

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
 trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim,
the designations have been printed with initial capital letters or in all capitals.

The .NET logo is either a registered trademark or trademark of Microsoft Corporation in the United States
and/or other countries and is used under license from Microsoft.

Microsoft, Windows, Visual Basic, Visual C#, and Visual C++ are either registered trademarks or trademarks of
Microsoft Corporation in the U.S.A. and/or other countries/regions.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied
 warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for
 incidental or consequential damages in connection with or arising out of the use of the information or
 programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special
sales, which may include electronic versions and/or custom covers and content particular to your business,
training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data
Michail, Ashraf.

Essential Silverlight 3 / Ashraf Michail.
p. cm.

Includes index.
ISBN 978-0-321-55416-1 (pbk. : alk. paper) 1. Silverlight (Electronic resource) 2. Multimedia systems.

3. Websites—Design. 4. Application software—Development.
I. Title.

QA76.575.M52187 2009 2009
006.7—dc22

2009026788

Copyright © 2010 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
 permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
 system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or
 likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-321-55416-1
ISBN-10: 0-321-55416-7

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
Second printing, December 2009

Foreword

SILVERLIGHT IS A cross-browser, cross-platform plugin that enables developers
to build rich media and RIA Web experiences. It allows developers to use
.NET within the browser to create scenarios that can’t be achieved using any
other Web technology, and to use high productivity tools like Visual Studio
and Expression Studio when doing so.

The new Silverlight 3 release delivers more than 200 new features for
developers to leverage, including the ability to run Silverlight applications in
or out of the browser; stream HD and H.264 video; display 3D graphics and
use GPU acceleration; take advantage of richer data-binding support; use new
bitmap APIs and animation easing capabilities; and much, much more.

Ashraf Michail, the author of the book you are holding in your hands,
is one of the star developers of the Silverlight team. He has been involved
in the architecture since we first began working on it and brought to the
effort his deep experience with and understanding of Silverlight’s “big
brother,” the Windows Presentation Foundation. Ashraf knows intimately
the ins and outs of the Silverlight runtime, and in this book he has distilled
his understanding into a clear, concise exposition.

This isn’t the only book on Silverlight 3, by any means: I’m happy to say
that several other good Silverlight 3 books are in the works. However, this is
the only book that focuses on the Silverlight runtime and gives you an
in-depth understanding of how it works. Once you know what’s really hap-
pening in the runtime engine, you’ll be in a position to take full advantage of
Silverlight’s speed and power. Look for the “Under the Hood” section at the
end of each chapter of this book: You won’t find that anywhere else.

xxiii

Also look for the “Technical Insight,” “Debugging Tip,” and “Performance
Tip” sections scattered throughout the book. These are the nuggets that you
can take away and use to make your own applications fly. Is too much data
slowing down your ComboBox display? You can filter your Items Source to
speed that up, as explained in Chapter 10. Would your application benefit
from GPU acceleration? Chapter 12 shows you how to make that happen,
explains the four stages of the GPU acceleration pipeline—and explains the
tradeoffs involved in GPU acceleration on each supported operating system
so that you can understand why turning on GPU acceleration might not
always help.

The book you are holding contains the keys to writing great Silverlight 3
applications. Use them well!

—Scott Guthrie,
corporate vice president,

Microsoft Developer Division

Forewordxxiv

Preface

Silverlight is a rapidly growing Web technology designed to deliver media
and rich Internet applications on multiple operating systems and Web
browsers. Silverlight consists of a runtime, a set of tools, and libraries for
your applications. End users can download the free runtime from
http://www.silverlight.net to run Silverlight applications.

You can develop Silverlight applications with Visual Studio using
familiar .NET languages. Designers can create artwork and animation for
Silverlight using tools such as Expression Blend and Expression Design or
import assets from other popular design tools. You can create video play-
back experiences with tools such as Expression Media Encoder or image
zoom experiences with Deep Zoom Composer.

In addition to the default libraries built into the Silverlight runtime, you
can download a variety of libraries from http://www.codeplex.com/
Silverlight. You can use these libraries in your applications, modify the
source code, or use it as an example for how to write Silverlight components.

In this book, you will learn how to build a Silverlight application and
use features such as graphics, text, input, animation, layout, media, con-
trols, and data binding. In addition to information on how to use Silverlight
features, this book describes feature design principles and how those fea-
tures work “under the hood.” The design principles help you understand
whether the feature meets the needs of your application. The “under the
hood” information gives you a look at how the feature is implemented in
Silverlight so that you can get the most out of Silverlight. For example, the

xxv

http://www.silverlight.net
http://www.codeplex.com/Silverlight
http://www.codeplex.com/Silverlight

Under the Hood sections give you a deeper understanding of the behavior,
performance characteristics, and limits of a feature.

Who Should Read This Book?

If you want to get started writing your first Silverlight applications or if you
are an expert Silverlight developer, you will learn a lot from this book. For
the beginner, this book explains the concepts required to write your
 applications. For the advanced Silverlight developer, you will find in-depth
information on how Silverlight works “under the hood” and how to use
that information to get the most out of Silverlight.

Prerequisites

Before reading this book, you should be familiar with how to build a
basic Web page and have a working knowledge of how to write .NET
applications in C#.

Organization

Each chapter in this book contains three sections: Principles, Features, and
Under the Hood. The Principles indicate the feature design goals to help
you determine if that feature will meet your application needs. The Fea-
tures section describes how you can use the feature. The Under the Hood
section describes how the feature is implemented in Silverlight and how
you can use that information to improve your applications. Throughout the
book, there are many Performance Tips and Technical Insights.

The book consists of the following 12 chapters:

• Chapter 1, “Silverlight Overview,” is an introduction to Silverlight
and the content in the remainder of the book. Chapter 1 highlights
the features that are new in Silverlight 3 and not available in
 Silverlight 2.

• Chapter 2, “Applications,” explains how to create and deploy a
 Silverlight application including an explanation of all the critical
components.

Prefacexxvi

• Chapter 3, “Graphics,” presents an in-depth explanation of all the
graphics primitives.

• Chapter 4, “Text,” explains how to display high quality text.

• Chapter 5, “Input Events,” provides information on using mouse
and keyboard input in your application.

• Chapter 6, “Animation,” describes how to add animations to your
applications.

• Chapter 7, “Layout,” describes how to use the layout system to
 automatically size and position elements in your application.

• Chapter 8, “Media,” explains how you can make a video player with
Silverlight.

• Chapter 9, “Controls,” explains how you can use styles, customize
built-in controls, and create your own customizable controls.

• Chapter 10, “Data Binding,” describes how you can connect data to
your application user interface controls.

• Chapter 11, “Effects,” describes how to use built-in effects and create
your own custom effects. Effects are a new feature in Silverlight 3.

• Chapter 12, “GPU Acceleration,” explains how to use your graphics
process unit (GPU) to improve the performance of animation and
video playback. GPU acceleration is a new feature in Silverlight 3.

Preface xxvii

3
Graphics

IN THIS CHAPTER, you will learn how to add rich vector graphics and
images to your application. You will also learn how to optimize

 performance and image quality of those graphics elements. In particular,
Chapter 3 will discuss the following:

• The graphics system design principles

• The elements for displaying graphics

• The problems the Silverlight runtime solves “under the hood” and
the problems your application must solve

Graphics Principles

The Silverlight graphics API makes it easy to add vector graphics, bitmap
images, and text to your applications. This section describes the graphics
API design principles.

Vector Graphics and Bitmap Images
Bitmap images are a common method of adding graphics to an application.
However, bitmap images become blurry when scaled up, as shown in
Figure 3.1, or aliased when scaled down, as shown in Figure 3.2. Unlike a
bitmap image, if you scale a vector graphic, it will remain sharp as shown
in Figure 3.3. Both vector graphics and bitmap images are useful in most

41

Chapter 3: Graphics42

Figure 3.1: Scaling up an image of a circle

Figure 3.2: Scaling down an image

of a circle

Figure 3.3: Scaling a vector graphic circle

Graphics Principles 43

 applications. For example, a user interface control looks better at different
sizes and resolutions with vector graphics instead of bitmap images.
Bitmap images are useful for displaying content that is not easily
 expressible in vector form such as digital photographs or visual effects not
 supported by the runtime.

Retained Mode
There are two types of graphics API: retained mode and immediate mode.
A retained mode API automatically responds to changes to a graph of
objects. An immediate mode API requires you to issue all the draw com-
mands to describe a change. For example, to remove the rectangle shown in
Figure 3.4 in a retained mode system, simply call a function to remove that
element. The retained mode graphics system is responsible for redrawing
the background, the triangle beneath, and the ellipse above. To remove the
same rectangle shown in Figure 3.4 with an immediate mode API, you need
to make three calls to draw the background, the triangle beneath it, and the
ellipse above as shown in Figure 3.5.

New in Silverlight 3
There are a number of techniques for scaling down an image to produce a

result better than that shown in Figure 3.2. Silverlight 3 converts your

bitmap to a set of smaller images at various sizes using a better algorithm.

This conversion happens once per bitmap and Silverlight caches the result

of the conversion for the lifetime of your bitmap. During an animation,

 Silverlight 3 dynamically selects the right resolution bitmap to display. This

process can increase memory usage by 33%, but substantially improves

the display quality of scaled down images and 3D transforms to get a result

close to that shown in Figure 3.3.

When scaling up bitmaps in Silverlight 3, the image remains blurry as

shown in Figure 3.1.

Chapter 3: Graphics44

Figure 3.4: Removing a rectangle with a retained mode API

Figure 3.5: Removing a rectangle with an immediate mode API

Remove
Rectangle

Draw
background

behind
rectangle

Draw
triangle

Draw
ellipse

A retained mode API enables you to do the following:

• Construct a set of graphics elements

• Change properties of the graphics elements

• Build a graph representing the relationship between those elements

• Manipulate the graph structure

A retained mode graphics API is easier to use than an immediate mode
API and enables the underlying system to provide automatic performance
optimizations such as drawing incrementally and avoiding the drawing of
occluded shapes. Silverlight provides a retained mode system to optimize
for ease of use, animating vector graphics content, and for building appli-
cations composed of UI controls.

In Silverlight, you can construct the retained mode graph declaratively
with a XAML file:

<Canvas xmlns="http://schemas.microsoft.com/client/2007">

<!–– triangle ––>
<Path

Fill="Green"
Data="F1 M 128,12L 12,224L 224,224"

/>

<!–– rectangle ––>
<Rectangle

Fill="Blue"
Canvas.Left="96"
Canvas.Top="160"
Width="256"
Height="224"

/>

<!–– circle ––>
<Ellipse

Fill="Red"
Canvas.Left="230"
Canvas.Top="288"
Width="200"
Height="200"

/>

</Canvas>

Graphics Principles 45

Alternatively, you can construct the retained mode graph with code:

Canvas canvas = new Canvas();

//
// Make the triangle
//

Path path = new Path();

path.Fill = new SolidColorBrush(Colors.Green);

PathFigure pathFigure = new PathFigure();

pathFigure.StartPoint = new Point(128, 12);

LineSegment lineSegment1 = new LineSegment();
lineSegment1.Point = new Point(12, 224);
pathFigure.Segments.A dd(lineSegment1);

LineSegment lineSegment2 = new LineSegment();
lineSegment2.Point = new Point(224, 224);
pathFigure.Segments.A dd(lineSegment2);

PathGeometry pathGeometry = new PathGeometry();
pathGeometry.Figures = new PathFigureCollection();

pathGeometry.Figures.A dd(pathFigure);

path.Data = pathGeometry;

canvas.Children.A dd(path);

//
// Make the rectangle
//

Rectangle rectangle = new Rectangle();

rectangle.Fill = new SolidColorBrush(Colors.Blue);
Canvas.SetLeft(rectangle, 96);
Canvas.SetTop(rectangle, 160);
rectangle.Width = 256;
rectangle.Height = 224;

canvas.Children.A dd(rectangle);

//
// Make the circle
//

Chapter 3: Graphics46

Ellipse ellipse = new Ellipse();

ellipse.Fill = new SolidColorBrush(Colors.Red);
Canvas.SetLeft(ellipse, 230);
Canvas.SetTop(ellipse, 288);
ellipse.Width = 200;
ellipse.Height = 200;

canvas.Children.A dd(ellipse);

Cross Platform Consistency
An important goal for the Silverlight graphics engine is to enable a
 developer to write his or her application once and have it run consistently
across a variety of operating systems and browsers. Each operating system
has a local graphics library. However, these local operating system graphics
libraries differ significantly in feature set, performance, and image quality.
To ensure cross-platform consistency and performance, Silverlight includes
its own rendering engine.

