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Preface

All problems in computer science
can be solved by another level of indirection,

except for the problem of too many layers of indirection.
– David J. Wheeler

C++ feels like a new language. That is, I can express my ideas more clearly, more simply, and
more directly in C++11 than I could in C++98. Furthermore, the resulting programs are better
checked by the compiler and run faster.

In this book, I aim for completeness. I describe every language feature and standard-library
component that a professional programmer is likely to need. For each, I provide:

• Rationale: What kinds of problems is it designed to help solve? What principles underlie
the design? What are the fundamental limitations?

• Specification: What is its definition? The level of detail is chosen for the expert program-
mer; the aspiring language lawyer can follow the many references to the ISO standard.

• Examples: How can it be used well by itself and in combination with other features? What
are the key techniques and idioms? What are the implications for maintainability and per-
formance?

The use of C++ has changed dramatically over the years and so has the language itself. From the
point of view of a programmer, most of the changes have been improvements. The current ISO
standard C++ (ISO/IEC 14882-2011, usually called C++11) is simply a far better tool for writing
quality software than were previous versions. How is it a better tool? What kinds of programming
styles and techniques does modern C++ support? What language and standard-library features sup-
port those techniques? What are the basic building blocks of elegant, correct, maintainable, and
efficient C++ code? Those are the key questions answered by this book. Many answers are not the
same as you would find with 1985, 1995, or 2005 vintage C++: progress happens.

C++ is a general-purpose programming language emphasizing the design and use of type-rich,
lightweight abstractions. It is particularly suited for resource-constrained applications, such as
those found in software infrastructures. C++ rewards the programmer who takes the time to master
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techniques for writing quality code. C++ is a language for someone who takes the task of program-
ming seriously. Our civilization depends critically on software; it had better be quality software.

There are billions of lines of C++ deployed. This puts a premium on stability, so 1985 and
1995 C++ code still works and will continue to work for decades. However, for all applications,
you can do better with modern C++; if you stick to older styles, you will be writing lower-quality
and worse-performing code. The emphasis on stability also implies that standards-conforming
code you write today will still work a couple of decades from now. All code in this book conforms
to the 2011 ISO C++ standard.

This book is aimed at three audiences:
• C++ programmers who want to know what the latest ISO C++ standard has to offer,
• C programmers who wonder what C++ provides beyond C, and
• People with a background in application languages, such as Java, C#, Python, and Ruby,

looking for something ‘‘closer to the machine’’ – something more flexible, something offer-
ing better compile-time checking, or something offering better performance.

Naturally, these three groups are not disjoint – a professional software developer masters more than
just one programming language.

This book assumes that its readers are programmers. If you ask, ‘‘What’s a for-loop?’’ or
‘‘What’s a compiler?’’ then this book is not (yet) for you; instead, I recommend my Programming:
Principles and Practice Using C++ to get started with programming and C++. Furthermore, I
assume that readers have some maturity as software developers. If you ask ‘‘Why bother testing?’’
or say, ‘‘All languages are basically the same; just show me the syntax’’ or are confident that there
is a single language that is ideal for every task, this is not the book for you.

What features does C++11 offer over and above C++98? A machine model suitable for modern
computers with lots of concurrency. Language and standard-library facilities for doing systems-
level concurrent programming (e.g., using multicores). Regular expression handling, resource
management pointers, random numbers, improved containers (including, hash tables), and more.
General and uniform initialization, a simpler for-statement, move semantics, basic Unicode support,
lambdas, general constant expressions, control over class defaults, variadic templates, user-defined
literals, and more. Please remember that those libraries and language features exist to support pro-
gramming techniques for developing quality software. They are meant to be used in combination –
as bricks in a building set – rather than to be used individually in relative isolation to solve a spe-
cific problem. A computer is a universal machine, and C++ serves it in that capacity. In particular,
C++’s design aims to be sufficiently flexible and general to cope with future problems undreamed
of by its designers.
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Programming is understanding.
– Kristen Nygaard

I find using C++ more enjoyable than ever. C++’s support for design and programming has
improved dramatically over the years, and lots of new helpful techniques have been developed for
its use. However, C++ is not just fun. Ordinary practical programmers have achieved significant
improvements in productivity, maintainability, flexibility, and quality in projects of just about any
kind and scale. By now, C++ has fulfilled most of the hopes I originally had for it, and also suc-
ceeded at tasks I hadn’t even dreamt of.

This book introduces standard C++† and the key programming and design techniques supported
by C++. Standard C++ is a far more powerful and polished language than the version of C++ intro-
duced by the first edition of this book. New language features such as namespaces, exceptions,
templates, and run-time type identification allow many techniques to be applied more directly than
was possible before, and the standard library allows the programmer to start from a much higher
level than the bare language.

About a third of the information in the second edition of this book came from the first. This
third edition is the result of a rewrite of even larger magnitude. It offers something to even the most
experienced C++ programmer; at the same time, this book is easier for the novice to approach than
its predecessors were. The explosion of C++ use and the massive amount of experience accumu-
lated as a result makes this possible.

The definition of an extensive standard library makes a difference to the way C++ concepts can
be presented. As before, this book presents C++ independently of any particular implementation,
and as before, the tutorial chapters present language constructs and concepts in a ‘‘bottom up’’
order so that a construct is used only after it has been defined. However, it is much easier to use a
well-designed library than it is to understand the details of its implementation. Therefore, the stan-
dard library can be used to provide realistic and interesting examples well before a reader can be
assumed to understand its inner workings. The standard library itself is also a fertile source of pro-
gramming examples and design techniques.

This book presents every major C++ language feature and the standard library. It is org anized
around language and library facilities. However, features are presented in the context of their use.

† ISO/IEC 14882, Standard for the C++ Programming Language.
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That is, the focus is on the language as the tool for design and programming rather than on the lan-
guage in itself. This book demonstrates key techniques that make C++ effective and teaches the
fundamental concepts necessary for mastery. Except where illustrating technicalities, examples are
taken from the domain of systems software. A companion, The Annotated C++ Language Stan-
dard, presents the complete language definition together with annotations to make it more compre-
hensible.

The primary aim of this book is to help the reader understand how the facilities offered by C++
support key programming techniques. The aim is to take the reader far beyond the point where he
or she gets code running primarily by copying examples and emulating programming styles from
other languages. Only a good understanding of the ideas behind the language facilities leads to
mastery. Supplemented by implementation documentation, the information provided is sufficient
for completing significant real-world projects. The hope is that this book will help the reader gain
new insights and become a better programmer and designer.
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mar Kühl, Nicolai Josuttis, Nathan Myers, Paul E. Sevin ̧c, Andy Tenne-Sens, Shoichi Uchida,
Ping-Fai (Mike) Yang, and Dennis Yelle.

Murray Hill, New Jersey Bjarne Stroustrup



Preface to the Second Edition

The road goes ever on and on.
– Bilbo Baggins

As promised in the first edition of this book, C++ has been evolving to meet the needs of its users.
This evolution has been guided by the experience of users of widely varying backgrounds working
in a great range of application areas. The C++ user-community has grown a hundredfold during the
six years since the first edition of this book; many lessons have been learned, and many techniques
have been discovered and/or validated by experience. Some of these experiences are reflected here.

The primary aim of the language extensions made in the last six years has been to enhance C++
as a language for data abstraction and object-oriented programming in general and to enhance it as
a tool for writing high-quality libraries of user-defined types in particular. A ‘‘high-quality
library,’’ is a library that provides a concept to a user in the form of one or more classes that are
convenient, safe, and efficient to use. In this context, safe means that a class provides a specific
type-safe interface between the users of the library and its providers; efficient means that use of the
class does not impose significant overheads in run-time or space on the user compared with hand-
written C code.

This book presents the complete C++ language. Chapters 1 through 10 give a tutorial introduc-
tion; Chapters 11 through 13 provide a discussion of design and software development issues; and,
finally, the complete C++ reference manual is included. Naturally, the features added and resolu-
tions made since the original edition are integral parts of the presentation. They include refined
overloading resolution, memory management facilities, and access control mechanisms, type-safe
linkage, const and static member functions, abstract classes, multiple inheritance, templates, and
exception handling.

C++ is a general-purpose programming language; its core application domain is systems pro-
gramming in the broadest sense. In addition, C++ is successfully used in many application areas
that are not covered by this label. Implementations of C++ exist from some of the most modest
microcomputers to the largest supercomputers and for almost all operating systems. Consequently,
this book describes the C++ language itself without trying to explain a particular implementation,
programming environment, or library.

This book presents many examples of classes that, though useful, should be classified as
‘‘toys.’’ This style of exposition allows general principles and useful techniques to stand out more
clearly than they would in a fully elaborated program, where they would be buried in details. Most
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of the useful classes presented here, such as linked lists, arrays, character strings, matrices, graphics
classes, associative arrays, etc., are available in ‘‘bulletproof ’’ and/or ‘‘goldplated’’ versions from a
wide variety of commercial and non-commercial sources. Many of these ‘‘industrial strength’’
classes and libraries are actually direct and indirect descendants of the toy versions found here.

This edition provides a greater emphasis on tutorial aspects than did the first edition of this
book. However, the presentation is still aimed squarely at experienced programmers and endeavors
not to insult their intelligence or experience. The discussion of design issues has been greatly
expanded to reflect the demand for information beyond the description of language features and
their immediate use. Technical detail and precision have also been increased. The reference man-
ual, in particular, represents many years of work in this direction. The intent has been to provide a
book with a depth sufficient to make more than one reading rewarding to most programmers. In
other words, this book presents the C++ language, its fundamental principles, and the key tech-
niques needed to apply it. Enjoy!
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tion, I would like to thank Al Aho, Steve Buroff, Jim Coplien, Ted Goldstein, Tony Hansen, Lor-
raine Juhl, Peter Juhl, Brian Kernighan, Andrew Koenig, Bill Leggett, Warren Montgomery, Mike
Mowbray, Rob Murray, Jonathan Shopiro, Mike Vilot, and Peter Weinberger for commenting on
draft chapters of this second edition. Many people influenced the development of C++ from 1985
to 1991. I can mention only a few: Andrew Koenig, Brian Kernighan, Doug McIlroy, and Jonathan
Shopiro. Also thanks to the many participants of the ‘‘external reviews’’ of the reference manual
drafts and to the people who suffered through the first year of X3J16.

Murray Hill, New Jersey Bjarne Stroustrup



Preface to the First Edition

Language shapes the way we think,
and determines what we can think about.

– B.L.Whorf

C++ is a general purpose programming language designed to make programming more enjoyable
for the serious programmer. Except for minor details, C++ is a superset of the C programming lan-
guage. In addition to the facilities provided by C, C++ provides flexible and efficient facilities for
defining new types. A programmer can partition an application into manageable pieces by defining
new types that closely match the concepts of the application. This technique for program construc-
tion is often called data abstraction. Objects of some user-defined types contain type information.
Such objects can be used conveniently and safely in contexts in which their type cannot be deter-
mined at compile time. Programs using objects of such types are often called object based. When
used well, these techniques result in shorter, easier to understand, and easier to maintain programs.

The key concept in C++ is class. A class is a user-defined type. Classes provide data hiding,
guaranteed initialization of data, implicit type conversion for user-defined types, dynamic typing,
user-controlled memory management, and mechanisms for overloading operators. C++ provides
much better facilities for type checking and for expressing modularity than C does. It also contains
improvements that are not directly related to classes, including symbolic constants, inline substitu-
tion of functions, default function arguments, overloaded function names, free store management
operators, and a reference type. C++ retains C’s ability to deal efficiently with the fundamental
objects of the hardware (bits, bytes, words, addresses, etc.). This allows the user-defined types to
be implemented with a pleasing degree of efficiency.

C++ and its standard libraries are designed for portability. The current implementation will run
on most systems that support C. C libraries can be used from a C++ program, and most tools that
support programming in C can be used with C++.

This book is primarily intended to help serious programmers learn the language and use it for
nontrivial projects. It provides a complete description of C++, many complete examples, and many
more program fragments.
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2
A Tour of C++: The Basics

The first thing we do, let’s
kill all the language lawyers.

– Henry VI, Part II

• Introduction
• The Basics

Hello, World!; Types, Variables, and Arithmetic; Constants; Tests and Loops; Pointers,
Arrays, and Loops

• User-Defined Types
Structures; Classes; Enumerations

• Modularity
Separate Compilation; Namespaces; Error Handling

• Postscript
• Advice

2.1 Introduction
The aim of this chapter and the next three is to give you an idea of what C++ is, without going into
a lot of details. This chapter informally presents the notation of C++, C++’s model of memory and
computation, and the basic mechanisms for organizing code into a program. These are the lan-
guage facilities supporting the styles most often seen in C and sometimes called procedural pro-
gramming. Chapter 3 follows up by presenting C++’s abstraction mechanisms. Chapter 4 and
Chapter 5 give examples of standard-library facilities.

The assumption is that you have programmed before. If not, please consider reading a text-
book, such as Programming: Principles and Practice Using C++ [Stroustrup,2009], before contin-
uing here. Even if you have programmed before, the language you used or the applications you
wrote may be very different from the style of C++ presented here. If you find this ‘‘lightning tour’’
confusing, skip to the more systematic presentation starting in Chapter 6.
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This tour of C++ saves us from a strictly bottom-up presentation of language and library facili-
ties by enabling the use of a rich set of facilities even in early chapters. For example, loops are not
discussed in detail until Chapter 10, but they will be used in obvious ways long before that. Simi-
larly, the detailed description of classes, templates, free-store use, and the standard library are
spread over many chapters, but standard-library types, such as vector, string, complex, map,
unique_ptr, and ostream, are used freely where needed to improve code examples.

As an analogy, think of a short sightseeing tour of a city, such as Copenhagen or New York. In
just a few hours, you are given a quick peek at the major attractions, told a few background stories,
and usually given some suggestions about what to see next. You do not know the city after such a
tour. You do not understand all you have seen and heard. To really know a city, you have to liv e in
it, often for years. However, with a bit of luck, you will have gained a bit of an overview, a notion
of what is special about the city, and ideas of what might be of interest to you. After the tour, the
real exploration can begin.

This tour presents C++ as an integrated whole, rather than as a layer cake. Consequently, it
does not identify language features as present in C, part of C++98, or new in C++11. Such histori-
cal information can be found in §1.4 and Chapter 44.

2.2 The Basics
C++ is a compiled language. For a program to run, its source text has to be processed by a com-
piler, producing object files, which are combined by a linker yielding an executable program. A
C++ program typically consists of many source code files (usually simply called source files).

source file 1

source file 2

compile

compile

object file 1

object file 2
link executable file

An executable program is created for a specific hardware/system combination; it is not portable,
say, from a Mac to a Windows PC. When we talk about portability of C++ programs, we usually
mean portability of source code; that is, the source code can be successfully compiled and run on a
variety of systems.

The ISO C++ standard defines two kinds of entities:
• Core language features, such as built-in types (e.g., char and int) and loops (e.g., for-state-

ments and while-statements)
• Standard-library components, such as containers (e.g., vector and map) and I/O operations

(e.g., << and getline())
The standard-library components are perfectly ordinary C++ code provided by every C++ imple-
mentation. That is, the C++ standard library can be implemented in C++ itself (and is with very
minor uses of machine code for things such as thread context switching). This implies that C++ is
sufficiently expressive and efficient for the most demanding systems programming tasks.

C++ is a statically typed language. That is, the type of every entity (e.g., object, value, name,
and expression) must be known to the compiler at its point of use. The type of an object determines
the set of operations applicable to it.
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2.2.1 Hello, World!

The minimal C++ program is

int main() { } // the minimal C++ program

This defines a function called main, which takes no arguments and does nothing (§15.4).
Curly braces, { }, express grouping in C++. Here, they indicate the start and end of the function

body. The double slash, //, begins a comment that extends to the end of the line. A comment is for
the human reader; the compiler ignores comments.

Every C++ program must have exactly one global function named main(). The program starts
by executing that function. The int value returned by main(), if any, is the program’s return value to
‘‘the system.’’ If no value is returned, the system will receive a value indicating successful comple-
tion. A nonzero value from main() indicates failure. Not ev ery operating system and execution
environment make use of that return value: Linux/Unix-based environments often do, but Win-
dows-based environments rarely do.

Typically, a program produces some output. Here is a program that writes Hello, World!:

#include <iostream>

int main()
{

std::cout << "Hello, World!\n";
}

The line #include <iostream> instructs the compiler to include the declarations of the standard
stream I/O facilities as found in iostream. Without these declarations, the expression

std::cout << "Hello, World!\n"

would make no sense. The operator << (‘‘put to’’) writes its second argument onto its first. In this
case, the string literal "Hello, World!\n" is written onto the standard output stream std::cout. A string
literal is a sequence of characters surrounded by double quotes. In a string literal, the backslash
character \ followed by another character denotes a single ‘‘special character.’’ In this case, \n is the
newline character, so that the characters written are Hello, World! followed by a newline.

The std:: specifies that the name cout is to be found in the standard-library namespace (§2.4.2,
Chapter 14). I usually leave out the std:: when discussing standard features; §2.4.2 shows how to
make names from a namespace visible without explicit qualification.

Essentially all executable code is placed in functions and called directly or indirectly from
main(). For example:

#include <iostream>
using namespace std; // make names from std visible without std:: (§2.4.2)

double square(double x) // square a double precision floating-point number
{

return x∗x;
}
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void print_square(double x)
{

cout << "the square of " << x << " is " << square(x) << "\n";
}

int main()
{

print_square(1.234); // pr int: the square of 1.234 is 1.52276
}

A ‘‘return type’’ void indicates that a function does not return a value.

2.2.2 Types, Variables, and Arithmetic

Every name and every expression has a type that determines the operations that may be performed
on it. For example, the declaration

int inch;

specifies that inch is of type int; that is, inch is an integer variable.
A declaration is a statement that introduces a name into the program. It specifies a type for the

named entity:
• A type defines a set of possible values and a set of operations (for an object).
• An object is some memory that holds a value of some type.
• A value is a set of bits interpreted according to a type.
• A variable is a named object.
C++ offers a variety of fundamental types. For example:

bool // Boolean, possible values are true and false
char // character, for example, 'a', ' z', and '9'
int // integer, for example, 1, 42, and 1066
double // double-precision floating-point number, for example, 3.14 and 299793.0

Each fundamental type corresponds directly to hardware facilities and has a fixed size that deter-
mines the range of values that can be stored in it:

bool:

char:

int:

double:

A char variable is of the natural size to hold a character on a given machine (typically an 8-bit
byte), and the sizes of other types are quoted in multiples of the size of a char. The size of a type is
implementation-defined (i.e., it can vary among different machines) and can be obtained by the
siz eof operator; for example, siz eof(char) equals 1 and siz eof(int) is often 4.

The arithmetic operators can be used for appropriate combinations of these types:
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x+y // plus
+x // unar y plus
x−y // minus
−x // unar y minus
x∗y // multiply
x/y // divide
x%y // remainder (modulus) for integers

So can the comparison operators:

x==y // equal
x!=y // not equal
x<y // less than
x>y // greater than
x<=y // less than or equal
x>=y // greater than or equal

In assignments and in arithmetic operations, C++ performs all meaningful conversions (§10.5.3)
between the basic types so that they can be mixed freely:

void some_function() // function that doesn’t return a value
{

double d = 2.2; // initialize floating-point number
int i = 7; // initialize integer
d = d+i; // assign sum to d
i = d∗i; // assign product to i (truncating the double d*i to an int)

}

Note that = is the assignment operator and == tests equality.
C++ offers a variety of notations for expressing initialization, such as the = used above, and a

universal form based on curly-brace-delimited initializer lists:

double d1 = 2.3;
double d2 {2.3};

complex<double> z = 1; // a complex number with double-precision floating-point scalars
complex<double> z2 {d1,d2};
complex<double> z3 = {1,2}; // the = is optional with { ... }

vector<int> v {1,2,3,4,5,6}; // a vector of ints

The = form is traditional and dates back to C, but if in doubt, use the general {}-list form (§6.3.5.2).
If nothing else, it saves you from conversions that lose information (narrowing conversions; §10.5):

int i1 = 7.2; // i1 becomes 7
int i2 {7.2}; // error : floating-point to integer conversion
int i3 = {7.2}; // error : floating-point to integer conversion (the = is redundant)

A constant (§2.2.3) cannot be left uninitialized and a variable should only be left uninitialized in
extremely rare circumstances. Don’t introduce a name until you have a suitable value for it. User-
defined types (such as string, vector, Matrix, Motor_controller, and Orc_warrior) can be defined to be
implicitly initialized (§3.2.1.1).
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When defining a variable, you don’t actually need to state its type explicitly when it can be
deduced from the initializer:

auto b = true; // a bool
auto ch = 'x'; // a char
auto i = 123; // an int
auto d = 1.2; // a double
auto z = sqrt(y); // z has the type of whatever sqr t(y) retur ns

With auto, we use the = syntax because there is no type conversion involved that might cause prob-
lems (§6.3.6.2).

We use auto where we don’t hav e a specific reason to mention the type explicitly. ‘‘Specific
reasons’’ include:

• The definition is in a large scope where we want to make the type clearly visible to readers
of our code.

• We want to be explicit about a variable’s range or precision (e.g., double rather than float).
Using auto, we avoid redundancy and writing long type names. This is especially important in
generic programming where the exact type of an object can be hard for the programmer to know
and the type names can be quite long (§4.5.1).

In addition to the conventional arithmetic and logical operators (§10.3), C++ offers more spe-
cific operations for modifying a variable:

x+=y // x = x+y
++x // increment: x = x+1
x−=y // x = x-y
−−x // decrement: x = x-1
x∗=y // scaling: x = x*y
x/=y // scaling: x = x/y
x%=y // x = x%y

These operators are concise, convenient, and very frequently used.

2.2.3 Constants

C++ supports two notions of immutability (§7.5):
• const: meaning roughly ‘‘I promise not to change this value’’ (§7.5). This is used primarily

to specify interfaces, so that data can be passed to functions without fear of it being modi-
fied. The compiler enforces the promise made by const.

• constexpr: meaning roughly ‘‘to be evaluated at compile time’’ (§10.4). This is used primar-
ily to specify constants, to allow placement of data in memory where it is unlikely to be cor-
rupted, and for performance.

