

Programming in Objective-C 2.0
Copyright © 2009 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise,
without written permission from the publisher. No patent liability is assumed with respect to
the use of the information contained herein. Although every precaution has been taken in
the preparation of this book, the publisher and author assume no responsibility for errors or
omissions. Nor is any liability assumed for damages resulting from the use of the informa-
tion contained herein.

ISBN-13: 978-0-321-56615-7
ISBN-10: 0-321-56615-7

Library of Congress Cataloging-in-Publication Data:
Kochan, Stephen G.

Programming in Objective-C 2.0 / Stephen G. Kochan. -- 2nd ed.
p. cm.

ISBN 978-0-321-56615-7 (pbk.)
1. Objective-C (Computer program language) 2. Object-oriented

programming (Computer science) 3. Macintosh (Computer)--Programming.
I. Title.

QA76.73.O115K63 2009
005.1'17--dc22

2008049771

Printed in the United States of America

First Printing December 2008

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Sams Publishing cannot attest to the accuracy of this infor-
mation. Use of a term in this book should not be regarded as affecting the validity of any
trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possible,
but no warranty or fitness is implied. The information provided is on an “as is” basis. The
author and the publisher shall have neither liability nor responsibility to any person or entity
with respect to any loss or damages arising from the information contained in this book.

Bulk Sales
Pearson offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
international@pearsoned.com

Acquisitions Editor
Mark Taber

Development
Editor
Michael Thurston

Managing Editor
Patrick Kanouse

Project Editor
Mandie Frank

Copy Editor
Krista Hansing
Editorial Services,
Inc.

Indexer
Ken Johnson

Proofreader
Arle Writing
and Editing

Technical Editor
Michael Trent

Publishing
Coordinator
Vanessa Evans

Designer
Gary Adair

Compositor
Mark Shirar

2
Programming in

Objective-C

In this chapter, we dive right in and show you how to write your first Objective-C pro-
gram.You won’t work with objects just yet; that’s the topic of the next chapter.We want you
to understand the steps involved in keying in a program and compiling and running it.We
give special attention to this process both under Windows and on a Macintosh computer.

To begin, let’s pick a rather simple example: a program that displays the phrase “Pro-
gramming is fun!” on your screen.Without further ado, Program 2.1 shows an Objective-
C program to accomplish this task:

Program 2.1

// First program example

#import Foundation/Foundation.h>

int main (int argc, const char * argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
NSLog (@”Programming is fun!”);

[pool drain];
return 0;

}

Compiling and Running Programs
Before we go into a detailed explanation of this program, we need to cover the steps in-
volved in compiling and running it.You can both compile and run your program using
Xcode, or you can use the GNU Objective-C compiler in a Terminal window. Let’s go
through the sequence of steps using both methods.Then you can decide how you want
to work with your programs throughout the rest of this book.

10 Chapter 2 Programming in Objective-C

Note
These tools should be preinstalled on all Macs that came with OS X. If you separately in-
stalled OS X, make sure you install the Developer Tools as well.

Using Xcode
Xcode is a sophisticated application that enables you to easily type in, compile, debug, and
execute programs. If you plan on doing serious application development on the Mac,
learning how to use this powerful tool is worthwhile.We just get you started here. Later
we return to Xcode and take you through the steps involved in developing a graphical ap-
plication with it.

First, Xcode is located in the Developer folder inside a subfolder called Applications.
Figure 2.1 shows its icon.

Start Xcode. Under the File menu, select New Project (see Figure 2.2).

A window appears, as shown in Figure 2.3.

Figure 2.1 Xcode Icon

Figure 2.2 Starting a new project

11Compiling and Running Programs

Scroll down the left pane until you get to Command Line Utility. In the upper-right
pane, highlight Foundation Tool.Your window should now appear as shown in Figure 2.4.

Click Choose.This brings up a new window, shown in Figure 2.5.

Figure 2.3 Starting a new project: selecting the application type

Figure 2.4 Starting a new project: creating a Foundation tool

12 Chapter 2 Programming in Objective-C

We’ll call the first program prog1, so type that into the Save As field.You may want to
create a separate folder to store all your projects in. On my system, I keep the projects for
this book in a folder called ObjC Progs.

Click the Save button to create your new project.This gives you a project window
such as the one shown in Figure 2.6. Note that your window might display differently if
you’ve used Xcode before or have changed any of its options.

Now it’s time to type in your first program. Select the file prog1.m in the upper-right
pane.Your Xcode window should now appear as shown in Figure 2.7.

Objective-C source files use .m as the last two characters of the filename (known as its
extension).Table 2.1 lists other commonly used filename extensions.

Figure 2.5 Xcode file list window

Table 2.1 Common Filename Extensions

Extension Meaning

.c C language source file

.cc, .cpp C++ language source file

.h Header file

.m Objective-C source file

.mm Objective-C++ source file

.pl Perl source file

.o Object (compiled) file

13Compiling and Running Programs

Figure 2.6 Xcode prog1 project window

Figure 2.7 File prog1.m and edit window

14 Chapter 2 Programming in Objective-C

Returning to your Xcode project window, the bottom-right side of the window shows
the file called prog1.m and contains the following lines:

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[]) {

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

// insert code here...

NSLog (@”Hello World!”);
[pool drain];

return 0;

}

Note
If you can’t see the file’s contents displayed, you might have to click and drag up the bottom-
right pane to get the edit window to appear. Again, this might be the case if you’ve previously
used Xcode.

You can edit your file inside this window. Xcode has created a template file for you to
use.

Make changes to the program shown in the Edit window to match Program 2.1.The
line you add at the beginning of prog1.m that starts with two slash characters (//) is called
a comment; we talk more about comments shortly.

Your program in the edit window should now look like this:

// First program example

int main (int argc, const char * argv[])

{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

NSLog (@”Programming is fun!”);

[pool drain];

return 0;

}

Don’t worry about all the colors shown for your text onscreen. Xcode indicates values,
reserved words, and so on with different colors.

Now it’s time to compile and run your first program—in Xcode terminology, it’s called
build and run.You need to save your program first, however, by selecting Save from the File
menu. If you try to compile and run your program without first saving your file, Xcode
asks whether you want to save it.

15Compiling and Running Programs

Under the Build menu, you can select either Build or Build and Run. Select the latter
because that automatically runs the program if it builds without any errors.You can also
click the Build and Go icon that appears in the toolbar.

Note
Build and Go means “Build and then do the last thing I asked you to do,” which might be
Run, Debug, Run with Shark or Instruments, and so on. The first time you use this for a proj-
ect, Build and Go means to build and run the program, so you should be fine using this op-
tion. However, just be aware of the distinction between “Build and Go” and “Build and Run.”

If you made mistakes in your program, you’ll see error messages listed during this step.
In this case, go back, fix the errors, and repeat the process.After all the errors have been
removed from the program, a new window appears, labeled prog1 – Debugger Console.
This window contains the output from your program and should look similar to Figure
2.8. If this window doesn’t automatically appear, go to the main menu bar and select Con-
sole from the Run menu.We discuss the actual contents of the Console window shortly.

You’re now done with the procedural part of compiling and running your first pro-
gram with Xcode (whew!).The following summarizes the steps involved in creating a
new program with Xcode:

1. Start the Xcode application.

2. If this is a new project, select File, New Project.

3. For the type of application, select Command Line Utility, Foundation Tool, and
click Choose.

Figure 2.8 Xcode Debugger Console window

16 Chapter 2 Programming in Objective-C

4. Select a name for your project, and optionally a directory to store your project files
in. Click Save.

5. In the top-right pane, you will see the file prog1.m (or whatever name you assigned
to your project, followed by .m. Highlight that file.Type your program into the edit
window that appears directly below that pane.