Tools
Silverlight is capable of loading vector and image content from designer tools
and integrating with developer written application code. For vector graphics
and animation, you can use Expression Design and Expression Blend to
 generate XAML content for use with the Silverlight runtime. There are also a
variety of free XAML exporters available to generate XAML content including
an Adobe Illustrator exporter, an XPS print driver, and several others.

Balancing Image Quality and Speed
In addition to displaying static XAML, Silverlight provides real-time
 animation at 60 frames per second. However, real-time performance is
highly dependent on the application content, the specific hardware
 configuration of the target machine, the resolution of the target display, the
 operating system, and the hosting Web browser.

When an application does not meet the 60 frame per second goal, the
Silverlight team uses the following two options to improve performance:

1. Make optimizations to components in the Silverlight runtime

2. Lower image quality to achieve better speed

Graphics Principles 47

Reducing image quality for speed is the most controversial optimization
technique. The Silverlight application must look good. However, it is
 possible to trade off image quality in a manner that is generally acceptable
to the end user. For example, vector graphics rendering makes some quality
sacrifices but still maintains an acceptable visual bar. On the other hand,
end users have a much higher standard for text quality and the Silverlight
runtime spends more CPU time rendering text clearly.

Graphics Elements

As previously discussed, the Silverlight runtime can load and draw vector
graphics XAML on a variety of platforms. The graphics elements can also
be specified programmatically when you use C# or JavaScript. This section
describes the elements you can use to display vector graphics and images
in your applications.

Shapes
This section starts the graphics element discussion with the base class for all
graphics primitives: the Shape element. The Shape element provides the
 following:

• A Fill property to specify how the shape interior is drawn

• A Stretch property to indicate how a Shape element stretches to a
specified Width and Height

• Stroke and StrokeThickness properties to specify the pen
 behavior

The elements that derive from Shape define the shape’s geometry.
These elements include Rectangle, Ellipse, Line, Polygon, Polyline,
and Path.

Rectangle

To draw a rectangle at a specified position, place it in a Canvas element
and specify its Canvas.Top, Canvas.Left, Width, Height, and Fill color:

Chapter 3: Graphics48

<Canvas xmlns="http://schemas.microsoft.com/client/2007">

<Rectangle
Fill="LightGray"
Canvas.Left="50"
Canvas.Top="50"
Width="400"
Height="400"

/>

</Canvas>

You can add an outline to the rectangle as shown in Figure 3.6 by setting
the Stroke property to specify the color and the StrokeThickness property
to specify the thickness:

<Canvas xmlns="http://schemas.microsoft.com/client/2007">

<Rectangle
Fill="LightGray"
Stroke="Black"
StrokeThickness="10"
Canvas.Left="50"
Canvas.Top="50"
Width="400"
Height="400"

/>

</Canvas>

Graphics Elements 49

Figure 3.6: Rectangle element with an outline

You can use the Rectangle element to draw the rounded rectangles
shown in Figure 3.7 by specifying the RadiusX and RadiusY properties:

Chapter 3: Graphics50

Figure 3.7: Rectangle element with rounded corners

<Canvas xmlns="http://schemas.microsoft.com/client/2007">

<Rectangle
Fill="LightGray"
Stroke="Black"
StrokeThickness="10"
RadiusX="40"
RadiusY="60"
Canvas.Left="50"
Canvas.Top="50"
Width="400"
Height="400"

/>

</Canvas>

Ellipse

As with the Rectangle element, you can position an Ellipse element
with the same Canvas.Top, Canvas.Left, Width, and Height properties.
 Silverlight stretches the ellipse to fit the specified bounds as shown in
 Figure 3.8.

<Canvas xmlns="http://schemas.microsoft.com/client/2007">

<Ellipse
Fill="LightGray"
Stroke="Black"
StrokeThickness="10"
Canvas.Left="50"
Canvas.Top="50"
Width="400"
Height="400"

/>

</Canvas>

Line

To draw a line, you can use the Line element and set its X1, Y1, X2, Y2
 properties. As with all other shapes, you can use the Stroke property to
specify the fill color and the StrokeThickness property to specify the
 thickness as shown in Figure 3.9.

Graphics Elements 51

Figure 3.8: Ellipse element

<Canvas xmlns="http://schemas.microsoft.com/client/2007">

<!–– thick diagonal line ––>
<Line

Stroke="Black"
StrokeThickness="40"
X1="60"
Y1="60"
X2="400"
Y2="400"

/>

<!–– one pixel horizontal line ––>
<Line

Stroke="Black"
StrokeThickness="1"
X1="100"
Y1="60"
X2="400"
Y2="60"

/>

</Canvas>

If you look closely at the pixels for the horizontal line shown in Figure 3.10,
you will see it has a height of two pixels despite the one pixel StrokeThickness

Chapter 3: Graphics52

Figure 3.9: Line element

specified in the XAML. Furthermore, the line is gray instead of the specified
black color. To understand this rendered result, consider the following
 equivalent Rectangle element:

<Canvas xmlns="http://schemas.microsoft.com/client/2007">

<!–– one pixel horizontal line drawn as a rectangle ––>
<Rectangle

Fill="Black"
Canvas.Left="99.5"
Canvas.Top="59.5"
Width="301"
Height="1"

/>

</Canvas>

The previous Rectangle element has half integer values for its position.
The reason for the half pixel coordinates is that the line expands by half
StrokeThickness in either direction. Because StrokeThickness is equal to
one, the line adjusts the top and left coordinates by -0.5. Because the rec-
tangle is between two pixels, it gets anti-aliased and occupies two pixels
with a lighter color. If you want sharp horizontal and vertical lines, you
should draw a rectangle positioned at integer coordinates to get the result
shown in Figure 3.11.

Graphics Elements 53

Figure 3.10: Pixels rendered for a Line element

<Canvas xmlns="http://schemas.microsoft.com/client/2007">

<!–– one pixel horizontal line drawn as a rectangle ––>
<Rectangle

Fill="Black"
Canvas.Left="99"
Canvas.Top="59"
Width="301"
Height="1"

/>

</Canvas>

Path

The Path element extends the Shape element by providing a Data property
that specifies the geometry object. The Rectangle, Ellipse, and Line
 elements previously discussed are all expressible with the more general
Path element. For example, instead of specifying a Rectangle element, we
can specify a Path element with a RectangleGeometry:

<Canvas xmlns="http://schemas.microsoft.com/client/2007">

<Path
Fill="Blue"

Chapter 3: Graphics54

Figure 3.11: Sharp horizontal line drawn with a

Rectangle element

Stroke="Black"
StrokeThickness="10"

>
<Path.Data>

<RectangleGeometry Rect="96,160,256,224"/>
</Path.Data>

</Path>

</Canvas>

The Path element syntax is more verbose than the specialized shapes
syntax. However, because Silverlight converts all shapes internally to Path
elements, if you understand how the Path element draws you will
 understand how all shapes draw.

In addition to expressing specialized shapes, the Path element can
express a geometry consisting of a collection of Figure elements. A Figure
element is a connected set of line segments and Bezier segments. The most
common method to specify these figures, line segments, and curves is the
path mini-language. For example, to draw the shape in Figure 3.12 you
would do the following:

Graphics Elements 55

Figure 3.12: Example path

<Canvas xmlns="http://schemas.microsoft.com/client/2007">

<Path
StrokeThickness="10"
Stroke="Black"
Fill="Red"
Data="M 14,16

C 14,16 -8,256 64,352
C 136,448 185,440 247,336
C 309,233 448,416 448,416
L 436,224
Z"

/>

</Canvas>

The commands supported by the mini-language include those shown in
Table 3.1. Each command is followed by the action it takes.

An alternative form of specifying the geometry is to use the expanded
XAML syntax:

<Canvas xmlns="http://schemas.microsoft.com/client/2007">

<Path
StrokeThickness="10"
Stroke="Black"
Fill="Red"

>
<Path.Data>

<PathGeometry>
<PathGeometry.Figures>

<PathFigure StartPoint="14, 16" IsClosed="true">
<PathFigure.Segments>

<BezierSegment
Point1="14,16"
Point2="-8,256"
Point3="64,352"

/>
<BezierSegment

Point1="136,448"
Point2="185,440"
Point3="247,336"

/>
<BezierSegment

Point1="309,233"
Point2="448,416"
Point3="448,416"

Chapter 3: Graphics56

/>
<LineSegment

Point="436,224"
/>

</PathFigure.Segments>
</PathFigure>

</PathGeometry.Figures>
</PathGeometry>

</Path.Data>
</Path>

</Canvas>

Graphics Elements 57

Command Action

M x,y Move to position x,y

L x,y Draw a line from the current position to
position x,y

C x1,y1, x2,y2, x3,y3 Draw a cubic Bezier segment with control
points consisting of the current position,
(x1,y1), (x2,y2), and (x3,y3)

Q x1,y1, x2,y2 Draw a quadratic Bezier segment with control
points consisting of the current position,
(x1,y1), and (x2,y2)

H x Draw a horizontal line from the current
 position x0,y0 to position x,y0

V y Draw a vertical line from the current position
x0,y0 to position x0,y

Z Close a figure

F0 Specify EvenOdd fill rule

F1 Specify NonZero fill rule

Table 3.1: Path Mini-language Commands

One additional concept previously discussed is that of a Figure element.
Because the Path element can have more than one figure, it can create an
empty space in the middle of a filled space as shown in Figure 3.13.

<Canvas xmlns="http://schemas.microsoft.com/client/2007">

<Path
StrokeThickness="10"
Stroke="Black"
Fill="LightGray"
Data="M 50,50 L 50,450 450,450 450,50 50,50 z

M 100,100 L 100,400 400,400 400,100 100,100 z"
/>

</Canvas>

Chapter 3: Graphics58

Figure 3.13: Path with an empty space in the center

PERFORMANCE TIP

These two forms of specifying a path may render identically, but they
differ in performance and flexibility. The mini-language form parses
faster, consumes less memory, and draws fastest at runtime. The mini-
language is the recommended form for static content. However, it is
not possible to bind an animation or change a segment property of a
path generated with the mini-language because Silverlight does not
create the path, figure, or segment API objects.

Fill Rules

The previous section explained how to use geometry to specify an outline
of an area to fill. However, an outline does not uniquely specify the inside

and outside of the shape. For example, the outline in Figure 3.13 could
generate any of the rendering results shown in Figure 3.14. A fill rule is a
method to distinguish the inside of a shape from the outside of the shape.

