Foreword by Anders Hejlsberg

Essential LINQ

Charlie Calvert
Dinesh Kulkarni




Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or
in all capitals.

The .NET logo is either a registered trademark or trademark of Microsoft Corporation in the
United States and/or other countries and is used under license from Microsoft.

The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom covers and
content particular to your business, training goals, marketing focus, and branding interests.
For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: www.informit.com/msdotnetseries
Library of Congress Cataloging-in-Publication Data:

Calvert, Charles
Essential LINQ / Charlie Calvert, Dinesh Kulkarni. — 1st ed.
p. cm.
ISBN 0-321-56416-2 (pbk. : alk. paper) 1. Microsoft LINQ. 2. C# (Computer program
language) 3. Query languages (Computer science) 4. Microsoft NET Framework.
I. Kulkarni, Dinesh, 1968- II. Title.

QA76.7.C35 2009
006.7'882—dc22
2008052508

Copyright © 2009 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, write to:

Pearson Education, Inc

Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116

Fax (617) 671 3447

ISBN-13: 978-0-321-56416-0

ISBN-10: 0-321-56416-2

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville,
Indiana.

First printing March 2009


www.informit.com/msdotnetseries

Foreword

For years I have been fascinated with the differences between general-
purpose programming languages and databases. Practically every enter-
prise application built today is coded in a general-purpose programming
language and talks to a database, yet the two ecosystems are amazingly dif-
ferent and quite poorly integrated—the impedance mismatch between
object-oriented programming and the relational model is the gift that keeps
on giving when it comes to application complexity.

But the thing I find particularly puzzling is the lack of query capabilities
in general-purpose programming languages. Why is it you can query data-
base tables but not in-memory objects? Why are XPath and XQuery so arbi-
trarily different from SQL? Why is it so hard to transform data between the
object, relational, and XML domains? These are the kinds of questions that
launched us on the Language Integrated Query (LINQ) journey. Along the
way we got wise to the wonders of functional programming, lambda
expressions, type inference, monads, O/R mapping, and all sorts of fasci-
nating computer science. Fortunately, we managed to boil our learnings
down to a set of pragmatic language features and APIs that are useful in
practically any .NET application.

LINQ extends the NET Framework and programming languages with
a uniform model for querying and transforming in-memory collections,
relational data, and XML documents. With LINQ, C# 3.0 and VB 9.0 gain
the expressive power of SQL and XQuery to become the first general-
purpose programming languages to natively support queries and trans-
formations over all classes of data.



XXII

Foreword

LINQ was a very interesting and unique project to work on. One reason
is that it wasn’t just about language features. In order to gain experience
with the query capabilities we were developing, we needed to validate
them against the important data domains—objects, relational, and XML.
That led us to create the LINQ to Objects, LINQ to SQL, and LINQ to XML
APIs, all of which were built alongside the language features. The synergy
and agility we got from having a joint team working on both language and
APIs was just amazing—and loads of fun!

Also, LINQ isn’t just a single monolithic language feature, but rather a
collection of several smaller and individually useful features—such as
lambda expressions, extension methods, expression trees, object initializers,
and anonymous types—that all come together to form the concept of Lan-
guage Integrated Query. This made our work much more relevant and
leveraged.

Finally, LINQ is big step toward a more declarative style of program-
ming. This may be subtle, but it is really important. Programs written in
today’s imperative programming languages are too much about the “how”
and too little about the “what.” We tend to over-specify the solutions to our
programming problems—for example, by deconstructing queries into for
loops, if statements, manipulation of temporary collections, and so on. By
the time such programs run, it is all but impossible for the execution envi-
ronment to “understand” what they do. The higher level semantic meaning
has been lost in a sea of imperative, low-level instructions that must be
blindly executed in exact sequence. This contrasts with LINQ queries,
which preserve the programmer’s exact intent and allows the execution
infrastructure to be much smarter. A great example here is the Parallel
LINQ (PLINQ) API that parallelizes query execution on concurrent hard-
ware with practically no changes required to the source code.

Of course, the creation of a new technology such as LINQ is really only
the first part of our job. The next step is to find ways to explain our new
technology to the world of developers.

Essential LINQ is an important book because it provides a clear, easy-to-
understand explanation of what LINQ does, how it does it, and the many
practical ways you can use this technology to make your daily program-
ming life easier and more productive.



Foreword [ |

Both authors of this text bring an important set of skills to this project.
Throughout the development of LINQ, I worked daily with Dinesh Kulka-
rni in this role as Program Manager for the LINQ to SQL project. Few
understand LINQ to SQL better than Dinesh, and the many insights he pro-
vides into LINQ will prove to be an invaluable tool for any reader of this
book. The chapters Dinesh contributed to this book will be a resource that
developers will frequently mine for their rich, well-thought-out content.

I've known Charlie Calvert since we worked together on Turbo Pascal
and Delphi at Borland International. Charlie is an accomplished author
with a gift for finding the key threads in a technology and explaining them
to readers in a clear, easy-to-understand prose style. He is also one of nicest
people I've met.

Charlie and Dinesh each bring important skills to this project that have
enabled them to create an excellent book that shows how LINQ works and
the many practical ways you can use it in your daily development process.

Anders Hejlsberg
Redmond, WA
February 2009

XX



3

The Essence of LINQ

N OW THAT YOU'VE SEEN several practical examples of LINQ'’s syntax,

it is time to view the technology from a more theoretical perspective.
This chapter covers the seven foundations on which an understanding of
LINQ can be built. LINQ is

¢ Integrated
¢ Unitive

e Extensible
¢ Declarative
e Hierarchical
¢ Composable

e Transformative

These ideas may sound esoteric at first, but I believe you will find them
quite easy to understand. LINQ has a fundamental simplicity and elegance.
In this chapter and the next, we explore LINQ’s architecture, giving you a
chance to understand how it was built and why it was built that way. This
chapter explains goals that LINQ aims to achieve. The next chapter explains
each of the pieces of the LINQ architecture and shows how they come
together to achieve those goals.

39



40

Chapter 3: The Essence of LINQ

Integrated

LINQ stands for Language Integrated Query. One of the central, and most
important, features of LINQ is its integration of a flexible query syntax into
the C# language.

Developers have many tools that have been crafted to neatly solve dif-
ficult tasks. Yet there are still dark corners in the development landscape.
Querying data is one area in which developers frequently encounter prob-
lems with no clear resolution. LINQ aims to remove that uncertainty and to
show a clearly defined path that is well-lit and easy to follow.

In Visual Studio 2005, attempts to query data in a SQL database from a
C# program revealed an impedance mismatch between code and data. SQL
is native to neither .NET nor C#. As a result, SQL code embedded in a C#
program is neither type-checked nor IntelliSense-aware. From the perspec-
tive of a C# developer, SQL is shrouded in darkness.

Here is an example of one of several different techniques developers
used in the past when querying data:

SglConnection sqglConnection = new SglConnection(connectString);
sqlConnection.Open();

System.Data.SqlClient.SqlCommand sqlCommand = new SqglCommand();
sqlCommand.Connection = sqglConnection;

sqlCommand.CommandText = "Select * from Customer";

return sqlCommand.ExecuteReader (CommandBehavior.CloseConnection)

Of these six lines of code, only the last two directly define a query. The
rest of the lines involve setup code that allows developers to connect and
call objects in the database. The query string shown in the next-to-last line
is neither type-checked nor IntelliSense-aware.

After these six lines of code execute, the developers may have more
work to do, because the data returned from the query is not readily
addressable by an object-oriented programmer. You might have to write
more lines of code to access this data, or convert it into a format that is eas-
ier to use.

The LINQ version of this same query is shorter, easier to read, color-
coded, fully type-checked, and IntelliSense-aware. The result set is cleanly
converted into a well-defined object-oriented format:



Unitive [ |

Northwind db = new Northwind(@"C:\Data\Northwnd.mdf");

var query = from c in db.Customers
select c;

By fully integrating the syntax for querying data into .NET languages
such as C# and VB, LINQ resolves a problem that has long plagued the
development world. Queries become first-class citizens of our primary lan-
guages; they are both type-checked and supported by the powerful Intel-
liSense technology provided inside the Visual Studio IDE. LINQ brings the
experience of writing queries into the well-lit world of the 21st century.

A few benefits accrue automatically as a result of integrating querying
into the C# language:

* The syntax highlighting and IntelliSense support allow you to get
more work done in less time. The Visual Studio editor automatically
shows you the tables in your database, the correctly spelled names
and types of your fields, and the operators you can use when query-
ing data. This helps you save time and avoid careless mistakes.

¢ LINQ code is shorter and cleaner than traditional techniques for
querying data and, therefore, is much easier to maintain.

* LINQ allows you to fully harness the power of your C# debugger
while writing and maintaining queries. You can step through your
queries and related code in your LINQ projects.

If language integration were the only feature that LINQ offered, that
alone would have been a significant accomplishment. But we are only one-
seventh of the way through our description of the foundations of LINQ.
Many of the best and most important features are still to be covered.

Unitive

Before LINQ, developers who queried data frequently needed to master
multiple technologies. They needed to learn the following;:

* SQL to query a database
¢ XPath, Dom, XSLT, or XQuery to query and transform XML data

41



42

Chapter 3: The Essence of LINQ

* Web services to access some forms of remote data

* Looping and branching to query the collections in their own
programs

These diverse APIs and technologies forced developers to frantically
juggle their tight schedules while struggling to run similar queries against
dissimilar data sources. Projects often encountered unexpected delays sim-
ply because it was easier to talk about querying XML, SQL, and other data
than it was to actually implement the queries against these diverse data
sources. If you have to juggle too many technologies, eventually something
important will break.

LINQ simplifies these tasks by providing a single, unified method for
querying diverse types of data. Developers don’t have to master a new
technology simply because they want to query a new data source. They can
call on their knowledge of querying local collections when they query rela-
tional data, and vice versa.

This point was illustrated in the preceding chapter, where you saw three
very similar queries that drew data from three different data sources:
objects, an SQL database, and XML:

var query = from c in GetCustomers()
where c.City == "Mexico D.F."
select new { City = c.City, ContactName = c.ContactName };

var query = from c in db.Customers
where c.City == "Mexico D.F."
select new { City = c.City, ContactName = c.ContactName };

var query = from x in customers.Descendants("Customer™)
where x.Attribute("City").Value == "Mexico D.F."
select x;

As you can see, the syntax for each of these queries is not identical, but
it is very similar. This illustrates one of LINQ'’s core strengths: a single, uni-
tive syntax can be used to query diverse types of data. It is not that you
never have to scale a learning curve when approaching a new data source,
but only that the principles, overall syntax, and theory are the same even
if some of the details differ.



Extensible Provider Model [ ]

You enjoy two primary benefits because LINQ is unitive:

¢ The similar syntax used in all LINQ queries helps you quickly get
up to speed when querying new data sources.

* Your code is easier to maintain, because you are using the same
syntax regardless of the type of data you query.

