

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or in all
capitals.

The .NET logo is either a registered trademark or trademark of Microsoft Corporation in the United
States and/or other countries and is used under license from Microsoft.

Microsoft, Windows, Visual Basic, Visual C#, and Visual C++ are either registered trademarks or
trademarks of Microsoft Corporation in the U.S.A. and/or other countries/regions.

The authors and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability
is assumed for incidental or consequential damages in connection with or arising out of the use of
the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases
or special sales, which may include electronic versions and/or custom covers and content particu-
lar to your business, training goals, marketing focus, and branding interests. For more informa-
tion, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

The C# programming language / Anders Hejlsberg ... [et al.].—3rd ed.
 p.  cm.
 Rev. ed of: The C# programming language / Anders Hejlsberg, Scott
Wiltamuth, Peter Golde, 2nd ed. 2006.
 Includes bibliographical references and index.
 ISBN 978-0-321-56299-9 (alk. paper)
 1. C# (Computer program language) I. Hejlsberg, Anders.

 QA76.73.C154H45 2008
 005.13'3—dc22
 2008030025

Copyright © 2009 Microsoft Corporation

All rights reserved. Printed in the United States of America. This publication is protected by copy-
right, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671-3447

ISBN-13: 978-0-321-56299-9
ISBN-10:     0-321-56299-2
Text printed in the United States on recycled paper at Courier in Westford, Massachusetts.
First printing, October 2008

xi

Foreword

It’s been eight years since the launch of .NET in the summer of 2000. For me, the signifi-
cance of .NET was the one–two combination of managed code for local execution and
XML messaging for program-to-program communication. What wasn’t obvious to me at
the time was how important C# would be.

From the inception of .NET, C# has provided the primary means by which developers
understand and interact with .NET. Ask the average .NET developer the difference
between a value type and a reference type, and he or she will quickly say “struct versus
class,” not “types that derive from System.ValueType versus those that don’t.” Why?
Because people use languages, not APIs, to communicate their ideas and intention to the
runtime and, more importantly, to one another.

It’s difficult to overstate how important having a great language has been to the success
of the platform at large. C# was initially important to establish the baseline for how peo-
ple think about .NET. It’s proven even more important as .NET has evolved, and features
such as iterators and true closures (also known as anonymous methods) have been intro-
duced to developers as purely language features implemented by the C# compiler, not as
features native to the platform. The fact that C# is a vital center of innovation for .NET
became even more apparent with the release of C# 3.0, which introduced standardized
query operators, compact lambda expressions, extension methods, and runtime access to
expression trees—again, all driven out of the language and the compiler.

It’s hard to talk about C# without also talking about its inventor and constant shepherd,
Anders Hejlsberg. I had the distinct pleasure of participating in the recurring C# design
meetings for a few months during the C# 3.0 design cycle, and it was enlightening watch-
ing Anders at work. His instincts for knowing what developers will and will not like is

truly world class—yet at the same time, Anders is extremely inclusive of his design team
and manages to get the best design possible.

With C# 3.0 in particular, Anders had an uncanny ability to take key ideas from the func-
tional language community and make them accessible to a very broad audience. This is no
trivial feat. Guy Steele once said of Java, “We were not out to win over the Lisp program-
mers; we were after the C++ programmers. We managed to drag a lot of them about half-
way to Lisp.” When I look at C# 3.0, I know that C# has managed to drag at least one C++
developer (me) most of the rest of the way.

As good as C# is, people still need a document written in both natural language (English,
in this case) and some formalism (BNF) to grok the subtleties and ensure that we’re all
speaking the same C#. The book you hold in your hands is that document. Based on my
own experience, I can safely say that every .NET developer who reads it will have at least
one “aha” moment and will be a better developer for it.

Enjoy.

Don Box
July 2008

Foreword

xii

xiii

Preface

The C# project started almost ten years ago, in December 1998, with the goal of creating
a simple, modern, object-oriented, and type-safe programming language for the new and
yet-to-be-named .NET platform. Since then, C# has come a long way. The language is
now in use by more than one million programmers, and it has been released in three ver-
sions, each of which added several major new features.

This book, too, is in its third edition. A complete technical specification of the C# pro-
gramming language, the third edition differs in several ways from the first two. Most
notably, of course, it has been updated to cover all the new features of C# 3.0, including
object and collection initializers, anonymous types, lambda expressions, query expres-
sions, and partial methods. Most of these features are motivated by support for a more
functional and declarative style of programming and, in particular, for Language Inte-
grated Query (LINQ), which offers a unified approach to data querying across different
kinds of data sources. LINQ, in turn, builds heavily on some of the features that were
introduced in C# 2.0, including generics, iterators, and partial types.

Another change in the third edition is that the specification has been thoroughly reorga-
nized. In the second edition of this book, the features introduced in C# 2.0 were described
separately from the original C# 1.0 features. With a third helping of new features, this
approach did not scale—the utility of the book would be impaired by the reader’s need
to correlate information from three different parts. Instead, the material is now organized
by topic, with features from all three language versions presented together in an inte-
grated manner.

A final but important departure from earlier editions is the inclusion of annotations in the
text. We are very fortunate to be able to provide insightful guidance, background, and
perspective from some of the world’s leading experts in C# and .NET in the form of

annotations throughout the book. We are very happy to see the annotations complement
the core material and help the C# features spring to life.

Many people have been involved in the creation of the C# language. The language design
team for C# 1.0 consisted of Anders Hejlsberg, Scott Wiltamuth, Peter Golde, Peter Sollich,
and Eric Gunnerson. For C# 2.0, the language design team consisted of Anders Hejlsberg,
Peter Golde, Peter Hallam, Shon Katzenberger, Todd Proebsting, and Anson Horton.
Furthermore, the design and implementation of generics in C# and the .NET Common
Language Runtime are based on the “Gyro” prototype built by Don Syme and Andrew
Kennedy of Microsoft Research. C# 3.0 was designed by Anders Hejlsberg, Peter Hallam,
Shon Katzenberger, Dinesh Kulkarni, Erik Meijer, Mads Torgersen, and Matt Warren.

It is impossible to acknowledge the many people who have influenced the design of C#,
but we are nonetheless grateful to all of them. Nothing good gets designed in a vacuum,
and the constant feedback we receive from our large and enthusiastic community of devel-
opers is invaluable.

C# has been, and continues to be, one of the most challenging and exciting projects on
which we’ve worked. We hope you enjoy using C# as much as we enjoyed creating it.

Anders Hejlsberg
Mads Torgersen
Scott Wiltamuth

Seattle, Washington
July 2008

Preface

xiv

7.12    The Null Coalescing Operator

311

Expressions
7. 

Expressions
7. 

Expressions
7. 

Expressions
7. 

A compile-time error occurs if either of these requirements is not satisfied. Otherwise, the
&& or || operation is evaluated by combining the user-defined operator true or operator
false with the selected user-defined operator:

The operation •	 x && y is evaluated as T.false(x) ? x : T.&(x, y), where T.false(x) is an
invocation of the operator false declared in T, and T.&(x, y) is an invocation of the
selected operator &. In other words, x is first evaluated, and operator false is invoked
on the result to determine if x is definitely false. Then, if x is definitely false, the result of
the operation is the value previously computed for x. Otherwise, y is evaluated, and the
selected operator & is invoked on the value previously computed for x and the value
computed for y to produce the result of the operation.

The operation •	 x || y is evaluated as T.true(x) ? x : T.|(x, y), where T.true(x) is an
invocation of the operator true declared in T, and T.|(x, y) is an invocation of the
selected operator |. In other words, x is first evaluated, and operator true is invoked
on the result to determine if x is definitely true. Then, if x is definitely true, the result of
the operation is the value previously computed for x. Otherwise, y is evaluated, and the
selected operator | is invoked on the value previously computed for x and the value
computed for y to produce the result of the operation.

In either of these operations, the expression given by x is evaluated only once, and the
expression given by y either is not evaluated or is evaluated exactly once.

For an example of a type that implements operator true and operator false, see §11.4.2.

7.12  ​The Null Coalescing Operator
The ?? operator is called the null coalescing operator.

null-coalescing-expression:
conditional-or-expression
conditional-or-expression ?? null-coalescing-expression

A null coalescing expression of the form a ?? b requires a to be of a nullable type or refer-
ence type. If a is non-null, the result of a ?? b is a; otherwise, the result is b. The operation
evaluates b only if a is null.

The null coalescing operator is right-associative, meaning that operations are grouped
from right to left. For example, an expression of the form a ?? b ?? c is evaluated as a ?? (b
?? c). In general terms, an expression of the form E1 ?? E2 ?? … ?? EN returns the first of the
operands that is non-null, or null if all operands are null.

7.  Expressions

312

Ex
pr

es
si

on
s

7.
 

Ex
pr

es
si

on
s

7.
 

Ex
pr

es
si

on
s

7.
 

Ex
pr

es
si

on
s

7.
 

The type of the expression a ?? b depends on which implicit conversions are available
between the types of the operands. In order of preference, the type of a ?? b is A0, A, or B,
where A is the type of a, B is the type of b (provided that b has a type), and A0 is the underly-
ing type of A if A is a nullable type, or A otherwise. Specifically, a ?? b is processed as
follows:

If •	 A is not a nullable type or a reference type, a compile-time error occurs.

If •	 A is a nullable type and an implicit conversion exists from b to A0, the result type is A0.
At runtime, a is evaluated first. If a is not null, a is unwrapped to type A0, and this
becomes the result. Otherwise, b is evaluated and converted to type A0, and this becomes
the result.

Otherwise, if an implicit conversion exists from •	 b to A, the result type is A. At runtime, a
is evaluated first. If a is not null, a becomes the result. Otherwise, b is evaluated and
converted to type A, and this becomes the result.

Otherwise, if •	 b has a type B and an implicit conversion exists from A0 to B, the result type
is B. At runtime, a is evaluated first. If a is not null, a is unwrapped to type A0 (unless A
and A0 are the same type) and converted to type B, and this becomes the result. Other-
wise, b is evaluated and becomes the result.

Otherwise, •	 a and b are incompatible, and a compile-time error occurs.

n
n  Eric Lippert  These conversion rules considerably complicate the transforma-

tion of a null coalescing operator into an expression tree. In some cases, the compiler
must emit an additional expression tree lambda specifically to handle the conversion
logic.

n
n  Chris Sells  The ?? operator is useful for setting default values for reference

types or nullable value types. For example,

Foo f1 = ...;
Foo f2 = f1 ?? new Foo(...);
int?i1 = ...;
int i2 = i1 ?? 452;

n
n  Fritz Onion  When I first saw the new ?? operator in C# 2.0, I was a bit skepti-

cal. Did we really need another terse operator to further obfuscate our code? Over the
last year or two, however, I’ve actually found myself using it quite a bit, and I think
this operator actually enhances readability once you get used to it. So I guess the
answer was yes, we—or I, at least—did need the ?? operator.

7.13    Conditional Operator

313

Expressions
7. 

Expressions
7. 

Expressions
7. 

Expressions
7. 

Consider the example of implementing a property that is backed by ViewState in ASP.
NET (say, for a custom control):

 public string Title
{
 get { return (string)ViewState["title"] ?? "Default title"; }
 set { ViewState["title"] = value; }
}

I use this pattern quite a bit when implementing reference type properties backed by
ViewState, and I quite like the way it succinctly expresses the check for null.

7.13  ​Conditional Operator
The ?: operator is called the conditional operator (or sometimes the ternary operator).

conditional-expression:
null-coalescing-expression
null-coalescing-expression ? expression : expression

A conditional expression of the form b ? x : y first evaluates the condition b. Then, if b is true,
x is evaluated and becomes the result of the operation. Otherwise, y is evaluated and becomes
the result of the operation. A conditional expression never evaluates both x and y.

n
n  Don Box  Having learned Lisp late in life, I almost never used the conditional

operator when I was a C++ programmer. When I started working with C# 3.0, its
value became obvious. I use the conditional operator a fair amount now, and not just
inside of lambda expressions.

The conditional operator is right-associative, meaning that operations are grouped from
right to left. For example, an expression of the form a ? b : c ? d : e is evaluated as a ? b :
(c ? d : e).

The first operand of the ?: operator must be an expression of a type that can be implicitly
converted to bool, or an expression of a type that implements operator true. If neither of
these requirements is satisfied, a compile-time error occurs.

The second and third operands of the ?: operator control the type of the conditional expres-
sion. Let X and Y be the types of the second and third operands. Then,

If •	 X and Y are the same type, then this is the type of the conditional expression.

7.  Expressions

314

Ex
pr

es
si

on
s

7.
 

Ex
pr

es
si

on
s

7.
 

Ex
pr

es
si

on
s

7.
 

Ex
pr

es
si

on
s

7.
 

Otherwise, if an implicit conversion (§6.1) exists from •	 X to Y, but not from Y to X, then Y
is the type of the conditional expression.

Otherwise, if an implicit conversion (§6.1) exists from •	 Y to X, but not from X to Y, then X
is the type of the conditional expression.

Otherwise, no expression type can be determined, and a compile-time error occurs.•	

n
n  Eric Lippert  The Microsoft C# compiler actually implements a slightly differ-

ent algorithm: It checks for conversions from the expressions to the types, not from
types to types. In most cases, the difference does not matter and it would break existing
code to change it now.

The runtime processing of a conditional expression of the form b ? x : y consists of the fol-
lowing steps:

First, •	 b is evaluated, and the bool value of b is determined:

If an implicit conversion from the type of -- b to bool exists, then this implicit conver-
sion is performed to produce a bool value.

Otherwise, the -- operator true defined by the type of b is invoked to produce a bool
value.

If the •	 bool value produced by the previous step is true, then x is evaluated and con-
verted to the type of the conditional expression, and this becomes the result of the
conditional expression.

Otherwise, •	 y is evaluated and converted to the type of the conditional expression, and
this becomes the result of the conditional expression.

7.14  ​Anonymous Function Expressions
An anonymous function is an expression that represents an “in-line” method definition.
An anonymous function does not have a value in and of itself, but rather is convertible to
a compatible delegate or expression tree type. The evaluation of an anonymous function
conversion depends on the target type of the conversion: If it is a delegate type, the conver-
sion evaluates to a delegate value referencing the method that the anonymous function
defines. If it is an expression tree type, the conversion evaluates to an expression tree that
represents the structure of the method as an object structure.

7.14    Anonymous Function Expressions

315

Expressions
7. 

Expressions
7. 

Expressions
7. 

Expressions
7. 

n
n  Don Box  Of all of the recently introduced features in C#, anonymous functions

have been the one that has increased my productivity the most. Specifically, not hav-
ing to factor blocks of functionality into named classes and methods makes it extremely
efficient for me to get an idea from my brain into executable code.