One approach to specifying what is inside a shape is to cast a horizon-
tal line through the shape and count the number of edges crossed from left
to right. If the number of edges crossed is even, classify the horizontal
line segment as outside the shape. If the number of edges is odd, classify
that segment as inside the shape. This fill rule is the EvenOdd rule and is the
default fill mode for Path elements. To specify the fill mode explicitly, you
can specify the FillRule property on geometry or use F0 for EvenOdd from
the path mini-language:

<Canvas xmlns="http://schemas.microsoft.com/client/2007">

<!–– Path with fill rule F0 = EvenOdd ––>

<Path
StrokeThickness="10"
Stroke="Black"
Fill="LightGray"
Data="F0

M 50,50 L 50,450 450,450 450,50 50,50 z
M 100,100 L 100,400 400,400 400,100 100,100 z"

/>

</Canvas>

Graphics Elements 59

Figure 3.14: Different fills for the

same outline

An alternative rule is the NonZero rule, which considers the order points
are specified in the input. If an edge goes up in the y direction, assign that
edge a + 1 winding number. If an edge goes down in the y direction, assign
that edge a – 1 winding number. The NonZero rule defines the interior of the
shape to be all those segments where the sum of winding numbers from
the left to the current segment is not zero. For example, if you specify the
geometry shown in Figure 3.14 with the point order in the following
markup, it would result in the winding numbers and filled segments
shown in Figure 3.15.

Chapter 3: Graphics60

+1 +1 –1 –1

Figure 3.15: Winding mode numbers

resulting in a filled center space

<Canvas xmlns="http://schemas.microsoft.com/client/2007">

<!–– Path with fill rule F1 = NonZero ––>

<Path
StrokeThickness="10"
Stroke="Black"
Fill="LightGray"
Data="F1

M 50,50 L 50,450 450,450 450,50 50,50 z
M 100,100 L 100,400 400,400 400,100 100,100 z"

/>

</Canvas>

If you specify the points in the following order, the shape would render
differently as shown in Figure 3.16.

Graphics Elements 61

Figure 3.16: Different fill as a result of a different

point order

PERFORMANCE TIP

The NonZero rule is more complicated than the EvenOdd rule and does
render slower. For most vector graphics fills, the EvenOdd rule gives the
desired result.

<Canvas xmlns="http://schemas.microsoft.com/client/2007">

<!–– Path with fill rule F1 = NonZero ––>

<Path
StrokeThickness="10"
Stroke="Black"
Fill="LightGray"
Data="F1

M 50,50 L 50,450 450,450 450,50 50,50 z
M 100,100 L 400,100 400,400 100,400 100,100 z"

/>

</Canvas>

Images
In addition to the vector graphics elements previously discussed, the other
fundamental graphics primitive is the Image element. To display an image,

you can use the Image element with a reference to a URI to produce the
result shown in Figure 3.17.

Chapter 3: Graphics62

Figure 3.17: Image element example

<Canvas xmlns="http://schemas.microsoft.com/client/2007">
<Image Source="silverlight.png"/>

</Canvas>

The Source property can reference any image in JPG or PNG format.
However, if the JPG or PNG contains DPI (dots per inch) information,
 Silverlight ignores this information because it is usually not accurate for dis-
play purposes. All references to URIs in XAML are relative to the location of
the XAML file. For example, if the XAML file is in a XAP, Silverlight searches
for silverlight.png in the XAP. If the XAML file is a resourced in a managed
assembly, Silverlight searches for silverlight.png in that same assembly.

If you do not specify the Width and Height properties of an image,
 Silverlight draws the image at its natural size, which results in a pixel
 perfect rendering of the original image data.

Brushes
All of the previous examples filled the Path element pixels with a single color.
Silverlight also supports filling arbitrary shapes with image brushes, linear
gradient brushes, and radial gradient brushes. A brush is a mathematical
 function that maps an (x,y) position to a color. For example, SolidColorBrush
is a simple function that ignores its position and always outputs the same
color. This section describes the brushes available in Silverlight and includes
the function used to map from screen position to color.

Solid Color Brush

SolidColorBrush returns a single color for all screen positions. When you
specify a Fill or Stroke property value, Silverlight creates a solid color
brush for the corresponding shape fill or pen stroke respectively:

<Canvas xmlns="http://schemas.microsoft.com/client/2007">

<Rectangle
Fill="Blue"
Stroke="Black"
StrokeThickness="10"
Canvas.Left="96"
Canvas.Top="160"
Width="256"
Height="224"

/>

</Canvas>

Alternatively, you can specify a brush with the expanded XAML syntax:

<Canvas xmlns="http://schemas.microsoft.com/client/2007">

<Rectangle
StrokeThickness="10"
Canvas.Left="96"
Canvas.Top="160"
Width="256"
Height="224"

>
<Rectangle.Fill>

<SolidColorBrush Color="Blue"/>
</Rectangle.Fill>
<Rectangle.Stroke>

Graphics Elements 63

Technical Insight
As shown in the previous example, the Sourceproperty of an Image element

can be set to a URI. Many references to the same SourceURI cause Silverlight

to download the image once and use it multiple times. If you remove all ref-

erences to Image elements for a specific URI, Silverlight removes the image

from the memory cache and a future reference causes Silverlight to initiate

another download. Future downloads may be serviced from the browser

cache or go over the network if the image is no longer in the browser cache.

<SolidColorBrush Color="Black"/>
</Rectangle.Stroke>

</Rectangle>

</Canvas>

The previous examples specified a named color. You can also specify a
color explicitly by providing a hex string of the form #aarrggbb, which rep-
resents a hex alpha channel value, red channel value, green channel value,
and blue channel value. For example, opaque green would be #ff00ff00.

From C#, you can specify a color by creating an instance of the Color class:
Color green = Color.FromA rgb(0xff, 0x0, 0xff, 0x0);

The alpha channel specifies the degree of transparency where 0x0 indicates
completely transparent, 0xff indicates an opaque color, and intermediate
 values indicate partial transparency. A brush with a transparent color will
blend its color to the background color using the following formula:

Color_destination = (alpha * Color_source + (0xff – alpha)
* Color_destination)/256

Silverlight will pass colors specified in hex format to the Web browser
without a color space conversion. Typically, the browser will interpret the
color as a standard RGB color space color (sRGB) that is, an 8-bit per
 channel 2.2 implied gamma space color. However, the visible color may
vary with operating systems, Web browser, the monitor, and the operating
system color profile. An alternative form of specifying colors is the floating
point wide gamut linear RGB color space (scRGB):

<Canvas xmlns="http://schemas.microsoft.com/client/2007">

<Rectangle
Fill="sc#1, 1.0, 0.0, 0.0"
Canvas.Left="96"
Canvas.Top="160"
Width="256"
Height="224"

/>

</Canvas>

Silverlight converts scRGB colors to sRGB internally for blending.
Consequently, specifying colors in native sRGB is desirable to avoid extra
color conversion steps.

Chapter 3: Graphics64

Gradient Brushes

Gradient brushes define a set of colors and positions along a virtual
 gradient line. The function that maps screen position to color first maps the
screen position to a point along the gradient line and then interpolates a
color based on the two nearest points.

Consider the following use of a LinearGradientBrush:

<Canvas xmlns="http://schemas.microsoft.com/client/2007">

<Ellipse
Width="450"
Height="450"

>
<Ellipse.Fill>

<LinearGradientBrush StartPoint="0,0" EndPoint="1,1">
<LinearGradientBrush.GradientStops>

<GradientStop Color="White" Offset="0"/>
<GradientStop Color="Black" Offset="1"/>

</LinearGradientBrush.GradientStops>
</LinearGradientBrush>

</Ellipse.Fill>
</Ellipse>

</Canvas>

The preceding linear gradient brush produces the fill shown in Figure 3.18.
A linear gradient brush maps a screen position to the point on the line

Graphics Elements 65

Figure 3.18: Linear gradient brush

 closest to that position. The brush then interpolates a color based on the two
nearest points specified along the line as shown in Figure 3.18.

Alternatively, you can specify a radial gradient fill using
RadialGradientBrush that takes the distance from the screen position to the
center of the radial gradient and maps that distance to the specified
 gradient line of colors and positions. For example, the following XAML
generates the rendering shown in Figure 3.19.

Chapter 3: Graphics66

Figure 3.19: Radial gradient brush

<Canvas xmlns="http://schemas.microsoft.com/client/2007">

<Ellipse
Width="450"
Height="450"

>
<Ellipse.Fill>

<RadialGradientBrush>
<RadialGradientBrush.GradientStops>

<GradientStop Color="White" Offset="0"/>
<GradientStop Color="Black" Offset="1"/>

</RadialGradientBrush.GradientStops>
</RadialGradientBrush>

</Ellipse.Fill>
</Ellipse>

</Canvas>

Another feature of RadialGradientBrush is the capability to move the
point that maps to the start of our gradient line. In particular, in our previ-
ous example, the center of the radial gradient circle mapped to the start of our
gradient line and the radius of the gradient circle mapped to the end of our
gradient line. With this pattern, you always get a uniform ellipse. You can
move the center using the GradientOrigin property to get the result shown
in Figure 3.20.

Graphics Elements 67

Figure 3.20: Focal gradient brush

<Canvas xmlns="http://schemas.microsoft.com/client/2007">

<Ellipse
Width="450"
Height="450"

>
<Ellipse.Fill>

<RadialGradientBrush GradientOrigin="0.25 0.25">
<RadialGradientBrush.GradientStops>

<GradientStop Color="White" Offset="0"/>
<GradientStop Color="Black" Offset="1"/>

</RadialGradientBrush.GradientStops>
</RadialGradientBrush>

</Ellipse.Fill>
</Ellipse>

</Canvas>

Chapter 3: Graphics68

One other feature of linear and radial gradients is the capability to
 specify the behavior when the display position maps to some position
 outside the range of the gradient line. The SpreadMethod property defines
that behavior. The Pad mode repeats the closest point when off the line, the
Reflect mode mirrors to a point on the line, and the Repeat mode simply
takes the position modulo the length of the line as shown in Figure 3.21.

Figure 3.21: SpreadMethod example

Figure 3.22: ImageBrush example

Pad Repeat Reflect

Image Brushes
The role of the image brush is to map a screen position to a pixel in the
 specified image. For example, the following XAML would result in the
image brush rendering shown in Figure 3.22.

<Canvas xmlns="http://schemas.microsoft.com/client/2007">

<Ellipse

Width="450"
Height="450"
Stroke="Black"
StrokeThickness="10"

>
<Ellipse.Fill>

<ImageBrush ImageSource="silverlight.png"/>
</Ellipse.Fill>

</Ellipse>

</Canvas>

Strokes
The previous section showed how to use a brush to color the fill of a shape.
You can also use a brush to add color to the outline of a shape by setting
the stroke properties. For example, the following XAML generates the
 output shown in Figure 3.23.

Graphics Elements 69

Figure 3.23: Sample stroke applied to an ellipse

<Canvas xmlns="http://schemas.microsoft.com/client/2007">
<Ellipse

Stroke="Black"
StrokeThickness="10"
Canvas.Left="50"
Canvas.Top="50"
Width="400"
Height="400"

/>
</Canvas>

Stroke

A stroke transforms geometry to a widened form that describes the shape
outline instead of the shape fill. Silverlight fills the widened geometry
with exactly the same rendering rules as the main shape fill. For example,
Figure 3.24 shows an example of a widened ellipse.

The widening process expands the original geometry by half the stroke
thickness to form an outer outline. The widening process also shrinks the
original geometry by half the stroke thickness to form an inner outline.
The outer and inner outlines combine to form two figures Silverlight fills
to produce the resulting stroke.

Chapter 3: Graphics70

Outter Outline

Inner Outline

Figure 3.24: The widening process applied

to an ellipse

Technical Insight
One side effect of the widening process is that local self-intersection can

occur. For example, the process of widening a triangle generates several

self-intersections as shown in Figure 3.25. One option is to run a loop

removal algorithm to remove these intersections before rasterization.

However, by simply filling the new geometry with the NonZero fill rule,

these self intersections are not visible to the end user.

Dashes

To add dashes to your strokes, specify an array of distances alternating between
the dash filled distance and the gap distance. For example, the simple dash
array in the following XAML generates the output shown in Figure 3.26.

