–316
SME (Subject Matter Expert), 72, 386–387
SOA (service oriented architecture)

creating SOA-based solutions, 267–269
Façade pattern and, 74
IBM SOA Reference Architecture, 76
Service Provider pattern and, 27

Software configuration management (SCM), 118
Software development process

authoring and, 168
difficulty of/approaches to, 3–4
getting started with PBE, 139–140
globalization of, 314–316
leveraging PBE practices within other

processes, 143–144
mapping tasks to phases, 140–141
OpenUP development process, 146–147
overview of, 135
PBE augmenting, 8
PBE Practice in, 135–137
PBE roles and tasks in context, 137–139
Scrum project management framework, 144–145

summary, 150
task summaries, 141–143
XP (Extreme Programming), 147–149

Software factory (SF)
overview of, 361–362
relationship to PBE, 363

Software Services Profile
RSA (Rational Software Architect), 267
UML modeling and, 278–279

Software vendors, PBE examples, 15
Solutions

recurring. see Recurring Solutions pattern
Use Pattern Definitions to Understand Existing

Solutions guideline, 301–302
Sources, of patterns

overview of, 320–324
recommendations, 325

Sparx Enterprise Architect, 366–367
Sprints, Scrum and, 144–145
Stand-Alone Single Channel application pattern,

60–61
Start Auction use case, 124
Stereotypes

compared with keywords, 24
documenting use of, 117
in Subsystem Façade pattern, 103–104

Storyboards, in DSL design, 277
Strategic impact criteria, in pattern selection, 322
Subject Matter Expert (SME), 72, 386–387
Subsystem Façade pattern

analyzing exemplar for, 77–79
applying and testing patterns in, 68–69
consuming (acquiring and using). see

Consuming patterns (Iteration 3)
context, problem, forces, and solution, 373–375
creating patterns. see Creating patterns

(iteration 1)
description of, 75
designing, 71
detailed inspection of exemplar for, 79–85
Eclipse feature, 118
envisioning. see Envisioning (iteration 0)
finding exemplar for, 76–77
implementing UML front end for, 101–102
instantiation of, 128
packaging. see Packaging patterns (Iteration 2)
pattern composition, 383
pattern implementation, 72
pattern included in, 86
patterns encapsulated in, 116
refactoring Items Management subsystem for

synchronization with, 129–132

442 INDEX

Subsystem Façade pattern (continued)
sample code, 375–382
understanding, 73–74

Subsystems
applying pattern implementation to, 126–128
Auction Management. see Auction

Management subsystem
Façade pattern. see Subsystem Façade pattern
installing pattern implementation to be used

with new, 125–126
Items Management. see Items Management

subsystem
searching for/using patterns in new, 125
User Management. see User Management

subsystem
Support criteria, in pattern selection, 322
Support materials, linking to, 247
System integrators (SIs), 331
System Use Case to Service Collaboration pattern,

29–31
Systematic nature, of PBE

as counter to patterns everywhere and all the
time, 338

overview of, 309
quality and, 311

T
Tasks

in envisioning iteration, 70
in exemplar analysis, 203
mapping to PBE phases, 140–141, 394
order of, 393–394
pattern consumption, 404–409
pattern identification, 394–398
pattern management, 410–415
pattern production, 399–404
in software development process, 137–139
In software development process, 141–143

Team Pattern Implementation Use guideline
applying to Subsystem Façade pattern, 87
leveraging, 99
related patterns and guidelines, 219
summary, introduction, and explanation,

217–219
Technical review, in pattern review process, 120
Templates

creating, 226
model templates, 266
pattern specification and, 41, 238–239

Test a Pattern task, in pattern production, 403–404
Test Data Reset pattern, 125

Test-driven development
applied to Auction subsystem, 105
applying to Subsystem Façade pattern, 87–89
XP and, 148–149

Test Input models, 88–89
Test project

identifying roles for Subsystem Façade pattern,
78–79

JET implementation for, 100–101
Testing

choosing solution for, 259
exemplar analysis and, 205
identifying roles for Subsystem Façade pattern,

79
pattern production tasks, 403
Pattern Tester role, 388
Pattern Testing guideline, 160, 240–243
unit testing, 68–69

