

Xcode 3 Unleashed
Copyright © 2009 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise,
without written permission from the publisher. No patent liability is assumed with respect to
the use of the information contained herein. Although every precaution has been taken in
the preparation of this book, the publisher and author assume no responsibility for errors or
omissions. Nor is any liability assumed for damages resulting from the use of the information
contained herein.

ISBN-13: 978-0-321-55263-1

ISBN-10: 0-321-55263-6

Library of Congress Cataloging-in-Publication Data:

Anderson, Fritz.
Xcode 3 unleashed / Fritz Anderson. — 1st ed.

p. cm.
Includes bibliographical references and index.
ISBN-13: 978-0-321-55263-1 (pbk. : alk. paper)
ISBN-10: 0-321-55263-6 (pbk. : alk. paper) 1. Operating systems (Computers)

2. Macintosh (Computer) I. Title.
QA76.76.O63A53155 2009
005.4’32—dc22

2008017851

Printed in the United States on America

First Printing: August 2008

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Que Publishing cannot attest to the accuracy of this information.
Use of a term in this book should not be regarded as affecting the validity of any trademark
or service mark.

Apple, the Apple logo, Cocoa, Finder, Macintosh, Mac OS, Mac OS X, Objective-C, and Xcode
are registered trademarks of Apple, Inc.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possible, but
no warranty or fitness is implied. The information provided is on an “as is” basis. The author
and the publisher shall have neither liability nor responsibility to any person or entity with
respect to any loss or damages arising from the information contained in this book or from
the use of the CD or programs accompanying it.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
international@pearsoned.com

This Book Is Safari Enabled
The Safari® Enabled icon on the cover of your favorite technology book means the book is
available through Safari Bookshelf. When you buy this book, you get free access to the
online edition for 45 days.

Safari Bookshelf is an electronic reference library that lets you easily search thousands of
technical books, find code samples, download chapters, and access technical information
whenever and wherever you need it.

To gain 45-day Safari Enabled access to this book:

. Go to http://www.quepublishing.com/safarienabled.

. Complete the brief registration form.

. Enter the coupon code ARHL-WXMH-HFKV-DHHN-287M.

If you have difficulty registering on Safari Bookshelf or accessing the online edition, please
email customer-service@safaribooksonline.com.

Editor-in-Chief
Karen Gettman

Senior Acquisitions
Editor
Chuck Toporek

Senior Development
Editor
Chris Zahn

Managing Editor
Kristy Hart

Project Editor
Jovana San Nicolas-
Shirley

Copy Editor
Keith Cline

Indexer
Cheryl Lenser

Proofreader
Leslie Joseph

Publishing
Coordinator
Romny French

Multimedia Developer
Dan Scherf

Cover Designer
Gary Adair

Compositor
Nonie Ratcliff

http://www.quepublishing.com/safarienabled

Preface

Xcode is the central tool for developing software for Mac OS X. It was my privilege to
help explain that tool in Step into Xcode: Mac OS X Development. Since then, Apple has
released a new operating system, Leopard, and a new Xcode. Xcode 3 is the official devel-
opment tool for Apple’s iPhone. Xcode 3 Unleashed is a new edition for a new world.

I wrote Xcode 3 Unleashed for people who are new to Mac programming and to Xcode, but
I’ve included plenty of material that will be new even to experienced developers. My
approach is to lead you through a simple application project to give you a vocabulary for
the workflow of Mac development, and how Xcode and the tools that accompany it fit
in. After you have a solid grounding, we can move on to Part II, where the details and
more advanced techniques can come out.

Part I is a practical introduction, showing how to use Xcode at every step, from building a
command-line tool, to debugging, to building a human interface, to Core Data design
and language localization. Companion tools such as Interface Builder and Instruments are
essential to developing for the Mac, and I cover them.

Version control has become indispensable even to small, single-programmer projects.
Xcode 3 Unleashed introduces you to source-code management early, and returns to it
frequently.

Part II covers how to use Xcode to manage and navigate your code base, even if it comes
from a large, open source UNIX project. It shows how Xcode’s build system—the mecha-
nism that decides how and when to turn your code into an application—works. I return
to Instruments, the astonishing tool for timelining your programs’ execution and use of
resources, and introduce Apple’s performance tools, led by the deep and powerful Shark
statistical profiler.

Version Covered
I started writing Xcode 3 Unleashed when Xcode 3.0 was in development. 3.0 was the
version in general release when we went to press, although Apple had started a beta
program for version 3.1, under nondisclosure. There are many improvements in 3.1, but
none that significantly change this book’s lessons.

Where I found bugs or feature gaps in Xcode 3.0, I noted them. If you’re using a later
version, you might find those bugs have been cleared. Apple’s Xcode team continues to
work hard on the developer tools.

Typographic Conventions
Xcode 3 Unleashed uses a few conventions to make the material easier to read and
understand.

Preface xix

N O T E

Notes are short comments on subjects that relate to the text, but aren’t directly in the flow.

WA R N I N G

Warnings raise points that might trip you up, commit you to a dead end, or even make you
lose your work.

Sidebars

Sidebars are for extended discussions that supplement the main text.

. Monospaced type is used for programming constructs, filenames, and command-line
output.

. Text that you type is shown in monospace bold.

. Human interface elements, such as menus and button labels, are shown like this.

. When new terms are introduced, they are set off in italics.

. And program listings are shown in the colors you would see in Xcode’s editors.

The Mac keyboard provides four modifier keys, and Xcode uses them all liberally as short-
cuts for menu commands. This book denotes them by their symbols as used in the menus
themselves:

Command „

Shift �

Control (Ctrl) ˆ

Option (Alt)

IN THIS INTRODUCTION

. What Xcode Is

. What’s New in Xcode 3

. Obtaining Xcode

. Installing Xcode

Introduction

From the moment it first published Mac OS X, Apple,
Inc., has made a complete suite of application development
tools available to every user of the Macintosh. Since Mac
OS X version 10.3, those tools have been led by Xcode, the
integrated development environment Apple’s own engi-
neers use to develop system software and applications such
as Safari, iTunes, Mail, and iChat. If you own a Mac, these
same tools are in your hands today.

What’s New in Xcode 3
In October 2007, with the introduction of Mac OS X 10.5
(Leopard), Apple introduced version 3 of the Xcode devel-
oper tools suite. Among the changes were

. Extensive improvements to the Xcode integrated
development environment (IDE), including

. Support for Objective-C 2.0, the first major revi-
sion to the language, with commands for
converting existing code to the new language.

. Improved syntax coloring, now including
distinctive colors for symbols like instance vari-
ables and method names.

. Code Focus, a ribbon beside the editor text that
lets you see how blocks of code are organized,
and allows you to fold long blocks down to the
height of a single line.

. The projectwide Find command now works
through the Spotlight text-searching engine,
yielding better results faster.

. A debugger bar, offering simple debugging controls in any editor window.

. Datatips, allowing you to inspect the values of program variables during
debugging, just by hovering the cursor over them in the code.

. A mini-debugger, injected into the programs you run, permitting debugging
during mouse-down events and other “volatile” situations.

. Automatic access to the debugger whenever a program you run from Xcode
crashes.

. Improved compile-time error reporting, interleaving compiler messages with
the code they relate to.

. Automated refactoring, helping you rename classes, methods, and functions,
shift methods from class to class, and even create new super classes, in an
Objective-C project.

. Much improved support for source code management tools such as
Subversion, CVS, and Perforce.

. Much improved support for using UNIX scripting languages to create and
edit text.

. The Organizer, a window to hold references to frequently used files and
projects.

. Among the command-line tools, the new xed tool enables you to open text
files in Xcode, when a shell script or tool demands an interactive editor.

. A major upgrade to the documentation system, using RSS feeds for live
updates, and permitting developers to add their own documentation to the
system.

. A Research Assistant window that documents API symbols and build variables
in real time, as they are selected.

. A completely revamped Interface Builder, with better tools for crafting nonvisual
parts of the human interface, such as controller objects. Integration between IB and
Xcode is even tighter than before.

. A new tool, Instruments, for profiling the resource usage (memory, I/O, graphics,
threading) of a program, in real time, on a timeline so that you can see how each
element of the performance picture relates to all the others.

Xcode 3 is a ground-up rebuild of the Mac OS X developer tools, and it has been well
worth the wait.

XCode 3 Unleashed2

Obtaining Xcode
If you have an installation DVD for Mac OS X 10.5 or a new Mac on which Leopard has
come installed, you already have Xcode. On the DVD, an installation package can be
found in the Xcode Tools folder inside the Optional Installs folder. On new Macs,
you’ll find a disk image file for Xcode Tools in the Additional Installations folder at
the root of your hard drive; double-click the disk image to mount it, and you’ll find the
installation packages inside.

However, Apple does not always coordinate the latest version of its developer tools with
its Mac OS X distributions. Even if you have an installation package on your Mac, or on
your distribution disk, it pays to check for a newer version at the Apple Developer
Connection (ADC).

Downloading Xcode
You must join ADC to download Xcode. Point your web browser to http://developer.
apple.com/, and click the link that offers a membership (at the time of this writing, it was
the Sign Up link at the top of the page). You will be offered a handful of options, some
expensive. All you need is an Online membership—it’s free. Fill out the forms offered to
you; they will take contact information and ask you to consent to terms and conditions.
There may be marketing questions and offers of mailings.

When you have completed the signup process, go to http://connect.apple.com. Fill in the
username and password you chose. You will then be presented with a few options, among
these being Downloads. This is what you want; click it.

Depending on your membership level, and how active Apple has been lately in releasing
new software, you might not be able to find Xcode on this page. If you don’t see it, click
Developer Tools in the Downloads column at the right of the page. Scroll down to the
first Xcode 3.x download you find (earlier releases may appear lower in the list, and
versions of Xcode 2.5 may appear higher). It will be a disk image a bit over 1GB in size.
This will comprise the full set of Xcode tools; there is no updater you can apply to a copy
you may already have. Click to download.

Installing Xcode
Now that you have the latest Xcode package, it’s time to install it. Installation packages
can be run straight from a DVD, a mounted disk image file, or your hard disk. There’s no
difference.

In the Xcode Tools folder, you will find three installation packages:

. XcodeTools.mpkg, which is the installation package for Xcode and the other tools
needed for Mac OS X development.

. Dashcode.mpkg provides the Dashcode IDE for producing Dashboard widgets.
Dashcode is also included in the standard install from XcodeTools.mpkg; this
package is for those who are interested only in developing widgets.

Introduction 3

http://developer.apple.com/
http://developer.apple.com/
http://connect.apple.com

. WebObjects.mpkg installs Apple’s excellent WebObjects frameworks and tools, for
developing sophisticated database-centered websites in Java. WebObjects is also
available as an optional install from within the Xcode Tools Installer.

You will also find a folder named Packages, containing installation packages for compo-
nents of the Xcode tools, like the CHUD performance-measuring suite, software develop-
ment kits (SDKs) for X Window and earlier versions of Mac OS X, and version 3.3 of the
gcc compiler suite (for PowerPC Macs only). All these are available as options (or within
options) in the Xcode Tools Installer, but are here in case you omit them from the origi-
nal installation and want to add them later.

If you’ve ever done an installation under Mac OS X, the Xcode tools install is familiar (see
Figure I.1). Start by double-clicking the XcodeTools.mpkg installation package. A Welcome
screen appears, at which you will press Continue. Next, the installer displays the license
for Xcode and its related software; click Continue, and if you accede to the license, click
Agree in the ensuing sheet.

XCode 3 Unleashed4

FIGURE I.1 The Welcome panel for the Xcode Tools Installation package should be familiar
to any experienced Mac user.

You are now at the Standard Install panel, but we will vary from the standard line. Click
the Customize button to reveal the Custom Install panel. This panel (see Figure I.2)
contains a table listing the components of the Xcode Tools installation. The single
mandatory component is checked and grayed out; the optional components are active,
and you can check or uncheck them to include or exclude them from the installation:

. Developer Tools Essentials. This is Xcode itself, and the graphical and command-
line programs that complement it, plus SDKs for developing Mac OS X software for
versions 10.4 and later. This is a mandatory component; it doesn’t make sense to
install the developer tools without installing Xcode and the tools needed for it
to run.

Introduction 5

FIGURE I.2 The Custom Install panel for the Xcode Tools Installer. The top entry in the
package list is for the core Xcode tools, and is not optional. In the Location column is a
pop-up menu from which you can select where the developer tools are to go; the default is
the Developer folder of your boot disk.

. Developer Tools System Components. These are the CHUD tools for investigating
application performance, plus facilities for distributing application builds over more
than one computer. You should install this package.