Although it arises naturally from this discussion, it is worth noting that
SQL and other query languages do not have this capability to access mul-
tiple data sources with a single syntax. Those who advocate using SQL or
the DOM instead of LINQ often forget that their decision forces their team
to invest additional time in learning these diverse technologies.

Extensible Provider Model

In this text I have tended to define LINQ as a tool for querying SQL, XML,
and the collections in a program. Strictly speaking, this is not an accurate
description of LINQ. Although such a view is useful when you first
encounter LINQ, it needs to be abandoned if you want to gain deeper
insight. LINQ is not designed to query any particular data source; rather,
it is a technology for defining providers that can be used to access any arbi-
trary data source. LINQ happens to ship with providers for querying SQL,
XML, and objects, but this was simply a practical decision, not a preor-
dained necessity.

LINQ provides developers with a syntax for querying data. This syntax
is enabled by a series of C# 3.0 and C# 2.0 features. These include lambdas,
iterator blocks, expression trees, anonymous types, type inference, query
expressions, and extension methods. All of these features are covered in this
book. For now you need only understand that they make LINQ possible.

When Visual Studio 2008 shipped, Microsoft employees frequently
showed the image shown in Figure 3.1. Although people tend to think of
LINQ as a means of enabling access to these data sources, this diagram
actually depicts nothing more than the set of LINQ providers that were
implemented by Microsoft at the time Visual Studio shipped. Granted, the
team carefully planned which providers they wanted to ship, but their deci-
sions were based on strategic, rather than technical, criteria.

43



44

m Chapter 3: The Essence of LINQ

[he'LINQ Project

Visual Basic 9.0 Others
| |

LINQ to LINQ to LINQ to LINQ to LINQ to
Objects DataSets sQL Entities XML

Objects Relational

FiGure 3.1 VB and C# ship with LINQ providers for databases, XML, and data structures
found in a typical program.

Using the LINQ provider model, developers can extend LINQ to query
other data sources besides those shown in Figure 3.1. The following are a
few of the data sources currently enabled by third-party LINQ providers:

LINQ Extender LINQ to Google
LINQ over C# project LINQ to Indexes
LINQ to Active Directory LINQ to IQueryable
LINQ to Amazon LINQ to JavaScript
LINQ to Bindable Sources LINQ to JSON

LINQ to CRM LINQ to LDAP

LINQ to Excel LINQ to LLBLGen Pro
LINQ to Expressions LINQ to Lucene

LINQ to Flickr LINQ to Metaweb

LINQ to Geo LINQ to MySQL



Extensible Provider Model [ ]

LINQ to NCover LINQ to Sharepoint
LINQ to NHibernate LINQ to SimpleDB
LINQ to Opf3 LINQ to Streams
LINQ to Parallel (PLINQ) LINQ to WebQueries
LINQ to RDF Files LINQ to WMI

These projects are of varying quality. Some, such as the LINQ Extender
and LINQ to IQueryable, are merely tools for helping developers create
providers. Nevertheless, you can see that an active community is interested
in creating LINQ providers, and this community is producing some inter-
esting products. By the time you read this, I'm sure the list of providers will
be longer. See Appendix A for information on how to get updated infor-
mation on existing providers.

One easily available provider called LinqToTerraServer can be found
among the downloadable samples that ship with Visual Studio 2008. You
can download the VS samples from the release tab found at http://code.
msdn.microsoft.com/csharpsamples.

After unzipping the download, if you look in the ...\LingSamples\
WebServiceLinqProvider directory, you will find a sample called Ling-
ToTerraServer. The TerraServer web site, http:/ /terraserver-usa.com, is a
vast repository of pictures and information about geographic information.
The LinqToTerraServer example shows you how to create a LINQ provider
that queries the web services provided on the TerraServer site. For example,
the following query returns all U.S. cities and towns named Portland:

var queryl = from place in terraPlaces

where place.Name == "Portland"
select new { place.Name, place.State };

This query returns a number of locations, but here are a few of the more

prominent:
{ Name = Portland, State = Indiana }
{ Name = Portland, State = Maine }
{ Name = Portland, State = Michigan }
{ Name = Portland, State = Oregon }
{ Name = Portland, State = Texas }

45


http://code.msdn.microsoft.com/csharpsamples
http://code.msdn.microsoft.com/csharpsamples
http://terraserver-usa.com

46

Chapter 3: The Essence of LINQ

{ Name = Portland, State = Alabama }
{ Name = Portland, State = Arkansas }
{ Name = Portland, State = Colorado }

In Chapter 17, “LINQ Everywhere,” you will see examples of several other
providers, including LINQ to Flickr and LINQ to SharePoint. It is not easy
to create a provider.. After the code is written, however, it is easy to use the
provider. In fact, you should already have enough familiarity with LINQ to
see that it would be easy to modify the preceding query to suit your own
purposes.

The LINQ provider model has hidden benefits that might not be evident
at first glance:

¢ Itis relatively open to examination and modification. As you read
the next few chapters, you will find that most of the LINQ query
pipeline is accessible to developers.

¢ It allows developers to be intelligent about how queries execute. You
can get a surprising degree of control over the execution of a query.
If you care about optimizing a query, in many cases you can opti-
mize it, because you can see how it works.

* You can create a provider to publicize a data source that you have
created. For instance, if you have a web service that you want C#
developers to access, you can create a provider to give them a
simple, extensible way to access your data.

I will return to the subject of LINQ providers later in the book. In this
chapter, my goal is simply to make it clear that LINQ is extensible, and that
its provider model is the basis on which each LINQ query model is built.

Query Operators

You don’t always need to use a LINQ provider to run queries against what
might—at least at first—appear to be nontraditional data sources. By using
the LINQ to Objects provider, and a set of built-in LINQ operators, you can
run queries against a data source that does not look at all like XML or SQL
data. For instance, LINQ to Objects gives you access to the reflection model
that is built into C#.



Extensible Provider Model [ ]

The following query retrieves all the methods of the string class that

are static:

var query = from m in typeof
where m.IsStatic
select m;

(string).GetMethods()
== true

The following are a few of the many results that this query returns:

System.String Join(System.String, System.String[])
System.String Join(System.String, System.String[], Int32, Int32)
Boolean Equals(System.String, System.String)

Boolean
Boolean
Boolean op_Inequality(System
Boolean IsNullOrEmpty(System
Int32 Compare(System.String,
Int32 Compare(System.String,
Int32 Compare(System.String,

Equals(System.String, System.String, System.StringComparison)
op_Equality(System.String, System.String)

.String, System.String)

.String)

System.String)

System.String, Boolean)

System.String, System.StringComparison)

Using the power of LINQ, it is easy to drill into these methods to find

out more about them. In particular, LINQ uses the extension methods men-

tioned in the preceding section to define a set of methods that can perform

specific query operations such as ordering and grouping data. For instance,

the following query retrieves the methods of the string class that are static,

finds out how many overloads each method has, and then orders them first

by the number of overloads and then alphabetically:

var query = from m in typeof(string).GetMethods()

where m.IsStatic
orderby m.Name

== true

group m by m.Name into g
orderby g.Count()

select new { Name =

foreach (var item in query)

{

Console.WritelLine(item);

g.Key, Overloads = g.Count() };

}

The results of this query look like this:
{ Overloads = 1, Name = Copy }
{ Overloads = 1, Name = Intern }

1

1
{ Overloads = 1, Name
{ Overloads = 1, Name

IsInterned }
IsNullOrEmpty }

47



48

Chapter 3: The Essence of LINQ

{ Overloads = 1, Name = op_Equality }

{ Overloads = 1, Name = op_Inequality }
{ Overloads = 2, Name = CompareOrdinal }
{ Overloads = 2, Name = Equals }

{ Overloads = 2, Name = Join }

{ Overloads = 5, Name = Format }

{ Overloads = 9, Name = Concat }

{ Overloads = 10, Name = Compare }

This makes it obvious that Format, Compare, and Concat are the most fre-
quently overloaded methods of the string class, and it presents all the
methods with the same number of overloads in alphabetical order.

You can run this code in your own copy of Visual Studio because the
LINQ to Objects provider ships with C# 3.0. Other third-party extensions to
LINQ, such as LINQ to Amazon, are not included with Visual Studio. If you
want to run a sample based on LINQ to Amazon or some other provider
that does not ship with Visual Studio, you must download and install the
provider before you can use it.

Declarative: Not How, But What

LINQ is declarative, not imperative. It allows developers to simply state
what they want to do without worrying about how it is done.

Imperative programming requires developers to define step by step
how code should be executed. To give directions in an imperative fashion,
you say, “Go to 1st Street, turn left onto Main, drive two blocks, turn right
onto Maple, and stop at the third house on the left.” The declarative version
might sound something like this: “Drive to Sue’s house.” One says how to
do something; the other says what needs to be done.

The declarative style has two advantages over the imperative style:

¢ It does not force the traveler to memorize a long set of instructions.

¢ It allows the traveler to optimize the route when possible.

It should be obvious that there is little opportunity to optimize the first
set of instructions for getting to Sue’s house: You simply have to follow
them by rote. The second set, however, allows the traveler to use his or her
knowledge of the neighborhood to find a shortcut. For instance, a bike



Declarative: Not How, But What [ ]

might be the best way to travel at rush hour, whereas a car might be best
at night. On occasion, going on foot and cutting through the local park
might be the best solution.

Here is another example of the difference between declarative and
imperative code:

// imperative style

List<int> imperativelist = new List<int>();
imperativelList.Add(1);
imperativelist.Add(2);
imperativelist.Add(3);

// declarative style
List<int> declaractivelList = new List<int> { 1, 2, 3 };

The first example details exactly how to add items to a list. The second
example states what you want to do and allows the compiler to figure out
the best way to do it. As you will learn in the next chapter, both styles are
valid C# 3.0 syntax. The declarative form of this code, however, is shorter,
easier to understand, easier to maintain, and, at least in theory, leaves the
compiler free to optimize how a task is performed.

These two styles differ in both the amount of detail they require a devel-
oper to master and the amount of freedom that each affords the compiler.
Detailed instructions not only place a burden on the developer, but also
restrict the compiler’s capability to optimize code.