Graphics Elements 71

Figure 3.25: The widening process applied to a triangle

Figure 3.26: StrokeDashArray example of long

and short dashes

<Canvas xmlns="http://schemas.microsoft.com/client/2007">
<Ellipse

Stroke="Black"
StrokeThickness="10"
StrokeDashA rray="5, 4, 2, 4"
Canvas.Left="50"
Canvas.Top="50"
Width="400"
Height="400"

/>

</Canvas>

Chapter 3: Graphics72

Technical Insight
Dashes are also a geometry modifier built on top of the stroke geometry

modifier. When you specify a StrokeDashA rray, Silverlight takes the

 output of the pen and subdivides it into smaller geometries. Large num-

bers of dashes can result in significant slowdowns in rendering speed and

 therefore you should use them sparingly.

Canvas
Every example shown so far has had a single root Canvas element with a set
of Shape elements contained within it. In addition to providing a conven-
ient container, the Canvas element also enables you to modify the rendering
primitives it contains as a group. In particular, the Canvas element enables
the following:

• Naming groups of elements

• Grouping shapes so that you can add or remove the group with a
single operation

• Applying a transform to the group of elements

• Clipping a group of elements

• Apply an opacity or opacity mask effect to a group of elements

Transforms, clipping, and opacity effects are available on both individ-
ual shapes and the Canvas element.

Transforms

A transform enables you to position, rotate, scale, or skew a shape or
group of shapes. To transform a group of primitives, you can set the
RenderTransform on the Canvas element as exemplified in the following
listing to achieve the result shown in Figure 3.27.

Graphics Elements 73

PERFORMANCE TIP

For individual shapes, it is faster to express clipping or opacity as a
 different geometry or a different brush color. For example, draw a Path
with an ImageBrush to achieve the same result as applying a clip to an
Image element. Similarly, you can add opacity to the brush color alpha
channel instead of adding Opacity to the shape.

Figure 3.27: RenderTransform example of overlapping

a rectangle over an ellipse

<Canvas xmlns="http://schemas.microsoft.com/client/2007">
<Canvas.RenderTransform>

<TransformGroup>
<ScaleTransform ScaleX="1.5"/>
<RotateTransform A ngle="30"/>
<TranslateTransform X="100" Y="-10"/>

</TransformGroup>
</Canvas.RenderTransform>

<Ellipse
Fill="LightGray"
Stroke="Black"
StrokeThickness="20"
Width="200"
Height="200"

/>
<Rectangle

Fill="Gray"
Stroke="Black"
StrokeThickness="20"
Canvas.Left="100"
Canvas.Top="100"
Width="200"
Height="200"

/>

</Canvas>

As shown in the previous example, you can use a list of ScaleTransform,
TranslateTransform, and RotateTransform elements in a TransformGroup
element. Alternatively, you can specify an explicit matrix with a
MatrixTransform:

<Canvas xmlns="http://schemas.microsoft.com/client/2007">
<Canvas.RenderTransform>

<TransformGroup>
<MatrixTransform Matrix="

1.30, 0.75,
-0.50, 0.87,
100.00, -10.00"

/>
</TransformGroup>

</Canvas.RenderTransform>

<Ellipse
Fill="LightGray"
Stroke="Black"
StrokeThickness="20"

Chapter 3: Graphics74

Width="200"
Height="200"

/>
<Rectangle

Fill="Gray"
Stroke="Black"
StrokeThickness="20"
Canvas.Left="100"
Canvas.Top="100"
Width="200"
Height="200"

/>

</Canvas>

3D Transforms (New in Silverlight 3)

In Silverlight 3, you can set the Projection property to a PlaneProjection
to rotate a group of elements in 3D as shown in Figure 3.28.

Graphics Elements 75

Figure 3.28: 3D projection example

<Canvas xmlns="http://schemas.microsoft.com/client/2007">
<Canvas.Projection>

<PlaneProjection RotationY="-60" CenterOfRotationY="50" />
</Canvas.Projection>

<Ellipse
Fill="LightGray"
Stroke="Black"
StrokeThickness="20"
Width="200"
Height="200"
Canvas.Top="50"

/>

<Rectangle
Fill="Gray"
Stroke="Black"
StrokeThickness="20"
Canvas.Left="100"
Canvas.Top="100"
Width="200"
Height="200"

/>

</Canvas>

Each projection logically has its own camera. To position more than one
object relative to the same perspective camera, position them all in the same
place and use the GlobalOffsetX, GlobalOffsetY, and GlobalOffsetZ
properties to move in the 3D world as shown in Figure 3.29.

Chapter 3: Graphics76

Figure 3.29: Position three rectangles in the same 3D

 projection camera

<Canvas xmlns="http://schemas.microsoft.com/client/2007">

<Rectangle
Fill="Gray"
Stroke="Black"
StrokeThickness="20"
Canvas.Left="200"
Canvas.Top="100"
Width="200"
Height="200"

>
<Rectangle.Projection>

<PlaneProjection
GlobalOffsetX="-200"
RotationY="-60"
CenterOfRotationY="50"

/>
</Rectangle.Projection>

</Rectangle>

<Rectangle
Fill="Gray"
Stroke="Black"
StrokeThickness="20"
Canvas.Left="200"
Canvas.Top="100"
Width="200"
Height="200"

>
<Rectangle.Projection>

<PlaneProjection GlobalOffsetZ="-150"/>
</Rectangle.Projection>

</Rectangle>

<Rectangle
Fill="Gray"
Stroke="Black"
StrokeThickness="20"
Canvas.Left="200"
Canvas.Top="100"
Width="200"
Height="200"

>
<Rectangle.Projection>

<PlaneProjection
GlobalOffsetX="200"
RotationY="60"
CenterOfRotationY="50"

/>
</Rectangle.Projection>

</Rectangle>

</Canvas>

The global offset properties apply after the rotation property. You can
also use the LocalOffsetX, LocalOffsetY, and LocalOffsetZ properties on
the PlaneProjection object to apply an offset before the rotation.

Clipping

Clipping is the process of restricting the display area to a specified shape.
To clip an element, set the Clip property as shown Figure 3.30 and in the
following listing:

<Canvas xmlns="http://schemas.microsoft.com/client/2007">
<Canvas.Clip>

<EllipseGeometry
Center="100,200"

Graphics Elements 77

RadiusX="150"
RadiusY="150"

/>
</Canvas.Clip>

<Ellipse
Fill="LightGray"
Stroke="Black"
StrokeThickness="20"
Width="200"
Height="200"

/>
<Rectangle

Fill="Gray"
Stroke="Black"
StrokeThickness="20"
Canvas.Left="100"
Canvas.Top="100"
Width="200"
Height="200"

/>
</Canvas>

Chapter 3: Graphics78

Figure 3.30: Clipping example

PERFORMANCE TIP

A clipping operation is semantically equivalent to intersecting two
geometries. Clipping a group of elements or a single shape does come
with a significant performance penalty. You should avoid clipping
when possible.

Opacity

Setting opacity on a brush or setting a transparent color on a brush
 introduces alpha blending. In particular, if a brush contains a transparent
color, the brush blends its color with the content underneath using the
 following formula:

Color_destination = alpha * Color_source + (1 – alpha)
* Color_destination

The other form of opacity is setting the Opacity property on a Canvas.
This operation is not equivalent to changing the opacity of each of the
shapes within the Canvas element as demonstrated by Figure 3.31.

Graphics Elements 79

PERFORMANCE TIP

Setting Opacity on a Canvas element resolves occlusion first and
then blends content. This process is significantly slower at runtime
than blending individual primitives. If possible, you should
set opacity on a brush, brush color, or a Path element for maximum
performance.

Opacity on Rectangle Opacity on Canvas

Figure 3.31: Canvas Opacity versus per path Opacity

OpacityMask

The OpacityMask property on a UIElement provides a mechanism to
blend brush per pixel alpha information with the content of a UIElement.
For example, the following XAML would produce the result shown in
Figure 3.32.

<Canvas xmlns="http://schemas.microsoft.com/client/2007">
<Canvas.OpacityMask>

<LinearGradientBrush StartPoint="0,0" EndPoint="1,1">
<LinearGradientBrush.GradientStops>

<GradientStop Color="Transparent" Offset="0"/>
<GradientStop Color="White" Offset="1"/>

</LinearGradientBrush.GradientStops>
</LinearGradientBrush>

</Canvas.OpacityMask>

<Ellipse
Fill="LightGray"
Stroke="Black"
StrokeThickness="20"
Width="200"
Height="200"

/>
<Rectangle

Fill="Gray"
Stroke="Black"
StrokeThickness="20"
Canvas.Left="100"
Canvas.Top="100"
Width="200"
Height="200"

/>

</Canvas>

Chapter 3: Graphics80

Figure 3.32: OpacityMask example

OpacityMask is slow at runtime. In some cases, it is faster to draw
 content on top that blends to the background instead of using the
OpacityMask. For example, you can achieve the effect in Figure 3.32 with
the following XAML:

<Canvas xmlns="http://schemas.microsoft.com/client/2007">

<Ellipse
Fill="LightGray"
Stroke="Black"
StrokeThickness="20"
Width="200"
Height="200"

/>
<Rectangle

Fill="Gray"
Stroke="Black"
StrokeThickness="20"
Canvas.Left="100"
Canvas.Top="100"
Width="200"
Height="200"

/>

<!–– simulate opacity mask effect with a rectangle on top ––>

<Rectangle Width="300" Height="300">
<Rectangle.Fill>

<LinearGradientBrush StartPoint="0,0" EndPoint="1,1">
<LinearGradientBrush.GradientStops>

<GradientStop Color="White" Offset="0"/>
<GradientStop Color="Transparent" Offset="1"/>

</LinearGradientBrush.GradientStops>
</LinearGradientBrush>

</Rectangle.Fill>
</Rectangle>

</Canvas>

Under the Hood

Previous sections have discussed the graphics principles and the graphics
API elements. This section goes “under the hood” to describe how Sil-
verlight draws XAML content and displays it in the browser window.

Under the Hood 81

Understanding this process will help you understand the Silverlight
runtime performance characteristics. Furthermore, you will understand the
problems solved by the runtime and the problems your application must
solve.

In particular, this section discusses the following:

• The draw loop process that takes changes to the graph of objects and
draws it to an off screen back buffer

• The rasterization process that converts vector graphics primitives to
pixels in an offscreen back buffer

• Performance optimizations such as incremental redraw, occlusion
culling, and multi-core

• How the offscreen back buffer gets displayed in the browser
 window

Draw Loop
Silverlight draws at a regular timer interval set by the MaxFrameRate
 property. On each tick of the timer, Silverlight does the following:

1. Checks for any changes to the properties of our graph of Canvas and
Shape elements. If no changes exist, Silverlight does no further work
for this timer tick.

2. Performs any pending layout operations. Chapter 7, “Layout,” will
discuss these layout operations further.

3. Gathers rendering changes and prepares to rasterize them.

4. Incrementally rasterizes the changes for the current timer tick. The
graphics state at the current timer tick is the current frame.

5. Notifies the browser that a frame (or an incremental delta to an
existing frame) is complete for display.

Rasterization
After the draw loop has identified which elements need to be redrawn,
Silverlight converts those elements to a set of pixels in our offscreen

Chapter 3: Graphics82

back buffer. The previous discussion of shapes described how to specify
path outlines and a method of specifying the inside and the outside of
the shape. However, the geometry describes an abstract infinite
 resolution outline of a shape and a screen has a finite number of pixels
to color. Rasterization is the process of converting from a path out-
line to discrete pixels. This section describes how rasterization is
 accomplished.

The simplest method to convert geometry to pixels is a process called
sampling. The sampling process uses a discrete number of sample points
to convert from the infinite shape description to pixels. For example,
 consider the simple sample pattern consisting of a uniform grid of sam-
ple points with one sample point per pixel. If the sample point is
 contained within the geometry, light up the pixel. If the sample point is
not contained within the geometry, do not light the pixel. For example,
the circle specified by the following XAML would light the pixels shown
in Figure 3.33.