For historical reasons, two syntactic flavors of anonymous functions exist—namely, lambda-
expressions and anonymous-method-expressions. For almost all purposes, lambda-expressions
are more concise and expressive than anonymous-method-expressions, which remain in the
language for backward compatibility.

lambda-expression:
anonymous-function-signature => anonymous-function-body

anonymous-method-expression:
delegate explicit-anonymous-function-signatureopt block

anonymous-function-signature:
explicit-anonymous-function-signature
implicit-anonymous-function-signature

explicit-anonymous-function-signature:
(explicit-anonymous-function-parameter-listopt)

explicit-anonymous-function-parameter-list
explicit-anonymous-function-parameter
explicit-anonymous-function-parameter-list , explicit-anonymous-function-parameter

explicit-anonymous-function-parameter:
anonymous-function-parameter-modifieropt type identifier

anonymous-function-parameter-modifier:
ref
out

implicit-anonymous-function-signature:
(implicit-anonymous-function-parameter-listopt)
implicit-anonymous-function-parameter

implicit-anonymous-function-parameter-list
implicit-anonymous-function-parameter
implicit-anonymous-function-parameter-list , implicit-anonymous-function-parameter

7.  Expressions

316

Ex
pr

es
si

on
s

7.
 

Ex
pr

es
si

on
s

7.
 

Ex
pr

es
si

on
s

7.
 

Ex
pr

es
si

on
s

7.
 

implicit-anonymous-function-parameter:
identifier

anonymous-function-body:
expression
block

The => operator has the same precedence as assignment (=) and is right-associative.

The parameters of an anonymous function in the form of a lambda-expression can be explic-
itly or implicitly typed. In an explicitly typed parameter list, the type of each parameter is
explicitly stated. In an implicitly typed parameter list, the types of the parameters are
inferred from the context in which the anonymous function occurs—specifically, when the
anonymous function is converted to a compatible delegate type or expression tree type,
that type provides the parameter types (§6.5).

n
n  Bill Wagner  In general, your anonymous functions will be more resilient if

you rely on implicit typing.

In an anonymous function with a single, implicitly typed parameter, the parentheses may
be omitted from the parameter list. In other words, an anonymous function of the form

(param) => expr

can be abbreviated to

param => expr

The parameter list of an anonymous function in the form of an anonymous-method-
expression is optional. If given, the parameters must be explicitly typed. If not, the anony-
mous function is convertible to a delegate with any parameter list not containing out
parameters.

Some examples of anonymous functions follow:

x => x + 1 // Implicitly typed, expression body

x => { return x + 1; } // Implicitly typed, statement body

(int x) => x + 1 // Explicitly typed, expression body

(int x) => { return x + 1; } // Explicitly typed, statement body

(x, y) => x * y // Multiple parameters

() => Console.WriteLine() // No parameters

delegate (int x) { return x + 1; } // Anonymous method expression

delegate { return 1 + 1; } // Parameter list omitted

7.14    Anonymous Function Expressions

317

Expressions
7. 

Expressions
7. 

Expressions
7. 

Expressions
7. 

The behavior of lambda-expressions and anonymous-method-expressions is the same except for
the following points:

anonymous-method-expression•	 s permit the parameter list to be omitted entirely, yielding
convertibility to delegate types of any list of value parameters.

lambda-expression•	 s permit parameter types to be omitted and inferred, whereas
anonymous-method-expressions require parameter types to be explicitly stated.

The body of a •	 lambda-expression can be an expression or a statement block, whereas the
body of an anonymous-method-expression must be a statement block.

Because only •	 lambda-expressions can have expression bodies, no anonymous-method-
expression can be successfully converted to an expression tree type (§4.6).

n
n  Bill Wagner  This point is important for building queries that rely on expres-

sion trees, such as those in Linq to SQL and Linq to Entities.

7.14.1  ​Anonymous Function Signatures
The optional anonymous-function-signature of an anonymous function defines the names
and optionally the types of the formal parameters for the anonymous function. The scope
of the parameters of the anonymous function is the anonymous-function-body (§3.7). Together
with the parameter list (if given), the anonymous-method-body constitutes a declaration space
(§3.3). For this reason, it is a compile-time error for the name of a parameter of the anony-
mous function to match the name of a local variable, local constant, or parameter whose
scope includes the anonymous-method-expression or lambda-expression.

If an anonymous function has an explicit-anonymous-function-signature, then the set of com-
patible delegate types and expression tree types is restricted to those that have the same
parameter types and modifiers in the same order. In contrast to method group conversions
(§6.6), contravariance of anonymous function parameter types is not supported. If an
anonymous function does not have an anonymous-function-signature, then the set of com-
patible delegate types and expression tree types is restricted to those that have no out
parameters.

An anonymous-function-signature cannot include attributes or a parameter array. Neverthe-
less, an anonymous-function-signature may be compatible with a delegate type whose
parameter list contains a parameter array.

Note that conversion to an expression tree type, even if compatible, may still fail at compile
time (§4.6).

7.  Expressions

318

Ex
pr

es
si

on
s

7.
 

Ex
pr

es
si

on
s

7.
 

Ex
pr

es
si

on
s

7.
 

Ex
pr

es
si

on
s

7.
 

n
n  Eric Lippert  This is a subtle point. If you have two overloads—say, void
M(Expression<Func<Giraffe>> f) and void M(Func<Animal> f)—and a call
M(()=>myGiraffes[++i]), then the expression tree overload is chosen as the better
overload. In this situation, a compile-time error occurs because the increment operator
is illegal inside an expression tree.

7.14.2  ​Anonymous Function Bodies
The body (expression or block) of an anonymous function is subject to the following rules:

If the anonymous function includes a signature, the parameters specified in the signa-•	
ture are available in the body. If the anonymous function has no signature, it can be
converted to a delegate type or expression type having parameters (§6.5), but the param-
eters cannot be accessed in the body.

Except for •	 ref or out parameters specified in the signature (if any) of the nearest enclos-
ing anonymous function, it is a compile-time error for the body to access a ref or out
parameter.

When the type of •	 this is a struct type, it is a compile-time error for the body to access
this. This is true whether the access is explicit (as in this.x) or implicit (as in x where x
is an instance member of the struct). This rule simply prohibits such access and does not
affect whether member lookup returns a member of the struct.

The body has access to the outer variables (§7.14.4) of the anonymous function. Access •	
of an outer variable will reference the instance of the variable that is active at the time
the lambda-expression or anonymous-method-expression is evaluated (§7.14.5).

It is a compile-time error for the body to contain a •	 goto statement, break statement, or
continue statement whose target is outside the body or within the body of a contained
anonymous function.

A •	 return statement in the body returns control from an invocation of the nearest enclos-
ing anonymous function, not from the enclosing function member. An expression spec-
ified in a return statement must be compatible with the delegate type or expression tree
type to which the nearest enclosing lambda-expression or anonymous-method-expression is
converted (§6.5).

It is explicitly unspecified whether there is any way to execute the block of an anonymous
function other than through evaluation and invocation of the lambda-expression or anony-
mous-method-expression. In particular, the compiler may choose to implement an anony-
mous function by synthesizing one or more named methods or types. The names of any
such synthesized elements must be of a form reserved for compiler use.

7.14    Anonymous Function Expressions

319

Expressions
7. 

Expressions
7. 

Expressions
7. 

Expressions
7. 

7.14.3  ​Overload Resolution
Anonymous functions in an argument list participate in type inference and overload reso-
lution. Refer to §7.4.2.3 for the exact rules governing their behavior.

The following example illustrates the effect of anonymous functions on overload
resolution.

class ItemList<T>: List<T>
{
 public int Sum(Func<T,int> selector) {
 int sum = 0;
 foreach (T item in this) sum += selector(item);
 return sum;
 }

 public double Sum(Func<T,double> selector) {
 double sum = 0;
 foreach (T item in this) sum += selector(item);
 return sum;
 }
}

The ItemList<T> class has two Sum methods. Each takes a selector argument, which
extracts the value to sum over from a list item. The extracted value can be either an int or
a double, and the resulting sum is likewise either an int or a double.

The Sum methods could, for example, be used to compute sums from a list of detail lines in
some order.

class Detail
{
 public int UnitCount;
 public double UnitPrice;
 ...
}

void ComputeSums() {
 ItemList<Detail> orderDetails = GetOrderDetails(...);
 int totalUnits = orderDetails.Sum(d => d.UnitCount);
 double orderTotal = orderDetails.Sum(d => d.UnitPrice * d.UnitCount);
 ...
}

In the first invocation of orderDetails.Sum, both Sum methods are applicable because the
anonymous function d => d.UnitCount is compatible with both Func<Detail,int> and
Func<Detail,double>. However, overload resolution picks the first Sum method because the
conversion to Func<Detail,int> is better than the conversion to Func<Detail,double>.

7.  Expressions

320

Ex
pr

es
si

on
s

7.
 

Ex
pr

es
si

on
s

7.
 

Ex
pr

es
si

on
s

7.
 

Ex
pr

es
si

on
s

7.
 

In the second invocation of orderDetails.Sum, only the second Sum method is applicable
because the anonymous function d => d.UnitPrice * d.UnitCount produces a value of type
double. Thus overload resolution picks the second Sum method for that invocation.

7.14.4  ​Outer Variables
Any local variable, value parameter, or parameter array whose scope includes the lambda-
expression or anonymous-method-expression is called an outer variable of the anonymous
function. In an instance function member of a class, the this value is considered a value
parameter and is an outer variable of any anonymous function contained within the func-
tion member.

n
n  Bill Wagner  This is the formal definition of how closures are implemented in

C#. It’s a great addition.

7.14.4.1  ​Captured Outer Variables
When an outer variable is referenced by an anonymous function, the outer variable is said
to have been captured by the anonymous function. Ordinarily, the lifetime of a local vari-
able is limited to execution of the block or statement with which it is associated (§5.1.7).
However, the lifetime of a captured outer variable is extended at least until the delegate or
expression tree created from the anonymous function becomes eligible for garbage
collection.

n
n  Bill Wagner  In the next example, notice that x has a longer life than you would

expect, because it is captured by the anonymous method result. If x were an expensive
resource, that behavior should be avoided by limiting the lifetime of the anonymous
method.

In the example

using System;

delegate int D();

class Test
{
 static D F() {
 int x = 0;
 D result = () => ++x;
 return result;
 }

7.14    Anonymous Function Expressions

321

Expressions
7. 

Expressions
7. 

Expressions
7. 

Expressions
7. 

 static void Main() {
 D d = F();
 Console.WriteLine(d());
 Console.WriteLine(d());
 Console.WriteLine(d());
 }
}

the local variable x is captured by the anonymous function, and the lifetime of x is extended
at least until the delegate returned from F becomes eligible for garbage collection (which
doesn’t happen until the very end of the program). Because each invocation of the anony-
mous function operates on the same instance of x, the example produces the following
output:

1
2
3

When a local variable or a value parameter is captured by an anonymous function, the
local variable or parameter is no longer considered to be a fixed variable (§18.3), but is
instead considered to be a moveable variable. Thus any unsafe code that takes the address
of a captured outer variable must first use the fixed statement to fix the variable.

7.14.4.2  ​Instantiation of Local Variables
A local variable is considered to be instantiated when execution enters the scope of the
variable. For example, when the following method is invoked, the local variable x is instan-
tiated and initialized three times—once for each iteration of the loop.

static void F() {
 for (int i = 0; i < 3; i++) {
 int x = i * 2 + 1;
 ...
 }
}

By comparison, moving the declaration of x outside the loop results in a single instantia-
tion of x:

static void F() {
 int x;
 for (int i = 0; i < 3; i++) {
 x = i * 2 + 1;
 ...
 }
}

When not captured, there is no way to observe exactly how often a local variable is
instantiated—because the lifetimes of the instantiations are disjoint, it is possible for each

7.  Expressions

322

Ex
pr

es
si

on
s

7.
 

Ex
pr

es
si

on
s

7.
 

Ex
pr

es
si

on
s

7.
 

Ex
pr

es
si

on
s

7.
 

instantiation to simply use the same storage location. However, when an anonymous func-
tion captures a local variable, the effects of instantiation become apparent.

The example

using System;

delegate void D();

class Test
{
 static D[] F() {
 D[] result = new D[3];
 for (int i = 0; i < 3; i++) {
 int x = i * 2 + 1;
 result[i] = () => { Console.WriteLine(x); };
 }
 return result;
 }

 static void Main() {
 foreach (D d in F()) d();
 }
}

produces the following output:

1
3
5

When the declaration of x is moved outside the loop,

static D[] F() {
 D[] result = new D[3];
 int x;
 for (int i = 0; i < 3; i++) {
 x = i * 2 + 1;
 result[i] = () => { Console.WriteLine(x); };
 }
 return result;
}

the output changes as follows:

5
5
5

If a for-statement declares an iteration variable, that variable itself is considered to be
declared outside of the loop. Thus, if the example is changed to capture the iteration vari-
able itself,

7.14    Anonymous Function Expressions

323

Expressions
7. 

Expressions
7. 

Expressions
7. 

Expressions
7. 

static D[] F() {
 D[] result = new D[3];
 for (int i = 0; i < 3; i++) {
 result[i] = () => { Console.WriteLine(i); };
 }
 return result;
}

only one instance of the iteration variable is captured, which produces the following
output:

3
3
3

It is possible for anonymous function delegates to share some captured variables, yet have
separate instances of others. For example, if F is changed to

static D[] F() {
 D[] result = new D[3];
 int x = 0;
 for (int i = 0; i < 3; i++) {
 int y = 0;
 result[i] = () => { Console.WriteLine("{0} {1}", ++x, ++y); };
 }
 return result;
}

the three delegates capture the same instance of x but separate instances of y, and the out-
put is as follows:

1 1
2 1
3 1

Separate anonymous functions can capture the same instance of an outer variable. In the
example

using System;

delegate void Setter(int value);

delegate int Getter();

class Test
{
 static void Main() {
 int x = 0;
 Setter s = (int value) => { x = value; };
 Getter g = () => { return x; };
 s(5);
 Console.WriteLine(g());
 s(10);
 Console.WriteLine(g());
 }
}

7.  Expressions

324

Ex
pr

es
si

on
s

7.
 

Ex
pr

es
si

on
s

7.
 

Ex
pr

es
si

on
s

7.
 

Ex
pr

es
si

on
s

7.
 

the two anonymous functions capture the same instance of the local variable x, and they
can “communicate” through that variable. This example results in the following output:

5
10

7.14.5  ​Evaluation of Anonymous Function Expressions
An anonymous function F must always be converted to a delegate type D or an expres-
sion tree type E, either directly or through the execution of a delegate creation expression
new D(F). This conversion determines the result of the anonymous function, as described
in §6.5.

7.15  ​Query Expressions
Query expressions provide a language-integrated syntax for queries that is similar to rela-
tional and hierarchical query languages such as SQL and XQuery.

query-expression:
from-clause query-body

from-clause:
from typeopt identifier in expression

query-body:
query-body-clausesopt select-or-group-clause query-continuationopt

query-body-clauses:
query-body-clause
query-body-clauses query-body-clause

query-body-clause:
from-clause
let-clause
where-clause
join-clause
join-into-clause
orderby-clause

let-clause:
let identifier = expression

where-clause:
where boolean-expression

7.15    Query Expressions

325

Expressions
7. 

Expressions
7. 

Expressions
7. 