Let’s consider another example of the imperative style of programming.
As developers, we frequently end up in a situation where we are dealing
with a list of lists:

List<int> 1ist@l = new List<int> { 1, 2, 3 };

List<int> 1ist@2 = new List<int> { 4, 5, 6 };

List<int> 1ist@3 = new List<int> { 7, 8, 9 };

List<List<int>> lists = new List<List<int>> { listel, liste2, liste3 };

Here is imperative code for accessing the members of this list:
List<int> newlList = new List<int>();
foreach (var item in lists)

{

foreach (var number in item)

49



50 Chapter 3: The Essence of LINQ

{

newList.Add(number);

}
X

This code produces a single list containing all the data from the three nested
lists:

W 00 NO UV A WN R

Notice that we have to write nested for loops to allow access to our data. In

a simple case like this, nested loops are not terribly complicated to use, but

they can become very cumbersome in more complex problem domains.
Contrast this code with the declarative style used in a LINQ program:
var newlList = from list in lists

from num in list
select num;

You can access the results of these two “query techniques” in the same way:

foreach (var item in newList)

{

Console.WritelLine(item);

}

This code writes the results of either query, producing identical results,
regardless of whether you used the imperative or declarative technique to
query the data:

W 00 NGOV A WN R



Declarative: Not How, But What [ ]

The difference here is not in the query’s results, or in how we access the
results, but in how we compose our query against our nested list. The
imperative style can sometimes be verbose and hard to read. The declara-
tive code is usually short and easy to read and scales more easily to com-
plex cases. For instance, you can add an orderby clause to reverse the order
of the integers in your result set:

var query = from list in lists
from num in list
orderby num descending
select num;

You probably know how to achieve the same results using the impera-
tive style. But it was knowledge that you had to struggle to learn, and it is
knowledge that applies only to working with sequences of numbers stored
in a List<T>. The LINQ code for reordering results, however, is easy to
understand. It can be used to reorder not only nested collections, but also
SQL data, XML data, or the many other data sources we query using LINQ.

To get the even numbers from our nested lists, we need only do this:

var query = from list in lists
from num in list
where num % 2 == 0

orderby num descending
select num;

Contrast this code with the imperative equivalent:
List<int> newList = new List<int>();

foreach (var item in lists)

{
foreach (var number in item)
{
if (number % 2 == 0)
{
newlList.Add(number);
}
}
}

newList.Reverse();

51



52

Chapter 3: The Essence of LINQ

This imperative style of programming now has an if block nested
inside the nested foreach loops. This is not only verbose and applicable to
only a specific type of data, it also can be like a straight jacket for both the
compiler and the developer. Commands must be issued and followed in a
rote fashion, leaving little room for optimizations.

The equivalent LINQ query expression does not describe in a step-by-
step fashion how to query our list of lists. It simply lets the developer state
what he wants to do and lets the compiler determine the best path to the
destination.

After nearly 50 years of steady development, the possibilities inherent in
imperative programming have been extensively explored. Innovations in
the field are now rare. Declarative programming, on the other hand, offers
opportunities for growth. Although it is not a new field of study, it is still
rich in possibilities.

"s Use the Right Tool for the Job

In extolling the virtues of LINQ’s declarative syntax, I should be care-
ful not to overstate my case. For instance, the LINQ operator called
ToList is provided to allow developers to easily translate the sequence
of results returned by a LINQ query into a traditional List<T>. This
functionality is useful because some operations, such as randomly
accessing items in a list (nyList[2]), are more easily performed using
the imperative syntax. One of the great virtues of C# 3.0 is that it allows
you to easily move between imperative and declarative syntax, allow-
ing you to choose the best tool for the job. My job right now is to help
you understand the value of LINQ and the declarative style of pro-
gramming. LINQ is indeed a very powerful and useful tool, but it is
not the solution to all your problems.

Because LINQ is a new technology from Microsoft, you might find it a
bit jarring to see me write that declarative programming is not new. In fact,
declarative code has been with us nearly as long as imperative code. Some
older languages such as LISP (which was first specified in 1958) make heavy
use of the declarative style of programming. Haskel and F# are examples of



Hierarchical m 53

other languages that use it extensively. One reason LINQ and SQL look so
much alike is that they are both forms of declarative programming.

The point of LINQ is not that it will replace SQL, but that it will bring the
benefits of SQL to C# developers. LINQ is a technology for enabling a SQL-
like declarative programming style inside a native C# program. It brings
you the benefits of SQL but adds declarative syntax, as well as syntax high-
lighting, IntelliSense support, type checking, debugging support, the abil-
ity to query multiple data sources with the same syntax, and much more.

Hierarchical

Complex relationships can be expressed in a relational database, but the
results of a SQL query can take only one shape: a rectangular grid. LINQ
has no such restrictions. Built into its very foundation is the idea that data
is hierarchical (see Figure 3.2). If you want to, you can write LINQ queries
that return flat, SQL-like datasets, but this is an option, not a necessity.

Grid versus Hierarchies

LINQ’s hierarchical data
model is more flexible
than the grid-like data
returned from a SQL

query.

i e — 1 [

Mary RidgeCo, A.E. 322336

FIGURE 3.2 Both object-oriented languages and the developers who use them have a
natural tendency to think in terms of hierarchies. SQL data is arranged in a simple grid.

Consider a simple relational database that has tables called Customers,
Orders, and OrderDetails. It is possible to capture the relationship between
these tables in a SQL database, but you cannot directly depict the relationship



54

Chapter 3: The Essence of LINQ

in the results of a single query. Instead, you are forced to show the result as
a join that binds the tables into a single array of columns and rows.

LINQ, on the other hand, can return a set of Customer objects, each of
which owns a set of 0-to-n Orders. Each Order can be associated with a set
of orderDetails. This is a classic hierarchical relationship that can be per-
fectly expressed with a set of objects:

Customer
Orders
OrderDetails

Consider the following simple hierarchical query that captures the rela-
tionship between two objects:

var query = from ¢ in db.Customers
select new { City = c.City,
orders = from o in c.Orders
select new { o.OrderID }

1

This query asks for the city in which a customer lives and a list of the orders
the person has made. Rather than returning a rectangular dataset as a SQL
query would, this query returns hierarchical data that lists the city associ-
ated with each customer and the ID associated with each order:

City=Helsinki orders=...
orders: OrderID=10615
orders: OrderID=10673
orders: OrderID=10695
orders: OrderID=10873
orders: OrderID=10879
orders: OrderID=10910
orders: OrderID=11005

City=Warszawa orders=...
orders: OrderID=10374
orders: OrderID=10611
orders: OrderID=10792
orders: OrderID=10870
orders: OrderID=10906
orders: OrderID=10998

This result set is multidimensional, nesting one set of columns and rows
inside another set of columns and rows.



Hierarchical [ |

Look again at the query, and notice how we gain access to the Orders
table:

orders = from o in c.Orders

The identifier c is an instance of a Customer object. As you will learn
later in the book, LINQ to SQL has tools for automatically generating Cus-
tomer objects given the presence of the Customer table in the database.
Here you can see that the Customer object is not flat; instead, it contains a set
of nested Order objects.

Listing 3.1 shows a simplified version of the Customer object that is auto-
matically generated by the LINQ to SQL designer. Notice how LINQ to SQL
wraps the fields of the Customer table. Later in this book, you will learn
how to automatically generate Customer objects that wrap the fields of a
Customer table.

LisTING 3.1 A Simplified Version of the Customer Object That the LINQ to SQL Designer
Generates Automatically

public partial class Customer

{
... // Code omitted here
private string _CustomerID;
private string _CompanyName;
private string _ContactName;
private string _ContactTitle;
private string _Address;
private string _City;
private string _Region;
private string _PostalCode;
private string _Country;
private string _Phone;
private string _Fax;
private EntitySet<Order> _Orders;

. // Code omitted here

The first 11 private fields of the Customer object simply reference the
fields of the Customer table in the database. Taken together, they provide
a location to store the data from a single row of the Customer table. Notice,
however, the last item, which is a collection of Order objects. Because it is

55



56

Chapter 3: The Essence of LINQ

bound to the Orders table in a one-to-many relationship, each customer has
from 0-to-n orders associated with it, and LINQ to SQL stores those orders
in this field. This automatically gives you a hierarchical view of your data.

The same thing is true of the Order table, only it shows not a one-to-
many relationship with the Customer table, but a one-to-one relationship:

public partial class Order
{
... // Code omitted here
private int _OrderID;
private string _CustomerID;
private System.Nullable<int> _EmployeelD;
private System.Nullable<System.DateTime> _OrderDate;
private System.Nullable<System.DateTime> _RequiredDate;
private System.Nullable<System.DateTime> _ShippedDate;
private System.Nullable<int> _ShipVia;
private System.Nullable<decimal> _Freight;
private string _ShipName;
private string _ShipAddress;
private string _ShipCity;
private string _ShipRegion;
private string _ShipPostalCode;
private string _ShipCountry;
private EntityRef<Customer> _Customer;
. // Code omitted here

Again we see all the fields of the Orders table, their types, and whether
they can be set to Null. The difference here is that the last field points back
to the Customer table not with an EntitySet<T>, butan EntityRef<T>. This
is not the proper place to delve into the EntitySet and EntityRef classes.
However, it should be obvious to you that an EntitySet refers to a set of
objects, and an EntityRef references a single object. Thus, an EntitySet
captures a one-to-many relationship, and an EntityRef captures a one-to-
one relationship.

The point to take away from this discussion is that LINQ to SQL cap-
tures not a flat view of your data, but a hierarchical view. A Customer class
is connected to a set of orders in a clearly defined hierarchical relationship,
and each order is related to the customer who owns it. LINQ gives you a
hierarchical view of your data.

In a simple case like this, such a hierarchical relationship has obvious
utility, but it is possible to imagine getting along without it. More complex



Hierarchical m 57

queries, however, are obviously greatly simplified by this architecture.
Consider the following LINQ to SQL query:

var query = from c¢ in db.Customers
where c.CompanyName == companyName
from o in c.Orders
from x in o.Order_Details
where x.Product.Category.CategoryName == "Confections"
orderby x.Product.ProductName
group x by x.Product.ProductName into g
orderby g.Count()
select new { Count = g.Count(), Product = g.Key };

Here we use LINQ’s hierarchical structure to move from the Customers
table to the Orders table to the Order_Details table without breaking a
sweat:

var query = from c¢ in db.Customers

from o in c.Orders
from x in o.Order_Details

The next line really helps show the power of LINQ hierarchies:

where x.Product.Category.CategoryName == "Confections”

The identifier x represents an instance of a class containing the data from a
row of the Order_Details table. Order_Details has a relationship with the
Product table, which has a relationship with the Category table, which has
a field called CategoryName. We can slice right through that complex rela-
tionship by simply writing this:

X.Product.Category.CategoryName

LINQ’s hierarchical structure shines a clarifying light on the relational data
in your programs. Even complex relational models become intuitive and
easy to manipulate.

We can then order and group the results of our query with a few simple
LINQ operators:

orderby x.Product.ProductName

group x by x.Product.ProductName into g
orderby g.Count()



58

Chapter 3: The Essence of LINQ

Trying to write the equivalent code using a more conventional C# style of
programming is an exercise that might take two or three pages of convo-
luted code and involve a number of nested loops and if statements. Even
writing the same query in standard SQL would be a challenge for many
developers. Here we perform the whole operation in nine easy-to-read lines
of code.

In this section, I have introduced you to the power of LINQ'’s hierarchi-
cal style of programming without delving into the details of how such
queries work. Later in this book you will learn how easy it is to compose
your own hierarchical queries. For now you only need to understand two
simple points:

¢ There is a big difference between LINQ’s hierarchical structure and
the flat, rectangular columns and rows returned by an SQL query.