For example:

const int dmv = 17; // dmv is a named constant
int var = 17; // var is not a constant
constexpr double max1 = 1.4∗square(dmv); // OK if square(17) is a constant expression
constexpr double max2 = 1.4∗square(var); // error : var is not a constant expression
const double max3 = 1.4∗square(var); // OK, may be evaluated at run time
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double sum(const vector<double>&); // sum will not modify its argument (§2.2.5)
vector<double> v {1.2, 3.4, 4.5}; // v is not a constant
const double s1 = sum(v); // OK: evaluated at run time
constexpr double s2 = sum(v); // error : sum(v) not constant expression

For a function to be usable in a constant expression, that is, in an expression that will be evaluated
by the compiler, it must be defined constexpr. For example:

constexpr double square(double x) { return x∗x; }

To be constexpr, a function must be rather simple: just a return-statement computing a value. A
constexpr function can be used for non-constant arguments, but when that is done the result is not a
constant expression. We allow a constexpr function to be called with non-constant-expression argu-
ments in contexts that do not require constant expressions, so that we don’t hav e to define essen-
tially the same function twice: once for constant expressions and once for variables.

In a few places, constant expressions are required by language rules (e.g., array bounds (§2.2.5,
§7.3), case labels (§2.2.4, §9.4.2), some template arguments (§25.2), and constants declared using
constexpr). In other cases, compile-time evaluation is important for performance. Independently of
performance issues, the notion of immutability (of an object with an unchangeable state) is an
important design concern (§10.4).

2.2.4 Tests and Loops

C++ provides a conventional set of statements for expressing selection and looping. For example,
here is a simple function that prompts the user and returns a Boolean indicating the response:

bool accept()
{

cout << "Do you want to proceed (y or n)?\n"; // wr ite question

char answer = 0;
cin >> answer; // read answer

if (answer == 'y') return true;
return false;

}

To match the << output operator (‘‘put to’’), the >> operator (‘‘get from’’) is used for input; cin is
the standard input stream. The type of the right-hand operand of >> determines what input is
accepted, and its right-hand operand is the target of the input operation. The \n character at the end
of the output string represents a newline (§2.2.1).

The example could be improved by taking an n (for ‘‘no’’) answer into account:

bool accept2()
{

cout << "Do you want to proceed (y or n)?\n"; // wr ite question

char answer = 0;
cin >> answer; // read answer
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switch (answer) {
case 'y':

return true;
case 'n':

return false;
default:

cout << "I'll take that for a no.\n";
return false;

}
}

A switch-statement tests a value against a set of constants. The case constants must be distinct, and
if the value tested does not match any of them, the default is chosen. If no default is provided, no
action is taken if the value doesn’t match any case constant.

Few programs are written without loops. For example, we might like to giv e the user a few tries
to produce acceptable input:

bool accept3()
{

int tries = 1;
while (tries<4) {

cout << "Do you want to proceed (y or n)?\n"; // wr ite question
char answer = 0;
cin >> answer; // read answer

switch (answer) {
case 'y':

return true;
case 'n':

return false;
default:

cout << "Sorry, I don't understand that.\n";
++tries; // increment

}
}
cout << "I'll take that for a no.\n";
return false;

}

The while-statement executes until its condition becomes false.

2.2.5 Pointers, Arrays, and Loops

An array of elements of type char can be declared like this:

char v[6]; // array of 6 characters

Similarly, a pointer can be declared like this:

char∗ p; // pointer to character

In declarations, [] means ‘‘array of’’ and ∗ means ‘‘pointer to.’’ All arrays have 0 as their lower
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bound, so v has six elements, v[0] to v[5]. The size of an array must be a constant expression
(§2.2.3). A pointer variable can hold the address of an object of the appropriate type:

char∗ p = &v[3]; // p points to v’s four th element
char x = ∗p; // *p is the object that p points to

In an expression, prefix unary ∗ means ‘‘contents of’’ and prefix unary & means ‘‘address of.’’ We
can represent the result of that initialized definition graphically:

p:

v:
0: 1: 2: 3: 4: 5:

Consider copying ten elements from one array to another:

void copy_fct()
{

int v1[10] = {0,1,2,3,4,5,6,7,8,9};
int v2[10]; // to become a copy of v1

for (auto i=0; i!=10; ++i) // copy elements
v2[i]=v1[i];

// ...
}

This for-statement can be read as ‘‘set i to zero; while i is not 10, copy the ith element and increment
i.’’ When applied to an integer variable, the increment operator, ++, simply adds 1. C++ also offers
a simpler for-statement, called a range-for-statement, for loops that traverse a sequence in the sim-
plest way:

void print()
{

int v[] = {0,1,2,3,4,5,6,7,8,9};

for (auto x : v) // for each x in v
cout << x << '\n';

for (auto x : {10,21,32,43,54,65})
cout << x << '\n';

// ...
}

The first range-for-statement can be read as ‘‘for every element of v, from the first to the last, place
a copy in x and print it.’’ Note that we don’t hav e to specify an array bound when we initialize it
with a list. The range-for-statement can be used for any sequence of elements (§3.4.1).

If we didn’t want to copy the values from v into the variable x, but rather just have x refer to an
element, we could write:
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void increment()
{

int v[] = {0,1,2,3,4,5,6,7,8,9};

for (auto& x : v)
++x;

// ...
}

In a declaration, the unary suffix & means ‘‘reference to.’’ A reference is similar to a pointer,
except that you don’t need to use a prefix ∗ to access the value referred to by the reference. Also, a
reference cannot be made to refer to a different object after its initialization. When used in declara-
tions, operators (such as &, ∗, and []) are called declarator operators:

T a[n]; // T[n]: array of n Ts (§7.3)
T∗ p; // T*: pointer to T (§7.2)
T& r; // T&: reference to T (§7.7)
T f(A); // T(A): function taking an argument of type A returning a result of type T (§2.2.1)

We try to ensure that a pointer always points to an object, so that dereferencing it is valid. When
we don’t hav e an object to point to or if we need to represent the notion of ‘‘no object available’’
(e.g.,for an end of a list), we give the pointer the value nullptr (‘‘the null pointer’’). There is only
one nullptr shared by all pointer types:

double∗ pd = nullptr;
Link<Record>∗ lst = nullptr; // pointer to a Link to a Record
int x = nullptr; // error : nullptr is a pointer not an integer

It is often wise to check that a pointer argument that is supposed to point to something, actually
points to something:

int count_x(char∗ p, char x)
// count the number of occurrences of x in p[]
// p is assumed to point to a zero-ter minated array of char (or to nothing)

{
if (p==nullptr) return 0;
int count = 0;
for (; ∗p!=0; ++p)

if (∗p==x)
++count;

return count;
}

Note how we can move a pointer to point to the next element of an array using ++ and that we can
leave out the initializer in a for-statement if we don’t need it.

The definition of count_x() assumes that the char∗ is a C-style string, that is, that the pointer
points to a zero-terminated array of char.

In older code, 0 or NULL is typically used instead of nullptr (§7.2.2). However, using nullptr

eliminates potential confusion between integers (such as 0 or NULL) and pointers (such as nullptr).
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2.3 User-Defined Types
We call the types that can be built from the fundamental types (§2.2.2), the const modifier (§2.2.3),
and the declarator operators (§2.2.5) built-in types. C++’s set of built-in types and operations is
rich, but deliberately low-level. They directly and efficiently reflect the capabilities of conventional
computer hardware. However, they don’t provide the programmer with high-level facilities to con-
veniently write advanced applications. Instead, C++ augments the built-in types and operations
with a sophisticated set of abstraction mechanisms out of which programmers can build such high-
level facilities. The C++ abstraction mechanisms are primarily designed to let programmers design
and implement their own types, with suitable representations and operations, and for programmers
to simply and elegantly use such types. Types built out of the built-in types using C++’s abstraction
mechanisms are called user-defined types. They are referred to as classes and enumerations. Most
of this book is devoted to the design, implementation, and use of user-defined types. The rest of
this chapter presents the simplest and most fundamental facilities for that. Chapter 3 is a more
complete description of the abstraction mechanisms and the programming styles they support.
Chapter 4 and Chapter 5 present an overview of the standard library, and since the standard library
mainly consists of user-defined types, they provide examples of what can be built using the lan-
guage facilities and programming techniques presented in Chapter 2 and Chapter 3.

2.3.1 Structures

The first step in building a new type is often to organize the elements it needs into a data structure,
a struct:

struct Vector {
int sz; // number of elements
double∗ elem; // pointer to elements

};

This first version of Vector consists of an int and a double∗.
A variable of type Vector can be defined like this:

Vector v;

However, by itself that is not of much use because v’s elem pointer doesn’t point to anything. To be
useful, we must give v some elements to point to. For example, we can construct a Vector like this:

void vector_init(Vector& v, int s)
{

v.elem = new double[s]; // allocate an array of s doubles
v.sz = s;

}

That is, v’s elem member gets a pointer produced by the new operator and v’s siz e member gets the
number of elements. The & in Vector& indicates that we pass v by non-const reference (§2.2.5,
§7.7); that way, vector_init() can modify the vector passed to it.

The new operator allocates memory from an area called the free store (also known as dynamic
memory and heap; §11.2).
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A simple use of Vector looks like this:

double read_and_sum(int s)
// read s integers from cin and return their sum; s is assumed to be positive

{
Vector v;
vector_init(v,s); // allocate s elements for v
for (int i=0; i!=s; ++i)

cin>>v.elem[i]; // read into elements

double sum = 0;
for (int i=0; i!=s; ++i)

sum+=v.elem[i]; // take the sum of the elements
return sum;

}

There is a long way to go before our Vector is as elegant and flexible as the standard-library vector.
In particular, a user of Vector has to know every detail of Vector’s representation. The rest of this
chapter and the next gradually improve Vector as an example of language features and techniques.
Chapter 4 presents the standard-library vector, which contains many nice improvements, and Chap-
ter 31 presents the complete vector in the context of other standard-library facilities.

I use vector and other standard-library components as examples
• to illustrate language features and design techniques, and
• to help you learn and use the standard-library components.

Don’t reinvent standard-library components, such as vector and string; use them.
We use . (dot) to access struct members through a name (and through a reference) and −> to

access struct members through a pointer. For example:

void f(Vector v, Vector& rv, Vector∗ pv)
{

int i1 = v.sz; // access through name
int i2 = rv.sz; // access through reference
int i4 = pv−>sz; // access through pointer

}

2.3.2 Classes

Having the data specified separately from the operations on it has advantages, such as the ability to
use the data in arbitrary ways. However, a tighter connection between the representation and the
operations is needed for a user-defined type to have all the properties expected of a ‘‘real type.’’ In
particular, we often want to keep the representation inaccessible to users, so as to ease use, guaran-
tee consistent use of the data, and allow us to later improve the representation. To do that we have
to distinguish between the interface to a type (to be used by all) and its implementation (which has
access to the otherwise inaccessible data). The language mechanism for that is called a class. A
class is defined to have a set of members, which can be data, function, or type members. The inter-
face is defined by the public members of a class, and private members are accessible only through
that interface. For example:
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class Vector {
public:

Vector(int s) :elem{new double[s]}, sz{s} { } // constr uct a Vector
double& operator[](int i) { return elem[i]; } // element access: subscripting
int size() { return sz; }

private:
double∗ elem; // pointer to the elements
int sz; // the number of elements

};

Given that, we can define a variable of our new type Vector:

Vector v(6); // a Vector with 6 elements

We can illustrate a Vector object graphically:

6

Vector:

elem:

sz:
0: 1: 2: 3: 4: 5:

Basically, the Vector object is a ‘‘handle’’ containing a pointer to the elements (elem) plus the num-
ber of elements (sz). The number of elements (6 in the example) can vary from Vector object to
Vector object, and a Vector object can have a different number of elements at different times
(§3.2.1.3). However, the Vector object itself is always the same size. This is the basic technique for
handling varying amounts of information in C++: a fixed-size handle referring to a variable amount
of data ‘‘elsewhere’’ (e.g., on the free store allocated by new; §11.2). How to design and use such
objects is the main topic of Chapter 3.

Here, the representation of a Vector (the members elem and sz) is accessible only through the
interface provided by the public members: Vector(), operator[](), and siz e(). The read_and_sum()

example from §2.3.1 simplifies to:

double read_and_sum(int s)
{

Vector v(s); // make a vector of s elements
for (int i=0; i!=v.siz e(); ++i)

cin>>v[i]; // read into elements

double sum = 0;
for (int i=0; i!=v.siz e(); ++i)

sum+=v[i]; // take the sum of the elements
return sum;

}

A ‘‘function’’ with the same name as its class is called a constructor, that is, a function used to con-
struct objects of a class. So, the constructor, Vector(), replaces vector_init() from §2.3.1. Unlike an
ordinary function, a constructor is guaranteed to be used to initialize objects of its class. Thus,
defining a constructor eliminates the problem of uninitialized variables for a class.
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Vector(int) defines how objects of type Vector are constructed. In particular, it states that it needs
an integer to do that. That integer is used as the number of elements. The constructor initializes
the Vector members using a member initializer list:

:elem{new double[s]}, sz{s}

That is, we first initialize elem with a pointer to s elements of type double obtained from the free
store. Then, we initialize sz to s.

Access to elements is provided by a subscript function, called operator[]. It returns a reference
to the appropriate element (a double&).

The siz e() function is supplied to give users the number of elements.
Obviously, error handling is completely missing, but we’ll return to that in §2.4.3. Similarly,

we did not provide a mechanism to ‘‘give back’’ the array of doubles acquired by new; §3.2.1.2
shows how to use a destructor to elegantly do that.

2.3.3 Enumerations

In addition to classes, C++ supports a simple form of user-defined type for which we can enumer-
ate the values:

enum class Color { red, blue , green };
enum class Traffic_light { green, yellow, red };

Color col = Color::red;
Traffic_light light = Traffic_light::red;

Note that enumerators (e.g., red) are in the scope of their enum class, so that they can be used
repeatedly in different enum classes without confusion. For example, Color::red is Color’s red

which is different from Traffic_light::red.
Enumerations are used to represent small sets of integer values. They are used to make code

more readable and less error-prone than it would have been had the symbolic (and mnemonic) enu-
merator names not been used.

The class after the enum specifies that an enumeration is strongly typed and that its enumerators
are scoped. Being separate types, enum classes help prevent accidental misuses of constants. In
particular, we cannot mix Traffic_light and Color values:

Color x = red; // error : which red?
Color y = Traffic_light::red; // error : that red is not a Color
Color z = Color::red; // OK

Similarly, we cannot implicitly mix Color and integer values:

int i = Color::red; // error : Color ::red is not an int
Color c = 2; // error : 2 is not a Color

If you don’t want to explicitly qualify enumerator names and want enumerator values to be ints
(without the need for an explicit conversion), you can remove the class from enum class to get a
‘‘plain enum’’ (§8.4.2).

By default, an enum class has only assignment, initialization, and comparisons (e.g., == and <;
§2.2.2) defined. However, an enumeration is a user-defined type so we can define operators for it:
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Traffic_light& operator++(Traffic_light& t)
// prefix increment: ++

{
switch (t) {
case Traffic_light::green: return t=Traffic_light::yellow;
case Traffic_light::yellow: return t=Traffic_light::red;
case Traffic_light::red: return t=Traffic_light::green;
}

}

Traffic_light next = ++light; // next becomes Traffic_light::green

C++ also offers a less strongly typed ‘‘plain’’ enum (§8.4.2).

2.4 Modularity
A C++ program consists of many separately developed parts, such as functions (§2.2.1, Chapter
12), user-defined types (§2.3, §3.2, Chapter 16), class hierarchies (§3.2.4, Chapter 20), and tem-
plates (§3.4, Chapter 23). The key to managing this is to clearly define the interactions among
those parts. The first and most important step is to distinguish between the interface to a part and
its implementation. At the language level, C++ represents interfaces by declarations. A declara-
tion specifies all that’s needed to use a function or a type. For example:

double sqrt(double); // the square root function takes a double and returns a double

class Vector {
public:

Vector(int s);
double& operator[](int i);
int size();

private:
double∗ elem; // elem points to an array of sz doubles
int sz;

};

The key point here is that the function bodies, the function definitions, are ‘‘elsewhere.’’ For this
example, we might like for the representation of Vector to be ‘‘elsewhere’’ also, but we will deal
with that later (abstract types; §3.2.2). The definition of sqr t() will look like this:

double sqrt(double d) // definition of sqrt()
{

// ... algorithm as found in math textbook ...
}

For Vector, we need to define all three member functions:

Vector::Vector(int s) // definition of the constructor
:elem{new double[s]}, sz{s} // initialize members

{
}
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double& Vector::operator[](int i) // definition of subscripting
{

return elem[i];
}

int Vector::siz e() // definition of size()
{

return sz;
}

We must define Vector’s functions, but not sqr t() because it is part of the standard library. Howev er,
that makes no real difference: a library is simply some ‘‘other code we happen to use’’ written with
the same language facilities as we use.

2.4.1 Separate Compilation

C++ supports a notion of separate compilation where user code sees only declarations of types and
functions used. The definitions of those types and functions are in separate source files and com-
piled separately. This can be used to organize a program into a set of semi-independent code frag-
ments. Such separation can be used to minimize compilation times and to strictly enforce separa-
tion of logically distinct parts of a program (thus minimizing the chance of errors). A library is
often a separately compiled code fragments (e.g., functions).

Typically, we place the declarations that specify the interface to a module in a file with a name
indicating its intended use. For example:

// Vector.h:

class Vector {
public:

Vector(int s);
double& operator[](int i);
int size();

private:
double∗ elem; // elem points to an array of sz doubles
int sz;

};

This declaration would be placed in a file Vector.h, and users will include that file, called a header
file, to access that interface. For example:

// user.cpp:

#include "Vector.h" // get Vector’s interface
#include <cmath> // get the the standard-librar y math function interface including sqrt()
using namespace std; // make std members visible (§2.4.2)
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double sqrt_sum(Vector& v)
{

double sum = 0;
for (int i=0; i!=v.siz e(); ++i)

sum+=sqr t(v[i]); // sum of square roots
return sum;

}

To help the compiler ensure consistency, the .cpp file providing the implementation of Vector will
also include the .h file providing its interface:

// Vector.cpp:

#include "Vector.h" // get the interface

Vector::Vector(int s)
:elem{new double[s]}, sz{s}

{
}

double& Vector::operator[](int i)
{

return elem[i];
}

int Vector::siz e()
{

return sz;
}

The code in user.cpp and Vector.cpp shares the Vector interface information presented in Vector.h,
but the two files are otherwise independent and can be separately compiled. Graphically, the pro-
gram fragments can be represented like this:

Vector interface

#include "Vector.h"

use Vector

#include "Vector.h"

define Vector

Vector.h:

user.cpp: Vector.cpp:

Strictly speaking, using separate compilation isn’t a language issue; it is an issue of how best to
take advantage of a particular language implementation. However, it is of great practical impor-
tance. The best approach is to maximize modularity, represent that modularity logically through
language features, and then exploit the modularity physically through files for effective separate
compilation (Chapter 14, Chapter 15).
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2.4.2 Namespaces

In addition to functions (§2.2.1, Chapter 12), classes (Chapter 16), and enumerations (§2.3.3, §8.4),
C++ offers namespaces (Chapter 14) as a mechanism for expressing that some declarations belong
together and that their names shouldn’t clash with other names. For example, I might want to
experiment with my own complex number type (§3.2.1.1, §18.3, §40.4):

namespace My_code {
class complex { /* ... */ };
complex sqr t(complex);
// ...
int main();

}

int My_code::main()
{

complex z {1,2};
auto z2 = sqrt(z);
std::cout << '{' << z2.real() << ',' << z2.imag() << "}\n";
// ...

};

int main()
{

return My_code::main();
}

By putting my code into the namespace My_code, I make sure that my names do not conflict with
the standard-library names in namespace std (§4.1.2). The precaution is wise, because the standard
library does provide support for complex arithmetic (§3.2.1.1, §40.4).

The simplest way to access a name in another namespace is to qualify it with the namespace
name (e.g., std::cout and My_code::main). The ‘‘real main()’’ is defined in the global namespace,
that is, not local to a defined namespace, class, or function. To gain access to names in the stan-
dard-library namespace, we can use a using-directive (§14.2.3):

using namespace std;

Namespaces are primarily used to organize larger program components, such as libraries. They
simplify the composition of a program out of separately developed parts.

2.4.3 Error Handling

Error handling is a large and complex topic with concerns and ramifications that go far beyond lan-
guage facilities into programming techniques and tools. However, C++ provides a few features to
help. The major tool is the type system itself. Instead of painstakingly building up our applications
from the built-in types (e.g., char, int, and double) and statements (e.g., if, while , and for), we build
more types that are appropriate for our applications (e.g., string, map, and reg ex) and algorithms
(e.g., sor t(), find_if(), and draw_all()). Such higher level constructs simplify our programming, limit
our opportunities for mistakes (e.g., you are unlikely to try to apply a tree traversal to a dialog box),
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and increase the compiler’s chances of catching such errors. The majority of C++ constructs are
dedicated to the design and implementation of elegant and efficient abstractions (e.g., user-defined
types and algorithms using them). One effect of this modularity and abstraction (in particular, the
use of libraries) is that the point where a run-time error can be detected is separated from the point
where it can be handled. As programs grow, and especially when libraries are used extensively,
standards for handling errors become important.

2.4.3.1 Exceptions

Consider again the Vector example. What ought to be done when we try to access an element that
is out of range for the vector from §2.3.2?

• The writer of Vector doesn’t know what the user would like to hav e done in this case (the
writer of Vector typically doesn’t even know in which program the vector will be running).

• The user of Vector cannot consistently detect the problem (if the user could, the out-of-range
access wouldn’t happen in the first place).