. UNIX Development Support. The “essentials” installation of Xcode installs compo-
nents such as compilers and their support files in a usr subdirectory of the installa-
tion directory. If you will be doing command-line development—for instance, for
building open source projects—you will want a set of development tools installed in
the root /usr directory tree. This package installs copies of the command-line tools
into /usr. You should install this
package; examples in this book
depend on it (see Chapter 24,
“A Legacy Project”).

. Core Reference Library. This
package installs the panoply of
introductions, references, technical
notes, and sample code that docu-
ment development on Mac OS X
and the APIs you need to do it.
Install this package.

. Mac OS X 10.3.9 Support. Installs
the SDK and tools needed to
produce software that targets
Panther (Mac OS X 10.3). This
includes version 3.3 of the gcc

N O T E

CHUD, gcc 3.3, and WebObjects are not flex-
ible about where they are installed. They will
be installed into /Developer no matter what
location you choose for the Xcode tools.

N O T E

The gcc compiler suites installed with the
Xcode tools are Apple-modified builds that
take account of such Mac OS X features as
frameworks and support for Objective-C 2.0.
They are not the same as the gccs available
under the same version numbers from the
Free Software Foundation.

compiler suite, for PPC Macs only.
This package is left out of the stan-
dard install, and whether you need
it depends on whether you intend
to build applications for 10.3 (see
Chapter 17, “Cross-Development”).

. WebObjects. This package installs
the applications and files needed
to develop web applications with
Apple’s WebObjects framework.
You need not install this package.

Unlike earlier versions, Xcode 3 and 2.5
are flexible about where you install
them. This is where you would make
that choice. See the section “Another
Install Location” for details.

Now click the Install button. The standard authentication sheet will appear, into which
you enter the name and password of an administrative user of your Mac.

The next panel contains a progress bar and a narrative of what is being installed. This
process takes a number of minutes, at the end of which you are rewarded by a big green
check mark. Close the installer; you are now ready to use Xcode.

Another Install Location
Earlier versions of Xcode (earlier than 2.5) installed themselves only in the /Developer
directory of the startup file system. Having one possible path to all the developer tools
greatly simplified the task of locating them: If you needed the packagemaker tool, it was
at /Developer/Tools/packagemaker, and that was that.

Things have changed since then. First, the Xcode package has grown larger and larger.
The download package alone is 1.1GB in size, which expands to 3.3GB installed. It is
reasonable to want to put Xcode onto another disk or partition. Second, it is now possible
to install Xcode 2.5 (see the section “Xcode 2.5” that follows) in parallel with Xcode 3,
and the two tool sets necessarily need two homes.

That is why, during your installation of Xcode, /Developer is still the default location, but
you can choose another.

If you want another location, ignore the Change Install Location button on the
Standard Install panel. The Installer application offers this button as a standard part of its
workflow; if you press it, you will find that the boot volume is your only choice. If you
find yourself at the Install-Location panel, click the Go Back button to back out.

The real choice comes in the Custom Install panel. In the Standard Install panel, click the
Customize button to get to a list of components to install. The top line, Developer Tools

XCode 3 Unleashed6

N O T E

Earlier versions of Xcode offered to install
reference material for the current Java devel-
opment kits. These are still available through
the Downloads section of ADC.

N O T E

With Xcode 3, Apple has dropped support for
developing software aimed at Jaguar (Mac
OS X 10.2). If you need to target 10.2, you
must install Xcode 2.5 and use its 10.2.8
SDK. You cannot use Xcode 2.5 to build soft-
ware using 10.5 technologies.

Essentials, has a pop-up menu for
setting the location for installing the
Xcode tools (see Figure I.2). The default
location, /Developer, is shown initially.

Change the location by selecting Other
from the pop-up. A standard open-file
sheet will appear. Find the directory that
you want to contain your Xcode direc-
tory. Use the New Folder button to
create the Xcode directory there. Make
sure that directory is selected, and then click Choose. The selected directory will contain
the Applications, Documentation, and other directories that make up the Xcode tool set.

You can continue the installation from there, as before.

Uninstalling Xcode
All things come to an end, and there is no exception for Xcode. There are two reasons
you might choose to remove Xcode from your hard drive. The first is that you just do not
want it; you want the files gone, and the space reclaimed.

The second is that you want to install a later version of Xcode. When Apple comes out
with new versions of Xcode, it does not distribute updaters. Only the full Xcode tools
package will be available for download. Past experience has shown that a full upgrader is
a bigger and more accident-prone undertaking than the Xcode team can sustain, espe-
cially when the alternative is to have Xcode users simply remove the earlier version and
install the new version afresh.

The developer tools come in two parts. The most prominent is the /Developer directory
itself, which contains all the graphical applications, documentation, and SDKs that
make up the public face of Xcode. The other part is the tools embedded throughout the
UNIX file system that make development possible. For instance, two versions of the gcc
compiler are installed at /usr/bin; all the headers needed for development on the current
system are in the huge /usr/include hierarchy. To properly uninstall the developer tools,
these, too, have to be picked through and removed.

The first part of the uninstallation is easy: Find your Xcode tools directory, and drag it
into the trash. That’s 100,000-plus files gone.

Next, execute the tool /Library/Developer/Shared/uninstall-devtools from the
command line. uninstall-devtools is a Perl script that walks through the saved installa-
tion receipts looking for every developer tools package going back to 2001. It deletes the
files of every package it finds. Running uninstall-devtools will take a few minutes. At
the end, you have a system fit for a fresh install.

This procedure is good enough if you mean to reinstall the developer tools. If you mean
to go further, you also want to delete the directories /Library/Developer and

Introduction 7

N O T E

Yes, you can put Xcode wherever you want,
but accounting for that possibility in every
reference to a component of the developer
tools would make this book more tedious
than it has to be. I’ll just refer to the Xcode
tools directory as /Developer, and trust you
to make the transposition yourself.

~/Library/Developer, and the preference files for the individual developer applications.
The usual procedure spares these, because they contain customization files you may have
created, which you would want to carry over to a new installation.

Xcode 2.5
Many people have commitments to Xcode 2 that they can’t get out of, even if they are
running Leopard. Managers of a project nearing completion, with many developers, may
be reluctant to revalidate their build processes for a new tool chain.

They might have NIBs that rely on palettes for Interface Builder 2, which are not usable
in IB 3. Further, although Xcode and Interface Builder do provide “compatibility” modes,
it is easy to produce files that earlier versions cannot open. Holding off on Xcode 3, at
least for some projects, can be prudent.

That is why Apple released, in parallel with Xcode 3, Xcode 2.5. The Xcode 2.5 tools are
strictly file compatible with those of the preceding version, Xcode 2.4. Unlike version 2.4,
2.5 can run on either Tiger (Mac OS X 10.4) or Leopard (10.5).

Like Xcode 3, Xcode 2.5 permits you to choose where to install its developer tools. As
with the Xcode 3 installation, you are offered a Customize button for editing the compo-
nents to be installed. The top component, representing the core developer tools, will have
a pop-up enabling you to chose where to install Xcode 2.5. The default location is
/Xcode2.5.

If you intend to develop specifically for Mac OS X 10.5, Xcode 2.5 is not for you; it does
not support the Leopard SDK. For Leopard development, you have to use Xcode 3.

If you have Project Builder (.pbxproj) projects around, now is the time to convert them
to Xcode projects, and 2.5 is the tool to do it. Xcode 3 has dropped the capability to
import Project Builder projects.

Having two Xcodes on your system gives you two versions of Xcode-related command-
line tools such as xcodebuild. If you opt (as I strongly recommend) to install tools in
/usr/bin, it is a nice question which version of a tool is run when you execute it from
the command line or a build script. The solution is this: The /usr/bin versions of these
tools are in fact scripts that refer to the binary versions in the Xcode 3 or 2.5 install tree.
You determine which version is used by running the xcode-select tool; man xcode-
select for details.

XCode 3 Unleashed8

IN THIS CHAPTER

. Instruments: Performance and
Resources in Time

. Using the Instruments
Window

. Configuring Instruments

. Apple’s Templates and
Instruments

. Custom Templates and
Instruments

CHAPTER 26

Instruments

Instruments is a framework for software-monitoring tools
called… instruments. (Capital I Instruments is the applica-
tion, small i instruments are components of the Instru-
ments application.) The analogy (borrowed from Apple’s
Garage Band audio editor) is to a multitrack tape deck.
Instruments records activity on one or more tracks (one per
instrument), building the data on a timeline like audio on
a tape.

We’ve seen Instruments before, in Chapter 19, “Finishing
Touches,” where it helped us track down a memory leak in
Linear. It deserves a chapter all its own.

What Instruments Is
The focus on a timeline makes Instruments unique. We saw
how MallocDebug collects allocation and deallocation
events, and gathers them into statistical measures, organiz-
ing all the stack traces it found at those events into an
aggregate call tree, from which you can learn how memory
is used. It presents data as an end-of-run accumulation.

Shark, too, works by statistical aggregates. You run your
application, Shark samples it, and in the end it presents
you with profiling information that is a summary
(although very detailed) of all the samples of the whole
run. You can filter the samples and manipulate the call
trees Shark reports, but the product is still a compilation
over a period of time. There is a chart view, but it is still an
aggregate, showing the shape of the call stack over time.
You can examine stack traces to see what the processor was
doing at the time (it can be tricky to select exactly the right
one), but there is no way to relate the traces to what the
application was doing.

Further, tools such as MallocDebug and Shark do one thing at a time. MallocDebug does
heap memory. Shark does profiling (or malloc tracing, or processor events). If you want a
different measure, run the application again under the supervision of a different tool.
They allow no way to see what one measure means in relation to another.

Instruments is different. It is comprehensive. There are instruments for most ways you’d
want to analyze your code, and Instruments runs them all at the same time. The results are
laid out by time, in parallel. Did clicking the Compute button result in Core Data
fetches? Or had the fetches already been done earlier? Did other disk activity eat up band-
width? In the application? Elsewhere in the system? Is the application consuming too
many file descriptors, and if so, when, and in response to what? You’re handing data off
to another process (think Linrg, from the first iteration of Linear); how does the tool’s
memory usage change in response to the handoff, and how does it relate to the use of file
descriptors in both the tool and the master application?

Instruments can answer these questions.
You can relate file descriptors to disk
activity, and disk activity to Core Data
events, with stack traces for every single
one of these, because Instruments
captures the data on a timeline, all in
parallel, event by event. And, you can
target different instruments on different
applications (or even the system as a
whole) at the same time.

Running Instruments
In Chapter 19, we started Instruments from Xcode by selecting Run > Start with
Performance Tool and selecting an Instruments template. At least as often, you’ll just
launch the Instruments application from the /Developer/Applications directory.

When you start it, Instruments automatically opens a document (called a trace document)
and displays a sheet offering you a choice of templates populated with instruments for
common tasks (see Figure 26.1). You can find a complete list of the templates Apple
provides in the section “The Templates” later in this chapter.

CHAPTER 26 Instruments438

N O T E

Most of the power of Instruments lies in the
analysis tools it provides after a recording is
made, but don’t ignore the advantage it
provides in showing program state dynami-
cally: If you can’t see when memory
consumption or file I/O begins and settles
down (for instance), you won’t know when to
stop the recording for analysis in the first
place.

FIGURE 26.1 When you create a new trace document in Instruments, it shows you an empty
document and a sheet for choosing among templates prepopulated with instruments for
common tasks.

The Trace Document Window
The initial form of a trace document window is simple: a toolbar at the top, and a stack of
instruments in the view that dominates the window. After you’ve recorded data into the
document, the window becomes much richer. Let’s go through Figure 26.2 and identify
the components.

The Toolbar
The toolbar comes in three sections. The
controls at left (1) control recording and
the execution of the target applications.
There is a pause button for suspending
and resuming data collection, a Record
/ Drive & Record / Stop button to start
and stop data collection, and a loop
button for running a recorded human-
interface script repeatedly.

The Trace Document Window 439

2
6

N O T E

When you start recording, you will often be
asked for an administrator’s password. The
kind of deep monitoring many instruments
do is, strictly speaking, a security breach,
and the system makes you show you are
authorized to do it.

FIGURE 26.2 A typical Instruments window, after data has been recorded. The Extended
Detail pane (at right) has also been exposed. I discuss the numbered parts in the text.

The Default Target pop-up designates the process or executable that all instruments in
the document will target, unless you specify different targets for individual instruments.
The choices are as follows:

. All Processes. Data will be collected from all the processes, user and system, on the
machine. For instance, the Core Data instruments can measure the Core Data activ-
ity of all processes. Not every instrument can span processes; if your document
contains no instruments that can sample systemwide, this option is disabled.

. Attach to Process. Data will be collected from a process that is already running;
select it from the submenu. Some instruments require that their targets be launched
from Instruments, and cannot attach to running processes. If you use only nonat-
taching instruments, this option is disabled.