Expressions
7. 

join-clause:
join typeopt identifier in expression on expression equals expression

join-into-clause:
join typeopt identifier in expression on expression equals expression into
identifier

orderby-clause:
orderby orderings

orderings:
ordering
orderings , ordering

ordering:
expression ordering-directionopt

ordering-direction:
ascending
descending

select-or-group-clause:
select-clause
group-clause

select-clause:
select expression

group-clause:
group expression by expression

query-continuation:
into identifier query-body

A query expression begins with a from clause and ends with either a select or group
clause. The initial from clause can be followed by zero or more from, let, where, join, or
orderby clauses. Each from clause is a generator introducing a range variable, which ranges
over the elements of a sequence. Each let clause introduces a range variable representing
a value computed by means of previous range variables. Each where clause is a filter that
excludes items from the result. Each join clause compares specified keys of the source
sequence with keys of another sequence, yielding matching pairs. Each orderby clause
reorders items according to specified criteria. The final select or group clause specifies the
shape of the result in terms of the range variables. Finally, an into clause can be used to
“splice” queries by treating the results of one query as a generator in a subsequent query.

7.  Expressions

326

Ex
pr

es
si

on
s

7.
 

Ex
pr

es
si

on
s

7.
 

Ex
pr

es
si

on
s

7.
 

Ex
pr

es
si

on
s

7.
 

7.15.1  ​Ambiguities in Query Expressions
Query expressions contain a number of “contextual keywords”—that is, identifiers that
have special meaning in a given context. Specifically, these contextual keywords are from,
where, join, on, equals, into, let, orderby, ascending, descending, select, group, and by.
To avoid ambiguities in query expressions caused by mixed use of these identifiers as key-
words and simple names, the identifiers are always considered keywords when they occur
anywhere within a query expression.

For this purpose, a query expression is any expression that starts with “from identifier” fol-
lowed by any token except “;”, “=”, or “,”.

To use these words as identifiers within a query expression, prefix them with “@” (§2.4.2).

7.15.2  ​Query Expression Translation
The C# language does not directly specify the execution semantics of query expressions.
Rather, query expressions are translated into invocations of methods that adhere to the
query expression pattern (§7.15.3). Specifically, query expressions are translated into invo-
cations of methods named Where, Select, SelectMany, Join, GroupJoin, OrderBy,
OrderByDescending, ThenBy, ThenByDescending, GroupBy, and Cast. These methods are
expected to have particular signatures and result types, as described in §7.15.3. They can
be instance methods of the object being queried or extension methods that are external to
the object, and they implement the actual execution of the query.

The translation from query expressions to method invocations is a syntactic mapping that
occurs before any type binding or overload resolution has been performed. The translation
is guaranteed to be syntactically correct, but it is not guaranteed to produce semantically
correct C# code. Following translation of query expressions, the resulting method invoca-
tions are processed as regular method invocations. This processing may, in turn, uncover
errors—for example, if the methods do not exist, if arguments have wrong types, or if the
methods are generic and type inference fails.

n
n  Bill Wagner  This entire section is a great way to understand how query expres-

sions are translated into method calls and possibly extension method calls.

A query expression is processed by repeatedly applying the following translations until no
further reductions are possible. The translations are listed in order of application: Each sec-
tion assumes that the translations in the preceding sections have been performed exhaus-
tively, and once exhausted, a section will not be revisited later in the processing of the same
query expression.

7.15    Query Expressions

327

Expressions
7. 

Expressions
7. 

Expressions
7. 

Expressions
7. 

Assignment to range variables is not allowed in query expressions. However, a C#
implementation is permitted to not always enforce this restriction, because satisfying
this constraint may sometimes not be possible with the syntactic translation scheme
presented here.

Certain translations inject range variables with transparent identifiers denoted by *. The
special properties of transparent identifiers are discussed further in §7.15.2.7.

n
n  Chris Sells  As much as I like the C# 3.0 query syntax, sometimes it’s difficult

to keep the translations in my head. Don’t feel bad if you occasionally feel the need to
write out your queries using the method call syntax. Also, any query methods that
you implement yourself will not have language constructs, so sometimes you won’t
have any choice except to use the method call syntax.

7.15.2.1  ​select and groupby Clauses with Continuations
A query expression with a continuation

from … into x …

is translated into

from x in (from …) …

The translations in the following sections assume that queries have no into
continuations.

The example

from c in customers
group c by c.Country into g
select new { Country = g.Key, CustCount = g.Count() }

is translated into

from g in
 from c in customers
 group c by c.Country
select new { Country = g.Key, CustCount = g.Count() }

Its final translation is

customers.
GroupBy(c => c.Country).
Select(g => new { Country = g.Key, CustCount = g.Count() })

7.  Expressions

328

Ex
pr

es
si

on
s

7.
 

Ex
pr

es
si

on
s

7.
 

Ex
pr

es
si

on
s

7.
 

Ex
pr

es
si

on
s

7.
 

n
n  JOSEPH ALBAHARI  The purpose of a query continuation is to allow further

clauses after a select or group clause (which would otherwise terminate the query).
After a query continuation, the former range variable, and any variables that were
introduced through join or let clauses, are out of scope. In contrast, a let clause acts
like a nondestructive select: It keeps the former range variable, and other query vari-
ables, in scope.

The identifier introduced by a query continuation can be the same as the preceding
range variable.

7.15.2.2  ​Explicit Range Variable Types
A from clause that explicitly specifies a range variable type

from T x in e

is translated into

from x in (e) . Cast < T > ()

A join clause that explicitly specifies a range variable type

join T x in e on k1 equals k2

is translated into

join x in (e) . Cast < T > () on k1 equals k2

The translations in the following sections assume that queries have no explicit range vari-
able types.

The example

from Customer c in customers
where c.City == "London"
select c

is translated into

from c in customers.Cast<Customer>()
where c.City == "London"
select c

The final translation is

customers.
Cast<Customer>().
Where(c => c.City == "London")

7.15    Query Expressions

329

Expressions
7. 

Expressions
7. 

Expressions
7. 

Expressions
7. 

Explicit range variable types are useful for querying collections that implement the non
generic IEnumerable interface, but not the generic IEnumerable<T> interface. In the preced-
ing example, this would be the case if customers were of type ArrayList.

7.15.2.3  ​Degenerate Query Expressions
A query expression of the form

from x in e select x

is translated into

(e) . Select (x => x)

The example

from c in customers
select c

is translated into

customers.Select(c => c)

A degenerate query expression is one that trivially selects the elements of the source. A
later phase of the translation removes degenerate queries introduced by other translation
steps by replacing those queries with their source. In this situation, it is important to ensure
that the result of a query expression is never the source object itself, as that would reveal
the type and identity of the source to the client of the query. As a consequence, this step
protects degenerate queries written directly in source code by explicitly calling Select on
the source. It is then up to the implementers of Select and other query operators to ensure
that these methods never return the source object itself.

7.15.2.4  ​from, let, where, join, and orderby Clauses

n
n  JOSEPH ALBAHARI  The cumbersome-looking translations in this section are

what make query syntax really useful: They eliminate the need to write out cumber-
some queries by hand. Without this problem, there might have been little justification
for introducing query expression syntax into C# 3.0, given the capabilities of lambda
expressions and extension methods.

The common theme in the more complex translations is the process of projecting into
a temporary anonymous type so as to keep the former range variable in scope follow-
ing a let, from, or join clause.

7.  Expressions

330

Ex
pr

es
si

on
s

7.
 

Ex
pr

es
si

on
s

7.
 

Ex
pr

es
si

on
s

7.
 

Ex
pr

es
si

on
s

7.
 

A query expression with a second from clause followed by a select clause

from x1 in e1
from x2 in e2
select v

is translated into

(e1) . SelectMany(x1 => e2 , (x1 , x2) => v)

A query expression with a second from clause followed by something other than a select
clause

from x1 in e1
from x2 in e2
...

is translated into

from * in (e1) . SelectMany(x1 => e2 , (x1 , x2) => new { x1 , x2 })
...

A query expression with a let clause

from x in e
let y = f
...

is translated into

from * in (e) . Select (x => new { x , y = f })
...

A query expression with a where clause

from x in e
where f
...

is translated into

from x in (e) . Where (x => f)
...

A query expression with a join clause without an into followed by a select clause

from x1 in e1
join x2 in e2 on k1 equals k2
select v

is translated into

(e1) . Join(e2 , x1 => k1 , x2 => k2 , (x1 , x2) => v)

7.15    Query Expressions

331

Expressions
7. 

Expressions
7. 

Expressions
7. 

Expressions
7. 

A query expression with a join clause without an into followed by something other than
a select clause

from x1 in e1
join x2 in e2 on k1 equals k2
...

is translated into

from * in (e1) . Join(
	 e2 , x1 => k1 , x2 => k2 , (x1 , x2) => new { x1 , x2 })
...

A query expression with a join clause with an into followed by a select clause

from x1 in e1
join x2 in e2 on k1 equals k2 into g
select v

is translated into

(e1) . GroupJoin(e2 , x1 => k1 , x2 => k2 , (x1 , g) => v)

A query expression with a join clause with an into followed by something other than a
select clause

from x1 in e1
join x2 in e2 on k1 equals k2 into g
...

is translated into

from * in (e1) . GroupJoin(
	 e2 , x1 => k1 , x2 => k2 , (x1 , g) => new { x1 , g })
...

A query expression with an orderby clause

from x in e
orderby k1 , k2 , ... , kn
...

is translated into

from x in (e) .
OrderBy (x => k1) .
ThenBy (x => k2) .

ThenBy (x => kn)
...

7.  Expressions

332

Ex
pr

es
si

on
s

7.
 

Ex
pr

es
si

on
s

7.
 

Ex
pr

es
si

on
s

7.
 

Ex
pr

es
si

on
s

7.
 

If an ordering clause specifies a descending direction indicator, an invocation of OrderBy-
Descending or ThenByDescending is produced instead.

The following translations assume that there are no let, where, join, or orderby clauses,
and no more than the one initial from clause in each query expression.

The example

from c in customers
from o in c.Orders
select new { c.Name, o.OrderID, o.Total }

is translated into

customers.
SelectMany(c => c.Orders,
 (c,o) => new { c.Name, o.OrderID, o.Total }
)

The example

from c in customers
from o in c.Orders
orderby o.Total descending
select new { c.Name, o.OrderID, o.Total }

is translated into

from * in customers.
 SelectMany(c => c.Orders, (c,o) => new { c, o })
orderby o.Total descending
select new { c.Name, o.OrderID, o.Total }

The final translation is

customers.
SelectMany(c => c.Orders, (c,o) => new { c, o }).
OrderByDescending(x => x.o.Total).
Select(x => new { x.c.Name, x.o.OrderID, x.o.Total })

where x is a compiler-generated identifier that is otherwise invisible and inaccessible.

The example

from o in orders
let t = o.Details.Sum(d => d.UnitPrice * d.Quantity)
where t >= 1000
select new { o.OrderID, Total = t }

is translated into

7.15    Query Expressions

333

Expressions
7. 

Expressions
7. 

Expressions
7. 

Expressions
7. 

from * in orders.
 Select(o => new { o, t = o.Details.Sum(d => d.UnitPrice * d.Quantity) })
where t >= 1000
select new { o.OrderID, Total = t }

The final translation is

orders.
Select(o => new { o, t = o.Details.Sum(d => d.UnitPrice * d.Quantity) }).
Where(x => x.t >= 1000).
Select(x => new { x.o.OrderID, Total = x.t })

where x is a compiler-generated identifier that is otherwise invisible and inaccessible.

The example

from c in customers
join o in orders on c.CustomerID equals o.CustomerID
select new { c.Name, o.OrderDate, o.Total }

is translated into

customers.Join(orders, c => c.CustomerID, o => o.CustomerID,
 (c, o) => new { c.Name, o.OrderDate, o.Total })

The example

from c in customers
join o in orders on c.CustomerID equals o.CustomerID into co
let n = co.Count()
where n >= 10
select new { c.Name, OrderCount = n }

is translated into

from * in customers.
 GroupJoin(orders, c => c.CustomerID, o => o.CustomerID,
 (c, co) => new { c, co })
let n = co.Count()
where n >= 10
select new { c.Name, OrderCount = n }

The final translation is

customers.
GroupJoin(orders, c => c.CustomerID, o => o.CustomerID,
 (c, co) => new { c, co }).
Select(x => new { x, n = x.co.Count() }).
Where(y => y.n >= 10).
Select(y => new { y.x.c.Name, OrderCount = y.n)

where x and y are compiler-generated identifiers that are otherwise invisible and
inaccessible.

7.  Expressions

334

Ex
pr

es
si

on
s

7.
 

Ex
pr

es
si

on
s

7.
 

Ex
pr

es
si

on
s

7.
 

Ex
pr

es
si

on
s

7.
 

The example

from o in orders
orderby o.Customer.Name, o.Total descending
select o

has the final translation

orders.
OrderBy(o => o.Customer.Name).
ThenByDescending(o => o.Total)

7.15.2.5  ​select Clauses
A query expression of the form

from x in e select v

is translated into

(e) . Select (x => v)

except when v is the identifier x. In the latter case, the translation is simply

(e)

For example,

from c in customers.Where(c => c.City == "London")
select c

is simply translated into

customers.Where(c => c.City == "London")

7.15.2.6  ​groupby Clauses
A query expression of the form

from x in e group v by k

is translated into

(e) . GroupBy (x => k , x => v)

except when v is the identifier x. In the latter case, the translation is

(e) . GroupBy (x => k)

The example

from c in customers
group c.Name by c.Country

7.15    Query Expressions

335

Expressions
7. 

Expressions
7. 

Expressions
7. 

Expressions
7. 

is translated into

customers.
GroupBy(c => c.Country, c => c.Name)

7.15.2.7  ​Transparent Identifiers
Certain translations inject range variables with transparent identifiers denoted by *. Trans-
parent identifiers are not a proper language feature; they exist only as an intermediate step
in the query expression translation process.

When a query translation injects a transparent identifier, further translation steps propa-
gate the transparent identifier into anonymous functions and anonymous object initializ-
ers. In those contexts, transparent identifiers have the following behavior:

When a transparent identifier occurs as a parameter in an anonymous function, the •	
members of the associated anonymous type are automatically in scope in the body of
the anonymous function.

When a member with a transparent identifier is in scope, the members of that member •	
are in scope as well.

When a transparent identifier occurs as a member declarator in an anonymous object •	
initializer, it introduces a member with a transparent identifier.

In the translation steps described earlier, transparent identifiers are always introduced
together with anonymous types, with the intent of capturing multiple range variables as
members of a single object. An implementation of C# is permitted to use a different mecha-
nism than anonymous types to group together multiple range variables. The following
translation examples assume that anonymous types are used, and show how transparent
identifiers can be translated away.

The example

from c in customers
from o in c.Orders
orderby o.Total descending
select new { c.Name, o.Total }

is translated into

from * in customers.
 SelectMany(c => c.Orders, (c,o) => new { c, o })
orderby o.Total descending
select new { c.Name, o.Total }

7.  Expressions

336

Ex
pr

es
si

on
s

7.
 

Ex
pr

es
si

on
s

7.
 

Ex
pr

es
si

on
s

7.
 