The solution is for the Vector implementer to detect the attempted out-of-range access and then tell
the user about it. The user can then take appropriate action. For example, Vector::operator[]() can
detect an attempted out-of-range access and throw an out_of_rang e exception:

double& Vector::operator[](int i)
{

if (i<0 || size()<=i) throw out_of_rang e{"Vector::operator[]"};
return elem[i];

}

The throw transfers control to a handler for exceptions of type out_of_rang e in some function that
directly or indirectly called Vector::operator[](). To do that, the implementation will unwind the
function call stack as needed to get back to the context of that caller (§13.5.1). For example:

void f(Vector& v)
{

// ...
tr y { // exceptions here are handled by the handler defined below

v[v.siz e()] = 7; // tr y to access beyond the end of v
}
catch (out_of_rang e) { // oops: out_of_range error

// ... handle range error ...
}
// ...

}

We put code for which we are interested in handling exceptions into a tr y-block. That attempted
assignment to v[v.siz e()] will fail. Therefore, the catch-clause providing a handler for out_of_rang e

will be entered. The out_of_rang e type is defined in the standard library and is in fact used by some
standard-library container access functions.

Use of the exception-handling mechanisms can make error handling simpler, more systematic,
and more readable. See Chapter 13 for further discussion, details, and examples.
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2.4.3.2 Invariants

The use of exceptions to signal out-of-range access is an example of a function checking its argu-
ment and refusing to act because a basic assumption, a precondition, didn’t hold. Had we formally
specified Vector’s subscript operator, we would have said something like ‘‘the index must be in the
[0:siz e()) range,’’ and that was in fact what we tested in our operator[](). Whenever we define a
function, we should consider what its preconditions are and if feasible test them (see §12.4, §13.4).

However, operator[]() operates on objects of type Vector and nothing it does makes any sense
unless the members of Vector have ‘‘reasonable’’ values. In particular, we did say ‘‘elem points to
an array of sz doubles’’ but we only said that in a comment. Such a statement of what is assumed
to be true for a class is called a class invariant, or simply an invariant. It is the job of a constructor
to establish the invariant for its class (so that the member functions can rely on it) and for the mem-
ber functions to make sure that the invariant holds when they exit. Unfortunately, our Vector con-
structor only partially did its job. It properly initialized the Vector members, but it failed to check
that the arguments passed to it made sense. Consider:

Vector v(−27);

This is likely to cause chaos.
Here is a more appropriate definition:

Vector::Vector(int s)
{

if (s<0) throw length_error{};
elem = new double[s];
sz = s;

}

I use the standard-library exception length_error to report a non-positive number of elements
because some standard-library operations use that exception to report problems of this kind. If
operator new can’t find memory to allocate, it throws a std::bad_alloc. We can now write:

void test()
{

tr y {
Vector v(−27);

}
catch (std::length_error) {

// handle negative size
}
catch (std::bad_alloc) {

// handle memory exhaustion
}

}

You can define your own classes to be used as exceptions and have them carry arbitrary information
from a point where an error is detected to a point where it can be handled (§13.5).

Often, a function has no way of completing its assigned task after an exception is thrown.
Then, ‘‘handling’’ an exception simply means doing some minimal local cleanup and rethrowing
the exception (§13.5.2.1).
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The notion of invariants is central to the design of classes, and preconditions serve a similar role
in the design of functions. Invariants

• helps us to understand precisely what we want
• forces us to be specific; that gives us a better chance of getting our code correct (after

debugging and testing).
The notion of invariants underlies C++’s notions of resource management supported by construc-
tors (§2.3.2) and destructors (§3.2.1.2, §5.2). See also §13.4, §16.3.1, and §17.2.

2.4.3.3 Static Assertions

Exceptions report errors found at run time. If an error can be found at compile time, it is usually
preferable to do so. That’s what much of the type system and the facilities for specifying the inter-
faces to user-defined types are for. Howev er, we can also perform simple checks on other proper-
ties that are known at compile time and report failures as compiler error messages. For example:

static_asser t(4<=sizeof(int), "integers are too small"); // check integer size

This will write integ ers are too small if 4<=siz eof(int) does not hold, that is, if an int on this system
does not have at least 4 bytes. We call such statements of expectations assertions.

The static_asser t mechanism can be used for anything that can be expressed in terms of constant
expressions (§2.2.3, §10.4). For example:

constexpr double C = 299792.458; // km/s

void f(double speed)
{

const double local_max = 160.0/(60∗60); // 160 km/h == 160.0/(60*60) km/s

static_asser t(speed<C,"can't go that fast"); // error : speed must be a constant
static_asser t(local_max<C,"can't go that fast"); // OK

// ...
}

In general, static_asser t(A,S) prints S as a compiler error message if A is not true.
The most important uses of static_asser t come when we make assertions about types used as

parameters in generic programming (§5.4.2, §24.3).
For runtime-checked assertions, see §13.4.

2.5 Postscript
The topics covered in this chapter roughly correspond to the contents of Part II (Chapters 6–15).
Those are the parts of C++ that underlie all programming techniques and styles supported by C++.
Experienced C and C++ programmers, please note that this foundation does not closely correspond
to the C or C++98 subsets of C++ (that is, C++11).
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2.6 Advice
[1] Don’t panic! All will become clear in time; §2.1.
[2] You don’t hav e to know every detail of C++ to write good programs; §1.3.1.
[3] Focus on programming techniques, not on language features; §2.1.
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Don’t Panic!
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• Introduction
• Classes

Concrete Types; Abstract Types; Virtual Functions; Class Hierarchies
• Copy and Move

Copying Containers; Moving Containers; Resource Management; Suppressing Operations
• Templates

Parameterized Types; Function Templates; Function Objects; Variadic Templates; Aliases
• Advice

3.1 Introduction
This chapter aims to give you an idea of C++’s support for abstraction and resource management
without going into a lot of detail. It informally presents ways of defining and using new types
(user-defined types). In particular, it presents the basic properties, implementation techniques, and
language facilities used for concrete classes, abstract classes, and class hierarchies. Templates are
introduced as a mechanism for parameterizing types and algorithms with (other) types and algo-
rithms. Computations on user-defined and built-in types are represented as functions, sometimes
generalized to template functions and function objects. These are the language facilities supporting
the programming styles known as object-oriented programming and generic programming. The
next two chapters follow up by presenting examples of standard-library facilities and their use.

The assumption is that you have programmed before. If not, please consider reading a text-
book, such as Programming: Principles and Practice Using C++ [Stroustrup,2009], before contin-
uing here. Even if you have programmed before, the language you used or the applications you
wrote may be very different from the style of C++ presented here. If you find this ‘‘lightning tour’’
confusing, skip to the more systematic presentation starting in Chapter 6.
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As in Chapter 2, this tour presents C++ as an integrated whole, rather than as a layer cake.
Consequently, it does not identify language features as present in C, part of C++98, or new in
C++11. Such historical information can be found in §1.4 and Chapter 44.

3.2 Classes
The central language feature of C++ is the class. A class is a user-defined type provided to repre-
sent a concept in the code of a program. Whenever our design for a program has a useful concept,
idea, entity, etc., we try to represent it as a class in the program so that the idea is there in the code,
rather than just in our head, in a design document, or in some comments. A program built out of a
well chosen set of classes is far easier to understand and get right than one that builds everything
directly in terms of the built-in types. In particular, classes are often what libraries offer.

Essentially all language facilities beyond the fundamental types, operators, and statements exist
to help define better classes or to use them more conveniently. By ‘‘better,’’ I mean more correct,
easier to maintain, more efficient, more elegant, easier to use, easier to read, and easier to reason
about. Most programming techniques rely on the design and implementation of specific kinds of
classes. The needs and tastes of programmers vary immensely. Consequently, the support for
classes is extensive. Here, we will just consider the basic support for three important kinds of
classes:

• Concrete classes (§3.2.1)
• Abstract classes (§3.2.2)
• Classes in class hierarchies (§3.2.4)

An astounding number of useful classes turn out to be of these three kinds. Even more classes can
be seen as simple variants of these kinds or are implemented using combinations of the techniques
used for these.

3.2.1 Concrete Types

The basic idea of concrete classes is that they behave ‘‘just like built-in types.’’ For example, a
complex number type and an infinite-precision integer are much like built-in int, except of course
that they hav e their own semantics and sets of operations. Similarly, a vector and a string are much
like built-in arrays, except that they are better behaved (§4.2, §4.3.2, §4.4.1).

The defining characteristic of a concrete type is that its representation is part of its definition. In
many important cases, such as a vector, that representation is only one or more pointers to more
data stored elsewhere, but it is present in each object of a concrete class. That allows implementa-
tions to be optimally efficient in time and space. In particular, it allows us to

• place objects of concrete types on the stack, in statically allocated memory, and in other
objects (§6.4.2);

• refer to objects directly (and not just through pointers or references);
• initialize objects immediately and completely (e.g., using constructors; §2.3.2); and
• copy objects (§3.3).

The representation can be private (as it is for Vector; §2.3.2) and accessible only through the mem-
ber functions, but it is present. Therefore, if the representation changes in any significant way, a
user must recompile. This is the price to pay for having concrete types behave exactly like built-in
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types. For types that don’t change often, and where local variables provide much-needed clarity
and efficiency, this is acceptable and often ideal. To increase flexibility, a concrete type can keep
major parts of its representation on the free store (dynamic memory, heap) and access them through
the part stored in the class object itself. That’s the way vector and string are implemented; they can
be considered resource handles with carefully crafted interfaces.

3.2.1.1 An Arithmetic Type

The ‘‘classical user-defined arithmetic type’’ is complex:

class complex {
double re, im; // representation: two doubles

public:
complex(double r, double i) :re{r}, im{i} {} // constr uct complex from two scalars
complex(double r) :re{r}, im{0} {} // constr uct complex from one scalar
complex() :re{0}, im{0} {} // default complex: {0,0}

double real() const { return re; }
void real(double d) { re=d; }
double imag() const { return im; }
void imag(double d) { im=d; }

complex& operator+=(complex z) { re+=z.re , im+=z.im; return ∗this; } // add to re and im
// and return the result

complex& operator−=(complex z) { re−=z.re , im−=z.im; return ∗this; }

complex& operator∗=(complex); // defined out-of-class somewhere
complex& operator/=(complex); // defined out-of-class somewhere

};

This is a slightly simplified version of the standard-library complex (§40.4). The class definition
itself contains only the operations requiring access to the representation. The representation is sim-
ple and conventional. For practical reasons, it has to be compatible with what Fortran provided 50
years ago, and we need a conventional set of operators. In addition to the logical demands, complex

must be efficient or it will remain unused. This implies that simple operations must be inlined.
That is, simple operations (such as constructors, +=, and imag()) must be implemented without func-
tion calls in the generated machine code. Functions defined in a class are inlined by default. An
industrial-strength complex (like the standard-library one) is carefully implemented to do appropri-
ate inlining.

A constructor that can be invoked without an argument is called a default constructor. Thus,
complex() is complex’s default constructor. By defining a default constructor you eliminate the pos-
sibility of uninitialized variables of that type.

The const specifiers on the functions returning the real and imaginary parts indicate that these
functions do not modify the object for which they are called.

Many useful operations do not require direct access to the representation of complex, so they
can be defined separately from the class definition:
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complex operator+(complex a, complex b) { return a+=b; }
complex operator−(complex a, complex b) { return a−=b; }
complex operator−(complex a) { return {−a.real(), −a.imag()}; } // unar y minus
complex operator∗(complex a, complex b) { return a∗=b; }
complex operator/(complex a, complex b) { return a/=b; }

Here, I use the fact that an argument passed by value is copied, so that I can modify an argument
without affecting the caller’s copy, and use the result as the return value.

The definitions of == and != are straightforward:

bool operator==(complex a, complex b) // equal
{

return a.real()==b.real() && a.imag()==b.imag();
}

bool operator!=(complex a, complex b) // not equal
{

return !(a==b);
}

complex sqr t(complex);

// ...

Class complex can be used like this:

void f(complex z)
{

complex a {2.3}; // constr uct {2.3,0.0} from 2.3
complex b {1/a};
complex c {a+z∗complex{1,2.3}};
// ...
if (c != b)

c = −(b/a)+2∗b;
}

The compiler converts operators involving complex numbers into appropriate function calls. For
example, c!=b means operator!=(c,b) and 1/a means operator/(complex{1},a).

User-defined operators (‘‘overloaded operators’’) should be used cautiously and conventionally.
The syntax is fixed by the language, so you can’t define a unary /. Also, it is not possible to change
the meaning of an operator for built-in types, so you can’t redefine + to subtract ints.

3.2.1.2 A Container

A container is an object holding a collection of elements, so we call Vector a container because it is
the type of objects that are containers. As defined in §2.3.2, Vector isn’t an unreasonable container
of doubles: it is simple to understand, establishes a useful invariant (§2.4.3.2), provides range-
checked access (§2.4.3.1), and provides siz e() to allow us to iterate over its elements. However, it
does have a fatal flaw: it allocates elements using new but nev er deallocates them. That’s not a
good idea because although C++ defines an interface for a garbage collector (§34.5), it is not
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guaranteed that one is available to make unused memory available for new objects. In some envi-
ronments you can’t use a collector, and sometimes you prefer more precise control of destruction
(§13.6.4) for logical or performance reasons. We need a mechanism to ensure that the memory
allocated by the constructor is deallocated; that mechanism is a destructor:

class Vector {
private:

double∗ elem; // elem points to an array of sz doubles
int sz;

public:
Vector(int s) :elem{new double[s]}, sz{s} // constr uctor: acquire resources
{

for (int i=0; i!=s; ++i) elem[i]=0; // initialize elements
}

˜Vector() { delete[] elem; } // destr uctor: release resources

double& operator[](int i);
int size() const;

};

The name of a destructor is the complement operator, ˜, followed by the name of the class; it is the
complement of a constructor. Vector’s constructor allocates some memory on the free store (also
called the heap or dynamic store) using the new operator. The destructor cleans up by freeing that
memory using the delete operator. This is all done without intervention by users of Vector. The
users simply create and use Vectors much as they would variables of built-in types. For example:

void fct(int n)
{

Vector v(n);

// ... use v ...

{
Vector v2(2∗n);
// ... use v and v2 ...

} // v2 is destroyed here

// ... use v ..

} // v is destroyed here

Vector obeys the same rules for naming, scope, allocation, lifetime, etc., as does a built-in type,
such as int and char. For details on how to control the lifetime of an object, see §6.4. This Vector

has been simplified by leaving out error handling; see §2.4.3.
The constructor/destructor combination is the basis of many elegant techniques. In particular, it

is the basis for most C++ general resource management techniques (§5.2, §13.3). Consider a
graphical illustration of a Vector:
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6

Vector:

elem:

sz: 0 0 0 0 0 0
0: 1: 2: 3: 4: 5:

The constructor allocates the elements and initializes the Vector members appropriately. The de-
structor deallocates the elements. This handle-to-data model is very commonly used to manage
data that can vary in size during the lifetime of an object. The technique of acquiring resources in a
constructor and releasing them in a destructor, known as Resource Acquisition Is Initialization or
RAII, allows us to eliminate ‘‘naked new operations,’’ that is, to avoid allocations in general code
and keep them buried inside the implementation of well-behaved abstractions. Similarly, ‘‘naked
delete operations’’ should be avoided. Avoiding naked new and naked delete makes code far less
error-prone and far easier to keep free of resource leaks (§5.2).

3.2.1.3 Initializing Containers

A container exists to hold elements, so obviously we need convenient ways of getting elements into
a container. We can handle that by creating a Vector with an appropriate number of elements and
then assigning to them, but typically other ways are more elegant. Here, I just mention two
favorites:

• Initializer-list constructor: Initialize with a list of elements.
• push_back(): Add a new element at the end (at the back of) the sequence.

These can be declared like this:

class Vector {
public:

Vector(std::initializ er_list<double>); // initialize with a list
// ...
void push_back(double); // add element at end increasing the size by one
// ...

};

The push_back() is useful for input of arbitrary numbers of elements. For example:

Vector read(istream& is)
{

Vector v;
for (double d; is>>d;) // read floating-point values into d

v.push_back(d); // add d to v
return v;

}

The input loop is terminated by an end-of-file or a formatting error. Until that happens, each num-
ber read is added to the Vector so that at the end, v’s size is the number of elements read. I used a
for-statement rather than the more conventional while-statement to keep the scope of d limited to the
loop. The implementation of push_back() is discussed in §13.6.4.3. The way to provide Vector with
a move constructor, so that returning a potentially huge amount of data from read() is cheap, is
explained in §3.3.2.
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The std::initializ er_list used to define the initializer-list constructor is a standard-library type
known to the compiler: when we use a {}-list, such as {1,2,3,4}, the compiler will create an object of
type initializ er_list to give to the program. So, we can write:

Vector v1 = {1,2,3,4,5}; // v1 has 5 elements
Vector v2 = {1.23, 3.45, 6.7, 8}; // v2 has 4 elements

Vector’s initializer-list constructor might be defined like this:

Vector::Vector(std::initializ er_list<double> lst) // initialize with a list
:elem{new double[lst.siz e()]}, sz{lst.siz e()}

{
copy(lst.begin(),lst.end(),elem); // copy from lst into elem

}

3.2.2 Abstract Types

Types such as complex and Vector are called concrete types because their representation is part of
their definition. In that, they resemble built-in types. In contrast, an abstract type is a type that
completely insulates a user from implementation details. To do that, we decouple the interface
from the representation and give up genuine local variables. Since we don’t know anything about
the representation of an abstract type (not even its size), we must allocate objects on the free store
(§3.2.1.2, §11.2) and access them through references or pointers (§2.2.5, §7.2, §7.7).

First, we define the interface of a class Container which we will design as a more abstract ver-
sion of our Vector:

class Container {
public:

vir tual double& operator[](int) = 0; // pure virtual function
vir tual int size() const = 0; // const member function (§3.2.1.1)
vir tual ˜Container() {} // destr uctor (§3.2.1.2)

};

This class is a pure interface to specific containers defined later. The word vir tual means ‘‘may be
redefined later in a class derived from this one.’’ Unsurprisingly, a function declared vir tual is
called a virtual function. A class derived from Container provides an implementation for the Con-

tainer interface. The curious =0 syntax says the function is pure virtual; that is, some class derived
from Container must define the function. Thus, it is not possible to define an object that is just a
Container; a Container can only serve as the interface to a class that implements its operator[]() and
siz e() functions. A class with a pure virtual function is called an abstract class.

This Container can be used like this:

void use(Container& c)
{

const int sz = c.size();

for (int i=0; i!=sz; ++i)
cout << c[i] << '\n';

}
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Note how use() uses the Container interface in complete ignorance of implementation details. It
uses siz e() and [] without any idea of exactly which type provides their implementation. A class
that provides the interface to a variety of other classes is often called a polymorphic type (§20.3.2).

As is common for abstract classes, Container does not have a constructor. After all, it does not
have any data to initialize. On the other hand, Container does have a destructor and that destructor
is vir tual. Again, that is common for abstract classes because they tend to be manipulated through
references or pointers, and someone destroying a Container through a pointer has no idea what
resources are owned by its implementation; see also §3.2.4.

A container that implements the functions required by the interface defined by the abstract class
Container could use the concrete class Vector:

class Vector_container : public Container { // Vector_container implements Container
Vector v;

public:
Vector_container(int s) : v(s) { } // Vector of s elements
˜Vector_container() {}

double& operator[](int i) { return v[i]; }
int size() const { return v.siz e(); }

};

The :public can be read as ‘‘is derived from’’ or ‘‘is a subtype of.’’ Class Vector_container is said to
be derived from class Container, and class Container is said to be a base of class Vector_container.
An alternative terminology calls Vector_container and Container subclass and superclass, respec-
tively. The derived class is said to inherit members from its base class, so the use of base and
derived classes is commonly referred to as inheritance.

The members operator[]() and siz e() are said to override the corresponding members in the base
class Container (§20.3.2). The destructor (˜Vector_container()) overrides the base class destructor
(˜Container()). Note that the member destructor (˜Vector()) is implicitly invoked by its class’s de-
structor (˜Vector_container()).

For a  function like use(Container&) to use a Container in complete ignorance of implementation
details, some other function will have to make an object on which it can operate. For example:

void g()
{

Vector_container vc {10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0};
use(vc);

}

Since use() doesn’t know about Vector_containers but only knows the Container interface, it will
work just as well for a different implementation of a Container. For example:

class List_container : public Container { // List_container implements Container
std::list<double> ld; // (standard-librar y) list of doubles (§4.4.2)

public:
List_container() { } // empty List
List_container(initializ er_list<double> il) : ld{il} { }
˜List_container() {}
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double& operator[](int i);
int size() const { return ld.size(); }

};

double& List_container::operator[](int i)
{

for (auto& x : ld) {
if (i==0) return x;
−−i;

}
throw out_of_rang e("List container");

}

Here, the representation is a standard-library list<double>. Usually, I would not implement a con-
tainer with a subscript operation using a list, because performance of list subscripting is atrocious
compared to vector subscripting. However, here I just wanted to show an implementation that is
radically different from the usual one.

A function can create a List_container and have use() use it:

void h()
{

List_container lc = { 1, 2, 3, 4, 5, 6, 7, 8, 9 };
use(lc);

}

The point is that use(Container&) has no idea if its argument is a Vector_container, a List_container,
or some other kind of container; it doesn’t need to know. It can use any kind of Container. It knows
only the interface defined by Container. Consequently, use(Container&) needn’t be recompiled if the
implementation of List_container changes or a brand-new class derived from Container is used.

The flip side of this flexibility is that objects must be manipulated through pointers or references
(§3.3, §20.4).

3.2.3 Virtual Functions

Consider again the use of Container:

void use(Container& c)
{

const int sz = c.size();

for (int i=0; i!=sz; ++i)
cout << c[i] << '\n';

}

How is the call c[i] in use() resolved to the right operator[]()? When h() calls use(), List_container’s
operator[]() must be called. When g() calls use(), Vector_container’s operator[]() must be called. To
achieve this resolution, a Container object must contain information to allow it to select the right
function to call at run time. The usual implementation technique is for the compiler to convert the
name of a virtual function into an index into a table of pointers to functions. That table is usually
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called the virtual function table or simply the vtbl. Each class with virtual functions has its own vtbl

identifying its virtual functions. This can be represented graphically like this:

v

Vector_container::operator[]()

Vector_container::siz e()

Vector_container::˜Vector_container()

vtbl:Vector_container:

ld

List_container::operator[]()

List_container::siz e()

List_container::˜List_container()

vtbl:List_container:

The functions in the vtbl allow the object to be used correctly even when the size of the object and
the layout of its data are unknown to the caller. The implementation of the caller needs only to
know the location of the pointer to the vtbl in a Container and the index used for each virtual func-
tion. This virtual call mechanism can be made almost as efficient as the ‘‘normal function call’’
mechanism (within 25%). Its space overhead is one pointer in each object of a class with virtual
functions plus one vtbl for each such class.