. Launch Executable. When you start recording, Instruments will launch the selected
application or tool, and collect data from it. The submenu contains items for appli-
cations you’ve recorded previously, and has a Choose Executable item to select a
fresh application.

. Instrument Specific. Each instrument will collect data from the target specified in
the Target pop-up of its configuration inspector. The instruments in a trace docu-
ment do not all have to collect data from the same target.

The center section (2) relates to time (see Figure 26.3). The clock view in the center of
the toolbar displays the total time period recorded in the document. If you click the

CHAPTER 26 Instruments440

1 2

4

7

6

9

5

8

3

clock-face icon to the right of the time
display, the clock shows the position of
the “playback head” in the time scale at
the top of the Track pane.

The clock view also controls which run
of the document is being displayed.
Each time you click Record, a new
recording, with a timeline of its own, is
added to the document. The run now
being displayed is shown like “Run 1 of
2,” and you can switch among them by
pressing the arrowhead buttons to either
side.

Most instruments will display subsets of
the data they collect if you select a time
span within the recording. To do so,
move the playback head to the begin-
ning of the span, and click the button
on the left of the Inspection Range
control; then move the head to the end
of the span and click the button on the
right. The selected span will be high-
lighted, and the Detail pane will be
restricted to data collected in the span.
To clear the selection, click the button
in the middle.

The right section (3) provides convenient controls for display. Mini hides Instruments
and displays a heads-up window for controlling recording from other applications. View
pops up a menu that shows and hides the Detail and Extended Detail panes. Library
shows and hides the Library window.

The Track Pane
The Track pane (4) is the focus of the document window, and the only component you
see when a document is first opened. This is the pane you drag new instruments into.
Each instrument occupies its own row, with a configuration block on the left, and the
instrument’s track on the right.

The configuration block (see Figure 26.4) shows the instrument’s name and icon. To the
left is a disclosure triangle so you can see the instrument’s track for each run in the docu-
ment. To the right is an inspector button (i) that reveals a configuration inspector for the
instrument.

The Trace Document Window 441

2
6

FIGURE 26.3 The center section of a trace
document’s toolbar displays a clock, and
controls for selecting a span of time within a
recording. The clock displays the total time in
the document (or, if you click the icon at the
right of the clock, the position of the “playback
head”) and the run being displayed if there is
more than one.

N O T E

You can also browse among runs by select-
ing View > Run Browser (ˆTab). The
contents of the window will be replaced by a
“Cover Flow” partial view of the traces in
each run, along with particulars of when it
was run, on what machine, and so on.

N O T E

Option-dragging across an interval in one of
the traces will also set an inspection range.

FIGURE 26.4 A stack of instrument tracks in a trace document. Each instrument has its
own row, with a timeline extending to the right, calibrated in seconds. Clicking an instrument’s
configuration button opens an inspector containing settings for the instrument. Some of these
control the style of the graph and which of its data an instrument displays, and can be changed
at any time. The pop-up at the top of the inspector selects what process the instrument is to
collect data from, and must be set (or left to the default, if the instrument can accept it) before
recording begins.

The tracks to the right of the configuration blocks display the data collected by the instru-
ments, on a timeline. The configuration inspector controls what data is plotted, and how
it is displayed.

At the top of the timeline is a ruler matching the data to the time at which is was
collected. The scale of the track can be controlled by the slider below the configuration
blocks. In the ruler, you will see a white triangle, the playback head. Drag the playback
head and use the Inspection Range control to select intervals within the recording. As
you drag the head across the track, many instruments will label their tracks with the
value of their data at that time.

The Detail Pane
The Detail pane (5 and 6) appears when you’ve made a recording, or when you use a
control or menu item to display it. View > Detail („D), View (toolbar button) > Detail,
the Detail item in the Action () menu at the lower left of the window, and the detail
button (rectangle with arrowhead) next to it, will all toggle the Detail pane. You do not
lack for options.

When you select an instrument in the Track pane, the data from the instrument collec-
tion is shown in tabular form in the Detail pane. What’s in the table varies among instru-
ments. And, the Detail pane controls (9, and Figure 26.5) provide for up to three table
formats.

Like the table itself, the alternative views vary depending on the instrument. The general
pattern seems to be

CHAPTER 26 Instruments442

. Table mode is the principal display
the instrument’s author has
chosen for its data. For most
instruments, this is the raw data
they collected, such as the details
of individual calls in the
Reads/Writes instrument. In
Sampler, the table contains a stack
trace for each sample; in
ObjectAlloc, the items are
classes/categories of allocated
blocks.

. Outline mode, in the case of instruments that collect stack traces, aggregates the
traces into call trees (like the Tree and Heavy displays in Shark). When this is the
case, the Call Tree controls in the Detail controls view (5) become active.

. Diagram mode is not often used. In Chapter 19, we saw that ObjectAlloc used this
for a table of the individual data it collects.

The next button over, with an icon that suggests a window with a portion highlighted,
displays the Extended Detail pane (7), which is covered in the next section.

When you “drill into” data in a Detail pane, such as when you obtain the history of an
allocated block in ObjectAlloc, the “breadcrumb” control at the right end of the Detail
controls enables you to back out to the superior view.

The left portion of the Detail pane (5) contains controls to adjust or analyze the contents
of a Detail table, and in some cases to configure an instrument before it is run. The reper-
toire of controls varies by instrument and view, but the most commonly used controls are
in the group labeled Call Tree, which is active whenever a tree of call stacks is displayed
in the table.

These commands are similar to the stack data-mining options available in Shark:

. Separate by Thread. Call trees are normally merged with no regard for which
thread the calls occurred in. Separating the trees by thread will help you weed out
calls in threads you aren’t interested in.

. Invert Call Tree. The default (top-down) presentation of call trees starts at the
runtime start function, branching out through the successive calls down to the
leaf functions that are the events the instrument records. Checking this box inverts
the trees so that they are bottom up. The displayed tree begins at the “event” func-
tion, and branches out among its callers, thus aggregating call paths to bottleneck
functions.

. Hide Missing Symbols. Checking this box hides functions that don’t have symbols
associated with them. If you can’t determine what they are, they probably aren’t part
of your code. (If they are part of your code, turn off symbol stripping in your build.)

The Trace Document Window 443

2
6

FIGURE 26.5 The Detail View buttons,
which appear below the table portion of the
Detail View. The first three buttons select differ-
ent table displays, or “modes.” The modes are
Table, Outline, and Diagram. The fourth button,
showing a window with a portion on the right
highlighted, opens or closes the Extended
Detail pane. The Navigation Path breadcrumb
control enables you to back a display off after
you’ve drilled down into a detail.

. Hide System Libraries. This skips over functions in system libraries. Reading the
names of the library calls may help you get an idea of what is going on; if you are
looking for code you can do something about, however, you don’t want to see
them.

. Show Obj-C Only. Checking this narrows the list down to calls made from
Objective-C methods, whether in system libraries or not (another way to cut out
the possible distraction of calls you don’t care to see).

. Flatten Recursion. This lumps every call a function makes to itself into a single
item. Recursive calls can run up the length of a call stack without being very
informative.

You can also add call-tree constraints,
such as minimum and maximum call
counts. The idea is to prune (or focus
on) calls that are not frequently made.
Another constraint that may be avail-
able (for instance in the Sampler instrument) can filter call trees by the amount of time
(minimum, maximum, or both) they took up in the course of the run.

Of course, another way to filter call trees is to restrict your attention to a particular time
span, such as between the open and close calls on a particular file (which the File Activity
instrument would landmark for you). Use the playback head and the Inspection Range
control to select the beginning and end of the period of interest, and the call tree will
reflect only the calls made between them.

The Extended Detail Pane
The Extended Detail pane (7) typically includes a stack trace when you select an item in
the Detail pane that carries stack information. When the selected item is part of a call
tree, the Extended Detail pane shows the “heaviest” stack, the one that accounts for the
most of whatever the instrument keeps track of. Selecting a frame in the call stack high-
lights the corresponding call in the call-tree outline. Double-clicking a frame opens the
corresponding source code in Xcode, if it can be found.

A stack trace in the Extended Detail
pane has an Action () menu at the
top. Most commands in this menu have
to do with how the calls in the trace are
displayed. An example is Color by
Library, which tints each call frame by
the library file (including an applica-
tion’s main executable) that the call
came from.

A couple of items in the Action menu
are of particular interest. Look Up API

CHAPTER 26 Instruments444

N O T E

Stack traces in the Extended Detail pane
reflect your settings of these filters.

N O T E

The Extended Detail pane can include other
information. There may be a General item,
summarizing the information in the item
selected in the Detail table, or a Time item
showing how far into the recording the
selected event occurred. Because the stack
trace is only one item, its Action menu is
attached to the divider bar that marks it.
Scrolling down the stack trace may scroll the
Action menu out of sight.

Documentation acts like Option-double-clicking a symbol in Xcode: Select the frame,
select the command, and be directed to its documentation in Xcode’s Documentation
window. Trace Call Duration creates a new instrument in the current document to
record the stack trace when the function was called, and how long it took to execute.

Controls
Three additional controls are to be
found at the bottom-left corner of the
document window (8) (see Figure 26.6).

The first is an Action () menu that
affords yet another means to start
recording or looping, and to control the
visibility of the Detail and Extended
Detail panes, and the Library window.
There is a submenu for selecting an
instrument to add to the document. The
Spin Monitor item is a toggle; when it’s
checked, Instruments will automatically
add a Spin Monitor instrument to the
document whenever an application
being traced hangs.

The second is the Full Screen toggle.
Instruments’ extensive display eats up a
lot of screen area, and when you’re
concentrating on your analysis, you
want the display to be as big as possible.
Clicking this button fills the screen with
the contents of the window. Click it
again to return to normal windowing.

The third button shows and hides the Detail pane.

The Library
Instruments get into a document either by being instantiated from a template, or by
being dragged in from the Library window.

The Library (Window > Library, „L) window lists all the known instruments. Initially
this is a repertoire of Apple-supplied tracks, but it is possible to add your own. The main
feature of the window (see Figure 26.7) is the list of all known instruments. Selecting one
fills the pane below the list with a description (which for now is the same as the descrip-
tion in the list).

The Library 445

2
6

FIGURE 26.6 The controls at the lower left
corner of a trace document window, with the
Action menu displayed.

WA R N I N G

In version 1.0 of Instruments, on some
graphics cards, full-screen mode simply turns
your screen black. To bail out, press „Q to
start a quit, and press Return repeatedly to
accept all the document-saving sheets, until
your desktop reappears.

The library gathers instruments into
groups; these are initially hidden, but
can be seen if you select Show Group
Headers from the Action () pop-up
at the lower-left corner of the window.
The Action menu also enables you to
create groups of your own. The pop-up
at the top of the window narrows the
list down by group, and the search field
at the bottom allows you to narrow the
list by searching for text in the names
and descriptions.

Running an Instrument
To use an instrument, you follow three
steps: configuration, recording, and,
optionally, saving the results.

Instrument Configuration
Configuration inspectors vary by instru-
ment, but some elements are used
frequently.

There is a Target pop-up that initially points to the document’s default target (set with
the Default Target menu in the toolbar). If no default target has been selected, or if the
Default Target menu has been set to Instrument Specific, the instrument’s Target is
active. You can select from processes already running, applications that Instruments had
sampled before, a new application or tool of your choice, or, with many instruments, the
system as a whole.

The ability to set a target for each instrument is important: It allows you to examine
the behavior of an application and other processes with which it communicates,
simultaneously.

In the Track Display section, there are three controls: A Style pop-up, a Type pop-up,
and a Zoom slider.

The usual Style menu selects among graphing styles for the numeric data the instrument
records. These may include the following:

. Point. Each datum is displayed as a discrete symbol in the track. You can choose the
symbols in the list of available series in the inspector.

. Line. The track is displayed as a colored line connecting each datum in the series.
You can choose the color in the list of the available series.

. Filled Line is the same as Line, but the area under the line is colored.

CHAPTER 26 Instruments446

FIGURE 26.7 The Library window is domi-
nated by the scrolling list of available instru-
ments. The selected instrument is described in
the panel below. Selecting a category from the
pop-up menu narrows the list down by task, and
the search field at the bottom allows you to find
an instrument from its name or description.

. Peak shows the data collected by an instrument that records events (such as the
Core Data instruments) as a vertical line at each event. Every time something
happens, the trace shows a blip.

. Block is a bar graph, showing each datum as a colored rectangle. In instruments
that record events, the block will be as wide as the time to the next event.