Under the Hood 83

PERFORMANCE TIP

One property of the draw loop is that nothing draws immediately after
you make a change to the element tree. Consequently, profiling tools
do not associate the cost of a drawing operation with the function that
added those drawing primitives. To tune your performance, you
should measure the maximum frame rate of your application during
development. In particular, set the MaxFrameRate property to some
value that is beyond what Silverlight can achieve and turn on the
frame rate display as shown in the following JavaScript:

function loadHandler()
{

plugin = document.getElementById("MySilverlightPlugin");
plugin.settings.EnableFramerateCounter = true;
plugin.settings.MaxFrameRate = 10000;

}

During development, watch for content that drops the frame rate
 significantly, and consider specifying that content in an alternative form.

<Canvas xmlns="http://schemas.microsoft.com/client/2007">

<Ellipse
Fill="Black"
Width="15"
Height="15"

/>

</Canvas>

You may have noticed that the integer coordinates were located at the
top left of the pixel and the sample points were in the center of a pixel. This
convention enables a symmetrical curved surface specified on integer
coordinates to produce a symmetrical rasterization. If the sample points
were on integer coordinates instead, the ellipse would lose symmetry as
shown in Figure 3.34.

The rasterization shown in Figure 3.33 appears to have jagged edges.
This jagged appearance is the consequence of aliasing. Aliasing is the loss
of information that results from converting from a continuous curve to a
discrete set of samples. Anti-aliasing is a term that refers to a technique that
attempts to minimize aliasing artifacts.

The Silverlight anti-aliasing technique consists of sampling multiple
times per pixel and applying a box filter to produce the final pixel color.
Silverlight conceptually samples 64 times per pixel as shown in Figure 3.35.

Chapter 3: Graphics84

Figure 3.33: Sampling a circle

The box filter averages the contribution of all samples within a rectangle
bordering the pixel to produce a final pixel color. If some partial number of
samples is in the box, Silverlight applies transparency to blend smoothly
with what is underneath the geometry as shown in Figure 3.36. This
anti-aliasing technique produces a smooth transition from inside the shape
to outside the shape along edges.

Under the Hood 85

Figure 3.34: Sampling a circle with integer sample

point coordinates

Figure 3.35: Anti-aliasing sampling pattern

Chapter 3: Graphics86

Figure 3.36: Anti-aliased rasterization

Technical Insight
You may be wondering why there are 16 samples per pixel in the x direction

and only 4 samples per pixel in the y direction. The reason for picking this

sample pattern is that horizontal resolution is critical to being able to

render text clearly. Furthermore, horizontal resolution is computationally

cheap and vertical resolution is slower. The 16x4 sampling pattern

balances image quality and speed.

Instead of a box pattern, it is also possible to accumulate samples in a

circular pattern, weight samples unevenly, or even have a sample pattern

that extends far beyond a single pixel in size. In fact, all of these other

algorithms generate better image quality than a box filter but typically

render more slowly. The Silverlight high-resolution box filter is a choice

made to achieve good rendering performance with reasonable image

quality.

One artifact of anti-aliasing is a visible seam that sometimes results from
drawing two adjacent shapes. For example, the following two rectangles
that meet in the middle of a pixel generate a seam:

<Canvas xmlns="http://schemas.microsoft.com/client/2007">
<Rectangle

Fill="Black"
Width="100.5"
Height="100.5"

/>
<Rectangle

Fill="Black"
Canvas.Left="100.5"
Width="100.5"
Height="100.5"

/>
</Canvas>

The previous XAML results in the rasterization shown in Figure 3.37.
Notice the gap between the two rectangles. The rectangles joined perfectly
in the input XAML, so why is there a seam in the rendered result?

These seams are a result of the rasterization rules described in this section.
Consider the rasterization process applied to a light gray pixel X shown in
Figure 3.37. Rectangle A is covering exactly half the samples for pixel X. Sil-
verlight consequently draws that pixel of Rectangle A with 0.5 anti-aliasing
alpha. Alpha is a term that refers to the transparency used to blend colors with
a formula such as

Under the Hood 87

Figure 3.37: Anti-aliasing seam example

Chapter 3: Graphics88

Color_destination = alpha * Color_source + (1 – alpha) * Color_destination

In our example, alpha = 0.5, Color_source = Black, and Color_destina-
tion = White. Blending along the edge of rectangle A results in a destination
color of

0.5 * Black + (1 – 0.5) * White = 0.5 * White

Rectangle B also covers half its sample points. Silverlight also blends
pixel X of rectangle B with alpha = 0.5 to a background color of 0.5 * White.
Consequently, the resulting color is

0.5 * Black + (1 – 0.5) * (0.5 White) = 0.25 White.

The final pixel color has one quarter of the background color showing
through as a visible seam.

Technical Insight
This result is an artifact of sampling each primitive independently. An

alternative anti-aliasing mode is full screen anti-aliasing that processes all

samples from all shapes simultaneously. However, Silverlight does not

currently use full screen anti-aliasing because it results in slower runtime

performance.

Figure 3.38: Pixel snapped rasterization

To avoid these seams, you should snap edges to pixel boundaries as
shown in Figure 3.38. Snapping also produces a sharper edge between the

Bilinear Filtering
The previous section discussed how Silverlight converts an arbitrary geom-
etry to a set of pixels to fill. Silverlight then colors the filled pixels based on
the brush specified. This process is straightforward for solid color brushes
and gradient brushes. However, with image brushes, Silverlight must map
from the destination pixels to the original image data, which may be at a
different resolution. This section describes the mapping function used to
achieve the image data stretch shown in Figure 3.40.

Nearest neighbor is a simple image scaling function that transforms the
destination pixel to an image bitmap position and picks the nearest pixel
color. Nearest neighbor sampling generates ugly aliasing artifacts when the
image is displayed with a scale or rotation as shown in Figure 3.41. You will
notice jagged lines if you look at the picture closely.

Silverlight uses nearest neighbor sampling in the special case where the
brush image data maps exactly onto centers of pixels. For rotated, scaled, or
non-integer translated images, bilinear filtering is used to produce the
result shown in Figure 3.40.

Under the Hood 89

Figure 3.39: Seams with a rotated edge

two shapes. However, pixel snapping only removes seams if you align the
shapes edges with the x-axis or the y-axis. For the rotated edges shown in
Figure 3.39, snapping does not remove the artifact. For rotated edges, the
common technique to avoid this seam is to overlap the edges so that the
background is no longer visible.

Bilinear filtering maps the screen position to a position (u,v) in image
space. The bilinear filtering process then interpolates a color from pixels
(floor(u), floor(v)), (floor(u) + 1, floor(v)), (floor(u), floor(v) + 1), and
(floor(u) + 1, floor(v)+1). Figure 3.42 illustrates this process. Bilinear fil-
tering generates good results for scales that are within a factor of two of the
original image size. Figure 3.43 demonstrates the results of scaling an image
in two sizes within reasonable limits.

Chapter 3: Graphics90

Figure 3.40: Image with bilinear filtering

Figure 3.41: Image with nearest neighbor

Under the Hood 91

Map to
image
bitmap

Interpolate
desination

color and fill
shape

Find 4 closest
bitmap pixels

Figure 3.42: The bilinear filtering process

Figure 3.43: Image scaling within good limits

With bilinear filtering, if you scale up an image significantly, it becomes
blurry. Conversely, if you scale down an image significantly, it looks
aliased. Figure 3.44 shows examples of both these artifacts.

Chapter 3: Graphics92

Figure 3.44: Image scaling extremes

New in Silverlight 3
There are a number of techniques for scaling down an image to produce a

result better than Figure 3.44. However, these techniques can slow down

your animations. Silverlight 3 adds support for mip-mapping that converts

your image to a set of smaller images at various sizes using a better

algorithm.

For example, if you have a 128x128 image, Silverlight also generates

copies at 64x64, 32x32, 16x16, 8x8, 4x4, 2x2, and 1x1 resolutions resized

with high quality. When displaying the image at a particular scale,

Silverlight chooses the closest resolution to the display size or even uses

multiple sizes at once when displaying in 3D.

This conversion happens only once per image and Silverlight caches the

resulting images. Consequently, this approach uses 33% more memory to

store images to achieve better image quality.

Incremental Redraw
In addition to drawing static objects for a single frame, Silverlight must
constantly redraw objects as they are changing. If an object moves from one

position to another, it would be wasteful to redraw all the pixels on the
screen. Instead, Silverlight marks the old position as needing a redraw and
marks the new position as also needing a redraw. To simplify this marking
algorithm, Silverlight uses the bounding box of a shape instead of the tight
shape bounds.

For example, suppose the shape shown in the following XAML moves
from position 0,0 to position 100,100. Figure 3.45 shows the area that is
redrawn.

Under the Hood 93

Background
redraw from old

location

Draw Ellipse

Figure 3.45: Incremental redraw regions

<Canvas xmlns="http://schemas.microsoft.com/client/2007">
<Ellipse

Fill="Black"
Width="100"
Height="100”

/>
</Canvas>

To view a visualization of these incremental redraw regions in an appli-
cation, use the following JavaScript:

function loadHandler()
{

plugin = document.getElementById("MySilverlightPlugin");
plugin.settings.EnableRedrawRegions = true;

}

This visualization blends a transparent color on top of any content drawn
and cycles to a different color each frame. Consequently, any content that is
flashing represents content that Silverlight is constantly redrawing. Any
content that stabilizes on a single color has not changed for several frames.

Occlusion Culling
The most expensive operation in the draw loop is the rasterization process,
which writes each of the destination pixels. For example, a full screen
 animation can consist of processing several hundred million pixels per
second. Each of these pixels applies at least one brush operation. If there are
overlapping brushes, the computational requirements can multiply by a
factor of 3 to 10.

As the graph of elements gets more complicated, it may no longer
 render at the desired frame rate. To optimize the rasterization process,
 Silverlight avoids brush operations for completely occluded brush pixels.
For example, if you draw a full screen background and an almost full screen
image, Silverlight computes all the image pixels and only those back-
ground pixels not covered by the image itself. For complicated graphs of
elements, this optimization can produce a 3–10x speedup.

Chapter 3: Graphics94

PERFORMANCE TIP

Occlusion culling only applies to brush pixel color optimizations. If a
complicated geometry is behind a big opaque rectangle, the rasterizer
walks the geometry before it realizes that the pixel operations are not
necessary. Consequently, it is still important to remove hidden content
from the element tree for maximum performance.

Multi-Core Rendering
Silverlight takes advantage of multiple CPU cores to produce faster ren-
dering throughput. In particular, Silverlight subdivides a frame into a set of
horizontal bands and distributes the rasterization of those bands across
CPU cores as shown in Figure 3.46. Currently, only the frame rasterization
step, effects, mip-map generation, and media operations run in parallel

across CPU cores. Systems such as layout, control templating, application
user code, and animation all run on a single thread. Consequently, you can
determine if your application is rasterization bound by simply setting your
framerate to 10000 frames per second and measuring your CPU usage
percentage. If you achieve almost 100% CPU usage on a dual core machine,
you are almost entirely rasterization bound. If you achieve 70% CPU usage
on a dual core machine (at 10000 frames per second), that means 30% of the
work is not running in parallel.

How Content Gets to the Screen
As previously discussed, the draw loop first draws a frame to an offscreen
back buffer and then it notifies the browser that the frame is ready for
display. With windowless=false mode, Silverlight content goes to the
screen without browser intervention on most operating systems. With
windowless=true, the browser copies the offscreen frame to its display area.
This extra step is both slow and can result in visual tearing effects in a num-
ber of browsers. The worst mode of operation is when windowless=true is
specified with a transparent color for the background of the control. The
transparent color causes the Web browser to redraw the content underneath
the control each time any control content has changed.

Under the Hood 95

Figure 3.46: Dividing a scene for multi-core rendering

Where Are We?