6. Save the changes you’ve entered by selecting File, Save.

7. Build and run your application by selecting Build, Build and Run, or by clicking
the Build and Go Button.

8. If you get any compiler errors or the output is not what you expected, make your
changes to the program and repeat steps 6 and 7.

Using Terminal
Some people might want to avoid having to learn Xcode to get started programming
with Objective-C. If you’re used to using the UNIX shell and command-line tools, you
might want to edit, compile, and run your programs using the Terminal application. Here
we examine how to go about doing that.

The first step is to start the Terminal application on your Mac.The Terminal application
is located in the Applications folder, stored under Utilities. Figure 2.9 shows its icon.

Start the Terminal application.You’ll see a window that looks like Figure 2.10.

You type commands after the $ (or %, depending on how your Terminal application is
configured) on each line. If you’re familiar with using UNIX, you’ll find this
straightforward.

First, you need to enter the lines from Program 2.1 into a file.You can begin by creat-
ing a directory in which to store your program examples.Then you must run a text edi-
tor, such as vi or emacs, to enter your program:

sh-2.05a$ mkdir Progs Create a directory to store programs in
sh-2.05a$ cd Progs Change to the new directory
sh-2.05a$ vi prog1.m Start up a text editor to enter program
..

Figure 2.9 Terminal program icon

17Compiling and Running Programs

Figure 2.10 Terminal window

Note
In the previous example and throughout the remainder of this text, commands that you, the
user, enter are indicated in boldface.

For Objective-C files, you can choose any name you want; just make sure the last two
characters are .m.This indicates to the compiler that you have an Objective-C program.

After you’ve entered your program into a file, you can use the GNU Objective-C
compiler, which is called gcc, to compile and link your program.This is the general format
of the gcc command:

gcc –framework Foundation files -o progname

This option says to use information about the Foundation framework:

-framework Foundation

Just remember to use this option on your command line. files is the list of files to be
compiled. In our example, we have only one such file, and we’re calling it prog1.m.
progname is the name of the file that will contain the executable if the program compiles
without any errors.

We’ll call the program prog1; here, then, is the command line to compile your first
Objective-C program:

$ gcc –framework Foundation prog1.m -o prog1 Compile prog1.m & call it prog1
$

The return of the command prompt without any messages means that no errors were
found in the program. Now you can subsequently execute the program by typing the
name prog1 at the command prompt:

$ prog1 Execute prog1

18 Chapter 2 Programming in Objective-C

sh: prog1: command not found

$

This is the result you’ll probably get unless you’ve used Terminal before.The UNIX
shell (which is the application running your program) doesn’t know where prog1 is lo-
cated (we don’t go into all the details of this here), so you have two options: One is to
precede the name of the program with the characters ./ so that the shell knows to look in
the current directory for the program to execute.The other is to add the directory in
which your programs are stored (or just simply the current directory) to the shell’s PATH
variable. Let’s take the first approach here:

$./prog1 Execute prog1
2008-06-08 18:48:44.210 prog1[7985:10b] Programming is fun!

$

You should note that writing and debugging Objective-C programs from the terminal
is a valid approach. However, it’s not a good long-term strategy. If you want to build Mac
OS X or iPhone applications, there’s more to just the executable file that needs to be
“packaged” into an application bundle. It’s not easy to do that from the Terminal applica-
tion, and it’s one of Xcode’s specialties.Therefore, I suggest you start learning to use
Xcode to develop your programs.There is a learning curve to do this, but the effort will
be well worth it in the end.

Explanation of Your First Program
Now that you are familiar with the steps involved in compiling and running Objective-C
programs, let’s take a closer look at this first program. Here it is again:

// First program example

int main (int argc, const char * argv[])

{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

NSLog (@”Programming is fun!”);
[pool drain];

return 0;

}

In Objective-C, lowercase and uppercase letters are distinct.Also, Objective-C doesn’t
care where on the line you begin typing—you can begin typing your statement at any
position on the line.You can use this to your advantage in developing programs that are
easier to read.

The first line of the program introduces the concept of the comment:

// First program example

19Explanation of Your First Program

A comment statement is used in a program to document a program and enhance its
readability. Comments tell the reader of the program—whether it’s the programmer or
someone else whose responsibility it is to maintain the program—just what the program-
mer had in mind when writing a particular program or a particular sequence of statements.

You can insert comments into an Objective-C program in two ways. One is by using
two consecutive slash characters (//).The compiler ignores any characters that follow
these slashes, up to the end of the line.

You can also initiate a comment with the two characters / and *.This marks the be-
ginning of the comment.These types of comments have to be terminated.To end the
comment, you use the characters * and /, again without any embedded spaces.All charac-
ters included between the opening /* and the closing */ are treated as part of the com-
ment statement and are ignored by the Objective-C compiler.This form of comment is
often used when comments span many lines of code, as in the following:

/*

This file implements a class called Fraction, which

represents fractional numbers. Methods allow manipulation of

fractions, such as addition, subtraction, etc.

For more information, consult the document:

/usr/docs/classes/fractions.pdf

*/

Which style of comment you use is entirely up to you. Just note that you can’t nest the
/* style comments.

Get into the habit of inserting comment statements in the program as you write it or
type it into the computer, for three good reasons. First, documenting the program while
the particular program logic is still fresh in your mind is far easier than going back and re-
thinking the logic after the program has been completed. Second, by inserting comments
into the program at such an early stage of the game, you can reap the benefits of the com-
ments during the debug phase, when program logic errors are isolated and debugged. Not
only can a comment help you (and others) read through the program, but it also can help
point the way to the source of the logic mistake. Finally, I haven’t yet discovered a pro-
grammer who actually enjoys documenting a program. In fact, after you’ve finished de-
bugging your program, you will probably not relish the idea of going back to the program
to insert comments. Inserting comments while developing the program makes this some-
times tedious task a bit easier to handle.

This next line of Program 2.1 tells the compiler to locate and process a file named
Foundation.h:

#import <Foundation/Foundation.h>

This is a system file—that is, not a file that you created. #import says to import or in-
clude the information from that file into the program, exactly as if the contents of the file
were typed into the program at that point.You imported the file Foundation.h because it
has information about other classes and functions that are used later in the program.

20 Chapter 2 Programming in Objective-C

In Program 2.1, this line specifies that the name of the program is main:

int main (int argc, const char *argv[])

main is a special name that indicates precisely where the program is to begin execu-
tion.The reserved word int that precedes main specifies the type of value main returns,
which is an integer (more about that soon).We ignore what appears between the open
and closed parentheses for now; these have to do with command-line arguments, a topic we
address in Chapter 13,“Underlying C Language Features.”

Now that you have identified main to the system, you are ready to specify precisely
what this routine is to perform.This is done by enclosing all the program statements of the
routine within a pair of curly braces. In the simplest case, a statement is just an expression
that is terminated with a semicolon.The system treats all the program statements included
between the braces as part of the main routine. Program 2.1 has four statements.

The first statement in Program 2.1 reads

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

It reserves space in memory for an autorelease pool.We discuss this thoroughly in
Chapter 17,“Memory Management.” Xcode puts this line into your program automati-
cally as part of the template, so just leave it there for now.

The next statement specifies that a routine named NSLog is to be invoked, or called.The
parameter, or argument, to be passed or handed to the NSLog routine is the following string
of characters:

@”Programming is fun!”

Here, the @ sign immediately precedes a string of characters enclosed in a pair of dou-
ble quotes. Collectively, this is known as a constant NSString object.

Note
If you have C programming experience, you might be puzzled by the leading @ character.
Without that leading @ character, you are writing a constant C-style string; with it, you are
writing an NSString string object.