The Type menu offers two choices for
instruments that can record more than
one data series. Overlay displays all
series on a single graph. The displayed
data will probably overlap, but in point
and line displays this probably doesn’t
matter, and filled displays are drawn
translucently, so the two series don’t
obscure each other. Stacked displays
each series in separate strips, one above
the other.

Zoom increases the height of the instrument’s track. This is especially handy in stacked
displays, enabling you to view multiple traces without squishing them into illegibility.
The slider clicks to integer multiples of the standard track height, from 1 to 10 units.

You can change the Track Display settings even after the instrument has collected its
data. You can find a shortcut for the Zoom slider in the View menu, as Increase Deck
Size („+) and Decrease Deck Size („–).

One disadvantage of the inspector system is that inspectors are of fixed size, and can be
quite tall. If a track is low on the screen (which it may have to be, if it is low in a multi-
track document), it might run off the bottom, obscuring the Done button that dismisses
the inspector. Fortunately, you can also dismiss an inspector by pressing the i button
again. The only workaround that allows you to get at the options at the bottom of the
inspector is to drag the track to the top of the document, make the setting, and, if you
want, drag it back.

Recording
There is more than one way to start recording in Instruments.

The most obvious is to create a trace document and click the Record button in the
toolbar. Recording starts, you switch to the target application, perform your test, switch
back to Instruments, and click the same button, now labeled Stop.

The first time you record into a document that contains a User Interface instrument, the
recording button will be labeled Record, as usual. Once the UI track contains events, the
recording button is labeled Drive & Record. When you click it, no new events are not
recorded into the UI track; instead, the events already there are replayed so you can repro-
duce your tests.

Running an Instrument 447

2
6

N O T E

Most instruments record events, not quanti-
ties that vary over time. In fact, the data
displayed may not even be a continuous vari-
able, but may be a mere tag, like the ID of a
thread or a file descriptor. The Peak style is
the most suitable style for event recordings.
Such displays are still useful, however,
because they give you a landmark for exam-
ining the matching data in the other tracks.

If you want to record a fresh User Interface track, open the configuration inspector (with
the i button in the instrument’s label) and select Capture from the Action pop-up. The
recording button will revert to Record.

A second way to record is through the Quick Start feature, which allows you to start
recording with a systemwide hotkey combination. To set a hotkey, open Instruments’
Preferences window and select the Quick Start tab. This tab includes a table listing every
system- and user-supplied template. Double-click in the column next to the template you
choose, and press your desired hotkey combination. The combination must include at
least two modifier keys (such as Command, Shift, and so on).

With the hotkey set, move the cursor over a window belonging to the application you
want to target, and then press the key combination. Instruments will launch if it is not
running already, open a new trace document behind your application with the template
you selected, target it on your application, and start recording. To stop, make sure your
cursor is over one of the target’s windows, and press the key combination again (or switch
to Instruments and click Stop).

The requirement to point the cursor at one of the target’s windows allows you to run
simultaneous traces on more than one application.

To remove a hotkey, select the template in the Quick Start table, and press the Delete key.

The third way to record is through the Mini Instruments window. Selecting View > Mini
Instruments, or clicking the Mini button in the toolbar of any document window, hides
all of Instruments’ windows and substitutes a floating heads-up window listing all of the
open trace documents (see Figure 26.8).

The window lists all of the trace docu-
ments that were open when you
switched to Mini mode; scroll through
by clicking the up or down arrowheads
above and below the list. At the left of
each item is a button for starting (round
icon) or stopping (square icon) record-
ing, and a clock to show how long
recording has been going on. Stopping
and restarting a recording adds a new
run to the document.

As with Quick Start keys, Mini
Instruments has the advantages that
it’s convenient to start recording in the
middle of an application’s run (handy if you are recording a User Interface track that you
want to loop) and that you can control recording without switching out of the target
application (which can also impair a UI recording).

You return to the full display of Instruments by clicking the close (X) button in the
upper-left corner of the Mini Instruments window.

CHAPTER 26 Instruments448

FIGURE 26.8 The Mini Instruments heads-
up window. It lists each open trace document
next to a clock and a recording button. Scroll
through the list using the arrowheads at top
and bottom.

Saving and Reopening
As with any other Macintosh document, you can save a trace document. The document
will contain its instruments and all the data they’ve collected. There can be a lot of data,
so expect a trace document to be large—on the order of tens of megabytes.

It’s likely that you will come to need a uniform layout of instruments that isn’t included
in the default templates provided by Apple. You can easily create templates of your own,
which will appear in the template sheet presented when you create a new trace docu-
ment. Configure a document as you want it, and select File > Save as Template….

The ensuing save-file sheet is the standard one, focused on the directory in which
Instruments looks for your templates, ~/Library/Application Support/Instruments/
Templates. The name you give your file will be the label shown in the template-choice
sheet. At the lower left of the sheet is a well into which you can drag an icon (for
instance, if your template is for testing your application, you’d want to drop your applica-
tion’s icon file here), or you can click and hold the mouse button over the well to choose
Apple-provided icons from a pop-up. The panel provides a text area for the description to
be shown in the template-choice sheet.

. The document’s suite of instruments, and their configurations, will be saved in the
template.

. The template will include the default and instrument-specific targets you set.

. If you include a prerecorded User Interface track, the contents will be saved. This
way you can produce uniform test documents simply by creating a new trace docu-
ment and selecting the template.

As you’d expect, you can reopen a trace document by double-clicking it in the Finder, or
through File > Open…. All the data is as it was when the document was saved. Clicking
Record adds a new run to the document.

The Instruments
Here are the instruments built in to
Instruments as of the time of this
writing, grouped as they are in the
Library window (select Show Group
Banners from the Action () pop-up
at bottom left).

Most instruments are DTrace based (see
the section on “Custom Instruments”
later in this chapter). DTrace automatically records thread ID and a stack trace, and implic-
itly the stack depth, at the time of the event. Every numeric-valued property of the event is
eligible for graphing in the instrument’s track, which accounts for the odd offer of “Thread
ID” for plotting in such instruments.

The Instruments 449

2
6

N O T E

Apple is free to add or remove built-in instru-
ments, or to change their capabilities signifi-
cantly. This can’t be a definitive list. For the
latest information, search for the Instruments
User Guide in the Developer Tools Reference
in the Xcode Documentation window.

All instruments can target any single process, or all processes on the system, unless the
description says otherwise.

Core Data

Core Data Saves
At each save operation in Core Data, the Core Data Saves instrument records the thread
ID, stack trace, and how long the save took.

Core Data Fetches
This instrument captures the thread ID and stack trace of every fetch operation under
Core Data, along with the number of objects fetched and how long it took to complete
the fetch.

Core Data Faults
Core Data objects can be expensive both in terms of memory and of the time it takes to
load them into memory. Often, an NSManagedObject or a to-many relationship is given to
you as a fault, a kind of IOU that will be paid off in actual data when you reference data
in the object.

This instrument captures every firing (payoff) of an object or relationship fault. It can
display the thread ID and stack depth of the fault, as well as how long it took to satisfy
object and relationship faults.

Core Data Cache Misses
A faulted Core Data object may already be in memory; it may be held in its
NSPersistentStoreCoordinator’s cache. If you fire a fault on an object that isn’t in the
cache (a “cache miss”), however, you’ve come into an expensive operation, because the
object has to be freshly read from the database. You want to minimize the effect of cache
faults by preloading the objects when it doesn’t impair user experience.

This instrument shows where cache misses happen. It records the thread ID and stack
trace of each miss, and how much time was taken up satisfying the miss, for objects and
relationships.

File System
These instruments record POSIX calls that affect the properties of files and directories.
This does not include reads and writes; for those, see the Reads / Writes instrument under
Input / Output.

File Locks
This is an event instrument that records the thread ID, stack trace, function, option flags,
and path for every call to the flock system function.

CHAPTER 26 Instruments450

File Attributes
For every event of changing the owner, group, or access mode of a file (chown, chgrp,
chmod), this instrument records thread ID, a stack trace, the called function, the file
descriptor number, the group and user IDs, the mode flags, and the path to the file
affected.

File Activity
This is an event instrument that records every call to open, close, fstat, open$UNIX2003,
and close$UNIX2003. It captures thread ID, call stack, the call, the file descriptor, and
path.

Directory I/O
This instrument records every event of system calls affecting directories, such as creation,
moving, mounting, unmounting, renaming, and linking. The data include thread ID,
stack trace, call, path to the file directory affected, and the destination path.

Garbage Collection

GC Total
GC Total collects statistics on the state of garbage collection in a process (or in all
garbage-collected processes) at the time collection ends. In addition to thread ID and
stack traces, it records the number of objects, and bytes, just reclaimed, the number of
bytes still in use, and the total number of reclaimed and in-use bytes.

Garbage Collection
This is slightly different from the GC Total instrument. It measures across the beginning
and end of the scavenge phase of garbage collection. It records whether the reclamation
was generational, and how long scavenging took. It also records the number of objects
and bytes reclaimed.

Graphics

OpenGL Driver
This instrument taps the OpenGL drivers for the graphics displays to collect a huge
number of statistics on OpenGL usage, by the target process (or the entire system), at an
interval of your choosing (initially one second). The graphical trace itself doesn’t signify
anything, and can’t be usefully configured in the inspector. The substance of the record-
ing is to be found in the Detail table, and the Detail-control view has check boxes that
determine which statistics appear there (there are nearly 60).

Input / Output

Reads / Writes
The events recorded by this instrument include reads and writes to file descriptors. Each
event includes the thread ID, the name of the function being called, a stack trace, the
descriptor and path of the file, and the number of bytes read or written.

The Instruments 451

2
6

Master Track

User Interface
This track records your mouse movements, clicks, and keystrokes as you work with an
application. Each event carries a thumbnail of the screen surrounding the mouse cursor.

The UI track’s events serve as landmarks for the internal program events recorded by
other instruments, but the real utility—the reason this is called a master track—is that
once a UI track is recorded, it can be played back; it is said to “drive” the application.
When a UI track containing events is available, the Record button is relabeled Drive &
Record, and clicking it will replay the human-interface events.

You can divert from driving by using the i button in the instrument’s label to open the
instrument’s configuration inspector, and switching the Action pop-up from Drive to
Capture.

For an extended example of using the User Interface track, see the “Human-Interface
Logging” section of Chapter 19.

Memory

Shared Memory
The Shared Memory instrument records an event when shared memory is opened or
unlinked. The event includes calling thread ID and executable, stack trace, function
(shm_open/shm_unlink), and parameters (name of the shared memory object, flags, and
mode_t). Selecting an event in the Detail table puts a stack trace into the Extended
Detail pane.

ObjectAlloc
We saw ObjectAlloc and Leaks in Chapter 19, when we debugged a memory leak in
Linear.

ObjectAlloc collects a comprehensive history of every block of memory allocated during
the run of its target. It can track the total number of objects and bytes currently allocated
in an application because it records every allocation and deallocation, and balances them
for every block’s address.

The main Detail Table view lists every class of block that was allocated, and aggregate
object and byte counts; use the Inspection Range tool to focus on allocations and deallo-
cations within a given period. The classes can be checked to plot them separately in
the trace.

Mousing over a classname reveals an arrow button; if you click it, the Detail table drills in
to a table of every block of that class allocated in the selected time interval. Drilling in on
the address field in one of these reveals a history of every event that affected that
address—mallocs and frees at least, and if Record Reference Counts was checked in the
configuration inspector before launching, reference-counting events as well. Mac OS X
may use the same address more than once as memory is recycled; you’ll usually see
malloc events after every free but the last one.

CHAPTER 26 Instruments452

The breadcrumb control below the Detail pane reflects each stage in the drilling-down
process. Click the label for an earlier stage to return to it.

The track-style options in the configuration inspector include Current Bytes, a filled-line
chart that shows the total current allocations; Stack Depth, a filled-line chart that shows
how deep the call stack is at each allocation event; and Allocation Density, a peak graph
showing the change in allocated bytes at each event (essentially a first derivative of the
Current Bytes display).

In the Outline view, the top level lists the allocation classes. Below them are stack trees
for all the allocations of those classes. The data-mining and Extended Detail tools are
available in this view.

The Diagram view of the Detail table lists every allocation event. As in the Detail view,
clicking the arrow button in an address view displays a history of allocation, deallocation,
and reference-count events for that address.

ObjectAlloc can be run only against a process that Instruments launched, and you should
pay attention to the Launch Configuration switches in the configuration inspector
before recording.

The ObjectAlloc instrument is powerful and subtle. It merits an entire section in the
Instruments User Guide. Search for “Analyzing Data with the ObjectAlloc Instrument” in
the Developer Tools Reference in the Xcode Documentation window.