* Many benefits arise from this more powerful structure. These
include the intuitive structure of the data and the ease with which
you can write queries against this model.

Composable

The last two foundations of LINQ shed light on its flexibility and power. If
you understand these two features and how to use them, you will be able
to tap into some very powerful technology. Of course, this chapter only
introduces these features; they are discussed in more detail in the rest of
the book.

LINQ queries are composable: You can combine them in multiple ways,
and one query can be used as the building block for yet another query. To
see how this works, let’s look at a simple query:

var query = from customer in db.Customers

where customer.City == "Paris"
select customer;

The variable that is returned from the query is sometimes called a compu-
tation. If you write a foreach loop and display the address field from the
customers returned by this computation, you see the following output:



Composable [ |

265, boulevard Charonne
25, rue Lauriston

You can now write a second query against the results of this query:

query2 = from customer in query
where customer.Address.StartsWith("25")
select customer;

Notice that the last word in the first line of this query is the computation
returned from the previous query. This second query produces the follow-
ing output:

25, rue Lauriston

LINQ to Objects queries are composable because they operate on and
usually return variables of type IEnumerable<T>. In other words, LINQ
queries typically follow this pattern:

IEnumerable<T> query = from x in IEnumerable<T>
select x;

This is a simple mechanism to understand, but it yields powerful results. It
allows you to take complex problems, break them into manageable pieces,
and solve them with code that is easy to understand and easy to maintain.
You will hear much more about IEnumerable<T> in the next chapter.

The next chapter also details a feature called deferred execution.
Although it can be confusing to newcomers, one of the benefits of deferred
execution is that it allows you to compose multiple queries and string them
together without necessarily needing to have each query entail an expen-
sive hit against the server. Instead, three or four queries can “execute” with-
out ever sending a query across the wire to your database. Then, when you
need to access the result from your query, a SQL statement is written that
combines the results of all your queries and sends it across the wire only
once. Deferred execution is a powerful feature, but you need to wait until
the next chapter for a full explanation of how and why it works. The key
point to grasp now is that it enables you to compose multiple queries
as shown here, without having to take an expensive hit each time one
“executes.”

59



60

Chapter 3: The Essence of LINQ

"= Discreet Computations and PLINQ

LINQ queries are not only composable, but also discreet. In other
words, the computation returned by a query is a single self-contained
expression with only a single entry point. This has important conse-
quences for a field of study called Parallel LINQ (PLINQ). Because
each computation returned by a query is discreet, it can easily be run
concurrently on its own thread. PLINQ is discussed briefly in Chap-
ter 17, “LINQ Everywhere.

Transformative

SQL is poor at transformations, so we are unaccustomed to thinking about
query languages as a tool for converting data from one format to another.
Instead, we usually use specialized tools such as XSLT or brute-force tech-
niques to transform data.

LINQ, however, has transformational powers built directly into its syn-
tax. We can compose a LINQ query against a SQL database that effortlessly
performs a variety of transforms. For instance, with LINQ it is easy to trans-
form the result of a SQL query into a hierarchical XML document. You can
also easily transform one XML document into another with a different
structure. SQL data is transformed into a hierarchical set of objects auto-
matically when you use LINQ to SQL. In short, LINQ is very good at trans-
forming data, and this adds a new dimension to our conception of what we
can do with a query language.

Listing 3.2 shows code that takes the results of a query against relational
data and transforms it into XML.

LisTING 3.2 A Simple Query That Transforms the Results of a LINQ to SQL Query into XML

var query = new XElement("Orders", from c in db.Customers
where c.City == "Paris"
select new XElement("Order",
new XAttribute("Address", c.Address),
new XAttribute(“City”, c.City)));

Embedded in this query is a simple LINQ to SQL query that returns the
Address and City fields from all the customers who live in Paris. In Listing 3.3
I've stripped away the LINQ to XML code from Listing 3.2 to show you the
underlying LINQ to SQL query.



Transformative m 61

LisTING 3.3 The Simple LINQ to SQL Query Found at the Heart of Listing 3.2

var query = from c in db.Customers
where c.City == "Paris"
select new { c.Address, c.City };

Here is the output from Listing 3.3:

265, boulevard Charonne
25, rue Lauriston

Here is the output from Listing 3.2:

<Orders>
<Order Address="265, boulevard Charonne" City="Paris" />
<Order Address="25, rue Lauriston" City="Paris" />
</Orders>

As you can see, the code in Listing 3.2 performs a transform on the results
of the LINQ to SQL query, converting it into XML data.

Because LINQ is composable, the following query could then be used to
run a second transform on this data:

var queryl = new XElement("Orders", new XAttribute("City", "Paris"),
from x in query.Descendants("Order")
where x.Attribute("City").vValue == "Paris"
select new XElement("Address", x.Attribute("Address").Value));

This query takes the XML results of the first query and transforms that XML
into the following format:
<Orders City="Paris">
<Address>265, boulevard Charonne</Address>

<Address>25, rue Lauriston</Address>
</Orders>

LINQ is constantly transforming one type of data into another type. It
takes relational data and transforms it into objects; it takes XML and trans-
forms it into relational data. Because LINQ is extensible, it is at least theo-
retically possible to use it to tear down the walls that separate any two
arbitrary data domains.

Because LINQ is both composable and transformative, you can use it in
a number of unexpected ways:



62

Chapter 3: The Essence of LINQ

* You can compose multiple queries, linking them in discrete chunks.
This often allows you to write code that is easier to understand and
maintain than traditional nested SQL queries.

* You can easily transform data from one data source into some other
type. For instance, you can transform SQL data into XML.

* Even if you do not switch data sources, you can still transform the
shape of data. For instance, you can transform one XML format into
another format. If you look back at the section “Declarative: Not
How, But What,” you will see that we transformed data that was
stored in nested lists into data that was stored in a single list. These
kinds of transformations are easy with LINQ.

Summary

In this chapter you have read about the foundations of LINQ. These foun-
dations represent the core architectural ideas on which LINQ is built. Taken
together, they form the essence of LINQ. We can summarize these founda-
tions by saying the following about LINQ:

¢ Itis a technique for querying data that is integrated into .NET lan-
guages such as C# and VB. As such, it is both strongly typed and
IntelliSense-aware.

¢ It has a single unitive syntax for querying multiple data sources such
as relational data and XML data.

o Itis extensible; talented developers can write providers that allow
LINQ to query any arbitrary data source.

¢ It uses a declarative syntax that allows developers to tell the compiler
or provider what to do, not how to do it.

e It is hierarchical, in that it provides a rich, object-oriented view of
data.

e Itis composable, in that the results of one query can be used by a sec-
ond query, and one query can be a subclause of another query. In
many cases, this can be done without forcing the execution of any
one query until the developer wants that execution to take place.



Summary [ |

e Itis transformative, in that the results of a LINQ query against one
data source can be morphed into a second format. For instance, a
query against a SQL database can produce an XML file as output.

Scattered throughout this chapter are references to some of the impor-
tant benefits of LINQ that emerge from these building blocks. Although
these benefits were mentioned throughout this chapter, I'll bring them
together here in one place as a way of reviewing and summarizing the
material discussed in this chapter:

¢ Because LINQ is integrated into the C# language, it provides syntax
highlighting and IntelliSense. These features make it easy to write
accurate queries and to discover mistakes at design time.

* Because LINQ queries are integrated into the C# language, it is pos-
sible for you to write code much faster than if you were writing old-
style queries. In some cases, developers have seen their
development time cut in half.

* The integration of queries into the C# language also makes it easy
for you to step through your queries with the integrated debugger.

* The hierarchical feature of LINQ allows you to easily see the rela-
tionship between tables, thereby making it easy to quickly compose
queries that join multiple tables.

* The unitive foundation of LINQ allows you to use a single LINQ
syntax when querying multiple data sources. This allows you to get
up to speed on new technologies much more quickly. If you know
how to use LINQ to Objects, it is not hard to learn how to use LINQ
to SQL, and it is relatively easy to master LINQ to XML.

* Because LINQ is extensible, you can use your knowledge of LINQ
to make new types of data sources queriable.

* After creating or discovering a new LINQ provider, you can lever-
age your knowledge of LINQ to quickly understand how to write
queries against these new data sources.

* Because LINQ is composable, you can easily join multiple data
sources in a single query, or in a series of related queries.

63



64

Chapter 3: The Essence of LINQ

* The composable feature of LINQ also makes it easy to break com-
plex problems into a series of short, comprehensible queries that are
easy to debug.

¢ The transformational features of LINQ make it easy to convert data
of one type into a second type. For instance, you can easily trans-
form SQL data into XML data using LINQ.

* Because LINQ is declarative, it usually allows you to write concise
code that is easy to understand and maintain.

* The compiler and provider translate declarative code into the code
that is actually executed. As a rule, LINQ knows more than the aver-
age developer about how to write highly optimized, efficient code.
For instance, the provider might optimize or reduce nested queries.

e LINQ is a transparent process, not a black box. If you are concerned
about how a particular query executes, you usually have a way to
examine what is taking place and to introduce optimizations into

your query.

This chapter touched on many other benefits of LINQ. These are
described throughout this book. This entire text is designed to make you
aware of the benefits that LINQ can bring to your development process. It
also shows you how to write code that makes those benefits available to
you and the other developers on your team.

The more you understand LINQ, the more useful it will be to you. As I
have dug more deeply into this technology, I have found myself integrating
LINQ into many different parts of my development process. When I use
LINQ, I can get more work done in less time. The more I use it, the more
completely these benefits accrue.