3.2.4 Class Hierarchies

The Container example is a very simple example of a class hierarchy. A class hierarchy is a set
of classes ordered in a lattice created by derivation (e.g., : public). We use class hierarchies to rep-
resent concepts that have hierarchical relationships, such as ‘‘A fire engine is a kind of a truck
which is a kind of a vehicle’’ and ‘‘A smiley face is a kind of a circle which is a kind of a shape.’’
Huge hierarchies, with hundreds of classes, that are both deep and wide are common. As a semi-
realistic classic example, let’s consider shapes on a screen:

Shape

Circle Triangle

Smiley

The arrows represent inheritance relationships. For example, class Circle is derived from class
Shape. To represent that simple diagram in code, we must first specify a class that defines the gen-
eral properties of all shapes:
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class Shape {
public:

vir tual Point center() const =0; // pure virtual
vir tual void move(Point to) =0;

vir tual void draw() const = 0; // draw on current "Canvas"
vir tual void rotate(int angle) = 0;

vir tual ˜Shape() {} // destr uctor
// ...

};

Naturally, this interface is an abstract class: as far as representation is concerned, nothing (except
the location of the pointer to the vtbl) is common for every Shape. Giv en this definition, we can
write general functions manipulating vectors of pointers to shapes:

void rotate_all(vector<Shape∗>& v, int angle) // rotate v’s elements by angle degrees
{

for (auto p : v)
p−>rotate(angle);

}

To define a particular shape, we must say that it is a Shape and specify its particular properties
(including its virtual functions):

class Circle : public Shape {
public:

Circle(Point p, int rr); // constr uctor

Point center() const { return x; }
void move(Point to) { x=to; }

void draw() const;
void rotate(int) {} // nice simple algorithm

private:
Point x; // center
int r; // radius

};

So far, the Shape and Circle example provides nothing new compared to the Container and
Vector_container example, but we can build further:

class Smiley : public Circle {  // use the circle as the base for a face
public:

Smiley(Point p, int r) : Circle{p,r}, mouth{nullptr} { }

˜Smiley()
{

delete mouth;
for (auto p : eyes) delete p;

}
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void move(Point to);

void draw() const;
void rotate(int);

void add_eye(Shape∗ s) { eyes.push_back(s); }
void set_mouth(Shape∗ s);
vir tual void wink(int i); // wink eye number i

// ...

private:
vector<Shape∗> eyes; // usually two eyes
Shape∗ mouth;

};

The push_back() member function adds its argument to the vector (here, ey es), increasing that
vector’s size by one.

We can now define Smiley::draw() using calls to Smiley’s base and member draw()s:

void Smiley::draw()
{

Circle::draw();
for (auto p : eyes)

p−>draw();
mouth−>draw();

}

Note the way that Smiley keeps its eyes in a standard-library vector and deletes them in its de-
structor. Shape’s destructor is vir tual and Smiley’s destructor overrides it. A virtual destructor is
essential for an abstract class because an object of a derived class is usually manipulated through
the interface provided by its abstract base class. In particular, it may be deleted through a pointer to
a base class. Then, the virtual function call mechanism ensures that the proper destructor is called.
That destructor then implicitly invokes the destructors of its bases and members.

In this simplified example, it is the programmer’s task to place the eyes and mouth appropri-
ately within the circle representing the face.

We can add data members, operations, or both as we define a new class by derivation. This
gives great flexibility with corresponding opportunities for confusion and poor design. See Chapter
21. A class hierarchy offers two kinds of benefits:

• Interface inheritance: An object of a derived class can be used wherever an object of a base
class is required. That is, the base class acts as an interface for the derived class. The Con-

tainer and Shape classes are examples. Such classes are often abstract classes.
• Implementation inheritance: A base class provides functions or data that simplifies the

implementation of derived classes. Smiley’s uses of Circle’s constructor and of Circle::draw()

are examples. Such base classes often have data members and constructors.
Concrete classes – especially classes with small representations – are much like built-in types: we
define them as local variables, access them using their names, copy them around, etc. Classes in
class hierarchies are different: we tend to allocate them on the free store using new, and we access
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them through pointers or references. For example, consider a function that reads data describing
shapes from an input stream and constructs the appropriate Shape objects:

enum class Kind { circle, triangle , smiley };

Shape∗ read_shape(istream& is) // read shape descriptions from input stream is
{

// ... read shape header from is and find its Kind k ...

switch (k) {
case Kind::circle:

// read circle data {Point,int} into p and r
return new Circle{p,r};

case Kind::triangle:
// read triangle data {Point,Point,Point} into p1, p2, and p3
return new Triangle{p1,p2,p3};

case Kind::smiley:
// read smiley data {Point,int,Shape,Shape,Shape} into p, r, e1 ,e2, and m
Smiley∗ ps = new Smiley{p,r};
ps−>add_eye(e1);
ps−>add_eye(e2);
ps−>set_mouth(m);
return ps;

}
}

A program may use that shape reader like this:

void user()
{

std::vector<Shape∗> v;
while (cin)

v.push_back(read_shape(cin));
draw_all(v); // call draw() for each element
rotate_all(v,45); // call rotate(45) for each element
for (auto p : v) delete p; // remember to delete elements

}

Obviously, the example is simplified – especially with respect to error handling – but it vividly
illustrates that user() has absolutely no idea of which kinds of shapes it manipulates. The user()

code can be compiled once and later used for new Shapes added to the program. Note that there are
no pointers to the shapes outside user(), so user() is responsible for deallocating them. This is done
with the delete operator and relies critically on Shape’s virtual destructor. Because that destructor is
virtual, delete invokes the destructor for the most derived class. This is crucial because a derived
class may have acquired all kinds of resources (such as file handles, locks, and output streams) that
need to be released. In this case, a Smiley deletes its ey es and mouth objects.

Experienced programmers will notice that I left open two obvious opportunities for mistakes:
• A user might fail to delete the pointer returned by read_shape().
• The owner of a container of Shape pointers might not delete the objects pointed to.

In that sense, functions returning a pointer to an object allocated on the free store are dangerous.
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One solution to both problems is to return a standard-library unique_ptr (§5.2.1) rather than a
‘‘naked pointer’’ and store unique_ptrs in the container:

unique_ptr<Shape> read_shape(istream& is) // read shape descriptions from input stream is
{

// read shape header from is and find its Kind k

switch (k) {
case Kind::circle:

// read circle data {Point,int} into p and r
return unique_ptr<Shape>{new Circle{p,r}}; // §5.2.1

// ...
}

void user()
{

vector<unique_ptr<Shape>> v;
while (cin)

v.push_back(read_shape(cin));
draw_all(v); // call draw() for each element
rotate_all(v,45); // call rotate(45) for each element

} // all Shapes implicitly destroyed

Now the object is owned by the unique_ptr which will delete the object when it is no longer needed,
that is, when its unique_ptr goes out of scope.

For the unique_ptr version of user() to work, we need versions of draw_all() and rotate_all() that
accept vector<unique_ptr<Shape>>s. Writing many such _all() functions could become tedious, so
§3.4.3 shows an alternative.

3.3 Copy and Move
By default, objects can be copied. This is true for objects of user-defined types as well as for built-
in types. The default meaning of copy is memberwise copy: copy each member. For example,
using complex from §3.2.1.1:

void test(complex z1)
{

complex z2 {z1}; // copy initialization
complex z3;
z3 = z2; // copy assignment
// ...

}

Now z1, z2, and z3 have the same value because both the assignment and the initialization copied
both members.

When we design a class, we must always consider if and how an object might be copied. For
simple concrete types, memberwise copy is often exactly the right semantics for copy. For some
sophisticated concrete types, such as Vector, memberwise copy is not the right semantics for copy,
and for abstract types it almost never is.
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3.3.1 Copying Containers

When a class is a resource handle, that is, it is responsible for an object accessed through a pointer,
the default memberwise copy is typically a disaster. Memberwise copy would violate the resource
handle’s inv ariant (§2.4.3.2). For example, the default copy would leave a copy of a Vector refer-
ring to the same elements as the original:

void bad_copy(Vector v1)
{

Vector v2 = v1; // copy v1’s representation into v2
v1[0] = 2; // v2[0] is now also 2!
v2[1] = 3; // v1[1] is now also 3!

}

Assuming that v1 has four elements, the result can be represented graphically like this:

4

v1:

4

v2:

2 3

Fortunately, the fact that Vector has a destructor is a strong hint that the default (memberwise) copy
semantics is wrong and the compiler should at least warn against this example (§17.6). We need to
define better copy semantics.

Copying of an object of a class is defined by two members: a copy constructor and a copy
assignment:

class Vector {
private:

double∗ elem; // elem points to an array of sz doubles
int sz;

public:
Vector(int s); // constr uctor: establish invariant, acquire resources
˜Vector() { delete[] elem; } // destr uctor: release resources

Vector(const Vector& a); // copy constr uctor
Vector& operator=(const Vector& a); // copy assignment

double& operator[](int i);
const double& operator[](int i) const;

int size() const;
};

A suitable definition of a copy constructor for Vector allocates the space for the required number of
elements and then copies the elements into it, so that after a copy each Vector has its own copy of
the elements:
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Vector::Vector(const Vector& a) // copy constr uctor
:elem{new double[sz]}, // allocate space for elements
sz{a.sz}

{
for (int i=0; i!=sz; ++i) // copy elements

elem[i] = a.elem[i];
}

The result of the v2=v1 example can now be presented as:

4

v1:

4

v2:

32

Of course, we need a copy assignment in addition to the copy constructor:

Vector& Vector::operator=(const Vector& a) // copy assignment
{

double∗ p = new double[a.sz];
for (int i=0; i!=a.sz; ++i)

p[i] = a.elem[i];
delete[] elem; // delete old elements
elem = p;
sz = a.sz;
return ∗this;

}

The name this is predefined in a member function and points to the object for which the member
function is called.

A copy constructor and a copy assignment for a class X are typically declared to take an argu-
ment of type const X&.

3.3.2 Moving Containers

We can control copying by defining a copy constructor and a copy assignment, but copying can be
costly for large containers. Consider:

Vector operator+(const Vector& a, const Vector& b)
{

if (a.size()!=b.siz e())
throw Vector_siz e_mismatch{};

Vector res(a.size());
for (int i=0; i!=a.size(); ++i)

res[i]=a[i]+b[i];
return res;

}
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Returning from a + involves copying the result out of the local variable res and into some place
where the caller can access it. We might use this + like this:

void f(const Vector& x, const Vector& y, const Vector& z)
{

Vector r;
// ...
r = x+y+z;
// ...

}

That would be copying a Vector at least twice (one for each use of the + operator). If a Vector is
large, say, 10,000 doubles, that could be embarrassing. The most embarrassing part is that res in
operator+() is never used again after the copy. We didn’t really want a copy; we just wanted to get
the result out of a function: we wanted to move a Vector rather than to copy it. Fortunately, we can
state that intent:

class Vector {
// ...

Vector(const Vector& a); // copy constr uctor
Vector& operator=(const Vector& a); // copy assignment

Vector(Vector&& a); // move constr uctor
Vector& operator=(Vector&& a); // move assignment

};

Given that definition, the compiler will choose the move constructor to implement the transfer of
the return value out of the function. This means that r=x+y+z will involve no copying of Vectors.
Instead, Vectors are just moved.

As is typical, Vector’s move constructor is trivial to define:

Vector::Vector(Vector&& a)
:elem{a.elem}, // "grab the elements" from a
sz{a.sz}

{
a.elem = nullptr; // now a has no elements
a.sz = 0;

}

The && means ‘‘rvalue reference’’ and is a reference to which we can bind an rvalue (§6.4.1). The
word ‘‘rvalue’’ is intended to complement ‘‘lvalue,’’ which roughly means ‘‘something that can
appear on the left-hand side of an assignment.’’ So an rvalue is – to a first approximation – a value
that you can’t assign to, such as an integer returned by a function call, and an rvalue reference is a
reference to something that nobody else can assign to. The res local variable in operator+() for Vec-

tors is an example.
A move constructor does not take a const argument: after all, a move constructor is supposed to

remove the value from its argument. A move assignment is defined similarly.
A move operation is applied when an rvalue reference is used as an initializer or as the right-

hand side of an assignment.
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After a move, a moved-from object should be in a state that allows a destructor to be run. Typi-
cally, we should also allow assignment to a moved-from object (§17.5, §17.6.2).

Where the programmer knows that a value will not be used again, but the compiler can’t be
expected to be smart enough to figure that out, the programmer can be specific:

Vector f()
{

Vector x(1000);
Vector y(1000);
Vector z(1000);
// ...
z = x; // we get a copy
y = std::move(x); // we get a move
// ...
return z; // we get a move

};

The standard-library function move() returns an rvalue reference to its argument.
Just before the return we have:

nullptr 0

x:

1000

y:

1000

z:

1 2 ...1 2 ...

When z is destroyed, it too has been moved from (by the return) so that, like x, it is empty (it holds
no elements).

3.3.3 Resource Management

By defining constructors, copy operations, move operations, and a destructor, a  programmer can
provide complete control of the lifetime of a contained resource (such as the elements of a con-
tainer). Furthermore, a move constructor allows an object to move simply and cheaply from one
scope to another. That way, objects that we cannot or would not want to copy out of a scope can be
simply and cheaply moved out instead. Consider a standard-library thread representing a concur-
rent activity (§5.3.1) and a Vector of a million doubles. We can’t copy the former and don’t want to
copy the latter.

std::vector<thread> my_threads;

Vector init(int n)
{

thread t {heartbeat}; // run hear tbeat concurrently (on its own thread)
my_threads.push_back(move(t)); // move t into my_threads
// ... more initialization ...
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Vector vec(n);
for (int i=0; i<vec.size(); ++i) vec[i] = 777;
return vec; // move res out of init()

}

auto v = init(); // star t hear tbeat and initialize v

This makes resource handles, such as Vector and thread, an alternative to using pointers in many
cases. In fact, the standard-library ‘‘smart pointers,’’ such as unique_ptr, are themselves resource
handles (§5.2.1).

I used the standard-library vector to hold the threads because we don’t get to parameterize
Vector with an element type until §3.4.1.

In very much the same way as new and delete disappear from application code, we can make
pointers disappear into resource handles. In both cases, the result is simpler and more maintainable
code, without added overhead. In particular, we can achieve strong resource safety; that is, we can
eliminate resource leaks for a general notion of a resource. Examples are vectors holding memory,
threads holding system threads, and fstreams holding file handles.

3.3.4 Suppressing Operations

Using the default copy or move for a class in a hierarchy is typically a disaster: given only a pointer
to a base, we simply don’t know what members the derived class has (§3.2.2), so we can’t know
how to copy them. So, the best thing to do is usually to delete the default copy and move opera-
tions, that is, to eliminate the default definitions of those two operations:

class Shape {
public:

Shape(const Shape&) =delete; // no copy operations
Shape& operator=(const Shape&) =delete;

Shape(Shape&&) =delete; // no move operations
Shape& operator=(Shape&&) =delete;

˜Shape();
// ...

};

Now an attempt to copy a Shape will be caught by the compiler. If you need to copy an object in a
class hierarchy, write some kind of clone function (§22.2.4).

In this particular case, if you forgot to delete a copy or move operation, no harm is done. A
move operation is not implicitly generated for a class where the user has explicitly declared a de-
structor. Furthermore, the generation of copy operations is deprecated in this case (§44.2.3). This
can be a good reason to explicitly define a destructor even where the compiler would have implic-
itly provided one (§17.2.3).

A base class in a class hierarchy is just one example of an object we wouldn’t want to copy. A
resource handle generally cannot be copied just by copying its members (§5.2, §17.2.2).

The =delete mechanism is general, that is, it can be used to suppress any operation (§17.6.4).
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3.4 Templates
Someone who wants a vector is unlikely always to want a vector of doubles. A vector is a general
concept, independent of the notion of a floating-point number. Consequently, the element type of a
vector ought to be represented independently. A template is a class or a function that we parame-
terize with a set of types or values. We use templates to represent concepts that are best understood
as something very general from which we can generate specific types and functions by specifying
arguments, such as the element type double.

3.4.1 Parameterized Types

We can generalize our vector-of-doubles type to a vector-of-anything type by making it a template

and replacing the specific type double with a parameter. For example:

template<typename T>
class Vector {
private:

T∗ elem; // elem points to an array of sz elements of type T
int sz;

public:
Vector(int s); // constr uctor: establish invariant, acquire resources
˜Vector() { delete[] elem; } // destr uctor: release resources

// ... copy and move operations ...

T& operator[](int i);
const T& operator[](int i) const;
int size() const { return sz; }

};

The template<typename T> prefix makes T a parameter of the declaration it prefixes. It is C++’s ver-
sion of the mathematical ‘‘for all T’’ or more precisely ‘‘for all types T.’’

The member functions might be defined similarly:

template<typename T>
Vector<T>::Vector(int s)
{

if (s<0) throw Negative_siz e{};
elem = new T[s];
sz = s;

}

template<typename T>
const T& Vector<T>::operator[](int i) const
{

if (i<0 || size()<=i)
throw out_of_rang e{"Vector::operator[]"};

return elem[i];
}
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Given these definitions, we can define Vectors like this:

Vector<char> vc(200); // vector of 200 characters
Vector<string> vs(17); // vector of 17 strings
Vector<list<int>> vli(45); // vector of 45 lists of integers

The >> in Vector<list<int>> terminates the nested template arguments; it is not a misplaced input
operator. It is not (as in C++98) necessary to place a space between the two >s.

We can use Vectors like this:

void write(const Vector<string>& vs) // Vector of some strings
{

for (int i = 0; i!=vs.size(); ++i)
cout << vs[i] << '\n';

}

To support the range-for loop for our Vector, we must define suitable begin() and end() functions:

template<typename T>
T∗ begin(Vector<T>& x)
{

return &x[0]; // pointer to first element
}

template<typename T>
T∗ end(Vector<T>& x)
{

return x.begin()+x.size(); // pointer to one-past-last element
}

Given those, we can write:

void f2(const Vector<string>& vs) // Vector of some strings
{

for (auto& s : vs)
cout << s << '\n';

}

Similarly, we can define lists, vectors, maps (that is, associative arrays), etc., as templates (§4.4,
§23.2, Chapter 31).

Templates are a compile-time mechanism, so their use incurs no run-time overhead compared to
‘‘handwritten code’’ (§23.2.2).

3.4.2 Function Templates

Templates have many more uses than simply parameterizing a container with an element type. In
particular, they are extensively used for parameterization of both types and algorithms in the stan-
dard library (§4.4.5, §4.5.5). For example, we can write a function that calculates the sum of the
element values of any container like this:
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template<typename Container, typename Value>
Value sum(const Container& c, Value v)
{

for (auto x : c)
v+=x;

return v;
}

The Value template argument and the function argument v are there to allow the caller to specify the
type and initial value of the accumulator (the variable in which to accumulate the sum):

void user(Vector<int>& vi, std::list<double>& ld, std::vector<complex<double>>& vc)
{

int x = sum(vi,0); // the sum of a vector of ints (add ints)
double d = sum(vi,0.0); // the sum of a vector of ints (add doubles)
double dd = sum(ld,0.0); // the sum of a list of doubles
auto z = sum(vc,complex<double>{}); // the sum of a vector of complex<double>

// the initial value is {0.0,0.0}
}

The point of adding ints in a double would be to gracefully handle a number larger than the largest
int. Note how the types of the template arguments for sum<T,V> are deduced from the function
arguments. Fortunately, we do not need to explicitly specify those types.

This sum() is a simplified version of the standard-library accumulate() (§40.6).

3.4.3 Function Objects

One particularly useful kind of template is the function object (sometimes called a functor), which
is used to define objects that can be called like functions. For example:

template<typename T>
class Less_than {

const T val; // value to compare against
public:

Less_than(const T& v) :val(v) { }
bool operator()(const T& x) const { return x<val; } // call operator

};

The function called operator() implements the ‘‘function call,’’ ‘‘call,’’ or ‘‘application’’ operator ().
We can define named variables of type Less_than for some argument type:

Less_than<int> lti {42}; // lti(i) will compare i to 42 using < (i<42)
Less_than<string> lts {"Backus"}; // lts(s) will compare s to "Backus" using < (s<"Backus")

We can call such an object, just as we call a function:

void fct(int n, const string & s)
{

bool b1 = lti(n); // tr ue if n<42
bool b2 = lts(s); // tr ue if s<"Backus"
// ...

}
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Such function objects are widely used as arguments to algorithms. For example, we can count the
occurrences of values for which a predicate returns true:

template<typename C, typename P>
int count(const C& c, P pred)
{

int cnt = 0;
for (const auto& x : c)

if (pred(x))
++cnt;

return cnt;
}

A predicate is something that we can invoke to return true or false. For example:

void f(const Vector<int>& vec, const list<string>& lst, int x, const string& s)
{

cout << "number of values less than " << x
<< ": " << count(vec,Less_than<int>{x})
<< '\n';

cout << "number of values less than " << s
<< ": " << count(lst,Less_than<string>{s})
<< '\n';

}

Here, Less_than<int>{x} constructs an object for which the call operator compares to the int called x;
Less_than<string>{s} constructs an object that compares to the string called s. The beauty of these
function objects is that they carry the value to be compared against with them. We don’t hav e to
write a separate function for each value (and each type), and we don’t hav e to introduce nasty
global variables to hold values. Also, for a simple function object like Less_than inlining is simple,
so that a call of Less_than is far more efficient than an indirect function call. The ability to carry
data plus their efficiency make function objects particularly useful as arguments to algorithms.

Function objects used to specify the meaning of key operations of a general algorithm (such as
Less_than for count()) are often referred to as policy objects.