Leaks
Leaks also tracks the allocation and deallocation of objects in an application (which must
be launched by Instruments itself), but does so to detect the objects’ being allocated and
then lost—in other words, memory leaks. Leaks does not rely just on balancing alloca-
tions and deallocations; it periodically sweeps your program’s heap to detect blocks that
are not referenced by active memory.

The table view of the Detail pane lists every object that was allocated in the selected time
interval, but found to have no references at the end. The line items show the percentage
of total leakage the block represents, its size, address, and class. Selecting a line fills the
Extended Detail pane with a general description and a stack trace of the allocation. Each
address entry has an arrow button that drills down to the allocation, deallocation, and
reference-count events for that address. You have the entire history of the block; you
should be able to determine where an over-retain occurred. Reducing the inspection range
on the trace will not narrow this list; it’s for the entire history of the address.

The stack tree in the outline view goes from the start function in the runtime down the
various paths to the allocating function, usually calloc in the case of Objective-C objects.
Paring system libraries from the tree will quickly narrow the list down to the calls in your
code responsible for creating leaked blocks.

The configuration inspector for the Leaks instrument controls how the trace is displayed,
but the actual behavior is controlled by the control section of the Detail pane. The
defaults are useful, but expose the Detail pane before you run to verify the settings are

The Instruments 453

2
6

what you want. The settings control whether memory sweeps for unreferenced blocks are
to be performed, whether the contents of leaked blocks will be retained for inspection,
and how often to perform sweeps.

System

Activity Monitor
This instrument is too varied to explain fully here, but its features should be easy to
understand if you explore its configuration inspector. It collects 31 summary statistics on
a running process, including thread counts, physical memory usage, virtual memory
activity, network usage, disk operations, and percentages of CPU load. This instrument
more or less replaces BigTop as a graphical presentation of application activity.

Remember that you can have more than one Activity Monitor instrument running,
targeting different applications or the system as a whole.

The Detail table lists the statistics for every process covered by the instrument. Moving
the playback head makes the table reflect the processes and statistics as of the selected
time. The hierarchical view arranges the processes in a parent-and-child tree.

Sampler
Sampler is the poor man’s Shark. It samples the target application at fixed intervals (10ms
by default, but you can set it in the inspector), and records a stack trace each time. It does
not record the position in the target down to the instruction, and the analysis tools are
limited, but it’s often good enough to find bottlenecks or determine where an application
has hung.

Sampler was formerly supplied as a standalone application. The Sampler application
supplied with Xcode 3 simply opens the CPU Sampler template in Instruments.

Sampler must have a specific process or launched application as its target; sampling the
entire system makes no sense.

Spin Monitor
Spin Monitor is the Instruments version of the Spin Control application. To mimic Spin
Control, set the target to All Processes and leave the trace document recording. When-
ever an application (or the target application) shows the spinning-rainbow cursor, indicat-
ing it has stopped accepting human-interface events, the Spin Monitor becomes Sampler,
building a stack tree while the spin continues.

The table view of the Detail panel has a top-level entry for each spinning incident.
Within these are items for each sample in the incident, which expand to show each
thread in the target. The outline view displays an aggregate tree of stack traces for all the
samples in each incident; the Call Tree controls in the Detail panel become available.

Process
For each start (execve) and end (exit) event in a process, this instrument records thread
ID, stack trace, process ID, exit status, and executable path.

CHAPTER 26 Instruments454

Network Activity Monitor
This is actually the Activity Monitor with four of eight network statistics active: Network
Packets/Bytes In/Out Per Second. It omits the absolute numbers of packets and bytes
transmitted.

Memory Monitor
This is the Activity Monitor with Physical Memory Used/Free, Virtual Memory Size, and
Page Ins/Outs checked.

Disk Monitor
This is the Activity Monitor with Disk Read/Write Operations Per Second, and Disk Bytes
Read/Written Per second checked.

CPU Monitor
This is the Activity Monitor with % Total Load, % User Load, and % System Load selected.

Threads/Locks

JavaThread
The JavaThread instrument is unique, in that it does not display its trace as a vertical
graph. Instead, the trace is a stack of bars, extending horizontally through time, that
represent the threads in a Java application. A bar appears when a thread starts. It is
colored green while it runs, yellow while it waits, and red while it is blocked. The bar
disappears when the thread halts. A sample is taken whenever such thread events occur;
the Detail table shows the time of day at which the sample was taken, and the number of
threads existing at that time.

Clicking the arrow button in the clock time of an item drills down to the details of the
event: a table listing all threads by name, their priorities, states, number of monitors, and
whether they are daemon threads. The Extended Detail view for a thread shows a stack
trace, and a list of monitors the thread owns.

User Interface

Cocoa Events
Cocoa Events records an event at every call to -[NSApplication sendEvent:]. It captures
the thread ID, stack trace, the event code, and a string (such as “Left Mouse Down”) that
characterizes the event.

Carbon Events
Carbon Events records an event at every return from WaitNextEvent. It captures the
thread ID, stack trace, the event code, and a string (such as “Key Down”) that character-
izes the event.

The Instruments 455

2
6

Custom Instruments
Some of the instruments included in Instruments consist of code specially written for the
task. Most involve no code at all. They are made from editable templates. You can
examine these instruments yourself—which may be the only way to get authoritative
details on what an instrument does—and you can create instruments of your own.

Let’s see what a scripted instrument looks like. Create a trace document from the File
Activity template, select the Reads / Writes instrument, and then Instrument > Edit
‘Reads/Writes’ Instrument… (or simply double-click the instrument’s label). An editing
sheet (see Figure 26.9) will appear, with fields for the instrument’s name, category, and
description, and a long scrolling list of probes, handlers for events the instrument is meant
to capture.

CHAPTER 26 Instruments456

FIGURE 26.9 The Edit Instrument sheet for the Reads / Writes instrument. The sheet is
dominated by an editable list of events the instrument is to capture. The portion that specifies
how to record entries to the system write function is shown here.

Figure 26.9 shows the event list scrolled to the condition called Write, in the domain
System Call, for the symbol write. It is to trigger when write is entered. Next comes the
text of a script to be executed when the probe is triggered. Instruments uses the DTrace
kernel facility, which has its own scripting language; for instance, this event might put
the time at which the event occurred into an instance variable of the probe, so that a
write-exit probe could calculate the duration of the call and record it. In this case, the
scripting text is blank.

Then comes a series of items specifying what information is to be kept, for the trace graph
or for the Detail view. In the case of Reads / Writes, this is

. The name of the executable

. The name of the function

. The first argument (the file descriptor), which is an integer to be labeled FD

. The third argument (the size of the write), which is an integer to be labeled Byte

. A string, to be labeled Path, calculated from an expression in the Instruments script-
ing language: A path, derived from the file descriptor within the executable.

Integer-valued records are included in the configuration inspector’s list of Statistics to
Graph, and are eligible to display in the instrument’s trace. This accounts for the odd
presence of Thread ID (which is automatically captured in every case) in the list of avail-
able plots. By default, the Stack Depth statistic is selected.

The customization sheet is a front end for the scripting language for the kernel-provided
DTrace service; only kernel-level code is capable of detecting call events in every process.
The section “Creating Custom Instruments with DTrace,” in the Instruments User Guide,
offers enough of an introduction to the language to get you started on your own
instruments.

To make your own instrument, start with Instrument > Build New Instrument… („B).
An instrument-editing sheet will drop from the front trace document, and you can
proceed from there.

If you become a DTrace expert, you might find it more convenient, or more flexible, to
write your scripts directly, without going through the customization sheet. Select File >
DTrace Script Export… to save a script covering every instrument in the current docu-
ment, and File > DTrace Data Import… to load a custom script in. You can export
DTrace scripts only from documents that contain DTrace instruments exclusively.

The stack trace in the Extended Detail
view provides another way to create a
custom instrument. Select one of the
function frames in the listing and then
Trace Call Duration from the stack
trace’s Action () menu. Instruments
will add a custom instrument to the
current document that triggers on entry
and exit, to record how long it took to
execute the function.

Custom Instruments 457

2
6

WA R N I N G

DTrace is a new feature of Mac OS X 10.5,
and it executes as part the operating system
kernel. That means the entire system is
vulnerable to a crash (a “kernel panic”) if
something goes wrong. This should be rare,
and should get rarer, but I’ve had it happen
with Instruments 1.0 on Mac OS X 10.5.2.
Make sure your documents are all saved,
and back your system up frequently.

The Templates
When you create a new Instruments document, a sheet drops down offering a choice
among templates, preconfigured sets of instruments for common tasks (see Figure 26.10).
Click the configuration of your choice, and then click one of the buttons at the bottom of
the sheet:

. Open an Existing File… abandons the new document and presents a standard file-
selection dialog for opening an old one. This is simply a convenience, effectively
canceling the sheet and performing File > Open….

. Cancel closes the untitled document without saving.

. Choose creates the document and populates it with the instruments for the selected
template.

. Record does a lot of work. It creates the document and populates it with the
selected template’s instruments. Then it starts recording. When a trace document
doesn’t have a default target application—as a newly instantiated document would
not—Instruments has to associate an application with each instrument in the docu-
ment. A variant on the standard open-file dialog appears, enabling you to pick the
target application or tool, and to specify arguments and environment variables. You
can specify one target for all the instruments by checking the Apply to All
Instruments box. When all the targets are set, Instruments launches them and
starts recording.

CHAPTER 26 Instruments458

FIGURE 26.10 The choose-template sheet that introduces each new trace document in
Instruments. There are eight standard templates, including a blank template that has no instru-
ments in it at all. Selecting a template fills the lower view with a brief description of the
template.

These are the standard templates Apple supplies. As mentioned in “Saving and
Reopening,” you can create templates of your own by composing a trace document to
your needs, and using File > Save as Template… to save it.

. Blank contains no instruments at all. You add the ones you want by dragging them
in from the Library.

. Activity Monitor contains the Activity Monitor instrument. It’s a comprehensive
instrument, and this template can be thought of as a recordable version of the
Activity Monitor application, or as a nicer version of BigTop.

. CPU Sampler gives you the Sampler and CPU Monitor instruments. The one
provides a statistical by-function profile of the target application, and the other, the
CPU load at the same times. The Sampler application now launches Instruments
and opens this template.

. File Activity sets you up with File Activity, Reads/Writes, File Attributes, and
Directory I/O.

. Leaks is the template we used in Chapter 19. It provides the ObjectAlloc and Leaks
instruments to track the rate of object creation, and to verify that what you allocate,
you also free. If you are interested in what your application is doing with memory,
this is the template to use, rather than Object Allocations, which provides only
ObjectAlloc.

. Object Allocations contains only the ObjectAlloc instrument. It is intended as a
substitute for the ObjectAlloc application from earlier editions of the developer
tools, and in fact running the current version of the ObjectAlloc application simply
runs Instruments and instantiates this template.

. UI Recorder provides the User Interface instrument only. This template can be used
to construct lifetime or looping scripts to verify the correct operation of a program,
or you can add tracks to capture data as events occur.

. Core Data includes Core Data Fetches, Core Data Cache Misses, and Core Data
Saves. It does not include Core Data Faults (you could drag it in), but it hits all the
events that really impact the performance of a Core Data application.

Summary
Instruments is a big topic, and we covered much of it. We started with a tour of the trace
document window, and moved on to populating it from the Library window. We covered
general principles of how to configure an instrument track.

We saw the various ways to start and stop recordings, including human-interface record-
ings that can be played back to generate repeatable tests for your applications.

We took inventory of the instruments and document templates Apple supplies, and how
to create your own.

As your needs and expertise progress, you’ll want to consult the Instruments User Guide,
which you can find in the Xcode Documentation browser.

