

The SEI Series in Software Engineering

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations
have been printed with initial capital letters or in all capitals.

CMM, CMMI, Capability Maturity Model, Capability Maturity Modeling, Carnegie Mellon, CERT, and CERT Coordi-
nation Center are registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

ATAM; Architecture Tradeoff Analysis Method; CMM Integration; COTS Usage-Risk Evaluation; CURE; EPIC;
Evolutionary Process for Integrating COTS Based Systems; Framework for Software Product Line Practice; IDEAL;
Interim Profile; OAR; OCTAVE; Operationally Critical Threat, Asset, and Vulnerability Evaluation; Options Analysis
for Reengineering; Personal Software Process; PLTP; Product Line Technical Probe; PSP; SCAMPI; SCAMPI Lead
Appraiser; SCAMPI Lead Assessor; SCE; SEI; SEPG; Team Software Process; and TSP are service marks of Carnegie
Mellon University.

Special permission to use material from the CERT Secure Coding Standards Website, © 2007 Carnegie Mellon Univer-
sity, in this publication is granted by the Software Engineering Institute.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty
of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequen-
tial damages in connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales,
which may include electronic versions and/or custom covers and content particular to your business, training goals,
marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the U.S., please contact:
International Sales
international@pearsoned.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Seacord, Robert C.
The CERT C secure coding standard / Robert C. Seacord.

p. cm.
Includes bibliographical references and index.
ISBN 0-321-56321-2 (pbk. : alk. paper) 1. C (Computer program language) 2. Computer security. I. Title.

 QA76.73.C15S4155 2008
 005.8—dc22 2008030261

Copyright © 2009 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission
must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmis-
sion in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information
regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN 13: 978-0-321-56321-7
ISBN 10: 0-321-56321-2
Text printed in the United States on recycled paper at Courier in Stoughton, Massachusetts.
First printing, October 2008.

Carnegie Mellon
Software Engineering Institute

xvii

Preface

An essential element of secure coding in the C programming language is a well-documented
and enforceable coding standard. Coding standards encourage programmers to follow a uni-
form set of guidelines determined by the requirements of the project and organization rather
than by the programmer’s familiarity or preference. Once established, these standards can be
used as a metric to evaluate source code (using manual or automated processes).

The CERT® C Secure Coding Standard provides guidelines for secure coding in the C
programming language. The goal of these guidelines is to eliminate insecure coding prac-
tices and undefined behaviors that can lead to exploitable vulnerabilities. Developing
code in compliance with this coding standard will result in higher quality systems that are
robust and more resistant to attack.

This standard is supported by training available from the Software Engineering Insti-
tute (SEI) and other licensed partners and is a basis for the Global Information Assurance
Certification (GIAC) Secure Software Programmer–C (GSSP-C) exam and certification.

■ The Demand for Secure Software

The Morris worm incident, which brought 10 percent of Internet systems to a halt in
November 1988, resulted in a new and acute awareness of the need for secure software
systems. Twenty years later, many security analysts, software developers, software users,
and policymakers are asking the question, Why isn’t software more secure?

The first problem is that the term software security, as it is used today, is meaningless.
I have attempted to define this term, as have others, but there is no generally accepted def-
inition. Why does this matter?

xviii Preface

A variety of reasons are given for why software is not more secure: for example, the
tools are inadequate, programmers lack sufficient training, and schedules are too short.
But these are all solvable problems. The root cause of the issue lies elsewhere.

The reason software systems are not more secure is that there is no demand for secure
software. In simple terms, if one vendor offers a product that has more features and better
performance and is available today and another vendor offers a secure product that has
fewer features and lesser performance and will be available in 6 months, there is really no
question as to which product customers will buy, and vendors know this.

So why don’t customers buy secure products? Again, this is because the word secure is
meaningless in this context. Why would a customer pass up tangible benefits to buy a
product that has an ill-defined and intangible property?

The problem is addressed by this coding standard. While developing code in compli-
ance with this coding standard does not guarantee the security of a software system, it
does tell you a great deal about the quality and security of the code. It tells you that the
software was developed to a set of industry standard rules and recommendations that
were developed by the leading experts in the field. It tells you that a tremendous amount
of attention and effort went into producing code that is free from the common coding
errors that have resulted in numerous vulnerabilities that have been reported to and pub-
lished by the CERT Coordination Center (CERT/CC) over the past two decades. It tells
you that the software developers who produced the code have done so with a real knowl-
edge of the types of vulnerabilities that can exist and the exploits that can be used against
them, and consequently have developed the software with a real security mindset in place.

So, the small problem we have set out to address in this book is to change the market
dynamic for developing and purchasing software systems. By producing an actionable and
measurable definition of software security for C language programs—compliance with the
rules and recommendations in this standard—we have defined a mechanism by which
customers can demand secure software systems and vendors can comply. Furthermore,
the concept of a secure system now has value because the word secure has meaning.

■ Community Development Process

The CERT® C Secure Coding Standard was developed over a period of two and a half years
as a community effort involving 226 contributors and reviewers.

The following development process was followed:

1. Rules and recommendations for a coding standard were solicited from the communi-
ties involved in the development and application of the C programming language,
including the formal standard bodies responsible for the C language standard and
user groups.

Preface xix

2. These rules and recommendations were edited by members of the CERT technical
staff and industry experts for content and style on the CERT Secure Coding Standards
wiki at www.securecoding.cert.org.

3. The user community reviewed and commented on the publicly posted content using
threaded discussions and other communication tools. Drafts of this standard were
reviewed at the London and Kona meetings by ISO/IEC WG14 and subjected to the
scrutiny of the public, including members of the Association of C and C++ Users
(ACCU) and the comp.lang.c newsgroup.

The Wiki versus This Book
Developing a secure coding standard on a wiki has many advantages. However, one disad-
vantage is that the content is constantly evolving. This is ideal if you want the latest infor-
mation and are willing to entertain the possibility that a recent change has not yet been
fully vetted. However, many software development organizations require a final document
before they can commit to complying with a (fixed) set of rules and recommendations.
This book serves that purpose as Version 1.0 of The CERT® C Secure Coding Standard.

Starting with the production of this book in June 2008, Version 1.0 and the wiki ver-
sions of the Secure Coding Standard began to diverge. Because both the C programming
language and our knowledge of how to use it securely are still evolving, CERT will con-
tinue to evolve The CERT® C Secure Coding Standard on the Secure Coding wiki. These
changes may then be incorporated into future, officially released versions of this standard.

Purpose
This book provides developers with guidelines for secure coding in the C programming lan-
guage. These guidelines serve a variety of purposes. First, they enumerate common errors in
C language programming that can lead to software defects, security flaws, and software vul-
nerabilities. These are all errors for which a conforming compiler is not required by the
standard to issue a fatal diagnostic. In other words, the compiler will generate an executable,
frequently without issuing any warnings, which can be shipped and deployed, and the
resulting program may still contain flaws that make it vulnerable to attack.

Second, this coding standard provides recommendations for how to produce secure
code. Failure to comply with these recommendations does not necessarily mean that the
software is insecure, but if followed, these recommendations can be powerful tools in
eliminating vulnerabilities from software.

Third, this coding standard identifies nonportable coding practices. Portability is not
a strict requirement of security, but nonportable assumptions in code often result in vul-
nerabilities when code is ported to platforms for which these assumptions are no longer
valid.

www.securecoding.cert.org

xx Preface

Rules
Guidelines are classified as either rules or recommendations. Guidelines are defined to be
rules when all of the following conditions are met:

1. Violation of the coding practice is likely to result in a security flaw that may result in
an exploitable vulnerability.

2. There is a denumerable set of conditions for which violating the coding practice is
necessary to ensure correct behavior.

3. Conformance to the coding practice can be determined through automated analysis,
formal methods, or manual inspection techniques.

Implementation of the secure coding rules defined in this standard are necessary (but not
sufficient) to ensure the security of software systems developed in the C programming lan-
guage. Figure P–1 shows how the 89 rules in this secure coding standard are categorized.

Figure P–1. CERT C Secure Coding rules

Preprocessor (PRE)

Declarations and Initialization (DCL)

Expressions (EXP)

Integers (INT)

Floating Point (FLP)

Arrays (ARR)

Characters and Strings (ST)

Memory Management (MEM)

Input Output (FIO)

Environment (ENV)

Signals (SIG)

Error Handling (ERR)

Miscellaneous (MSC)

POSIX (POS)

0 2 4 6 8 10 12 14 16

2

7

9

6

5

9

8

6

15

3

5

3

2

8

Preface xxi

Recommendations
Guidelines are defined to be recommendations when all of the following conditions are met:

1. Application of the coding practice is likely to improve system security.

2. One or more of the requirements necessary for a coding practice to be considered a
rule cannot be met.

The set of recommendations that a particular development effort adopts depends on the
security requirements of the final software product. Projects with high-security require-
ments can dedicate more resources to security and consequently are likely to adopt a larger
set of recommendations.

Figure P–2 shows how the 132 recommendations in this secure coding standard are
categorized.

Figure P–2. CERT C Secure Coding recommendations

Preprocessor (PRE)

Declarations and Initialization (DCL)

Expressions (EXP)

Integers (INT)

Floating Point (FLP)

Arrays (ARR)

Characters and Strings (ST)

Memory Management (MEM)

Input Output (FIO)

Environment (ENV)

Signals (SIG)

Error Handling (ERR)

Miscellaneous (MSC)

POSIX (POS)

0 2 4 6 8 10 12 14 16 18

11

16

13

16

4

3

9

11

17

5

3

7

16

3

xxii Preface

To ensure that the source code conforms to this secure coding standard, it is necessary
to have measures in place that check for rules violations. The most effective means of achiev-
ing this is to use one or more static analysis tools. Where a rule cannot be checked by a tool,
a manual review is required.

Both freely available and commercial source code analysis tools are available to auto-
matically detect violations of CERT C Secure Coding Standard rules and recommendations,
including Compass/ROSE, which has been developed by Lawrence Livermore National Lab-
oratory and extended by CERT (www.rosecompiler.org).

■ Scope

The CERT® C Secure Coding Standard was developed specifically for versions of the C pro-
gramming language defined in these publications:

■ ISO/IEC 9899:1999, Programming Languages—C, Second Edition [ISO/IEC
9899:1999]

■ Technical corrigenda TC1, TC2, and TC3

■ ISO/IEC TR 24731-1, Extensions to the C Library, Part I: Bounds-Checking Interfaces
[ISO/IEC TR 24731-1:2007]

■ ISO/IEC PDTR 24731-2, Extensions to the C Library, Part II: Dynamic Allocation Func-
tions [ISO/IEC PDTR 24731-2]

Most of the material included in this standard can also be applied to earlier versions of the
C programming language.

Rules and recommendations included in this standard are designed to be operating
system and platform independent. However, the best solutions to secure coding problems
are often platform specific. In most cases, this standard provides appropriate compliant
solutions for POSIX-compliant and Windows operating systems. In many cases, compli-
ant solutions have also been provided for specific platforms such as Linux and OpenBSD.
Occasionally, we also point out implementation-specific behaviors when these behaviors
are of interest.

Rationale
A secure coding standard for the C programming language can create the highest value for
the longest period of time by focusing on C99 and the relevant post-C99 technical reports.

www.rosecompiler.org

Preface xxiii

In addition, because considerably more money and effort is devoted to developing new
code than maintaining existing code, the highest return on investment comes from influ-
encing programmers who are developing new code [Seacord 03]. Maintaining existing
code is still an important concern, however.

The C standard (C99) documents existing practice where possible [ISO/IEC 9899:1999].
That is, most features must be tested in an implementation before being included in the
standard. The CERT® C Secure Coding Standard has a different purpose. When existing
practice serves this purpose, that is fine, but the goal is to create a new set of best prac-
tices, and that includes introducing some concepts that are not yet widely known. To put
it a different way, the CERT C secure coding guidelines are attempting to drive change
rather than just document it.

For example, the C library technical report, part 1 (TR 24731-1), is gaining support,
but at present it is implemented by only a few vendors. It introduces functions such as
memcpy_s(), which serve the purpose of security by adding the destination buffer size to
the API. A forward-looking document could not reasonably ignore such functions simply
because they are not yet widely implemented.

C99 is more widely implemented than TR 24731-1, but even if it were not yet, it is the
direction in which the industry is moving. Developers of new C code, especially, need
guidance that is usable on and makes the best use of the compilers and tools that are now
being developed and will be supported into the future.

Some vendors have extensions to C, and some have implemented only part of the C
standard before stopping development. Consequently, it is not possible to back up and
only discuss C95 or C90. The vendor support equation is too complicated to draw a line
and say that a certain compiler supports exactly a certain standard. Whatever demarcation
point is selected, different vendors are on opposite sides of it for different parts of the lan-
guage. Supporting all possibilities would require testing the cross product of each com-
piler with each language feature. Consequently, a recent demarcation point was selected
so that the rules and recommendations defined by the standard will be applicable for as
long as possible. As a result of the variations in support, source code portability is
enhanced when the programmer uses only the features specified by C90. This is one of
many tradeoffs between security and portability inherent to C language programming.

The value of forward-looking information increases with time before it starts to
decrease. The value of backward-looking information starts to decrease immediately.

For all of these reasons, the priority of this standard is to support new code develop-
ment using C99 and the post-C99 technical reports. A close-second priority is supporting
remediation of old code using C99 and the technical reports.

This standard does try to make contributions to support older compilers when these
contributions can be significant and doing so does not compromise other priorities. The
intent is not to capture all deviations from the standard but only a few important ones.

xxiv Preface

Issues Not Addressed
There are a number of issues not addressed by this secure coding standard.

■ Coding Style. Coding style issues are subjective, and it has proven impossible to
develop a consensus on appropriate style guidelines. Consequently, this standard
does not require any particular coding style to be enforced but only that the user
define style guidelines and apply those guidelines consistently. The easiest way to
consistently apply a coding style is with the use of a code formatting tool. Many
interactive development environments (IDEs) provide such capabilities.

■ Tools. As a federally funded research and development center (FFRDC), the SEI is
not in a position to recommend particular vendors or tools to enforce these guide-
lines. The user of this document is free to choose tools, and vendors are encouraged
to provide tools to enforce this standard.

■ Controversial Rules. In general, the CERT secure coding standards try to avoid the
inclusion of controversial rules that lack a broad consensus.

■ Who Should Read This Book

The CERT® C Secure Coding Standard is primarily intended for developers of C language
programs. While security is important for Internet-facing systems, for example, it is also
important for any software component that may be included or deployed as part of a
secure software system. With systems increasingly being composed of software compo-
nents, or even other systems, it is difficult to identify situations in which software is guar-
anteed not to be used in another context, which perhaps has more stringent security
requirements.

This book is also useful for C language programmers who don’t realize they are inter-
ested in security, as most of these guidelines have practical applications for achieving
other quality attributes such as safety, reliability, dependability, robustness, availability,
and maintainability.

While not intended for C++ programmers, this book may be of some value because
the vast majority of issues identified for C language programs are also issues in C++ pro-
grams, although in many cases the solutions are different.

■ How This Book Is Organized

This book is organized into an introductory chapter, thirteen chapters containing guide-
lines in specific topic areas, and an appendix containing POSIX guidelines to demonstrate

Preface xxv

how this secure coding standard can be customized for particular environments. The POSIX
appendix is nonnormative and not a prescriptive part of the standard.

Most guidelines have a consistent structure. Each guideline in this standard has a
unique identifier, which is included in the title. The title of the guidelines and the introduc-
tory paragraphs define the rule or recommendation. This is typically followed by one or
more pairs of noncompliant code examples and compliant solutions. Each guideline also includes
a risk assessment and a list of appropriate references (where applicable). Guidelines may also
include a table of related vulnerabilities.

Guideline Identifiers
Guideline identifiers consist of three parts:

■ a three-letter mnemonic representing the section of the standard

■ a two-digit numeric value in the range of 00 to 99

■ the letter C indicating that this is a C language guideline

The three-letter mnemonic can be used to group similar guidelines and to indicate to
which category a guideline belongs.

The numeric value is used to give each guideline a unique identifier. Numeric values
in the range of 00 to 29 are reserved for recommendations, while values in the range of 30
to 99 are reserved for rules.

Noncompliant Code Examples and Compliant Solutions
Noncompliant code examples are examples of insecure code that violate the guideline
under discussion. It is important to note that these are only examples, and eliminating all
occurrences of the example does not necessarily mean that your code is now compliant
with the guideline.

The noncompliant code examples are typically followed by compliant solutions, which
show how the noncompliant code example can be reimplemented in a secure, compliant
manner. Except where noted, noncompliant code examples should only contain violations
of the rule under discussion. Compliant solutions should comply with all secure coding
rules but may occasionally fail to comply with a recommendation.

Risk Assessment
Each guideline contains a risk assessment section, which attempts to quantify and qualify
the risk of violating each guideline. This information is intended primarily for remedia-
tion projects to help prioritize repairs, as it is assumed that new code will be developed in
conformance with the entire standard.

xxvi Preface

Each rule and recommendation has an assigned priority. Priorities are assigned using
a metric based on Failure Mode, Effects, and Criticality Analysis (FMECA) [IEC 60812].
Three values are assigned for each rule on a scale of 1 to 3 for

■ Severity: How serious are the consequences of the rule being ignored?
1 = low (denial-of-service attack, abnormal termination)
2 = medium (data integrity violation, unintentional information disclosure)
3 = high (run arbitrary code)

■ Likelihood: How likely is it that a flaw introduced by ignoring the rule could lead to
an exploitable vulnerability?
1 = unlikely
2 = probable
3 = likely

■ Remediation cost: How expensive is it to comply with the rule?
1 = high (manual detection and correction)
2 = medium (automatic detection and manual correction)
3 = low (automatic detection and correction)

The three values are multiplied together for each rule. This product provides a mea-
sure that can be used in prioritizing the application of the rules. These products range
from 1 to 27. Rules and recommendations with a priority in the range of 1 to 4 are level 3
rules, 6 to 9 are level 2, and 12 to 27 are level 1. As a result, it is possible to claim level 1,
level 2, or complete compliance (level 3) with a standard by implementing all rules in a
level, as shown in Figure P–3.

Recommendations are not compulsory, and risk assessments are provided for infor-
mation purposes only.

References
Guidelines include frequent references to the vulnerability notes in the CERT/CC Vulnera-
bility Notes Database [CERT/CC VND], CWE IDs in MITRE’s Common Weakness Enumer-
ation (CWE) [MITRE 07], and CVE numbers from MITRE’s Common Vulnerabilities and
Exposures (CVE) [CVE].