The NSLog routine is a function in the Objective-C library that simply displays or logs
its argument (or arguments, as you will see shortly). Before doing so, however, it displays
the date and time the routine is executed, the program name, and some other numbers
we don’t describe here.Throughout the rest of this book, we don’t bother to show this
text that NSLog inserts before your output.

21Explanation of Your First Program

You must terminate all program statements in Objective-C with a semicolon (;).This
is why a semicolon appears immediately after the closed parenthesis of the NSLog call.

Before you exit your program, you should release the allocated memory pool (and ob-
jects that are associated with it) with a line such as the following:

[pool drain];

Again, Xcode automatically inserts this line into your program for you.Again, we defer
detailed explanation of what this does until later.

The final program statement in main looks like this:

return 0;

It says to terminate execution of main and to send back, or return, a status value of 0.
By convention, 0 means that the program ended normally.Any nonzero value typically
means some problem occurred—for example, perhaps the program couldn’t locate a file
that it needed.

If you’re using Xcode and you glance back to your Debug Console window (refer to
Figure 2.8), you’ll recall that the following displayed after the line of output from NSLog:

The Debugger has exited with status 0.

You should understand what that message means now.
Now that we have finished discussing your first program, let’s modify it to also display

the phrase “And programming in Objective-C is even more fun!”You can do this by sim-
ply adding another call to the NSLog routine, as shown in Program 2.2. Remember that
every Objective-C program statement must be terminated by a semicolon.

Program 2.2

#import <Foundation/Foundation.h>

int main (int argc, const char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

NSLog (@”Programming is fun!”);
NSLog (@”Programming in Objective-C is even more fun!”);

[pool drain];
return 0;

}

22 Chapter 2 Programming in Objective-C

If you type in Program 2.2 and then compile and execute it, you can expect the fol-
lowing output (again, without showing the text that NSLog normally prepends to the out-
put):

Program 2.2 Output

Programming is fun!

Programming in Objective-C is even more fun!

As you will see from the next program example, you don’t need to make a separate call
to the NSLog routine for each line of output.

First, let’s talk about a special two-character sequence.The backslash (\) and the letter
n are known collectively as the newline character.A newline character tells the system to
do precisely what its name implies: go to a new line.Any characters to be printed after
the newline character then appear on the next line of the display. In fact, the newline
character is very similar in concept to the carriage return key on a typewriter (remember
those?).

Study the program listed in Program 2.3 and try to predict the results before you ex-
amine the output (no cheating, now!).

Program 2.3

#import <Foundation/Foundation.h>

int main (int argc, const char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

NSLog (@”Testing...\n..1\n...2\n....3”);
[pool drain];
return 0;

}

Program 2.3 Output

Testing...
..1
...2

....3

Displaying the Values of Variables
Not only can simple phrases be displayed with NSLog, but the values of variables and the
results of computations can be displayed as well. Program 2.4 uses the NSLog routine to
display the results of adding two numbers, 50 and 25.

23Displaying the Values of Variables

Program 2.4

#import <Foundation/Foundation.h>

int main (int argc, const char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

int sum;

sum = 50 + 25;
NSLog (@”The sum of 50 and 25 is %i”, sum);
[pool drain];

return 0;

}

Program 2.4 Output

The sum of 50 and 25 is 75

The first program statement inside main after the autorelease pool is set up defines the
variable sum to be of type integer.You must define all program variables before you can
use them in a program.The definition of a variable specifies to the Objective-C compiler
how the program should use it.The compiler needs this information to generate the cor-
rect instructions to store and retrieve values into and out of the variable.A variable de-
fined as type int can be used to hold only integral values—that is, values without decimal
places. Examples of integral values are 3, 5, –20, and 0. Numbers with decimal places, such
as 2.14, 2.455, and 27.0, are known as floating-point numbers and are real numbers.

The integer variable sum stores the result of the addition of the two integers 50 and
25.We have intentionally left a blank line following the definition of this variable to visu-
ally separate the variable declarations of the routine from the program statements; this is
strictly a matter of style. Sometimes adding a single blank line in a program can make the
program more readable.

The program statement reads as it would in most other programming languages:

sum = 50 + 25;

The number 50 is added (as indicated by the plus sign) to the number 25, and the re-
sult is stored (as indicated by the assignment operator, the equals sign) in the variable sum.

The NSLog routine call in Program 2.4 now has two arguments enclosed within the
parentheses.These arguments are separated by a comma.The first argument to the NSLog
routine is always the character string to be displayed. However, along with the display of
the character string, you often want to have the value of certain program variables dis-
played as well. In this case, you want to have the value of the variable sum displayed after
these characters are displayed:

The sum of 50 and 25 is

24 Chapter 2 Programming in Objective-C

The percent character inside the first argument is a special character recognized by the
NSLog function.The character that immediately follows the percent sign specifies what
type of value is to be displayed at that point. In the previous program, the NSLog routine
recognizes the letter i as signifying that an integer value is to be displayed.

Whenever the NSLog routine finds the %i characters inside a character string, it auto-
matically displays the value of the next argument to the routine. Because sum is the next
argument to NSLog, its value is automatically displayed after “The sum of 50 and 25 is”.

Now try to predict the output from Program 2.5.

Program 2.5

#import <Foundation/Foundation.h>

int main (int argc, const char *argv[])
{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
int value1, value2, sum;

value1 = 50;
value2 = 25;
sum = value1 + value2;

NSLog (@”The sum of %i and %i is %i”, value1, value2, sum);

[pool drain];
return 0;

}

Program 2.5 Output

The sum of 50 and 25 is 75

The second program statement inside main defines three variables called value1,
value2, and sum, all of type int.This statement could have equivalently been expressed
using three separate statements, as follows:

int value1;

int value2;

int sum;

After the three variables have been defined, the program assigns the value 50 to the
variable value1 and then the value 25 to value2.The sum of these two variables is then
computed and the result assigned to the variable sum.

25Exercises

The call to the NSLog routine now contains four arguments. Once again, the first argu-
ment, commonly called the format string, describes to the system how the remaining argu-
ments are to be displayed.The value of value1 is to be displayed immediately following
the phrase “The sum of.” Similarly, the values of value2 and sum are to be printed at the
points indicated by the next two occurrences of the %i characters in the format string.

Summary
After reading this introductory chapter on developing programs in Objective-C, you
should have a good feel of what is involved in writing a program in Objective-C—and
you should be able to develop a small program on your own. In the next chapter, you be-
gin to examine some of the intricacies of this powerful and flexible programming lan-
guage. But first, try your hand at the exercises that follow, to make sure you understand
the concepts presented in this chapter.

Exercises
1. Type in and run the five programs presented in this chapter. Compare the output

produced by each program with the output presented after each program.

2. Write a program that displays the following text:
In Objective-C, lowercase letters are significant.

main is where program execution begins.

Open and closed braces enclose program statements in a routine.

All program statements must be terminated by a semicolon.