Index

Symbols

=> (goes to) operator, 91

A

accessing

backing fields of properties, 22

SharePoint sites, 500
Add Connection dialog box, 530
Add Function Import dialog box, 363
Add New Item dialog box, 354, 503
Add statements, 382
adding

announcements to SharePoint, 501

attributes to nodes, 36

stored procedures, 363
Aggregate operator, 210, 216-219
Aggregate operators, 177, 210

Aggregate, 210, 216-219

Average, 210, 214-215

Count, 210-212

LongCount, 210-212

Max, 210-214

Min, 210-214

Sum, 210, 215-216
All operator, 181, 187
Ancestors( ) method, 408-409
Annotation( ) method, 461
annotations (XML), 459-461
anonymous types, 19, 79-82

class example, 81

passing out of methods, 81

query example, 82

querying collections of objects, 24-25

Any operator, 181, 186-187
APIs
Flickr, 495
LINQ to XML, 374
classes, 374
nodes, 374
XML attributes, creating, 377
XML declarations, creating, 378-381
XML documents, 378, 382-386
XML elements, creating, 375-377
AsEnumerable operator, 224
ASP.NET data binding, orders form
example, 310-316
Data Source Configuration Wizard, 312-313
filters, 313
grid view, 314
order details in web page, 311
query results, configuring, 313
results, 315
AsParallel( ) method, 489
assigning delegates, 85
Association attribute (object relationships), 257
associations
EDM, 351
relationships, 236
Athena. See LINQ to Flickr
Attach(') method (multitier entities), 302-305
attaching multitier entities, 302-305
attributes
adding to nodes, 36
Association (object relationships), 257
Column, 234
InheritanceMapping, 271
Table (entity classes, creating), 233



548

Index

XML, creating, 377
XML nodes, 420
xmlns, 425

automatic properties, 69-73
C# 2.0 syntax, 70
example listing, 69
Operatorld, 70-71
OperatorName, 70
private setter, 73
prop snippet, 70

querying collections of objects, 21-22

Reflector generated code, 71-72
warnings, 72
Average operator, 210, 214-215

backing fields (properties), 22
binding orders form example
ASPNET data binding, 311-315
smart client data binding, 306-309
Build C# key bindings, 544
business logic
entities, 474-476
separation of concerns, 474-476

C

C#
automatic properties, 69-73
deferred execution, 111-117
delegates, 83-89
Development Center web site, 11
expression trees, 122-128
extension methods, 94-103
IEnumerable<T> interface, 103-110
initializers, 74-77
iterators blog, 110
key bindings, 539-544

keywords/contextual keywords, 537-539

lambdas, 89-94
operator overrides, 117-121
partial methods, 66-69
programs, compiling, 524-526
sample programs, 520-521
types, 77-82
version numbers, 521
XML literals, 461-463
Calvert, Charlie blog, 10
Cast operator, 224
casting XML elements, 397

categories of operators, 175-177
ChangeConflictException, 295
character data (XML), 406-407
Chen, Raymond, 110
classes
Customer, 237, 263
DataContext, 234-236
entity
creating, 233-234
customizing, 341-344
Enumerable, 179
Extensions, 391
GetListEnumerator, 115
Item, 213
LINQ to XML
API, 374
hierarchy, 422
Musician, 145
MyNumberServer, 169-172
MyPartialClass, 67
NorthwindDataContext, 338-340
Order, 237, 263
partial, adding to entity classes, 343
persistent, 345-348
Process, 511
SpecialString, 97
tables to classes, mapping, 240-243
tables, mapping, 233-236
ValidationEventArgs, 457
XAttribute, 377
XContainer, 388-391
XDocument, 378, 390
XElement, 376, 390-391
XML, 387-388
XmlSchemaSet, 456
XNamespace, 427
XNode, 389-391
XObject, 415
clauses
from, 17,132
group-by
projections, 154
query expressions, 132-141
let, 141-143
order, 162
query expressions, 131-132
select
projections, 154-155
query expressions, 17, 132
where, 17, 132
code generation web site, 536



collections
initializers, 16, 74-75
integers, querying, 14-20
collection intializers, 16
IEnumerable<T>, 19-20
query expressions, 16-18
type inferences, 18
objects, querying, 20
anonymous types, 24-25
automatic properties, 21-22
object initializers, 22-24
properties, 259
Column attribute, 234
command-line tools
edmgen.exe, 359
programs, compiling, 527-528
SqlMetal, 243
commands. See methods
compiling
C# programs, 524-526
programs from command line, 527-528
queries, LINQ to SQL, 277-278
composability, 7, 58-59, 517
composing
Element operators, 202-203
query expressions, 136
group-by clauses at the end, 136-139
group-by clauses in the middle, 139-141
into keyword, 141
let clauses, 141-143
Concat operator, 205
concurrency, managing, 290-292, 476-477
optimistic, 292
conflict detection, 292-295
conflict resolution, 295-297
limitations, 478
refreshing entities, 297-299
set of changes, 298
units of work, 478
Configure Behavior dialog box, 332
configuring CUD operations, 332
conflicts
detection, 292-295
resolution, 295-297
connections
databases, 528-530
Object Relational Designer, 531-533
Visual Studio 2008, 528-530
managing, 302
SharePoint, 503
Contains operator, 181, 188-190
content (XML), 372
context, defining, 479-480

Index

contextual keywords
C#, 537-539
defined, 17
var, 18
continuations (query expressions), 141
Conversion AsEnumerable, 228
Conversion operators, 176, 223
AsEnumerable, 224
Cast, 224
OfType, 224-227
ToArray, 224-226
ToDictionary, 224, 227
ToList, 224-226
ToLookup, 224
core operators, 177
costs (performance), 480-481
Count operator, 210-212
CreateDatabase( ) method, 316-317
CreateDatabase sample program, 450
CreatePlanets sample program, 381
create, update, delete. See CUD operations
creating
database connections, 528-533
Object Relational Designer, 531-533
Visual Studio 2008, 528-530
databases with LINQ to SQL, 316-318
databases programmatically, 442-443
data schemas, viewing, 449
table declarations, 450
tables, creating, 444-447
XML data, transferring, 447-449
EDMs, 354
connections, 356
database generation, 354
expanding database objects, 356
generated model, 358
models, adding, 354
new items, adding, 354
selecting database objects, 356
entity classes, 233-234
Flickr application, 497-499
persistent classes, 345-348
XHTML, 431-437
XML
attributes, 377
declarations, 378-381
documents, 378, 382-383
elements, 375-377
CRUD (creating, reading, updating, and
deleting) operations, 240, 361-362
CUD (create, update, delete) operations,
330-332

m 549



550

Index

Customer class
Orders property, 237
OtherKey property, 237
relationship with Order class, 263
Customer object
LINQ to SQL Designer generated example,
55-56
query listing, 23
customers, moving orders between, 287
customizing
entity classes, 341-343
lifecycle events, 344
partial classes, adding, 343
service contract compatibility, 342
WCF DataContract attribute, 341-342
generated code, 337-338
entity classes, 341-344
NorthwindDataContext class, 338-340

data binding (LINQ to SQL), 305
ASPNET, 310, 313, 316
smart client, 306, 309-310
Data Definition Language (DDL), 269
data shaping, 470-472
Data Source Configuration Wizard, 306
data selection, 313
launching, 312
data sources
adding new, 306
choosing, 306
Data Sources window, populating, 308
enabled by third-party LINQ providers, 44
Data Transfer Objects (DTOs), 471
Database Explorer, 437
databases
connections, 528-530
Object Relational Designer, 531-533
Visual Studio 2008, 528-530
creating with LINQ to SQL, 316-318
creating programmatically, 442-443
data schemas, viewing, 449
table declarations, 450
tables, creating, 444-447
XML data, transferring, 447-449
Northwind
DataContext class, customizing, 338-340
sample programs, 521
scalar-valued functions, adding, 328
stored procedures multiple results, 324

stored procedures single results, 322
TVFs, adding, 326
queries, 26-30
relational, 247
DataContext class
concurrency management, 478
mapping classes to tables, 234-236
performance optimization, 483
persistence-related services, 474
DDL (Data Definition Language), 269
Debugger integration with LINQ, 112
Debugging C# key bindings, 543
declarations
operators, 180
XML, 371-373
creating, 378-381
DOCTYPE, 434
declarative programming, 2, 7, 48-52, 383, 516
default namespaces (XML), 426-429
DefaultIfEmpty operator, 198, 203-204
deferred execution, 111-117
compiler code produced upon calling
GetSequence( ) method, 114
foreach code execution, 113-114
iterator sequence example, 111-112
overview, 59
projections, 156-159
queries, 265
reasons for, 116
deferred loading (LINQ to SQL), 264-266
delegates, 83-86
assigning, 85
data sorting pattern, 85
generic, 86-89
MyDelegate example, 83-84
DeleteOnSubmit( ) method, 284
deleting
entities, 284-285
XML nodes, 417-418
DescendantNodes( ) method, 402-404
DescendantNodesAndSelf( ) method, 404
Descendants( ) method, 397-400
descendants (XML), 397-400
dialog boxes
Add Connection, 530
Add Function Import, 363
Add New Item, 354, 503
Configure Behavior, 332
New Project, 524
discreet computations, 60
Distinct operator, 204, 207



DOCTYPE declarations, 434
documents (XML)

creating, 378, 382-383

RSS feeds, loading, 385

saving to disks, 383, 386
dotting through relationships, 258
DTDs (Document Type Definitions), 453
DTOs (Data Transfer Objects), 471
dynamic SQL, 468-469

eager loading (LINQ to SQL), 266-268
Edit C# key bindings, 540
editing XML nodes, 418-419
EDM (Entity Data Model), 349-352
associations, 351
creating, 354
connections, 356
database generation, 354
expanding database objects, 356
generated model, 358
models, adding, 354
new items, adding, 354
selecting database objects, 356
CRUD operations, 361-362
generated code, 359-360
Generator, 359
relationships, 351
stored procedures, 362
adding, 363
mapping to methods, 363
parameters, mapping, 365
update procedure, 364
edmgen.exe command-line tool, 359
EF (Entity Framework), 349
associations, 351
CRUD operations, 361-362
EDM, 350-352
entity models, creating, 354
connections, 356
database generation, 354
expanding database objects, 356
generated model, 358
models, adding, 354
new items, adding, 354
selecting database objects, 356
generated code, 359-360
layers, 352-353
relationships, 351
stored procedures, 362
adding, 363
mapping to methods, 363

Index

parameters, mapping, 365
update procedure, 364
Element operators, 176, 198
composing, 202-203
DefaultIfEmpty, 198, 203-204
ElementAt, 198, 202
ElementAtOrDefault, 198
First, 198
FirstOrDefault, 198-199
Last, 198, 200
LastOrDefault, 198-200
Single, 198, 201
SingleOrDefault, 198
ElementAt operator, 198, 202
ElementAtOrDefault operator, 198
elements (XML), 373
casting, 397
creating, 375-377
nodes, adding, 421
ElementsAfterSelf( ) method, 409
ElementsBeforeSelf( ) method, 409
Empty operator, 181, 186
enabling data sources, 44
ends (entity relationships), 351
entities. See also objects
business logic, 474-476
classes
creating, 233-234
customizing, 341-343
concurrent changes, 290-292
optimistic. See optimistic concurrency
refreshing entities, 297-299
set of changes, 298
connections, managing, 302
CUD operations, configuring, 332
data binding, 305
ASPNET, 310, 313, 316
smart client, 306, 309-310
data shaping, 470-472
deleting, 284-285
inheritance, 269-274
class diagram, 269
class hierarchy on designer surface, 274
designers, 273
InheritanceMapping attribute, 271
inserting, 282-283
lifecycle, 282, 344
loading, 264
deferred, 264-266
eager, 266-268
modifying, 239-240
multitier, attaching, 302-305
object identity, 255-256

m 551



552

Index

persistence, 473-474
refreshing, 297-299
relationships, 256-351
Association attribute, 257
collection properties, 259
dotting through, 258
joining tables, 260-262
managing, 286-288
mapping, 264
retrieving, 252-254
security, improving, 484-486
submitting changes, 288-290
transactions, 299-302
updating entities, 285-286
Entity Data Model. See EDM
Entity Data Model Wizard, 354
connections, 356
database generation, 354
expanding database objects, 356
generated model, 358
selecting database objects, 356
Entity Framework. See EF
EntityClient Data Provider layer, 352
EntityRef type (Order class), 237
Enumerable class, 179
Equality operators, 177
equijoins, 145
Except operator, 205-207
explicit conversion operators, 413
Express Tree Visualizer, 125
lambda expression, parsing, 126
LINQ to SQL code, parsing, 127
opening, 125
popup menu item example, 127
Expression property, 173
expression trees, 122-125, 128
Expression Tree Visualizer, 125-127
lambda based example, 123
parsing operations, 123-124
expressions (query)
clauses, 131-132
composing, 136-143
continuations, 141
IEnumerable<T> interface, 168
IQueryable<T> interface, 168, 172-173
joins, 143-153
MyNumberServer class, 169-172
nomenclature, 130
projections, 153
deferred execution, 156-159
new class in a select clause example, 154
overview, 154-156