You can create a unique URL to get more information on any of these topics by append-
ing the relevant ID to the end of a fixed string. For example, to find more information about

■ VU#551436, “Mozilla Firefox SVG viewer vulnerable to integer overflow,” you can
append 551436 to https://www.kb.cert.org/vulnotes/id/ and enter the resulting URL
in your browser: https://www.kb.cert.org/vulnotes/id/551436

https://www.kb.cert.org/vulnotes/id/
https://www.kb.cert.org/vulnotes/id/551436

Preface xxvii

■ CWE ID 192, “Integer Coercion Error,” you can append 192.html to http://cwe.mitre.
org/data/definitions/ and enter the resulting URL in your browser: http://cwe.mitre.
org/data/definitions/192.html

■ CVE-2006-1174, you can append CVE-2006-1174 to http://cve.mitre.org/cgi-bin/cve-
name.cgi?name= and enter the resulting URL in your browser: http://cve.mitre.org/
cgi-bin/cvename.cgi?name= CVE-2006-1174

Guidelines are frequently correlated with language vulnerabilities in Information Tech-
nology—Programming Languages—Guidance to Avoiding Vulnerabilities in Programming Lan-
guages through Language Selection and Use [ISO/IEC PDTR 24772].

Related Vulnerabilities
Rules and recommendations linked to violations of actual vulnerabilities published in the
CERT/CC Vulnerability Notes Database are shown in sections marked “Related Vulnera-
bilities” and are presented in table format, as in this example:

Metric ID Date Public Name

1.62 VU#606700 03/19/2007 file integer overflow vulnerability

2.06 VU#559444 03/13/2007 Apple Mac OS X ImageIO integer overflow
vulnerability

Figure P–3. Priorities and levels

L1 P12–P27

L2 P6–P9

L3 P1–P4

Low severity,
unlikely,
expensive
to repair flaws

Medium severity,
probable,
expensive
to repair flaws

High severity,
likely,
inexpensive
to repair flaws

http://cwe.mitre.org/data/definitions/
http://cwe.mitre.org/data/definitions/
http://cwe.mitre.org/data/definitions/192.html
http://cwe.mitre.org/data/definitions/192.html
http://cve.mitre.org/cgi-bin/cvename.cgi?name=
http://cve.mitre.org/cgi-bin/cvename.cgi?name=
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-1174
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-1174

xxviii Preface

New links are continually added. To find the latest list of related vulnerabilities, enter
the following URL:

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+KEYWORDS+
contains+XXXNN-X

where XXXNN-X is the ID of the rule or recommendation for which you are searching.
These tables consist of four fields: metric, ID, date public, and name.

Vulnerability Metric. The CERT vulnerability metric value is a number between 0 and
180 that assigns an approximate severity to the vulnerability. This value incorporates sev-
eral elements:

■ Is information about the vulnerability widely available or known?

■ Is the vulnerability being exploited in incidents reported to CERT or other incident
response teams?

■ Is the Internet infrastructure (e.g., routers, name servers, critical Internet protocols)
at risk because of this vulnerability?

■ How many systems on the Internet are at risk from this vulnerability?

■ What is the impact of exploiting the vulnerability?

■ How easy is it to exploit the vulnerability?

■ What are the preconditions required to exploit the vulnerability?

Because the questions are answered with approximate values based on the judgment of vul-
nerability analysts and may differ significantly from one site to another, you should not rely
too heavily on the metric for prioritizing response to vulnerabilities. Rather, this metric
may be useful for separating the serious vulnerabilities from the larger number of less
severe vulnerabilities described in the database. Because the questions are not all weighted
equally, the resulting score is not linear (that is, a vulnerability with a metric of 40 is not
twice as severe as one with a metric of 20).

An alternative vulnerability severity metric is the Common Vulnerability Scoring Sys-
tem (CVSS) [Mell 07].

Metric ID Date Public Name

22.22 VU#551436 02/23/2007 Mozilla Firefox SVG viewer vulnerable to
integer overflow

0 VU#162289 04/17/2006 C compilers may silently discard some
wraparound checks

https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+KEYWORDS+contains+XXXNN-X
https://www.kb.cert.org/vulnotes/bymetric?searchview&query=FIELD+KEYWORDS+contains+XXXNN-X

Preface xxix

Vulnerability ID. Vulnerability ID numbers are assigned at random to uniquely identify a
vulnerability. These IDs are four to six digits long and are usually prefixed with VU# to
mark them as vulnerability IDs.

Date Public. This is the date on which the vulnerability was first publicly disclosed.
Usually this date is when the vulnerability note was first published, when an exploit was
first discovered, when the vendor first distributed a patch publicly, or when a description
of the vulnerability was posted to a public mailing list. By default, this date is set to the
vulnerability note publication date.

Vulnerability Name. The vulnerability name is a short description that summarizes the
nature of the problem and the affected software product. While the name may include a
clause describing the impact of the vulnerability, most names are focused on the nature of
the defect that caused the problem to occur.

PRE01-C 11

Type-generic macros may also be used, for example, to swap two variables of any type,
provided they are of the same type.

PRE00-EX5: Macro parameters exhibit call-by-name semantics, whereas functions are
call-by-value. Macros must be used in cases where call-by-name semantics are required.

Risk Assessment
Improper use of macros may result in undefined behavior.

References
� [FSF 05] Section 5.34, “An Inline Function Is as Fast as a Macro”
� [Dewhurst 02] Gotcha #26, “#define Pseudofunctions”
� [ISO/IEC 9899:1999] Section 6.7.4, “Function Specifiers”
� [ISO/IEC PDTR 24772] “NMP Pre-processor Directives”
� [Kettlewell 03]
� [MISRA 04] Rule 19.7
� [Summit 05] Question 10.4

� PRE01-C. Use parentheses within macros around parameter names

Parenthesize all parameter names found in macro definitions. See also PRE00-C, “Prefer
inline or static functions to function-like macros,” and PRE02-C, “Macro replacement
lists should be parenthesized.”

Noncompliant Code Example
This CUBE() macro definition is noncompliant because it fails to parenthesize the parame-
ter names.

#define CUBE(I) (I * I * I)

As a result, the invocation

int a = 81 / CUBE(2 + 1);

Recommendation Severity Likelihood Remediation Cost Priority Level

PRE00-C medium unlikely medium P4 L3

Seacord_book.fm Page 11 Thursday, September 25, 2008 8:14 AM

12 Chapter 2 � Preprocessor (PRE)

expands to

int a = 81 / (2 + 1 * 2 + 1 * 2 + 1); /* evaluates to 11 */

which is clearly not the desired result.

Compliant Solution
Parenthesizing all parameter names in the CUBE() macro allows it to expand correctly
(when invoked in this manner).

#define CUBE(I) ((I) * (I) * (I))
int a = 81 / CUBE(2 + 1);

Exceptions
PRE01-EX1: When the parameter names are surrounded by commas in the replacement
text, regardless of how complicated the actual arguments are, there is no need for parenthe-
sizing the macro parameters. Because commas have lower precedence than any other oper-
ator, there is no chance of the actual arguments being parsed in a surprising way. Comma
separators, which separate arguments in a function call, also have lower precedence than
other operators, although they are technically different from comma operators.

#define FOO(a, b, c) bar(a, b, c)
/* ... */
FOO(arg1, arg2, arg3);

PRE01-EX2: Macro parameters cannot be individually parenthesized when concatenating
tokens using the ## operator, converting macro parameters to strings using the # operator,
or concatenating adjacent string literals. The JOIN() macro below concatenates both argu-
ments to form a new token. The SHOW() macro converts the single argument into a string
literal, which is then concatenated with the adjacent string literal to form the format spec-
ification in the call to printf().

#define JOIN(a, b) (a ## b)
#define SHOW(a) printf(#a " = %d\n", a)

See PRE05-C, “Understand macro replacement when concatenating tokens or performing
stringification,” for more information on using the ## operator to concatenate tokens.

Risk Assessment
Failing to parenthesize the parameter names in a macro can result in unintended program
behavior.

Seacord_book.fm Page 12 Thursday, September 25, 2008 8:14 AM

PRE02-C 13

References
� [ISO/IEC 9899:1999] Section 6.10, “Preprocessing Directives,” and Section 5.1.1,

“Translation Environment”
� [ISO/IEC PDTR 24772] “JCW Operator Precedence/Order of Evaluation”
� [MISRA 04] Rule 19.1
� [Plum 85]
� [Summit 05] Question 10.1

� PRE02-C. Macro replacement lists should be parenthesized

Macro replacement lists should be parenthesized to protect any lower-precedence opera-
tors from the surrounding expression. See also PRE00-C, “Prefer inline or static functions
to function-like macros,” and PRE01-C, “Use parentheses within macros around parame-
ter names.”

Noncompliant Code Example
This CUBE() macro definition is noncompliant because it fails to parenthesize the replace-
ment list.

#define CUBE(X) (X) * (X) * (X)
int i = 3;
int a = 81 / CUBE(i);

As a result, the invocation

int a = 81 / CUBE(i);

expands to

int a = 81 / i * i * i;

which evaluates as

int a = ((81 / i) * i) * i); /* evaluates to 243 */

which is not the desired behavior.

Recommendation Severity Likelihood Remediation Cost Priority Level

PRE01-C medium probable low P12 L1

Seacord_book.fm Page 13 Thursday, September 25, 2008 8:14 AM

EXP30-C 119

existing destination file in FIO10-C, “Take care when using the rename() function,” for
an example of this exception.

EXP12-EX2: If a function cannot fail or if the return value cannot signify an error condi-
tion, the return value may be ignored. Such functions should be added to a white list
when automatic checkers are used.

strcpy(dst, src);

Risk Assessment
Failure to handle error codes or other values returned by functions can lead to incorrect
program flow and violations of data integrity.

References
� [ISO/IEC 9899:1999] Section 6.8.3, “Expression and Null Statements”
� [ISO/IEC PDTR 24772] “CSJ Passing Parameters and Return Values”

� EXP30-C. Do not depend on order of evaluation between
sequence points

Evaluation of an expression may produce side effects. At specific points during execution
called sequence points, all side effects of previous evaluations have completed and no side
effects of subsequent evaluations have yet taken place.

According to C99, Section 6.5:

Between the previous and next sequence point an object can only have its stored
value modified once by the evaluation of an expression. Additionally, the prior
value can be read only to determine the value to be stored.

This requirement must be met for each allowable ordering of the subexpressions of a full
expression; otherwise the behavior is undefined.

This rule means that statements such as

i = i + 1;
a[i] = i;

Recommendation Severity Likelihood Remediation Cost Priority Level

EXP12-C medium unlikely medium P4 L3

Seacord_book.fm Page 119 Thursday, September 25, 2008 8:14 AM

120 Chapter 4 � Expressions (EXP)

are allowed, while statements like

/* i is modified twice between sequence points */
i = ++i + 1;

/* i is read other than to determine the value to be stored */
a[i++] = i;

are not.

Noncompliant Code Example
Programs cannot safely rely on the order of evaluation of operands between sequence
points. In this noncompliant code example, the order of evaluation of the operands to the
+ operator is unspecified.

a = i + b[++i];

If i was equal to 0 before the statement, the statement may result in the following out-
come:

a = 0 + b[1];

Or it may result in the following outcome:

a = 1 + b[1];

Compliant Solution
These examples are independent of the order of evaluation of the operands and can be
interpreted in only one way.

++i;
a = i + b[i];

Or alternatively:

a = i + b[i+1];
++i;

Noncompliant Code Example
The order of evaluation for function arguments is unspecified.

func(i++, i);

Seacord_book.fm Page 120 Thursday, September 25, 2008 8:14 AM

EXP30-C 121

The call to func() has undefined behavior because there are no sequence points between
the argument expressions. The first (left) argument expression reads the value of i (to
determine the value to be stored) and then modifies i. The second (right) argument
expression reads the value of i between the same pair of sequence points as the first argu-
ment, but not to determine the value to be stored in i. This additional attempt to read the
value of i has undefined behavior.

Compliant Solution
This solution is appropriate when the programmer intends for both arguments to func()
to be equivalent.

i++;
func(i, i);

This solution is appropriate when the programmer intends for the second argument to be
one greater than the first.

j = i++;
func(j, i);

Risk Assessment
Attempting to modify an object multiple times between sequence points may cause that
object to take on an unexpected value. This can lead to unexpected program behavior.

References
� [ISO/IEC 9899:1999] Section 5.1.2.3, “Program Execution,” Section 6.5, “Expres-

sions,” and Annex C, “Sequence Points”
� [ISO/IEC PDTR 24772] “JCW Operator Precedence/Order of Evaluation” and “Side-

Effects and Order of Evaluation [SAM]”
� [MISRA 04] Rule 12.1
� [Summit 05] Questions 3.1, 3.2, 3.3, 3.3b, 3.7, 3.8, 3.9, 3.10a, 3.10b, and 3.11
� [Saks 07a]

Rule Severity Likelihood Remediation Cost Priority Level

EXP30-C medium probable medium P8 L2

Seacord_book.fm Page 121 Thursday, September 25, 2008 8:14 AM

INT35-C 207

Exceptions
INT34-EX1: Unsigned integers can exhibit modulo behavior as long as the variable decla-
ration is clearly commented as supporting modulo behavior, and each operation on that
integer is also clearly commented as supporting modulo behavior.

If the integer exhibiting modulo behavior contributes to the value of an integer not
marked as exhibiting modulo behavior, the resulting integer must obey this rule.

Risk Assessment
Improper range checking can lead to buffer overflows and the execution of arbitrary code
by an attacker.

References
� [Dowd 06] Chapter 6, “C Language Issues”
� [ISO/IEC 03] Section 6.5.7, “Bitwise Shift Operators”
� [ISO/IEC 9899:1999] Section 6.5.7, “Bitwise Shift Operators”
� [ISO/IEC PDTR 24772] “XYY Wrap-around Error”
� [Seacord 05a] Chapter 5, “Integers”
� [Viega 05] Section 5.2.7, “Integer Overflow”
� A test program for this rule is available at www.securecoding.cert.org/confluence/

download/attachments/4385/leftshift.cpp.

� INT35-C. Evaluate integer expressions in a larger size before
comparing or assigning to that size

If an integer expression is compared to, or assigned to, a larger integer size, that integer
expression should be evaluated in that larger size by explicitly casting one of the operands.

Noncompliant Code Example
This noncomplient code example is noncompliant on systems where size_t is an
unsigned 32-bit value and long long is a 64-bit value. In this example, the programmer
tests for wrapping by comparing SIZE_MAX to length + BLOCK_HEADER_SIZE. Because

Rule Severity Likelihood Remediation Cost Priority Level

INT34-C high probable medium P12 L1

Seacord_book.fm Page 207 Thursday, September 25, 2008 8:14 AM

208 Chapter 5 � Integers (INT)

length is declared as size_t, however, the addition is performed as a 32-bit operation and
can result in wrapping. The comparison with SIZE_MAX will always test false. If wrapping
occurs, malloc() will allocate insufficient space for mBlock, which can lead to a subse-
quent buffer overflow.

enum { BLOCK_HEADER_SIZE = 16 };

void *AllocateBlock(size_t length) {
 struct memBlock *mBlock;

 if (length + BLOCK_HEADER_SIZE > (unsigned long long)SIZE_MAX)
 return NULL;
 mBlock = (struct memBlock *)malloc(
 length + BLOCK_HEADER_SIZE
);
 if (!mBlock) return NULL;

 /* fill in block header and return data portion */

 return mBlock;
}

Some compilers will diagnose this condition.

Compliant Solution (Upcast)
In this compliant solution, the length operand is upcast to unsigned long long, ensuring
that the addition takes place in this size.

enum { BLOCK_HEADER_SIZE = 16 };

void *AllocateBlock(size_t length) {
 struct memBlock *mBlock;

 if ((unsigned long long)length + BLOCK_HEADER_SIZE > SIZE_MAX) {
 return NULL;
 }
 mBlock = (struct memBlock *)malloc(
 length + BLOCK_HEADER_SIZE
);
 if (!mBlock) return NULL;

 /* fill in block header and return data portion */

 return mBlock;
}

Seacord_book.fm Page 208 Thursday, September 25, 2008 8:14 AM

INT35-C 209

This test for wrapping is effective only when the sizeof(unsigned long long) >
sizeof(size_t). If both size_t and unsigned long long types are represented as a 64-bit
unsigned value, the result of the addition operation may not be representable as an
unsigned long long value.

Compliant Solution (Rearrange Expression)
In this compliant solution, length is subtracted from SIZE_MAX, ensuring that wrapping
cannot occur (see INT30-C, “Ensure that unsigned integer operations do not wrap”).

enum { BLOCK_HEADER_SIZE = 16 };

void *AllocateBlock(size_t length) {
 struct memBlock *mBlock;

 if (SIZE_MAX - length < BLOCK_HEADER_SIZE) return NULL;
 mBlock = (struct memBlock *)malloc(
 length + BLOCK_HEADER_SIZE
);
 if (!mBlock) return NULL;

 /* fill in block header and return data portion */

 return mBlock;
}

Noncompliant Code Example
In this noncompliant code example, the programmer attempts to prevent wrapping by
allocating an unsigned long long integer called alloc and assigning it the result from
cBlocks * 16.

void* AllocBlocks(size_t cBlocks) {
 if (cBlocks == 0) return NULL;
 unsigned long long alloc = cBlocks * 16;
 return (alloc < UINT_MAX) ? malloc(cBlocks * 16) : NULL;
}

There are two separate problems with this noncompliant code example. The first problem
is that this code assumes an implementation where unsigned long long has a least four
more bits than size_t. The second problem, assuming an implementation where size_t
is a 32-bit value and unsigned long long is represented by a 64-bit value, is that to be
compliant with C99, multiplying two 32-bit numbers in this context must yield a 32-bit
result. Any wrapping resulting from this multiplication will remain undetected by this
code, and the expression alloc < UINT_MAX will always be true.

Seacord_book.fm Page 209 Thursday, September 25, 2008 8:14 AM

210 Chapter 5 � Integers (INT)

Compliant Solution
In this compliant solution, the cBlocks operand is upcast to unsigned long long, ensur-
ing that the multiplication takes place in this size.

static_assert(
 CHAR_BIT * sizeof(unsigned long long) >=
 CHAR_BIT * sizeof(size_t) + 4,
 "Unable to detect wrapping after multiplication"
);

void* AllocBlocks(size_t cBlocks) {
 if (cBlocks == 0) return NULL;
 unsigned long long alloc = (unsigned long long)cBlocks * 16;
 return (alloc < UINT_MAX) ? malloc(cBlocks * 16) : NULL;
}

Note that this code does not prevent wrapping unless the unsigned long long type is at least
four bits larger than size_t.

Risk Assessment
Failure to cast integers before comparing or assigning them to a larger integer size can result
in software vulnerabilities that can allow the execution of arbitrary code by an attacker with
the permissions of the vulnerable process.

References
� [Dowd 06] Chapter 6, “C Language Issues”
� [ISO/IEC 9899:1999] Section 6.3.1, “Arithmetic Operands”
� [ISO/IEC PDTR 24772] “FLC Numeric Conversion Errors”
� [MITRE 07] CWE ID 681, “Incorrect Conversion between Numeric Types,” and CWE

ID 190, “Integer Overflow (Wrap or Wraparound)”
� [Seacord 05a] Chapter 5, “Integer Security”

Rule Severity Likelihood Remediation Cost Priority Level

INT35-C high likely medium P18 L1

Seacord_book.fm Page 210 Thursday, September 25, 2008 8:14 AM

ARR38-C 265

References
� [Banahan 03] Section 5.3, “Pointers,” and Section 5.7, “Expressions Involving

Pointers”
� [ISO/IEC 9899:1999] Section 6.5.6, “Additive Operators”
� [MITRE 07] CWE ID 469, “Use of Pointer Subtraction to Determine Size”
� [VU#162289]

� ARR38-C. Do not add or subtract an integer to a pointer if
the resulting value does not refer to a valid array element

Do not add or subtract an integer to a pointer if the resulting value does not refer to an
element within the array (or to the nonexistent element just after the last element of the
array). According to C99, Section 6.5.6:

If both the pointer operand and the result point to elements of the same array
object, or one past the last element of the array object, the evaluation shall not
produce an overflow; otherwise, the behavior is undefined.