We hav e to define Less_than separately from its use. That could be seen as inconvenient. Con-
sequently, there is a notation for implicitly generating function objects:

void f(const Vector<int>& vec, const list<string>& lst, int x, const string& s)
{

cout << "number of values less than " << x
<< ": " << count(vec,[&](int a){ return a<x; })
<< '\n';

cout << "number of values less than " << s
<< ": " << count(lst,[&](const string& a){ return a<s; })
<< '\n';

}

The notation [&](int a){ return a<x; } is called a lambda expression (§11.4). It generates a function
object exactly like Less_than<int>{x}. The [&] is a capture list specifying that local names used
(such as x) will be passed by reference. Had we wanted to ‘‘capture’’ only x, we could have said
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so: [&x]. Had we wanted to give the generated object a copy of x, we could have said so: [=x]. Cap-
ture nothing is [], capture all local names used by reference is [&], and capture all local names used
by value is [=].

Using lambdas can be convenient and terse, but also obscure. For nontrivial actions (say, more
than a simple expression), I prefer to name the operation so as to more clearly state its purpose and
to make it available for use in several places in a program.

In §3.2.4, we noticed the annoyance of having to write many functions to perform operations on
elements of vectors of pointers and unique_ptrs, such as draw_all() and rotate_all(). Function objects
(in particular, lambdas) can help by allowing us to separate the traversal of the container from the
specification of what is to be done with each element.

First, we need a function that applies an operation to each object pointed to by the elements of a
container of pointers:

template<class C, class Oper>
void for_all(C& c, Oper op) // assume that C is a container of pointers
{

for (auto& x : c)
op(∗x); // pass op() a reference to each element pointed to

}

Now, we can write a version of user() from §3.2.4 without writing a set of _all functions:

void user()
{

vector<unique_ptr<Shape>> v;
while (cin)

v.push_back(read_shape(cin));
for_all(v,[](Shape& s){ s.draw(); }); // draw_all()
for_all(v,[](Shape& s){ s.rotate(45); }); // rotate_all(45)

}

I pass a reference to Shape to a lambda so that the lambda doesn’t hav e to care exactly how the
objects are stored in the container. In particular, those for_all() calls would still work if I changed v

to a vector<Shape∗>.

3.4.4 Variadic Templates

A template can be defined to accept an arbitrary number of arguments of arbitrary types. Such a
template is called a variadic template. For example:

template<typename T, typename ... Tail>
void f(T head, Tail... tail)
{

g(head); // do something to head
f(tail...); // tr y again with tail

}

void f() { } // do nothing

The key to implementing a variadic template is to note that when you pass a list of arguments to it,
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you can separate the first argument from the rest. Here, we do something to the first argument (the
head) and then recursively call f() with the rest of the arguments (the tail). The ellipsis, ..., is used to
indicate ‘‘the rest’’ of a list. Eventually, of course, tail will become empty and we need a separate
function to deal with that.

We can call this f() like this:

int main()
{

cout << "first: ";
f(1,2.2,"hello");

cout << "\nsecond: "
f(0.2,'c',"yuck!",0,1,2);
cout << "\n";

}

This would call f(1,2.2,"hello"), which will call f(2.2,"hello"), which will call f("hello"), which will call
f(). What might the call g(head) do? Obviously, in a real program it will do whatever we wanted
done to each argument. For example, we could make it write its argument (here, head) to output:

template<typename T>
void g(T x)
{

cout << x << " ";
}

Given that, the output will be:

first: 1 2.2 hello
second: 0.2 c yuck! 0 1 2

It seems that f() is a simple variant of printf() printing arbitrary lists or values – implemented in three
lines of code plus their surrounding declarations.

The strength of variadic templates (sometimes just called variadics) is that they can accept any
arguments you care to give them. The weakness is that the type checking of the interface is a possi-
bly elaborate template program. For details, see §28.6. For examples, see §34.2.4.2 (N-tuples) and
Chapter 29 (N-dimensional matrices).

3.4.5 Aliases

Surprisingly often, it is useful to introduce a synonym for a type or a template (§6.5). For example,
the standard header <cstddef> contains a definition of the alias siz e_t, maybe:

using size_t = unsigned int;

The actual type named siz e_t is implementation-dependent, so in another implementation siz e_t

may be an unsigned long. Having the alias siz e_t allows the programmer to write portable code.
It is very common for a parameterized type to provide an alias for types related to their template

arguments. For example:
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template<typename T>
class Vector {
public:

using value_type = T;
// ...

};

In fact, every standard-library container provides value_type as the name of its value type (§31.3.1).
This allows us to write code that will work for every container that follows this convention. For
example:

template<typename C>
using Element_type = typename C::value_type;

template<typename Container>
void algo(Container& c)
{

Vector<Element_type<Container>> vec; // keep results here
// ...

}

The aliasing mechanism can be used to define a new template by binding some or all template argu-
ments. For example:

template<typename Key, typename Value>
class Map {

// ...
};

template<typename Value>
using String_map = Map<string,Value>;

String_map<int> m; // m is a Map<str ing,int>

See §23.6.

3.5 Advice
[1] Express ideas directly in code; §3.2.
[2] Define classes to represent application concepts directly in code; §3.2.
[3] Use concrete classes to represent simple concepts and performance-critical components;

§3.2.1.
[4] Avoid ‘‘naked’’ new and delete operations; §3.2.1.2.
[5] Use resource handles and RAII to manage resources; §3.2.1.2.
[6] Use abstract classes as interfaces when complete separation of interface and implementation

is needed; §3.2.2.
[7] Use class hierarchies to represent concepts with inherent hierarchical structure; §3.2.4.
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[8] When designing a class hierarchy, distinguish between implementation inheritance and inter-
face inheritance; §3.2.4.

[9] Control construction, copy, move, and destruction of objects; §3.3.
[10] Return containers by value (relying on move for efficiency); §3.3.2.
[11] Provide strong resource safety; that is, never leak anything that you think of as a resource;

§3.3.3.
[12] Use containers, defined as resource handle templates, to hold collections of values of the

same type; §3.4.1.
[13] Use function templates to represent general algorithms; §3.4.2.
[14] Use function objects, including lambdas, to represent policies and actions; §3.4.3.
[15] Use type and template aliases to provide a uniform notation for types that may vary among

similar types or among implementations; §3.4.5.
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A Tour of C++: Containers and Algorithms

Why waste time learning
when ignorance is instantaneous?

– Hobbes

• Libraries
Standard-Library Overview; The Standard-Library Headers and Namespace

• Strings
• Stream I/O

Output; Input; I/O of User-Defined Types
• Containers

vector; list; map; unordered_map; Container Overview
• Algorithms

Use of Iterators; Iterator Types; Stream Iterators; Predicates; Algorithm Overview; Con-
tainer Algorithms

• Advice

4.1 Libraries
No significant program is written in just a bare programming language. First, a set of libraries is
developed. These then form the basis for further work. Most programs are tedious to write in the
bare language, whereas just about any task can be rendered simple by the use of good libraries.

Continuing from Chapters 2 and 3, this chapter and the next give a quick tour of key standard-
library facilities. I assume that you have programmed before. If not, please consider reading a
textbook, such as Programming: Principles and Practice Using C++ [Stroustrup,2009], before
continuing. Even if you have programmed before, the libraries you used or the applications you
wrote may be very different from the style of C++ presented here. If you find this ‘‘lightning tour’’
confusing, you might skip to the more systematic and bottom-up language presentation starting in
Chapter 6. Similarly, a more systematic description of the standard library starts in Chapter 30.
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I very briefly present useful standard-library types, such as string, ostream, vector, map (this
chapter), unique_ptr, thread, reg ex, and complex (Chapter 5), as well as the most common ways of
using them. Doing this allows me to give better examples in the following chapters. As in Chapter
2 and Chapter 3, you are strongly encouraged not to be distracted or discouraged by an incomplete
understanding of details. The purpose of this chapter is to give you a taste of what is to come and
to convey a basic understanding of the most useful library facilities.

The specification of the standard library is almost two thirds of the ISO C++ standard. Explore
it, and prefer it to home-made alternatives. Much though have gone into its design, more still into
its implementations, and much effort will go into its maintenance and extension.

The standard-library facilities described in this book are part of every complete C++ implemen-
tation. In addition to the standard-library components, most implementations offer ‘‘graphical user
interface’’ systems (GUIs), Web interfaces, database interfaces, etc. Similarly, most application
development environments provide ‘‘foundation libraries’’ for corporate or industrial ‘‘standard’’
development and/or execution environments. Here, I do not describe such systems and libraries.
The intent is to provide a self-contained description of C++ as defined by the standard and to keep
the examples portable, except where specifically noted. Naturally, a programmer is encouraged to
explore the more extensive facilities available on most systems.

4.1.1 Standard-Library Overview

The facilities provided by the standard library can be classified like this:
• Run-time language support (e.g., for allocation and run-time type information); see §30.3.
• The C standard library (with very minor modifications to minimize violations of the type

system); see Chapter 43.
• Strings and I/O streams (with support for international character sets and localization); see

Chapter 36, Chapter 38, and Chapter 39. I/O streams is an extensible framework to which
users can add their own streams, buffering strategies, and character sets.

• A framework of containers (such as vector and map) and algorithms (such as find(), sor t(),
and merge()); see §4.4, §4.5, Chapters 31-33. This framework, conventionally called the
STL [Stepanov,1994], is extensible so users can add their own containers and algorithms.

• Support for numerical computation (such as standard mathematical functions, complex
numbers, vectors with arithmetic operations, and random number generators); see §3.2.1.1
and Chapter 40.

• Support for regular expression matching; see §5.5 and Chapter 37.
• Support for concurrent programming, including threads and locks; see §5.3 and Chapter 41.

The concurrency support is foundational so that users can add support for new models of
concurrency as libraries.

• Utilities to support template metaprogramming (e.g., type traits; §5.4.2, §28.2.4, §35.4),
STL-style generic programming (e.g., pair; §5.4.3, §34.2.4.1), and general programming
(e.g., clock; §5.4.1, §35.2).

• ‘‘Smart pointers’’ for resource management (e.g., unique_ptr and shared_ptr; §5.2.1, §34.3)
and an interface to garbage collectors (§34.5).

• Special-purpose containers, such as array (§34.2.1), bitset (§34.2.2), and tuple (§34.2.4.2).
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The main criteria for including a class in the library were that:
• it could be helpful to almost every C++ programmer (both novices and experts),
• it could be provided in a general form that did not add significant overhead compared to a

simpler version of the same facility, and
• that simple uses should be easy to learn (relative to the inherent complexity of their task).

Essentially, the C++ standard library provides the most common fundamental data structures
together with the fundamental algorithms used on them.

4.1.2 The Standard-library Headers and Namespace

Every standard-library facility is provided through some standard header. For example:

#include<string>
#include<list>

This makes the standard string and list available.
The standard library is defined in a namespace (§2.4.2, §14.3.1) called std. To use standard

library facilities, the std:: prefix can be used:

std::string s {"Four legs Good; two legs Baaad!"};
std::list<std::string> slogans {"War is peace", "Freedom is Slaver y", "Ignorance is Strength"};

For simplicity, I will rarely use the std:: prefix explicitly in examples. Neither will I always
#include the necessary headers explicitly. To compile and run the program fragments here, you
must #include the appropriate headers (as listed in §4.4.5, §4.5.5, and §30.2) and make the names
they declare accessible. For example:

#include<string> // make the standard string facilities accessible
using namespace std; // make std names available without std:: prefix

string s {"C++ is a general−purpose programming language"}; // OK: string is std::string

It is generally in poor taste to dump every name from a namespace into the global namespace.
However, in this book, I use the standard library almost exclusively and it is good to know what it
offers. So, I don’t prefix every use of a standard library name with std::. Nor do I #include the
appropriate headers in every example. Assume that done.

Here is a selection of standard-library headers, all supplying declarations in namespace std:

Selected Standard Library Headers (continues)

<algorithm> copy(), find(), sor t() §32.2 §iso.25
<array> array §34.2.1 §iso.23.3.2
<chrono> duration, time_point §35.2 §iso.20.11.2
<cmath> sqrt(), pow() §40.3 §iso.26.8
<complex> complex, sqr t(), pow() §40.4 §iso.26.8
<fstream> fstream, ifstream, ofstream §38.2.1 §iso.27.9.1
<future> future, promise §5.3.5 §iso.30.6
<iostream> istream, ostream, cin, cout §38.1 §iso.27.4
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Selected Standard Library Headers (continued)

<map> map, multimap §31.4.3 §iso.23.4.4
<memor y> unique_ptr, shared_ptr, allocator §5.2.1 §iso.20.6
<random> default_random_engine, normal_distribution §40.7 §iso.26.5
<reg ex> regex, smatch Chapter 37 §iso.28.8
<string> string, basic_string Chapter 36 §iso.21.3
<set> set, multiset §31.4.3 §iso.23.4.6
<sstream> istrstream, ostrstream §38.2.2 §iso.27.8
<thread> thread §5.3.1 §iso.30.3
<unordered_map> unordered_map, unordered_multimap §31.4.3.2 §iso.23.5.4
<utility> move(), swap(), pair §35.5 §iso.20.1
<vector> vector §31.4 §iso.23.3.6

This listing is far from complete; see §30.2 for more information.

4.2 Strings
The standard library provides a string type to complement the string literals. The string type pro-
vides a variety of useful string operations, such as concatenation. For example:

string compose(const string& name, const string& domain)
{

return name + '@' + domain;
}

auto addr = compose("dmr","bell−labs.com");

Here, addr is initialized to the character sequence dmr@bell−labs.com. ‘‘Addition’’ of strings means
concatenation. You can concatenate a string, a string literal, a C-style string, or a character to a
string. The standard string has a move constructor so returning even long strings by value is effi-
cient (§3.3.2).

In many applications, the most common form of concatenation is adding something to the end
of a string. This is directly supported by the += operation. For example:

void m2(string& s1, string& s2)
{

s1 = s1 + '\n'; // append newline
s2 += '\n'; // append newline

}

The two ways of adding to the end of a string are semantically equivalent, but I prefer the latter
because it is more explicit about what it does, more concise, and possibly more efficient.

A string is mutable. In addition to = and +=, subscripting (using []) and substring operations are
supported. The standard-library string is described in Chapter 36. Among other useful features, it
provides the ability to manipulate substrings. For example:
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string name = "Niels Stroustrup";

void m3()
{

string s = name.substr(6,10); // s = "Stroustr up"
name .replace(0,5,"nicholas"); // name becomes "nicholas Stroustrup"
name[0] = toupper(name[0]); // name becomes "Nicholas Stroustrup"

}

The substr() operation returns a string that is a copy of the substring indicated by its arguments.
The first argument is an index into the string (a position), and the second is the length of the desired
substring. Since indexing starts from 0, s gets the value Stroustrup.

The replace() operation replaces a substring with a value. In this case, the substring starting at 0

with length 5 is Niels; it is replaced by nicholas. Finally, I replace the initial character with its
uppercase equivalent. Thus, the final value of name is Nicholas Stroustrup. Note that the replace-
ment string need not be the same size as the substring that it is replacing.

Naturally, strings can be compared against each other and against string literals. For example:

string incantation;

void respond(const string& answer)
{

if (answer == incantation) {
// perfor m magic

}
else if (answer == "yes") {

// ...
}
// ...

}

The string library is described in Chapter 36. The most common techniques for implementing
string are presented in the String example (§19.3).

4.3 Stream I/O
The standard library provides formatted character input and output through the iostream library.
The input operations are typed and extensible to handle user-defined types. This section is a very
brief introduction to the use of iostreams; Chapter 38 is a reasonably complete description of the
iostream library facilities.

Other forms of user interaction, such as graphical I/O, are handled through libraries that are not
part of the ISO standard and therefore not described here.

4.3.1 Output

The I/O stream library defines output for every built-in type. Further, it is easy to define output of a
user-defined type (§4.3.3). The operator << (‘‘put to’’) is used as an output operator on objects of
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type ostream; cout is the standard output stream and cerr is the standard stream for reporting errors.
By default, values written to cout are converted to a sequence of characters. For example, to output
the decimal number 10, we can write:

void f()
{

cout << 10;
}

This places the character 1 followed by the character 0 on the standard output stream.
Equivalently, we could write:

void g()
{

int i {10};
cout << i;

}

Output of different types can be combined in the obvious way:

void h(int i)
{

cout << "the value of i is ";
cout << i;
cout << '\n';

}

For h(10), the output will be:

the value of i is 10

People soon tire of repeating the name of the output stream when outputting several related items.
Fortunately, the result of an output expression can itself be used for further output. For example:

void h2(int i)
{

cout << "the value of i is " << i << '\n';
}

This h2() produces the same output as h().
A character constant is a character enclosed in single quotes. Note that a character is output as

a character rather than as a numerical value. For example:

void k()
{

int b = 'b'; // note: char implicitly converted to int
char c = 'c';
cout << 'a' << b << c;

}

The integer value of the character 'b' is 98 (in the ASCII encoding used on the C++ implementation
that I used), so this will output a98c.
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4.3.2 Input

The standard library offers istreams for input. Like ostreams, istreams deal with character string
representations of built-in types and can easily be extended to cope with user-defined types.

The operator >> (‘‘get from’’) is used as an input operator; cin is the standard input stream. The
type of the right-hand operand of >> determines what input is accepted and what is the target of the
input operation. For example:

void f()
{

int i;
cin >> i; // read an integer into i

double d;
cin >> d; // read a double-precision floating-point number into d

}

This reads a number, such as 1234, from the standard input into the integer variable i and a floating-
point number, such as 12.34e5, into the double-precision floating-point variable d.

Often, we want to read a sequence of characters. A convenient way of doing that is to read into
a string. For example:

void hello()
{

cout << "Please enter your name\n";
string str;
cin >> str;
cout << "Hello, " << str << "!\n";

}

If you type in Eric the response is:

Hello, Eric!

By default, a whitespace character (§7.3.2), such as a space, terminates the read, so if you enter Eric

Bloodaxe pretending to be the ill-fated king of York, the response is still:

Hello, Eric!

You can read a whole line (including the terminating newline character) using the getline() function.
For example:

void hello_line()
{

cout << "Please enter your name\n";
string str;
getline(cin,str);
cout << "Hello, " << str << "!\n";

}

With this program, the input Eric Bloodaxe yields the desired output:

Hello, Eric Bloodaxe!
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The newline that terminated the line is discarded, so cin is ready for the next input line.
The standard strings have the nice property of expanding to hold what you put in them; you

don’t hav e to precalculate a maximum size. So, if you enter a couple of megabytes of semicolons,
the program will echo pages of semicolons back at you.

4.3.3 I/O of User-Defined Types

In addition to the I/O of built-in types and standard strings, the iostream library allows programmers
to define I/O for their own types. For example, consider a simple type Entr y that we might use to
represent entries in a telephone book:

struct Entry {
string name;
int number;

};

We can define a simple output operator to write an Entr y using a {"name",number} format similar to
the one we use for initialization in code:

ostream& operator<<(ostream& os, const Entry& e)
{

return os << "{\"" << e.name << "\", " << e.number << "}";
}

A user-defined output operator takes its output stream (by reference) as its first argument and
returns it as its result. See §38.4.2 for details.

The corresponding input operator is more complicated because it has to check for correct for-
matting and deal with errors:

istream& operator>>(istream& is, Entry& e)
// read { "name" , number } pair. Note: for matted with { " " , and }

{
char c, c2;
if (is>>c && c=='{' && is>>c2 && c2=='"') { // star t with a { "

string name; // the default value of a string is the empty string: ""
while (is.get(c) && c!='"') // anything before a " is part of the name

name+=c;

if (is>>c && c==',') {
int number = 0;
if (is>>number>>c && c=='}') { // read the number and a }

e = {name ,number}; // assign to the entry
return is;

}
}

}
is.setf(ios_base::failbit); // register the failure in the stream
return is;

}

An input operation returns a reference to its istream which can be used to test if the operation
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succeeded. For example, when used as a condition, is>>c means ‘‘Did we succeed at reading from
is into c?’’

The is>>c skips whitespace by default, but is.g et(c) does not, so that this Entr y-input operator
ignores (skips) whitespace outside the name string, but not within it. For example:

{ "John Marwood Cleese" , 123456 }
{"Michael Edward Palin",987654}

We can read such a pair of values from input into an Entr y like this:

for (Entr y ee; cin>>ee; ) // read from cin into ee
cout << ee << '\n'; // wr ite ee to cout

The output is:

{"John Marwood Cleese", 123456}
{"Michael Edward Palin", 987654}

See §38.4.1 for more technical details and techniques for writing input operators for user-defined
types. See §5.5 and Chapter 37 for a more systematic technique for recognizing patterns in streams
of characters (regular expression matching).

4.4 Containers
Most computing involves creating collections of values and then manipulating such collections.
Reading characters into a string and printing out the string is a simple example. A class with the
main purpose of holding objects is commonly called a container. Providing suitable containers for
a giv en task and supporting them with useful fundamental operations are important steps in the
construction of any program.

To illustrate the standard-library containers, consider a simple program for keeping names and
telephone numbers. This is the kind of program for which different approaches appear ‘‘simple and
obvious’’ to people of different backgrounds. The Entr y class from §4.3.3 can be used to hold a
simple phone book entry. Here, we deliberately ignore many real-world complexities, such as the
fact that many phone numbers do not have a simple representation as a 32-bit int.

4.4.1 vector

The most useful standard-library container is vector. A vector is a sequence of elements of a given
type. The elements are stored contiguously in memory:

6

vector:

elem:

sz:
0: 1: 2: 3: 4: 5:

The Vector examples in §3.2.2 and §3.4 give an idea of the implementation of vector and §13.6 and
§31.4 provide an exhaustive discussion.
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We can initialize a vector with a set of values of its element type:

vector<Entr y> phone_book = {
{"David Hume",123456},
{"Karl Popper",234567},
{"Ber trand Ar thur William Russell",345678}

};

Elements can be accessed through subscripting:

void print_book(const vector<Entry>& book)
{

for (int i = 0; i!=book.size(); ++i)
cout << book[i] << '\n';

}

As usual, indexing starts at 0 so that book[0] holds the entry for David Hume. The vector member
function siz e() gives the number of elements.