Ex
pr

es
si

on
s

7.
 

which is further translated into

customers.
SelectMany(c => c.Orders, (c,o) => new { c, o }).
OrderByDescending(* => o.Total).
Select(* => new { c.Name, o.Total })

When transparent identifiers are erased, the final translation is equivalent to

customers.
SelectMany(c => c.Orders, (c,o) => new { c, o }).
OrderByDescending(x => x.o.Total).
Select(x => new { x.c.Name, x.o.Total })

where x is a compiler-generated identifier that is otherwise invisible and inaccessible.

The example

from c in customers
join o in orders on c.CustomerID equals o.CustomerID
join d in details on o.OrderID equals d.OrderID
join p in products on d.ProductID equals p.ProductID
select new { c.Name, o.OrderDate, p.ProductName }

is translated into

from * in customers.
 Join(orders, c => c.CustomerID, o => o.CustomerID,
 (c, o) => new { c, o })
join d in details on o.OrderID equals d.OrderID
join p in products on d.ProductID equals p.ProductID
select new { c.Name, o.OrderDate, p.ProductName }

which is further reduced to

customers.
Join(orders, c => c.CustomerID, o => o.CustomerID, (c, o) => new { c, o }).
Join(details, * => o.OrderID, d => d.OrderID, (*, d) => new { *, d }).
Join(products, * => d.ProductID, p => p.ProductID, (*, p) => new { *, p }).
Select(* => new { c.Name, o.OrderDate, p.ProductName })

The final translation is

customers.
Join(orders, c => c.CustomerID, o => o.CustomerID,
 (c, o) => new { c, o }).
Join(details, x => x.o.OrderID, d => d.OrderID,
 (x, d) => new { x, d }).
Join(products, y => y.d.ProductID, p => p.ProductID,
 (y, p) => new { y, p }).
Select(z => new { z.y.x.c.Name, z.y.x.o.OrderDate, z.p.ProductName })

7.15    Query Expressions

337

Expressions
7. 

Expressions
7. 

Expressions
7. 

Expressions
7. 

where x, y, and z are compiler-generated identifiers that are otherwise invisible and
inaccessible.

n
n  MADS TORGERSEN  The last example demonstrates one of the most powerful

aspects of query expressions—the ability to introduce multiple range variables and
have them pass through subsequent query operators in a manner transparent to the
programmer.

7.15.3  ​The Query Expression Pattern
The query expression pattern establishes a pattern of methods that types can implement to
support query expressions. Because query expressions are translated to method invoca-
tions by means of a syntactic mapping, types have considerable flexibility in how they
implement the query expression pattern. For example, the methods of the pattern can be
implemented as instance methods or as extension methods because both kinds of methods
have the same invocation syntax. Likewise, the methods can request delegates or expres-
sion trees because anonymous functions are convertible to both.

The recommended shape of a generic type C<T> that supports the query expression pattern
is shown below. A generic type is used to illustrate the proper relationships between
parameter and result types, but it is possible to implement the pattern for nongeneric types
as well.

delegate R Func<T1,R>(T1 arg1);

delegate R Func<T1,T2,R>(T1 arg1, T2 arg2);

class C
{
 public C<T> Cast<T>();
}

class C<T> : C
{
 public C<T> Where(Func<T,bool> predicate);

 public C<U> Select<U>(Func<T,U> selector);

 public C<V> SelectMany<U,V>(Func<T,C<U>> selector,
 Func<T,U,V> resultSelector);

 public C<V> Join<U,K,V>(C<U> inner, Func<T,K> outerKeySelector,
 Func<U,K> innerKeySelector, Func<T,U,V> resultSelector);

 public C<V> GroupJoin<U,K,V>(C<U> inner, Func<T,K> outerKeySelector,
 Func<U,K> innerKeySelector, Func<T,C<U>,V> resultSelector);

 public O<T> OrderBy<K>(Func<T,K> keySelector);

 public O<T> OrderByDescending<K>(Func<T,K> keySelector);

7.  Expressions

338

Ex
pr

es
si

on
s

7.
 

Ex
pr

es
si

on
s

7.
 

Ex
pr

es
si

on
s

7.
 

Ex
pr

es
si

on
s

7.
 

 public C<G<K,T>> GroupBy<K>(Func<T,K> keySelector);

 public C<G<K,E>> GroupBy<K,E>(Func<T,K> keySelector,
 Func<T,E> elementSelector);
}

class O<T> : C<T>
{
 public O<T> ThenBy<K>(Func<T,K> keySelector);

 public O<T> ThenByDescending<K>(Func<T,K> keySelector);
}

class G<K,T> : C<T>
{
 public K Key { get; }
}

These methods use the generic delegate types Func<T1, R> and Func<T1, T2, R>, but they
could equally well have used other delegate or expression tree types with the same rela-
tionships in parameter and result types.

Notice the recommended relationship between C<T> and O<T>, which ensures that the
ThenBy and ThenByDescending methods are available only on the result of an OrderBy or
OrderByDescending. Also notice the recommended shape of the result of GroupBy—a
sequence of sequences, where each inner sequence has an additional Key property.

n
n  Bill Wagner  ThenBy will often have better performance than OrderBy, because

it needs to sort only inner sequences that have more than one value.

The System.Linq namespace provides an implementation of the query operator pattern for
any type that implements the System.Collections.Generic.IEnumerable<T> interface.

n
n  Bill Wagner  There is also an implementation for any type that implements
IQueryable<T>.

n
n  Eric Lippert  This signature for Join is one of the primary motivators of the

“accumulate bounds and then fix to the best one” part of the method type inference
algorithm. If the inner key is, say, of type int, and the outer key of of type int?, then
rather than having type inference fail due to the “contradiction,” it is better to simply
pick the more general of the two types. Because every int is an int?, the type infer-
ence algorithm would choose int? for K.

7.16    Assignment Operators

339

Expressions
7. 

Expressions
7. 

Expressions
7. 

Expressions
7. 

7.16  ​Assignment Operators
The assignment operators assign a new value to a variable, a property, an event, or an
indexer element.

assignment:
unary-expression assignment-operator expression

assignment-operator:
=
+=
-=
*=
/=
%=
&=
|=
^=
<<=
right-shift-assignment

The left operand of an assignment must be an expression classified as a variable, a property
access, an indexer access, or an event access.

The = operator is called the simple assignment operator. It assigns the value of the right
operand to the variable, property, or indexer element given by the left operand. The left
operand of the simple assignment operator may not be an event access (except as described
in §10.8.1). The simple assignment operator is described in §7.16.1.

The assignment operators other than the = operator are called compound assignment
operators. These operators perform the indicated operation on the two operands, and then
assign the resulting value to the variable, property, or indexer element given by the left
operand. The compound assignment operators are described in §7.16.2.

The += and -= operators with an event access expression as the left operand are called
event assignment operators. No other assignment operator is valid with an event access as
the left operand. The event assignment operators are described in §7.16.3.

The assignment operators are right-associative, meaning that operations are grouped from
right to left. For example, an expression of the form a = b = c is evaluated as a = (b = c).

7.  Expressions

340

Ex
pr

es
si

on
s

7.
 

Ex
pr

es
si

on
s

7.
 

Ex
pr

es
si

on
s

7.
 

Ex
pr

es
si

on
s

7.
 

7.16.1  ​Simple Assignment
The = operator is called the simple assignment operator. In a simple assignment, the right
operand must be an expression of a type that is implicitly convertible to the type of the left
operand. The operation assigns the value of the right operand to the variable, property, or
indexer element given by the left operand.

The result of a simple assignment expression is the value assigned to the left operand. The
result has the same type as the left operand and is always classified as a value.

If the left operand is a property or indexer access, the property or indexer must have a set
accessor. If this is not the case, a compile-time error occurs.

The runtime processing of a simple assignment of the form x = y consists of the following
steps:

If •	 x is classified as a variable:

x-- is evaluated to produce the variable.

y-- is evaluated and, if required, converted to the type of x through an implicit conver-
sion (§6.1).

If the variable given by -- x is an array element of a reference-type, a runtime check is
performed to ensure that the value computed for y is compatible with the array
instance of which x is an element. The check succeeds if y is null, or if an implicit
reference conversion (§6.1.6) exists from the actual type of the instance referenced by
y to the actual element type of the array instance containing x. Otherwise, a System.
ArrayTypeMismatchException is thrown.

The value resulting from the evaluation and conversion of -- y is stored into the location
given by the evaluation of x.

If •	 x is classified as a property or indexer access:

The instance expression (if -- x is not static) and the argument list (if x is an indexer
access) associated with x are evaluated, and the results are used in the subsequent set
accessor invocation.

y-- is evaluated and, if required, converted to the type of x through an implicit conver-
sion (§6.1).

The -- set accessor of x is invoked with the value computed for y as its value
argument.

The array covariance rules (§12.5) permit a value of an array type A[] to be a reference to
an instance of an array type B[], provided an implicit reference conversion exists from B
to A. Because of these rules, assignment to an array element of a reference-type requires a

7.16    Assignment Operators

341

Expressions
7. 

Expressions
7. 

Expressions
7. 

Expressions
7. 

runtime check to ensure that the value being assigned is compatible with the array instance.
In the example

string[] sa = new string[10];
object[] oa = sa;

oa[0] = null; // Okay
oa[1] = "Hello"; // Okay
oa[2] = new ArrayList(); // ArrayTypeMismatchException

the last assignment causes a System.ArrayTypeMismatchException to be thrown because
an instance of ArrayList cannot be stored in an element of a string[].

n
n  Bill Wagner  This point implies that array assignment does not copy the array,

but rather adds a new reference to the same storage.

When a property or indexer declared in a struct-type is the target of an assignment, the
instance expression associated with the property or indexer access must be classified as a
variable. If the instance expression is classified as a value, a compile-time error occurs.
Because of the points raised in §7.5.4, the same rule also applies to fields.

Given the declarations:

struct Point
{
 int x, y;

 public Point(int x, int y) {
 this.x = x;
 this.y = y;
 }

 public int X {
 get { return x; }
 set { x = value; }
 }

 public int Y {
 get { return y; }
 set { y = value; }
 }
}

struct Rectangle
{
 Point a, b;

 public Rectangle(Point a, Point b) {
 this.a = a;
 this.b = b;
 }

7.  Expressions

342

Ex
pr

es
si

on
s

7.
 

Ex
pr

es
si

on
s

7.
 

Ex
pr

es
si

on
s

7.
 

Ex
pr

es
si

on
s

7.
 

 public Point A {
 get { return a; }
 set { a = value; }
 }

 public Point B {
 get { return b; }
 set { b = value; }
 }
}

in the example

Point p = new Point();
p.X = 100;
p.Y = 100;
Rectangle r = new Rectangle();
r.A = new Point(10, 10);
r.B = p;

the assignments to p.X, p.Y, r.A, and r.B are permitted because p and r are variables. How-
ever, in the example

Rectangle r = new Rectangle();
r.A.X = 10;
r.A.Y = 10;
r.B.X = 100;
r.B.Y = 100;

the assignments are all invalid, because r.A and r.B are not variables.

n
n  JOSEPH ALBAHARI  An early release of the C# 1.0 compiler allowed assignments

such as r.A.X = 10—but they failed silently because r.A returns a copy of a Point (i.e.,
a value) rather than a variable. People found this behavior confusing, so the condition
was detected and reported as an error.

n
n  Bill Wagner  This discussion highlights yet another reason why structs should

be immutable.

7.16.2  ​Compound Assignment
An operation of the form x op= y is processed by applying binary operator overload resolu-
tion (§7.2.4) as if the operation was written x op y. Then,

If the return type of the selected operator is •	 implicitly convertible to the type of x, the
operation is evaluated as x = x op y, except that x is evaluated only once.

7.16    Assignment Operators

343

Expressions
7. 

Expressions
7. 

Expressions
7. 

Expressions
7. 

Otherwise, if the selected operator is a predefined operator, if the return type of the •	
selected operator is explicitly convertible to the type of x, and if y is implicitly convertible
to the type of x or the operator is a shift operator, then the operation is evaluated as x =
(T)(x op y), where T is the type of x, except that x is evaluated only once.

Otherwise, the compound assignment is invalid, and a compile-time error occurs.•	

The term “evaluated only once” means that in the evaluation of x op y, the results of any
constituent expressions of x are temporarily saved and then reused when performing the
assignment to x. For example, in the assignment A()[B()] += C(), where A is a method
returning int[], and B and C are methods returning int, the methods are invoked only
once, in the order A, B, C.

When the left operand of a compound assignment is a property access or indexer access,
the property or indexer must have both a get accessor and a set accessor. If this is not the
case, a compile-time error occurs.

The second rule permits x op= y to be evaluated as x = (T)(x op y) in certain contexts. The
rule exists such that the predefined operators can be used as compound operators when
the left operand is of type sbyte, byte, short, ushort, or char. Even when both arguments
are of one of those types, the predefined operators produce a result of type int, as described
in §7.2.6.2. Thus, without a cast, it would not be possible to assign the result to the left
operand.

The intuitive effect of the rule for predefined operators is simply that x op= y is permitted
if both of x op y and x = y are permitted. In the example

byte b = 0;
char ch = '\0';
int i = 0;

b += 1; // Okay
b += 1000; // Error, b = 1000 not permitted
b += i; // Error, b = i not permitted
b += (byte)i; // Okay

ch += 1; // Error, ch = 1 not permitted
ch += (char)1; // Okay

the intuitive reason for each error is that a corresponding simple assignment would also
have been an error.

This also means that compound assignment operations support lifted operations. In the
example

int? i = 0;
i += 1; // Okay

the lifted operator +(int?,int?) is used.

7.  Expressions

344

Ex
pr

es
si

on
s

7.
 

Ex
pr

es
si

on
s

7.
 

Ex
pr

es
si

on
s

7.
 

Ex
pr

es
si

on
s

7.
 

7.16.3  ​Event Assignment
If the left operand of a += or -= operator is classified as an event access, then the expression
is evaluated as follows:

The instance expression, if any, of the event access is evaluated.•	

The right operand of the •	 += or -= operator is evaluated and, if required, converted to the
type of the left operand through an implicit conversion (§6.1).

An event accessor of the event is invoked, with an argument list consisting of the right •	
operand, after evaluation and, if necessary, conversion. If the operator was +=, the add
accessor is invoked; if the operator was -=, the remove accessor is invoked.

An event assignment expression does not yield a value. Thus an event assignment expres-
sion is valid only in the context of a statement-expression (§8.6).

7.17  ​Expressions
An expression is either a non-assignment-expression or an assignment.

expression:
non-assignment-expression
assignment

non-assignment-expression:
conditional-expression
lambda-expression
query-expression

7.18  ​Constant Expressions
A constant-expression is an expression that can be fully evaluated at compile time.

constant-expression:
expression

A constant expression must be the null literal or a value with one of the following types:
sbyte, byte, short, ushort, int, uint, long, ulong, char, float, double, decimal, bool,
string, or any enumeration type. Only the following constructs are permitted in constant
expressions:

Literals (including the •	 null literal)

References to •	 const members of class and struct types

7.18    Constant Expressions

345

Expressions
7. 

Expressions
7. 

Expressions
7. 

Expressions
7. 