This chapter described the following:

• The graphics system design principles

• The elements for displaying graphics

• The problems the Silverlight runtime solves “under the hood” and
the problems your application must solve

In addition, you have learned a number of important performance
 optimization techniques for use with your application.

Chapter 3: Graphics96

PERFORMANCE TIP

You should avoid using both a transparent background and
windowless=true if possible.

Index

Numbers
3D transforms

applying to content, 200
overview of, 75–77
Silverlight 3 features, 7

A
AAC (Advanced Audio Coding)

media delivery and, 179
media source and, 182
Silverlight 3 audio formats, 9

Accessibility, input events and, 127
A ctualHeight and A ctualWidth properties,

TextBlock element, 101–102
Adaptive bit-rate streaming, 177, 179
Adobe Illustrator, exporter for

XAML files, 47
Advanced Streaming Redirector (ASX)

media delivery and, 179
as media source, 182–183

Alignment
Grid element properties, 166
TextA lignment property, 103

Alpha, 239–240
Animation

applications, 37–38
changing property values over time,

134–135
customizing, 135–136
easing functions, 145–147
elements, 136–138
frames per second, 47

interpolation and keyframe animations,
140–144

overview of, 131
performance factors in, 136
principles, 132
review, 152
screen display and, 151
setting property change speed, 149–151
Silverlight 3 features, 8
starting, 138–139
steps in, 148
of text, 107
time-based vs. frame-based, 132–134
timelines and, 145
timer setup, 148

Anti-aliasing
gamma correction for anti-aliased text, 113
rasterization and, 84–87

Application model
designer/developer collaboration and, 13
Silverlight 3 features, 7

A pplication.Current.IsRunningOutOf
Browser property, 21

A pplicationManifest.xml, 21
Applications

animation, 37–38
automatic resizing, 156–157
CLR and, 36
components, 15–20
creating in Visual Studio, 14–15
cross platform support, 13
designer/developer collaboration and, 13
downloader for, 34–35

267

Index268

Applications (continued)
element tree, 36
event system, 37
layout system, 38–39
libraries, 12–13
out of browser, 20–21
overview of, 11
plug-in and, 33–34
principles, 11
rendering, 39
runtime architecture, 32–33
security, 14
Web deployment and out of browser

operation, 12
XAML custom classes, 27–30
XAML event handlers, 26–27
XAML file for constructing application

objects, 22–23
XAML namespace, 23–24
XAML parser, 35
XAML type converters, 24–26
XAP packages and, 30–31

A ppManifest.xml file, 15–17
A rrangeOverride method, WrapPanel

class, 173
Artifacts

of animation, 134
of anti-aliasing, 87–88

ASX (Advanced Streaming Redirector)
media delivery and, 179
as media source, 182–183

Asynchronous firing of events, 129
Audio

capabilities in Silverlight, 8–9
formats, 9, 179, 182

Automatic application resize, 156–157
Automatic sizing and positioning

layout elements for, 159
overview of, 154–155

B
background property, Silverlight

plug-in, 33
BeginTime property, managing animations

on timeline, 144
Bilinear filtering

GPU and, 252
graphics and, 88–92

Binding modes, 219–221
Binding object

connecting data sources to elements, 215–217
controlling synchronization and, 220
how it works, 229–230

BindingExpression, 229–230
Bit-rate streaming, 177, 179
Bitmap images

compared with vector graphics, 41–42
scaling, 42–43

blur() method, focus and, 116
BlurEffect

built-in effects, 234–235
performance and, 250
running, 249

Bold format, text, 104
Border element

automatic sizing and positioning of
elements, 154, 155

overview of, 159–160
Broadcast streaming

Silverlight supporting, 177, 179
sources for, 191

Brushes
adding color to text, 105
animating color, 150
converting from Priority type to Brush

type, 225–226
dashes added to strokes, 71–72
gradient brushes, 65–68
image brushes, 68–69
opacity and, 79
overview of, 62
solid color brush, 63–64
strokes and, 69–71

BufferingProgress, MediaElement, 187
Built-in controls

customizing, 198, 207–209
list of, 196–197

Built-in effects, 234
Button element

adding button to XAML file, 15
positioning, 155
as subclass of ContentControl element,

204–206
Buttons

adding button to XAML file, 15
creating custom controls, 207–209
pulsing, 131

Index 269

C
C#

CLR for writing code in, 2
defining event handler for input events, 119
writing application code, 5, 36

CacheMode property, UIElement, 254–259
Caching glyphs and character related

information, 112
Canvas element
BlurEffect nested in, 249
creating custom XAML elements, 27–28
limitations of and when to use, 158–159
measure and arrange passes and, 176
opacity and, 79
overview of, 72
positioning elements with, 158
RenderTransform example, 73

ClearType
readability of text and, 113
support in Silverlight 3, 99

Clipping, graphics display area, 77–78
Closed captioning, 178
CLR (Common Language Runtime)

data sources and, 214
options for writing application code, 36
writing code in C# or Visual Basic, 2
writing Silverlight code in, 7

Code
execution, 12–13
writing application code, 5, 36
writing code in C# or Visual Basic, 2
writing code using CLR, 7

Collections, binding with ItemsControl,
221–224

ColorA nimation element, 140–141
Colors

adding to text, 105
animating brush color, 150
solid color brushes, 64

ColumnDefinition properties, Grid
element, 164–165

Comboboxes, binding data to, 223–224
Common Language Runtime. See CLR

(Common Language Runtime)
Connections, data source, 214
Content delivery, media, 178–179
Content property, ContentControl

element, 199–201
ContentControl element

Button element as subclass of, 204–206
creating custom control by inheriting

from, 207
data binding and, 203
overview of, 199–201

ContentPresenter element, 200
Control base class, 195
Controls

adding to media players, 183–187
built-in, 196–197
ContentControl, 199–201, 203
custom, 198
custom controls for input events, 117
customizing built-in, 207–209
elements, 198–199
focus of, 127
GoToState method of visual state

manager, 210–211
instantiation of, 209–210
ItemsControl, 201–203
keyboard event handlers, 126
overview of, 195–196
principles, 196
review, 211
Silverlight 3 features, 9
in Silverlight toolkit, 197
sliding menu of, 131
styling, 206–207
UI controls in applications, 13
VisualStateManager and, 203–206

CornerRadius property, 160
CPUs

access to system memory, 264
GPU capable of higher fill rates than

CPUs, 252
multi-core rendering, 94–95
SIMD (Single Instruction Multiple Data)

and, 234
Cross platform

applications, 13
graphics, 47
input events, 117
Silverlight and, 5–6
text, 98

CurrentStateChanged event handler, 186
Cursors, flashing, 131
Custom

animation, 135–136
easing functions, 147

Custom (continued)
fonts, 106
layout, 169–173
XAML classes, 27–30

Custom controls
creating, 198
for input events, 117

D
Dashes, added to strokes, 71–72
Data binding

automatic connection and synchronization
and, 214

binding collections, 221–224
Binding object and, 229–230
connecting data to elements, 215–218
ContentControl element and, 203
data sources and, 214
data synchronization and binding modes,

219–221
data validation and, 227–228
DataContext inheritance, 218
declarative XAML model and, 214–215
element to element binding, 228–229
ItemsControl element and, 203, 230–231
overview of, 213
principles, 213–214
review, 230
Silverlight 3 features, 9
value converters and, 225–227

Data files, XAPs (deployment packages)
and, 30

Data services, 13
Data sources

connecting to elements, 215
creating collection-based data source,

222–223
for data binding, 214

Data synchronization
automatic connection and

synchronization, 214
data binding and, 219–221

Data validation, 227–228
Data values, converters for, 225–227
DataContext property
FrameworkElement, 215–216
inheritance and, 218

DateTime object, time format in, 137

Debugging, HLSL pixel shader, 244–245
Declarative XML instantiation language.

See XAML
Deep Zoom Composer

creating images in deep zoom format, 7
tools for creating Silverlight content, 1

Dependency properties, binding parameters
to, 245–246

Deployment
deploying applications, 12
Web deployment of Silverlight

applications, 3
Deployment packages. See XAPs

(deployment packages)
Deployment.OutOfBrowserSettings

property, 21
Designers, collaboration in application

development, 13
Developers, collaboration in application

development, 13
Development, ease of Silverlight

development, 5
Digital Rights Management (DRM)

media delivery and, 179
media source and, 182

Direct X
HLSL (High Level Shader Language) pixel

shader. See HLSL (High Level Shader
Language) pixel shader

prerequisites for GPU acceleration, 253
for use with Windows OSs, 263

Display
clipping display area, 77–78
connecting video markers to application

display, 189–190
Dots per inch (DPI), image formats and, 62
Double, type conversion, 25–26
DoubleA nimation element
BeginTime property, 144
linear interpolation based on From and To

values, 140–141
overview of, 137

DoubleA nimationUsingKeyFrames
element, 141–142

Downloader, application, 34–35
DownloadProgress, MediaElement, 187
DPI (dots per inch), image

formats and, 62
Draw loop process, in graphics, 82–83

Index270

DRM (Digital Rights Management)
media delivery and, 179
media source and, 182

Dropout control, readability of
text and, 113

DropShadowEffect
built-in effects, 234–235
performance and, 250
running, 249

Durations, animation, 137

E
EaseMode properties, 146
Easing functions

creating custom, 147
list of, 146
for nonlinear interpolation animations,

144–146
East Asian fonts, 98, 106
Effect property, UIElement, 234, 238
Effects. See also HLSL (High Level Shader

Language) pixel shader
applying, 234–235
BlurEffect and DropShadowEffect, 249
built-in, 234
creating, 236
elements, 234
overview of, 233
principles, 233
real-time speed, 233–234
review, 249
Silverlight 3 features, 7
surface generation, 248

Element tree, applications, 36
Elements

animation, 136–138
binding data to, 215–218
changing size, 151
connecting data sources to, 215
control, 198–199
effect, 234
element to element data binding, 228–229
graphics, See Graphics
layout, 158
media, 180
text, 99–100

Ellipses
animation changing rectangle into, 143–144

creating custom XAML elements, 27–28
drawing, 50–51
element tree model when drawing, 36
limiting HLSL pixel shader to ellipse shape,

239–240
stroke widening process applied to, 70

EnableCacheVisualizaion flag, on
plug-in, 260

EnableFrameRateCounter flag, on plug-in,
260

EnableGPUA cceleration flag, on plug-in,
253–254

EvenOdd rule, fill rules, 59, 61
Event bubbling, mouse, 124–125
Event handlers
CurrentStateChanged event

handler, 186
delegating control actions to event

handlers, 184
keyboard, 126
MarkerReached event handler, 189–190
mouse, 120
options for input events, 118–119
XAML, 26–27

Events
application, 37
input. See Input events
layout, 173–174
startup and exit, 18
triggers responding to, 137

Exit event, saving state when leaving
applications, 18

Expression Blend
creating Silverlight content, 1
creating Silverlight graphics, 7, 47
customizing controls, 198
editing application layout and graphic

design, 13
editing XAML with, 18
Silverlight development and, 5

Expression Design
creating Silverlight content, 1
as Silverlight graphics tool, 7, 47

Expression Media Encoder
connecting video markers to application

display, 189
creating Silverlight content, 1
generating default media player with, 180

Index 271

F
Figure element, Shapes, 58
File formats

audio files, 9
image files, 62

Fill property, Shape element, 48
Fills

fill rules for shapes, 58–61
solid color brushes, 63

Filters, bilinear, 88–92
Flashing cursors, 131
float types, HLSL pixel shader and, 240
Floating-point parameter, defining for

effects, 245
Focus

controlling keyboard focus, 127
releasing/calling, 116

FontFamily property, 106
Fonts

caching and, 112
cross-platform consistency, 98
downloading, 111–112
enumerating font files, 110–111
fallback list, 111
FontFamily and FontSize properties,