SelectMany operator overloads, 164-167
SelectMany operators, 159-164
transforming objects into XML, 155
range variables, 133-135
Set operators, 208-210
extensibility, 7, 516
extensible provider model, 43-46
data sources enabled by third-party LINQ
providers, 44
LinqToTerraServer example, 45
query operators, 46-48
extension methods, 2, 94-98
scoping, 98-103
static method string class example, 95-96
Extensions class, 391

F
FakeWeatherData program, 491-492
famous Romans code reuse example, 178
File C# key bindings, 540
files (XML)
creating, 34-36
loading, 536
parsing, 31-34
filters, choosing, 313
finding providers, 536
First operator, 198
FirstFourPlanets.xml, 392-393
names of planets code, 393
output, 394
FirstOrDefault operator, 198-199
flattening group joins, 261
Flickr, 495-499
FlickrXplorer application, 496
foreach loops
deferred execution, 113-114
operator code reuse, 178
querying collections of integers, 19
foundational qualities of LINQ, 516-517
foundations
composability, 58-59
declarative programming, 48-52
extensibility, 43-46
data sources enabled by third-party LINQ
providers, 44
LinqToTerraServer example, 45
query operators, 46-48
hierarchies, 53-58
integration, 40-41
transformational powers, 60-61
unified method for querying, 42-43



from clauses (query expressions), 17, 132
from keyword (range variables), 135
fundamentals (XML), 370-371, 374
future
LINQ to Flickr, 495
API, 495
applications, creating, 497-499
download, 496
FlickrXplorer application, 496
web site, 495
LINQ to SharePoint
announcements, adding, 501
assemblies, registering, 502
connections, 503
example site, 501
LINQ to SharePoint Entity Wizard, 503
queries, 508
requirements, 500
site access, 500
site lists, choosing, 505
Solution Explorer example, 507
template, choosing, 503
web site, 499
wizard choices, reviewing, 50
PLINQ, 488-490
complexities, 494
FakeWeatherData program, 491-492
IParallelEnumerble interface, 489
LINQ query time differences, measuring,
493-494
Parallel Computing team web site, 488
ParallelQuery<int>, 489
performance improvements, 490

G

generated code
automatic properties, 71-72
customizing, 337-338
entity classes, 341-344
NorthwindDataContext class, 338-340
EF, 359-360
Generation operators, 177, 181
All, 181, 187
Any, 181, 186-187
Contains, 181, 188-190
Empty, 181, 186
Range, 181-183
Repeat, 181-185
generic delegates, 86-89
generics
overview, 9
syntax, 10

Index m 553

GetChangeSet( ) method, 298
GetListEnumerator class, 115
GetProcesses( ) method, 511
GetSequence( ) method, 113
GettingStartedWithLinqToXML sample
program, 382
goes to (=>) operator, 91
graphical designer for mapping. See Object
Relational Designer
group joins, 147-149, 261
group-by clauses
projections, 154
query expressions, 132
at the end, 136-139
in the middle, 139-141
GroupByOperators sample program
group-by clauses, 139
let clause, 142
Grouping operators, 177

handling conflicts, 295-297
hierarchies, 53-58
Customer object generated by LINQ to SQL
Designer example, 55-56
two object relationship, 54
hierarchy, 7, 516
LINQ to XML classes, 422
XML, 372, 387-388
Hossain, Mehfuz, 496

identifiers (XML namespaces), 424
identity (objects), 255-256
IEnumerable<T> interface, 103-105
Element operators, composing, 202-203
enumeration, 106-108
implementing with yield return, 108
iterators, 108-110
operator support, 119
query expressions, 168
querying collections of integers, 19-20
sequences, 106
IEnumerator<T> interface, 107
IEqualityComparer interface, 188
IL (Intermediate Language), 22
immediate loading, 266-268
imperative programming, 48, 383
inferred types, 78-79
Informit web site, 11



554

Index

inheritance (LINQ to SQL), 269-274
class diagram, 269
class hierarchy on designer surface, 274
designers, 273
InheritanceMapping attribute, 271
InheritanceMapping attribute, 271
initializers, 74
collection, 16, 74-75
object, 76-77
objects, 22-24
inner joins, 143-146
inserting
entities, 282-283
XML nodes, 420-421
InsertOnSubmit( ) method, 283
installing
NET Framework, 522
SQL Server Express, 523
Visual Studio Express, 522
integration, 7, 40-41, 516
IntelliSense C# key bindings, 541
interfaces
IEnumerable<T>, 103-105
Element operators, composing, 202-203
enumeration, 106-108
implementing with yield return, 108
iterators, 108-110
operator support, 119
query expressions, 168
querying collections of integers, 19-20
sequences, 106
IEnumerator<T> interface, 107
IEqualityComparer, 188
IParallelEnumerable<int>, 489
IQueryable<T>, 172-173
IXmlLinelnfo, 415
Intermediate Language (IL), 22
Intersect operator, 204-207
into keyword (query expressions), 141
into operators, 150
IParallelEnumerable interface, 489
IQueryable<T> interface, 172-173
IQueryable Toolkit, 496

IsPrimaryKey property (Column attribute), 234

IsState( ) method, 96
Item class, 213
IXmlLinelnfo interface, 415

J-K
Join operators, 176, 260-262
joining tables, 260-262

joins, 143
equijoins, 145
group, 147-149, 261
inner, 143-146
left outer, 149-151
LINQ to SQL, 153
object-oriented model, 152-153
web site, 536

key bindings (C#), 539-544
keywords

C#, 537-539

contextual, 17-18

from, 135

into, 141

var, 78-79
Kulkarni, Dinesh blog, 11

L
lambdas, 2, 89-92
=> (goes to) operator, 91
C# 2.0 anonymous methods, compared, 92
exercises, 92-94
expression trees based on lambdas
example, 123
local variables, 91
methods, compared, 90
query expressions role, 118
syntax, 89
Language Integrated Query. See LINQ
Last operator, 198-200
LastOrDefault operator, 198-200
layers (EF), 352-353
left outer joins, 149-151
let clauses (query expressions), 141-143
lifecycle (entities), 240, 282
deleting entities, 284-285
entity class customizations, 344
inserting entities, 282-283
managing relationships, 286-288
submitting changes, 288-290
updating entities, 285-286
line numbers (XML nodes), 414-417
LINQ (Language Integrated Query), 1
building blocks, 517
foundational qualities, 516-517
overview, 3
LINQ to Entities. See EF
LINQ to Flickr, 495
API, 495
applications, creating, 497-499



download, 496
FlickrXplorer application, 496
web site, 495
LINQ to Objects
LINQ to SQL, compared, 8-9, 105
providers for existing technologies, 509
system processes, querying, 510-511
LINQ to Relational technology, 366
LINQ to SharePoint, 499
announcements, adding, 501
assemblies, registering, 502
connections, 503
example site, 501
LINQ to SharePoint Entity Wizard, 503
queries, 508
requirements, 500
SharePoint site access, 500
site access, 500
site lists, choosing, 505
Solution Explorer example, 507
template, choosing, 503
web site, 499
wizard choices, reviewing, 506
LINQ to SharePoint Entity Wizard
choices, reviewing, 506
connections, 503
first page, 503
site lists, choosing, 505
LINQ to SQL
concurrent changes, 290-292
optimistic. See optimistic concurrency
refreshing entities, 297-299
set of changes, 298
connections, managing, 302
CRUD, 240
data binding, 305
ASP.NET, 310, 313, 316
smart client, 306, 309-310
databases, creating, 316-318
entities
deleting, 284-285
inserting, 282-283
modifying, 239-240
submitting changes, 288-290
relationships. See entities, relationships
retrieving, 252-254
updating entities, 285-286
expression tree, parsing, 127
inheritance, 269-274
Join operator, 260-261
joins, 153

Index

LINQ to Objects, compared, 8-9, 105
LinqToSqlWithoutDesigner example, 26-30
loading options, 264-268
mapping classes to tables, 233-236
mapping tools
command-line, 243
graphical designer. See Object Relational
Designer
multitier entities, attaching, 302-305
object identity, 255-256
overview, 231-233
performance
compiled queries, 277-278
queries versus results, 275-276
relationships, 236-239
security, 278-279, 484-486
stored procedures, 319
CUD operations, 330-332
executing, 322
mapping, 320
relationships, loading, 333-334
returning entity type example, 322-323
returning multiple results, 324-326
returning rows with key values
example, 322
scalar-valued functions, 328-329
TVFs, 326-328
transactions, 299-302
transformation into XML, 60
translating, 248-250
base class library methods, 250
scalar UDFs, 251
T-SQL methods, 251
LINQ to SQL Designer
Customer object example, 55-56
generated code, customizing, 337-338
entity classes, 341-344
NorthwindDataContext class, 338-340
LINQ to XML
Ancestors( ) method, 408-409
annotations, 459-461
character data, 406-407
classes, 374, 422
databases, creating programmatically, 442-443
data schemas, viewing, 449
table declarations, 450
tables, creating, 444-447
XML data, transferring, 447-449
declarations, 434
DescendantNodes( ) method, 402-404
DescendantNodesAndSelf( ) method, 404

m 555



556

Index

descendants, 397-400
ElementsBeforeSelf( ) / ElementsAfterSelf( )
methods, 409
explicit conversion operators, 413
namespaces, 424-426
accidentally omitting, 436
default, 426-429
identifiers, 424
prefixes, 425
schema validation, 458-459
XHTML, creating, 435
nodes, 374
adding, 420-421
attributes, 420
deleting, 417-418
editing, 418-419
elements, 421
line numbers, 414, 417
missing, 411-414
parent nodes, 407-409
queries, 392
composition, 400-402
FirstFourPlanets.xml, 392-394
schema validation, 451-459
text node searches, 405
transformations, 429
relational data into XML, 437-442
XHTML, creating, 431-437
XML between formats, 430-431
XML data into databases, 447-449
XML
attributes, creating, 377
declarations, creating, 378-381
documents, creating, 378, 382-383
documents, saving to disks, 383, 386
elements, creating, 375-377
literals, 461-463
XML files
creating, 34-36
parsing, 31-34
XNamespace class, 427
LingDataSource application example
Data Source Configuration Wizard, 312-313
filters, 313
grid view, 314
query results, configuring, 313
results, 315
LINQExtender, 496
LinqToSqlWithoutDesigner example, 26-30
LinqToTerraServer provider, 45
List<T>, declaring, 104