If the pointer resulting from the addition (or subtraction) is outside of the bounds of the
array, an overflow has occurred and the result is undefined.

Noncompliant Code Example
In this noncompliant code example, a pointer is set to reference the start of an array. Array
elements are accessed sequentially within the for loop. The array pointer ip is incremented
on each iteration.

int ar[20];
int *ip;

for (ip = &ar[0]; ip < &ar[21]; ip++) {
 *ip = 0;
}

C99 guarantees that it is permissible to use the address of ar[20] even though no such
element exists. However, in this noncompliant code example, the bound of the array is
incorrectly specified, and consequently, the reference to &ar[21] constitutes undefined
behavior. On the final iteration of the loop, the expression ip++ (which adds 1 to ip) will
also overflow.

Seacord_book.fm Page 265 Thursday, September 25, 2008 8:14 AM

266 Chapter 7 � Arrays (ARR)

This code also suffers from using “magic numbers,” described in DCL06-C, “Use mean-
ingful symbolic constants to represent literal values in program logic.” When replacing
the numbers with constants, a developer is likely to catch the invalid array bounds in the
for statement.

Compliant Solution
This compliant solution fixes the problem from the previous noncompliant code example
by using the common idiom sizeof(ar)/sizeof(ar[0]) to determine the actual number
of elements in the array. This idiom works only when the definition of the array is visible
(see ARR01-C, “Do not apply the sizeof operator to a pointer when taking the size of an
array”).

int ar[20];
int *ip;

for (ip = &ar[0]; ip < &ar[sizeof(ar)/sizeof(ar[0])]; ip++) {
 *ip = 0;
}

C99 guarantees that it is permissible to use the address of ar[sizeof(ar)/sizeof(ar[0])]
even though no such element exists. This allows you to use this address for checks in
loops like the one above. The guarantee extends only to one element beyond the end of an
array and no further [Banahan 03].

Noncompliant Code Example
Pointer arithmetic can result in undefined behavior if the pointer operand and the result-
ing pointer do not refer to the same array object (or one past the last element of the array
object). Compiler implementations are provided broad latitude by the standard in how to
deal with undefined behavior (see MSC15-C, “Do not depend on undefined behavior”),
including ignoring the situation completely with unpredictable results.

In this noncompliant code example, the programmer is trying to determine if a
pointer added to a length will wrap around the end of memory.

char *buf;
size_t len = 1 << 30;

/* Check for overflow */
if (buf + len < buf) {
 len = -(uintptr_t)buf-1;
}

Seacord_book.fm Page 266 Thursday, September 25, 2008 8:14 AM

ARR38-C 267

This code resembles the test for wraparound from the sprint() function as implemented
for the Plan 9 operating system. If buf + len < buf evaluates to true, len is assigned the
remaining space minus 1 byte. However, because the expression buf + len < buf consti-
tutes undefined behavior, compilers can assume this condition will never occur and opti-
mize out the entire conditional statement. In gcc version 4.2 and later, for example, code
that performs checks for wrapping that depend on undefined behavior (such as the code
in this noncompliant code example) are optimized away; no object code to perform the
check appears in the resulting executable program [VU#162289]. This is of special con-
cern because it often results in the silent elimination of code that was inserted to provide
a safety or security check. For gcc version 4.2.4 and later, this optimization may be dis-
abled with the -fno-strict-overflow option.

Compliant Solution (Linear Address Space)
In this compliant solution, references to buf are cast to uintptr_t. The uintptr_t type is
an unsigned integer type with the property that any valid pointer to void can be con-
verted to this type, then converted back to pointer to void, and the result will compare
equal to the original pointer. Because it is an unsigned type, C99 guarantees that it has
modulo behavior. Alternatively, developers can use size_t on platforms that do not pro-
vide the uintptr_t type.

char *buf;
size_t len = 1 << 30;

/* Check for overflow */
if ((uintptr_t)buf+len < (uintptr_t)buf) {
 len = -(uintptr_t)buf-1;
}

This compliant solution works on architectures that provide a linear address space and
the uintptr_t value is a byte address. The latter is not guaranteed, although it is usually
the case. Some word-oriented machines are likely to produce a word address with the
high-order bits used as a byte selector, in which case this solution will fail. Consequently,
this is not a portable solution.

This same compliant solution can be implemented without wrapping:

char *buf;
size_t len = 1 << 30;

/* Check for overflow */
if (UINTPTR_MAX - len < (uintptr_t)buf) {
 len = -(uintptr_t)buf-1;
}

Seacord_book.fm Page 267 Thursday, September 25, 2008 8:14 AM

268 Chapter 7 � Arrays (ARR)

Noncompliant Code Example
Another interesting case is shown in this noncompliant code example. The expression buf
+ n may wrap for large values of n, resulting in undefined behavior.

int process_array(char *buf, size_t n) {
 return buf + n < buf + 100;
}

This is an example of how optimization may actually help improve security. When compiled
using GCC 4.3.0 with the -O2 option, for example, the expression buf + n < buf + 100 is
optimized to n < 100, eliminating the possibility of wrapping. This code example is still
noncompliant because it is not safe to rely on compiler optimizations for security.

Compliant Solution
In this compliant solution, the “optimization” is performed by hand.

int process_array(char *buf, size_t n) {
 return n < 100;
}

Risk Assessment
If adding or subtracting an integer to a pointer results in a reference to an element outside
the array or one past the last element of the array object, the behavior is undefined but fre-
quently leads to a buffer overflow, which can often be exploited to run arbitrary code.

Related Vulnerabilities
The following vulnerability resulting from a violation of this rule is documented in the
CERT Coordination Center Vulnerability Notes Database [CERT/CC VND].

Rule Severity Likelihood Remediation Cost Priority Level

ARR38-C high likely medium P18 L1

Metric ID Date Public Name

0 VU#162289 04/17/2006 C compilers may silently discard some wrap-
around checks

Seacord_book.fm Page 268 Thursday, September 25, 2008 8:14 AM

ARR38-C 269

References
� [Banahan 03] Section 5.3, “Pointers,” and Section 5.7, “Expressions Involving

Pointers”
� [ISO/IEC 9899:1999] Section 6.5.6, “Additive Operators”
� [ISO/IEC PDTR 24772] “XYX Boundary Beginning Violation” and “XYZ Unchecked

Array Indexing”
� [MITRE 07] CWE ID 129, “Unchecked Array Indexing”
� [VU#162289]

Seacord_book.fm Page 269 Thursday, September 25, 2008 8:14 AM

STR34-C 305

Risk Assessment
Failure to correctly determine the size of a wide character string can lead to buffer over-
flows and the execution of arbitrary code by an attacker.

References
� [Viega 05] Section 5.2.15, “Improper String Length Checking”
� [ISO/IEC 9899:1999] Section 7.21, “String Handling <string.h>”
� [MITRE 07] CWE ID 119, “Failure to Constrain Operations within the Bounds of an

Allocated Memory Buffer,” and CWE ID 135, “Incorrect Calculation of Multi-Byte
String Length”

� [Seacord 05a] Chapter 2, “Strings”

� STR34-C. Cast characters to unsigned types before
converting to larger integer sizes

Signed character data must be converted to an unsigned type before being assigned or
converted to a larger signed type. Because compilers have the latitude to define char to
have the same range, representation, and behavior as either signed char or unsigned
char, this rule should be applied to both signed char and (plain) char characters.

This rule is applicable only in cases where the character data may contain values that
can be interpreted as negative values. For example, if the char type is represented by a
two’s complement 8-bit value, any character value greater than +127 is interpreted as a
negative value.

Noncompliant Code Example
This noncompliant code example is taken from a vulnerability in bash versions 1.14.6 and
earlier that resulted in the release of CERT Advisory CA-1996-22. This vulnerability
resulted from the sign extension of character data referenced by the string pointer in the
yy_string_get() function in the parse.y module of the bash source code:

static int yy_string_get() {
 register char *string;
 register int c;

 string = bash_input.location.string;
 c = EOF;

Rule Severity Likelihood Remediation Cost Priority Level

STR33-C high likely medium P18 L1

Seacord_book.fm Page 305 Thursday, September 25, 2008 8:14 AM

306 Chapter 8 � Characters and Strings (STR)

 /* If the string doesn't exist, or is empty, EOF found. */
 if (string && *string) {
 c = *string++;
 bash_input.location.string = string;
 }
 return (c);
}

The string variable is used to traverse the character string containing the command line
to be parsed. As characters are retrieved from this pointer, they are stored in a variable of
type int. For compilers in which the char type defaults to signed char, this value is sign-
extended when assigned to the int variable. For character code 255 decimal (–1 in two’s
complement form), this sign extension results in the value –1 being assigned to the inte-
ger, which is indistinguishable from EOF.

This problem was repaired by explicitly declaring the string variable as unsigned
char.

static int yy_string_get() {
 register unsigned char *string;
 register int c;

 string = bash_input.location.string;
 c = EOF;

 /* If the string doesn't exist, or is empty, EOF found. */
 if (string && *string) {
 c = *string++;
 bash_input.location.string = string;
 }
 return (c);
}

This solution, however, is in violation of STR04-C, “Use plain char for characters in the
basic character set.”

Compliant Solution
In this compliant solution, the result of the expression *string++ is cast to (unsigned
char) before assignment to the int variable c.

static int yy_string_get() {
 register char *string;
 register int c;

 string = bash_input.location.string;
 c = EOF;

Seacord_book.fm Page 306 Thursday, September 25, 2008 8:14 AM

STR35-C 307

 /* If the string doesn't exist, or is empty, EOF found. */
 if (string && *string) {
 /* cast to unsigned type */
 c = (unsigned char)*string++;

 bash_input.location.string = string;
 }
 return (c);
}

Risk Assessment
This is a subtle error that results in a disturbingly broad range of potentially severe
vulnerabilities.

References
� [ISO/IEC 9899:1999] Section 6.2.5, “Types”
� [MISRA 04] Rule 6.1, “The plain char type shall be used only for the storage and use of

character values”
� [MITRE 07] CWE ID 704, “Incorrect Type Conversion or Cast”

� STR35-C. Do not copy data from an unbounded source
to a fixed-length array

Functions that perform unbounded copies often rely on external input to be a reasonable
size. Such assumptions may prove to be false, causing a buffer overflow to occur. For this
reason, care must be taken when using functions that may perform unbounded copies.

Noncompliant Code Example (gets())
The gets() function is inherently unsafe and should never be used because it provides no
way to control how much data is read into a buffer from stdin. This compliant code
example assumes that gets() will not read more than BUFSIZ - 1 characters from stdin.
This is an invalid assumption, and the resulting operation can cause a buffer overflow.

According to Section 7.19.7.7 of C99, the gets() function reads characters from the
stdin into a destination array until end-of-file is encountered or a new-line character is

Rule Severity Likelihood Remediation Cost Priority Level

STR34-C medium probable medium P8 L2

Seacord_book.fm Page 307 Thursday, September 25, 2008 8:14 AM

MEM31-C 353

References
� [ISO/IEC 9899:1999] Section 7.20.3.2, “The free Function”
� [ISO/IEC PDTR 24772] “DCM Dangling References to Stack Frames” and “XYK

Dangling Reference to Heap”
� [Kernighan 88] Section 7.8.5, “Storage Management”
� [MISRA 04] Rule 17.6
� [MITRE 07] CWE ID 416, “Use After Free”
� [OWASP Freed Memory]
� [Seacord 05a] Chapter 4, “Dynamic Memory Management”
� [Viega 05] Section 5.2.19, “Using Freed Memory”

� MEM31-C. Free dynamically allocated memory exactly once

Freeing memory multiple times has similar consequences to accessing memory after it is
freed. The underlying data structures that manage the heap can become corrupted in a
way that can introduce security vulnerabilities into a program. These types of issues are
referred to as double-free vulnerabilities. In practice, double-free vulnerabilities can be
exploited to execute arbitrary code. VU#623332, which describes a double-free vulnera-
bility in the MIT Kerberos 5 function krb5_recvauth() [MIT 05] is one example.

To eliminate double-free vulnerabilities, it is necessary to guarantee that dynamic mem-
ory is freed exactly one time. Programmers should be wary when freeing memory in a loop or
conditional statement; if coded incorrectly, these constructs can lead to double-free vulnera-
bilities. It is also a common error to misuse the realloc() function in a manner that results
in double-free vulnerabilities (see MEM04-C, “Do not perform zero-length allocations”).

Noncompliant Code Example
In this noncompliant code example, the memory referred to by x may be freed twice: once
if error_condition is true and again at the end of the code.

size_t num_elem = /* some initial value */;
int error_condition = 0;

int *x = (int *)malloc(num_elem * sizeof(int));
if (x == NULL) {
 /* handle allocation error */
}
/* ... */
if (error_condition == 1) {
 /* handle error condition*/
 free(x);

Seacord_book.fm Page 353 Thursday, September 25, 2008 8:14 AM

354 Chapter 9 � Memory Management (MEM)

}
/* ... */
free(x);

Compliant Solution
In this compliant solution, the memory referenced by x is freed only once. This is accom-
plished by eliminating the call to free() when error_condition is equal to 1.

size_t num_elem = /* some initial value */;
int error_condition = 0;

if (num_elem > SIZE_MAX/sizeof(int)) {
 /* Handle overflow */
}
int *x = (int *)malloc(num_elem * sizeof(int));
if (x == NULL) {
 /* handle allocation error */
}
/* ... */
if (error_condition == 1) {
 /* Handle error condition */
}
/* ... */
free(x);
x = NULL;

Note that this solution checks for numeric overflow (see INT32-C, “Ensure that opera-
tions on signed integers do not result in overflow”).

Risk Assessment
Freeing memory multiple times can result in an attacker executing arbitrary code with the
permissions of the vulnerable process.

References
� [ISO/IEC PDTR 24772] “XYK Dangling Reference to Heap” and “XYL Memory Leak”
� [MIT 05]
� [MITRE 07] CWE ID 415, “Double Free”

Rule Severity Likelihood Remediation Cost Priority Level

MEM31-C high probable medium P12 L1

Seacord_book.fm Page 354 Thursday, September 25, 2008 8:14 AM

MEM32-C 355

� [OWASP, Double Free]
� [Viega 05] “Doubly Freeing Memory”
� [VU#623332]

� MEM32-C. Detect and handle memory allocation errors

The return values for memory allocation routines indicate the failure or success of the
allocation. According to C99, calloc(), malloc(), and realloc() return null pointers if
the requested memory allocation fails [ISO/IEC 9899:1999]. Failure to detect and prop-
erly handle memory management errors can lead to unpredictable and unintended pro-
gram behavior. As a result, it is necessary to check the final status of memory management
routines and handle errors appropriately.

Table 9–1 shows the possible outcomes of the standard memory allocation functions.

Noncompliant Code Example
In this noncompliant code example, input_string is copied into dynamically allocated
memory referenced by str. However, the result of malloc() is not checked before str is
referenced. Consequently, if malloc() fails, the program abnormally terminates.

char *input_string = /* initialize from untrusted data */;

size_t size = strlen(input_string) + 1;
char *str = (char *)malloc(size);
strcpy(str, input_string);
/* ... */
free(str);
str = NULL;

Table 9–1. Possible outcomes of standard memory allocation functions

Function Successful Return Error Return

malloc() pointer to allocated space null pointer

calloc() pointer to allocated space null pointer

realloc() pointer to the new object null pointer

Seacord_book.fm Page 355 Thursday, September 25, 2008 8:14 AM

FIO30-C 421

� FIO30-C. Exclude user input from format strings

Never call any formatted I/O function with a format string containing user input.
An attacker who can fully or partially control the contents of a format string can crash

a vulnerable process, view the contents of the stack, view memory content, or write to an
arbitrary memory location and consequently execute arbitrary code with the permissions
of the vulnerable process [Seacord 05a].

Formatted output functions are particularly dangerous because many programmers
are unaware of their capabilities (for example, they can write an integer value to a speci-
fied address using the %n conversion specifier).

Noncompliant Code Example
This noncompliant code example shows the incorrect_password() function, which is
called during identification and authentication if the specified user is not found, or the
password is incorrect, to display an error message. The function accepts the name of the
user as a null-terminated byte string referenced by user. This is an excellent example of
data that originates from an untrusted, unauthenticated user. The function constructs an
error message, which is then output to stderr using the C99 standard fprintf() func-
tion [ISO/IEC 9899:1999].

#define MSG_FORMAT "%s cannot be authenticated.\n"
void incorrect_password(const char *user) {
 /* user names are restricted to 256 characters or less */
 static const char *msg_format = MSG_FORMAT;
 size_t len = strlen(user) + sizeof(MSG_FORMAT);
 char *msg = (char *)malloc(len);
 if (!msg) {
 /* Handle error condition */
 }
 int ret = snprintf(msg, len, msg_format, user);
 if (ret < 0 || ret >= len) {\
 /* Handle error */
 }
 fprintf(stderr, msg);
 free(msg);
 msg = NULL;
}

The incorrect_password() function calculates the size of the message, allocates dynamic
storage, and constructs the message in the allocated memory using the snprintf() func-
tion. The addition operations are not checked for integer overflow because the length of
the string referenced by user is known to have a length of 256 or less. Because the %s
characters are replaced by the string referenced by user in the call to snprintf(), one less

Seacord_book.fm Page 421 Thursday, September 25, 2008 8:14 AM

422 Chapter 10 � Input/Output (FIO)

byte is required to store the resulting string and terminating NULL-byte character. This is a
common idiom for displaying the same message in multiple locations or when the mes-
sage is difficult to build. The resulting code contains a format-string vulnerability, how-
ever, because the msg includes untrusted user input and is passed as the format-string
argument in the call to fprintf().

Compliant Solution (fputs())
This compliant solution fixes the problem by replacing the fprintf() call with a call to
fputs(), which does not treat msg like a format string but outputs it to stderr as is.

#define MSG_FORMAT "%s cannot be authenticated.\n"
void incorrect_password(const char *user) {
 /* user names are restricted to 256 characters or less */
 static const char *msg_format = MSG_FORMAT;
 size_t len = strlen(user) + sizeof(MSG_FORMAT);
 char *msg = (char *) malloc(len);
 if (!msg) {
 /* Handle error condition */
 }
 int ret = snprintf(msg, len, msg_format, user);
 if (ret < 0 || ret >= len) {\
 /* Handle error */
 }
 if (fputs(msg, stderr) == EOF) {
 /* Handle error */
 }
 free(msg);
 msg = NULL;
}

Compliant Solution (fprintf())
This simpler compliant solution passes the untrusted user input as one of the variadic
arguments to fprintf() and not as part of the format string, eliminating the possibility of
a format-string vulnerability.