References to members of enumeration types•	

References to •	 const parameters or local variables

Parenthesized subexpressions, which are themselves constant expressions•	

Cast expressions, provided the target type is one of the types listed above•	

checked•	 and unchecked expressions

Default value expressions•	

The predefined •	 +, –, !, and ~ unary operators

The predefined •	 +, –, *, /, %, <<, >>, &, |, ^, &&, ||, ==, !=, <, >, <=, and >= binary operators,
provided each operand is of a type listed above

The •	 ?: conditional operator

The following conversions are permitted in constant expressions:

Identity conversions•	

Numeric conversions•	

Enumeration conversions•	

Constant expression conversions•	

Implicit and explicit reference conversions, provided that the source of the conversions •	
is a constant expression that evaluates to the null value

Other conversions including boxing, unboxing, and implicit reference conversions of non-
null values are not permitted in constant expressions. For example,

class C {
 const object i = 5; // Error: boxing conversion not permitted
 const object str = "hello"; // Error: implicit reference conversion
}

In this example, the initialization of i is an error because a boxing conversion is required.
The initialization of str is an error because an implicit reference conversion from a non-
null value is required.

Whenever an expression fulfills the requirements listed above, the expression is evaluated
at compile time. This is true even if the expression is a subexpression of a larger expression
that contains nonconstant constructs.

The compile-time evaluation of constant expressions uses the same rules as runtime evalu-
ation of nonconstant expressions, except that where runtime evaluation would have
thrown an exception, compile-time evaluation causes a compile-time error to occur.

7.  Expressions

346

Ex
pr

es
si

on
s

7.
 

Ex
pr

es
si

on
s

7.
 

Ex
pr

es
si

on
s

7.
 

Ex
pr

es
si

on
s

7.
 

Unless a constant expression is explicitly placed in an unchecked context, overflows that
occur in integral-type arithmetic operations and conversions during the compile-time eval-
uation of the expression always cause compile-time errors (§7.18).

Constant expressions occur in the contexts listed below. In these contexts, a compile-time
error occurs if an expression cannot be fully evaluated at compile time.

Constant declarations (§10.4)•	

Enumeration member declarations (§14.3)•	

case•	 labels of a switch statement (§8.7.2)

goto•	 case statements (§8.9.3)

Dimension lengths in an array creation expression (§7.5.10.4) that includes an initializer•	

Attributes (§17)•	

An implicit constant expression conversion (§6.1.8) permits a constant expression of type
int to be converted to sbyte, byte, short, ushort, uint, or ulong, provided the value of the
constant expression is within the range of the destination type.

7.19  ​Boolean Expressions
A boolean-expression is an expression that yields a result of type bool, either directly or
through application of operator true in certain contexts as specified in the following
discussion.

boolean-expression:
expression

The controlling conditional expression of an if-statement (§8.7.1), while-statement (§8.8.1),
do-statement (§8.8.2), or for-statement (§8.8.3) is a boolean-expression. The controlling condi-
tional expression of the ?: operator (§7.13) follows the same rules as a boolean-expression,
but for reasons of operator precedence is classified as a conditional-or-expression.

A boolean-expression is required to be of a type that can be implicitly converted to bool or of
a type that implements operator true. If neither requirement is satisfied, a compile-time
error occurs.

When a boolean expression is of a type that cannot be implicitly converted to bool but does
implement operator true, then following evaluation of the expression, the operator true
implementation provided by that type is invoked to produce a bool value.

The DBBool struct type in §11.4.2 provides an example of a type that implements operator
true and operator false.

727

Index

A
\a escape sequence, 70
Abstract accessors, 38, 490–491
Abstract classes

and interfaces, 583–584
overview, 408–409

Abstract events, 497–498
Abstract indexers, 499
Abstract methods, 30, 473–474
Access and accessibility

array elements, 556
containing types, 438–440
events, 220
indexers, 220, 255
members, 20, 95, 434

accessibility domains, 97–100
constraints, 102–104
declared accessibility, 95–97
interface, 567–569
pointer, 634–635
in primary expressions, 242–246
protected, 100–102

nested types, 436–440
pointer elements, 635–636
primary expression elements, 253–255
properties, 219, 487–489

Accessors
abstract, 38, 490–491
attribute, 610

event, 496–497
property, 38, 480–486

Acquire semantics, 450
Acquisition in using statement, 388
add accessors

attributes, 610
events, 39, 496

Add method, 35
AddEventHandler method, 497
Addition operator

described, 12
uses, 290–292

Address-of operator, 636–637
Addresses

fixed variables, 640–645
pointers for, 628, 636–637

after state for enumerator objects, 525–527
Alert escape sequence, 70
Aliases

for namespaces and types, 395–400
qualifiers, 404–406
uniqueness, 405–406

Alignment enumeration, 48–49
Alloc method, 650
Allocation, stack, 648–649
AllowMultiple parameter, 604
Ambiguities

grammar, 246
in query expressions, 326

728

Ampersands (&) n Attributes

Ampersands (&)
for addresses, 630
in assignment operators, 339
definite assignment rules, 167–168
for logical operators, 307–311
for pointers, 636–637
in preprocessing expressions, 77

AND operators, 12
Angle brackets (<>) for type arguments, 141
Anonymous functions

bodies, 318
conversions, 193–194

evaluation to delegate types, 146–148,
195

evaluation to expression tree types, 196
implementation example, 196–199
implicit, 179

definite assignment rules, 171
delegate creation, 51–52
evaluation of, 324
expressions, 146–147, 280, 314–317
outer variables, 320–324
overloaded, 319–320
signatures, 317–318

Anonymous objects, 271–273
AppendFormat method, 27
Applicable function members, 232–233
Application domains, 87
Applications, 4

startup, 86–87
termination, 88–89

Apply method, 50
Arguments, 24. See also Parameters

command-line, 87
for function members, 221–224
type, 141–143
type inference, 224–231

Arithmetic operators, 285
addition, 290–292
division, 287–288
multiplication, 285–287
pointer, 638–639
remainder, 288–290
shift, 296
subtraction, 292–295

ArithmeticException class, 287, 601
Arrays and array types, 6–7, 10, 137

access to, 254, 556
conversions, 177
covariance, 177, 556–557
creating, 555–556
elements, 43, 151, 556
with foreach, 372
IList interface, 554–555
initializers, 45, 557–559
members, 94, 556
new operator for, 43, 45, 266–269
overview, 43–45
parameter, 26, 462–465
and pointers, 632–633, 642–643
rank specifiers, 553–554
syntactic grammar, 715–716

ArrayTypeMismatchException class,
340–341, 557, 601

as operator, 305–306
Assemblies, 4–5
Assignment

in classes vs. structs, 541
definite. See Definite assignment
fixed size buffers, 648

Assignment operators, 13, 339
compound, 342–343
event, 344
simple, 340–342

Associativity of operators, 206–208
Asterisks (*)

assignment operators, 339
comments, 59–60, 653–654
multiplication, 285–287
pointers, 627–630, 634
transparent identifiers, 335

At sign characters (@) for identifiers, 62–64
Atomicity of variable references, 172
Attribute class, 53, 603
Attributes, 603

classes, 603–607, 619
compilation of, 614
compilation units, 393
instances, 613–614
for interoperation, 621

729

Attributes n Buffers

overview, 53–54
parameters for, 605–607
partial types, 421
reserved, 615

AttributeUsage, 615
Conditional, 616–619
Obsolete, 620–621

sections for, 607
specifications, 607–613
syntactic grammar, 718–720

AttributeUsage attribute, 603–606, 615
Automatic memory management, 116–121
Automatically implemented properties, 481,

486–487

B
\b escape sequence, 70
Backslash characters (\)

for characters, 70
escape sequence, 70
for strings, 72

Backtick character (`), 72
Banker’s rounding, 132
Base access, 256–257
Base classes, 21–22

partial types, 423
specifications for, 411–414
type parameter constraints, 419

Base interfaces
inheritance from, 562–564
partial types, 423

Base types, 217
before state for enumerator objects, 525–527
Better conversions, 234–235
Better function members, 233–234
Binary operators, 206

declarations, 506–507
in ID string format, 671
lifted, 214
numeric promotions, 212–213
overload resolution, 210–211
overloadable, 208–209

Bind method, 46
Binding, name, 428–429
BitArray class, 501–502

Bitwise complement operator, 282
Blocks

in declarations, 90–91
definite assignment rules, 158
exiting, 373
in grammar notation, 56
invariant meaning in, 241–242
in methods, 477
reachability of, 349
in statements, 350–351
for unsafe code, 624

Bodies
classes, 420
interfaces, 564
methods, 27–28, 477–478
struct, 538

bool type, 7, 133
Boolean values

expressions, 346
literals, 66
operators

conditional logical, 310
equality, 300
logical, 308–309

in struct example, 549–551
Bound types, 143
Box class, 473
Boxed instances, invocations on, 237
Boxing, 9, 137–138

in classes vs. structs, 542–544
conversions, 138–140, 178

break statement
definite assignment rules, 161
example, 16
for for statements, 367–368
overview, 374
for switch, 361–362
for while, 365
yield break, 390–392, 526–527

Brittle base class syndrome, 29, 249
Brittle derived class syndrome, 249, 253
Buffers, fixed-size

declarations, 645–647
definite assignment, 648
in expressions, 647–648

730

Bugs n Classes

Bugs. See Unsafe code
Button class, 482, 493–494
byte type, 8

C
<c> tag, 656
Cache class, 386
Callable entities, 591
Candidate user-defined operators, 211
Captured outer variables, 320–321
Carets (^)

in assignment operators, 339
for logical operators, 307–308

Carriage-return characters
escape sequence, 70
as line terminators, 58–59

Case labels, 361–364
Cast expressions, 284–285
catch blocks

definite assignment rules, 163–164
for exceptions, 600–601
throw statements, 378–379
try statements, 380–384

char type, 129
Character literals, 69–70
Characters, 7
checked statement

definite assignment rules, 158
example, 17
overview, 385
in primary expressions, 276–279

Classes
accessibility, 20
attribute, 603–607, 619
base, 21–22, 411–414
bodies, 420
constants for, 443–445
constructors for, 36

instance, 510–517
static, 518–520

declarations, 407
base specifications, 411–414
bodies, 420

modifiers, 407–410
partial type, 410–411
type parameter constraints, 414–420
type parameters, 411

defined, 407
destructors for, 40, 520–522
events in, 38–39

accessors, 496–497
declaration, 491–494
field-like, 494–495
instance and static, 497

fields in, 22–23
declarations, 445–447
initializing, 451–452
read-only, 448–450
static and instance, 447–448
variable initializers, 452–455
volatile, 450–451

function members in, 34–40
indexers in, 38, 498–503
instance variables in, 150
interface implementation by, 47
iterators. See Iterators
members in, 19, 94, 429–431

access modifiers for, 434
constituent types for, 434
constructed types, 431–432
inheritance of, 432–433
instance types, 431
nested types for, 436–442
new modifier for, 433–434
reserved names for, 440–442
static and instance, 434–435

methods in, 24–34
abstract, 473–474
bodies, 477–478
declaration, 455–457
extension, 475–477
external, 474–475
parameters, 458–465
partial, 475
sealed, 472–473
static and instance, 466
virtual, 466–469

731

Classes n Constant class

operators in, 40
binary, 506–507
conversion, 507–510
declaration, 503–505
unary, 505–506

overview, 18
partial types. See Partial types
in program structure, 4
properties in, 37–38

accessibility, 487–489
accessors for, 480–486
automatically implemented, 486–487
declarations, 478–479
static and instance, 479

vs. structs, 539–547
syntactic grammar, 706–714
type parameters, 20–21
types, 6–10, 136

Classifications, expression, 203–205
Click events, 494
Closed types, 143
<code> tag, 656
Collections

for foreach, 369
initializers, 264–266

Colons (:)
alias qualifiers, 404
grammar productions, 56
interface identifiers, 562
ternary operators, 170, 313
type parameter constraints, 415

Color class, 23, 448–449
Color enumeration, 48, 585–588
Color struct, 245
COM, interoperation with, 621
Combining delegates, 292, 594
Command-line arguments, 87
Commas (,)

arrays, 44, 557
attributes, 607
collection initializers, 265
ID string format, 667
interface identifiers, 562
object initializers, 262

Comments, 653
documentation file processing, 666–671
example, 672–677
lexical grammar, 59–60, 680
overview, 653–655
tags, 655–665
XML for, 653–654, 674–677

Commit method, 81
Common types for type inference, 231
CompareExchange method, 532
Comparison operators, 40, 297

booleans, 300
decimal numbers, 299–300
delegates, 303–304
enumerations, 300
floating point numbers, 298–299
integers, 298
pointers, 639
reference types, 301–303
strings, 303

Compatibility of delegates and methods,
595

Compilation
attributes, 614
just-in-time, 5

Compilation directives, 79–83
Compilation symbols, 76–77
Compilation unit productions, 57
Compilation units, 55, 393–394
Compile-time type of instances, 29, 466
Complement operator, 282
Component-oriented programming, 1–2
Compound assignment, 342–343
Concatenation, string, 291–292
Conditional attribute, 616–619
Conditional classes, 619
Conditional compilation directives, 79–83
Conditional compilation symbols, 76–77
Conditional logical operators, 12, 309–311
Conditional methods, 616–618
Conditional operator, 12, 313–314
Console class, 26, 485–486
Constant class, 30–31

732

Constants n Database structure example

Constants, 34
declarations, 356–357, 443–445
enums for. See Enumerations and enum

types
expressions, 178–179, 344–346
static fields for, 448–449
versioning of, 449

Constituent types, 434
Constraints

accessibility, 102–104
constructed types, 144–145
partial types, 422–423
type parameters, 414–420

Constructed types, 141–142
bound and unbound, 143
constraints, 144–145
members, 431–432
open and closed, 143
type arguments, 142–143

Constructors, 34
for classes, 36
for classes vs. structs, 546–547
default, 125–126, 515–516
in ID string format, 669
instance. See Instance constructors
invocation, 221
static, 36, 518–520

Contexts
for attributes, 609–611
unsafe, 624–627

Contextual keywords, 65
continue statement

definite assignment rules, 161
for do, 366
example, 16
for for statements, 367
overview, 375
for while, 365

Contracts, interfaces as, 561
Control class, 496–497
Control-Z character, 59
Conversions, 173

anonymous functions, 146–148, 192–199,
317–318

boxing, 138–140, 178
constant expression, 178–179
enumerations, 175, 183
explicit, 180–188
expressions, 284–285
function members, 234–235
identity, 174
implicit, 173–179

standard, 188
user-defined, 191–193

method groups, 200–202
null literal, 176
nullable, 176, 183–184, 312
numeric, 174–175, 180–183
as operator for, 305–306
operators, 507–510, 671
for pointers, 631–632
reference, 176–178, 184–185
standard, 188
type parameters, 179, 186–187
unboxing, 140–141, 185
user-defined. See User-defined

conversions
Convert class, 183
Copy method, 650–651
Counter class, 485
Counter struct, 543
CountPrimes class, 502
Covariance, array, 177, 556–557
cref attribute, 654
Critical execution points, 121
.cs extension, 2
Curly braces ({})

arrays, 45, 557
collection initializers, 265
grammar notation, 56
object initializers, 262