Summary 459

2
6

Index

Symbols
^D (end-of-file character), 34
#pragma mark lines, 57
%%%{PBX}%%% substitution markers,

227-228
64-bit applications, 274
64-bit architectures, builds for, 363

A
accessors

for attributes, 56
automatically generating, 50
redesigning data model, 250-251

ACTION build variable, 478
Action menu (trace document window), 445
action methods, 85
Action template, 486-487
actions

defined, 76, 486
outlets and, 84-85

Activate button (Debugger window), 31
active targets, 141, 148
Activity Monitor instrument, 454, 459
ADC (Apple Developer Connection), 3, 503
Address Book Action Plug-In for C project,

493
Address Book Action Plug-In for Objective-C

project, 493
Advanced Mac OS X Programming

(Dalrymple and Hillegass), 501
Aggregate target, 499
all-in-one layout for projects, 350-351
allocation calls, checking for memory leaks,

318-319
AllowFullAccess key, 164
AllowInternetPlugins key, 164
AllowJava key, 164

AllowNetworkAccess key, 165
AllowSystem key, 165
analysis results, viewing in Shark, 423-425
antecedents. See dependencies
API documentation, creating, 238-241
Apple Developer Connection (ADC), 3, 503
AppleGlot glossaries, 313
AppleScript Application project, 487
AppleScript Automator Action project, 486
AppleScript Document-Based Application

project, 487
AppleScript Droplet project, 487
AppleScript Xcode Plug-In project, 493
Applet legacy target, 500
Applet target (Java), 498
application bundles, 156-158

Info.plist file, contents of, 158-165
installing frameworks in, 217, 219

Application legacy target, 499-500
Application Properties Info window, 88-91
Application target (Carbon), 496
Application target (Cocoa), 497
Application target (Java), 498
Application template, 487-489
applications. See also Cocoa applications

attaching Debugger window to, 376
changing language preferences, 310
Info.plist keys for, 160-163
roles, 91
running, 31

architectures, testing for multiple, 179-180
archives, unpacking, 404-405
archiving custom views, 185
ARCHS build variable, 481
Arguments tab (Executable Info window),

388
arranged objects, 84
arrows, 69

in file-comparison window, 108
ASCII property lists, 132-133
assembly code, 40
assigning files to framework targets,

205-210
associated breakpoints, 376

associating
data files with Cocoa applications, 88-91
file types with text editors, 468-469
files with directories, troubleshooting,

113-114
NIB files with projects, 183
projects with repository, 104
UTIs with data files, 284

ATSApplicationFontsPath key, 163
attaching Debugger window to

applications, 376
attributes

accessor methods for, 56
in data model files, setting, 247

Attributes Inspector, 82
Audio Unit Effect project, 489
Audio Unit Effect with Carbon View

project, 489
Audio Unit Effect with Cocoa View

project, 489
Audio Unit Instrument project, 489
Audio Units template, 489
auto-complete in Code Sense, 125
auto-properties, enabling in Subversion, 98
automating docset build process, 233-235
Autosizing section (Size inspector), 69

B
background tasks, viewing, 332
backward compatibility. See cross-

development
base version of files, latest version

versus, 108
BBEdit, 128, 133, 505
Beginning Mac OS X Programming (Trent and

McCormack), 502
Beginning Xcode (Programmer to

Programmer) (Bucanek), 501
BigTop, 432
binaries, universal, 274-276

creating in example build transcript, 365
Intel-porting issues in Linear

example, 276
testing, 276-277

AllowNetworkAccess key508

binary format (Core Data), 256
binary property lists, 133
bindings, 78

advantages of, 81
creating, 80-82
in Interface Builder for created

entities, 263
value binding, 82-83

Bindings Inspector, 80-82
Blank template (Instruments

application), 459
blocks

checking for memory leaks, 317-318
visualization of, 335-336

blogs for additional information, 504
blue guidelines in Interface Builder, 66
books for additional information, 501-502
Boolean text searches in

documentation, 471
bottom-up view (Shark analysis results),

423-424
branches directory, 100
branching (in version control), 243-245
breakpoint commands, 381-383
breakpoint conditions, 383-384
breakpoints

associated breakpoints, 376
enabling/disabling, 30, 390-391
grouping, 376
lazy symbol loading and, 384-385
removing orphan, 376
setting, 30-31, 373-374

Breakpoints button (Debugger window), 32
Breakpoints menu (Debugger window), 32
Breakpoints window, 32, 382

setting breakpoints, 373-374
broken links, Interface Builder and, 461-462
browsing, enabling in Documentation

window,
235-237

BSD Dynamic Library project, 490
BSD Static Library project, 495
BSD target template, 496
bug reports, Web site for, 503

How can we make this index more useful? Email us at indexes@samspublishing.com

Build and Go button (Debugger window), 31
build configurations, 92, 368-370

configuration files for, 370
Debug versus Release, 275
Release build configuration, 323-325
stripping and, 325
targets versus, 92

build dependencies, 403. See also
dependencies

build directory, setting preferences for
single, 465

build errors, 23-26
Build Java Resources build phase, 343
build phases

adding to targets, 342
in example build transcript, 360-364
files in, 354
list of, 342-343
Run Script build phase, 357-358
for targets, 41

build process
distributed builds, 397-399
for docsets, automating, 233-235

Build Resource Manager Resources build
phase, 343

Build Results window, 23-24, 176, 349, 359
build rules, creating custom, 356-357
build sets, defined, 398
build settings, viewing list of, 466
build system. See also build configurations;

build variables; cross-development;
example build
transcript

build settings, viewing list of, 466
custom build rules, creating, 356-357
explained, 353-355
Run Script build phase, 357-358
settings hierarchy, 366-368
xcodebuild tool, 365-366

Build tab (Target Info window), 177
build targets, list of, 478-479
build transcript, 24. See also example build

transcript

build transcript 509

build variables, 355-356
build targets, list of, 478-479
bundle locations, list of, 480
compiler settings, list of, 481-482
deployment variables, list of, 482-483
destination locations, list of, 479-480
environment variables, list of, 477-478
Run Script build phase and, 358
search paths, list of, 482
source locations, list of, 479
source trees, 483
viewing, 475-476

building. See also build process; build
system; external build system projects

Core Data data files, 258-259
interfaces for created entities, 260,

262-264
projects

cleaning before, 219
in Organizer window, 409-411
saving first, 23

sample application, 91
targets, 15

cleaning before, 268
built-in accessors, 50
BUILT_PRODUCTS_DIR build variable, 479
Bumgarner, Bill, 504
Bundle legacy target, 499
bundle locations, list of, 480
Bundle template, 489
bundles, 156, 168. See also application

bundles; packages
Copy Bundle Resources build phase in

example build transcript, 361
defined, 62
docsets as, 230
load-path references in, 218
types of, 156

buttons
adding to application windows, 66-67
connecting to NIB files, 84-85
in Debugger window, 31-32

C
C++ Dynamic Library project, 491
C++ Standard Dynamic Library project, 491
C++ Tool project, 490
calculating linear regression, 20-22
call trees, filtering, 444
call-tree view

Leaks instrument, 318-319
ObjectAlloc instrument, 320

callstack data mining in Shark, 425-427
Carbon Application project, 487
Carbon Bundle project, 490
Carbon C++ Application project, 487
Carbon C++ Standard Application

project, 487
Carbon Dynamic Library project, 491
Carbon Events instrument, 455
Carbon Framework project, 491
Carbon Static Library project, 495
Carbon target template, 496-497
carbon-dev mailing list, 503
case sensitivity of filenames, 462
categories

adding to classes, 118-121
naming conventions, 122

CFAppleHelpAnchor key, 160
CFBundleAllowMixedLocalizations key, 162
CFBundleDevelopmentRegion key, 159
CFBundleDisplayName key, 161, 308
CFBundleDocumentTypes key, 160
CFBundleExecutable key, 160
CFBundleGetInfoString key, 159
CFBundleHelpBookFolder key, 161
CFBundleHelpBookName key, 161
CFBundleIconFile key, 159
CFBundleIdentifier key, 159
CFBundleInfoDictionaryVersion key, 159
CFBundleLocalizations key, 163
CFBundleName key, 161
CFBundlePackageType key, 159
CFBundleShortVersionString key, 159
CFBundleSignature key, 159
CFBundleURLTypes key, 160

build variables510

CFBundleVersion key, 159
CFPlugIn Bundle project, 490
CFPlugInDynamicRegisterFunction key, 163
CFPlugInDynamicRegistration key, 163
CFPlugInFactories key, 163
CFPlugInTypes key, 163
CFPlugInUnloadFunction key, 163
CFZombieLevel environment variable, 389
checking out working copies of projects,

103-104
CHUDRemover, 436
Class Actions section (Identity Inspector), 76
Class Browser window, 345-346
class modeler tool, 346-348
classes

adding categories to, 118-121
custom classes, adding to NIB files, 76
document classes, 91
initialize method, 191
principal class for applications, 90
test classes, creating, 168
view classes, adding, 183

cleaning
projects, 219
targets before building, 268

clearing debugging log, 374
CloseboxInsetX key, 164
CloseboxInsetY key, 164
Cocoa Application project, 487
Cocoa applications

associating data files with, 88-91
converting to Objective-C 2.0, 172-173
embedding tools in, 52-54
MVC design pattern, 48, 54-62
property list data types, 118
sample application

building, 91
controller object, 51, 75-92
model object, 48-50
tasks of, 47
view object, 51, 63-73

starting new projects, 52
Cocoa Automator Action project, 486
Cocoa Bundler project, 490

How can we make this index more useful? Email us at indexes@samspublishing.com

Cocoa Design Patterns (Buck), 501
Cocoa Document-Based Application

project, 487
Cocoa Dynamic Library project, 491
Cocoa Events instrument, 455
Cocoa Framework project, 491
Cocoa legacy target, 500
Cocoa Programming for Mac OS X, Third

Edition (Hillegass), 502
Cocoa Simulator, 69
Cocoa Static Library project, 495
Cocoa target template, 497-498
cocoa-dev mailing list, 503
Cocoa-Python Application project, 488
Cocoa-Python Core Data Application

project, 488
Cocoa-Python Core Data Document-Based

Application project, 488
Cocoa-Python Document-Based Application

project, 488
Cocoa-Ruby Application project, 488
Cocoa-Ruby Core Data Application

project, 488
Cocoa-Ruby Core Data Document-Based

Application project, 488
Cocoa-Ruby Document-Based Application

project, 488
CocoaBuilder Web site, 504
CocoaCheerleaders Web site, 504
CocoaDev wiki, 504
CocoaDevCentral Web site, 504
CocoaHeads Web site, 504
code completion, 332-333
Code Focus, 335-336
Code Sense, 240, 332-333

auto-complete in, 125
class modeling and, 347
in external build system projects,

416-417
code. See source code
CodeWarrior targets, 12
colors, configuring from property lists,

189-192

colors, configuring from property lists 511

columns, adding to Groups & Files list, 103
command-line terminal. See Terminal

application
command-line tools

creating as projects, 14
linear regression, 22-23

debugging mode setup, 25-26
illegal operations in, 29-30

Command-Line Utility template, 490
commands

breakpoint commands, 381-383
from human interface, responding to, 51

committing project files in version
control, 110

comparing project files in version
control, 107

compatibility. See cross-development
Compile AppleScripts build phase, 342
Compile Sources build phase, 41, 342,

361-364
compiled code, order of operations in, 41
compiler settings, list of, 481-482
compilers, defined, 39
compiling

data models in example build
transcript, 364

projects
distributed builds, 397-399
precompiled headers, 395-396
predictive compilation, 396

source code, 39-41
XIB files in example build transcript, 360

completion prefixes, 139
Concurrent Versions System (CVS), 94, 104
condensed layout for projects, 351-352
conditions, breakpoint, 383-384
CONFIGURATION build variable, 478
configuration directories

creating, 96
editing, 96-98

configuration files for build settings, 370
configurations. See build configurations
configuring

colors from property lists, 189-192
Groups & Files list, 345

instruments, 446-447
projects in Organizer window, 409-411

conflict markers, 110
conflict resolution in version control, 110-113
connecting

buttons to NIB files, 84-85
outlets and objects, 184-187

Console button (Debugger window), 32
Console window, 32, 349-350

clearing debugging log, 374
opening, 15
writing standard error stream to, 377-379

content type in metadata listings, 283-284
Contents directory (application bundles),

elements in, 156-158
contents

of Info.plist file, viewing, 158-165
of repository, viewing, 103

CONTENTS_FOLDER_PATH build variable, 480
Continue button (Debugger window), 32
controller classes, editing for data modeling,

256-258
controller objects (MVC design pattern) for

sample application, 48, 51, 75-83, 85-92
Controller phase (MVC design pattern)

creating custom views, 181-183
writing property lists, 125-126

controllers
adding to NIB files, 77-79
arranged objects, 84
creating bindings, 80-82
linking outlets, 79-80
source code for sample application,

85-88
converting

Cocoa projects to Objective-C 2.0,
172-173

units of measurement, 200
Copy Bundle Resources build phase, 54,

342, 361
Copy Files build phase, 342
Copy Files Target Description target, 499
Copy Headers build phase, 342
copying

files to docsets, 231-233

columns, adding to Groups & Files list512

structural files in example build
transcript, 359-360

copyright notice
correcting in gatherheaderdoc utility,

224-225
setting default content for, 56

Core Data, 243. See also data modeling
building/running data files, 258-259
compiling data models in example build

transcript, 364
data model files

creating, 245-247
editing, 247
redesigning, 247-256

embedding metadata in, 291, 294-297
entities, creating, 259-266
instruments, list of, 450
object storage formats, 256
relationships, creating, 260
storage types, 91