106–107
FontWeight and FontStyle properties,

104–105
readability and, 99
XAPs (deployment packages) and, 30

FontSize property, 106–107
FontStyle property, 104–105
FontWeight property, 104–105
Foreground property, adding color to

text, 105
Formats

audio files, 9
image files, 62

Formats, time, 137
Formatting text, 103–105
Frame-based animation, vs. time-based,

132–134
Framerates, diagnosing performance

problems, 259
Frames per second, setting property change

speed for animation, 149
FrameworkElement
DataContext property, 215–216

SetBinding property, 229
Full screen

adding capability to video player, 188–189
delivering full screen experience, 179–180
performance and, 189

fxc.exe, DirectX compiler, 237

G
Gamma correction, for anti-aliased text, 113
Gaussian blur, BlurEffect, 235
GDI (Graphics Device Interface), 99
Geometry

converting to pixels, 83
type conversion, 25–26

GetPosition method, for information on
mouse position, 123–124

Glyphs element
for advanced typography, 97
caching glyphs, 112
displaying mathematical formula with,

107–110
font download, 111–112
function of, 107
OriginY property, 110
uniform scaling, 98–99

GoToState method, of
VisualStateManager, 207–211

GPU acceleration
better performance with, 252
CacheMode property, 254–259
creating graphic devices and, 263
diagnosing performance problems,

259–263
enabling, 253–254
image quality and, 252
multiple monitors and, 265
overview of, 251
prerequisites for, 253
principles, 251–252
rendering stages when enabled, 265
review, 265
Silverlight 3 features, 7
stability and, 252–253
video memory allocation and, 264
video performance and, 189

GPU (graphics processing unit)
bilinear filtering and, 252
rendering graphics with, 251

Index272

GPU (continued)
video memory and, 254

Gradient brushes
focal, 67
linear, 65–66
radial, 66–67
SpreadMethod property, 68

Graphic devices, creating, 263
Graphics

3D transforms, 75–77
animation, 8
balancing image quality and speed, 47–48
bilinear filtering, 88–92
brushes, 62
Canvas element, 72
clipping, 77–78
cross platform consistency, 47
dashes added to strokes, 71–72
draw loop process, 82–83
ellipses, 50–51
fill rules, 58–61
getting content to screen, 95
gradient brushes, 65–68
image brushes, 68–69
images, 61–63
immediate mode API, 43–44
incremental redraw, 92–94
library, 12
lines, 51–55
multi-core rendering, 94–95
occlusion culling, 94
opacity, 79
OpacityMask property, 79–81
overview of, 41
Path element, 55–58
principles, 41
rasterization, 83–88
rectangles, 48–50
retained mode API, 43–47
review, 96
shapes, 48
Silverlight 3 features, 7
solid color brush, 63–64
strokes, 69–71
tools for, 47
transforms, 73–75
vector graphics and bitmap images, 41–43

Graphics adapters, multiple monitors
and, 265

Graphics Device Interface (GDI), 99
Graphics drivers, 252–253
Graphics processing unit. See GPU (graphics

processing unit)
Grid element, 162–167

arranging Button elements in grid pattern,
162–163

centering TextBlock in cell of, 166
as child of another element, 163–164
having single element span multiple

columns or rows, 163
positioning elements in grid pattern, 162
setting maximum widths and heights, 167
specifying row/column widths/heights,

164–165
text layout and, 103

H
H264 video

media delivery and, 178
as media source, 182
Silverlight 3 media features, 9, 177

HD video, 8, 177
Height property

automatic sizing and positioning of
elements, 174

ImageElement, 62
MediaElement, 181

High Level Shader Language. See HLSL (High
Level Shader Language) pixel shader

Hinting, TrueType program for, 112
Hit-testing, mouse events, 125–126
HLSL (High Level Shader Language) pixel

shader
applying, 237–238
binding parameters to dependency

properties, 245–246
code for, 236
compiling, 237
debugging, 244–245
defining inputs to, 242–243
functions of, 236
image distortion effect, 247
limiting effect to ellipse, 239–240
list of common functions, 240–242
Mask property applied to image brush,

243–244
tex2D function, 240

Index 273

HorizontalA lignment property, Grid
element, 166

HTML controls, Silverlight controls
compared with, 9

HTML page
application components, 16
in structure of Silverlight applications, 20
Web deployment of Silverlight

applications, 12

I
Illustrator (Adobe), exporter for XAML

files, 47
Image distortion effect, HLSL pixel shader,

247
Image element

applying effect directly to, 249
overview of, 61–63
video samples compared to, 191

ImageBrush element
Mask property applied to, 243–244
overview of, 68–69
VideoBrush compared with, 191

Images
balancing image quality and

speed, 47–48
bitmap images, 41–43
GPU acceleration improving image

quality, 252
resolving seaming problems due to

non-integer positioning, 168–169
scaling, 42–43

Immediate mode graphics API
compared with retained mode, 45
overview of, 43
removing rectangle with, 44

Incremental redraw, graphic
objects, 92–94

Inheritance
DataContext property and, 218
TextBlock element and, 105

Initialization, XAML parser and, 35–36
INotifyCollectionChanged, 230
INotifyPropertyChanged, 219–220
Input events

accessibility and, 127
asynchronous firing, 129
controlling keyboard focus, 127
cross-platform consistency, 117

custom controls, 117
event handler options for, 118–119
hit-testing mouse events, 125–126
keyboard event handlers, 126
keyboard event process, 129
mouse capture, 119–124
mouse event bubbling, 124–125
mouse event handlers, 120
mouse event process, 128
multiple languages and, 118
overview of, 115
principles, 115–116
receiving Web browser events, 116–117
review, 130
Silverlight 3 features, 8

Instantiation
of controls, 209–210
XAML parser and, 35

Internet Explorer, 35. See also Web browsers
Interpolation animations

easing functions for nonlinear animation,
144–146

linear interpolation based on From and
To values, 140–141

overview of, 140
IsHitTestVisible property, 126
Italic format, text, 104
Items collection, 202
ItemsControl element

binding data to collections, 221–224
binding data to comboboxes, 223–224
binding data to lists, 222, 230–231
creating custom control by inheriting

from, 207
data binding and, 203
data validation and, 227
overview of, 201–203

ItemsPanel element, 202
ItemsPresenter element, 202
ItemsSource property, ItemsControl

element, 222, 230
ItemsTemplate property, 202
IValueConverter, converting from

Priority type to Brush type, 225–226

J
JavaScript, accessing application libraries

from, 5
JPG image format, 62

Index274

K
Keyboard

asynchronous firing, 129
controlling focus, 127
cross-platform consistency, 117
delegation to appropriate element, 117
event handlers, 126
input events and, 8
multiple language support, 118
process of, 129
receiving Web browser events, 116

KeyDown event handler, 126, 129
Keyframe animations

animation between different objects,
143–144

discrete key frame animation without
interpolation, 142–143

DoubleA nimationUsingKeyFrames
element, 141–144

overview of, 140
KeyUp event handler, 126, 129

L
Language Integrated Query (LINQ), 214
Languages, multiple language support, 118
Layout

algorithm for, 174
application layout, 38–39
automatic sizing and positioning, 154–157
Border element, 159–160
building custom, 169–173
Canvas element, 158–159
changing element size, 151
elements, 158
events, 173–174
Grid element, 162–167
overview of, 153
performance tips for, 176
principles, 153–154
readability of text and, 99
review, 176
rounding, 167–169
scale independence, 157
Silverlight 3 features, 8
StackPanel element, 161
steps in, 175
TextBlock element, 100–103

LayoutUpdated event, 173–174

Libraries, Silverlight, 12–13
Linear gradient brushes, 65
LineBreak element, TextBlock

element, 101
Lines, drawing, 51–55
LINQ (Language Integrated Query), 214
LINQ to SQL, 214
LINQ to XML, 214
Linux, 5–6
List controls, ItemsControl element for,

201–203
ListBox element

data binding and, 231
implementing, 199

Lists, binding data to, 222
Live broadcast streaming. See Broadcast

streaming
Loaded event trigger

overview of, 137
starting an animation with, 138

M
Mac OSs

keyboard shortcuts and, 117
prerequisites for GPU acceleration, 253
Silverlight cross platform support, 5
video memory managers, 264

MarkerReached event handler, 189–190
Markers, connecting video markers to

application display, 189–190
Mask property, applied to image brush,

243–244
MaxFrameRate, draw loop process and, 82
MaxWidth and MaxHeight properties, Grid

element, 167
MeasureOverride method, WrapPanel

class, 170, 173
Media

adding controls to media players, 183–187
connecting video markers to application

display, 189–190
content delivery, 178–179
creating media players, 180
elements, 180
full screen capability, 179–180, 188–189
integrating with other application

content, 178
media players, 191–192
overview of, 177

Index 275

Media (continued)
playing video, 180–183
principles, 178
review, 193
sources, 190–191
video and audio capabilities in

Silverlight, 8–9
video effects and transitions, 187–188
writing media applications, 4–5

Media players
adding controls to, 183–187
adding full screen capability to video

player, 188–189
creating, 180
steps in operation of, 191–192

MediaElement
applying effect directly to, 249
delegating control actions to event

handlers, 184
displaying contents of, 180
playing video with, 180–181
Position property, 187

Memory
allocation, 264
CPU vs. GPU access, 264
diagnosing performance problems, 259
video memory, 254

Menus, sliding menu of controls, 131
Microsoft

LINQ (Language Integrated Query), 214
Windows (OSs). See Windows OSs
Word, 107

MinWidth and MinHeight properties, Grid
element, 167

Mip-maps
effect surface generation and, 248
scaling and, 92

Mode property, Binding object and, 220
Moonlight project, Novell, 5–6
Motion blur, reducing jumpy quality of

animation with, 134
Mouse

asynchronous firing of events, 129
capture, 119–124
cross-platform consistency, 117
delegation to appropriate element, 117
event bubbling, 124–125
event handlers, 120
hit-testing, 125–126

input events and, 8
process of, 128
receiving Web browser events, 116
starting animation in response to mouse

event, 138–139
MouseEnter events, 122–123
MouseLeave events, 122–123
MouseLeftButtonDown event handler,

120–122
MouseLeftButtonUp event handler, 120–122
MouseMove events, 122–123
MouseWheel event handler, 119
MP3 audio format, 9
MPEG audio format

media delivery and, 178–179
media source and, 182

Multi-core rendering, graphics, 94–95
Multiple monitors, GPU acceleration

and, 265

N
Namespace, XAML, 23–24
.NET CLR. See CLR (Common Language

Runtime)
Networking

retrieving data for client-side
applications, 13

Silverlight 3 features, 9
NonZero rule, fill rules, 59–61
NotifyOnValidationError, 227–228
Novell Moonlight project, 5–6

O
Objects
Binding object, 215–217, 220, 229–230
constructing application objects with

XAML, 18–20, 22–23
DateTime object, 137
incremental redraw, 92–94
keyframe animations between, 143–144

Occlusion culling, graphics, 94
Opacity

changing element opacity, 150–151
overview of, 79

Opacity property
exceptions to visibility rule in

hit-testing, 126
passing to pixel shader, 245–246

Index276

OpacityMask property, 79–81
OpenGL2.x, 253, 263
Orientation property, StackPanel

element, 161
OSs (operating system)

cross platform support, 5–6, 13
Mac OSs. See Mac OSs
multiple languages support, 118
Windows (OSs). See Windows OSs

P
Padding property, 160
Panel class, WrapPanel derived from, 170
Parser, XAML, 35
Path element

extending Shape element, 55–57
mini-language commands, 57

Pause operation, media players, 184
Performance

animation and, 136
BlurEffect and DropShadowEffect

and, 250
diagnosing performance problems, 259–263
GPU acceleration and, 189, 252
isolating slowest changing properties in

animation, 149
layout and, 176
Web browsers and, 34
XAPs (deployment packages) benefits, 31