Currency type, 133
Current property, 527
Customer class, 426–428

D
Database structure example

boolean type, 549–551
integer type, 546–548

733

DBBoolean struct n Depends on relationships

DBBoolean struct, 549–551
DBInt struct, 546–548
Decimal numbers and type, 7–8, 131–133

addition, 291
comparison operators, 299–300
division, 288
multiplication, 287
negation, 281
remainder operator, 290
subtraction, 293–294

Declaration directives, 78–79
Declaration space, 89
Declaration statements, 353–356
Declarations

classes, 407
base specifications, 411–414
bodies, 420
modifiers, 407–410
partial type, 410–411
type parameter constraints, 414–420
type parameters, 411

constants, 356–357, 443–445
definite assignment rules, 159
delegates, 592–594
enums, 49, 585–586
events, 491–494
fields, 445–447
fixed-size buffers, 645–647
indexer, 498–503
instance constructors, 510–511
interfaces, 561–564
methods, 455–457
namespaces, 91, 394–395
operators, 503–505
order, 5–6, 91
overview, 89–92
parameters, 458–459
pointers, 628
properties, 478–479
property accessors, 480
static constructors, 518–520
struct members, 539
structs, 537–538
types, 8, 403–404
variables, 154, 353–356

Declared accessibility
nested types, 436–437
overview, 95–97

Decrement operators
pointers, 637–638
postfix, 257–259
prefix, 282–284

default expressions, 126
Defaults

constructors, 125–126, 515–516
switch statement labels, 360–361
values, 125, 154–155

classes vs. structs, 541–542
expressions, 279–280

#define directive, 76, 78
Defining partial method declarations,

425–426
Definite assignment, 27, 149, 155–156

fixed size buffers, 648
initially assigned variables, 156
initially unassigned variables, 157
rules for, 157–171

Degenerate query expressions, 329
Delegate class, 591
Delegates and delegate type, 6–10, 137,

591
combining, 292, 594
compatible, 595
conversions, 146–148, 195
declarations, 592–594
equality, 303–304
instantiation, 595–596
invocations, 253, 596–598
members of, 94
new operator for, 269–271
overview, 49–52
removing, 294
syntactic grammar, 718

Delimited comments, 59–60, 653–654
Dependence

on base classes, 413
in structures, 540
type inference, 227

Depends on relationships, 413, 540

734

Destructors n Enumerations and enum types

Destructors
for classes, 40, 520–522
for classes vs. structs, 547
exceptions for, 601
garbage collection, 117–121
in ID string format, 669
member names reserved for, 442
members, 19

Diagnostic directives, 83
Digit struct, 510
Dimensions, array, 9, 44, 553, 557–558
Direct base classes, 412–413
Directives

preprocessing. See Preprocessing
directives

using. See Using directives
Directly depends on relationships, 413, 540
Disposal in using statement, 388
Dispose method, 52

for enumerator objects, 527, 535–536
for resources, 387

Divide method, 25–26
DivideByZeroException class, 287–288, 599,

601
Division operator, 287–288
DllImport attribute, 475
DLLs (Dynamic Link Libraries), 475
do statement

definite assignment rules, 161
example, 15
overview, 366

Documentation comments, 653
documentation files for, 653, 666

ID string examples, 667–672
ID string format, 666–668

example, 672–677
overview, 653–655
tags for, 655–665
XML files for, 653–654, 674–677

Documentation generators, 653
Documentation viewers, 653
Domains

accessibility, 97–100
application, 87

Double quotes (")
characters, 70
strings, 70

double type, 7–8, 130
Dynamic Link Libraries (DLLs), 475
Dynamic memory allocation, 649–651

E
ECMA-334 standard, 1
EditBox class, 46–47
Effective base classes, 419
Effective interface sets, 419
Elements

array, 43, 151, 556
foreach, 369
pointer, 635–636
primary expression, 253–255

#elif directive, 76–77, 79–80
Ellipse class, 473
#else directive, 76, 79–83
Embedded statements and expressions

general rules, 165–166
in grammar notation, 56

Empty statements, 351–352
Encompassed types, 190
Encompassing types, 190
End points, 348–349
#endif directive, 76, 79–81
#endregion directive, 84
Entity class, 28–29
Entry class, 4–5
Entry points, 87
Enumerable interfaces, 524
Enumerable objects for iterators, 528
Enumerations and enum types, 585, 589

addition of, 291
comparison operators, 300
conversions

explicit, 183
implicit, 175

declarations, 585–586
description, 7, 9
logical operators, 308
members, 94, 585–589

735

Enumerations and enum types n Explicit conversions

modifiers, 586
overview, 48–49
subtraction of, 294
syntactic grammar, 717–718
types for, 133
values and operations, 590

Enumerator interfaces, 524
Enumerator objects for iterators, 525–527
Enumerator types for foreach, 369
Equal signs (=)

assignment operators, 339
comparisons, 297
operator ==, 40
pointers, 639
preprocessing expressions, 77

Equality operators
boolean values, 300
delegates, 303–304
lifted, 214
and null, 304
reference types, 301–303
strings, 303

Equals method
on anonymous types, 273
DBBool, 551
DBInt, 548
List, 35
with NaN values, 299
Point, 673

#error directive, 83
Error property, 486
Error strings in ID string format, 666
Escape sequences

characters, 70
lexical grammar, 681
strings, 70
unicode character, 61–62

Evaluate method, 31
Evaluation of user-defined conversions,

189–191
Event handlers, 39, 491, 494
Events, 4

access to, 220
accessors, 496–497

assignment operator, 344
declarations, 491–494
example, 36
field-like, 494–495
in ID string format, 666, 670–671
instance and static, 497
interface, 566–567
member names reserved for, 442
overview, 38–39

Exact parameter type inferences, 228
<example> tag, 657
Exception class, 378, 381, 599–600
Exception propagation, 379
<exception> tag, 657
Exception variables, 381
Exceptions

causes, 599
classes for, 601–602
for delegates, 596
handling, 1, 600–601
throwing, 378–380
try statement for, 380–384

Exclamation points (!)
comparisons, 297
definite assignment rules, 169
logical negation, 281
operator !=, 40
pointers, 639
preprocessing expressions, 77

Execution
instance constructors, 513–515
order of, 121

Exiting blocks, 373
Expanded form function members, 233
Explicit base interfaces, 562
Explicit conversions, 180

enumerations, 183
nullable types, 183–184
numeric, 180–183
reference, 184–185
standard, 188
type parameters, 186–187
unboxing, 185
user-defined, 187, 192–193

736

Explicit interface member implementations n Floating point numbers

Explicit interface member implementations,
47, 571–574

explicit keyword, 507–510
Explicit parameter type inferences, 227
Expression class, 30–32
Expression statements, 14, 159, 357–358
Expressions, 203

anonymous function. See Anonymous
functions

boolean, 346
cast, 284–285
classifications, 203–205
constant, 178–179, 344–346
definite assignment rules, 165–170
fixed-size buffers in, 647–648
function members

argument lists, 221–224
categories, 217–221
invocation, 236–237
overload resolution, 231–235
type inference, 224–231

member lookup, 214–217
operators for, 206

arithmetic. See Arithmetic operators
assignment, 339–344
logical, 307–311
numeric promotions, 211–213
overloading, 208–211
precedence and associativity, 206–208
relational, 297
shift, 295–296
unary, 280–285

overview, 10–13
pointers in, 633–640
preprocessing, 77–78
primary. See Primary expressions
query, 324–325

ambiguities in, 326
patterns, 337–338
translations in, 326–337

syntactic grammar, 691–700
tree types, 146–148, 196
values of, 205

Extensible Markup Language (XML),
653–654, 674–677

Extension methods
example, 475–477
invocation, 250–253

extern aliases, 395–396
External constructors, 510, 518
External destructors, 521
External events, 493
External indexers, 501
External methods, 474–475
External operators, 504
External properties, 479

F
\f escape sequence, 70
False value, 66
Field-like events, 494–495
Fields, 4

declarations, 445–447
example, 34
in ID string format, 666, 668–669
initializing, 451–452, 545
instance, 22, 447–448
overview, 22–23
read-only, 23, 448–450
static, 447–448
variable initializers, 452–455
volatile, 450–451

Fill method, 556
Filters, 384
Finalize method, 522
finally blocks

definite assignment rules, 163
for exceptions, 600
with goto, 376–377
with try, 380–384

Fixed-size buffers
declarations, 645–647
definite assignment, 648
in expressions, 647–648

fixed statement, 630, 640–645
Fixed variables, 630–631
Fixing type inferences, 228
float type, 7–8, 130
Floating point numbers

addition, 290–291
comparison operators, 298–299

737

Floating point numbers n Governing types of switch statements

division, 287–288
multiplication, 286
negation, 281
remainder operator, 289
subtraction, 293
types, 7–8, 130–131

for statement
definite assignment rules, 161
example, 15
overview, 366–368

foreach statement
definite assignment rules, 164
example, 15
overview, 368–372

Form feed escape sequence, 70
Forward declarations, 5
Fragmentation, heap, 642
Free method, 650–651
from clauses, 325, 329–334
FromTo method, 530–531
Fully qualified names

described, 115–116
interface members, 569–570
nested types, 436

Function members
argument lists, 221–224
in classes, 34–40
invocation, 236–237
overload resolution, 231–235
overview, 217–221
type inference, 224–231

Function pointers, 591
Functional notation, 209
Functions, anonymous. See Anonymous

functions

G
Garbage collection, 1

at application termination, 89
for destructors, 40
in memory management, 116–121, 155
and pointers, 627
for variables, 630

GC class, 117, 120

Generic classes and types, 21, 123
anonymous objects, 273
boxing, 138, 542
constraints, 144, 146, 414–417, 422
declarations, 407, 412
delegates, 194
instance type, 431
interfaces, 574
member lookup, 215
methods, 457, 466, 575–577
nested, 215, 440
overloading, 235
overriding, 470
query expression patterns, 337
signatures, 24
static fields, 22
type inferences, 224–226, 229–230
unbound, 141–143

Generic interface, 554–555
get accessors, 490

for attributes, 610
defined, 37
working with, 480–486

GetEnumerator method
for foreach, 369–370
for iterators, 528–534

GetEventHandler method, 497
GetHashCode method

on anonymous types, 273
DBBool, 551
DBInt, 548

GetHourlyRate method, 32
GetNextSerialNo method, 28
GetProcessHeap method, 651
GetScriptDescriptors method, 523
GetScriptReferences method, 523
Global declaration space, 89
Global namespace, 93
goto statement

definite assignment rules, 161
example, 16
for switch, 361–362, 364
working with, 375–377

Governing types of switch statements, 360,
363

738

Grammars n Implicit conversions

Grammars, 55
ambiguities, 246
lexical. See Lexical grammar
notation, 55–57
syntactic. See Syntactic grammar
for unsafe code, 720–723

Greater than signs (>)
assignment operators, 339
comparisons, 297
pointers, 630, 634–635, 639
shift operators, 295–296

Grid class, 502–503
group clauses, 325, 327–328, 334–335

H
Handlers, event, 39, 491, 494
HasValue property, 134
Heap

accessing functions of, 649–651
fragmentation, 642

HeapAlloc method, 651
HeapFree method, 651
HeapReAlloc method, 651
HeapSize method, 651
Hello, World program, 2–3
Hello class, 82
HelpAttribute class, 53, 605–606
HelpStringAttribute class, 612
Hexadecimal escape sequences

for characters, 70
for strings, 73

Hiding
inherited members, 90, 111–112, 433
in multiple-inheritance interfaces, 569
in nesting, 109–110, 437
properties, 483
in scope, 106

Hindley-Milner-style algorithms, 226
Horizontal tab escape sequence, 70

I
IBase interface, 568–569, 578, 583
ICloneable interface, 570, 573, 577–578
IComboBox interface, 46, 563–564

IComparable interface, 570
IControl interface, 46–47, 563

implementations, 570–571
inheritance, 580–581
mapping, 578–580
member implementations, 573–574
member names, 569–570
reimplementations, 581–582

ICounter interface, 567
ICounter struct, 544
ID string format

for documentation files, 666–668
examples, 667–672

IDataBound interface, 46–47
Identical simple names and type names, 245
Identifiers

interface, 562, 566
lexical grammar, 681–682
rules for, 62–64

Identity conversions, 174
IDerived interface, 578–579
IDictionary interface, 571
IDisposable interface, 120, 371, 387–390, 572
IDouble interface, 568
IEnumerable interface, 369–370, 523–524, 528
IEnumerator interface, 524
#if directive, 76–77, 79–83
if statement

definite assignment rules, 159
example, 14
working with, 358–359

IForm interface, 578
IInteger interface, 568
IL (Intermediate Language) instructions, 5
IList interface, 554–555, 567, 571
IListBox interface, 46, 563, 579
IListCounter interface, 567
IMethods interface, 582–583
ImpersonationScope class, 52
Implementing partial method declarations,

425–426
Implicit conversions, 173–174

anonymous functions and method
groups, 179

boxing, 178

739

Implicit conversion n Instantiation

constant expression, 178–179
enumerations, 175
identity, 174
null literal, 176
nullable, 176
numeric, 174–175
operator for, 507–510
standard, 188
type parameters, 179
user-defined, 179, 191–192

implicit keyword, 507–510
Implicitly typed array creation expressions,

267
Implicitly typed iteration variables, 368
Implicitly typed local variable declarations,

354–355
Importing types, 400–402
In-line methods, 51
In property, 486
Inaccessible members, 95
<include> tag, 654, 657–658
Increment operators

for pointers, 637–638
postfix, 257–259
prefix, 282–284

IndexerName Attribute, 621
Indexers

access to, 220, 255
declarations, 498–503
example, 35
in ID string format, 670
interface, 567
member names reserved for, 442
overview, 38

IndexOf method, 33–34
IndexOutOfRangeException class, 254,

601
Indices, array, 43
Indirection, pointer, 630, 634
Inference, type, 224–231
infoof operator, 274
Inheritance

from base interfaces, 562–564
in classes, 22, 92–93, 432–433
in classes vs. structs, 541

hiding through, 90, 111–112, 433
interface, 580–581
parameters, 605
properties, 483

Initializers
array, 45, 557–559
field, 451–452, 545
in for statements, 367
instance constructors, 512–513
stack allocation, 648–649
variables, 452–455, 513

Initially assigned variables, 149, 156
Initially unassigned variables, 149,

157
Inlining process, 485
InnerException property, 600
Input production, 57
Input types in type inference, 227
Instance constructors, 36

declarations, 510–511
default, 515
execution, 513–515
initializers, 512–513
invocation, 221
optional parameters, 517
private, 516–517

Instance events, 497
Instance fields

class, 447–448
example, 22–23
initialization, 451–452, 455
read-only, 448–450

Instance members
class, 434–435
protected access for, 100–102

Instance methods, 24, 28–29, 466
Instance properties, 479
Instance types, 431
Instance variables, 150, 447–448
Instances, 18

attribute, 613–614
type, 135

Instantiation
delegates, 595–596
local variables, 321–324

740

int type n Jump statements

int type, 8
Integers

addition, 290
comparison operators, 298
division, 287
literals, 66–68
logical operators, 307
multiplication, 286
negation, 281
remainder, 289
in struct example, 546–548
subtraction, 293