The elements of a vector constitute a range, so we can use a range-for loop (§2.2.5):

void print_book(const vector<Entry>& book)
{

for (const auto& x : book) // for "auto" see §2.2.2
cout << x << '\n';

}

When we define a vector, we giv e it an initial size (initial number of elements):

vector<int> v1 = {1, 2, 3, 4}; // size is 4
vector<string> v2; // size is 0
vector<Shape∗> v3(23); // size is 23; initial element value: nullptr
vector<double> v4(32,9.9); // size is 32; initial element value: 9.9

An explicit size is enclosed in ordinary parentheses, for example, (23), and by default the elements
are initialized to the element type’s default value (e.g., nullptr for pointers and 0 for numbers). If
you don’t want the default value, you can specify one as a second argument (e.g., 9.9 for the 32 ele-
ments of v4).

The initial size can be changed. One of the most useful operations on a vector is push_back(),
which adds a new element at the end of a vector, increasing its size by one. For example:

void input()
{

for (Entr y e; cin>>e;)
phone_book.push_back(e);

}

This reads Entr ys from the standard input into phone_book until either the end-of-input (e.g., the
end of a file) is reached or the input operation encounters a format error. The standard-library
vector is implemented so that growing a vector by repeated push_back()s is efficient.

A vector can be copied in assignments and initializations. For example:

vector<Entr y> book2 = phone_book;
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Copying and moving of vectors are implemented by constructors and assignment operators as
described in §3.3. Assigning a vector involves copying its elements. Thus, after the initialization
of book2, book2 and phone_book hold separate copies of every Entr y in the phone book. When a
vector holds many elements, such innocent-looking assignments and initializations can be expen-
sive. Where copying is undesirable, references or pointers (§7.2, §7.7) or move operations (§3.3.2,
§17.5.2) should be used.

4.4.1.1 Elements

Like all standard-library containers, vector is a container of elements of some type T, that is, a
vector<T>. Just about any type qualifies as an element type: built-in numeric types (such as char,
int, and double), user-defined types (such as string, Entr y, list<int>, and Matrix<double ,2>), and point-
ers (such as const char∗, Shape∗, and double∗). When you insert a new element, its value is copied
into the container. For example, when you put an integer with the value 7 into a container, the
resulting element really has the value 7. The element is not a reference or a pointer to some object
containing 7. This makes for nice compact containers with fast access. For people who care about
memory sizes and run-time performance this is critical.

4.4.1.2 Range Checking

The standard-library vector does not guarantee range checking (§31.2.2). For example:

void silly(vector<Entr y>& book)
{

int i = book[ph.size()].number; // book.size() is out of range
// ...

}

That initialization is likely to place some random value in i rather than giving an error. This is
undesirable, and out-of-range errors are a common problem. Consequently, I often use a simple
range-checking adaptation of vector:

template<typename T>
class Vec : public std::vector<T> {
public:

using vector<T>::vector; // use the constructors from vector (under the name Vec); see §20.3.5.1

T& operator[](int i) // range check
{ return vector<T>::at(i); }

const T& operator[](int i) const // range check const objects; §3.2.1.1
{ return vector<T>::at(i); }

};

Vec inherits everything from vector except for the subscript operations that it redefines to do range
checking. The at() operation is a vector subscript operation that throws an exception of type
out_of_rang e if its argument is out of the vector’s range (§2.4.3.1, §31.2.2).
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For Vec, an out-of-range access will throw an exception that the user can catch. For example:

void checked(Vec<Entr y>& book)
{

tr y {
book[book.siz e()] = {"Joe",999999}; // will throw an exception
// ...

}
catch (out_of_rang e) {

cout << "range error\n";
}

}

The exception will be thrown, and then caught (§2.4.3.1, Chapter 13). If the user doesn’t catch an
exception, the program will terminate in a well-defined manner rather than proceeding or failing in
an undefined manner. One way to minimize surprises from uncaught exceptions is to use a main()

with a tr y-block as its body. For example:

int main()
tr y {

// your code
}
catch (out_of_rang e) {

cerr << "range error\n";
}
catch (...) {

cerr << "unknown exception thrown\n";
}

This provides default exception handlers so that if we fail to catch some exception, an error mes-
sage is printed on the standard error-diagnostic output stream cerr (§38.1).

Some implementations save you the bother of defining Vec (or equivalent) by providing a range-
checked version of vector (e.g., as a compiler option).

4.4.2 list

The standard library offers a doubly-linked list called list:

4

list:

links links links links

We use a list for sequences where we want to insert and delete elements without moving other ele-
ments. Insertion and deletion of phone book entries could be common, so a list could be appropri-
ate for representing a simple phone book. For example:

list<Entr y> phone_book = {
{"David Hume",123456},



Section 4.4.2 list 99

{"Karl Popper",234567},
{"Ber trand Ar thur William Russell",345678}

};

When we use a linked list, we tend not to access elements using subscripting the way we com-
monly do for vectors. Instead, we might search the list looking for an element with a given value.
To do this, we take advantage of the fact that a list is a sequence as described in §4.5:

int get_number(const string& s)
{

for (const auto& x : phone_book)
if (x.name==s)

return x.number;
return 0; // use 0 to represent "number not found"

}

The search for s starts at the beginning of the list and proceeds until s is found or the end of
phone_book is reached.

Sometimes, we need to identify an element in a list. For example, we may want to delete it or
insert a new entry before it. To do that we use an iterator: a list iterator identifies an element of a
list and can be used to iterate through a list (hence its name). Every standard-library container pro-
vides the functions begin() and end(), which return an iterator to the first and to one-past-the-last
element, respectively (§4.5, §33.1.1). Using iterators explicitly, we can – less elegantly – write the
get_number() function like this:

int get_number(const string& s)
{

for (auto p = phone_book.begin(); p!=phone_book.end(); ++p)
if (p−>name==s)

return p−>number;
return 0; // use 0 to represent "number not found"

}

In fact, this is roughly the way the terser and less error-prone range-for loop is implemented by the
compiler. Giv en an iterator p, ∗p is the element to which it refers, ++p advances p to refer to the
next element, and when p refers to a class with a member m, then p−>m is equivalent to (∗p).m.

Adding elements to a list and removing elements from a list is easy:

void f(const Entry& ee, list<Entr y>::iterator p, list<Entry>::iterator q)
{

phone_book.inser t(p,ee); // add ee before the element referred to by p
phone_book.erase(q); // remove the element referred to by q

}

For a more complete description of inser t() and erase(), see §31.3.7.
These list examples could be written identically using vector and (surprisingly, unless you

understand machine architecture) perform better with a small vector than with a small list. When
all we want is a sequence of elements, we have a choice between using a vector and a list. Unless
you have a reason not to, use a vector. A vector performs better for traversal (e.g., find() and
count()) and for sorting and searching (e.g., sor t() and binar y_search()).



100 A Tour of C++: Containers and Algorithms Chapter 4

4.4.3 map

Writing code to look up a name in a list of (name,number) pairs is quite tedious. In addition, a lin-
ear search is inefficient for all but the shortest lists. The standard library offers a search tree (a red-
black tree) called map:

4

map:

links

key:

value:

links

links

links

In other contexts, a map is known as an associative array or a dictionary. It is implemented as a bal-
anced binary tree.

The standard-library map (§31.4.3) is a container of pairs of values optimized for lookup. We
can use the same initializer as for vector and list (§4.4.1, §4.4.2):

map<string,int> phone_book {
{"David Hume",123456},
{"Karl Popper",234567},
{"Ber trand Ar thur William Russell",345678}

};

When indexed by a value of its first type (called the key), a map returns the corresponding value of
the second type (called the value or the mapped type). For example:

int get_number(const string& s)
{

return phone_book[s];
}

In other words, subscripting a map is essentially the lookup we called get_number(). If a key isn’t
found, it is entered into the map with a default value for its value. The default value for an integer
type is 0; the value I just happened to choose represents an invalid telephone number.

If we wanted to avoid entering invalid numbers into our phone book, we could use find() and
inser t() instead of [] (§31.4.3.1).

4.4.4 unordered_map

The cost of a map lookup is O(log(n)) where n is the number of elements in the map. That’s pretty
good. For example, for a map with 1,000,000 elements, we perform only about 20 comparisons
and indirections to find an element. However, in many cases, we can do better by using a hashed
lookup rather than comparison using an ordering function, such as <. The standard-library hashed
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containers are referred to as ‘‘unordered’’ because they don’t require an ordering function:

repunordered_map:

hash table:

For example, we can use an unordered_map from <unordered_map> for our phone book:

unordered_map<string,int> phone_book {
{"David Hume",123456},
{"Karl Popper",234567},
{"Ber trand Ar thur William Russell",345678}

};

As for a map, we can subscript an unordered_map:

int get_number(const string& s)
{

return phone_book[s];
}

The standard-library unordered_map provides a default hash function for strings. If necessary, you
can provide your own (§31.4.3.4).

4.4.5 Container Overview

The standard library provides some of the most general and useful container types to allow the pro-
grammer to select a container that best serves the needs of an application:

Standard Container Summary

vector<T> A variable-size vector (§31.4)
list<T> A doubly-linked list (§31.4.2)
forward_list<T> A singly-linked list (§31.4.2)
deque<T> A double-ended queue (§31.2)
set<T> A set (§31.4.3)
multiset<T> A set in which a value can occur many times (§31.4.3)
map<K,V> An associative array (§31.4.3)
multimap<K,V> A map in which a key can occur many times (§31.4.3)
unordered_map<K,V> A map using a hashed lookup (§31.4.3.2)
unordered_multimap<K,V> A multimap using a hashed lookup (§31.4.3.2)
unordered_set<T> A set using a hashed lookup (§31.4.3.2)
unordered_multiset<T> A multiset using a hashed lookup (§31.4.3.2)

The unordered containers are optimized for lookup with a key (often a string); in other words, they
are implemented using hash tables.
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The standard containers are described in §31.4. The containers are defined in namespace std

and presented in headers <vector>, <list>, <map>, etc. (§4.1.2, §30.2). In addition, the standard
library provides container adaptors queue<T> (§31.5.2), stack<T> (§31.5.1), deque<T> (§31.4), and
priority_queue<T> (§31.5.3). The standard library also provides more specialized container-like
types, such as a fixed-size array array<T,N> (§34.2.1) and bitset<N> (§34.2.2).

The standard containers and their basic operations are designed to be similar from a notational
point of view. Furthermore, the meanings of the operations are equivalent for the various contain-
ers. Basic operations apply to every kind of container for which they make sense and can be effi-
ciently implemented. For example:

• begin() and end() give iterators to the first and one-beyond-the-last elements, respectively.
• push_back() can be used (efficiently) to add elements to the end of a vector, forward_list, list,

and other containers.
• siz e() returns the number of elements.

This notational and semantic uniformity enables programmers to provide new container types that
can be used in a very similar manner to the standard ones. The range-checked vector, Vector

(§2.3.2, §2.4.3.1), is an example of that. The uniformity of container interfaces also allows us to
specify algorithms independently of individual container types. However, each has strengths and
weaknesses. For example, subscripting and traversing a vector is cheap and easy. On the other
hand, vector elements are moved when we insert or remove elements; list has exactly the opposite
properties. Please note that a vector is usually more efficient than a list for short sequences of small
elements (even for inser t() and erase()). I recommend the standard-library vector as the default type
for sequences of elements: you need a reason to choose another.

4.5 Algorithms
A data structure, such as a list or a vector, is not very useful on its own. To use one, we need opera-
tions for basic access such as adding and removing elements (as is provided for list and vector).
Furthermore, we rarely just store objects in a container. We sort them, print them, extract subsets,
remove elements, search for objects, etc. Consequently, the standard library provides the most
common algorithms for containers in addition to providing the most common container types. For
example, the following sorts a vector and places a copy of each unique vector element on a list:

bool operator<(const Entry& x, const Entry& y) // less than
{

return x.name<y.name; // order Entrys by their names
}

void f(vector<Entry>& vec, list<Entry>& lst)
{

sor t(vec.begin(),vec.end()); // use < for order
unique_copy(vec.begin(),vec.end(),lst.begin()); // don’t copy adjacent equal elements

}

The standard algorithms are described in Chapter 32. They are expressed in terms of sequences of
elements. A sequence is represented by a pair of iterators specifying the first element and the one-
beyond-the-last element:
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elements:

begin() end()iterators:

In the example, sor t() sorts the sequence defined by the pair of iterators vec.begin() and vec.end() –
which just happens to be all the elements of a vector. For writing (output), you need only to specify
the first element to be written. If more than one element is written, the elements following that ini-
tial element will be overwritten. Thus, to avoid errors, lst must have at least as many elements as
there are unique values in vec.

If we wanted to place the unique elements in a new container, we could have written:

list<Entr y> f(vector<Entr y>& vec)
{

list<Entr y> res;
sor t(vec.begin(),vec.end());
unique_copy(vec.begin(),vec.end(),back_inser ter(res)); // append to res
return res;

}

A back_inser ter() adds elements at the end of a container, extending the container to make room for
them (§33.2.2). Thus, the standard containers plus back_inser ter()s eliminate the need to use error-
prone, explicit C-style memory management using realloc() (§31.5.1). The standard-library list has
a move constructor (§3.3.2, §17.5.2) that makes returning res by value efficient (even for lists of
thousands of elements).

If you find the pair-of-iterators style of code, such as sor t(vec.begin(),vec.end()), tedious, you can
define container versions of the algorithms and write sor t(vec) (§4.5.6).

4.5.1 Use of Iterators

When you first encounter a container, a few iterators referring to useful elements can be obtained;
begin() and end() are the best examples of this. In addition, many algorithms return iterators. For
example, the standard algorithm find looks for a value in a sequence and returns an iterator to the
element found:

bool has_c(const string& s, char c) // does s contain the character c?
{

auto p = find(s.begin(),s.end(),c);
if (p!=s.end())

return true;
else

return false;
}

Like many standard-library search algorithms, find returns end() to indicate ‘‘not found.’’ An equiv-
alent, shorter, definition of has_c() is:
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bool has_c(const string& s, char c) // does s contain the character c?
{

return find(s.begin(),s.end(),c)!=s.end();
}

A more interesting exercise would be to find the location of all occurrences of a character in a
string. We can return the set of occurrences as a vector of string iterators. Returning a vector is
efficient because of vector provides move semantics (§3.3.1). Assuming that we would like to
modify the locations found, we pass a non-const string:

vector<string::iterator> find_all(string& s, char c) // find all occurrences of c in s
{

vector<string::iterator> res;
for (auto p = s.begin(); p!=s.end(); ++p)

if (∗p==c)
res.push_back(p);

return res;
}

We iterate through the string using a conventional loop, moving the iterator p forward one element
at a time using ++ and looking at the elements using the dereference operator ∗. We could test
find_all() like this:

void test()
{

string m {"Mary had a little lamb"};
for (auto p : find_all(m,'a'))

if (∗p!='a')
cerr << "a bug!\n";

}

That call of find_all() could be graphically represented like this:

M a r y h a d a l i t t l e l a m bm:

find_all(m,’a’):

Iterators and standard algorithms work equivalently on every standard container for which their use
makes sense. Consequently, we could generalize find_all():

template<typename C, typename V>
vector<typename C::iterator> find_all(C& c, V v) // find all occurrences of v in c
{

vector<typename C::iterator> res;
for (auto p = c.begin(); p!=c.end(); ++p)

if (∗p==v)
res.push_back(p);

return res;
}
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The typename is needed to inform the compiler that C’s iterator is supposed to be a type and not a
value of some type, say, the integer 7. We can hide this implementation detail by introducing a type
alias (§3.4.5) for Iterator:

template<typename T>
using Iterator<T> = typename T::iterator;

template<typename C, typename V>
vector<Iterator<C>> find_all(C& c, V v) // find all occurrences of v in c
{

vector<Iterator<C>> res;
for (auto p = c.begin(); p!=c.end(); ++p)

if (∗p==v)
res.push_back(p);

return res;
}

We can now write:

void test()
{

string m {"Mary had a little lamb"};
for (auto p : find_all(m,'a')) // p is a str ing::iterator

if (∗p!='a')
cerr << "string bug!\n";

list<double> ld {1.1, 2.2, 3.3, 1.1};
for (auto p : find_all(ld,1.1))

if (∗p!=1.1)
cerr << "list bug!\n";

vector<string> vs { "red", "blue", "green", "green", "orange", "green" };
for (auto p : find_all(vs,"green"))

if (∗p!="green")
cerr << "vector bug!\n";

for (auto p : find_all(vs,"green"))
∗p = "ver t";

}

Iterators are used to separate algorithms and containers. An algorithm operates on its data through
iterators and knows nothing about the container in which the elements are stored. Conversely, a
container knows nothing about the algorithms operating on its elements; all it does is to supply iter-
ators upon request (e.g., begin() and end()). This model of separation between data storage and
algorithm delivers very general and flexible software.

4.5.2 Iterator Types

What are iterators really? Any particular iterator is an object of some type. There are, however,
many different iterator types, because an iterator needs to hold the information necessary for doing
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its job for a particular container type. These iterator types can be as different as the containers and
the specialized needs they serve. For example, a vector’s iterator could be an ordinary pointer,
because a pointer is quite a reasonable way of referring to an element of a vector:

P i e t H e i nvector:

piterator:

Alternatively, a vector iterator could be implemented as a pointer to the vector plus an index:

P i e t H e i nvector:

(start == p, position == 3)iterator:

Using such an iterator would allow range checking.
A list iterator must be something more complicated than a simple pointer to an element because

an element of a list in general does not know where the next element of that list is. Thus, a list iter-
ator might be a pointer to a link:

link link link link ...list:

piterator:

P i e telements:

What is common for all iterators is their semantics and the naming of their operations. For exam-
ple, applying ++ to any iterator yields an iterator that refers to the next element. Similarly, ∗ yields
the element to which the iterator refers. In fact, any object that obeys a few simple rules like these
is an iterator (§33.1.4). Furthermore, users rarely need to know the type of a specific iterator; each
container ‘‘knows’’ its iterator types and makes them available under the conventional names itera-

tor and const_iterator. For example, list<Entr y>::iterator is the general iterator type for list<Entr y>.
We rarely have to worry about the details of how that type is defined.

4.5.3 Stream Iterators

Iterators are a general and useful concept for dealing with sequences of elements in containers.
However, containers are not the only place where we find sequences of elements. For example, an
input stream produces a sequence of values, and we write a sequence of values to an output stream.
Consequently, the notion of iterators can be usefully applied to input and output.

To make an ostream_iterator, we need to specify which stream will be used and the type of
objects written to it. For example:



Section 4.5.3 Stream Iterators 107

ostream_iterator<string> oo {cout}; // wr ite str ings to cout

The effect of assigning to ∗oo is to write the assigned value to cout. For example:

int main()
{

∗oo = "Hello, "; // meaning cout<<"Hello, "
++oo;
∗oo = "world!\n"; // meaning cout<<"wor ld!\n"

}

This is yet another way of writing the canonical message to standard output. The ++oo is done to
mimic writing into an array through a pointer.

Similarly, an istream_iterator is something that allows us to treat an input stream as a read-only
container. Again, we must specify the stream to be used and the type of values expected:

istream_iterator<string> ii {cin};

Input iterators are used in pairs representing a sequence, so we must provide an istream_iterator to
indicate the end of input. This is the default istream_iterator:

istream_iterator<string> eos {};

Typically, istream_iterators and ostream_iterators are not used directly. Instead, they are provided as
arguments to algorithms. For example, we can write a simple program to read a file, sort the words
read, eliminate duplicates, and write the result to another file:

int main()
{

string from, to;
cin >> from >> to; // get source and target file names

ifstream is {from}; // input stream for file "from"
istream_iterator<string> ii {is}; // input iterator for stream
istream_iterator<string> eos {}; // input sentinel

ofstream os{to}; // output stream for file "to"
ostream_iterator<string> oo {os,"\n"}; // output iterator for stream

vector<string> b {ii,eos}; // b is a vector initialized from input [ii:eos)
sor t(b.begin(),b.end()); // sor t the buffer

unique_copy(b.begin(),b.end(),oo); // copy buffer to output, discard replicated values

return !is.eof() || !os; // retur n error state (§2.2.1, §38.3)
}

An ifstream is an istream that can be attached to a file, and an ofstream is an ostream that can be
attached to a file. The ostream_iterator’s second argument is used to delimit output values.

Actually, this program is longer than it needs to be. We read the strings into a vector, then we
sor t() them, and then we write them out, eliminating duplicates. A more elegant solution is not to
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store duplicates at all. This can be done by keeping the strings in a set, which does not keep dupli-
cates and keeps its elements in order (§31.4.3). That way, we could replace the two lines using a
vector with one using a set and replace unique_copy() with the simpler copy():

set<string> b {ii,eos}; // collect strings from input
copy(b.begin(),b.end(),oo); // copy buffer to output

We used the names ii, eos, and oo only once, so we could further reduce the size of the program:

int main()
{

string from, to;
cin >> from >> to; // get source and target file names

ifstream is {from}; // input stream for file "from"
ofstream os {to}; // output stream for file "to"

set<string> b {istream_iterator<string>{is},istream_iterator<string>{}}; // read input
copy(b.begin(),b.end(),ostream_iterator<string>{os,"\n"}); // copy to output

return !is.eof() || !os; // retur n error state (§2.2.1, §38.3)
}

It is a matter of taste and experience whether or not this last simplification improves readability.

4.5.4 Predicates

In the examples above, the algorithms have simply ‘‘built in’’ the action to be done for each ele-
ment of a sequence. However, we often want to make that action a parameter to the algorithm. For
example, the find algorithm (§32.4) provides a convenient way of looking for a specific value. A
more general variant looks for an element that fulfills a specified requirement, a predicate (§3.4.2).
For example, we might want to search a map for the first value larger than 42. A map allows us to
access its elements as a sequence of (key,value) pairs, so we can search a map<string,int>’s sequence
for a pair<const string,int> where the int is greater than 42:

void f(map<string,int>& m)
{

auto p = find_if(m.begin(),m.end(),Greater_than{42});
// ...