3. What output would you expect from the following program?
#import <Foundation/Foundation.h>

int main (int argc, const char *argv[])

{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init;

int i;

i = 1;

NSLog (@”Testing...”);
NSLog (@”....%i”, i);
NSLog (@”...%i”, i + 1);
NSLog (@”..%i”, i + 2);

[pool drain];

return 0;

}

26 Chapter 2 Programming in Objective-C

4. Write a program that subtracts the value 15 from 87 and displays the result,
together with an appropriate message.

5. Identify the syntactic errors in the following program.Then type in and run the
corrected program to make sure you have identified all the mistakes:
#import <Foundation/Foundation.h>

int main (int argc, const char *argv[]);

(

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

INT sum;

/* COMPUTE RESULT //

sum = 25 + 37 - 19

/ DISPLAY RESULTS /

NSLog (@’The answer is %i’ sum);

[pool drain];

return 0;

}

6. What output would you expect from the following program?

#import <Foundation/Foundation.h>

int main (int argc, const char *argv[]))

{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];

int answer, result;

answer = 100;

result = answer - 10;

NSLog (@”The result is %i\n”, result + 5);

[pool drain];

return 0;

}

Index

Symbols

directive, 567

operator, 246

operator, 247

% (percent), 24

modulus operator, 104
& operator, pointers and, 283

&& (logical AND operator), 107

(*) indirection operator, 284

(++) increment operator, 292, 296-299

(—) decrement operator, 292, 296-299

= (single equal sign), if statement and, 106

== (double equal sign), if statement and,
106

? (question mark), conditional operator, 128

: (colon), conditional operator, 128

; (semicolon), 21

\ (backslash) in #define statement, 243

|| (logical OR operator), 107

A
absolute pathnames, 378

abstract classes, 183-184

abstract protocols, 234

accessor methods, 139-140

accumulators, 65

addCard: method, 356

addObject: method, 344, 373, 408

address books

creating, 345-356
looking up names in, 356-359
removing names from, 359-362
sorting entries, 362-365

address cards, creating, 345-354

address operator, pointers and, 283

AddressBook class

implementation file, 572-574
interface file, 570

AddressCard class, 411-412

implementation, 571
interface file, 569

addresses, memory

indirection operator, 302
pointers and, 301

adopting protocols, 231

alignment, justification, 84

alloc method, 39-40, 324

allocating memory, 166

allocF class method, as entry, 211-213

AND operator (&), 107

AND operator (bitwise), 68

AppKit (Application Kit) framework (Cocoa),
317, 456-457

application hierarchy diagram, 455

Application Services layer, application
hierarchy diagram, 455

applications, iPhone, 461

fraction calculator, creating, 476-490
archiving

basic data types, 445-446
custom archives, NSData object,

447-450
definition of, 435
Foundation framework and, 317
keyed archive, definition of, 437
NSKeyedArchiver class, 437-439

objects, 440
copying, 450-452

plists, 435-437
argc argument, main function and, 308

argument type declaration, functions and,
267-268

arguments

argc argument, main function and,
308

argv argument, main function and,
308

comma separator, 23
command-line arguments,

20, 308-310
fractions, passing as, 144
functions and, 263-265
methods, 36-37

local variables, 147
multiple arguments in, 141-143
no name arguments, 143

parameters, 20
zone arguments, 430

arguments method, 396

argv argument, main function and, 308

arithmetic, integer, 58-60

conversions, 62-63
modulus operator, 60-61
type cast operator, 63

arithmetic conversions, 538-539

arithmetic operators, 529

associative properties, 56
binary, 56
bit operators, 67

bitwise AND operator, 68
bitwise Exclusive-OR operator, 69
bitwise Inclusive-OR operator, 69
left shift operator, 71

580 address books

ones complement operator, 70-71
right shift operator, 72

precedence, 56-58
unary minus operator, 60

array elements, 256

array objects, 341-344, 362

address books, creating, 345-365
address cards, creating, 345-356

arrays, 241, 257

array elements, 256-260
character arrays, 259-260
declaring, 257
#define statements and, 241
defining, 256-258

number of elements, 259
unions and, 303

elements, passing functions/methods
to, 268-269

functions, passing to, 268-269
immutable arrays, 341
linear arrays, 260
manipulating, 256-258
methods, passing to, 268-269
multidimensional arrays, 260-262,

517-518
mutable arrays, 341
one-dimensional arrays, 260
operators and, 534
pointers to, 290-293, 536-537
single-dimension, 516
sorting, 362, 364-365
of structures, 278
two-dimensional arrays, 260-262
variable-length, 517

arrayWithCapacity: method, 342

arrayWithObjects: method, 342

ASCII format of character storage, 114

assignment operators, 64-67, 531

associative properties, arithmetic operators,
56

attributes dictionary, 380

auto keyword, 213

automatic local variables, 213, 265

autorelease messages, 324, 419

autorelease pools,
20, 323-326, 406, 418-419

B
basic data types, 514-515

binary arithmetic operators, 56

binding, dynamic, 183, 187

bit fields, 280-282

bit operators, 67, 280, 530-531

bitwise AND operator, 68
bitwise Exclusive-OR operator, 69
bitwise Inclusive-OR operator, 69
left shift operator, 71
ones complement operator, 70-71
right shift operator, 72

blank spaces, operators and, 109

blocks

enumerated data types, 218
of statements, 83

Bool data type, 73

BOOL special type, 127

Boolean variables, 123-126, 128

break statements, 95, 123, 557

switch statements and, 121
Build menu, Xcode, 15

built-in values, 127

C
C language in relation to Objective-C

language, 310

C-style strings, 296

581C-style strings

Calculator class, 115, 488-489

assignment operators and, 65-67
calling functions, 544-545

calls, routines, 20

case sensitivity, naming conventions, 34

categories, 165, 230

defining, 225-226, 551-552
instance variables and, 230
master class definition file, 230
methods

adding, 230
defining, 227-230
overriding, subclassing and, 230

number allowed, 230
object/category named pairs, 231
overriding methods, 230
protocols, adopting, 234
subclassing and, 230

cells, memory, 301

changeCurrentDirectoryPath: method, 386

char characters, unichar characters and, 326

char data type, 49-53

character arrays, 259-260

pointers and, 296
terminating null character and, 260

character constants, 511-512

character string constants, 512-513

character strings, 260

pointers to, 294-295
character variable operator, reading opera-

tors into, 117

character variables, unsigned, 222

characters

character storage,ASCII format, 114
newline, 22
as signed quantities, 222
terminating null character, 260

charPtr variable, 286

@class directive, 167, 171

class message, 196

class methods, 29, 35-36

class.h files, 133-134

classes

abstract classes, 183-184
AddressBook

implementation file, 572-574
interface file, 570

AddressCard
implementation file, 571
interface file, 569

Calculator, 115
assignment operators and, 65-67

categories, 165
defining, 551-552

class definition, 549-550
Complex, 187-190, 195
copy method, adding, 429-432
declarations, 133-138
definition, 30-32, 546

extending, 155-156
instance variables, 546
interface section, 546
method declarations, 547-549
property declarations, 546-547

extending, inheritance and, 162-174
Foundation, 250
Fraction, 30-32, 39, 101, 157, 195-197
grandchildren, 158
inheritance, extending classes and,