Integral types, 7–8, 128–130
interface keyword, 561
Interface sets, 419
Interfaces, 4, 561

base, 562–564
bodies, 564
declarations, 561–564
enumerable, 524
enumerator, 524
generic, 574
implementations, 570–571

abstract classes, 583–584
base classes, 414
explicit member, 571–574
generic methods, 575–576
inheritance, 580–581
mapping, 576–580
reimplementation, 581–583
uniqueness, 574–575

inheritance from, 562–564
members, 94, 564–565

access to, 567–569
events, 566–567
fully qualified names, 569–570
indexers, 567
methods, 565–566
properties, 566

modifiers, 562
overview, 46–47
partial types, 423
struct, 538
syntactic grammar, 716–717
types, 6–7, 9–10, 137

Intermediate Language (IL) instructions, 5
Internal accessibility, 20, 95
Interning, 73
Interoperation attributes, 621
IntToString method, 649
IntVector class, 506
InvalidCastException class, 141, 185, 306, 601
InvalidOperationException class, 134, 533
Invariant meaning in blocks, 241–242
Invocation

delegates, 253, 596–598
function members, 236–237
instance constructors, 221
methods, 218
operators, 221

Invocation expressions, 166, 247–253
Invocation lists, 594, 596
is operator, 304–305
isFalse property, 550
isNull property

DBBool, 550
DBInt, 547

ISO/IEC 23270 standard, 1
isTrue property, 550
Iteration statements, 364

do, 366
for, 366–368
foreach, 368–372
while, 365

Iteration variables in foreach, 368
Iterators, 522–524

enumerable interfaces, 524
enumerable objects for, 528
enumerator interfaces, 524
enumerator objects for, 525–527
implementation example, 528–536
yield type, 524

ITextBox interface, 46, 563, 569–571, 574, 579

J
Jagged arrays, 44
JIT (Just-In-Time) compiler, 5
Jump statements, 373–374

break, 374
continue, 375

741

Jump statements n Local variable declaration space

goto, 375–377
return, 377–378
throw, 378–380

Just-In-Time (JIT) compiler, 5

K
KeyValuePair struct, 542
Keywords

lexical grammar, 682
list, 65

Kleene operators, 56

L
Label class, 484–485
Label declaration space, 90–91
Labeled statements

for goto, 375–377
overview, 352–353
for switch, 160, 361–364

Left-associative operators, 207
Left shift operator, 295–296
Length of arrays, 43, 553, 558–559
Less than signs (<)

assignment operators, 339
comparisons, 297
pointers, 639
shift operators, 295–296

let clauses, 329–334
Lexical grammar, 57, 679

comments, 59–60, 680
identifiers, 681–682
keywords, 682
line terminators, 58–59, 679
literals, 683–685
operators and punctuators, 685
preprocessing directives, 686–689
tokens, 681
unicode character escape sequences,

681
whitespace, 60–61, 681

Lexical structure, 55
grammars, 55–57

lexical. See Lexical grammar
syntactic. See Syntactic grammar

lexical analysis, 57–61

preprocessing directives, 74–76
conditional compilation, 76–77,

79–83
declaration, 78–79
diagnostic, 83
line, 84–85
pragma, 85–86
preprocessing expressions, 77–78
region, 83–84

programs, 55
tokens, 61

identifiers, 62–64
keywords, 65
literals, 65–74
operators, 74
unicode character escape sequence,

61–62
Libraries, 4, 475
Lifted conversions, 189
Lifted operators, 213–214
#line directive, 84–85
#line default directive, 85
Line directives, 84–85
Line-feed characters, 59
#line hidden directive, 85
Line-separator characters, 59
Line terminators, 58–59, 679
List class, 34–40
<list> tag, 658–659
ListChanged method, 39
Lists, statement, 350–351
Literals, 65–66

boolean, 66
character, 69–70
in constant expressions, 344
conversions, 176
integer, 66–68
lexical grammar, 683–685
null, 74
in primary expressions, 238
real, 68–69
simple values, 127
string, 71–73

Local constant declarations, 14, 356–357
Local variable declaration space, 91

742

Local variables n Methods

Local variables, 153–154
declarations, 14, 353–356
instantiation, 321–324
in methods, 27–28
scope, 109–110

lock statement
definite assignment rules, 165
example, 17
overview, 385–387

Logical operators, 307
AND, 12
for boolean values, 308–309
conditional, 309–311
for enumerations, 308
for integers, 307
negation, 281–282
OR, 12
shift, 296
XOR, 12

LoginDialog class, 493–494
long type, 8
Lookup, member, 214–217
Lower-bound type inferences, 228
lvalues, 171

M
Main method

for startup, 86–87
for static constructors, 518–520

Mappings
interface, 576–580
pointers and integers, 632

Members, 4, 19, 92–93
access to, 20, 95, 434

accessibility domains, 97–100
constraints, 102–104
declared accessibility, 95–97
interface, 567–569
pointer, 634–635
in primary expressions, 242–246
protected, 100–102

accessibility of, 20
array, 94, 556

class, 94, 429–431
access modifiers for, 434
constituent types, 434
constructed types, 431–432
inheritance of, 432–433
instance types, 431
nested types, 436–442
new modifier for, 433–434
reserved names for, 440–442
static and instance, 434–435

delegate, 94
enumeration, 94, 585–589
function. See Function members
inherited, 90, 92–93, 111–112, 432–433
interface, 94, 564–565

access to, 567–569
events, 566–567
explicit implementations, 47,

571–574
fully qualified names, 569–570
indexers, 567
methods, 565–566
properties, 566

lookup, 214–217
namespaces, 93, 402
partial types, 424
pointer, 634–635
struct, 93, 539

Memory
automatic management of, 116–121, 155
dynamic allocation of, 649–651

Memory class, 650–651
Message property, 600
Metadata, 5
Method group conversions

implicit, 179
overview, 200–202
type inference, 230–231

Methods, 4, 24
abstract, 30, 473–474
bodies, 27–28, 477–478
conditional, 616–618
declarations, 455–457
extension, 475–477

743

Methods n Nested scopes

external, 474–475
in ID string format, 666, 669–670
instance, 24, 28–29, 466
interface, 565–566
invocations, 218, 247–253
in List, 35
overloading, 32–34
overriding, 29, 469–471
parameters, 24–27

arrays, 462–465
declarations, 458–459
output, 461–462
reference, 460–461
value, 459–460

partial, 424–428, 475
sealed, 472–473
static, 24, 28–29, 466
virtual, 29–32, 466–469

Minus (-) operator, 281
Minus signs (-)

assignment operators, 339
decrement operator, 257–259, 282–284
pointers, 630, 634–635, 637–639
subtraction, 292–295

Modifiers
class, 407–410
enums, 586
interface, 562
partial types, 422
struct, 538

Modulo operator, 288–290
Most derived method implementation, 467
Most encompassing types, 190
Most specific operators, 189
Move method, 673
Moveable variables

described, 630–631
fixed addresses for, 640–645

MoveNext method, 370, 391, 525–527, 530,
533–535

Multi-dimensional arrays, 9, 44, 553, 557–558
Multi-use attribute classes, 604
Multiple inheritance, 46–47, 569
Multiple statements, 350

Multiplication operator, 12, 285–287
Multiplicative operators, 12
Multiplier class, 50–51
Multiply method, 50
Mutual-exclusion locks, 385–387

N
\n escape sequence, 70
Named constants. See Enumerations and

enum types
Named parameters, 605–606
Names

binding, 428–429
fully qualified, 115–116

interface members, 569–570
nested types, 436

hiding, 109–112
reserved, 440–442
simple

in primary expressions, 239–242
and type names, 245

namespace keyword, 394
Namespaces, 3–4, 112–115, 393

aliases, 395–400, 404–406
compilation units, 393–394
declarations, 91, 394–395
fully qualified names in, 115–116
in ID string format, 666
members, 93, 402
syntactic grammar, 704–705
type declarations, 403–404
using directives in, 396–402

NaN (Not-a-Number) value
causes, 130
in floating point comparisons, 299

Negation
logical, 281–282
numeric, 281

Nested array initializers, 557–558
Nested blocks, 92
Nested classes, 408
Nested members, 97–98
Nested scopes, 106

744

Nested types n Operator notation

Nested types, 403, 421, 436
accessibility, 436–438
fully qualified names for, 436
in generic classes, 440
member access contained by,

438–440
this access to, 438

Nesting
aliases, 399
with break, 374
comments, 60
hiding through, 109–110, 437
object initializers, 262

New line escape sequence, 70
new modifier

class members, 433–434
classes, 408
delegates, 592
interfaces, 562

new operator
anonymous objects, 271–273
arrays, 43, 45, 266–269
collection initializers, 264–266
constructors, 36
delegates, 269–271
hidden methods, 112
object initializers, 262–264
objects, 259–260
structs, 42

No fall through rule, 361–363
No side effects convention, 485
Non-nested types, 436
Non-nullable value type, 134
Non-virtual methods, 29
Nonterminal symbols, 55–56
Normal form function members, 233
Normalization Form C, 63
Not-a-Number (NaN) value

causes, 130
in floating point comparisons, 299

Notation, grammar, 55–57
NotSupportedException class, 525
Null coalescing operator, 311–313
Null field for events, 39
Null literals, 74, 134, 176
Null pointers, 628

Null-termination of strings, 645
Null values

for array elements, 45
in classes vs. structs, 541–542
escape sequence for, 70
garbage collector for, 118

Nullable boolean logical operators,
308–309

Nullable types, 9–10, 134
conversions

explicit, 183–184
implicit, 176
operators, 305–306

equality operators with, 304
NullReferenceException class

array access, 254
with as operator, 306
delegate creation, 270
delegate invocation, 596
description, 601
foreach statement, 371
throw statement, 378
unboxing conversions, 141

Numeric conversions
explicit, 180–183
implicit, 174–175

Numeric promotions, 211–213

O
object class, 125, 136
Object variables, 10
Objects, 123

creation expressions for
definite assignment rules, 166
new operator, 259–260

initializers, 262–264
as instance types, 135

Obsolete attribute, 620–621
Octal literals, 67
OnChanged method, 35, 39
One-dimensional arrays, 44
Open types, 143
Operands, 10, 206
Operation class, 30–31
Operator notation, 209

745

Operators n Parameters

Operators, 10, 36, 40, 74, 206
arithmetic. See Arithmetic operators
assignment operators, 13, 339

compound, 342–343
event, 344
simple, 340–342

binary. See Binary operators
conditional, 313–314
conversion, 507–510, 671
declaration, 503–505
enums, 590
in ID string format, 671
invocation, 221
lexical grammar, 685
lifted, 213–214
logical, 307–311
null coalescing, 311–313
numeric promotions, 211–213
operator !=, 40
operator ==, 40
overloading, 208–211
precedence and associativity, 206–208
relational. See Relational operators
shift, 295–296
type-testing, 304–305
unary. See Unary operators

Optional parameters, 517
Optional symbols in grammar notation, 56
OR operators, 12
Order

declaration, 91
execution, 121

orderby clauses, 325, 329–334
Out property, 486
Outer variables, 320–324
OutOfMemoryException class, 267, 270, 292,

601
Output parameters, 25–26, 152–153, 461–462
Output types in type inference, 227
Overflow checking context, 276–279, 385
OverflowException class

addition, 291
checked operator, 277–278
decimal type, 132
description, 602

division, 287–288
increment and decrement operators, 283

Overload resolution, 147
anonymous functions, 319–320
function members, 231–235

Overloaded operators, 10
purpose, 206
shift, 295

Overloading
indexers, 38
methods, 32–34
operators, 208–211
signatures in, 32, 104–105

Overridden base methods, 469
Override events, 497–498
Override indexers, 499
Override methods, 469–471
Overriding

event declarations, 498
methods, 29
property accessors, 38, 489
property declarations, 489–490

P
Padding for pointers, 640
Paint method, 46, 473
Pair class, 21
Pair-wise declarations, 506–507
<para> tag, 660
Paragraph-separator characters, 59
<param> tag, 654, 660
Parameters

anonymous functions, 315
arrays, 462–465
attributes, 605–607
entry points, 87
indexers, 38, 499–500
instance constructors, 513, 517
methods, 24–27

declaration, 458–459
types, 459–465

optional, 517
output, 152–153, 461–462
reference, 151–152, 460–461
type. See Type parameters
value, 151, 459–460

746

<paramref> tag n Primary expressions

<paramref> tag, 661
params modifier, 26–27, 462–465
Parentheses ()

anonymous functions, 315
in grammar notation, 56
in ID string format, 667
for operator precedence, 208

Parenthesized expressions, 242
Partial methods, 475
partial modifier, 410–411

interfaces, 562
structs, 538
types, 420

Partial types, 410–411, 420–421
attributes, 421
base classes, 423
base interfaces, 423
members, 424
methods, 424–428
modifiers, 422
name binding, 428–429
type parameters and constraints, 422–423

Patterns, query expression, 337–338
Percent signs (%)

assignment operators, 339
remainder operator, 288–290

Periods (.) for base access, 256
<permission> tag, 661
Permitted user-defined conversions, 189
Phases, type inference, 226–227
Plus (+) operator, 280
Plus signs (+)

addition, 290–292
assignment operators, 339
increment operator, 257–259, 282–284
pointers, 637–639

Point class, 41–42, 263
base class, 21
declaration, 18
properties, 486–487
source code, 672–675

Point struct, 43, 341, 540–542, 545–547
Point3D class, 21

Pointers, 623
arithmetic, 638–639
arrays, 632–633
conversions, 631–632
element access, 635–636
in expressions, 633–640
for fixed variables, 640–645
function, 591
indirection, 630, 634
member access, 634–635
operators

address-of, 636–637
comparison, 639
increment and decrement, 637–638
sizeof, 639–640

types, 627–630
variables with, 630–631

Pop method, 4
Positional parameters, 605–606
Postfix increment and decrement operators,

257–259
#pragma directive, 85
#pragma warning directive, 85–86
Precedence of operators, 10, 206–208
Prefix increment and decrement operators,

282–284
Preprocessing directives, 74–76

conditional compilation, 76–77, 79–83
declaration, 78–79
diagnostic, 83
lexical grammar, 686–689
line, 84–85
pragma, 85–86
preprocessing expressions, 77–78
region, 83–84

Preprocessing expressions, 77–78
Primary expressions

anonymous method, 280
checked and unchecked operators,

276–279
default value, 279–280
element access, 253–255
invocation, 247–253
literals in, 238

747

Primary expressions n ref modifier

member access, 242–246
new operator in

anonymous objects, 271–273
arrays, 266–269
collection initializers, 264–266
delegates, 269–271
object initializers, 262–264
objects, 259–260

parenthesized, 242
postfix increment and decrement

operators, 257–259
simple names in, 239–242
this access in, 256
typeof operator, 274–276