Core Data Application project, 488
Core Data Cache Misses instrument, 450
Core Data Document-Based Application

project, 489
Core Data Document-Based Application with

Spotlight Importer project, 489
Core Data Faults instrument, 450
Core Data Fetches instrument, 450
Core Data Saves instrument, 450
Core Data template (Instruments

application), 459
Core Foundation

property list data types, 118
zombies and, 389

CoreFoundation Tool project, 490
CoreServices Tool project, 490
correlation coefficient, 20
CPU Monitor instrument, 455
CPU Sampler template (Instruments

application), 459
creator codes, 89
Credits.rtf file, localization, 304-305

How can we make this index more useful? Email us at indexes@samspublishing.com

cross-development
with multiple SDKs, 277-279
NIB compatibility, 271-273
SDKs for, 267-270
universal binaries, 274-277
weak linking, 271
Xcode version compatibility, 279

CSResourcesFileMapped key, 160
custom build rules, creating, 356-357
custom classes, adding to NIB files, 76
custom executables, creating, 417
custom instruments, 456-457
custom metadata keys, declaring, 288-290
custom views

creating
configuring colors from property lists,

189-192
Controller phase (MVC design

pattern), 181-183
delegate objects, usage of, 187-189
displaying window for, 196
drawing the view, 192-195
View phase (MVC design pattern),

183-187
debugging, 198-201
testing, 196-198
unarchiving, 185

CVS (Concurrent Versions System), 94
revision numbers, incrementing, 104

D
dashboard widgets, Info.plist keys for,

164-165
Dashcode.mpkg, 3
data design, redesigning in Core Data,

247-256
accessors, 250-251
DataPoint class, 248-249
initializers, 249-250
MyDocument class, 255-256
Regression class, 251-255

data design, redesigning in Core Data 513

data files, associating
with Cocoa applications, 88-91
UTIs with, 284

data formatters, debugging with, 379-381
data mining callstack data in Shark,

425-427
data model files

compiling in example build
transcript, 364

creating, 245-247
editing, 247
redesigning, 247-256

accessors, 250-251
DataPoint class, 248-249
initializers, 249-250
MyDocument class, 255-256
Regression class, 251-255

data modeling. See also Core Data
building/running data files, 258-259
data model files

compiling in example build
transcript, 364

creating, 245-247
editing, 247
redesigning, 247-256

entities, creating, 259-266
Interface Builder, editing controller

classes, 256-258
relationships, creating, 260

data points, adding to created entities,
264-265

data sources
adding to created entities, 264-265
viewing for created entities, 265-266

data types in property lists, 117-118
data validation, 302-304
DataPoint class

redesigning data model, 248-249
source file, creating, 55-58

datatips, 391-392
Deactivate button (Debugger window), 31
dead code, 325

stripping, 327-328
Debug build configuration, 368

Release build configuration versus, 216,
275, 318

Debug command, 31
debug frameworks, 374
Debugger page (all-in-one layout), 350
debugger strip in editor panes, 336-337
Debugger window, 27-28. See also

debugging
associated breakpoints, 376
attaching to applications, 376
breakpoints

grouping, 376
removing orphan, 376
setting, 30-31, 373-374

clearing log, 374
debug frameworks, 374
DWARF and STABS formats, 376
fixing code in, 35-37
GDB log, 377
global variables, 375
in-editor debuggers versus, 392
KVO (key-value observing), 376
line-ending styles in, 377
stepping through code, 33-35
tail-recursive functions, 377
toolbar buttons, 31-32
vertical layout, 373
watchpoints, setting, 375

debugging. See also Debugger window;
resources

additional resources for, 393
breakpoint commands, 381-383
breakpoint conditions, 383-384
custom views, 198-201
data formatters, 379-381
datatips, 391-392
external build system projects, 418
lazy symbol loading, 384-385
Mini Debugger window, 389-391
Quartz Debug, 433-435
writing standard error stream to Console,

377-379
zombies, 385-389

debugging information, system tables
versus, 326

debugging mode setup for linear regression
project, 25-26

data files, associating514

declaring
custom metadata keys, 288-290
UTIs, 284-286

Dedicated Network builds, 397, 399
default content for copyright notice,

setting, 56
default layout for projects, 349

Build Results window, 349
Console window, 349-350
SCM Results window, 350

default scripts in Organizer window, 413
default window layout, changing, 464
defaults command-line tool, 466
Definition Bundle project, 487
delegate objects in custom views, 187-189
deleting. See removing
dependencies

adding to projects, 53
build dependencies, 403
in makefiles, 353
in Xcode build system, 354

dependent targets, 148-149
dependent tests, 176-179
deployment postprocessing, 325
deployment targets, setting, 270
deployment variables, list of, 482-483
DEPLOYMENT_POSTPROCESSING build

variable, 482
DERIVED_FILE_DIR build variable, 480
designable.nib file, 327
designing libraries, 143-146
destination locations, list of, 479-480
detail list, defined, 14
Detail list (ObjectAlloc instrument), 320
Detail pane (trace document window),

442-444
detail searches, 122
Detail view (Leaks instrument), 317-318
DEVELOPER_APPLICATIONS_DIR environment

variable, 477
DEVELOPER_BIN_DIR environment

variable, 477
DEVELOPER_DIR environment variable, 477

How can we make this index more useful? Email us at indexes@samspublishing.com

DEVELOPER_FRAMEWORKS_DIR
environment variable, 477

DEVELOPER_LIBRARY_DIR environment
variable, 477

DEVELOPER_TOOLS_DIR environment
variable, 477

DEVELOPER_USR_DIR environment
variable, 477

DEVELOPERSDK_DIR environment
variable, 477

diagram view (ObjectAlloc instrument), 320
dictionary data type, 117-118
directories. See also bundles; packages

associating files with, troubleshooting,
113-114

for docsets, setting up, 230-231
framework directory structure, 210-211
for project products, 52
renaming in Subversion, 101

Directory I/O instrument, 451
directory structure for Spotlight plug-in

project, 286
disabling breakpoints, 30, 390-391
discarding file revisions, 109
disclosure triangles

Option-clicking, 424
in project window, 15

Disk Monitor instrument, 455
displaying windows for custom views, 196
distccd daemon, 398
distributed builds, 397-399
docsets, 229. See also documentation

automating build process for, 233-235
as bundles, 230
copying files to, 231-233
directory setup, 230-231

document classes, 91
document file for sample application, 85-88
documentation. See also docsets

adding hierarchy to, 235-237
API documentation, creating, 238-241
Boolean text searches in, 471

documentation 515

creating
with Doxygen, 221
with HeaderDoc, 221-225
with user scripts, 225-229

HeaderDoc, HTML files generated by, 239
updating, 470-471

Documentation window, 502
enabling browsing, 235-237

downloading Xcode 3, 3
Doxygen, 221
drawing

custom views, 192-195
flushing graphics after, 199
to screen, modifying, 433

Dribin, Dave, 504
DTrace, 449, 456-457
DWARF debug information format, 376
dynamic libraries, 43-44. See also

frameworks
defined, 490
location of, determining, 215

Dynamic Library target (BSD), 496
Dynamic Library target (Carbon), 496
Dynamic Library target (Cocoa), 497
Dynamic Library template, 490-491
dynamic loading of libraries, 43-44

E
editing

controller classes for data modeling,
256-258

data model files, 247
menu bars in projects, 301-302
object properties in Interface Builder, 123
scripts in Organizer window, 407-409
search scopes, 338
.subversion configuration directory,

96, 98
target settings, 53
user scripts, caution about, 228
windows, effect of resizing on, 71

Editing page (all-in-one layout), 350-351

editor panes, 331-332
Code Focus, 335-336
Code Sense in, 332-333
debugger strip, 336-337
jumping to symbol definitions, 333-334
multiple editor windows, 24
navigation bar, 334-335
opening, 22
preference modes, 337-338

emacs text editor, 469, 505
embedding

metadata in Core Data files, 291,
294-297

tools in Cocoa applications, 52-54
Empty Project template, 486
emptying outlets, 186
enabling

auto-properties in Subversion, 98
breakpoints, 390-391
browsing in Documentation window,

235-237
tracing, 433

encoding, types of, 312
end-of-file character (^D), 34
entities

creating, 259-266
in data modeling, 247

environment variables
list of, 477-478
viewing, 358

error bubbles, hiding, 23
error handling, NSAssert() macro, 192
error messages, parsing gcc error

messages, 363
errors, build errors, 23-26
example build transcript, 359

Compile Sources build phase, 361-364
compiling data models, 364
compiling XIB files, 360
Copy Bundle Resources build phase, 361
copying structural files, 359-360
creating universal binaries, 365
Link Binary with Libraries build phase,

363-364

documentation516

Run Script build phase, 360
Touch command, 365

executable files
custom executables, creating, 417
name of, 89
stripping. See stripping

Executable Info window, 388
EXECUTABLE_FOLDER_PATH build

variable, 480
EXECUTABLE_NAME build variable, 479
EXECUTABLE_PATH build variable, 480
EXECUTABLE_PREFIX build variable, 479
EXECUTABLE_SUFFIX build variable, 479
Executables group, 310, 343-344
expression substitutions, 381
Extended Detail pane (trace document

window), 444-445
extensions, 90
external build system projects, 413-416

Code Sense in, 416-417
debugging, 418
limitations of, 418-419
running, 417-418

External Build System template, 491-492
External Target target, 499

F
fast iteration in Objective-C 2.0, 173
faults, 450
favorites bar, 339
feature requests, Web site for, 503
File Activity instrument, 451, 459
file associations

setting for text editors, 468-469
troubleshooting, 113-114

File Attributes instrument, 451
file encoding, types of, 312
file formats for NIB files, 273-274
File Locks instrument, 450
file nodes, folder nodes versus, 237
file paths for macro-specification files, 134
file references, paths for, 469-470

How can we make this index more useful? Email us at indexes@samspublishing.com

file systems
instruments, list of, 450-451
resources and, 153

file-comparison window, 107-108
FileMerge, 111-112
filename extensions, 90
filenames

case sensitivity, 462
red color of, 113-114

files. See also data files; project files
assigning to framework targets, 205-210
copying to docsets, 231-233
deleting, 341, 406
list membership of, 354
merging, 111-112
moving, 406
renaming, 341, 406
saving before snapshots, 173
in targets, 354

Files List (Organizer window), actions in,
405-407

Files tab (condensed layout), 351
FileVault, Xcode performance and, 11
filtering

call trees, 444
man pages out of searches, 471

find/replace operations, 105-106
First Responder object, editing properties

of, 123
Fix button (Debugger window), 32
fixing code in Debugger window, 35-37
flushing graphics, 199
folder nodes, file nodes versus, 237
folder references, creating, 466-467
Font key, 165
formal protocols in Objective-C, 58
format codes for x and print commands, 379
formats. See file formats; layout formats
formatters, debugging with, 379-381
forms

application windows, adding to, 68
labels, resizing, 307
resizing, 68
rows, adding, 68

forms 517

Foundation Tool project, 490
frame rate for drawing screen, 434
Framework legacy target, 499
Framework target (Carbon), 496
Framework target (Cocoa), 497
Framework template, 491
frameworks, 203-204

adding from root file system, 270
debug frameworks, 374
defined, 491
directory structure of, 210-211
header files in, 205, 210
installation locations, 214-216

for private frameworks, 217-219
for public frameworks, 216-217

linking to projects, 211-213
system frameworks, 213-214
targets

adding, 204-210
assigning files to, 205-210
Info.plist for, 204-205

umbrella frameworks, 214
for unit testing, 167, 169

Frameworks directory (application
bundles), 158

FRAMEWORKS_FOLDER_PATH build
variable, 480

Full Screen toggle (trace document
window), 445

functions, tail-recursive, 377

G
garbage collection

instruments, list of, 451
in Objective-C 2.0, 172

Garbage Collection instrument, 451
gatherheaderdoc utility, 222, 224-225
GC Total instrument, 451
gcc compiler suites, versions of, 5
gcc error messages, parsing, 363
GCC_ENABLE_OBJC_GC build variable, 481
GCC_PREPROCESSOR_DEFINITIONS build

variable, 481
GCC_VERSION build variable, 481
GDBlog, 377

Generic C++ Plugin project, 490
Generic Kernal Extension legacy target, 500
Generic Kernel Extension project, 493
Generic Kernel Extension target, 498
GetMetadataForFile.c file in Spotlight plug-in

project, 290-293
getter methods. See accessors
Getting Started tab (Welcome to Xcode

window), 12
global searches in Organizer window,

410-411
global variables in Debugger window, 375
global-ignores setting (.subversion

configuration file), 97
Globals Browser, 375
Go button (Debugger window), 31
Go command, 31
goals in makefiles, 353
graphics

flushing, 199
instruments, list of, 451

GraphWindow.xib file, localization, 308
GROUP environment variable, 477
Grouped/Ungrouped button, 337
grouping breakpoints, 376
groups, creating, 149
Groups & Files list, 339

adding columns to, 103
configuring, 345
Executables group, 343-344
groups, creating, 149
list membership of files, 354
organizing, 58
Project group, 339-341
Project Symbols smart group, 345
projects, placement in, 310
smart groups, 344-345
Targets group, 341-343