162-174
initializing, 205-207
message expressions, 555-556
messages, 28
methods, 28, 211

adding, 162-174

582 Calculator class

NSObject, 157-159
Object, 197
object definition, 554-555
object ownership, 171-174
object manipulation, 310-311
parent classes, 33
protocol definition, 552-553
questions about, 195-200
receivers, 28
Rectangle, 198-199
root classes, 157-158, 161
Square, 198-199
subclasses, 157

alternatives to, 235
XYPoint, 199

clauses, else, 110-111

Cocoa, 455

AppKit framework, 456-457
Cocoa Touch, 456-457
Foundation framework, 456-457
Objective-C development, 1
web resources, 577

code, comments, 14, 18-22

colon (:), conditional operator, 128

comma operators, 306-307, 533

command-line arguments, 20, 308-310

commands, gcc, 17

commas, in arguments, 23

comments, 14, 18-22, 509

debugging and, 19
Xcode, 14

compare method, 325, 330

compareNames: method, 364-365

compile time checking, 193

compiler directives, 507-508

compilers, interface files, 136

compiling, Macs and

Terminal window, 16-18
Xcode, 10-16

Complex class, 187-190, 195

Complex data type, 73

composite objects, 235-236

compound literals, 305, 538

compound relational expressions, formation
of, 107

compound relational test, 106-109

compound statements, 556

concatenation, character string constants,
512

conditional compilation, 250-251

conditional operator, 128-129, 532

conforming to protocols, 231

conformToProtocol: method, protocols and,
233

const keyword, 214, 523-524

constant character string objects, 296, 327

constant expressions, 49, 528

constants, 49

character string constants, 512-513
enumeration constants, 513
floating-point, 51, 510
integers, 510

containsObject: method, 360, 373

contentsAtPath: method, 384

continue statements, 96, 557

conversions

arithmetic, 538-539
data types, 220-222, 538-539
floating-point numbers, 62-63
integers, 62-63

convertToNum: method, 101-104

convertToString: method, 488

coordinates, XYPoint class and, 166

583coordinates, XYPoint class and

copy method, 424-425

classes, adding to, 429-432
immutable object and, 433

copying. See also copy method

deep copy, 426-428
files, NSProcessInfo class, 393-396
fractions, 429-432
mutable copy, 424-425
objects, 423-425

via archiver, 450-452
deep copies, 451-452
getter method and, 432-434
setter methods and, 432-434

shallow copy, 426-428
copyPath:toPath: method, 405

copyPath:toPath:handler: method, 383, 393,
397

copyWithZone: method, 430-434

Core Services, application hierarchy dia-
gram, 455

count class method, as entry, 211-213

countForObject: method, 374

Cox, Brad J., 1

createFileAtPath:contents:attributes:
method, 384

creating iPhone application project, 461,
463

code, entering, 463, 466
interface, designing,

467-468, 471-472, 476
currentDirectory: method, 391

custom archives

NSData object, 447-450
writeToFile:atomically: messages, 449

D
data encapsulation, 44-47

data storage, 383

data type conversions, 220-222

data types, 49

basic data types, 55, 514-515
Bool, 73
char, 49, 51-53, 222
Complex, 73
conversions, 538-539
derived data types, 516

arrays, 516-518
pointers, 521-522
structures, 518-520
unions, 520-521

double, 49, 51
enumerated data type, 205, 522-523

keyword enum, 215-218
float, 49, 51
id, 55, 191-194
Imaginary, 73
int, 49-50
modifiers, 523-524
qualifiers, 53-55
storage sizes, 50

dataValue variable, 192

dealloc method, 417

overriding, 179
debugging

comments and, 19
statements, 251

declarations, 513

implementation files, 133-138
interface files, 133-138
@interface section, 133-134
of methods, 37

584 copy method

decodeObject:forKey: method, 440

decoding

basic data types, 445-446
objects, 440

decoding methods, writing, 440-445

decrement operator (—), 83, 292, 296-299,
531

deep copy, 426-428, 451-452

defaultManager messages, 380

#define statement, 239-241, 562-564

arguments, 243
arrays and, 241
backslash (\) character, 243
constant values and, 241
defined names, 241-245
defined names and, 241
macros, 244-245

operator and, 246
operator and, 247

placement of, 240
preprocessor and, 239-241
syntax, 240

defined names, 241-245

deleteCharactersInRange: method, 336

deleting names from address books,
359-362

denominator integer instance variable, 101

derived data types, 516

arrays
multidimensional, 517-518
single dimension, 516
variable-length, 517

pointers, 521-522
structures, 518-520
unions, 520-521

description method, 374

designated initializer, 206

designing interface for iPhone application
project, 467-468, 471-472, 476

device drivers, application hierarchy
diagram, 455

dictionaries

attributes dictionary, 380
enumerations, 368-369
immutable, 367
mutable, 367
plists, creating from, 436

dictionary objects, 367-369

dictionaryWithObjectsAndKeys: method,
368-369

digraph characters, 505

directives, 507-508

instance variables, scope control, 208
@package directive, 208
@private directive, 208
@protected directive, 208
@protocol directive, 233
@public directive, 208
@selector directive, 197

directories

contents, enumerating, 387-389
home directories (~), 378
managing via NSFileManager,

380-382, 405
basic directory operations, 385-386
defaultMessage messages, 380
enumerating directory contents,

387-389
methods of, 379, 384-385
NSData class, 383-384

root directories, 378
directoryContentsAtPath: method, 387, 389

dispatch tables, 301

divide: method, 120

do statements, 94-95, 557

585do statements

do-while loops, 344

doesNotRecognize: method, 198

dot operator, 271

properties, accessing via, 140
double data type, 49-51

dynamic binding, 183, 187, 191-193

dynamic typing, 187, 192, 195-196

E
#elif preprocessor statement, 252

else clause, 110-111, 119

else if statement, 111-114, 117-120

conditional operator and, 129
n-valued logic decision and, 111

#else statement, 250-251

encodeObject:forKey: method, 440, 442

encodeWithCoder: method, 440, 442

encoding

basic data types, 445-446
objects, 440

encoding methods, writing, 440-445

#endif statement, 250-251

enumerated data type, 522-523

blocks and, 218
definition of, 205
enum keyword, 215-218

enumeration

constants, 513
dictionaries, 368-369
directory contents, 387-389
identifier, 215-218

enumerationAtPath: method, 389

enumeratorAtPath: method, 387

#error directive, 564

escape sequences, 511

exception handling, 200-202, 561

Exclusive-OR operator (bitwise), 69

exponents, floating-point values, 51

expressions

compound relational expressions,
formation of, 107

constant expressions, 49, 528
lvalues, 524
message expressions, 555-556
operators, 524-527

extending classes, inheritance and, 162-174,
181-183

extensions, filenames, 12

extern keyword, 209-212

external global variable, 209

external variable, 209-211

definition of, 209
extern keyword, 209-212
static keyword, 211-213

F
factory methods, 29

fast enumeration, 354-356

Fibonacci numbers, 257-258

fields, bit fields, 282

fileAttributesAtPath:traverseLink: method,
380, 382

fileExistsAtPath: method, 389

fileHandleForUpdatingAtPath: method, 398

fileHandleForWritingAtPath: method, 398

filenames extensions, 12

files

basic operations of, 397-402
class.h, 133-134
copying, NSProcessInfo class, 393-396
include files, 250
linking, 378
managing via NSFileManager,

380-382, 405

586 do-while loops

basic directory operations, 385-386
defaultMessage messages, 380
enumerating directory contents,

387-389
methods of, 379, 384-385
NSData class, 383-384

master class definition file, categories
in, 230

naming, 12
NSFileHandle class, 399-402

methods of, 378, 397-398
opening, 378
pathnames, 378

NSPathUtilities.h, 389-396
float data type, 49, 51

floating constants, hexadecimals, 51

floating-point constants, 51, 510

floating-point numbers, 23, 62-63

for loops, execution order, 81

for statement, 78-89, 557

keyboard input, 84-86
loop variants, 88-89
nested loops, 86-88
terminal input, 85-86

format strings, 25

forwarding, 162

Foundation Framework, 317

archiving and, 317
array objects, 341-344

address book creation, 345-365
address card creation, 345-356

Cocoa, 456-457
dictionary objects, 367-369
initialization methods and, 206
Mac documentation, 317-319
methods

copy method, 424-425
mutableCopy: method, 424-425

mutable strings, 333-337
NSCountedSet class, 373
number objects, 322-326
protocols and, 231
set objects, 370-374
string objects, 326-340
typedef statement and, 219

Foundation library, NSLog function, 327

Foundation string class, 250

fraction calculator application, creating for
iPhone, 476-480

Calculator class, 488-489
Fraction class, 485-488
user interface, designing, 490
view controller, defining, 480-485