#define MSG_FORMAT "%s cannot be authenticated.\n"
void incorrect_password(char const *user) {
 fprintf(stderr, MSG_FORMAT user);
}

Noncompliant Code Example (POSIX)
This noncompliant code example is exactly the same as the first noncompliant code exam-
ple but uses the POSIX function syslog() [Open Group 04] instead of the fprintf() func-
tion, which is also susceptible to format-string vulnerabilities.

Seacord_book.fm Page 422 Thursday, September 25, 2008 8:14 AM

FIO30-C 423

#define MSG_FORMAT "%s cannot be authenticated.\n"
void incorrect_password(const char *user) {
 /* user names are restricted to 256 characters or less */
 static const char *msg_format = MSG_FORMAT;
 size_t len = strlen(user) + sizeof(MSG_FORMAT);
 char *msg = (char *)malloc(len);
 if (!msg) {
 /* Handle error condition */
 }
 int ret = snprintf(msg, len, msg_format, user);
 if (ret < 0 || ret >= len) {\
 /* Handle error */
 }
 syslog(LOG_INFO, msg);
 free(msg);
 msg = NULL;
}

The syslog() function first appeared in BSD 4.2 and is supported by Linux and other
modern UNIX implementations. It is not available on Windows systems.

Compliant Solution (POSIX)
This compliant solution passes the untrusted user input as one of the variadic arguments
to syslog() instead of including it in the format string.

#define MSG_FORMAT "%s cannot be authenticated.\n"
void incorrect_password(const char *user) {
 syslog(LOG_INFO, MSG_FORMAT user);
}

Risk Assessment
Failing to exclude user input from format specifiers may allow an attacker to crash a vul-
nerable process, view the contents of the stack, view memory content, or write to an arbi-
trary memory location, and consequently execute arbitrary code with the permissions of
the vulnerable process.

Two recent examples of format-string vulnerabilities resulting from a violation of this
rule include Ettercap (ettercap.sourceforge.net/history.php) and Samba (samba.org/
samba/security/CVE-2007-0454.html). In Ettercap v.NG-0.7.2, the ncurses user interface
suffers from a format string defect. The curses_msg() function in ec_curses.c calls
wdg_scroll_print(), which takes a format string and its parameters and passes it to

Rule Severity Likelihood Remediation Cost Priority Level

FIO30-C high likely medium P18 L1

Seacord_book.fm Page 423 Thursday, September 25, 2008 8:14 AM

424 Chapter 10 � Input/Output (FIO)

vw_printw(). The curses_msg() function uses one of its parameters as the format string.
This input can include user data, allowing for a format string vulnerability. The Samba
AFS ACL mapping VFS plug-in fails to properly sanitize user-controlled file names that
are used in a format specifier supplied to snprintf(). This security flaw becomes exploit-
able when a user can write to a share that uses Samba’s afsacl.so library for setting Win-
dows NT access control lists on files residing on an AFS file system.

Related Vulnerabilities. The following vulnerabilities resulting from the violation of this
rule are documented in the CERT Coordination Center Vulnerability Notes Database
[CERT/CC VND].

References
� [ISO/IEC 9899:1999] Section 7.19.6, “Formatted Input/Output Functions”
� [ISO/IEC PDTR 24772] “RST Injection”
� [MITRE 07] CWE ID 134, “Uncontrolled Format String”
� [Open Group 04] syslog()
� [Seacord 05a] Chapter 6, “Formatted Output”
� [Viega 05] Section 5.2.23, “Format String Problem”

� FIO31-C. Do not simultaneously open the same file multiple times

Simultaneously opening a file multiple times has implementation-defined behavior. While
some platforms may forbid a file simultaneously being opened multiple times, platforms
that allow it may facilitate dangerous race conditions.

Noncompliant Code Example
This noncompliant code example logs the program’s state at runtime.

Metric ID Date Public Name

1.81 VU#649732 02/05/2007 Samba AFS ACL mapping VFS plug-in format
string vulnerability

11.85 VU#794752 01/20/2007 Apple iChat AIM URI handler format string
vulnerability

1.8 VU#512491 03/05/2008 GNOME Evolution format string vulnerability

8.11 VU#286468 05/31/2005 Ettercap contains a format string error in the
"curses_msg()" function

Seacord_book.fm Page 424 Thursday, September 25, 2008 8:14 AM

604 Chapter 14 � Miscellaneous (MSC)

Compliant Solution
This compliant solution implements a strictly conforming test for unsigned overflow.

unsigned int ui1, ui2, sum;

if (UINT_MAX - ui1 < ui2) {
 /* Handle error condition */
}
sum = ui1 + ui2;

If the noncompliant form of this test is truly faster, talk to your compiler vendor, because
if these tests are equivalent, optimization should occur. If both forms have the same per-
formance, prefer the portable form.

Risk Assessment
Unnecessary platform dependencies are, by definition, unnecessary. Avoiding these depen-
dencies can eliminate porting errors resulting from invalidated assumptions.

References
� [Dowd 06] Chapter 6, “C Language Issues” (Arithmetic Boundary Conditions, pp.

211–223)
� [ISO/IEC 9899:1999] Section 3.4.1, “Implementation-Defined Behavior,” Section 3.4.4,

“Unspecified Behavior,” Annex J.1, “Unspecified Behavior,” and Annex J.3,
“Implementation-Defined Behavior”

� [ISO/IEC PDTR 24772] “BQF Unspecified Behaviour”
� [Seacord 05a] Chapter 5, “Integers”

� MSC15-C. Do not depend on undefined behavior

C99, Section 3.4.3, defines undefined behavior as

behavior, upon use of a nonportable or erroneous program construct or of errone-
ous data, for which this International Standard imposes no requirements

Recommendation Severity Likelihood Remediation Cost Priority Level

MSC14-C low unlikely medium P2 L3

Seacord_book.fm Page 604 Thursday, September 25, 2008 8:14 AM

MSC15-C 605

C99, Section 4, explains how the standard identifies undefined behaviors:

If a “shall” or “shall not” requirement that appears outside of a constraint is vio-
lated, the behavior is undefined. Undefined behavior is otherwise indicated in
this International Standard by the words “undefined behavior” or by the omission
of any explicit definition of behavior. There is no difference in emphasis among
these three; they all describe “behavior that is undefined.”

C99, Annex J.2, “Undefined Behavior,” contains a list of explicit undefined behaviors
in C99.

Behavior can be classified as undefined by the C standards committee for the follow-
ing reasons:

� to give the implementor license not to catch certain program errors that are difficult
to diagnose.

� to identify areas of possible conforming language extension: the implementor may
augment the language by providing a definition of the officially undefined behavior.

Conforming implementations can deal with undefined behavior in a variety of fashions,
such as ignoring the situation completely, with unpredictable results; translating or exe-
cuting the program in a documented manner characteristic of the environment (with or
without the issuance of a diagnostic message); or terminating a translation or execution
(with the issuance of a diagnostic message). Because compilers are not obligated to gener-
ate code for undefined behavior, these behaviors are candidates for optimization. By
assuming that undefined behaviors will not occur, compilers can generate code with bet-
ter performance characteristics.

Unfortunately, undefined behaviors are coded. Optimizations make it difficult to
determine how these systems will behave in the presence of undefined behaviors. This is
particularly true when visually inspecting source code that relies on undefined behaviors;
a code reviewer cannot be certain if the code will be compiled or if it will be optimized
out. Furthermore, just because a compiler currently generates object code for an unde-
fined behavior does not mean that future versions of the compiler are obligated to do the
same; the behavior may be viewed as an opportunity for further optimization. Compilers
are also not required to issue diagnostics for undefined behavior, so there is frequently no
easy way to identify undefined behavior in code.

All of this puts the onus on the programmer to write strictly conforming code, with or
without the help of the compiler. Because performance is a primary emphasis of the C lan-
guage, this situation is likely to get worse before it gets better.

Seacord_book.fm Page 605 Thursday, September 25, 2008 8:14 AM

606 Chapter 14 � Miscellaneous (MSC)

Noncompliant Code Example
An example of undefined behavior in C99 is the behavior on signed integer overflow. This
noncompliant code example depends on this behavior to catch the overflow.

#include <assert.h>

int foo(int a) {
 assert(a + 100 > a);
 printf("%d %d\n", a + 100, a);
 return a;
}

int main(void) {
 foo(100);
 foo(INT_MAX);
}

This code tests for signed integer overflow by testing to see if a + 100 > a. This test can-
not evaluate to false unless an integer overflow occurs. However, because a conforming
implementation is not required to generate code for undefined behavior, and signed integer
overflow is undefined behavior, this code may be compiled out. For example, GCC 4.1.1
optimizes out the assertion for all optimization levels, and GCC 4.2.3 optimizes out the
assertion for programs compiled with -O2-level optimization and higher.

On some platforms, the integer overflow will cause the program to terminate (before
it has an opportunity to test).

Compliant Solution
This compliant solution does not depend on undefined behavior.

#include <assert.h>

int foo(int a) {
 assert(a < (INT_MAX - 100));
 printf("%d %d\n", a + 100, a);
 return a;
}

int main(void) {
 foo(100);
 foo(INT_MAX);
}

Seacord_book.fm Page 606 Thursday, September 25, 2008 8:14 AM

MSC30-C 607

Risk Assessment
While it is rare that the entire application can be strictly conforming, the goal should be
that almost all the code is allowed for a strictly conforming program (which among other
things means that it avoids undefined behavior), with the implementation-dependent
parts confined to modules that the programmer knows he or she needs to adapt to the
platform when it changes.

Related Vulnerabilities. The following vulnerability resulting from the violation of this
recommendation is documented in the CERT Coordination Center Vulnerability Notes
Database [CERT/CC VND].

References
� [ISO/IEC 9899:1999] Section 3.4.3, “Undefined Behavior,” Section 4, “Conformance,”

and Annex J.2, “Undefined Behavior”
� [ISO/IEC PDTR 24772] “BQF Unspecified Behaviour,” “EWF Undefined Behaviour,”

and “FAB Implementation-Defined Behaviour”
� [Seacord 05a] Chapter 5, “Integers”

� MSC30-C. Do not use the rand() function for generating
pseudorandom numbers

Pseudorandom number generators use mathematical algorithms to produce a sequence of
numbers with good statistical properties, but the numbers produced are not genuinely
random.

The C Standard function rand() (available in stdlib.h) does not have good random
number properties. The numbers generated by rand() have a comparatively short cycle,
and the numbers may be predictable.

Recommendation Severity Likelihood Remediation Cost Priority Level

MSC15-C high likely medium P18 L1

Metric ID Date Public Name

0 VU#162289 04/17/2006 C compilers may silently discard some
wraparound checks

Seacord_book.fm Page 607 Thursday, September 25, 2008 8:14 AM

659

Index

, (commas), surrounding macro
names, 12

. (period), unique header file names,
24

/*...*/, comment delimiters, 578–580
& (ampersand), bitwise AND opera-

tor, 174–175
&& (ampersands), logical AND,

96–98, 113
\ (backslash), loop terminator, 260
^ (caret), bitwise OR operator,

174–175
- (dash), in file names, 591
= (equal sign), equality operator, 283
== (equal signs), equality operator,

283
!= (exclamation, equal sign), equal-

ity operator, 283
>> (greater-than signs), right-shift

operator, 174–175
<< (less-than signs), left-shift opera-

tor, 174–175
% (percent sign), remainder opera-

tor, 168–170
? (question mark), repeating, 22–24
| (vertical bar), bitwise inclusive OR

operator, 174–175
|| (vertical bars), logical OR, 96–98,

113

[] (square brackets), subscript oper-
ator, 242

(pound sign) operator, concatenat-
ing tokens, 12, 18–20

(pound signs) operator, stringify-
ing macro parameters, 12,
18–20

~ (tilde), complement operator,
174–175

3Rs of survivability, 534

A
abort()

called by signal handlers, 564
exit behavior, 547, 556–557
terminating a program, 546–549

Abstract data types. See Data types,
abstract.

Abstract machine, 582
Abstraction levels, memory alloca-

tion, 319–321
Access control

files. See Files, access control.
objects, 82–84
permission escalation

signal handlers, 516
temporary file creation, 463
TOCTOU race conditions,

635

Access control, permissions
appropriate level of, 394–397
improper, information leakage,

417
principle of least privilege,

620–623
relinquishing, 636–642

Access-freed-memory vulnerability,
322–323

Accessing
files

with file descriptors,
372–374

by file name, 372–374
with FILE pointers, 372–374
unintentionally, 374, 383–386,

463
objects outside their lifetime,

72–74
acos(), 229
acosh(), 229
Actual argument, 19
Addition

integer overflow, 192–194
unsigned integer wrapping,

182–183
Address arguments, 552, 555
Adobe Flash vulnerability, 357
Advisory file locks, 456

660 Index

Alignment
bit-fields, 115–116
members, 98–100
objects, 131–133
struct member, 98–100
structures in memory, 100–102
type alignment error, 63

Allocating memory. See Memory,
allocating.

Ampersand (&), bitwise AND oper-
ator, 174–175

Ampersands (&&), logical AND,
96–98, 113

AND operators
& (ampersand), bitwise AND,

174–175
&& (ampersands), logical AND,

96–98, 113
ANSI/IEEE 754-2007, 215
arc4random(), 609
Arguments

assignment, 30–32
decrement, 30–32
function calls, 113, 133–135
increment, 30–32
passing with function pointers,

133–134
variadic functions, 60–61
volatile access, 30–32

argv(), 295–298
argv[0], 295–298
Ariane 5 launcher failure, 164
Arithmetic conversions, 150–151
Arithmetic operations on array

pointers, 261–263, 263–269
Arrays

\ (backslash), loop terminator, 260
[] (square brackets), subscript

operator, 242
adding pointers, 263–269,

265–269
bounds

checking, 256
specifying, 248–250, 312–313

buffer overflows
copying into insufficient stor-

age, 255–258
incorrect use of sizeof(), 247
looping beyond last element,

259–261
characters and strings

bounds specification, 312–313
initialization, 312–313
unbounded copying, 307–311

comparing pointers, 261–263
copying data into, 255–258
definition, 243
description, 242–245
dynamic allocation

for copied data, 256–257
resizing, 343–346
size requirements, calculating,

342–343
element types, 243, 258
elements

definition, 243
dereferencing, 264
finding, 259–261
loop termination, 259–261

flexible members, 358–360
incompatible types, 258–259
incomplete types, 243
indices, range checking, 250–251
initializing

array bounds, specifying,
248–250

incomplete types, 243
string literals, 312–313

iterating through, 259–261
memory overwrites, 251, 253
modification failure, resetting

strings, 446–447
notation consistency, 251–254
null-terminated byte strings,

259–261
pointers

adding, 263–269, 265–269
arithmetic operations on,

261–263, 263–265,
265–269

comparing, 261–263
subtracting, 261–263, 263–265,

265–269
range checking

indices, 250–251
size arguments, 254–255

risk assessment summary, 242
rules and recommendations

related, 242
summary of, 241

size
arguments, variable length

arrays, 254–255
bounds specification, 312–313
determining, 95–96, 245–249
insufficient, 255–258
string literal initialization,

312–313

stack exhaustion, 255
subscripts, and pointers, 244
subtracting pointers, 261–263,

263–265, 265–269
unbounded copying, 307–311
variable length

size arguments, 254–255
stack allocation, 335–336

ASCII characters, 590–593
asin(), 229
assert()

diagnostic tests, 597–598
invalid pointers, terminating on,

350
side effects, 122–123
termination behavior, 556–557
testing values, constant expres-

sions, 39–42
Assertions

side effects, 122–123
static. See Static assertions.
termination behavior, 556–557
testing code, 597–598

Assignment side effects, 30–32
Asynchronous-signal-safe func-

tions, 511–516. See also
Longjmp(), in signal handlers.

atan2(), 229
atanh(), 229
atexit(), 494–497, 545
atof(), 559
atoi(), 160–162
atol(), 160–162
atoll(), 160–162
Automatic storage duration

buffers, pointers to, 631–633
const-qualified objects, 46
object initialization, 124
object lifetime, 72

Automatically generated code, 2–3
Availability, measuring, 533

B
Backslash (\), loop terminator, 260
bash vulnerability, 305
Basic character set, 29, 282–284, 590
Binary data

floating-point, 215
reading, 401–403
transferring across systems,

402–403
writing, 401–403

Binary mode vs. text mode, file
streams, 411–413, 442–443

Index 661

Binary temporary files, creating,
460–461

Bit-fields
alignment, 115–116
layout assumptions, 172–173
in multithreaded environments,

626–629
overlap, 116–117
type assumptions, 172–173

Bitwise operations
& (ampersand), bitwise AND,

174–175
^ (caret), bitwise OR, 174–175
| (vertical bar), bitwise inclusive

OR, 174–175
combined with arithmetic opera-

tions, 175–178
on unsigned operands, 174–175

Black listing, characters and strings,
278

Block scope, 73
Books and publications. See Refer-

ences.
Bounds. See also Range.

checking
arrays, 256
calloc() arguments, 342–343
floating-point math functions,

229
memory allocation, 342–343

specifying, arrays, 248–250,
312–313

Buffer overflow causes
arrays

copying into insufficient stor-
age, 255–258

incorrect use of sizeof(), 247
looping beyond last element,

259–261
characters and strings

alternative functions, 289–291
null-terminated byte strings,

280–282, 294–299
unbounded copying, 307–311
wide string size, 303–305

data model errors, 145
error handling, return codes, 436
insufficient storage for variables,

474
invalid size arguments, 365
magic numbers, 50
memory allocation, 343
memory initialization, 346–348
numeric literals, 50

pointer arithmetic, 107–109
programmer-defined integer

types, 180
readlink() termination, 624
return code checking, 436
truncation errors, 190
unsigned integer wrapping, 343

BUFSIZ macro, 106
Building Systems from Commercial

Components, xxxi

C
Caching restrictions, 82–84
Call-by-name, 11
Call-by-value, 11
calloc()

arguments, out-of-bounds check,
342–343

clearing freed space, 330
information leakage, 330
memory allocation errors,

355–357
memory size, calculating, 362–365
returned pointers, casting,

324–328
zero-length allocations, 332–333

Canonical form conversion, path
names

Linux, 380–381
overview, 374–375
POSIX, 376–380
Windows, 381–382

canonicalize_file_name(),
380–381

Caret (^), bitwise OR operator,
174–175

Carriage returns, 412, 591
Case label, 574
Case sensitivity

environment variables, 475, 477
file names, 591
header file names, 24

Casting. See also Conversions.
calloc() returned pointers,

324–328
function calls into pointers, 10,

324–328
memory allocation calls to

pointers, 10
realloc() returned pointers,

324–328
Casting away

const-qualification, 35, 102–104
volatile qualifications, 123–124

CERT Secure Coding Standards
wiki, xvii

CERT/CC VND (CERT/CC Vulnera-
bility Notes Database), xxiv

char type, 162–164
Characters and strings

arrays
bounds specification, 312–313
initialization, 312–313
unbounded copying, 307–311