"Testing Software Patterns" (Microsoft), 242
Text. see Model-to-Text Pattern Implementation

pattern
The Timeless Way of Building (Alexander), 6
Tooling

AndroMDA, 366
Eclipse Modeling Project, 365
economics of PBE, 326–328
End-to-End Pattern Use pattern and, 168
EPF (Eclipse Process Framework) Composer,

367
IBM RSA (Rational Software Architect),

365–366
IBM RUP (Rational Unified Process), 367–368
Microsoft Visual Studio, 366
misconceptions regarding PBE, 343
Oslec Software case study, 40–41
Sparx Enterprise Architect, 366–367

Top-down design, 206
Training

economics of PBE and, 328–329
enablement of development team for use of

PBE, 41
Transformations, model transformation vs.

pattern implementation, 347–348

U
UI (user interface), 28–29
UML Pattern Implementation pattern

context, problem, forces, and solution,
230–231

example, 231–233
related patterns and guidelines, 234

INDEX 443

UML pattern implementations
Abstract Factory pattern, 24–25
automating pattern implementation, 208
combining pattern implementations, 34
creating patterns, 160
Master-Detail pattern, 28–29
No Cyclic Dependency pattern, 25–27
overview of, 24
Service Provider pattern, 27–28
types of pattern implementations, 23
visual modeling with, 230–231

UML Profiles
pattern implementation and, 117
tools for implementing DSLs, 349

UML (Unified Modeling Language)
capturing models with, 352
creating DSLs, 274
DSL built on UML Profile, 102–104
implementing UML front end for Subsystem

Façade pattern, 101–102
modeling with, 16
Oslec Software using in development

approach, 39–40
pattern implementation and, 231
Software Services Profile, 278–279
tooling options, 365

Uninstalls, tooling support for, 327
Unit-testing

identifying roles for Subsystem Façade pattern, 79
JET implementation, 99–100
Model-Mapping component, 109
pattern implementation and, 68–69

Update Development Process task, in pattern
management, 414–415

Update Existing Patterns guidelines
related patterns and guidelines, 197
summary, introduction, and explanation,

196–197
Updates

tooling support for, 327
update cycle for patterns, 257
updating development process, 414–415

Updating Existing Patterns guideline, 158
Usability, nonfunctional requirements in

LogoAuction application, 55
Use a Pattern task

mapping to PBE phases, 140
in pattern consumption, 406–408
summary of, 142

Use an Asset Repository guideline
consuming patterns, 164

related patterns and guidelines, 301
summary, introduction, and explanation,

299–301
Use cases

distributing by areas of responsibility, 57–58
LogoAuction application, 50–51
mapping system use case to service model,

29–31
Use Models in Documenting Patterns guideline

packaging patterns, 162
related patterns and guidelines, 262
summary, introduction, and explanation,

261–262
Use Pattern Definitions to Understand Existing

Solutions guideline
consuming patterns, 164
related patterns and guidelines, 303
summary, introduction, and explanation,

301–302
Use Patterns to Find Patterns guideline, 164
User community, asset repository supporting, 119
User-friendliness, DSL design and, 276
User interface (UI), 28–29
User Management subsystem

applying pattern implementation to, 126–128
areas of responsibility in LogoAuction

application, 57–58
entities and projects, 128
Log In and Create Account use cases, 124
team ownership of, 123
testing newly developed pattern, 113

Users. see Pattern User

V
Validation, of patterns with end users, 211
Vendors

ISV (independent software vendors), 332
misconceptions regarding getting tools from

specific, 343
pattern selection criteria, 322
pattern sources, 320–321, 323

Versioning
guideline for. see Pattern Version guideline
pattern sets and, 257

Visual Forces pattern, 237
Visual Studio (Microsoft), 366
Visualization

harvested patterns and, 195–196
software solutions for, 175

Vlissides, John, 6–7, 337

444 INDEX

W
Waterfall patterns, 188
Wizards

automating pattern implementation, 208
forming foundation for exemplars, 214

X
XP (Extreme Programming)

integrating PBE with, 149
practices, 147–149

Xpand, 365

	Foreword
	Preface
	Chapter 1: Defining Patterns-Based Engineering
	Asset-Based Development
	Patterns
	Engineering
	Patterns-Based Engineering
	A Model for Succeeding with PBE
	Examples of PBE Results
	Why Do We Need PBE?
	Important Definitions
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