Fraction class,
30-32, 39, 101, 157, 195-197, 485-488

class method, 211-213
converToNum: method, 101-104
copy method, adding, 429-432

fractions

adding, 144-146
arguments, passsing as, 144
copying, 429-432
referencing, 145

frameworks, defining, 3

function calls, 311

functions, 543

argument types, declaring, 267-268
arguments, 263-265
arrays, passing, 268-269
calling, 544-545
definitions, 543-544
local variables, 263-265
main, 262-263, 308
multidimensional array element,

passing, 270

587functions

pointer to array, passing to, 293-294
pointers, 300-301, 545

as argument, 301
dispatch tables, 301
returning as result, 288-289

printMessage, 262-263
prototypes, declaring, 267
qsort function, 301
results, returning, 265-266
return types, declaring, 267-268
sign, 111
static functions, 268
storage class, 540
values, returning, 265-266

G
garbage collection (memory management),

420

gcc command, 17

generic pointer type, id type, 311

getter methods, 46, 432-434

global structure definition, 276

global variable, 209-211

goto statements, 306, 558

grandchildren (classes), 158

GUI (graphical user interfaces), 3

H

headers, precompiled, 321

hexadecimals, floating constants, 51

home directories (~), 378

I

id data type, 55, 191-194, 311

id object declaration, 554-555

identical objects, 360

identifiers, 506

directives, 507-508
enumeration identifier, 215-218

keywords, 506-507
predefined, 509
universal character names, 506

if statement, 99-104, 558

= (equal sign) and, 106
nested, 109-111
satisfied conditions, 125

#if statement, 252, 564-565

if-else statement, 104-106

#ifdef statement, 250-251, 565

#ifndef statement, 250-251, 565

Imaginary data type, 73

immutable arrays, 341

immutable dictionaries, 367

immutable objects, 328-332

immutable strings, 426-427

implementation dependency, 50

implementation files

AddressBook class, 572-574
AddressCard class, 571
Fraction.m, 136

@implementation section (object-oriented
programming), 32, 37-38

implementation section, class definition,
549

#import statement, 247-250, 565-566

include files, 250

#include statement, 247-250, 566

Inclusive-OR operator (bitwise), 69

increment operator (++), 83, 292, 296-299,
531

index number, 256

indexOfObject: colon, 360

indirection, pointers and, 283

indirection operator (*), 284

pointers, memory address and, 302
informal protocols, 234-235

588 functions

inheritance

extending classes, 162-174
instance variables, 181-183, 208
methods, 161

adding to classes, 162-174
determining which method is

selected, 177-179
overriding, 175-176, 179

root classes, 157-158, 161
inherited methods, 161

init method, 40

initialization

array elements, 258-259
character array, pointers and, 296
classes, 205-207
instance variables, 206
methods, 206
structures, 277
two-dimensional arrays, 261-262

initialize method, 207

initializers, designated, 206

initVar: method, 158

initWithCoder: method, 440, 442

initWithName: method, 352, 354

insertString:atIndex: method, 336

installing iPhone SDK, 459

instance methods, 35-36

instance variables, 33, 35, 44, 541-542

accessing, 44-47
categories and, 230
declarations, 546
extending classes through inheritance,

181-183
getters, 46
inherited, 208
initialization, 206
reference counting, 411-417

scope, 208
setters, 46
in structures, 310-311

instances

defining, 27
methods, 28-29

int data type, 49-50

integer arithmetic, 58-60

conversions, 62-63
modulus operator, 60-61
type cast operator, 63

integer instance variables, 101

integers, 510

integral promotion, 539

interface, designing for iPhone application
project, 467-468, 471-472, 476

Interface Builder, 460

interface files, 134

AddressBook class, 570
AddressCard class, 569
compilers and, 136
extending, 155-156

interface section, class definition, 546

@interface section (object-oriented
programming), 32

class declarations, 133-134
instance variables, 33-35
methods, 33-37
names, choosing, 33-34
parent classes, 33

intersect: method, 373

intPtr variable, 283, 285

iPhone

application, creating, 461-463
code, entering, 463, 466
interface, designing,

467-468, 471-472, 476

589iPhone

application templates, 461
Cocoa Touch, 456-457
fraction calculator application,

creating, 476-480
Calculator class, 488-489
Fraction class, 485-488
user interface, designing, 490
view controller, defining, 480-485

Objective-C development, 2
web resources, 578

iPhone SDK, installing, 459

iPhone simulator, 460

isa member, 310

isEqualToNumber: method, 325

isEqualToString: method, 330

J - K

justification, right justification, 84

keyboard input, for loops, 84-86

keyed archives, definition of, 437

keywords, 506-507

const, 214, 523-524
enum, 215-218
restrict, 523-524
volatile, 523-524

L
labels, 306

language constructs

else if statement, 111-114, 117-120
if statement, 99-104
if-else statement, 104-106

lastPathComponent: method, 391

left shift operator, 71

length method, string objects, 330

#line directive, 566

linear arrays, 260

linking files, 378

LinuxSTEP development environment,
Objective-C development, 1

literals, compound, 305, 538

local files, quotes, 137

local structure definition, 276

local variables, 146-147

auto keyword, 213
functions and, 263, 265
method arguments, 147
static keyword, 147-149, 265

logical AND operator (&&), 107

logical negation operator, 126

logical operators, 529

logical OR operator (||), 107

logical right shift operators, 72

long long qualifier, 53-54

long qualifier, 53-54

lookup: method, 356-362

loop conditions, 79

loop variable, 125

loops

break statement, 95
continue statement, 96
do loops, 94-95
do-while loops, 344
for loops, 78-89

execution order, 81
keyboard input, 84-86
nested, 86-88
terminal input, 85-86
variants, 88-89

while loops, 89-93
lowercaseString: method, 330

lvalues, expressions, 524

590 iPhone

M
machine dependency, 50

Macintosh Foundation framework, documen-
tation, 317, 319

macros, 244-245

operator and, 246
operator and, 247
#define statments and, 244-245

Macs

Cocoa development environment,
Object-C development, 1

compiling and
Terminal window, 16-18
Xcode, 10-16

iPhone, Objective-C development, 2
main function, 308

mantissa, floating-point values, 51

matrixes, 260

memory, 405

addresses, 301-302
allocating, 166
autorelease pools, 20, 323-326, 406

example of, 418-419
cells, 301
garbage collection, 420
leakage, 153
management rules, summary of,

419-420
reference counting

instance variables, 411-417
objects, 407-409
strings, 409-411, 423

releasing objects, 338-340
uses, 301

message expressions, 311, 555-556

messages, 28, 196

methods, 33

adding to classes, 162-174
arguments, 36-37

local variables, 147
multiple, 141-143
no name arguments, 143

arrays, passing, 268-269
categories, defining, 227-230
class methods, 29, 35-36, 211-213
conformToProtocol, protocols and,