ASCII characters, 590–593
basic character set, 29, 282–284,

590
black listing, 278
buffer overflows

alternative functions,
289–291

null-terminated byte strings,
280–282, 294–299

unbounded copying, 307–311
wide string size, 303–305

C language support for, 273
character class ranges, 370–371
character encoding

ASCII characters, 590–593
Unicode, 594–597
UTF-8, 594–597

character I/O functions, return
code checking, 436–438

character literals, 45
character sets

basic, 29, 282–284, 590
execution, 590
source, 590

character-handling functions,
314–315

comparing, 274
in complex subsystems, 276–280
converting to integers, 143,

157–162. See also
Stringification.

data integrity issues, 279
data sanitization, 276–280, 292,

590–593
data types. See also specific types.

character types, 162–164,
282–284

choosing, 273–275
converting, 305–307
int, 274
for numeric values, 162–164,

282–284
plain char, 162–164, 274,

282–284

662 Index

Characters and strings, cintinued
data types, continued

signed character, 162–164,
274, 305–307

unsigned character, 162–164,
274, 305–307

wchar_t, 274
execution character set, 590
extended characters, 590
function alternatives, 288–291
functions for, arguments to,

314–315
injection attacks, 279
length, 273
loss of data, 279
managed strings, 291–293
managing consistently, 275–276
memory usage, reducing, 301–303
multibyte strings, 273
narrow strings, 273, 284
new manipulation code, 291–293
null-terminated byte strings

buffer overflows, 280–282,
294–299

creating, 299–303
definition, 273
dynamic allocation, 275–276
environment variables, copy-

ing, 298–299
libraries, 275–276
managing consistently, 275–276
null termination character,

299–303
off-by-one error, 294–295
static allocation, 275–276
storage allocation, 294–299
truncating, 280–282, 300–301
unintended character arrays,

312–313
pointers to, 273
risk assessment summary, 272
rules and recommendations

related, 273
summary of, 271–272

single-byte strings, 273
source character set, 590
special characters

ASCII, 590
national use positions, 590
portability, 590
sanitizing, 276–280

string data, converting to integers,
143, 157–162

string tokenization, 286–287
unbounded copying, 307–311
US-ASCII characters, 590–593
white listing, 277–278
wide strings

data type, 274
definition, 273
modifying, 293–294
sizing, 303–305
string literals, 285

Characters and strings, string
literals

arrays, initializing, 312–313
concatenating, 12
const-qualification, 67, 284–285
definition, 45, 293
immutable, 284–285
modifying, 67, 293–294
mutable, 284–285
narrow, 284
size specification, 312–313
wide

data type, 274
definition, 273
modifying, 293–294
sizing, 303–305
string literals, 285

chroot() jails, 419–420
Clare, Geoff, 482
Clean compiles, 570–572
clearenv(), 479–481
Clearing

the environment, 478–482
returned resources, 328–332,

582–585
Close-on-exec flag, 452
Closing files, 450–454
Code

/*...*/, comment delimiters,
578–580

analysis tools, xx
assertions, 597–598
categories, 2–3
commenting out, 578–579
comments, 578–580
compiling. See Compiling code.
errors of addition, 576–578
errors of omission, 574–576
logical completeness, 572–574
platform dependencies, avoiding,

602–604
portability, 602–604
readability, 579–580

testing
with assertions, 597–598
compiler diagnostic messages,

571
constant expression values, 19,

39–42
functions for error conditions,

57–59
undefined behavior, 604–607
unnecessary, removing, 582–588,

598–600
unused values, removing,

600–602
Coding standards

automatically generated code, 2–3
code categories, 2–3
deviation procedures, 4
hand-coded code, 2–3
rules and recommendations,

levels, 4
source code, compliance valida-

tion, 3–4
system qualities, 1–2
tool selection, 3–4
tool-generated code, 2–3

Coding style, xxii
Command processors, 482–487
Commas (,), surrounding macro

names, 12
Commenting out code, 578–579
Comments

/*...*/, comment delimiters,
578–580

commenting out code, 578–579
describing code, 578–580
readability, 42–43, 579–580
variable declarations, 42–43

Common Vulnerabilities and Expo-
sures (CVE), xxiv

Common Vulnerability Scoring Sys-
tem (CVSS), xxvi

Common Weakness Enumeration
(CWE) IDs, xxiv

Comparing
array pointers, 261–263
characters and strings, 274
integers, to a larger size,

207–210
mbstowcs() return values, 611
return values, 610–613
size_t return values, 611
structures, 100–102

Compile-time constant, yielding, 10

Index 663

Compiling code
clean compiles, 570–572
diagnostic messages, 571
optimization, and sensitive infor-

mation, 582–585
warning levels, 570–572

complex.h, 226, 559
Compliance with standards, 1, 3–4
Compliant solutions, xxiii
Concatenation

(pound sign) operator, concate-
nating tokens, 12, 18–20

string literals, 12
token pasting, 19
tokens, 12, 18–20, 29–30
universal character names, 29–30

Conditional inclusion, 41
Conditional operator, 151
confstr(), environment variables,

479, 481
const poisoning, 35
Constant values

assuming, 105–106
modifying, 102–104
testing, 19, 39–42

Constants, 45. See also Characters and
strings, string literals; Declara-
tions and initialization, literals.

const-qualification
casting away, 35, 102–104
function parameters, 66–68
immutable objects, 14, 35–36
objects, scope, 45–46
scope, 42
string literals, 284–285

Constraint, 541–543
Control flow, altering on error detec-

tion, 554–555
Conversion specifiers

argument mismatches, 371
length modifiers, 370
list of, 370

Conversions. See also Casting; Inte-
ger type conversions.

arithmetic, 150–151
characters to integers, 143, 157–162.

See also Stringification.
data types, characters and strings,

305–307
data types, integer

arithmetic conversions, 150–151
code examples, 151–153
data loss, 186–191

integer conversion rank, 150
integer promotions, 149–150,

152
integer-to-pointer, 170–172
loss of precision, 188–189
minimum ranges, 189–190
misinterpreted data, 186–191
numeric strings, to greatest-

width integers, 143
pointer-to-integer, 170–172
required conversions, determin-

ing, 150
rules for, 149–152
signed to signed, 188–189
signed to unsigned, 188
string data, 143, 157–162
unsigned to signed, 187
unsigned to unsigned, 188–189
usual arithmetic conversions,

150–151
directory names to canonical

forms. See Canonical form
conversion, path names.

expression pointers, 131–133
file names to canonical forms. See

Canonical form conversion,
path names.

floating-point errors, 219
floating-point numbers to inte-

gers, 234–239
function pointer types, 84–86
implicit, 324
integer conversion rank, 150
integers and floating-point num-

bers, 219
integer-to-pointer, 170–172
loss of precision, 188–189
memory pointers, unintended, 328
numeric, 559
numeric strings to greatest-width

integers, 143
pointer-to-integer, 170–172
signed integers, 188–189
strings to integers, 143, 157–162.

See also Stringification.
unsigned integers, 187–189
usual arithmetic, 150–151

Copying
characters and strings,

unbounded, 307–311
data into arrays, 255–258
environment variables, 298–299,

471–473

FILE objects, 443–444
null-terminated byte strings,

296–297
overlapping objects, 81

Core dumps, 338–339
cosh(), 229
Creating

file names
hard coded, 457–458
predictability, 454–455
uniqueness, 454–455, 458–460,

459–460, 461–462
format strings, 370–371
null-terminated byte strings,

299–303
universal character names, 29–30

Creating, files. See also Fopen().
access permissions, 394–397
assumptions about, 383–387
hard-coded names, 457–459
mode strings, 407–408
in shared directories, 457–459
temporary

binary, 460–461
with hard-coded file name,

457–459
in shared directories, 454–463
unique file names, 454–455,

458–460, 459–460,
461–462

CryptGenRandom(), 609
ctype.h, 274, 314
CVE (Common Vulnerabilities and

Exposures), xxiv
CVSS (Common Vulnerability Scor-

ing System), xxvi
CWE (Common Weakness Enumer-

ation) IDs, xxiv

D
Dangling pointers

accessing freed memory, 351–353
definition, 351
free(), 322–323
getenv(), 468

Dash (-), in file names, 591
Data integrity, characters and

strings, 279
Data loss

characters and strings, 279
information leakage

file descriptor leakage, 450–454
from freed resources, 328–332

664 Index

Data loss, continued
information leakage, continued

improper permissions, 417
multithreaded environments,

629
uninitialized memory,

346–348
overwriting data, 473
pushing back characters, 411
sensitive information

clearing, 328–332
compiler optimization,

582–585
improper permission vulnera-

bility, 417
leaking, 328–332, 346–348,

417
program termination vulnera-

bility, 549, 557
writing to disk, 338–341

truncation
buffer overflow cause, 190
fgets(), 280–282
gets(), 280–282
improper use of strtok(),

286–287
new-line character, missing,

440–442
null-terminated byte strings,

280–282, 300–301
pushing back characters, 411
snprintf(), 280–282
sprintf(), 280–282
strcat(), 280–282
strcpy(), 280–282
strcpy_s(), 281–282
string tokenization, 286–287
strncat(), 280–282
strncpy(), 280–282
toward zero, 169
ungetc(), 411
ungetwc(), 411

Data models, integers
code examples, 143–145
definition, 141
integral ranges, 142
list of, 142
numeric strings, converting to

greatest-width integers, 143
size restrictions, 142–143
types available, 142–143

Data transfer across systems,
402–403

Data types. See also specific types.
abstract, 64–65
alignment error, variadic functions,

63
arrays

incompatible types, 258–259
incomplete types, 243

bit-field alignment, 115–116
bit-field overlap, 116–117
characters and strings. See also

specific types.
character types, 162–164,

282–284
choosing, 273–275
converting, 305–307
int, 274
for numeric values, 162–164,

282–284
plain char, 162–164, 274,

282–284
signed character, 162–164,

274, 305–307
unsigned character, 162–164,

274, 305–307
wchar_t, 274

choosing, 273–275
converting, 305–307
definitions

formatted I/O, 178–181
vs. macro definitions, 15–16
readability, 44–45
scope rules, 15

encoding, macro definitions vs.
type definitions, 15–16

function pointers, 53–54
incompatibilities, 114–117
information hiding, 64–65
integer, conversions

arithmetic conversions, 150–151
code examples, 151–153
data loss, 186–191
integer conversion rank, 150
integer promotions, 149–150,

152
integer-to-pointer, 170–172
loss of precision, 188–189
minimum ranges, 189–190
misinterpreted data, 186–191
numeric strings, to greatest-

width integers, 143
pointer-to-integer, 170–172
required conversions, determin-

ing, 150

rules for, 149–152
signed to signed, 188–189
signed to unsigned, 188
string data, 143, 157–162
unsigned to signed, 187
unsigned to unsigned, 188–189
usual arithmetic conversions,

150–151
integers vs. floating-point,

114–115
interpretation error, 62–63
for numeric values, 162–164,

282–284
opaque, 64–65
plain char, 162–164, 274, 282–284
size

determining, 49, 95–96, 109–111
hard coding, 109–111

variadic functions, 62–64
volatile qualifications, casting

away, 123–124
Date public, vulnerabilities, xxvii
Decimal constant, 214
Decimal floating-point, 215
Declarations and initialization

abstract data types, 64–65
assert(), 39–42
casting away const-qualification,

35
comments, 42–43
const poisoning, 35
constant expression values, test-

ing, 19, 39–42
const-qualification

casting away, 35
function parameters, 66–68
immutable objects, 14, 35–36

function declarators, type infor-
mation, 51–54

function parameters, 66–68
function pointers

referencing overlapping objects,
80–82

restrict qualification, 80–82
type conversion, 84–86
type information, declaring,

53–54
function prototypes, 52–53
functions

errno error codes, 57–59
errno_t error code, 57–59
testing for error conditions,

57–59

Index 665

functions, variadic
type alignment error, 63
type interpretation error, 62–63
type issues, 62–64
va_arg() macro, 61, 62–64
vfprintf(), 61
vfscanf(), 61
vscanf(), 61
vsnprintf(), 61
vsprintf(), 61
vsscanf(), 61
writer/caller contract, 59–62

identifiers
conflicting linkage classifica-

tions, 87–89
duplicates, 78
external linkage, 87–89
implicit declaration, 4–77
internal linkage, 87–89
no linkage, 87–89
significant characters, mini-

mum requirements, 78
uniqueness, 78–79
visual distinction, 38–39

immutable objects, const-
qualifying, 14, 35–36

incorrect assumptions, identify-
ing, 39–42

information hiding, 64–65
literals

character, 45
constants, 45
const-qualified objects, 45–46
enumeration, 46, 48–49
floating, 45
integer, 45, 48–49
kinds of, 36
magic numbers, 45
meaningful names, 45–51
memory requirements, 46–47
named, symbolic, 45–47, 50
object-like macros, 47
relationships, encoding, 54–56
runtime modification, 36
string, 45

non-prototype-format declara-
tors, 51–52

objects
access restrictions, 82–84
accessing outside their lifetime,

72–74
caching restrictions, 82–84
confined to current scope, 70–72

declaring as static, 70–72
hiding, 70–72
lifetime duration, 72–74
volatile-qualified type, 82–84

opaque data types, 64–65
readability

comments, 42–43
literals, 45
magic numbers, 45
meaningful literal names,

45–51
type definitions, 44–45
typedef, 44–45
variables, one per declaration,

42–44
risk assessment summary, 34–35
rules and recommendations, sum-

mary of, 33–34
runtime error checking, 39
sizeof operator, 49
static assertions, testing constant

values, 19, 39–42
static_assert() macro, 41–42
translation units, global variable

initialization order, 69–70
type size, determining, 49
variable names in subscopes, reus-

ing, 8, 36–38
variables

global initialization order,
assumptions about, 69–70

multiple per declaration, 16,
42–44

reusing names in subscopes,
36–38

size, determining, 49
unintentional reference, 36–39
visually indistinct identifiers,

38–39
Decrement side effects, 30–32
Default argument promotions, 62
Default label, 574
Default values, looking up, 479
#define vs. typedef, 15–16
Deleting. See Removing.
Delivering Signals for Fun and Profit,

519
Demotion of floating-point num-

bers, 236–239
Denial-of-service attacks

code readability, 580
divide-by-zero errors, 156
FILE object copies, 444

file operations, on devices, 426
input/output, 426
memory allocation failures,

355–357
memory management errors, 321
race conditions, multiple threads,

615–616
reading freed memory, 352
stack allocation, 337–338
UTF8-encoded data, 596
vfork(), 629

Dependability, measuring, 533
Dereferencing array elements, 264
Development process for secure soft-

ware, xvi–xvii
Deviation procedures, for rules and

recommendations, 4
Devices, accessing as files, 426–431
Diagnostic messages, compiler, 571
difftime(), 581
Digraphs, 23
Directories

names, converting to canonical
forms. See Canonical form
conversion, path names.

secure, 413–418
shared

creating files in, 457–459
temporary files in, 454–463

Disk files, identifying, 430
Divide-by-zero errors

denial of service attacks, 156
division operations, 201
floating-point numbers, 219, 228
modulo operations, 201–203

Division
fractional remainders. See Modulo

operations.
integer overflow, 197
modulo arithmetic, 165
modulo operations

divide-by-zero errors, 201–203
division, 169
fractional remainders, discard-

ing, 169
integer overflow, 197–198

by powers of 2, 176–177
remainder assumptions,

168–170
with shift operators, 176–177
truncation toward zero, 169

Domain errors, floating-point num-
bers, 227–234

666 Index

Double-free vulnerability, 319–321,
322–323, 353–355

do-while loops, 27–29
_dupenv_s(), 470–471
Duplicate environment variable

names, 475–478
Duplicate identifiers, 78
Dynamic allocation, arrays

for copied data, 256–257
resizing, 343–346
size requirements, calculating,

342–343

E
EDOM, 559
EILSEQ, 560
Element types, 243, 258
Elements of arrays

definition, 243
dereferencing, 264
finding, 259–261
loop termination, 259–261

Encoding errors, 434, 537, 553,
560

Encoding types, macro definitions
vs. type definitions, 15–16

Endianess, 401
End-of-file

detecting, 436–438, 438–440
error indicators, 438–440
indicator, 436, 438

enum type, 48, 572–573, 574
Enumeration constants, mapping,

167–168
Enumeration literals, 46, 48–49
environ argument, 491
Environment

buffer overflows, insufficient
storage, 474

clearing, 478–482
command processors, 482–487
external programs, invoking,

478–482
overwriting data, 473
program termination, 494–497
risk assessment summary,

467–468
rules and recommendations

related, 468
summary of, 467

sanitizing, 478–482
system() calls, 482–487

Environment list, 298, 475, 479

Environment variables
~ vs. ~username, 482
case sensitivity, 475, 477
copying, 471–473
default values, determining, 479
default values, looking up, 479
determining need for, 481
duplicate names, 475–478
getting, 468–471
$HOME value, 482
memory allocation, 633
pointers, invalidating, 491
pointers to

invalidating, 489–493
modifying, 487–489
storing, 468–473

setting, 631–633
size assumptions, 474–475

envp environment pointer
environ alternative, 491
_environ alternative, 492–493
invalidating, 491–493

EOF, in-band errors, 537–540. See
also End-of-file.

Equal sign (=), equality operator,
283

Equal signs (==), equality operator,
283

ERANGE, 228, 558–561
erfc(), 229
errno error codes. See also Error

handling; Return codes,
checking.

alternative to, 535–537
checking, 558–563
file stream errors, checking for,

535–537
indeterminate values, 564–567
and library functions, 558–563
redefining, 563
return code type, 57–59
setting to zero, 558–563
uses for, 559–560

errno.h, 563
errno_t error codes, 57–59
Error handling

3Rs of survivability, 534
address arguments, 552, 555
adopting a policy, 533–535
altering control flow, 554–555
availability, measuring, 533
dependability, measuring, 533
detecting errors, 549–556

fault handling strategy, 534–535
fault tolerance, measuring, 533
file stream errors, 535–537
floating-point numbers, 218–224
functions

defined by TR 24731-1, 541–543
return codes, 118–119. See also

Errno error codes; Errno_t
error codes.

runtime-constraint handlers,
541–543

testing for error conditions,
57–59

global error indicators, 553–554,
555

in-band error indicators, 537–540
input/output. See Input/output,

error handling.
longjmp(), 554–555
memory allocation, 355–357
mitigating effects, 534–535
recognition, 534
recovery, 534
reliability, measuring, 533
reporting errors, 549–556
required system qualities, 533
resistance, 534
return values, 551, 555. See also

Errno error codes.
risk assessment summary, 532
rules and recommendations

related, 532
summary of, 531

runtime, 39
setjmp(), 554–555
survivability, 533–534
termination strategy. See Program

termination.
vulnerabilities, avoiding, 534–535

Error indicators. See also Errno error
codes; Error handling.

end-of-file, 438–440
global, 553–554, 555
in-band

EOF, 537–540
exceptions, 539
null pointers, 538–539

Errors of addition, 576–578
Errors of omission, 14, 574–576
Escape characters, in file names, 591
Ettercap vulnerability, 423–424
Evaluation order. See Order of

operations.