}

Here, Greater_than is a function object (§3.4.3) holding the value (42) to be compared against:

struct Greater_than {
int val;
Greater_than(int v) : val{v} { }
bool operator()(const pair<string,int>& r) { return r.second>val; }

};

Alternatively, we could use a lambda expression (§3.4.3):

int cxx = count_if(m.begin(), m.end(), [](const pair<string,int>& r) { return r.second>42; });
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4.5.5 Algorithm Overview

A general definition of an algorithm is ‘‘a finite set of rules which gives a sequence of operations
for solving a specific set of problems [and] has five important features: Finiteness ... Definiteness ...
Input ... Output ... Effectiveness’’ [Knuth,1968,§1.1]. In the context of the C++ standard library, an
algorithm is a function template operating on sequences of elements.

The standard library provides dozens of algorithms. The algorithms are defined in namespace
std and presented in the <algorithm> header. These standard-library algorithms all take sequences
as inputs (§4.5). A half-open sequence from b to e is referred to as [b:e). Here are a few I hav e
found particularly useful:

Selected Standard Algorithms

p=find(b,e ,x) p is the first p in [b:e) so that ∗p==x

p=find_if(b,e ,f) p is the first p in [b:e) so that f(∗p)==true

n=count(b,e ,x) n is the number of elements ∗q in [b:e) so that ∗q==x

n=count_if(b,e ,f) n is the number of elements ∗q in [b:e) so that f(∗q,x)

replace(b,e ,v,v2) Replace elements ∗q in [b:e) so that ∗q==v by v2

replace_if(b,e ,f,v2) Replace elements ∗q in [b:e) so that f(∗q) by v2

p=copy(b,e ,out) Copy [b:e) to [out:p)
p=copy_if(b,e ,out,f) Copy elements ∗q from [b:e) so that f(∗q) to [out:p)
p=unique_copy(b,e ,out) Copy [b:e) to [out:p); don’t copy adjacent duplicates
sor t(b,e) Sort elements of [b:e) using < as the sorting criterion
sor t(b,e,f) Sort elements of [b:e) using f as the sorting criterion
(p1,p2)=equal_rang e(b,e ,v) [p1:p2) is the subsequence of the sorted sequence [b:e)

with the value v; basically a binary search for v

p=merge(b,e ,b2,e2,out) Merge two sorted sequences [b:e) and [b2:e2) into [out:p)

These algorithms, and many more (see Chapter 32), can be applied to elements of containers,
strings, and built-in arrays.

4.5.6 Container Algorithms

A sequence is defined by a pair of iterators [begin:end). This is general and flexible, but most often,
we apply an algorithm to a sequence that is the contents of a container. For example:

sor t(v.begin(),v.end());

Why don’t we just say sor t(v)? We can easily provide that shorthand:

namespace Estd {
using namespace std;

template<class C>
void sort(C& c)
{

sor t(c.begin(),c.end());
}
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template<class C, class Pred>
void sort(C& c, Pred p)
{

sor t(c.begin(),c.end(),p);
}

// ...
}

I put the container versions of sor t() (and other algorithms) into their own namespace Estd

(‘‘extended std’’) to avoid interfering with other programmers’ uses of namespace std.

4.6 Advice
[1] Don’t reinvent the wheel; use libraries; §4.1.
[2] When you have a choice, prefer the standard library over other libraries; §4.1.
[3] Do not think that the standard library is ideal for everything; §4.1.
[4] Remember to #include the headers for the facilities you use; §4.1.2.
[5] Remember that standard-library facilities are defined in namespace std; §4.1.2.
[6] Prefer strings over C-style strings (a char∗; §2.2.5); §4.2, §4.3.2.
[7] iostreams are type sensitive, type-safe, and extensible; §4.3.
[8] Prefer vector<T>, map<K,T>, and unordered_map<K,T> over T[]; §4.4.
[9] Know your standard containers and their tradeoffs; §4.4.
[10] Use vector as your default container; §4.4.1.
[11] Prefer compact data structures; §4.4.1.1.
[12] If in doubt, use a range-checked vector (such as Vec); §4.4.1.2.
[13] Use push_back() or back_inser ter() to add elements to a container; §4.4.1, §4.5.
[14] Use push_back() on a vector rather than realloc() on an array; §4.5.
[15] Catch common exceptions in main(); §4.4.1.2.
[16] Know your standard algorithms and prefer them over handwritten loops; §4.5.5.
[17] If iterator use gets tedious, define container algorithms; §4.5.6.
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Arithmetic; Numeric Limits

• Advice

5.1 Introduction
From an end-user’s perspective, the ideal standard library would provide components directly sup-
porting essentially every need. For a giv en application domain, a huge commercial library can
come close to that ideal. However, that is not what the C++ standard library is trying to do. A
manageable, universally available, library cannot be everything to everybody. Instead, the C++
standard library aims to provide components that are useful to most people in most application
areas. That is, it aims to serve the intersection of all needs rather than their union. In addition, sup-
port for a few widely important application areas, such as mathematical computation and text
manipulation, have crept in.
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5.2 Resource Management
One of the key tasks of any nontrivial program is to manage resources. A resource is something
that must be acquired and later (explicitly or implicitly) released. Examples are memory, locks,
sockets, thread handles, and file handles. For a long-running program, failing to release a resource
in a timely manner (‘‘a leak’’) can cause serious performance degradation and possibly even a mis-
erable crash. Even for short programs, a leak can become an embarrassment, say by a resource
shortage increasing the run time by orders of magnitude.

The standard library components are designed not to leak resources. To do this, they rely on the
basic language support for resource management using constructor/destructor pairs to ensure that a
resource doesn’t outlive an object responsible for it. The use of a constructor/destructor pair in
Vector to manage the lifetime of its elements is an example (§3.2.1.2) and all standard-library con-
tainers are implemented in similar ways. Importantly, this approach interacts correctly with error
handling using exceptions. For example, the technique is used for the standard-library lock classes:

mutex m; // used to protect access to shared data
// ...
void f()
{

unique_lock<mutex> lck {m}; // acquire the mutex m
// ... manipulate shared data ...

}

A thread will not proceed until lck’s constructor has acquired its mutex, m (§5.3.4). The corre-
sponding destructor releases the resource. So, in this example, unique_lock’s destructor releases the
mutex when the thread of control leaves f() (through a return, by ‘‘falling off the end of the func-
tion,’’ or through an exception throw).

This is an application of the ‘‘Resource Acquisition Is Initialization’’ technique (RAII; §3.2.1.2,
§13.3). This technique is fundamental to the idiomatic handling of resources in C++. Containers
(such as vector and map), string, and iostream manage their resources (such as file handles and buf-
fers) similarly.

5.2.1 unique_ptr and shared_ptr

The examples so far take care of objects defined in a scope, releasing the resources they acquire at
the exit from the scope, but what about objects allocated on the free store? In <memor y>, the stan-
dard library provides two ‘‘smart pointers’’ to help manage objects on the free store:

[1] unique_ptr to represent unique ownership (§34.3.1)
[2] shared_ptr to represent shared ownership (§34.3.2)

The most basic use of these ‘‘smart pointers’’ is to prevent memory leaks caused by careless pro-
gramming. For example:

void f(int i, int j) // X* vs. unique_ptr<X>
{

X∗ p = new X; // allocate a new X
unique_ptr<X> sp {new X}; // allocate a new X and give its pointer to unique_ptr
// ...
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if (i<99) throw Z{}; // may throw an exception
if (j<77) return; // may retur n "ear ly"
p−>do_something(); // may throw an exception
sp−>do_something(); // may throw an exception
// ...
delete p; // destroy *p

}

Here, we ‘‘forgot’’ to delete p if i<99 or if j<77. On the other hand, unique_ptr ensures that its object
is properly destroyed whichever way we exit f() (by throwing an exception, by executing return, or
by ‘‘falling off the end’’). Ironically, we could have solved the problem simply by not using a
pointer and not using new:

void f(int i, int j) // use a local var iable
{

X x;
// ...

}

Unfortunately, overuse of new (and of pointers and references) seems to be an increasing problem.
However, when you really need the semantics of pointers, unique_ptr is a very lightweight

mechanism with no space or time overhead compared to correct use of a built-in pointer. Its further
uses include passing free-store allocated objects in and out of functions:

unique_ptr<X> make_X(int i)
// make an X and immediately give it to a unique_ptr

{
// ... check i, etc. ...
return unique_ptr<X>{new X{i}};

}

A unique_ptr is a handle to an individual object (or an array) in much the same way that a vector is
a handle to a sequence of objects. Both control the lifetime of other objects (using RAII) and both
rely on move semantics to make return simple and efficient.

The shared_ptr is similar to unique_ptr except that shared_ptrs are copied rather than moved.
The shared_ptrs for an object share ownership of an object and that object is destroyed when the
last of its shared_ptrs is destroyed. For example:

void f(shared_ptr<fstream>);
void g(shared_ptr<fstream>);

void user(const string& name, ios_base::openmode mode)
{

shared_ptr<fstream> fp {new fstream(name ,mode)};
if (!∗fp) throw No_file{}; // make sure the file was properly opened

f(fp);
g(fp);
// ...

}
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Now, the file opened by fp’s constructor will be closed by the last function to (explicitly or implic-
itly) destroy a copy of fp. Note that f() or g() may spawn a task holding a copy of fp or in some
other way store a copy that outlives user(). Thus, shared_ptr provides a form of garbage collection
that respects the destructor-based resource management of the memory-managed objects. This is
neither cost free nor exorbitantly expensive, but does make the lifetime of the shared object hard to
predict. Use shared_ptr only if you actually need shared ownership.

Given unique_ptr and shared_ptr, we can implement a complete ‘‘no naked new’’ policy
(§3.2.1.2) for many programs. However, these ‘‘smart pointers’’ are still conceptually pointers and
therefore only my second choice for resource management – after containers and other types that
manage their resources at a higher conceptual level. In particular, shared_ptrs do not in themselves
provide any rules for which of their owners can read and/or write the shared object. Data races
(§41.2.4) and other forms of confusion are not addressed simply by eliminating the resource man-
agement issues.

Where do we use ‘‘smart pointers’’ (such as unique_ptr) rather than resource handles with oper-
ations designed specifically for the resource (such as vector or thread)? Unsurprisingly, the answer
is ‘‘when we need pointer semantics.’’

• When we share an object, we need pointers (or references) to refer to the shared object, so a
shared_ptr becomes the obvious choice (unless there is an obvious single owner).

• When we refer to a polymorphic object, we need a pointer (or a reference) because we don’t
know the exact type of the object referred to or even its size), so a unique_ptr becomes the
obvious choice.

• A shared polymorphic object typically requires shared_ptrs.
We do not need to use a pointer to return a collection of objects from a function; a container that is
a resource handle will do that simply and efficiently (§3.3.2).

5.3 Concurrency
Concurrency – the execution of several tasks simultaneously – is widely used to improve through-
put (by using several processors for a single computation) or to improve responsiveness (by allow-
ing one part of a program to progress while another is waiting for a response). All modern pro-
gramming languages provide support for this. The support provided by the C++ standard library is
a portable and type-safe variant of what has been used in C++ for more than 20 years and is almost
universally supported by modern hardware. The standard-library support is primarily aimed at sup-
porting systems-level concurrency rather than directly providing sophisticated higher-level concur-
rency models; those can be supplied as libraries built using the standard-library facilities.

The standard library directly supports concurrent execution of multiple threads in a single
address space. To allow that, C++ provides a suitable memory model (§41.2) and a set of atomic
operations (§41.3). However, most users will see concurrency only in terms of the standard library
and libraries built on top of that. This section briefly gives examples of the main standard-library
concurrency support facilities: threads, mutexes, lock() operations, packaged_tasks, and futures.
These features are built directly upon what operating systems offer and do not incur performance
penalties compared with those.
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5.3.1 Tasks and threads

We call a computation that can potentially be executed concurrently with other computations a task.
A thread is the system-level representation of a task in a program. A task to be executed concur-
rently with other tasks is launched by constructing a std::thread (found in <thread>) with the task as
its argument. A task is a function or a function object:

void f(); // function

struct F { // function object
void operator()(); // F’s call operator (§3.4.3)

};

void user()
{

thread t1 {f}; // f() executes in separate thread
thread t2 {F()}; // F()() executes in separate thread

t1.join(); // wait for t1
t2.join(); // wait for t2

}

The join()s ensure that we don’t exit user() until the threads have completed. To ‘‘join’’ means to
‘‘wait for the thread to terminate.’’

Threads of a program share a single address space. In this, threads differ from processes, which
generally do not directly share data. Since threads share an address space, they can communicate
through shared objects (§5.3.4). Such communication is typically controlled by locks or other
mechanisms to prevent data races (uncontrolled concurrent access to a variable).

Programming concurrent tasks can be very tricky. Consider possible implementations of the
tasks f (a function) and F (a function object):

void f() { cout << "Hello "; }

struct F {
void operator()() { cout << "Parallel World!\n"; }

};

This is an example of a bad error: Here, f and F() each use the object cout without any form of syn-
chronization. The resulting output would be unpredictable and could vary between different execu-
tions of the program because the order of execution of the individual operations in the two tasks is
not defined. The program may produce ‘‘odd’’ output, such as

PaHerallllel o World!

When defining tasks of a concurrent program, our aim is to keep tasks completely separate except
where they communicate in simple and obvious ways. The simplest way of thinking of a concur-
rent task is as a function that happens to run concurrently with its caller. For that to work, we just
have to pass arguments, get a result back, and make sure that there is no use of shared data in
between (no data races).
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5.3.2 Passing Arguments

Typically, a task needs data to work upon. We can easily pass data (or pointers or references to the
data) as arguments. Consider:

void f(vector<double>& v); // function do something with v

struct F { // function object: do something with v
vector<double>& v;
F(vector<double>& vv) :v{vv} { }
void operator()(); // application operator ; §3.4.3

};

int main()
{

vector<double> some_vec {1,2,3,4,5,6,7,8,9};
vector<double> vec2 {10,11,12,13,14};

thread t1 {f,some_vec}; // f(some_vec) executes in a separate thread
thread t2 {F{vec2}}; // F(vec2)() executes in a separate thread

t1.join();
t2.join();

}

Obviously, F{vec2} saves a reference to the argument vector in F. F can now use that array and
hopefully no other task accesses vec2 while F is executing. Passing vec2 by value would eliminate
that risk.

The initialization with {f,some_vec} uses a thread variadic template constructor that can accept
an arbitrary sequence of arguments (§28.6). The compiler checks that the first argument can be
invoked giv en the following arguments and builds the necessary function object to pass to the
thread. Thus, if F::operator()() and f() perform the same algorithm, the handling of the two tasks are
roughly equivalent: in both cases, a function object is constructed for the thread to execute.

5.3.3 Returning Results

In the example in §5.3.2, I pass the arguments by non-const reference. I only do that if I expect the
task to modify the value of the data referred to (§7.7). That’s a somewhat sneaky, but not uncom-
mon, way of returning a result. A less obscure technique is to pass the input data by const refer-
ence and to pass the location of a place to deposit the result as a separate argument:

void f(const vector<double>& v, double∗ res); // take input from v; place result in *res

class F {
public:

F(const vector<double>& vv, double∗ p) :v{vv}, res{p} { }
void operator()(); // place result in *res
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private:
const vector<double>& v; // source of input
double∗ res; // target for output

};

int main()
{

vector<double> some_vec;
vector<double> vec2;
// ...

double res1;
double res2;

thread t1 {f,some_vec,&res1}; // f(some_vec,&res1) executes in a separate thread
thread t2 {F{vec2,&res2}}; // F{vec2,&res2}() executes in a separate thread

t1.join();
t2.join();

cout << res1 << ' ' << res2 << '\n';
}

I don’t consider returning results through arguments particularly elegant, so I return to this topic in
§5.3.5.1.

5.3.4 Sharing Data

Sometimes tasks need to share data. In that case, the access has to be synchronized so that at most
one task at a time has access. Experienced programmers will recognize this as a simplification
(e.g., there is no problem with many tasks simultaneously reading immutable data), but consider
how to ensure that at most one task at a time has access to a given set of objects.

The fundamental element of the solution is a mutex, a ‘‘mutual exclusion object.’’ A thread

acquires a mutex using a lock() operation:

mutex m; // controlling mutex
int sh; // shared data

void f()
{

unique_lock<mutex> lck {m}; // acquire mutex
sh += 7; // manipulate shared data

} // release mutex implicitly

The unique_lock’s constructor acquires the mutex (through a call m.lock()). If another thread has
already acquired the mutex, the thread waits (‘‘blocks’’) until the other thread completes its access.
Once a thread has completed its access to the shared data, the unique_lock releases the mutex (with
a call m.unlock()). The mutual exclusion and locking facilities are found in <mutex>.
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The correspondence between the shared data and a mutex is conventional: the programmer simply
has to know which mutex is supposed to correspond to which data. Obviously, this is error-prone,
and equally obviously we try to make the correspondence clear through various language means.
For example:

class Record {
public:

mutex rm;
// ...

};

It doesn’t take a genius to guess that for a Record called rec, rec.rm is a mutex that you are supposed
to acquire before accessing the other data of rec, though a comment or a better name might have
helped a reader.

It is not uncommon to need to simultaneously access several resources to perform some action.
This can lead to deadlock. For example, if thread1 acquires mutex1 and then tries to acquire mutex2

while thread2 acquires mutex2 and then tries to acquire mutex1, then neither task will ever proceed
further. The standard library offers help in the form of an operation for acquiring several locks
simultaneously:

void f()
{

// ...
unique_lock<mutex> lck1 {m1,defer_lock}; // defer_lock: don’t yet try to acquire the mutex
unique_lock<mutex> lck2 {m2,defer_lock};
unique_lock<mutex> lck3 {m3,defer_lock};
// ...
lock(lck1,lck2,lck3); // acquire all three locks
// ... manipulate shared data ...

} // implicitly release all mutexes

This lock() will only proceed after acquiring all its mutex arguments and will never block (‘‘go to
sleep’’) while holding a mutex. The destructors for the individual unique_locks ensure that the
mutexes are released when a thread leaves the scope.

Communicating through shared data is pretty low lev el. In particular, the programmer has to
devise ways of knowing what work has and has not been done by various tasks. In that regard, use
of shared data is inferior to the notion of call and return. On the other hand, some people are con-
vinced that sharing must be more efficient than copying arguments and returns. That can indeed be
so when large amounts of data are involved, but locking and unlocking are relatively expensive
operations. On the other hand, modern machines are very good at copying data, especially compact
data, such as vector elements. So don’t choose shared data for communication because of ‘‘effi-
ciency’’ without thought and preferably not without measurement.

5.3.4.1 Waiting for Events

Sometimes, a thread needs to wait for some kind of external event, such as another thread complet-
ing a task or a certain amount of time having passed. The simplest ‘‘event’’ is simply time passing.
Consider:
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using namespace std::chrono; // see §35.2

auto t0 = high_resolution_clock::now();
this_thread::sleep_for(milliseconds{20});
auto t1 = high_resolution_clock::now();
cout << duration_cast<nanoseconds>(t1−t0).count() << " nanoseconds passed\n";

Note that I didn’t even hav e to launch a thread; by default, this_thread refers to the one and only
thread (§42.2.6).

I used duration_cast to adjust the clock’s units to the nanoseconds I wanted. See §5.4.1 and
§35.2 before trying anything more complicated than this with time. The time facilities are found in
<chrono>.

The basic support for communicating using external events is provided by condition_variables
found in <condition_variable> (§42.3.4). A condition_variable is a mechanism allowing one thread to
wait for another. In particular, it allows a thread to wait for some condition (often called an event)
to occur as the result of work done by other threads.

Consider the classical example of two threads communicating by passing messages through a
queue. For simplicity, I declare the queue and the mechanism for avoiding race conditions on that
queue global to the producer and consumer:

class Message { // object to be communicated
// ...

};

queue<Message> mqueue; // the queue of messages
condition_variable mcond; // the var iable communicating events
mutex mmutex; // the locking mechanism

The types queue, condition_variable, and mutex are provided by the standard library.
The consumer() reads and processes Messages:

void consumer()
{

while(true) {
unique_lock<mutex> lck{mmutex}; // acquire mmutex
while (mcond.wait(lck)) /* do nothing */; // release lck and wait;

// re-acquire lck upon wakeup
auto m = mqueue.front(); // get the message
mqueue .pop();
lck.unlock(); // release lck
// ... process m ...

}
}

Here, I explicitly protect the operations on the queue and on the condition_variable with a
unique_lock on the mutex. Waiting on condition_variable releases its lock argument until the wait is
over (so that the queue is non-empty) and then reacquires it.

The corresponding producer looks like this:



120 A Tour of C++: Concurrency and Utilities Chapter 5

void producer()
{

while(true) {
Message m;
// ... fill the message ...
unique_lock<mutex> lck {mmutex}; // protect operations
mqueue .push(m);
mcond.notify_one(); // notify

} // release lock (at end of scope)
}

Using condition_variables supports many forms of elegant and efficient sharing, but can be rather
tricky (§42.3.4).

5.3.5 Communicating Tasks

The standard library provides a few facilities to allow programmers to operate at the conceptual
level of tasks (work to potentially be done concurrently) rather than directly at the lower level of
threads and locks:

[1] future and promise for returning a value from a task spawned on a separate thread
[2] packaged_task to help launch tasks and connect up the mechanisms for returning a result
[3] async() for launching of a task in a manner very similar to calling a function.

These facilities are found in <future>.

5.3.5.1 future and promise

The important point about future and promise is that they enable a transfer of a value between two
tasks without explicit use of a lock; ‘‘the system’’ implements the transfer efficiently. The basic
idea is simple: When a task wants to pass a value to another, it puts the value into a promise. Some-
how, the implementation makes that value appear in the corresponding future, from which it can be
read (typically by the launcher of the task). We can represent this graphically:

future promise

value

task1: task2:

get()
set_value()

set_exception()

If we have a future<X> called fx, we can get() a value of type X from it:

X v = fx.g et(); // if necessary, wait for the value to get computed

If the value isn’t there yet, our thread is blocked until it arrives. If the value couldn’t be computed,
get() might throw an exception (from the system or transmitted from the task from which we were
trying to get() the value).
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The main purpose of a promise is to provide simple ‘‘put’’ operations (called set_value() and
set_exception()) to match future’s get(). The names ‘‘future’’ and ‘‘promise’’ are historical; please
don’t blame me. They are yet another fertile source of puns.