Pixel shader. See HLSL (High Level Shader
Language) pixel shader

Pixels
converting geometry to, 83
GPU capable of higher fill rates than

CPUs, 252
uniform scaling and, 99

Plug-in, Silverlight
EnableCacheVisualizaion flag on, 260
EnableFrameRateCounter flag on, 260
EnableGPUA cceleration flag on, 253–254
hosting with windowless=false, 121
as primary entry point for Silverlight, 33–34
releasing/calling focus, 116
setting focus, 127

PNG image format, 62
Point sizes, fonts, 107
Point, type conversion, 25–26
PointA nimation element
BeginTime property, 144

linear interpolation based on From and
To values, 140–141

Position property, MediaElement, 187
Positioning elements, layout, 155
Prerequisites, for GPU acceleration, 253
Principles

animation, 132
application, 11
control, 196
data binding, 213–214
effect, 233
GPU acceleration, 251–252
graphic, 41
input event, 115–116
layout, 153–154
media, 178
Silverlight, 2–3
text, 98

Progress indicator, playing video and, 181
Progressive download

Silverlight supporting, 177, 179
sources for, 190–191

Projections, 3D transforms, 75
Property callback method, 245
Property change speed

changing quickly for animation
performance, 136

changing values over time for smooth
animation, 134–135

setting for animation, 149–151

Q
Quality, balancing image quality and

speed, 47–48
Query languages, 214

R
Radial gradient brushes, 66–67
RadiusX and RadiusY properties, for

rounding corners of rectangles, 50
Rasterization, 83–88

anti-aliasing and, 85–86
artifacts of anti-aliasing, 87–88
effect surface generation and, 248
occlusion culling and, 94
readability of text and, 99, 112–113
sampling and, 83–85

Readability, rendering text for, 99

Index 277

Real-time speed, effects, 233–234
Rectangles

automatic sizing and positioning, 174
changing to ellipse, 143–144
drawing, 48–50

Red, green, blue (RGB) color, 64
Redrawing objects, incremental

redraw, 92–94
RenderA tScale property, 257–259
Rendering

applications, 39
cross platform consistency, 47
multi-core rendering, 94–95
text for readability, 99

RenderTransform, Canvases, 73
RepeatBehavior property, managing

animations on timeline, 144
Resources, performance tips for, 34
Retained mode graphics API

compared with immediate mode, 45
options for constructing, 46–47
overview of, 43
removing rectangle with, 44

RGB (red, green, blue) color, 64
RIAs (rich Internet applications), 4–5
Rich Internet applications (RIAs), 4–5
RotateTransform, 73
Rotation

shapes, 150
transforms for, 73

Rounding layout sizes, to resolve seaming
problems, 167–169

RowDefinition properties, Grid element,
164–165

Runtime architecture, applications, 32–33
RuntimeVersion property, Silverlight

versions, 17

S
Sampling

converting geometry to pixels, 83–85
converting time-based animation into

frames, 134
Scalable vector graphics (SVG), 4
ScaleTransform, 73
Scaling

bilinear filtering and, 91–92
mip-mapping and, 92
scale independent layout, 157

shapes, 150
text, 98–99
transforms for, 73

Screen
animation, 151
getting graphic content to, 95

scRGB colors, 64
SDK (Software Development Kit)
DateTime object, 137
using Visual Studio with, 5

Security
applications, 14
Silverlight, 3–4

SetBinding property,
FrameworkElement, 229

Setter elements, setting styles with, 207
Shapes

changing position of (animation), 150
ellipses, 50–51
Figure element, 58
fill rules, 58–61
lines, 51–55
path element, 55–58
rectangles, 48–50
rotating or scaling, 150
Shape element, 48
transforms for, 73

Silverlight overview, 1–10
cross platform support, 5–6
ease of development, 5
introduction to, 1–2
media and rich Internet applications, 4–5
principles, 2–3
review, 10
security, 3–4
Silverlight 3 features, 6–9
Web deployment, 3

SIMD (Single Instruction Multiple Data), 234
SizeChanged event, layout events, 173–174
Sizing elements

automatic application resize, 156–157
changing element or text size, 151
layout, 154–155

Skews, transforms for, 73
Software Development Kit (SDK)
DateTime object, 137
using Visual Studio with, 5

Solid color brush, 63–64
source parameter, XAP package, 16

Index278

Source property
images, 62
MediaElement, 182, 190–191
Silverlight plug-in, 33

Sources, for data binding, 214
Speed, balancing image quality with, 47–48
SpreadMethod property, Gradient

brushes, 68
sRGB colors, 64
Stability, GPU acceleration and, 252–253
StackPanel element

arranging elements in horizontal or vertical
stacks, 161

positioning elements, 155
resolving seaming problems due to non-

integer positioning, 168–169
text layout and, 103

Startup event handler, 18
Stop operation, media players, 184
Stop(), Storyboard element, 144
Storage services, storing local state with, 13
Storyboard element
BeginTime property, 144
list of animations to run, 137
Stop() method, 144

Streaming media
Silverlight 3 media features, 177
sources for, 190–191

String, type conversion, 25–26
Strokes

adding dashes, 71–72
changing display of, 150
drawing lines, 51
drawing rectangles, 49
drawing shapes, 48
overview of, 69
solid color brushes, 63
widening process, 70–71

Style element, controls, 206–207
Subpixel positioning, text characters, 99
Surface generation, effects, 248
SVG (scalable vector graphics), 4
Synchronization. See Data synchronization

T
Tab operations, setting focus via, 127
Template property
ContentControl element, 199–201
ItemsControl element, 202

Templates
ContentControl element, 199–201
control templates, 210
ItemsControl element, 202

Tex2D function, HLSL pixel shader, 240
Text

animation of, 107, 150
caching and, 112
changing size, 151
cross-platform consistency, 98
elements, 99–100
exceptions to visibility rule in

hit-testing, 126
font download, 111–112
font enumeration, 110–111
font fallback list, 111
fonts, 106–107
formatting, 103–105
Glyphs element, 107–110
layout, 100–103
layout sizing and, 156
overview of, 97–98
principles, 98
rasterization and, 112–113
rendering for readability, 99
review, 113
scale independent layout, 98–99, 157
Silverlight 3 features, 7–8
subpixel positioning of text

characters, 99
TextA lignment property, text layout, 103
TextBlock element
Border element and, 159–160
centering within grid cell, 166
displaying paragraph of text with, 100
enumerating font files/families, 110–111
font download, 111–112
font fallback list, 111
fonts, 106–107
formatting text, 103–105
layout of text, 100–103
overview of, 97
Style element, 207
uniform scaling, 98–99

TextBox element
font fallback list, 111
mapping several keys to single key, 129
multiple language support, 118
text editing with, 97

Index 279

TextDecorations property, TextBlock
element, 104–105

TextWrapping property, TextBlock
element, 100–101

Time-based animation, vs. frame-based,
132–134

Time formats, 137
Timelines, animation and, 145
Timers

setting up in animation, 148
window.setInterval, 134–135

Toolkit, controls in, 197
Transforms

3D transforms, 75–77
animating brush transform, 150
overview of, 73–75

Transitions, video, 187–188
TranslateTransform, 73
Transparent backgrounds

causing slowdown of animation, 151
windowless=true and, 96

Triangles, stroke widening process
applied to, 71

Triggers collection, Canvas element, 137
Triggers, responding to events, 137
TrueType, 112
Type converters, XAML, 24–26

U
UI (user interface)

animation and, 131
defining UI controls, 183–184
using UI controls, 13

UIElement
CacheMode property, 254–259
Effect property, 234, 238
OpacityMask property, 79

Underlining text, 104
URI, referencing components in

XAPs, 30–31
User interface. See UI (user interface)
UserControl element

building control derived from, 195
control instantiation and, 209–210

V
ValidateOnExceptions flag, 227–228
Value converters, data binding and, 225–227

VC1 decoder, 9, 178
Vector graphics

compared with bitmap images, 41–42
scaling, 42–43

Versions, RuntimeVersion property, 17
VerticalA lignment property, Grid

element, 166
Video

adding full screen capability to video
player, 188–189

decoders, 5–6
delivering full screen experience, 179–180
effects and transitions, 187–188
memory allocation, 264
playing video, 180–183
Silverlight capabilities, 8–9

Video markers, connecting to application
display, 189–190

Video memory
diagnosing performance problems, 259
GPU access to, 254, 264

Video memory managers, 264
VideoBrush

compared with ImageBrush, 191
displaying MediaElement contents, 180
effects and transitions, 187–188

Visual Basic, 2, 5
Visual Studio

creating Silverlight applications
with, 14–15

Silverlight development and, 5
tools for creating Silverlight content, 1
writing application code, 13

VisualStateManager
customizing built-in controls, 203–206
GoToState method of, 207–211
overview of, 195

W
Web browsers

cross platform support, 13
delivering full screen experience, 179–180
downloading through, 35
graphics and media limitations of, 4–5
keyboard events and, 129
mouse events and, 128
performance tips for, 34
receiving Web browser events, 116–117

Index280

Web browsers (continued)
taking applications out of browser, 12, 20–21
text and, 98

Web deployment
hosting applications on Web pages, 12
of Silverlight applications, 3

Web pages
deploying applications from, 14
hosting applications on, 12
improving loading times, 34

Web sites, designer/developer collaboration
and, 13

Width property
automatic sizing and positioning of

elements, 174
Grid element, 165
ImageElement, 62
MediaElement, 181
TextBlock element, 100–101

windowless=false
hosting Silverlight plug-in with, 121
receiving Web browser events and, 116
for smooth animation, 151

windowless=true
receiving Web browser events and, 116
transparent backgrounds and, 96

Windows Media Audio. See WMA (Windows
Media Audio)

Windows Media Server, 191
Windows Media Video. See WMV (Windows

Media Video)
Windows OSs

GDI (Graphics Device Interface), 99
keyboard shortcuts and, 117
prerequisites for GPU acceleration, 253
Silverlight cross platform support, 5
video memory managers, 264

windows, resizing, 156
window.setInterval, changing property

values over time, 134–135
WMA (Windows Media Audio)

media delivery and, 179
media source and, 182
Silverlight 3 audio formats, 9

WMV (Windows Media Video)
Silverlight 3 video formats, 177
with VC1 decoder, 178

Word, Microsoft, 107
WrapPanel class, 169–173

Wrapping text, 100–101
WYSIWYG tools, editing XAML with, 18

X
XAML

adding status field and name to
controls, 185–186

connecting data sources to elements,
216–217

connecting event handlers to input
events, 118–119

constructing application objects, 22–23
constructing application objects with, 18–20
custom classes, 27–29
customizing controls, 198
data binding and, 214–215
defining element content, 29–30
defining UI controls, 183–184
event handlers, 26–27
exporters, 47
for graphics and layout, 13
namespace, 23–24
type converters, 24–26
visual display of Silverlight

application as, 5
XAPs (deployment packages) and, 7, 30

XAML parser, 35
XAPs (deployment packages)

application deployment and, 12
application structure and, 20
downloader, 34–35
packing XAML files, data files, and

manifests as, 30–31
performance benefits of, 31
placing fonts in, 112
in Silverlight application model, 7

XML
data sources, 214
declarative. See XAML

XPS printer driver
exporter for XAML files, 47
support for Glyphs element, 107

Z
ZIP files, 20. See also XAPs (deployment

packages)
Zoom, creating images in deep zoom

format, 7

Index 281

	Foreword
	Preface
	3 Graphics
	Graphics Principles
	Vector Graphics and Bitmap Images
	Retained Mode
	Cross Platform Consistency
	Tools
	Balancing Image Quality and Speed

	Graphics Elements
	Shapes
	Images
	Brushes
	Image Brushes
	Strokes
	Canvas

	Under the Hood
	Draw Loop
	Rasterization
	Bilinear Filtering
	Incremental Redraw
	Occlusion Culling
	Multi-Core Rendering
	How Content Gets to the Screen

	Where Are We?

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