Index 667

Exclamation, equal sign (!=), equal-
ity operator, 283

Exclusive file access, 456
Exclusive file locks, 456, 458
execl(), 484
execle(), 484
execlp(), 484
Execution character set, 590
Execution environment, 590
execv(), 484
execve(), 484
execvP(), 484
execvp(), 484
exit(), 544–545, 547–549
_Exit(), 546, 547
EXIT_FAILURE, 544–546
EXIT_SUCCESS, 544–545
exp(), 229
exp2(), 229
expm1(), 229
Expressions

&& (ampersands), logical AND,
96–98, 113

|| (vertical bars), logical OR,
96–98, 113

array size, calculating, 95–96
arrays, incompatible types, 258–259
assert(), 122–123
assertions, side effects, 122–123
bit-field assumptions, 172–173
buffer overflows, pointer arith-

metic, 107–109
casting away

const-qualification, 102–104
volatile qualifications, 123–124

constant values
assuming, 105–106
modifying, 102–104

const-qualification, casting away,
102–104

data types
bit-field alignment, 115–116
bit-field overlap, 116–117
incompatibilities, 114–117
integers vs. floating-point,

114–115
volatile qualifications, casting

away, 123–124
with floating-point numbers, rear-

ranging, 214–215
functions

call results, modifying, 129–131
error checking, 118–119

returned values, checking,
118–119

void return type, 118–119
magic numbers, 127
memory, uninitialized, 124–128
NDEBUG preprocessor symbol, 122
offsetof() macro, 135–137
order of operations

controlling with parentheses,
93–95

evaluation of subexpressions,
111–113

exceptions, 113
macros, 15
sequence points, 119–121
side effects, 111–113

pointer arithmetic, 107–109
pointers

converting, 131–133
null, dereferencing, 128–129
object alignment, 131–133
taking size of, 95–96

risk assessment summary, 92–93
rules and recommendations

related, 93
summary of, 91–92

sequence points
modifying function call results,

129–131
order of operations, 7, 119–121
side effects, 119–121

short circuit behavior, 96–98
side effects

in assertions, 122–123
sequence points, 119–121

sizeof() operator
operands, side effects,

104–105
type size, determining, 95–96,

109–111
variable size, determining,

109–111
struct member alignment,

98–100
structures

aligning in memory, 100–102
byte-by-byte comparison,

100–102
element offset, determining,

135–137
packed, 99
padding, 98–100
size, as sum of parts, 98–100

type size
determining, 95–96, 109–111
hard coding, 109–111

variables
size, determining, 109–111
uninitialized, referencing,

124–128
volatile qualifications, casting

away, 123–124
Extended characters, 590
External linkage identifiers, 87–89
External names, 78
External programs, invoking,

478–482

F
Failure Mode, Effects, Criticality

Analysis (FMECA), xxiv
Fault handling strategy, 534–535
Fault tolerance, measuring, 533
fclose(), 439
FD_CLOEXEC flag, 452–453
fdim(), 229
fdopen(), 385
fenv.h, 219
feof(), 437, 438–440
ferror()

alternative to errno, 535–537
file errors, detecting, 438–440
file stream errors, checking for,

535–537
fflush()

end-of-file indicator, 439
flushing file streams, 392,

444–446
fgetc()

end-of-file, detecting, 436, 438
return codes, checking, 388

fgetpos()

failure codes, 560
file positioning, 464–465
pushing back characters,

410–411
fgets()

alternative to gets(), 432–433
characters and strings,

unbounded copying, 308
failure, resetting strings, 446–448
new-line character, reading,

440–442
return codes, checking, 432–433
truncating null-terminated byte

strings, 280–282

668 Index

fgetws()

failure, resetting strings,
446–448

new-line character, reading,
440–442

Field width, 172
File descriptors, 372–374, 450–454
File extensions, header file names,

24
File functions, temporary file names,

455
File I/O functions, return code

checking, 386–389
File links, 617–620
File names. See also Renaming files.

- (dash), as leading character, 591
accessing devices, 426–431
accessing files by, 372–374
carriage returns in, 591
case sensitivity, 591
creating, 457–458, 458–460,

461–462
disallowed characters, 591–593
escape characters, 591
hard coded, 457–458
naming conventions, 591–593
new-line characters, 591
patterns for, 459
punctuation characters, 591
selecting, 461
spaces, 591
special file access, 426–431
uniqueness

criteria for temporary files, 455
ensuring, 461–462
predictability, 455, 459
vulnerabilities, 457–461

FILE objects, copying, 443–444
FILE pointers, 372–374
File positioning

alternating input/output, 444–446
error handling, 388–389
fseek() vs. rewind(), 398–399
valid values for, 464–465

File scope, 70, 72–73, 87
File streams

alternating input/output,
444–446

errors, checking for, 535–537
file positioning

alternating input/output,
444–446

error handling, 388–389

fseek() vs. rewind(), 398–399
valid values for, 464–465

flushing, 444–446
stream arguments with side

effects, 448–450
text mode vs. binary mode,

411–413, 442–443
Files

access control
advisory locks, 456
exclusive access, 456
exclusive locks, 456, 458
jails, 418–420
locking, 456
mandatory locks, 456
permissions, creating, 394–397
sandboxes, 418–420
shared locks, 456, 458

accessing
with file descriptors, 372–374
by file name, 372–374
with FILE pointers, 372–374
unintentionally, 374, 383–386,

463
closing, 450–454
creating

access permissions, 394–397
assumptions about, 383–387
hard-coded names, 457–459
mode strings, 407–408
in shared directories, 457–459
temporary, in shared directo-

ries, 454–463
errors, detecting, 438–440
file functions, temporary file

names, 455
FILE pointers, 372–374
file positioning

alternating input/output,
444–446

error handling, 388–389
fseek() vs. rewind(), 398–399
valid values for, 464–465

header. See Header files.
identifying

by attributes, 389–394
by name, 372–374

including wrong one, 16–18
input/output. See Input/output, files.
open, removing, 399–401
opening

assumptions about, 383–387
mode parameter, 407–408

race conditions, 424–426
simultaneous multiple times,

424–426
orphaned, removing, 456–457
overwriting, unintentional,

383–386
renaming

portable behavior, 405–407
preserving destination file,

403–404, 406
race conditions, 404, 406
removing destination file,

404–405, 406
rename(), 403

rewinding, 398–399, 444–446
secure directories, 413–418
security vulnerabilities, 372–374
temporary

creating in shared directories,
454–463

criteria for, 455
naming, 455, 459
predictable names, 455, 459
removing, 456–457
vulnerabilities, 457–461

TOCTOU race conditions
accessing devices as files, 429
checking file names, 378, 382
unintended file access, 374

unique names
criteria for temporary files, 455
ensuring, 461–462
predictability, 455, 459
vulnerabilities, 457–461

update mode, 444–446
Flags

close-on-exec, 452
FD_CLOEXEC, 452–453
NDEBUG, 597
-O, 83
O_CLOEXEC, 452–453
O_CREAT, 384, 458
O_EXCL, 384, 458
O_EXLOCK, 458
O_NOFOLLOW, 618
O_NONBLOCK, 427
O_SHLOCK, 458
packing, 172
SA_RESETHAND, 505, 507
struct member alignment, 98

Flash vulnerability, 357
Flexible array members, memory

allocation, 358–360

Index 669

Floating literals, 45
Floating-point exception, 219–220
Floating-point numbers

binary floating-point, 215
bounds checking, math func-

tions, 229
compiler variations, 213–214
conversions, 219
decimal floating-point, 215
demotion, 236–239
divide-by-zero errors, 219, 228
domain errors, 227–234
error handling, 218–224
expressions, rearranging, 214–215
fractions, 224
functions

calling with complex values,
226–227

math, 227–234
integer conversions, 234–239
vs. integers, 114–115
limitations, 212–214
as loop counters, 224–226
overflow, 228
precision, 213, 215–218
range errors, 227–234
risk assessment summary, 211–212
rounding, 215
rules and recommendations

related, 212
summary of, 211

SEH (structured exception han-
dling), 222–223

Flushing file streams, 444–446
fma(), 229
FMECA (Failure Mode, Effects, Crit-

icality Analysis), xxiv
fmod(), 229
fopen(). See also Creating, files.

creating files
access permissions, 395–396
assumptions about, 383–387
hard-coded names, 457–459
mode strings, 407–408
in shared directories, 457–459
temporary, 457–459

file identification, 372
opening files, 383–387
return codes, checking, 433–434,

561–562
fopen_s()

creating files, 383–384, 395–396
file access permissions, 395–396

fork(), 630–631
Format strings

creating, 370–371
related vulnerabilities, 424
user input, 421–424

Formatted I/O, 178–181
Fortify Taxonomy: Software Security

Errors, 330–331
fpos_t, 464–465
fprintf(), 421–422, 513
fputc(), 388, 436
fputs(), 422, 439
Fractions, floating-point numbers,

224
fread(), 401–403
free()

dangling pointers, 322–323
freeing nondynamic memory,

355–357
information leakage, 329–330
in signal handlers, 513

Freed memory. See Memory, freed.
Freeing memory. See Memory, free-

ing.
freopen(), 372
Friedl, Stephen, 44, 56, 602
fscanf(), 157–158, 439
fseek()

file positioning, 388–389,
398–399, 444–446

line breaks, 412
new-line character, 412
vs. rewind(), 398–399

fsetpos()

failure codes, 560
file positioning, 444–446,

464–465
pushing back chars, 410–411

fstat(), 390–394, 428, 634–635
ftell(), 560
Function declarators, type informa-

tion, 51–54
Function designator, 112–113
Function prototypes, 52–53
Function type, 51–54
Function-like macros, 6–11, 328
Functions

arguments
changing, 66
destination pointers, 80–82
passing by value, 66
referencing overlapping objects,

80–82

restrict qualification, 80–82
unintentional modification, 35

asynchronous-signal-safe,
511–516

calls
casting into pointers, 324–328
from macros, 30–32
results, modifying, 129–131

characters and strings
alternatives, 288–291
arguments to, 314–315

errno error codes, 57–59
errno_t error code, 57–59
error handling

defined by TR 24731-1,
541–543

return values, checking,
118–119

runtime-constraint handlers,
541–543

floating-point numbers
calling with complex values,

226–227
math, 227–234

inline, macro alternative, 6–11,
30–32

inline substitution, 6
input/output. See Input/output,

functions.
local, 10
names, global replacement, 26–27
parameters, 66–68
pointers

referencing overlapping objects,
80–82

restrict qualification, 80–82
type conversion, 84–86
type information, declaring,

53–54
program termination

abort(), 546–547, 547–549,
556–557, 564

assert(), 556–557
atexit(), 545
exit(), 544–545, 547–549
_Exit(), 546, 547
return from main(), 545–546,

547
summary of, 547

replacing with less secure func-
tions, 26–27

returned values, checking,
118–119

670 Index

Functions, continued
for signal handlers, 511–516
static, macro alternative, 6–11,

30–32
testing for error conditions,

57–59
type-generic, 10–11
variadic

type alignment error, 63
type interpretation error,

62–63
type issues, 62–64
va_arg() macro, 61, 62–64
vfprintf(), 61
vfscanf(), 61
vscanf(), 61
vsnprintf(), 61
vsprintf(), 61
vsscanf(), 61
writer/caller contract, 59–62

void return type, 118–119
vsnprintf(), noncompliant

example, 26–27
fwide(), 560
fwrite(), 401–403

G
getc()

end-of-file, detecting, 436, 438
return codes, checking, 388
stream arguments with side

effects, 448–450
getchar()

characters and strings,
unbounded copying, 309

end-of-file, detecting, 436, 438
return codes, checking, 388

getconf(), 481
getenv()

dangling pointers, 468
environment variables

clearing, 481–482
copying, 298–299
duplicate names, 475–478

pointers from
modifying, 487–489
storing, 468–473

race conditions, 468
thread safety, 468

getenv_s(), 469–470
GetFileType(), 430
GetFullPathName(), 381–382

gets()

alternative to, 432
characters and strings, unbounded

copying, 307–308
deprecated use, 431
truncating null-terminated byte

strings, 280–282
gets_s(), 309
Global error indicators, 553–554,

555
Greater-than signs (>>), right-shift

operator, 174–175
Guidelines. See Recommendations;

Rules.

H
Hacker's Delight, 155
Hand-coded code, 2–3
Hard links, 617, 619
Hard-coded file names, 457–458
Header files. See also Files.

inclusion guards, 21
standard names

. (period), unique file names,
24

case sensitivity, 24
file extensions, 24
list of, 17
long file names, 25
reusing, 16–18
uniqueness, 17, 24–26

Hiding
information, 64–65
objects, 70–72

$HOME value, 482
HUGE_VAL, 228
HUGE_VALF, 228
HUGE_VALL, 228
hypot(), 229

I
ID numbers for vulnerabilities, xxvii
Identifiers

conflicting linkage classifications,
87–89

duplicates, 78
external linkage, 87–89
implicit declaration, 4–77
internal linkage, 87–89
no linkage, 87–89
significant characters, minimum

requirements, 78

uniqueness, 78–79
visual distinction, 38–39

ilogb(), 229
Immutable objects, const-qualify-

ing, 14, 35–36
Immutable string literals, 284–285
imod(), 169
Implementation-defined nonport-

ability, 603
Implicit conversion, 324
Implicit declaration, identifiers,

4–77
In-band error indicators

EOF, 537–540
exceptions, 539
null pointers, 538–539

Including header files, 16–18, 21
Incomplete array types, 243
Incorrect assumptions, identifying,

39–42
incr(), 350
Increment side effects, 30–32
Indices of arrays, range checking,

250–251
Information hiding, 64–65
Information leakage. See also Data

loss.
file descriptor leakage, 450–454
from freed resources, 328–332
improper permissions, 417
multithreaded environments, 629
uninitialized memory, 346–348

Information Technology...Avoiding
Vulnerabilities..., xxv

Initialization. See also Declarations
and initialization.

arrays, 243, 248–250
character arrays, 312–313
memory, 346–348

Injection attacks, 279
Inline functions, macro alternative,

6–11, 30–32
Inline substitution, 6
Input/output

binary data, transferring across
systems, 402–403

character class ranges, 370–371
conversion specifiers, 370–371
data transfer across systems,

402–403
denial-of-service attacks, 426
devices, accessing as files, 426–431

Index 671

directory names, canonical form
conversion. See Canonical
form conversion, path names.

disk files, identifying, 430
endianess, 401
end-of-file

detecting, 436–438, 438–440
error indicators, 438–440
indicator, 436, 438

fgets() failure, resetting strings,
446–448

fgetws() failure, resetting strings,
446–448

FILE objects, copying, 443–444
format strings

creating, 370–371
related vulnerabilities, 424

line breaks, 412, 440–442user
input, 421–424

new-line character
cross-environment differences,

412
reading, 440–442, 442–443
replacing, 442–443

pushing back characters, 409–411
reading data

binary data, 401–403
data type assumptions,

442–443
at link targets, 623–625
new-line character, 440–442,

442–443
restricting. See Access control.

risk assessment summary,
368–369

rules and recommendations
related, 370
summary of, 367–368

writing data
binary, 401–403
to disk, 338–341
restricting. See Access control.

Input/output, error handling
end-of-file errors, 438–440
file errors, detecting, 438–440
file positioning, 388–389
return codes, checking

character I/O functions,
436–438

file I/O functions, 386–389
I/O functions, 431–436
stream alteration, 408–409

Input/output, file names. See also
Renaming files.

accessing devices, 426–431
accessing files by, 372–374
canonical form conversion. See

Canonical form conversion,
path names.

checking. See Canonical form
conversion, path names.

creating, 457–458, 458–460,
461–462

hard coded, 457–458
patterns for, 459
selecting, 461
special file access, 426–431
uniqueness

criteria for temporary files, 455
ensuring, 461–462
predictability, 455, 459
vulnerabilities, 457–461

Input/output, file streams
alternating input/output, 444–446
file positioning

alternating input/output,
444–446

error handling, 388–389
fseek() vs. rewind(), 398–399
valid values for, 464–465

flushing, 444–446
stream arguments with side

effects, 448–450
text mode vs. binary mode,

411–413, 442–443
Input/output, files

access control
advisory locks, 456
exclusive access, 456
exclusive locks, 456, 458
jails, 418–420
locking, 456
mandatory locks, 456
permissions, creating, 394–397
sandboxes, 418–420
shared locks, 456, 458

accessing
with file descriptors, 372–374
by file name, 372–374
with FILE pointers, 372–374
unintentionally, 374, 383–386,

463. See also Access
control.

closing, 450–454

creating
access permissions, 394–397
assumptions about, 383–387
temporary, in shared directo-

ries, 454–463
errors, detecting, 438–440
file descriptor leakage, 450–454
file descriptors, 372–374
file functions, temporary file

names, 455
FILE pointers, 372–374
identifying

by attributes, 389–394
by name, 372–374

naming. See File names; Renam-
ing files.

open, removing, 399–401
opening

assumptions about, 383–387
mode parameter, 407–408
race conditions, 424–426
simultaneous multiple times,

424–426
orphaned, removing, 456–457
overwriting, unintentional,

383–386
positioning

alternating input/output,
444–446

error handling, 388–389
fseek() vs. rewind(),

398–399
valid values for, 464–465

renaming. See also File names.
portable behavior, 405–407
preserving destination file,

403–404, 406
race conditions, 404, 406
removing destination file,

404–405, 406
rename(), 403

rewinding, 398–399
secure directories, 413–418
security vulnerabilities, 372–374
temporary

creating in shared directories,
454–463

criteria for, 455
naming, 455, 459
predictable names, 455, 459
removing, 456–457
vulnerabilities, 457–461

672 Index

Input/output, files, continued
TOCTOU race conditions

accessing devices as files, 429
checking file names, 378, 382
unintended file access, 374

unique names
criteria for temporary files, 455
ensuring, 461–462
predictability, 455, 459
vulnerabilities, 457–461

update mode, 444–446
Input/output, functions

file functions, temporary file
names, 455

file identification, 372–374
return codes, checking

character I/O functions,
436–438

file I/O functions, 386–389
I/O functions, 431–436

return values, 386–388
in signal handlers, 513

Input/output, path names
canonical form conversion

Linux, 380–381
overview, 374–375
POSIX, 376–380
Windows, 381–382

simplifying. See Canonical form.
validating, 374–383

Input/output, race conditions
opening files, 424–426
renaming files, 404, 406
shared files, 456
TOCTOU

accessing devices as files, 429
checking file names, 378, 382
unintended file access, 374

unlinking files, 463
int type, 274, 436–438
Integer constant expression, 46
Integer conversion rank, 150
Integer literals, 45, 48–49
Integer overflow

memory allocation, 362–363
signed integers

addition, 192–194
division, 197
left-shift operations, 199–200
modulo operation, 197–198
multiplication, 195–196
overview, 191–192
subtraction, 194–195

unary negation, 198–199
vulnerabilities, 146

Integer promotions, 149–150, 152
Integer type conversions. See also

Casting; Conversions.
data loss, 186–191
integer-to-pointer, 170–172
loss of precision, 188–189
minimum ranges, 189–190
misinterpreted data, 186–191
numeric strings, to greatest-width

integers, 143
pointer-to-integer, 170–172
rules for

arithmetic conversions,
150–151

code examples, 151–153
integer conversion rank, 150
integer promotions, 149–150,

152
overview, 149
required conversions, determin-

ing, 150
usual arithmetic conversions,

150–151
signed to signed, 188–189
signed to unsigned, 188
string data

with functions, 157–162
to greatest-width integers, 143

unsigned to signed, 187
unsigned to unsigned, 188–189

Integers
% (percent sign), remainder oper-

ator, 168–170
addition

integer overflow, 192–194
unsigned integer wrapping,

182–183
assigning to a larger size, 207–210
bit-field assumptions, 172–173
bitwise operations

combined with arithmetic oper-
ations, 175–178

on unsigned operands, 174–175
char type, 162–164
character types, 162–164
comparing to a larger size,

207–210
data models

code examples, 143–145
definition, 141
integral ranges, 142

list of, 142
numeric strings, converting to

greatest-width integers,
143

size restrictions, 142–143
types available, 142–143

division
divide-by-zero errors, 201
fractional remainders. See Mod-

ulo operations.
integer overflow, 197
by powers of 2, 176–177
remainder assumptions,

168–170
with shift operators, 176–177
truncation toward zero, 169

enumeration constants, mapping,
167–168

vs. floating-point, 114–115
floating-point conversions,

234–239
formatted I/O, 178–181
IntergLib, 154–155
left shift

multiplication with, 176–177
negative numbers, 203–207
unsigned integer wrapping, 185

modulo arithmetic, 165
modulo operations

divide-by-zero errors, 201–203
division, 169
integer overflow, 197–198

modwrap semantics, 164–165
multiplication

integer overflow, 195–196
by powers of 2, 176–177
with shift operators, 176–177
unsigned integer wrapping, 184

numeric values, character types
for, 162–164

object size, representing, 145–149
range checking, 153–157,

164–166
remainder assumptions, 168–170.