If you have a promise and need to send a result of type X to a future, you can do one of two
things: pass a value or pass an exception. For example:

void f(promise<X>& px) // a task: place the result in px
{

// ...
tr y {

X res;
// ... compute a value for res ...
px.set_value(res);

}
catch (...) { // oops: couldn’t compute res

// pass the exception to the future’s thread:
px.set_exception(current_exception());

}
}

The current_exception() refers to the caught exception (§30.4.1.2).
To deal with an exception transmitted through a future, the caller of get() must be prepared to

catch it somewhere. For example:

void g(future<X>& fx) // a task: get the result from fx
{

// ...
tr y {

X v = fx.g et(); // if necessary, wait for the value to get computed
// ... use v ...

}
catch (...) { // oops: someone couldn’t compute v

// ... handle error ...
}

}

5.3.5.2 packaged_task

How do we get a future into the task that needs a result and the corresponding promise into the
thread that should produce that result? The packaged_task type is provided to simplify setting up
tasks connected with futures and promises to be run on threads. A packaged_task provides wrapper
code to put the return value or exception from the task into a promise (like the code shown in
§5.3.5.1). If you ask it by calling get_future, a packaged_task will give you the future corresponding
to its promise. For example, we can set up two tasks to each add half of the elements of a
vector<double> using the standard-library accumulate() (§3.4.2, §40.6):
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double accum(double∗ beg, double ∗ end, double init)
// compute the sum of [beg:end) starting with the initial value init

{
return accumulate(beg,end,init);

}

double comp2(vector<double>& v)
{

using Task_type = double(double∗,double∗,double); // type of task

packaged_task<Task_type> pt0 {accum}; // package the task (i.e., accum)
packaged_task<Task_type> pt1 {accum};

future<double> f0 {pt0.get_future()}; // get hold of pt0’s future
future<double> f1 {pt1.get_future()}; // get hold of pt1’s future

double∗ first = &v[0];
thread t1 {move(pt0),first,first+v.siz e()/2,0}; // star t a thread for pt0
thread t2 {move(pt1),first+v.siz e()/2,first+v.siz e(),0}; // star t a thread for pt1

// ...

return f0.get()+f1.g et(); // get the results
}

The packaged_task template takes the type of the task as its template argument (here Task_type, an
alias for double(double∗,double∗,double)) and the task as its constructor argument (here, accum).
The move() operations are needed because a packaged_task cannot be copied.

Please note the absence of explicit mention of locks in this code: we are able to concentrate on
tasks to be done, rather than on the mechanisms used to manage their communication. The two
tasks will be run on separate threads and thus potentially in parallel.

5.3.5.3 async()

The line of thinking I have pursued in this chapter is the one I believe to be the simplest yet still
among the most powerful: Treat a task as a function that may happen to run concurrently with other
tasks. It is far from the only model supported by the C++ standard library, but it serves well for a
wide range of needs. More subtle and tricky models, e.g., styles of programming relying on shared
memory, can be used as needed.

To launch tasks to potentially run asynchronously, we can use async():

double comp4(vector<double>& v)
// spawn many tasks if v is large enough

{
if (v.siz e()<10000) return accum(v.begin(),v.end(),0.0);

auto v0 = &v[0];
auto sz = v.siz e();
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auto f0 = async(accum,v0,v0+sz/4,0.0); // first quarter
auto f1 = async(accum,v0+sz/4,v0+sz/2,0.0); // second quarter
auto f2 = async(accum,v0+sz/2,v0+sz∗3/4,0.0); // third quarter
auto f3 = async(accum,v0+sz∗3/4,v0+sz,0.0); // four th quar ter

return f0.get()+f1.g et()+f2.g et()+f3.g et(); // collect and combine the results
}

Basically, async() separates the ‘‘call part’’ of a function call from the ‘‘get the result part,’’ and sep-
arates both from the actual execution of the task. Using async(), you don’t hav e to think about
threads and locks. Instead, you think just in terms of tasks that potentially compute their results
asynchronously. There is an obvious limitation: Don’t even think of using async() for tasks that
share resources needing locking – with async() you don’t even know how many threads will be used
because that’s up to async() to decide based on what it knows about the system resources available
at the time of a call. For example, async() may check whether any idle cores (processors) are avail-
able before deciding how many threads to use.

Please note that async() is not just a mechanism specialized for parallel computation for
increased performance. For example, it can also be used to spawn a task for getting information
from a user, leaving the ‘‘main program’’ active with something else (§42.4.6).

5.4 Small Utility Components
Not all standard-library components come as part of obviously labeled facilities, such as ‘‘contain-
ers’’ or ‘‘I/O.’’ This section gives a few examples of small, widely useful components:

• clock and duration for measuring time.
• Type functions, such as iterator_traits and is_arithmetic, for gaining information about types.
• pair and tuple for representing small potentially heterogeneous sets of values.

The point here is that a function or a type need not be complicated or closely tied to a mass of other
functions and types to be useful. Such library components mostly act as building blocks for more
powerful library facilities, including other components of the standard library.

5.4.1 Time

The standard library provides facilities for dealing with time. For example, here is the basic way of
timing something:

using namespace std::chrono; // see §35.2

auto t0 = high_resolution_clock::now();
do_work();
auto t1 = high_resolution_clock::now();
cout << duration_cast<milliseconds>(t1−t0).count() << "msec\n";

The clock returns a time_point (a point in time). Subtracting two time_points giv es a duration (a
period of time). Various clocks give their results in various units of time (the clock I used measures
nanoseconds), so it is usually a good idea to convert a duration into a known unit. That’s what dura-

tion_cast does.



124 A Tour of C++: Concurrency and Utilities Chapter 5

The standard-library facilities for dealing with time are found in the subnamespace std::chrono in
<chrono> (§35.2).

Don’t make statements about ‘‘efficiency’’ of code without first doing time measurements.
Guesses about performance are most unreliable.

5.4.2 Type Functions

A type function is a function that is evaluated at compile-time given a type as its argument or
returning a type. The standard library provides a variety of type functions to help library imple-
menters and programmers in general to write code that take advantage of aspects of the language,
the standard library, and code in general.

For numerical types, numeric_limits from <limits> presents a variety of useful information
(§5.6.5). For example:

constexpr float min = numeric_limits<float>::min(); // smallest positive float (§40.2)

Similarly, object sizes can be found by the built-in siz eof operator (§2.2.2). For example:

constexpr int szi = sizeof(int); // the number of bytes in an int

Such type functions are part of C++’s mechanisms for compile-time computation that allow tighter
type checking and better performance than would otherwise have been possible. Use of such fea-
tures is often called metaprogramming or (when templates are involved) template metaprogram-
ming (Chapter 28). Here, I just present two facilities provided by the standard library: iterator_traits

(§5.4.2.1) and type predicates (§5.4.2.2).

5.4.2.1 iterator_traits

The standard-library sor t() takes a pair of iterators supposed to define a sequence (§4.5). Further-
more, those iterators must offer random access to that sequence, that is, they must be random-
access iterators. Some containers, such as forward_list, do not offer that. In particular, a for-

ward_list is a singly-linked list so subscripting would be expensive and there is no reasonable way
to refer back to a previous element. However, like most containers, forward_list offers forward iter-
ators that can be used to traverse the sequence by algorithms and for-statements (§33.1.1).

The standard library provides a mechanism, iterator_traits that allows us to check which kind of
iterator is supported. Given that, we can improve the range sor t() from §4.5.6 to accept either a
vector or a forward_list. For example:

void test(vector<string>& v, forward_list<int>& lst)
{

sor t(v); // sor t the vector
sor t(lst); // sor t the singly-linked list

}

The techniques needed to make that work are generally useful.
First, I write two helper functions that take an extra argument indicating whether they are to be

used for random-access iterators or forward iterators. The version taking random-access iterator
arguments is trivial:
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template<typename Ran> // for random-access iterators
void sort_helper(Ran beg, Ran end, random_access_iterator_tag) // we can subscript into [beg:end)
{

sor t(beg,end); // just sort it

}

The version for forward iterators is almost as simple; just copy the list into a vector, sort, and copy
back again:

template<typename For> // for forward iterators
void sort_helper(For beg, For end, forward_iterator_tag) // we can traverse [beg:end)
{

vector<decltype(∗beg)> v {beg,end}; // initialize a vector from [beg:end)
sor t(v.begin(),v.end());
copy(v.begin(),v.end(),beg); // copy the elements back

}

The decltype() is a built-in type function that returns the declared type of its argument (§6.3.6.3).
Thus, v is a vector<X> where X is the element type of the input sequence.

The real ‘‘type magic’’ is in the selection of helper functions:

template<typname C>
void sort(C& c)
{

using Iter = Iterator_type<C>;
sor t_helper(c.begin(),c.end(),Iterator_category<Iter>{});

}

Here, I use two type functions: Iterator_type<C> returns the iterator type of C (that is, C::iterator) and
then Iterator_categor y<Iter>{} constructs a ‘‘tag’’ value indicating the kind of iterator provided:

• std::random_access_iterator_tag if C’s iterator supports random access.
• std::forward_iterator_tag if C’s iterator supports forward iteration.

Given that, we can select between the two sorting algorithms at compile time. This technique,
called tag dispatch is one of several used in the standard library and elsewhere to improve flexibil-
ity and performance.

The standard-library support for techniques for using iterators, such as tag dispatch, comes in
the form of a simple class template iterator_traits from <iterator> (§33.1.3). This allows simple defi-
nitions of the type functions used in sor t():

template<typename C>
using Iterator_type = typename C::iterator; // C’s iterator type

template<typename Iter>
using Iterator_category = typename std::iterator_traits<Iter>::iterator_category; // Iter’s categor y

If you don’t want to know what kind of ‘‘compile-time type magic’’ is used to provide the standard-
library features, you are free to ignore facilities such as iterator_traits. But then you can’t use the
techniques they support to improve your own code.
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5.4.2.2 Type Predicates

A standard-library type predicate is a simple type function that answers a fundamental question
about types. For example:

bool b1 = Is_arithmetic<int>(); // yes, int is an arithmetic type
bool b2 = Is_arithmetic<string>(); // no, std::str ing is not an arithmetic type

These predicates are found in <type_traits> and described in §35.4.1. Other examples are is_class,
is_pod, is_literal_type, has_vir tual_destructor, and is_base_of. They are most useful when we write
templates. For example:

template<typename Scalar>
class complex {

Scalar re, im;
public:

static_asser t(Is_arithmetic<Scalar>(), "Sorr y, I only suppor t complex of arithmetic types");
// ...

};

To improve readability compared to using the standard library directly, I defined a type function:

template<typename T>
constexpr bool Is_arithmetic()
{

return std::is_arithmetic<T>::value ;
}

Older programs use ::value directly instead of (), but I consider that quite ugly and it exposes imple-
mentation details.

5.4.3 pair and tuple

Often, we need some data that is just data; that is, a collection of values, rather than an object of a
class with a well-defined semantics and an invariant for its value (§2.4.3.2, §13.4). In such cases,
we could define a simple struct with an appropriate set of appropriately named members. Alterna-
tively, we could let the standard library write the definition for us. For example, the standard-
library algorithm equal_rang e (§32.6.1) returns a pair of iterators specifying a sub-sequence meeting
a predicate:

template<typename Forward_iterator, typename T, typename Compare>
pair<Forward_iterator,Forward_iterator>
equal_rang e(Forward_iterator first, Forward_iterator last, const T& val, Compare cmp);

Given a sorted sequence [first:last), equal_rang e() will return the pair representing the subsequence
that matches the predicate cmp. We can use that to search in a sorted sequence of Records:

auto rec_eq = [](const Record& r1, const Record& r2) { return r1.name<r2.name;};// compare names

void f(const vector<Record>& v) // assume that v is sorted on its "name" field
{

auto er = equal_range(v.begin(),v.end(),Record{"Reg"},rec_eq);
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for (auto p = er.first; p!=er.second; ++p) // pr int all equal records
cout << ∗p; // assume that << is defined for Record

}

The first member of a pair is called first and the second member is called second. This naming is
not particularly creative and may look a bit odd at first, but such consistent naming is a boon when
we want to write generic code.

The standard-library pair (from <utility>) is quite frequently used in the standard library and
elsewhere. A pair provides operators, such as =, ==, and <, if its elements do. The make_pair() func-
tion makes it easy to create a pair without explicitly mentioning its type (§34.2.4.1). For example:

void f(vector<string>& v)
{

auto pp = make_pair(v.begin(),2); // pp is a pair<vector<str ing>::iterator,int>
// ...

}

If you need more than two elements (or less), you can use tuple (from <utility>; §34.2.4.2). A tuple

is a heterogeneous sequence of elements; for example:

tuple<string,int,double> t2("Sild",123, 3.14); // the type is explicitly specified

auto t = make_tuple(string("Herring"),10, 1.23); // the type is deduced
// t is a tuple<str ing,int,double>

string s = get<0>(t); // get first element of tuple
int x = get<1>(t);
double d = get<2>(t);

The elements of a tuple are numbered (starting with zero), rather than named the way elements of
pairs are (first and second). To get compile-time selection of elements, I must unfortunately use the
ugly get<1>(t), rather than get(t,1) or t[1] (§28.5.2).

Like pairs, tuples can be assigned and compared if their elements can be.
A pair is common in interfaces because often we want to return more than one value, such as a

result and an indicator of the quality of that result. It is less common to need three or more parts to
a result, so tuples are more often found in the implementations of generic algorithms.

5.5 Regular Expressions
Regular expressions are a powerful tool for text processing. They provide a way to simply and
tersely describe patterns in text (e.g., a U.S. ZIP code such as TX 77845, or an ISO-style date, such
as 2009−06−07) and to efficiently find such patterns in text. In <reg ex>, the standard library provides
support for regular expressions in the form of the std::reg ex class and its supporting functions. To
give a taste of the style of the reg ex library, let us define and print a pattern:

reg ex pat (R"(\w{2}\s∗\d{5}(−\d{4})?)"); // ZIP code pattern: XXddddd-dddd and var iants
cout << "pattern: " << pat << '\n';
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People who have used regular expressions in just about any language will find \w{2}\s∗\d{5}(−\d{4})?

familiar. It specifies a pattern starting with two letters \w{2} optionally followed by some space \s∗
followed by five digits \d{5} and optionally followed by a dash and four digits −\d{4}. If you are not
familiar with regular expressions, this may be a good time to learn about them ([Stroustrup,2009],
[Maddock,2009], [Friedl,1997]). Regular expressions are summarized in §37.1.1.

To express the pattern, I use a raw string literal (§7.3.2.1) starting with R"( and terminated by )".
This allows backslashes and quotes to be used directly in the string.

The simplest way of using a pattern is to search for it in a stream:

int lineno = 0;
for (string line; getline(cin,line);) { // read into line buffer

++lineno;
smatch matches; // matched strings go here
if (regex_search(line ,matches,pat)) // search for pat in line

cout << lineno << ": " << matches[0] << '\n';
}

The reg ex_search(line ,matches,pat) searches the line for anything that matches the regular expression
stored in pat and if it finds any matches, it stores them in matches. If no match was found,
reg ex_search(line ,matches,pat) returns false. The matches variable is of type smatch. The ‘‘s’’
stands for ‘‘sub’’ and an smatch is a vector of sub-matches. The first element, here matches[0], is
the complete match.

For a more complete description see Chapter 37.

5.6 Math
C++ wasn’t designed primarily with numerical computation in mind. However, C++ is heavily
used for numerical computation and the standard library reflects that.

5.6.1 Mathematical Functions and Algorithms

In <cmath>, we find the ‘‘usual mathematical functions,’’ such as sqr t(), log(), and sin() for argu-
ments of type float, double, and long double (§40.3). Complex number versions of these functions
are found in <complex> (§40.4).

In <numeric>, we find a small set of generalized numerical algorithms, such as accumulate(). For
example:

void f()
{

list<double> lst {1, 2, 3, 4, 5, 9999.99999};
auto s = accumulate(lst.begin(),lst.end(),0.0); // calculate the sum
cout << s << '\n'; // pr int 10014.9999

}

These algorithms work for every standard-library sequence and can have operations supplied as
arguments (§40.6).
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5.6.2 Complex Numbers

The standard library supports a family of complex number types along the lines of the complex

class described in §2.3. To support complex numbers where the scalars are single-precision float-
ing-point numbers (floats), double-precision floating-point numbers (doubles), etc., the standard
library complex is a template:

template<typename Scalar>
class complex {
public:

complex(const Scalar& re ={}, const Scalar& im ={});
// ...

};

The usual arithmetic operations and the most common mathematical functions are supported for
complex numbers. For example:

void f(complex<float> fl, complex<double> db)
{

complex<long double> ld {fl+sqrt(db)};
db += fl∗3;
fl = pow(1/fl,2);
// ...

}

The sqr t() and pow() (exponentiation) functions are among the usual mathematical functions defined
in <complex>. For more details, see §40.4.

5.6.3 Random Numbers

Random numbers are useful in many contexts, such as testing, games, simulation, and security.
The diversity of application areas is reflected in the wide selection of random number generators
provided by the standard library in <random>. A random number generator consists of two parts:

[1] an engine that produces a sequence of random or pseudo-random values.
[2] a distribution that maps those values into a mathematical distribution in a range.

Examples of distributions are uniform_int_distribution (where all integers produced are equally
likely), normal_distribution (‘‘the bell curve’’), and exponential_distribution (exponential growth);
each for some specified range. For example:

using my_engine = default_random_engine; // type of engine
using my_distribution = uniform_int_distribution<>; // type of distribution

my_engine re {}; // the default engine
my_distribution one_to_six {1,6}; // distr ibution that maps to the ints 1..6
auto die = bind(one_to_six,re); // make a generator

int x = die(); // roll the die: x becomes a value in [1:6]

The standard-library function bind() makes a function object that will invoke its first argument
(here, one_to_six) giv en its second argument (here, re) as its argument (§33.5.1). Thus a call die() is
equivalent to a call one_to_six(re).
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Thanks to its uncompromising attention to generality and performance one expert has deemed the
standard-library random number component ‘‘what every random number library wants to be when
it grows up.’’ Howev er, it can hardly be deemed ‘‘novice friendly.’’ The using statements makes
what is being done a bit more obvious. Instead, I could just have written:

auto die = bind(uniform_int_distribution<>{1,6}, default_random_engine{});

Which version is the more readable depends entirely on the context and the reader.
For novices (of any background) the fully general interface to the random number library can be

a serious obstacle. A simple uniform random number generator is often sufficient to get started.
For example:

Rand_int rnd {1,10}; // make a random number generator for [1:10]
int x = rnd(); // x is a number in [1:10]

So, how could we get that? We hav e to get something like die() inside a class Rand_int:

class Rand_int {
public:

Rand_int(int low, int high) :dist{low,high} { }
int operator()() { return dist(re); } // draw an int

private:
default_random_engine re;
uniform_int_distribution<> dist;

};

That definition is still ‘‘expert level,’’ but the use of Rand_int() is manageable in the first week of a
C++ course for novices. For example:

int main()
{

Rand_int rnd {0,4}; // make a unifor m random number generator

vector<int> histogram(5); // make a vector of size 5
for (int i=0; i!=200; ++i)

++histogram[rnd()]; // fill histogram with the frequencies of numbers [0:4]

for (int i = 0; i!=mn.size(); ++i) { // wr ite out a bar graph
cout << i << '\t';
for (int j=0; j!=mn[i]; ++j) cout << '∗';
cout << endl;

}
}

The output is a (reassuringly boring) uniform distribution (with reasonable statistical variation):

0 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
1 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
3 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
4 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
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There is no standard graphics library for C++, so I use ‘‘ASCII graphics.’’ Obviously, there are lots
of open source and commercial graphics and GUI libraries for C++, but in this book I’ll restrict
myself to ISO standard facilities.

For more information about random numbers, see §40.7.

5.6.4 Vector Arithmetic

The vector described in §4.4.1 was designed to be a general mechanism for holding values, to be
flexible, and to fit into the architecture of containers, iterators, and algorithms. However, it does not
support mathematical vector operations. Adding such operations to vector would be easy, but its
generality and flexibility precludes optimizations that are often considered essential for serious
numerical work. Consequently, the standard library provides (in <valarray>) a vector-like template,
called valarray, that is less general and more amenable to optimization for numerical computation:

template<typename T>
class valarray {

// ...
};

The usual arithmetic operations and the most common mathematical functions are supported for
valarrays. For example:

void f(valarray<double>& a1, valarray<double>& a2)
{

valarray<double> a = a1∗3.14+a2/a1; // numer ic array operators *, +, /, and =
a2 += a1∗3.14;
a = abs(a);
double d = a2[7];
// ...

}

For more details, see §40.5. In particular, valarray offers stride access to help implement multidi-
mensional computations.

5.6.5 Numeric Limits

In <limits>, the standard library provides classes that describe the properties of built-in types – such
as the maximum exponent of a float or the number of bytes in an int; see §40.2. For example, we
can assert that a char is signed:

static_asser t(numeric_limits<char>::is_signed,"unsigned characters!");
static_asser t(100000<numeric_limits<int>::max(),"small ints!");

Note that the second assert (only) works because numeric_limits<int>::max() is a constexpr function
(§2.2.3, §10.4).
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5.7 Advice
[1] Use resource handles to manage resources (RAII); §5.2.
[2] Use unique_ptr to refer to objects of polymorphic type; §5.2.1.
[3] Use shared_ptr to refer to shared objects; §5.2.1.
[4] Use type-safe mechanisms for concurrency; §5.3.
[5] Minimize the use of shared data; §5.3.4.
[6] Don’t choose shared data for communication because of ‘‘efficiency’’ without thought and

preferably not without measurement; §5.3.4.
[7] Think in terms of concurrent tasks, rather than threads; §5.3.5.
[8] A library doesn’t hav e to be large or complicated to be useful; §5.4.
[9] Time your programs before making claims about efficiency; §5.4.1.
[10] You can write code to explicitly depend on properties of types; §5.4.2.
[11] Use regular expressions for simple pattern matching; §5.5.
[12] Don’t try to do serious numeric computation using only the language; use libraries; §5.6.
[13] Properties of numeric types are accessible through numeric_limits; §5.6.5.
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