Primary operators, 11
PrintColor method, 48
Private accessibility, 20, 95
Private constructors, 516–517
Productions, grammar, 55
Program class, 533–534, 543–544
Program structure, 4–6
Programs, 4, 55
Projection initializers, 273
Promotions, numeric, 211–213
Propagation, exception, 379
Properties, 4

access to, 219
accessibility, 487–489
automatically implemented, 486–487
declarations, 478–479
example, 35
in ID string format, 666, 670
indexers, 500
interface, 566
member names reserved for, 441–442
overview, 37–38
static and instance, 479

Property accessors, 38
declarations, 480
overview, 480–486
types of, 486

Protected accessibility, 20
declared, 95
instance members, 100–102

Protected internal accessibility, 20, 95
Public accessibility, 20, 95
Punctuators

lexical grammar, 685
list of, 74

PurchaseTransaction class, 81
Push method, 4

Q
Qualifiers, alias, 404–406
Query expressions, 324–325

ambiguities in, 326
patterns, 337–338
translations in, 326–337

Question marks (?)
null coalescing operator, 311–313
ternary operators, 170, 313

R
\r escape sequence, 70
Range variables, 325, 327–329
Rank of arrays, 44, 553–554
Reachability

blocks, 349
do statements, 366
for statements, 368
labeled statements, 352–353
overview, 348–349
return statements, 378
throw statements, 379
while statements, 365

Read-only fields, 23, 448–450
Read-only properties, 37, 482–485
Read-write properties, 37, 482–483
readonly modifier, 23, 448
Reads, volatile, 450
Real literals, 68–69
ReAlloc method, 650
Recommended tags for comments, 655–665
Rectangle class, 263–264
Rectangle struct, 341–342
ref modifier, 25–26

748

Reference conversions n Scopes

Reference conversions
explicit, 184–185
implicit, 176–178

Reference parameters, 25, 151–152, 460–461
Reference types, 6–7, 135

array, 43, 136
class, 136
constraints, 415, 419
delegate, 136
equality operators, 301–303
interface, 137
object, 136
string, 136

References, 123
parameter passing by, 25
variable, 171–172

Referencing static class types, 410
Referent types, pointer, 627
Region directives, 83–84
Regular string literals, 71–72
Reimplementation, interface, 581–583
Relational operators, 12, 297

booleans, 300
decimal numbers, 299–300
delegates, 303–304
enumerations, 300
integers, 298
lifted, 214
reference types, 301–303
strings, 303

Release semantics, 450
Remainder operator, 288–290
<remarks> tag, 662
remove accessors

for attributes, 610
for events, 39, 496

RemoveEventHandler method, 497
Removing delegates, 294
Reserved attributes, 615

AttributeUsage, 615
Conditional, 616–619
Obsolete, 620–621

Reserved names for class members, 440–442
Reset method, 536

Resolution
function members, 231–235
operator overload, 32, 210–211
overload, 147

Resources, using statement for, 387–390
return statement

definite assignment rules, 162
example, 16
methods, 28
overview, 377–378
with yield, 390–392

Return type
entry points, 89
inferred, 228–229
methods, 24, 457

<returns> tag, 662
Right-associative operators, 207
Right shift operator, 296
Rounding, 132
Rules for definite assignment, 157–171
RunMethodImpersonating method, 51–52
running state for enumerator objects, 525–527
Runtime processes

array creation, 267
attribute instance retrieval, 614
delegate creation, 270
function member invocations, 222, 236
increment and decrement operators, 258
object creation, 261
prefix increment and decrement

operations, 283–284
unboxing conversions, 141

Runtime types, 29, 466
RuntimeWrappedException class, 381

S
sbyte type, 8
Scopes

aliases, 398–399
attributes, 609
vs. declaration space, 89
local variables, 355–356
for name hiding, 109–112
overview, 106–109

749

Sealed accessors n Statement lists

Sealed accessors, 490
Sealed classes, 409, 414
Sealed events, 497–498
Sealed indexers, 499
Sealed methods, 472–473
sealed modifier, 409, 472
Sections for attributes, 607
<see> tag, 663
<seealso> tag, 663–664
select clauses, 325, 327–328, 334
Selection statements, 358

if, 358–359
switch, 359–364

Semicolons (;)
accessors, 481
interface identifiers, 566
method bodies, 477
namespace declarations, 394

Sequences in query expressions, 325
set accessors, 490

for attributes, 610
defined, 37
working with, 480–483

SetItems method, 46
SetNextSerialNo method, 28–29
SetText method, 46
Shape class, 473
Shift operators

described, 12
overview, 295–296

Short-circuiting logical operators, 309
short type, 8, 127
ShowHelp method, 54
Side effects

with accessors, 485
and execution order, 121

Signatures
anonymous functions, 317–318
indexers, 500
methods, 24
operators

binary, 506
conversion, 509
unary, 505

in overloading, 32, 104–105
Signed integrals, 8
Simple assignment

definite assignment rules, 167
overview, 340–342

Simple expression assignment rules, 165
Simple names

in primary expressions, 239–242
and type names, 245

Simple types, 7, 124–128
Single-dimensional arrays

defined, 553
example, 44
initializers, 558

Single-line comments, 59–60, 653–654
Single quotes (') for characters, 69–70
Single-use attribute classes, 604
SizeOf method, 651
sizeof operator, 639–640
Slashes (/)

assignment operators, 339
comments, 59–60, 653–654
division, 287–288

Slice method, 476
Source files

compilation, 5
described, 55
Point class, 672–675

Source types in conversions, 189
SplitPath method, 462
Square brackets ([])

arrays, 9, 44
attributes, 607
indexers, 38
pointers, 630, 635–636

Square method, 50
Squares class, 27
Stack allocation, 648–649
Stack class, 4–5, 529–530
stackalloc operator, 630, 648–649
StackOverflowException class, 602, 649
Standard conversions, 188
Startup, application, 86–87
Statement lists, 350–351

750

Statements n Syntactic grammar

Statements, 347
blocks in, 350–351
checked and unchecked, 385
declaration, 353–356
definite assignment rules, 158
empty, 351–352
end points and reachability, 348–349
expression, 14, 159, 357–358
in grammar notation, 56
iteration, 364

do, 366
for, 366–368
foreach, 368–372
while, 365

jump, 373–374
break, 374
continue, 375
goto, 375–377
return, 377–378
throw, 378–380

labeled, 352–353
lock, 385–387
overview, 13–18
selection, 358

if, 358–359
switch, 359–364

syntactic grammar, 700–704
try, 380–384
using, 387–390
yield, 390–392

States, definite assignment, 157
Static classes, 409–410
Static constructors, 36

in classes vs. structs, 547
overview, 518–520

Static events, 497
Static fields, 22, 447–448

for constants, 448–449
initialization, 451–455
read-only, 448–450

Static members, 434–435
Static methods, 24

garbage collection, 117
vs. instance, 28–29, 466

static modifier, 409–410
Static properties, 479

Static variables, 150, 447–448
Status codes, termination, 89
String class, 33, 136
string type, 7, 136
Strings

concatenation, 291–292
equality operators, 303
literals, 71–73
null-termination, 645
switch governing type, 363

Structs, 537
assignment, 541
boxing and unboxing, 542–544
vs. classes, 539–547
constructors, 546–547
declarations, 537–538
default values, 541–542
destructors, 547
examples

database boolean type, 549–551
database integer type, 546–548

field initializers in, 545
inheritance, 541
instance variables, 150
interface implementation by, 47
members, 93, 539
overview, 41–43
syntactic grammar, 714–715
this access in, 545
types, 6, 8, 126
value semantics, 540–541

Subtraction operator, 292–295
Suffixes, numeric, 66–69
<summary> tag, 654, 664
SuppressFinalize method, 89
suspended state, 525–527
Swap method, 25
switch statement

definite assignment rules, 160
example, 15
overview, 359–364
reachability, 349

Syntactic grammar, 57
arrays, 715–716
attributes, 718–720
basic concepts, 689

751

Syntactic grammar n Type testing operators

classes, 706–714
delegates, 718
enums, 717–718
expressions, 691–700
interfaces, 716–717
namespaces, 704–705
statements, 700–704
structs, 714–715
types, 689–691
variables, 691

System-level exceptions, 599
System namespace, 126–127

T
\t escape sequence, 70
Tab escape sequence, 70
Tags for comments, 655–665
Target types in conversions, 189
Targets

goto, 376
jump, 373

Terminal symbols, 55–56
Termination, application, 88–89
Terminators, line, 58–59, 679
Ternary operators, 206, 313–314
TextReader class, 389
TextWriter class, 389
this access

classes vs. structs, 545
indexers, 38
instance constructors, 517
nested types, 438
overview, 256
properties, 479
static methods, 28

Three-dimensional arrays, 44
Throw points, 379
throw statement

definite assignment rules, 161
example, 17
for exceptions, 599
overview, 378–380

Tildes (~)
bitwise complement, 282
conversion, 671

ToInt32 method, 476
Tokens, 61

identifiers, 62–64
keywords, 65
lexical grammar, 681
literals, 65–74
operators, 74
unicode character escape sequence, 61–62

ToString method, 292
and boxing, 543–544
DBBool, 551
DBInt, 548
Point, 673–674

Translate method, 673
Translations in query expressions, 326–337
Transparent identifiers in query expressions,

327, 335–337
Tree class, 533–534
Tree types, expression, 146–148
Trig class, 516–517
True value, 66
try statement

definite assignment rules, 162–165
example, 17
for exceptions, 600
with goto, 376–377
overview, 380–384

Two-dimensional arrays
allocating, 44
initializers, 558

Type casts, 49
Type inference, 224–231
Type names, 112–115

fully qualified, 115–116
identical, 245

Type parameters, 20–21, 145–146
class declarations, 411
constraints, 414–420
conversions, 186–187
implicit conversions, 179
partial types, 422–423

Type-safe design, 1
Type testing operators

as, 305–306
described, 12
is, 304–305

752

TypeInitializationException class n User-defined conversions

TypeInitializationException class, 600, 602
typeof operator

pointers with, 627
primary expressions, 274–276

<typeparam> tag, 665
<typeparamref> tag, 665
Types, 123

aliases for, 395–400
attribute parameter, 606–607
boxing and unboxing, 138–140
constructed, 141–145, 431–432
declarations, 8, 403–404
in ID string format, 666–668
importing, 400–402
instance, 431
nested, 403, 436–442
nullable. See Nullable types
overview, 6–10
partial. See Partial types
pointer. See Pointers
reference. See Reference types
syntactic grammar, 689–691
underlying, 48–49, 134
value. See Value types

U
uint type, 8
ulong type, 8
Unary operators, 280

cast expressions, 284–285
described, 11, 206
in ID string format, 671
lifted, 213–214
minus, 281
numeric promotions, 212
overload resolution, 210
overloadable, 208–209
overview, 505–506
plus, 280
prefix increment and decrement, 282–284

Unassigned variables, 157
Unbound types, 141, 143
Unboxing conversions

described, 185
overview, 140–141

Unboxing operations
in classes vs. structs, 542–544
example, 9

unchecked statement
definite assignment rules, 158
example, 17
overview, 385
in primary expressions, 276–279

#undef directive, 76–79
Undefined conditional compilation symbols,

76
Underlying types

enums, 48–49, 585
nullable, 134

Underscore characters (_) for identifiers,
62–64

Unicode characters
escape sequence, 61–62
lexical grammar, 57, 681
for strings, 7

Unicode Normalization Form C, 63
Unified type system, 1
Uniqueness

aliases, 405–406
interface implementations, 574–575

Unmanaged types, 627
Unreachable statements, 348
Unsafe code, 623

contexts in, 624–627
dynamic memory allocation, 649–651
fixed-size buffers, 645–648
fixed statement, 640–645
grammar extensions for, 720–723
pointers

arrays, 632–633
conversions, 631–632
in expressions, 633–640
types, 627–630

stack allocation, 648–649
unsafe modifier, 624–627
Unsigned integrals, 7
Unwrapping non-nullable value types, 134
User-defined conversions, 188

evaluation, 189–191
explicit, 187, 192–193

753

User-defined conversions n Virtual methods

implicit, 179, 191–192
lifted operators, 189
overview, 507–510
permitted, 189

User-defined operators
candidate, 211
conditional logical, 310–311

ushort type, 8
Using directives

for aliases, 397–400
definite assignment rules, 164–165
example, 18
for importing types, 400–402
overview, 387–390, 396–397
purpose, 3

V
\v escape sequence, 70
Value method, 547
Value parameters, 25, 151, 459–460
Value property, 134
<value> tag, 664
Value types, 124–125

bool, 133
constraints, 415–416
contents, 10
decimal, 131–133
default constructors, 125–126
described, 7
enumeration, 133
floating point, 130–131
integral, 128–130
nullable, 134
simple, 126–128
struct, 126

Values
array types, 554
classes vs. structs, 540–541
default, 125

classes vs. structs, 541–542
initialization, 154–155

enums, 590
expressions, 205
fields, 447–448

local constants, 357
variables, 149, 154–155, 354–355

ValueType class, 125, 541
VariableReference class, 30–31
Variables, 149

anonymous functions, 320–324
array elements, 151
declarations, 154, 353–356
default values, 154–155
definite assignment. See Definite

assignment
fixed addresses for, 640–645
fixed and moveable, 630–631
initializers, 452–455, 513
instance, 150, 447–448
local, 153–154
in methods, 27–28
output parameters, 152–153
overview, 10
query expressions, 325, 327–329
reference parameters, 151–152
references, 171–172
scope, 109–110, 355–356
static, 150, 447–448
syntactic grammar, 691
value parameters, 151

Verbatim identifiers, 64
Verbatim string literals, 71–72
Versioning

of constants, 449
described, 1

Vertical bars (|)
assignment operators, 339
definite assignment rules, 168–169
logical operators, 307–311
preprocessing expressions, 77

Vertical tab escape sequence, 70
Viewers, documentation, 653
Virtual accessors, 38, 490
Virtual events, 497–498
Virtual indexers, 499
Virtual methods

overview, 29–32
working with, 466–469

754

Visibility in scope n Yield type iterators

Visibility in scope, 109
void type and values

entry point method, 88
events, 496
pointers, 628
return, 24, 28
with typeof, 275

Volatile fields, 450–451

W
WaitForPendingFinalizers method, 120
#warning directive, 83
warnings, preprocessing directives, 85–86
where clauses

query expressions, 329–334
type parameter constraints, 144, 415

while statement
definite assignment rules, 160
example, 15
overview, 365

Whitespace
in comments, 654
defined, 60–61

in ID string format, 666
lexical grammar, 681

Win32 component interoperability, 621
Wrapping non-nullable value types, 134
Write method, 26
Write-only properties, 37, 482–483
WriteLine method, 3, 26, 120
Writes, volatile, 450

X
XAttribute class, 611–612
XML (Extensible Markup Language),

653–654, 674–677
XOR operators, 12

Y
yield statement

definite assignment rules, 165
example, 16
overview, 390–392
yield break, 526–527
yield return, 526–527

Yield type iterators, 524

	Foreword
	Preface
	7 Expressions
	7.12 The Null Coalescing Operator
	7.13 Conditional Operator
	7.14 Anonymous Function Expressions
	7.15 Query Expressions
	7.16 Assignment Operators
	7.17 Expressions
	7.18 Constant Expressions

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