See also Modulo operations.
restricted range usage, 165
right shift

division with, 177
negative numbers, 203–207
on unsigned operands,

174–175
risk assessment summary,

140–141

Index 673

rsize_t type, 145–149
rules and recommendations

related, 141
summary of, 139–140

saturation semantics, 164–165
secure integer libraries, 153–155
signed char type, 162–164
signed integer overflow, 146
size assumptions, 141
size_t type, 145–149
subtraction

integer overflow, 194–195
unsigned integer wrapping,

183–184
type definition, 178–181
unsigned char type, 162–164
unsigned integer wrapping,

181–186
from untrusted sources, 155–157
wrapping, 164–165, 181–186

Integer-to-pointer conversions,
170–172

IntergLib, 154–155
Internal linkage identifiers, 87–89
Internet resources. See Online

resources.
Interruptible signal handlers,

signal() calls, 526–529
intmax_t, 178–181
inttypes.h, 143
I/O functions. See Input/output,

functions.
isalnum(), 314
isalpha(), 314
isascii(), 314
isblank(), 314
iscntrl(), 314
isgraph(), 314
islower(), 314
isprint(), 314
ispunct(), 314
isspace(), 314
isupper(), 314
isxdigit(), 314
Iterating through arrays, 259–261.

See also Loops.

J
Jails, 418–420

K
Kerberos 5 vulnerability, 319–321
Kettlewell, Richard, 431

L
Lawrence Livermore National

Laboratory, xx
ldexp(), 229
Leaking information. See Data loss,

information leakage.
Leffler, Jonathan, 18, 86, 346, 482
Left shift

multiplication with, 176–177
negative numbers, 203–207
unsigned integer wrapping, 185

Length modifier, 370
lessen_memory_usage(), 302–303
Less-than signs (<<), left-shift opera-

tor, 174–175
lgamma(), 229
Libraries, null-terminated byte

strings, 275–276
Library functions, 558–563,

588–590
Lifetime, objects, 72–74
limits.h, 142
Line breaks, 412, 440–442
Linkage classifications, conflicting,

87–89
Links

checking for, 617–620
file, 617–620
hard, 617, 619
reading target of, 623–625
soft, 617
symbolic, 617
virtual drives, 617

Linux kernel vmsplice exploit, 186
Literals

declaring and initializing. See
Declarations and initializa-
tion, literals.

string. See Characters and strings,
string literals.

Local functions, 10
LockFile(), 456
LockFileEx(), 456
Locking

files
advisory locks, 456
exclusive access, 456
exclusive locks, 456, 458
jails, 418–420
mandatory locks, 456
shared locks, 456, 458

memory, 339
log(), 229

log1p(), 229
log2(), 229
log10(), 229
logb(), 229
Logical completeness, 572–574
Long double, 237
Long file names, header files, 25
long int

integer conversion rank, 150
smallest possible value, 142

long long int, 150
longjmp()

atexit() handler calls, terminat-
ing, 494

calls from signal handlers,
519–523

error handling, 554–555
invalid calls to, 496–497
in signal handlers, 519–523

Loops
\ (backslash), loop terminator,

260
buffer overflows, 259–261
counters, with floating-point

numbers, 224–226
do-while, 27–29
freeing memory, 353
looping beyond last element,

259–261
optimizing away, 83
terminating, 82, 259–261

Loss of data. See Data loss.
lrint(), 229
lround(), 229
lstat(), 428, 634
lstat-fopen-fstat idiom,

618–619

M
Macro definitions vs. type defini-

tions, 15–16
Macro parameters

(pound sign) operator,
concatenating tokens, 12,
18–20

(pound signs) operator,
stringification, 12, 18–20

concatenating string literals, 12
concatenating tokens, 12
names, parenthesizing, 11–13
names, surrounded by commas,

12
stringification, 12, 18–20

674 Index

Macro replacement
(pound sign) operator, concate-

nating tokens, 12, 18–20
(pound signs) operator, string-

ification, 12, 18–20
concatenating tokens, 12, 18–20
stringification, 12, 18–20
token pasting, 19

Macros
alternatives to, 6–11, 30–32
assignment side effects, 30–32
call-by-name semantics, 11
compile-time constant, yielding,

10
decrement side effects, 30–32
function calls, 30–32
function names, global replace-

ment, 26–27
function-like, 6–11, 328
increment side effects, 30–32
inline functions, 6–11, 30–32
local functions, 10
multi-statement, in do-while

loops, 27–29
operator precedence, 15
operator precedence in expres-

sions, 15
replacement lists, parenthesizing,

13–15
side effects, avoiding, 30–32
static functions, 6–11, 30–32
type-generic functions, 10–11
unsafe, 30–32
volatile access side effects, 30–32

Magic numbers
buffer overflow, 50
in expressions, 127
readability, 45

main(), 545–546
malloc()

environment variables, copying,
471–473

memory allocation errors,
355–357

memory size, calculating,
362–365

returned pointers, casting,
324–328

zero-length allocations, 333
Managed strings, 291–293
Mandatory file locks, 456
Masking signals, 500–503
Math functions, 227–234

MATH_ERREXCEPT, 228
MATH_ERRNO, 228
math.h, 226, 227, 559
mbstate_t, 464
mbstowcs()

comparing return values, 611
copying overlapping objects, 81

Meaningful literal names, 45–51
Member alignment, 98–100
memcmp(), 101
memcpy()

copying overlapping objects, 81
memory allocation size, range

checking, 363–364
null-terminated byte strings,

memory allocation, 297
memmove(), 81
Memory

allocating
buffer overflows, 343
environment variables, 633
error handling, 355–357
for flexible array members,

358–360
function calls, casting into

pointers, 10, 324–328
integer overflow, 362–363
invalid size arguments, 365
out-of-bounds check, 342–343
range checking, 363–364
at same abstraction level,

319–321
in same modules, 319–321
size, calculating, 362–365
stack allocations, 335–338
wrapping, checking for,

342–343
zero-length space, 332–335

buffer overflows
invalid size arguments, 365
memory initialization, 346–348
unsigned integer wrapping, 343

core dumps, 338–339
dangling pointers, 322–323,

351–353
denial-of-service attacks

allocation failures, 355–357
memory management errors, 321
reading freed memory, 352
stack allocation, 337–338

freed
accessing, 351–353
writing to, 321, 323

freeing
access-freed-memory vulnera-

bility, 322–323
clearing returned resources,

328–332, 582–585
double-free vulnerability,

319–321, 322–323,
353–355

nondynamic memory, 360–362
at same abstraction level,

319–321
in same modules, 319–321
in signal handlers, 513

information leakage, 328–332,
346–348

initializing, 346–348
literal requirements, 46–47
locking, 339
overwrites, array errors, 251, 253
paging, 338–340
pointer conversions, unintended,

328
pointer validation, 348–351
recursion, and stack allocation,

336–337
risk assessment summary, 318
rules and recommendations

related, 318–319
summary of, 317–318

sensitive information
clearing, 328–332
leaking, 328–332, 346–348
writing to disk, 338–341

swapping. See Paging.
uninitialized, referencing,

124–128
usage, reducing, 301–303

memset()

casting away const qualification,
103

compiler optimization, 330–332,
582–585

string truncation, 300
unintended write to memory,

108–109
memset_s(), 584
Messier, Matt, 277, 397
Metrics

risk assessment, xxiv
vulnerabilities, xxvi

Mitigating error effects, 534–535
MITRE, xxiv
mkstemp(), 455, 461

Index 675

mktemp()

creating temporary files, 459–460
deprecated use, 460
temporary file criteria, 455

mlock(), 339–340, 341
mode parameter, 407–408
Modernizing Legacy Systems, xxxi
Modules, memory allocation,

319–321
Modulo arithmetic, 165
Modulo operations

divide-by-zero errors, 201–203
division, 169
integer overflow, 197–198

Modwrap semantics, 164–165
Morris worm, xv
Mozilla SVG heap buffer wrap, 184
Multibyte character strings, 273
Multiplication

integer overflow, 195–196
by powers of 2, 176–177
with shift operators, 176–177
unsigned integer wrapping, 184

Multithreaded environments,
626–629

Mutable string literals, 284–285
Mutexes

bit-fields in multithreaded envi-
ronments, 626–629

destroying, 625–626
ownership, 625–626
race conditions, 627
unlocking, 625–626

N
Named symbolic literals, 45–47, 50
Names

of files. See File names; Renaming
files.

of vulnerabilities, xxvii
NaN, 224
Narrow character strings, 273, 284
National use positions, 590
NDEBUG, 122, 597
Negation operator, 198
New-line character

cross-environment differences, 412
in file names, 591
reading, 440–442, 442–443
replacing, 442–443

nextafter(), 229
nexttoward(), 229
No linkage identifiers, 87–89

Noncompliant code examples, xxiii
Nondynamic memory, freeing,

360–362
Noninterruptible signal handlers,

masking signals, 500–503
Nonpersistent signal handlers,

506–507, 526
Non-prototype-format declarators,

51–52
Notation consistency, arrays,

251–254
Null pointers, 128–129, 538–539
Null termination character, 299–303
Null wide character, 273
Null-terminated byte strings

buffer overflows, 280–282,
294–299

creating, 299–303
definition, 273
dynamic allocation, 275–276
environment variables, copying,

298–299
libraries, 275–276
managing consistently, 275–276
null termination character,

299–303
off-by-one error, 294–295
static allocation, 275–276
storage allocation, 294–299
traversing arrays, 259–261
truncating, 280–282, 300–301
unintended character arrays,

312–313
Numeric conversion, 559
Numeric literals, buffer overflow, 50
Numeric strings, converting to

greatest-width integers, 143
Numeric values, character types for,

162–164

O
-O flag, 83
Object-like macros, 47
Objects

access restrictions, 82–84
accessing outside their lifetime,

72–74
alignment, 131–133
caching restrictions, 82–84
confined to current scope, 70–72
declaring as static, 70–72
hiding, 70–72
lifetime duration, 72–74

overlapping, referencing, 80–82
size, representing, 145–149
volatile-qualified type, 82–84

O_CLOEXEC flag, 452–453
O_CREAT flag, 384, 458
O_EXCL flag, 384, 458
O_EXLOCK flag, 458
Off-by-one error, 294–295
offsetof() macro, 135–137
Online resources

CERT Secure Coding Standards
wiki, xvii

code analysis tools, xx
IntergLib, 154–155
Lawrence Livermore National

Laboratory, xx
secure integer libraries, 154–155

O_NOFOLLOW flag, 618
O_NONBLOCK flag, 427
Opaque data types, 64–65
open()

creating files
access permissions, 396–397
hard-coded names, 457–459
in shared directories, 457–459
temporary, 457–459, 459–460

file permissions, 396–397
Open files, removing, 399–401
OpenBSD operating system flaw, 108
Opening files

assumptions about, 383–387
mode parameter, 407–408
race conditions, 424–426
simultaneous multiple times,

424–426
OpenSSL package, Debian Linux,

128
Optimization, and sensitive informa-

tion, 582–585
OR operators

^ (caret), bitwise OR, 174–175
| (vertical bar), bitwise inclusive

OR, 174–175
|| (vertical bars), logical OR,

96–98, 113
Order of operations in expressions

&& (ampersands), logical AND,
113

|| (vertical bars), logical OR, 113
controlling with parentheses,

93–95
evaluation of subexpressions,

111–113

676 Index

Order of operations in expressions,
continued

exceptions, 113
macros, 15
sequence points, 119–121
side effects, 111–113

Orphaned files, removing, 456–457
O_SHLOCK flag, 458
Out-of-bounds check, memory allo-

cation, 342–343
Overflow

buffers. See Buffer overflow.
floating-point numbers, 228
integers. See Integer overflow.

Overwriting data, 473
Overwriting files, 383–386
Ownership, mutexes, 625–626

P
Packed structures, 99
Padding structures, 98–100
Paging, 338–340
Parenthesizing

macro names, 11–13
macro replacement lists, 13–15

Path names
canonical form conversion

Linux, 380–381
overview, 374–375
POSIX, 376–380
Windows, 381–382

validating, 374–383
PATH_MAX

file system variance, 379
output buffer size, 376–379
value, obtaining, 376, 379–380

Patterns for file names, 459
Percent sign (%), remainder opera-

tor, 168–170
Period (.), unique header file names,

24
Permission escalation

signal handlers, 516
temporary file creation, 463
TOCTOU race conditions, 635

Permissions
appropriate level of, 394–397
improper, information leakage,

417
principle of least privilege,

620–623
perror(), 560

Persistent signal handlers, 503–507,
526–529

Plain char type, 274, 282–284
Platform dependencies, avoiding,

602–604
Pointer arithmetic, 107–109
Pointers

arrays
adding, 263–269, 265–269
arithmetic operations on,

261–263, 263–265,
265–269

comparing, 261–263
subtracting, 261–263, 263–265,

265–269
to characters and strings, 273
conversions, unintended, 328
dangling

accessing freed memory,
351–353

definition, 351
free(), 322–323
getenv(), 468

to environment variables
invalidating, 489–493
modifying, 487–489
storing, 468–473

in expressions
converting, 131–133
null, dereferencing, 128–129
object alignment, 131–133
taking size of, 95–96

memory allocation calls, casting
into, 10

null, in-band error indicators,
538–539

validation, 348–351
to values, function parameters,

66–68
Pointer-to-integer conversions,

170–172
popen(), 482
Portability

implementation-defined nonport-
ability, 603

platform dependencies, avoiding,
602–604

special characters, 590
unspecified nonportability, 603
vfork(), 629

Positioning files. See File
positioning.

POSIX
access permissions

principle of least privilege,
620–623

relinquishing, 636–642
buffer overflow, readlink()

termination, 624
denial-of-service attacks, vfork(),

629
environment variables, 631–633
links, 617–620, 623–625
mutexes

bit-fields in multithreaded
environments, 626–629

destroying, 625–626
ownership, 625–626
race conditions, 627
unlocking, 625–626

portability issues, 629
principle of least privilege,

620–623
putenv(), 631–633
race conditions, 615–616,

633–636
readlink(), 623–625
risk assessment summary, 614
rules and recommendations

related, 614–615
summary of, 613–614

security issues, vfork(), 629
setenv(), 633
vfork(), 629–631

Pound sign (#) operator, concatenat-
ing tokens, 12, 18–20

Pound signs (##) operator, stringify-
ing macro parameters, 12,
18–20

pow(), 229, 233–234
Precision

floating-point numbers, 213,
215–218

loss of, integer conversions,
188–189

Predictability, file names, 455, 459
Preprocessors

? (question mark), repeating,
22–24

concatenation
(pound sign) operator, concat-

enating tokens, 12, 18–20
string literals, 12
token pasting, 19

Index 677

tokens, 12, 18–20, 29–30
universal character names,

29–30
files. See also Header files.encod-

ing types, macro definitions
vs. type definitions, 15–16

including wrong one, 16–18
inclusion guards, 21

functions
calls, from macros, 30–32
inline, macro alternative, 6–11,

30–32
local, 10
names, global replacement,

26–27
replacing with less secure func-

tions, 26–27
static, macro alternative, 6–11,

30–32
type-generic, 10–11

immutable objects, const-qualify-
ing, 14

inline functions, macro alterna-
tive, 6–11

macro definitions vs. type defini-
tions, 15–16

macro parameters
(pound sign) operator, concat-

enating tokens, 12, 18–20
(pound signs) operator,

stringification, 12, 18–20
concatenating string literals, 12
concatenating tokens, 12
names, parenthesizing, 11–13
names, surrounded by commas,

12
stringification, 12, 18–20

macro replacement
(pound sign) operator, con-

catenating tokens, 12,
18–20

(pound signs) operator,
stringification, 12, 18–20

concatenating tokens, 12,
18–20

stringification, 12, 18–20
token pasting, 19

macros
alternatives to, 6–11, 30–32
call-by-name semantics, 11
compile-time constant,

yielding, 10

function calls, 30–32
function names, global replace-

ment, 26–27
inline functions, 6–11, 30–32
local functions, 10
multi-statement, in do-while

loops, 27–29
operator precedence, 15
replacement lists, parenthesiz-

ing, 13–15
side effects, avoiding, 30–32
static functions, 6–11, 30–32
type-generic functions, 10–11
unsafe, definition, 30
unsafe, invoking, 30–32

memory allocation function calls,
casting into pointers, 10

risk assessment summary, 6
rules and recommendations

related, 6
summary of, 5

static functions, macro alterna-
tive, 6–11

three-character sequences, 22–24
trigraph sequences, 22–24
type definitions

vs. macro definitions, 15–16
scope rules, 15

typedef vs. #define, 15–16
universal character names, creat-

ing, 29–30
variables, multiple per declara-

tion, 16
Preprocessors, header files. See also

Files.
inclusion guards, 21
standard names

. (period), unique file names,
24

case sensitivity, 24
file extensions, 24
list of, 17
long file names, 25
reusing, 16–18
uniqueness, 17, 24–26