listings
anonymous class example, 81
automatic properties
C# 2.0 syntax, 70
example, 69
Reflector generated code, 71-72
Contains operator, 188
Count operator, 211
Customer objects
generated by LINQ to SQL Designer, 55-56
query, 23
databases, creating programmatically
table declarations, 450
tables, creating, 444-445
deferred execution, iterator sequence
example, 111-112
DescendantNodes( ) method, 403
DescendantNodesSelf( ) method, 404
Descendants program, 398-399
Distinct operator, 207
enumerating with IEnumerator<T>
interface, 107
Except method, 208
expression trees
lambda based, 123
parsing operations, 123-124
extension methods
scoping, 99-103
static method string class example, 95-96
FirstFourPlanets.xml, 392-393
names of planets code, 393
output, 394
Flickr application, 498
generic delegates example, 88
IEnumerable<T> interface, implementing
with yield return, 108
inner joins, 143-145
Intersect operator, 206
left outer joins, 149
LINQ to SQL, LinqToSqlWithoutDesigner
example, 26-30
LINQ to XML
customers who live in Mexico D.F,, 31
data stored in Customers.xml file, 32
Min/Max operators
highest/lowest values in a sequence, 212
Item class/Getltems( ) method, 212
min/max values for complex types with
multiple fields, 213
MyDelegate example, 83-84
MyNumberServer class, 169



object-oriented join model, 152
operator overrides, Where operator, 119-120
OrderByDescending operator, 221
Ordering operators, 220
partial method example, 67-68
projections
deferred execution, 158
new class in a select clause example, 154
SelectMany operators, 159
transforming objects into XML, 155
query expressions
group-by clauses, 139
let clause, 142
querying collections of integers, 14
relational data transformation into XML,
437-439
Repeat operator, 184
system processes, querying, 510-511
ToArray operator, 226
transformations, LINQ to SQL query into
XML, 60
Union operator, 205
XHTML documents
creating, 432-434
example, 435
XML
annotations, 459
character data, 406-407
declarations, creating, 378-379
documents, creating one node at a time, 382
documents, example, 370
documents, saving to disks, 383
files, creating, 34
nodes, deleting, 417
schema validation example, 455-456
single node access, 401
Load( ) method, 385
loading
entities, 264
LINQ to SQL
deferred, 264-266
eager, 266-268
relationships, 333-334
XML files, 536
local variables, 91
locating operators, 179-181
LongCount operators, 210-212

Index

managing
concurrency, 476-478
connections, 302
entity relationships, 286-288
transactions, 299-302
many-to-many relationships, 262
mapping
classes to tables, 233-236
relationships, 264
stored procedures, 320-322
methods, 363
parameters, 365
tables to classes, 240-243
TVFs, 327
Max operators, 210-214
metadata declarations, 121
methods
Ancestors (), 408-409
Annotation( ), 461
anonymous types, passing, 81
AsParallel( ), 489
Attach( ), 302-305
CreateDatabase( ), 316-317
DeleteOnSubmit( ), 284
DescendantNodes( ), 402-404
DescendantNodesAndSelf( ), 404
Descendants( ), 397-400
ElementsAfterSelf( ), 409
ElementsBeforeSelf( ), 409
extension, 2, 94-103
GetChangeSet( ), 298
GetProcesses( ), 511
GetSequence( ), 113
InsertOnSubmit( ), 283
IsState( ), 96
lambdas, compared, 90
LINQ to SQL translation, 250-251
Load(), 385
MoveNext( ), 115
MyPartialMethod( ), 67
OnCreated( ), 339
OnRequiredDateChanged( ), 344
OnRequiredDateChanging( ), 344
partial, 66-69
ProcessList( ), 434
Refresh(), 297
Resolve( ), 297
scalar UDFs, 251
ShowExcept( ), 208

m 557



558

Index

ShowIntersect( ), 206

ShowRepeat( ), 184

ShowUnion( ), 205

StartsWith( ), 250

stored procedures, mapping, 363

SubmitChanges( ), 288-290

overriding, 340
performance optimization, 483

T-SQL, 251

ToString( ), 384

Validate( ), 456

ValidationEventHandler( ), 457

WriteFile( ), 68

XContainer class, 391

XElement class, 391

XNode class, 391
Microsoft

MVC download, 496

Office SharePoint Server 2007 VHD, 500
Min operator, 210-214
minimal update statements, 286
missing nodes (XML), 411-414
modifying entities, 239-240
ModifyNodes program, 417
MoveNext( ) method, 115
multitier entities, attaching, 302-305
Musician class, 145
MVC download, 496
MyDelegate example, 83-84
MyNumberServer class, 168-172
MyPartialClass class, 67
MyPartialMethod( ) method, 67

namespaces
System.Diagnostics, 510-511
System.Xml.Ling, 32
XML, 424-426
accidentally omitting, 436
default, 426-429
identifiers, 424
prefixes, 425
schema validation, 458-459
XHTML, creating, 435
Navigation C# key bindings, 541
NET
Development web site, 535
Framework
installing, 522
version numbers, 521
web site, 536

New Project dialog box, 524
nodes (XML), 374
adding, 420-421
attributes, 36, 420
deleting, 417-418
editing, 418-419
elements, 421
line numbers, 414, 417
missing, 411-414
parents, 407-409
nomenclature (query expressions), 130
Northwind database
connections
Object Relational Designer, 531-533
Visual Studio 2008, 528-530
customizing, 338-340
DataContext class, customizing, 338-340
download, 521
sample programs, 521
scalar-valued functions, adding, 328
stored procedures, 322-324
TVFs, adding, 326

0
object initializers, 22-24, 76-77
object-oriented join model, 152-153
Object Relational Designer
database connections, creating, 531-533
mapping tables to classes, 240-243
Object Services layer, 352
objects. See also entities
collections, querying, 20
anonymous types, 24-25
automatic properties, 21-22
object initializers, 22-24
Customer, 23, 55-56
hierarchy example, 54
identity, 255-256
lifecycle, 240
references, 255
relationships, 236, 256-259
Association attribute, 257
collection properties, 259
defining, 236-238
dotting through, 258
joining tables, 260-262
mapping, 264
querying across, 238-239
OfType operator, 224-227
OnCreated( ) method, 339
OnRequiredDateChanged( ) method, 344



OnRequiredDateChanging( ) method, 344

operations
CRUD, 240, 361-362
CUD, 330-332
parsing, 123-124
Operatorld automatic property, 70-71
OperatorName automatic property, 70
operators
Aggregate, 177,210
Aggregate, 210, 216-219
Average, 210, 214-215
Count, 210-212
LongCount, 210-212
Max, 210-214
Min, 210-214
Sum, 210, 215-216
categories, 175-177
choosing, 177
Conversion, 223
AsEnumerable, 224, 228
Cast, 224
OfType, 224-227
ToArray, 224-226
ToDictionary, 224, 227
ToList, 224-226
ToLookup, 224
core, 177
declarations, 180
Element, 176, 198
composing, 202-203
DefaultlfEmpty, 198, 203-204
ElementAt, 198, 202
ElementAtOrDefault, 198
First, 198
FirstOrDefault, 198-199
Last, 198-200
LastOrDefault, 198-200
Single, 198, 201
SingleOrDefault, 198
Equality, 177
explicit conversion, 413

famous Romans code reuse example, 178

foreach loop code reuse example, 178
Generation, 177, 181

All, 181, 187

Any, 181, 186-187

Contains, 181, 188-190

Empty, 181, 186

Range, 181-183

Repeat, 181-185
Grouping, 177

IEnumerable<T> interface support, 119

Index

into, 150
Join, 176, 260-262
locating, 179-181
Ordering, 176, 219
OrderBy, 219-221
OrderByDescending, 219-222
Reverse, 219
Revise, 223
ThenBy, 219, 222-223
overriding, 117-121
Partitioning, 176, 192-193
Skip, 192-193
SkipWhile, 192, 196-197
Take, 192-193
TakeWhile, 192-195
Projection, 177
query, 46-48
Restriction, 177
SelectMany, projections, 159-167
SequenceEqual, 190-192
Set, 176, 204
Concat, 205
Distinct, 204, 207
Except, 205-207
Intersect, 204-207
query expressions, 208-210
SequenceEqual, 205
Union, 204-206
web site, 536
Where
filtering nodes, 34
implementing, 119-120
optimistic concurrency, 292
conflict detection, 292-295
conflict resolution, 295-297
limitations, 478
optimizing performance, 482-484
Order class
EntityRef type, 237
relationship with Customer class, 263
Storage property, 237
OrderByDescending operator, 219-222
OrderBy operator, 219-221
Ordering operators, 176, 219
OrderBy, 219-221
OrderByDescending, 219-222
Reverse, 219
Revise, 223
ThenBy, 219, 222-223
OrdersByCustomer stored procedure
loading Customer.Orders, 334
returning entity types, 322-323

m 559



560

Index

orders form example, smart client data
binding, 306

orders, moving between customers, 287
Orders property (Customer class), 237
OtherKey property (Customer class), 237
overriding

operators, 117-121

SubmitChanges( ) method, 340

P
Paldino, Nick, 81
Parallel Computing team web site, 488
Parallel LINQ. See PLINQ
ParallelQuery<int>, 489
parent nodes (XML), 407-409
parsing
operations, 123-124
XML files, 31-34
partial classes, adding to entity class, 343
partial methods, 66
example listing, 67-68
rules, 68-69
Partitioning operators, 176, 192-193
Skip, 192-193
SkipWhile, 192, 196-197
Take, 192-193
TakeWhile, 192-195
passing anonymous types out of methods, 81
performance
context, defining, 479-480
costs, 480-481
improving, 490
LINQ to SQL
compiled queries, 277-278
queries versus results, 275-276
optimizing, 482-484
persistent classes, creating, 345-348
persistence
DataContext services, 474
entities, 473-474
ignorance, 347
separation of concerns, 473-474
PLINQ (Parallel LINQ), 60, 488-490
complexities, 494
FakeWeatherData program, 491-492
IParallelEnumerable, 489
LINQ query time differences, measuring,
493-494
Parallel Computing team web site, 488
ParallelQuery<int>, 489
performance improvements, 490

prefixes (XML namespaces), 425
pre-LINQ mainstream programming
languages versus queries, 515-516
private setter (automatic properties), 73
Process class, 511
ProcessList( ) method, 434
Projection operators, 177
projections, 153
deferred execution, 156-159
new class in a select clause example, 154
overview, 154-156
retrieving, 252-254
SelectMany operator overloads, 164-167
SelectMany operators, 159-164
SQL, 155
transforming objects into XML, 155
prop snippet, 70
properties
automatic, 69-73
querying collections of objects, 21-22
backing fields, 22
collection, 259
Expression, 173
IsPrimaryKey (Column attribute), 234
Orders (Customer class), 237
OtherKey (Customer class), 237
Storage (Orders class), 237
providers
finding, 536
LinqToTerraServer, 45
third-party, 44