233
convertToNum, 101-104
copy method, immutable objects and,

433
declarations, 37, 547-549
decoding methods, writing, 440-445
defining, 37

class definition, 549-550
protocols and, 232

determining which method is
selected, 177-179

doesNotRecognize: method, 198
encoding methods, writing, 440-445
factory methods, 29
as functions, 311
getter methods, 46, 432-434
inherited methods, 161
inheritence, 161
initialization methods, 206
instance methods, 28-29, 35-36
multidimensional array element,

passing, 270
objects, allocating/returning, 150-154
overriding, 175-176

dealloc method, 179
release methods, 179-180
subclassing categories and, 230

591methods

perform method, 197
pointers, returning as result, 288-289
return values, 36
setOrigin: method, 172, 179
setter methods, 46, 432-434
synthesized accessor methods, 550

module, definition of, 207

modulus operator, 60-61, 104

movePath:toPath: method, 382, 405

movePath:toPath:handler: method, 386

multibyte characters, character string
constants, 512

multidimensional arrays,
260-262, 270, 517-518

multiply method, 67

mutable arrays, 341

mutable dictionaries, 367

mutable objects, 328-332

mutable strings, 333-337, 426-427

mutableCopy: method, 424-425, 428

N
name definitions, 241-245

named pairs, object/category, 231

names

address books
looking up in, 356-359
removing from, 359-362
sorting in, 362-365

files, 12
naming conventions, 33-34

navigation-based iPhone application
templates, 462

negation operator, 126

nested if statement, 109-111

nested loops, for loops, 86-88

newline character, 22

NEXTSTEP development environment,
Objective-C development, 1

NSArray class, methods of, 366

NSCoding protocol, 440

NSCopying protocol, 452

NSCountedSet class, 373

NSData class, 383-384

custom archiving, 447-450
NSDictionary class, methods of, 369

NSFileHandle class, 399-402

methods of, 378, 397-398
NSFileManager, 380-382

defaultMessage messages, 380
directories

basic operations of, 385-386
enumerating contents of, 387-389

methods of, 379, 384-385
NSData class, 383-384

NSHomeDirectory function, 391

NSKeyedArchiver class, archiving with,
437-439

NSLog function, 20, 327

% (percent) character, 24
NSMutableArray class, methods of, 366

NSMutableArray method, 362

NSMutableDictionary class, methods of, 370

NSMutableSet class, methods of, 374

NSMutableString class, 328, 338, 340, 411

NSNumber class, 322-324, 326

NSNumber objects, 324-325, 408

NSOBject class, 157, 159

NSPathUtilities.h, 389-391

functions of, 393
methods of, 392-393
NSProcessInfo class, 393-396

NSProcessInfo class, 393-396

NSSet class, methods of, 374

592 methods

NSString class, 338-340, 410

NSTemporaryDirection function, 391

null character, 260

null statements, 306, 559

number objects, 322-326

numberOfDays function, 277-278

numbers

floating point, 23
index number, as reference, 256
real numbers, 23
subscript, as reference, 256
triangular, 77
truncated numbers, 62-63

numerator integer instance variable, 101

O
Object class, 197

object variables, as pointer variables, 311

object-oriented programming, 28, 282

classes
defining, 30-32
fractions and, 30-32
messages, 28
receivers, 28

@implementation section, 32, 37-38
instances, 27-29
@interface section, 32

instance variables, 33-35
methods, 33-37
name selection, 33-34
parent classes, 33

methods, 28-29
objects, defining, 27
program section, 32, 38-44

object/category named pairs, 231

objectAtIndex: method, 342, 428

objectForKey: method, 368

Objective-C

development of, 1
as procedural language, 2
web resources, 576

objects

array objects, 341-344
address book creation, 345-365
address card creation, 345-356

assigning, 423, 428
classes, ownership, 171-174
composite objects, 235-236
constant character string objects, 513
copying, 423-425

deep copies, 426-428, 451-452
getter methods and, 432-434
setter methods and, 432-434
shallow copying, 426-428
via archiver, 450-452

defining, 27, 554-555
dictionary objects, 367-369
id object, declaration, 554-555
immutable objects, 328-332

copy method and, 433
memory release, 338-340
methods, allocating/returning,

150-154
mutable copying, 424-425
mutable objects, 328-332
number objects, 322-326
reference counting, 407-409
set objects, 370-374
Square object, 196
state, 28
string objects, 326-340

octal notation, int data type, 50

593octal notation, int data type

one-dimensional arrays, 260

ones complement operator, 70-71

ONESTEP development environment,
Objective-C development, 1

OpenGL ES iPhone application templates,
462

opening files, 378

operations

increment operation, 297
on pointers, 300-301

operators, 524-527

& operator, pointers and, 283
address operator, pointers and, 283
arithmetic, 529

associative properties, 56
binary, 56
bit operators, 67-72
precedence, 56-58
type cast operator, 63

arrays and, 534
assignment operators, 64-67, 531
bit operator, 280
bitwise operators, 530-531
blank spaces and, 109
comma operator, 306-307, 533
conditional operator, 128-129, 532
decrement operator (—), 83, 292,

296-299, 531
dot operator, 271
increment operator (++), 83, 292,

296-299, 531
indirection operator (*), 284
logical AND operator (&&), 107
logical negation operator, 126
logical operators, 529
logical OR operator (||), 107
modulus, 60-61, 104

pointers and, 535-537
post-increment operator, 297-298
pre-increment operator, 297-298
reading into character variable

operator, 117
relational operators, 80, 530
sizeof operator, 307-308, 533
structures and, 534-535
ternary operator, 128
type cast operators, 532
unary minus operator, 126
unary operator, pointers and, 283

OR operator (||), 107

origin values, storing as separate, 166

outlets, 464

overriding methods, 175-176

categories, subclassing and, 230
dealloc method, 179
release method, 179-180
super keyword, 179-180

P
@package directive, 208

parent classes, 33

parentheses around condition operators,
128

pathComponents: method, 392

pathExtension: method, 391

pathnames

absolute pathnames, 378
NSPathUtilities.h, 389-391

functions of, 393
methods of, 392-393
NSProcessInfo class, 393-396

relative pathnames, 378
percent (%) character, 24

perform method, 197

594 one-dimensional arrays

plists

archiving with, 435-437
dictionaries, creating from, 436

pointers, 39, 283-284, 521-522

& operator and, 283
address operator and, 283
arrays and, 290-293, 536-537
character arrays and, 296
character strings and, 294-295
charPtr variable, 286
constant character strings and, 296
decrement operator (—),

292, 296-299
definition of, 283
function pointers, 545
functions and, 300-301

dispatch tables, 301
passing to, 288-289

increment operator (++),
292, 296-299

indirection and, 283
intPtr variable, 283, 285
memory addresses and, 301-302
methods, passing to, 288-289
operations, 300-301
operators and, 535-537
passing as arguments, 288-289
post-increment operator, 297-298
pre-increment operator, 297-298
structures and, 287-288, 537
types, id type, 311
unary operator and, 283

polymorphism, 187-192

positive integers, prime numbers and, 123

post-increment operator, 297-298

pound sign (#), preprocessor and, 239

#pragma directive, 566

pre-increment operator, 297-298

precompiled headers, 321

predefined identifiers, 509, 567

preprocessors

conditional compilation, 250-251
defining, 239, 242
directives, 562

#, 567
#define, 239-241, 562-564
#error, 564
#if, 564-565
#ifdef, 565
#ifndef, 565
#import, 247-250, 565-566
#include, 247-250, 566
#line, 566
#pragma, 566
#undef, 567
predefined identifiers, 567

pound sign (#) and, 239
trigraph sequences, 561

prime numbers, 123

primes array, allocation and, 344

print method, 38, 41, 371, 373

printVar method, 159

@private directive, 208

procedural language, Objective-C as, 2

program section (object-oriented
programming), 32, 38-44

program statements, if statement and, 99

programming. See object-oriented
programming

programming errors, 118-119

properties, accessing via dot operator, 140

property lists, 435

property variables, declarations, 546-547

@protected directive, 208

595@protected directive

@protocol directive, 233

protocols

abstract protocols, 234
adopting, 231-232
category adoption of, 234
conforming to, 231
defining, 231, 552-553
Foundation framework and, 231
informal, 234-235
methods, 232-233
@protocol directive, 233