Principle of least privilege, 620–623
printf(), 179
Privileges. See Access control.
Program termination

abort(), 546–547, 547–549,
556–557, 564

assert(), 556–557

atexit(), 494–497, 545
exit(), 544–545, 547–549
_Exit(), 546, 547
functions, summary of, 547
return from main(), 545–546, 547
sensitive information vulnerabil-

ity, 549, 557
Pseudorandom number generation,

607–610
ptrdiff_t, 179
Punctuation characters, in file

names, 591
Pushing back characters, 409–411
putc()

end-of-file, detecting, 436
return codes, checking, 388
stream arguments with side

effects, 449–450
putchar(), 388, 436
putenv(), 631–633
_putenv_s(), 491–492
puts(), 439

Q
Question mark (?), repeating, 22–24

R
Race conditions

multiple threads, 615–616
mutexes, 627
opening files, 424–426
permission escalation, 635
renaming files, 404, 406
shared files, 456
signal handlers, 517–519, 528
symbolic links, 633–636
TOCTOU

accessing devices as files, 429
checking file names, 378, 382
unintended file access, 374

unlinking files, 463
raise(), 523–526
rand(), 607–610
random(), 608–609
Random number generation,

607–610
Range. See also Bounds.

checking
array indices, 250–251
array size arguments, 254–255
floating-point numbers,

227–234

678 Index

Range, continued
checking, continued

integers, 153–157, 164–166
memory allocation, 363–364

restricting, integers, 165
Readability of code

combining bitwise and arithmetic
operations, 175

comments, 42–43, 579–580
literals, 45
magic numbers, 45
meaningful literal names, 45–51
type definitions, 44–45
typedef, 44–45
variables, one per declaration,

42–44
Reading

data
binary data, 401–403
data type assumptions,

442–443
at link targets, 623–625
new-line character, 440–442,

442–443
restricting. See Access control.

freed memory, 352
readlink(), 623–625
realloc()

clearing freed space, 331
freeing nondynamic memory,

355–357
information leakage, 330–332
memory allocation errors,

355–357
memory size, calculating,

362–365
reducing memory usage, 301–303
resizing dynamically allocated

arrays, 343–346
returned pointers, casting,

324–328
zero-length allocations, 334–335

realpath(), 376–380
Recognition, 534
Recommendations. See also Rules;

specific topics.
categories, xix. See also specific

categories.
definition, xix
deviation procedures, 4
identifiers, xxiii
priorities and levels, xxiv, xxv, 4
risk assessment priority, xxiii

secure coding compliance, 4
tool-generated, tool-maintained

code, 3
Recovery, 534
Recursion, and stack allocation,

336–337
References

Building Systems from Commercial
Components, xxxi

CERT/CC VND (CERT/CC Vulner-
ability Notes Database), xxiv

CVE (Common Vulnerabilities
and Exposures), xxiv

CWE (Common Weakness Enu-
meration) IDs, xxiv

Delivering Signals for Fun and
Profit, 519

description, xxiv–xxv
Fortify Taxonomy: Software Secu-

rity Errors, 330–331
getting information about,

xxiv–xxv
Hacker's Delight, 155
Information Technology...Avoiding

Vulnerabilities..., xxv
Modernizing Legacy Systems, xxxi
Secure Coding Guide, 431
Secure Coding in C and C++, xxxi
Source Code Analysis Tool Func-

tional Specification, 331
Related Vulnerabilities sections,

xxv–xxvii
Relationships between literals,

encoding, 54–56
Reliability, measuring, 533
Relinquishing access permissions,

636–642
Remainder assumptions, 168–170
Remainder operator. See Modulo

operations.
Remote Procedure Call (RPC),

259–260
remove(), 372–373, 399–401
Removing files

open files, 399–401
orphaned files, 456–457
renamed destination files,

404–405, 406
temporary files, 456–457
unlinking, 486

rename()

file identification, 372
portability, 405–407

preserving destination files,
403–404, 406

prototype, 403
removing destination files,

404–405, 406
Renaming files. See also File

names.
portable behavior, 405–407
preserving destination file,

403–404, 406
race conditions, 404, 406
removing destination file,

404–405, 406
Replacement lists, parenthesizing,

13–15
Reporting errors, 549–556
Resistance, 534
restrict qualification, 80–82
Return codes, checking. See also

Errno error codes.
character I/O functions,

436–438
fgetc(), 388
fgets(), 432–433
file I/O functions, 386–389
fopen(), 433–434
fputc(), 388
functions, 118–119
getc(), 388
getchar(), 388
I/O functions, 431–436
putc(), 388
putchar(), 388
snprintf(), 432, 434–437
stream alteration, 408–409
ungetc(), 388

Return from main(), 545–546, 547
Return values

comparing, 610–613
data type, 610–613
error handling, 551, 555

Reusing header file names, 16–18
rewind(), 398–399, 444–446
Rewinding files, 398–399,

444–446
Right shift

division with, 177
negative numbers, 203–207
on unsigned operands, 174–175

Risk assessment
description, xxiii
metrics, xxiv
priorities and levels, xxiv, xxv

Index 679

summaries
arrays, 242
characters and strings, 272
declarations and initialization,

34–35
environment, 467–468
error handling, 532
expressions, 92–93
floating-point numbers,

211–212
input/output, 368–369
integers, 140–141
memory, 318
POSIX, 614
preprocessors, 6
signals, 499

Rounding floating-point numbers,
215

RPC (Remote Procedure Call),
259–260

rsize_t type
array indices, range checking,

250–251
for integer values, 145–149
memory allocation size, calculat-

ing, 363–364
Rules. See also Recommendations;

specific topics.
categories, xviii. See also specific

categories.
definition, xviii
deviation procedures, 4
identifiers, xxiii
priorities and levels, xxiv, xxv, 4
risk assessment priority, xxiii
secure coding compliance, 4
tool-generated, tool-maintained

code, 3
Runtime-constraint handlers,

541–543

S
Saks, Dan, 16
Samba vulnerability, 423–424
Sanitizing

ASCII characters, 590–593
characters and strings, 276–280,

292, 590–593
data, 276–280, 292
the environment, 478–482
special characters, 276–280

SA_RESETHAND flag, 505, 507
Saturation semantics, 164–165

scalbln(), 229
scalbn(), 229
scanf()

converting character strings to
integers, 157–158

end-of-file indicator, 440
programmer-defined integer

types, 180
Scope

block, 42, 72–73
conflicting linkage classifications,

87–89
const-qualified objects, 45–46
file

assertions, 42
external linkage, 70–71
object storage duration,

72–73
specifier, 70–71

identifier declaration, 87–89
rules for type definitions, 15

Secure Coding Guide, 431
Secure Coding in C and C++, xxxi
Secure development process,

xvi–xvii
Secure directories, 413–418
Secure integer libraries, 153–155
Secure products, lack of demand for,

xvi
secure_dir(), 414–417
SecureZeroMemory(), 583
SEH (structured exception

handling), 222–223
Sensitive information loss. See also

Data loss.
clearing, 328–332
compiler optimization,

582–585
improper permission vulnerabil-

ity, 417
leaking. See Information leakage.
program termination vulnerabil-

ity, 549, 557
writing to disk, 338–341

Sequence points
modifying function call results,

129–131
order of evaluation, example, 7
order of operations, 119–121
side effects, 119–121

setbuf(), 408–409
set_constraint_handler_s(),

541–543

setenv()

environment variables
duplicate names, 475–478
modifying, 488–489
pointers, invalidating, 490–491

heap memory, allocating, 633
setfile(), 588–590
_set_invalid_parameter_handler(),

543
setjmp(), 554–555
setlocale(), 561
setrlimit(), 338–339
setvbuf(), 408–409
Shared file locks, 456, 458
Shift operations

left shift
multiplication with, 176–177
negative numbers, 203–207
unsigned integer wrapping, 185

right shift
division with, 177
negative numbers, 203–207
on unsigned operands, 174–175

Short circuit behavior, 96–98
Side effects

assertions, 122–123
macros, 30–32
order of operations, 111–113
sequence points, 119–121
sizeof() operator, 104–105

sigaction()

in interruptible signal handlers,
527–528

masking signals, 502–503
raise() calls from signal han-

dlers, 524–526
signal handler interruptions,

502–503
signal handler persistence,

505–507
SIG_ERR, 560, 564
signal()

deprecated use, 506, 526, 528
errno, indeterminate values,

564–567
in interruptible signal handlers,

526–529
masking signals, 500–503
registering signal handlers,

500–503
signal handler persistence,

503–507
Windows vs. UNIX, 503–504

680 Index

Signal handlers
asynchronous-signal-safe func-

tions, 511–516. See also
Longjmp(), in signal handlers.

freeing memory, 513
functions, calling, 511–516
input/output, functions, 513
interruptible, signal() calls,

526–529
longjmp() calls, 519–523
noninterruptible, masking signals,

500–503
nonpersistent, 506–507, 526
persistent, 503–507, 526–529
race conditions, 517–519
recursive raise() calls, 523–526
registering, 500–503
shared objects, accessing or modi-

fying, 517–519, 564–567
vulnerabilities, 516, 522
Windows vs. UNIX, 503–504

Signals
implementing normal functional-

ity, 507–511
masking, 500–503
noninterruptible signal handlers,

500–503
race conditions, 528
risk assessment summary, 499
rules and recommendations

related, 500
summary of, 499

signed char type, 162–164, 274,
305–307

Signed integer conversions, 188–189
Significant characters, minimum

requirements, 78
Simplifying path names. See Canoni-

cal form conversion, path
names.

Single-byte character strings, 273
sinh(), 229
Size

arrays
arguments, variable length

arrays, 254–255
bounds specification, 312–313
determining, 245–249
insufficient, 255–258
string literal initialization,

312–313
environment variables, assump-

tions, 474–475

integers, assumptions, 141
memory allocation, calculating,

362–365
sizeof()

array size, determining, 245–247
end-of-file, detecting, 438–440
operands, side effects, 104–105
signed integer overflow, 146
type size, determining, 49, 95–96,

109–111
variable size, determining, 49,

109–111
size_t type

array indices, range checking,
250–251

calloc() arguments, 342–343
comparing return values, 611
for integer values, 145–149
memory allocation size, calculat-

ing, 363–364
snprintf()

asynchronous signal safety, 515
copying overlapping objects, 81
return codes, checking, 432,

434–437
truncating null-terminated byte

strings, 280–282
user input in format strings,

421
Soft links, 617
Software security, definition,

xv–xvi
Source character set, 590
Source code, compliance validation,

3–4
Source Code Analysis Tool Functional

Specification, 331
Spaces, in file names, 591
spc_sanitize_environment(),

479
Special characters

ASCII, 590
national use positions, 590
portability, 590
sanitizing, 276–280

Special file access, 426–431
sprintf()

copying overlapping objects, 81
in-band errors, 537–538
truncating null-terminated byte

strings, 280–282
sprintf_m(), 538
sqrt(), 229

Square brackets ([]), subscript
operator, 242

sscanf()

converting strings to integers,
160–161

copying overlapping objects, 81
end-of-file indicator, 440

Stack allocation, 335–338
Stack exhaustion, 255
Static allocation, 275–276
Static assertions, 19, 39–42
Static functions, macro alternative,

6–11, 30–32
static objects, 70–72
static_assert() macro, 41–42
stddef.h, 135
stdint.h, 142–143
stdio.h, 106
stdlib.h, 607
Storage allocation, null-terminated

byte strings, 294–299
Stoughton, Nick, 341
strcat(), 280–282, 288–291
strcat_s(), 288–291
strchr(), 133, 441–442
strcoll(), 560
strcpy()

copying overlapping objects, 81
null-terminated byte strings

copying data, 296–297
memory allocation, 296–297
truncating, 280–282

replacement for, 288–291
strcpy_s(), 281–282, 288–291
strdup(), 471–473, 488–489
Stream alteration return codes,

checking, 408–409
strerror(), 560
String literals. See Characters and

strings, string literals.
Stringification, macro parameters,

12, 18–20
Strings. See Characters and strings.
strlen()

environment variables
copying, 298–299
size, calculating, 474–475

string length, determining,
296

wide character string size,
determining, 304

strncat(), 280–282, 288–291
strncat_s(), 288–291

Index 681

strncpy()

copying overlapping objects, 81
null-terminating byte strings,

300–301
replacement for, 288–291
truncating null-terminated byte

strings, 280–282
strncpy_s(), 288–291, 301
strtod(), 559
strtok(), 286–287
strtol(), 158–162
strtoll(), 159–162
strtoul(), 159–162, 560–561
strtoull(), 159–162
struct member alignment, 98–100
Structured exception handling

(SEH), 222–223
Structures

aligning in memory, 100–102
byte-by-byte comparison,

100–102
element offset, determining,

135–137
packed, 99
padding, 98–100
size, as sum of parts, 98–100

strxfrm(), 560
Subscope, reusing variable names, 8
Subscripts, and pointers, 244
Subtraction

integer overflow, 194–195
pointers, 261–263, 263–265,

265–269
unsigned integer wrapping,

183–184
Sun Solaris TELNET daemon

vulnerability, 278
Survivability, 533–534
Svoboda, David, 23
Swapping. See Paging.
switch statement, 573–574
Symbolic links, 617
syslog(), 422–423
syslog_r(), 515
system(), 479–487
System qualities, compliant systems,

1–2

T
Temporary files

creating in shared directories,
454–463

criteria for, 455

naming, 455, 459
predictable names, 455, 459
removing, 456–457
vulnerabilities, 457–461

Testing
with assertions, 597–598
compiler diagnostic messages,

571
constant expression values, 19,

39–42
functions for error conditions,

57–59
Text mode vs. binary mode,

411–413, 442–443
tgamma(), 229
tgmath.h, 226–227
3Rs of survivability, 534
Three-character sequences, 22–24
Tilde (~), complement operator,

174–175
Time values, 580–582, 610–613
time_t(), 580–582, 610–613
tmpfile(), 455, 460–461
tmpfile_s()

creating temporary binary files,
460–461

exceptions for use, 462
temporary file criteria, 455

tmpnam(), 455, 457–459
tmpnam_s(), 455, 458–459
toascii(), 314
TOCTOU race conditions. See also

Race conditions.
accessing devices as files, 429
checking file names, 378, 382
unintended file access, 374

Token pasting, 19
Tokens, concatenating, 12, 18–20,

29–30
tolower(), 314
Tool selection, 3–4
Tool-generated code, 2–3
Tools and utilities, xxii
toupper(), 314
Translation units, global variable ini-

tialization order, 69–70
Traversing arrays. See Iterating;

Loops.
Trigraph sequences, 22–24
Truncation

buffer overflow cause, 190
fgets(), 280–282
gets(), 280–282

improper use of strtok(),
286–287

new-line character, missing,
440–442

null-terminated byte strings,
280–282, 300–301

pushing back characters, 411
snprintf(), 280–282
sprintf(), 280–282
strcat(), 280–282
strcpy(), 280–282
strcpy_s(), 281–282
string tokenization, 286–287
strncat(), 280–282
strncpy(), 280–282
toward zero, 169
ungetc(), 411
ungetwc(), 411

Type. See Data types.
typedef

vs. #define, 15–16
readability, 44–45

Type-generic functions, 10–11

U
uintmax_t, 178–181
umask(), 395
Unary negation, 198–199
Unbounded copying, 307–311
Undefined behavior, 604–607
ungetc()

end-of-file, detecting, 436
line breaks, 412
new-line character, 412
pushing back characters, 409–411
return codes, checking, 388
truncation, 411

ungetwc(), 411
Unintentional file access, 374,

383–386, 463
Union, 86
Unique file names

criteria for temporary files, 455
ensuring, 461–462
header file names, 17, 24–26
predictability, 455, 459
vulnerabilities, 457–461

Unique identifiers, 78–79
Universal character names, creating,

29–30
unlink(), 399–401, 486
Unlinking files, 486. See also Remov-

ing files.

682 Index

UnLockFile(), 456
Unlocking mutexes, 625–626
Unsafe macros, 30–32
unsetenv(), 479–482
unsigned char type, 162–164
unsigned character type, 274,

305–307
Unsigned integer conversions,

187–189
Unsigned integer wrapping,

164–165, 181–186
Unspecified nonportability, 603
Update mode, 444–446
US-ASCII characters, 590–593
usefile(), 588–590
User input in format strings,

421–424
~username vs. ~, 482
Usual arithmetic conversions,

150–151
UTF-8 character encoding,

594–597

V
va_arg() macro, 61, 62–64
valid(), 350
Values, removing unused, 600–602
Variable length arrays, 254–255,

335–336
Variable names in subscopes, reus-

ing, 8, 36–38
Variables

global initialization order,
assumptions about, 69–70

multiple per declaration, 16,
42–44

readability, 42–44
reusing names in subscopes,

36–38
size, determining, 49, 109–111
uninitialized, referencing,

124–128
unintentional reference, 36–39
visually indistinct identifiers,

38–39
Variadic functions. See Functions,

variadic.
Venema, Wietse, 280
Vertical bar (|), bitwise inclusive OR

operator, 174–175

Vertical bars (||), logical OR, 96–98,
113

vfork()

denial-of-service attacks, 629
deprecated use, 629–631
portability issues, 629
security issues, 629

vfprintf(), 61
vfscanf(), 61, 157–158, 440
Viega, John, 277, 397
Virtual drives, 617
VirtualLock(), 340
Visual distinction, identifiers, 38–39
Visual Studio, runtime constraint

handlers, 542–543
void return type, 118–119
Volatile access side effects, 30–32
Volatile qualifications, casting away,

123–124
volatile-qualified type objects,

82–84
vprintf(), 61
vscanf(), 61, 157–158, 440
vsnprintf()

argument list warnings, 61
asynchronous signal safety, 515
return codes, 432
uses for, 26–27
variadic functions, 61

vsprintf(), 61
vsscanf(), 61
Vulnerabilities. See also specific

vulnerabilities.
avoiding, 534–535
CVSS (Common Vulnerability

Scoring System), xxvi
date public, xxvii
external programs, 478–482
file names, 372–374
ID numbers, xxvii
metrics, xxvi
names, xxvii
non-unique file names, 457–461
permission escalation, 463, 516
predictable file names, 457–461
Related Vulnerabilities sections,

xxv–xxvii
severity, measuring, xxvi
signal handlers, 516, 522
temporary files, 457–461

W
W32.Blaster.Worm, 259–260
Warning levels, compiler, 570–572
Warren, Henry S., 155
wchar_t type, 274
wcschar(), 441
wcscoll(), 560
wcslen(), 304
wcstod(), 559
wcstol(), 559
wcstombs(), 81
wcsxfrm(), 560
_wdupenv_s(), 470–471
Web site resources. See Online

resources.
wgetenv_s(), 469–470
White listing, characters and strings,

277–278
Wide character strings

buffer overflows, 303–305
data type, 274
definition, 273
modifying, 293–294
sizing, 303–305
string literals, 285

Wiki, CERT Secure Coding Stan-
dards, xvii

Wrapping
integers. See Unsigned integer

wrapping.
memory allocation, checking for,

342–343
Writer/caller contract, 59–62
Writing data

binary, 401–403
to disk, 338–341
overwriting data, 473

X
X Window System server vulnerabil-

ity, 575–576

Z
Zero-length space allocation,

332–335
ZeroMemory(), 583

	Preface
	Excerpts
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