Q

queries
collections of integers, 14-20
collections of objects, 20-25
databases, 26-30
deferred execution, 265
LINQ to XML, 392-394
LINQ to SQL, 275-278
PLINQ, 490
SharePoint, 508
system processes, 510-511
unified method, 42-43
versus pre-LINQ mainstream
programming languages, 515-516
XML composition, 400-402
query expressions
beginning/ending, 16
clauses, 131-132
composing, 136-143



continuations, 141
IEnumerable<T>, 168
IQueryable<T>, 168, 172-173
joins, 143-153
lambdas, 118
MyNumberServer class, 169-172
nomenclature, 130
projections, 153
deferred execution, 156-159
new class in a select clause example, 154
overview, 154-156
SelectMany operator overloads, 164-167
SelectMany operators, 159-164
transforming objects into XML, 155
querying collections of integers, 16-18
range variables, 133-135
Set operators, 208-210
translating into query methods, 118
query methods, translating from query
expressions, 118
query operators, 46-48

Range operator, 181-183

range variables (query expressions), 133-135
identifiers, introducing, 133
introducing, 135
types, explicitly stating, 134

Refactor C# key bindings, 543

reference sources, 10, 535

references (objects), 255

Reflector automatic property generated

code, 71-72
Refresh(') method, 297
refreshing entities, 297-299

relational data, transforming into XML, 437-442

relational databases, 247
relationships
association, 236
dotting through, 258
ends, 351
entities, 256-351
Association attribute, 257
collection properties, 259
dotting through, 258
joining tables, 260-262
managing, 286-288
mapping, 264
loading, 333-334
many-to-many, 262

Index

objects, 236-239
unary, 351
Repeat operator, 181-185
Resolve( ) method, 297
resources, 10, 535
Restriction operators, 177
retrieving entities, 252-254
Reverse operator, 219
Revise operator, 223
Root MSDN Library web site, 535
root nodes (XML), 371
RSS feeds, loading to XML documents, 385
rules, partial method example, 68-69

S

sample sources, 10
saving XML documents, 383, 386
scalar UDFs, LINQ to SQL translation, 251
scalar-valued functions, 328-329
schema validation (XML), 451

documents, 452-453

DTD specification, 453

namespaces, 458-459

validating example, 455-457

XSD files, 454
scoping extension methods, 98-103
security

improving, 484-486

LINQ to SQL, 278-279
select clauses

projections, 154-155

query expressions, 17, 132
SelectMany operators, 159-167
self-referencing relationships, 351
separation of concerns

business logic, 474-476

persistence, 473-474
SequenceEqual operator, 190-192, 205
Server Explorer, 437
Set operators, 176, 204

Concat, 205

Distinct, 204, 207

Except, 205-207

Intersect, 204-207

query expressions, 208-210

SequenceEqual, 205

Union, 204-206
SharePoint. See LINQ to SharePoint
ShowExcept( ) method, 208
ShowlIntersect( ) method, 206

m 561



562

Index

ShowRepeat( ) method, 184
ShowUnion( ) method, 205
SimpleJoin program
group joins, 147
inner joins, 143-145
left outer joins, 149
simultaneous changes (entities), 290-292
optimistic, 292
conflict detection, 292-295
conflict resolution, 295-297
limitations, 478
refreshing entities, 297-299
set of changes, 298
single node access listing, 401
Single operator, 198-201
SingleOrDefault operator, 198
Skip operator, 192-193
SkipWhile operator, 192, 196-197
smart client data binding, orders form
example, 306-310
binding object, choosing, 306
data source type, choosing, 306
Data Sources window, populating, 308
master-details form design view, 309
new data source, adding, 306
order form design view, 308
Smet, Bart De, 499
snippets, 70
Solution Explorer (SharePoint example), 507
source code web site, 519
SpecialString class, 97
SQL. See also LINQ to SQL
dynamic, 468-469
joins, 153
projections, 155-156
security, improving, 484-486
Server Express, installing, 523
SqlMetal, 243
StartsWith( ) method, 250
Storage property (Order class), 237
stored procedures, 319
CUD operations, 330-332
configuring on entities, 332
override methods, 330
update mapped to a method example, 331
EF, 362
adding, 363
mapping to methods, 363
parameters, mapping, 365
update procedure, 364
executing, 322
mapping, 320

relationships, loading, 333-334
returning
entity type example, 322-323
multiple results, 324-326
rows with key values example, 322
scalar-valued functions, 328-329
TVFs, 326-328
SubmitChanges( ) method, 288-290
overriding, 340
performance optimization, 483
Sum operator, 210, 215-216
syntax, 2, 10
system processes, querying, 510-511
System.Data.Linq web site, 536
System.Diagnostics namespace, 510-511
System.Linq web site, 536
System.Xml.Linq namespace, 32
System.Xml.Linq web site, 536

T
T-SQL methods, 251
Table attribute (entity classes, creating), 233
tables
classes to tables, mapping, 233
DataContext class, 234-236
entity classes, creating, 233-234
Object Relational Designer, 240-243
SqlMetal, 243
databases
creating, 444-447
declarations, 450
joining, 260-262
table-valued functions (TVFs), 326-328
Take operator, 192-193
TakeWhile operator, 192-195
TerraServer web site, 45
text node searches (XML), 405
ThenBy operator, 219, 222-223
third-party LINQ providers, 44
ToArray operator, 224-226
ToDictionary operator, 224, 227-228
ToList operator, 224-226
ToLookup operator, 224
ToString( ) method, 384
transactions, managing, 299-302
transformations, 60-61
LINQ to SQL query into XML, 60
select clause projections, 155
XML, 429
relational data into XML, 437-442
XHTML, creating, 431-437



XML between formats, 430-431
XML data into databases, 447-449
transformativity, 8, 517
translating LINQ to SQL, 248-250
base class library methods, 250
scalar UDFs, 251
T-SQL methods, 251
troubleshooting resources, 10
TVFs (table-valued functions), 326-328
types
anonymous, 24-25
C#3.0,77-82
EntityRef, 237
IEnumerable<T>, 19-20
inferences, querying collections of
integers, 18
range variables, 134
XElement, 33

u-v
UDFs (user-defined functions), 251
unary relationships, 351
unified method for querying, 42-43
Union operator, 204-206
unitive LINQ, 7, 516
units of work
concurrency management, 478
performance optimization, 483-484
Update Wizard (EF designer), 363
updating entities, 285-286
using directives, 376

Validate( ) method, 456
ValidationEventArgs class, 457
ValidationEventHandler( ) method, 457
var contextual keyword, 18
var keyword (type inferences), 78-79
variables

local, 91

range, 133-135
Visual Basic, XML literals, 461-463
Visual Studio, database connections,

creating, 528-530

Visual Studio Express, 522

w

WCF (Windows Communication
Foundation), 341

WCF DataContract attribute (entity class
customizations), 341-342

Index

web sites
C#
Development Center, 11
iterators blog, 110
sample programs, 521
Calvert, Charlie blog, 10
code generation, 536
database connection blog, 528
EDM Generator, 359
Flickr, 495
download, 496
FlickrXplorer application, 496
Informit, 11
joins, 536
Kulkarni, Dinesh, 11
LINQExtender, 496
LINQ IQueryable Toolkit, 496
Microsoft Office SharePoint Server 2007
VHD, 500
MVC download, 496
NET
Development, 535
Framework, 522, 536
Northwind database, 521
operators, 536
Parallel Computing team, 488
PLINQ complexities, 494
providers, finding, 536
references, 535
Root MSDN Library, 535
SharePoint, 499
source code, 519
SQL Server Express, 523
System.Data.Ling, 536
System.Ling, 536
System.Xml.Ling, 536
TerraServer, 45
Visual Studio Express, 522
where clauses (query expressions), 17, 132
Where operator
filtering nodes, 34
implementing, 119-120
Windows C# key bindings, 542
Windows Communication Foundation
(WCEF), 341
wizards
Data Source Configuration, 306, 312-313
Entity Data Model, 354-358
LINQ to SharePoint Entity, 503-506
Update (EF designer), 363
WriteFile( ) method, 68

m 563



564

Index

X-Z
XAttribute class, 377
XContainer class, 388-391
XDocument class, 378, 390
XElement class, 33, 376
methods, 391
XDocument class, compared, 390
XHTML, creating, 431-437
XML. See also LINQ to XML
Ancestors( ) method, 408-409
annotations, 459-461
attributes, creating, 377
character data, 406-407
class hierarchy, 387-388, 422
content, 372
databases, creating programmatically, 442-443
data schemas, viewing, 449
table declarations, 450
tables, creating, 444-447
XML data, transferring, 447-449
declarations, 371-373
creating, 378-381
DOCTYPE, 434
DescendantNodes( ) method, 402-404
DescendantNodesAndSelf( ) method, 404
descendants, 397-400
documents
creating, 378, 382-383
example, 370
RSS feeds, loading, 385
saving to disks, 383, 386
elements, 373
casting, 397
creating, 375-377
ElementsBeforeSelf( ) /ElementsAfterSelf( )
methods, 409
Extensions class, 391
files
creating, 34-36
loading, 536
parsing, 31-34
FirstFourPlanets.xml, 392-394
fundamentals, 370-371, 374
hierarchy, 372
IXmlLinelnfo interface, 415
literals, 461-463
namespaces, 424-426
accidentally omitting, 436
default, 426-429

identifiers, 424
prefixes, 425
schema Validation, 458-459
XHTML, creating, 435
nodes
adding, 420-421
attributes, 420
deleting, 417-418
editing, 418-419
elements, 421
line numbers, 414, 417
missing, 411-414
parent, 407-409
root, 371
queries, 392-394, 400-402
schema validation, 451

document not well formed example, 452-453

document validity, 453
DTD specification, 453
namespaces, 458-459
validating example, 455-457
XSD files, 454
single node access, 401
text node searches, 405
transformations, 429
relational data into XML, 437-442
XHTML, creating, 431-437
XML between formats, 430-431
XML data into databases, 447-449
using directives, 376
ValidationEventArgs class, 457
XContainer class, 389-391
XDocument class compared to XElement
class, 390
XElement class, 391
XmlSchemaSet class, 456
XNamespace class, 427
XNode class, 389-391
XObject class, 392, 415
xmlins attribute, 425
XmlSchemaSet class, 456
XNamespace class, 427
XNode class, 389-391
XObject class, 392, 415
XSD files, 454

yield returns, 172



	Foreword
	3 The Essence of LINQ
	Integrated
	Unitive
	Extensible Provider Model
	Query Operators

	Declarative: Not How, But What
	Hierarchical
	Composable
	Transformative
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J–K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U–V
	W
	X–Z