prototype declaration, 267

@public directive, 208

Q
qsort function, 301

qualifiers, data types, 53-54

quotes, local files, 137

R
rangeOfString: method, 333, 337

ranges, string, 331-332

readDataOfLength: method, 400

readDataToEndOfFile: method, 400

real numbers, 23

receivers, 28

Rectangle class, 198-199

reference counting

instance variables, 411-417
objects, 407-409
strings, 409-411, 423

references, numbers, 256

relational operators, 80, 530

relative pathnames, 378

release messages, memory management,
419

release method, overriding, 179-180

removeCard: method, 359-362

removeFileAtPath: method, 380

removeFileAtPath:handler: method, 382,
397

removeObject: method, 360-362, 373

removeObjectAtIndex: method, 409

removeObjectIdenticalTo: method, 360

replaceObject:atIndex:withObject: method,
429

reserved names/words (naming conven-
tions), 34

restrict keyword, 523-524

results, returning, 265-266

retain counts, 426

retainName:andEmail: method, 434

return statements, 559

return type declaration, functions and,
267-268

return values, methods, 36

right justification, 84

right shift operator, 72

Ritchie, Dennis, 1

root classes, 157-158, 161

root directories, 378

routines. See also functions; methods

calls, 20
getter routines, 432-434
setter routines, 432-434

runtime checking, 193

S

satisfied conditions, if statements, 125

scientific notation, 51

scope, 539-540

instance variables, directives, 208
variables, 207

seekToEndOfFile: method, 402

596 @protocol directive

@selector directive, 197

selectors, 197

self keyword, 149-150

semicolon (;), 21

set objects, 370-374

setEmail: method, 346

setName: method, 346, 411-412

setName:andEmail: method, 434

setNumerator: method, 38, 41

setObject:forKey: method, 368

setOrigin: method, 172, 179

setStr: method, 413-416

setString: method, 337

setter methods, 46, 432-434

setWithObject: method, 373

shallow copy, 426-428

short qualifier, 53-54

sign extension, 221-222

sign function, 111

signed char variable, 222

signed qualifier, 53-54

signed quantities, characters as, 222

single-dimensional arrays, 516

sizeof operators, 307-308, 533

skipDescendants messages, 387

slashes (/ /), comments, 19

sort method, 364

sorting arrays, 362-365

sortUsingSelector: method, 362

special type BOOL, 127

Square class, 198-199

as subclass, 164
Square object, 196

state (objects), 28

statements, 20, 556

blocks, 83
break statement, 95, 121, 123

compound, 556
continue statement, 96
debugging statements, 251
#define statement, 239-241

arguments, 243
backslash (\) character, 243
constant values and, 241
defined names, 241-245
macros, 244-245
placement of, 240
syntax, 240

do loops, 94-95
#elif preprocessor statement, 252
#else, 250-251
else if statement, 111-114, 117-120
#endif statment, 250-251
for loops, 78-89
goto statement, 306
#if preprocessor statement, 252
if statement, 99-104

nested, 109-111
program statements and, 99

if-else statement, 104-106
#ifdef statement, 250-251
#ifndef statement, 250-251
#import statement, 247-250
#include statement, 247-250
null statement, 306
program statement, if statement and,

99
switch statement, 120, 123

if statement, translation into, 121
typedef statement, 205, 218-219
#undef statement, 253
while loops, 89-93

static functions, 268

597static functions

static local variables, 147-149, 265

static typing, 194

static variable, 211-213

storage (data), 383

storage class, 539-540

string objects, 326-340

string ranges, 331-332

stringByAppendingPathComponent: method,
391, 397

stringByAppendingString: method, 330

stringByExpandingTildeInPath: method, 392

stringByStandardizingPath: method, 392

strings

character string constants, 512-513
character strings, 260
format strings, 25
immutable strings, 426-427
mutable strings, 333-337, 426-427
reference counting, 409-411, 423

stringWithFormat: method, 488

stringWithString: method, 411, 413

structure variables, 271, 333

structures, 271, 273-275, 277, 280, 518-520

arrays of, 278
bit fields, 281-282
classes and, 276
defining, 278-280
global structure definition, 276
initializating, 277
instance variables, storage in, 310-311
local structure definition, 276
members, 310
operators and, 534-535
pointers and, 287-288, 537
structures within, 278-279
syntax of, 271
variables, 271-273

subclasses, 157

alternatives to, 235
creating, 164
designated initializer and, 206

subclassing categories, 230

subscript, 256

substringFromIndex: method, 332

substringToIndex: method, 332

substringWithRange: method, 333

super keyword, overriding, 179-180

switch statement, 120-123, 560

syntax, structures, 271

@synthesize directive, 139

synthesized accessor methods, 139-140,
550

T
Tab Bar iPhone application templates, 462

tables

dispatch tables, 301
truth tables, 68

templates (iPhone application), 461

terminal input for loops, 85-86

Terminal window, compiling on Macs, 16-18

terminating null character, 260

ternary operator, 128

tests, compound relational test, 106-109

tilde (~), home directory, 378

triangular numbers, 77

trigraphs, 561

truncated numbers, 62-63

truth tables, 68

@try blocks, 200-202

two-dimensional arrays, 260

elements, 260
initializing, 261-262
matrixes and, 260

598 static local variables

type cast operators, 63, 532

type modifiers, protocol definitions, 553

typedef statement, 205, 218-219, 523

types

BOOL (special type), 127
dynamic typing, 187, 192, 195-196
static typing, 194

U
unarchiving objects, 440

unary minus operator, 60, 126

unary operator, pointers and, 283

#undef statement, 253, 567

unichar characters, 326

union: method, 373

unions, 302-304, 520-521

units, 282

universal character names, 506

unsigned character variable, 222

unsigned qualifier, 53-54

uppercaseString: method, 330

user interface, designing for iPhone fraction
calculator project, 490

usual arithmetic conversions, 538-539

utility iPhone application templates, 462

V
values

0, FALSE or off state, 125-126
1,TRUE or off state, 126
1,TRUE or on state, 125
built-in, 127
return values, methods, 36
returning, 265-266
variables, displaying, 22-24

variable-length arrays, 517

variables

Boolean variables, 123-128
character variables, unsigned, 222
charPtr variable, 286
dataValue variable, 192
external global variable, 209
external variable, 209-213
global variable, 209-211
instance variables, 33-35, 44, 541-542

accessing, 44-47
categories and, 230
declarations, 546
extending classes and, 181-183
getters, 46
inherited, 208
initialization, 206
reference counting, 411-417
scope control, 208
setters, 46

integer instance, 101
intPtr, 283, 285
keywords

auto, 213
const, 214
extern, 209-212
static, 211-213
volatile, 214-215

local, 263-265
loop variable, 125
object variable, as pointer variable, 311
property variables, declarations,

546-547
scope, 207
signed char variable, 222
storage class, 540
structure definition and, 280
structure variables, 271, 333
values, displaying, 22-24

599variables

variants for loops, 88-89

view controller, defining for iPhone fraction
calculator project, 480-485

view-based iPhone application templates,
462

volatile variable, 214-215, 523-524

W
web resources

Cocoa, 577
iPhone, 578
Objective-C, 576

while statement, 89-93, 560

wide character constants, 512

wide character string constants, 513

Windows-based iPhone application tem-
plates, 462

writeToFile:atomically: messages

custom archives, 449
plist archives, 436

X – Y - Z
Xcode, 460

Build menu, 15
compiling on Macs, 10-16
iPhone application, creating, 461

code, entering, 463
interface, designing, 467

XYPoint class, 166, 199

zone arguments, 430

600 variants for loops

	2 Programming in Objective-C
	Compiling and Running Programs
	Explanation of Your First Program
	Displaying the Values of Variables
	Summary
	Exercises

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J - K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X – Y - Z