H
.h file suffix, 55
hardware acceleration, 434
header files

creating documentation from, 221-225
in frameworks, 205, 210

Foundation Tool project518

paths for, 462
precompiled headers, 361, 395-396,

464-465
HEADER_SEARCH_PATHS build variable, 482
HeaderDoc, 221-225

HTML files generated by, 239
user scripts and, 225-229

headerdoc2html utility, 222
Height key, 164
Hello, World project, 12-17
help. See resources
HFS API, 91
HFS type and creator, 91
HFS+ file system, case sensitivity of

filenames, 462
hiding error bubbles, 23
hierarchical view of NIB files, 67-68
hierarchy

adding to documentation, 235-237
of build settings, 366-368

home directory, setting up for Subversion,
96-98

HOME environment variable, 477
hotkeys

removing, 448
setting, 448

HTML files, generated by HeaderDoc, 239
human interface, responding to, 51
human-interface events, replaying, 447
human-interface logging in Instruments

application, 321-323

I
icon files, 91
identifiers, 89
Identity Inspector, 76
illegal operations in linear regression

project, 29-30
Image Unit Plug-In for Objective-C

project, 494
implementers, linking to when writing

property lists, 125-126

How can we make this index more useful? Email us at indexes@samspublishing.com

importing
metadata, 297-299
projects to repository, 100-101

in-editor debuggers, Debugger window
versus, 392

incrementing revision numbers, 104
index templates, 400
indexing

with Code Sense, 332-333
projects, 399-401

Info inspector, 470
Info windows for multiple items, 470
Info.plist file

in application bundles, 156
contents of, 158-165
copying in example build transcript,

359-360
for framework targets, 204-205
setting parameters for, 465
in Spotlight plug-in project, 288

InfoPlist.strings file, localization, 308-309
INFOPLIST_FILE build variable, 479
INFOPLIST_PREPROCESS build variable, 482
informal protocols, 58, 187
initialize class method, 191
initializers, redesigning data model, 249-250
injected tests. See dependent tests
input streams, terminating, 34
input/output instruments, list of, 451
Inspection Range tool in ObjectAlloc

instrument, 319
Inspector palette (Interface Builder), 66
inspectors

dismissing, 447
Info inspector, 470

INSTALL_DIR build variable, 483
INSTALL_GROUP build variable, 483
INSTALL_MODE_FLAG build variable, 483
INSTALL_OWNER build variable, 483
INSTALL_PATH build variable, 483
INSTALL_ROOT build variable, 483

INSTALL_ROOT build variable 519

installation locations for frameworks,
214-216

private frameworks, 217-219
public frameworks, 216-217

Installer Plugin project, 494
installing

projects in Organizer window, 411-412
Xcode 3, 3-7

instantiation of top-level objects, retain count
at, 182

instruments, 437. See also Instruments
application

configuring, 446-447
custom instruments, 456-457
list of, 449-455
recording in, 447-448
saving trace documents, 449

Instruments application, 437. See also
instruments

Library window, 445-446
MallocDebug and Shark compared,

437-438
memory leaks, checking for, 315-323
security, 316, 439
starting, 438-439
templates, 458-459
trace document windows. See trace

documents, windows for
Instruments document, 321
Interface Builder, 63-66. See also NIB files

adding data sources and data points to
created entities, 264-265

broken links and, 461-462
building interfaces for created entities,

260, 262-264
controller classes, editing for data

modeling, 256-258
custom views, creating. See custom

views
editing object properties in, 123
editing windows, effect of resizing on, 71
hierarchical view of NIB files, 67-68
Inspector palette, 66
layout functions of, 66-68
Library palette, 65-68

menu bars in projects, editing, 301-302
outlets, identifying, 182
parsing and, 461
resizing views, 69-72
splitting views, 72
version control and, 73
view classes, adding, 183
viewing data sources for created entities,

265-266
views, moving, 467

Interface Builder 3.x Plugin project, 494
internationalization. See localization
intrinsic libraries, linking, 463
inverse relationships, creating, 260
IOKit Driver legacy target, 500
IOKit Driver project, 493
IOKit Driver target, 498
iteration in Objective-C 2.0, 173

J–K
Java, Info.plist keys for, 163-164
Java Applet project, 492
Java Application project, 492
Java JNI Application project, 492
Java legacy target, 500
Java Signed Applet project, 492
Java target template, 498
Java template, 492-493
Java Tool project, 493
Java Web Start Application project, 493
JavaThread instrument, 455
jumping to symbol definitions, 333-334

Kernel Extension target template, 498
Kernel Extension template, 493
key-value coding (KVC) protocol, 50
key-value observing (KVO), 376

intercepting set accessors, 147
keyboard shortcuts. See hotkeys
keys (Info.plist)

list of, 159-164
localization of, 158

KVC (key-value coding) protocol, 50
KVO (key-value observing), 376

intercepting set accessors, 147

installation locations for frameworks520

L
labels

changing with Interface Builder, 66
on controller objects, changing, 78
in forms, resizing, 307

languages, changing per application, 310.
See also localization

latest version of files, base version
versus, 108

launching. See starting
layout of sample application, 51, 63-73

editing windows, effect of resizing on, 71
with Interface Builder, 66-68
resizing views, 69-72
splitting views, 72

layout formats for projects, 348
all-in-one layout, 350-351
changing, 348
condensed layout, 351-352
default layout, 349-350

lazy loading, 418
lazy symbol loading, 384-385
leaks (memory usage), checking for

with Instruments application, 315-323
with MallocDebug application, 313-315

Leaks instrument, 316-317, 453-454, 459
call-tree view, 318-319
Detail view, 317-318

legacy targets, templates for, 499-500
libraries. See also dynamic libraries; static

libraries
adding from root file system, 270
defined, 42
linking, 463
naming conventions, 142
prebinding, 45

Library legacy target, 499
Library palette (Interface Builder), 65-68
Library window (Instruments application),

445-446
LIBRARY_SEARCH_PATHS build variable, 482
LIBRARY_STYLE build variable, 479
line-ending styles in Debugger window, 377

How can we make this index more useful? Email us at indexes@samspublishing.com

linear regression. See also Cocoa
applications

calculating, 20-22
command-line tool for, 22-23

debugging mode setup, 25-26
illegal operations in, 29-30

defined, 19
Link Binary with Libraries build

phase, 43, 343
in example build transcript, 363-364

linking
frameworks to projects, 211-213
to implementers when writing property

lists, 125-126
libraries, 463
outlets, 79-80
projects with repository, 104
source code, 42-46
weak linking, 271

links
broken links, Interface Builder and,

461-462
in NIB files, 75-77

load paths, references in bundles, 218
Loadable Bundle target (Carbon), 497
Loadable Bundle target (Cocoa), 497
loading symbols, 384-385
LOCAL_ADMIN_APPS_DIR environment

variable, 477
LOCAL_APPS_DIR environment variable, 477
LOCAL_DEVELOPER_DIR environment

variable, 477
LOCAL_LIBRARY_DIR environment

variable, 477
Localizable.strings file, localization, 311-313
localization, 304

Credits.rtf file, 304-305
GraphWindow.xib file, 308
of Info.plist keys, 158
InfoPlist.strings file, 308-309
Localizable.strings file, 311-313
MainMenu.nib file, 305
MyDocument.nib file, 305-307

localization 521

testing, 310-311
version control and, 307-308

locations
of dynamic libraries, determining, 215
for framework installations, 214-219

locking NIB file views, 272
locks instruments, list of, 455
logging

debugging log, clearing, 374
GDB log, 377
human-interface logging in Instruments

application, 321-323
loops, testing conditions in, 34
LSBackgroundOnly key, 161
LSEnvironment key, 161
LSExecutableArchitectures key, 161
LSGetAppDiedEvents key, 161
LSHasLocalizedDisplayName key, 161
LSMinimumSystemVersion key, 161
LSMinimumSystemVersionByArchitecture

key, 162
LSMultipleInstancesProhibited key, 162
LSPrefersCarbon key, 162
LSPrefersClassic key, 162
LSRequiresCarbon key, 162
LSRequiresClassic key, 162
LSRequiresNativeExecution key, 162
LSUIElement key, 162
LSUIPresentationMode key, 162
LSVisibleInClassic key, 162

M
.m file suffix, 55
machine instructions. See assembly code
The Mac Xcode 3 Book (Cohen and Cohen),

501
MacOS directory (application bundles), 157
macosx-dev mailing list, 503
macro-specification files, location of, 134
macros

in SenTestingKit framework, 168
text macros, 133-139

mailing lists for additional information,
502-503

main menu bar in NIB files, 90

MainHTML key, 165
MainMenu.nib file, localization, 305
makefiles, 353-354, 403

projects organized around, 404
external build system projects,

413-419
Organizer window, 405-413
preparation for, 404-405

MallocDebug application, 313-315, 433
Instruments application compared,

437-438
man pages, filtering out of searches, 471
managed-object model files, 245
master track instruments, 452
MAX_OS_X_DEPLOYMENT_TARGET build

variable, 482
MAX_OS_X_VERSION_ACTUAL environment

variable, 478
MAX_OS_X_VERSION_MAJOR environment

variable, 478
MAX_OS_X_VERSION_MINOR environment

variable, 478
mdls command-line tool, 281
measurement units, converting, 200
memory instruments, list of, 452-454
memory leaks, checking for

with Instruments application, 315-323
with MallocDebug application, 313-315

Memory Monitor instrument, 455
menu bars

localization, 305
in projects, editing, 301-302

merging files, 111-112
message invocation in Objective-C, 57-58
metadata. See also Spotlight

custom metadata keys, declaring,
288-290

embedding in Core Data files, 291,
294-297

importing, 297-299
UTIs, creating, 284-286
viewing, 281-284

methods
adding to classes, 118-121
invocation in Objective-C, 58

localization522

removing from projects to libraries,
146-147

responding to human interface, 51
unavailable methods, handling in

cross-development, 268-270
MIME types, 90
Mini Debugger window, 389-391
Mini Instruments window, 448
model objects (MVC design pattern), 48

for sample application, 48-50
implementing, 54-62

Model phase (MVC design pattern), writing
property lists, 118-121

Model-View-Controller (MVC) design
pattern, 48

Controller phase, creating custom views,
181-183

for property lists, 118
adding categories to classes, 118-121
linking to implementers, 125-126
saving documents as property lists,

121-124
sample application

controller object for, 51, 75-92
implementing model classes, 54-62
model object for, 48-50
view object for, 51, 63-73

View phase, creating custom views,
183-187

models, class modeler tool, 346-348
modern bundles, 156
modification date, updating in example build

transcript, 365
moving

files in Organizer window, 406
methods to libraries, 146-147
views in Interface Builder, 467

multiple architectures, testing for, 179-180
multiple editor windows, 24
multiple projects per repository, 98
multiple SDKs, cross-development with,

277-279
multiple-item Info windows, 470

How can we make this index more useful? Email us at indexes@samspublishing.com

MVC design pattern. See Model-View-
Controller (MVC) design pattern

MyDocument class, redesigning data model,
255-256

MyDocument.nib file, localization, 305-307

N
naming conventions

for categories, 122
for libraries, 142

NaN (not a number), 29
NATIVE_ARCH environment variable, 478
NATIVE_ARCH32_BIT environment

variable, 478
NATIVE_ARCH64_BIT environment

variable, 478
navigation bar in editor panes, 334-335
nested scopes, visualization of, 335-336
Network Activity Monitor instrument, 455
New Class Model Assistant, 348
New Core Data Interface Assistant, 262
New Data Model File Assistant, 246
new features of Xcode 3, 1-2
New File Assistant, 142, 464
New Project Assistant, 12-13
New Standard Tool Assistant, 14
New Target Assistant, 141-142
New User Assistant window, 11-12
newsgroups for additional information, 503
NIB files

associating with projects, 183
compatibility, checking, 271-273
connecting buttons to, 84-85
controllers, adding to, 77-79
creating in New File Assistant, 464
custom classes, adding to, 76
defined, 63
formats for, 273-274
hierarchical view of, 67-68
links in, 75-77
localization, 305-307
main menu bar in, 90
opening in Interface Builder, 64

NIB files 523

NIB loader, filling outlets, 197
nm tool, 149-150
nodes, folder nodes versus file nodes, 237
NSAppleScriptEnabled key, 163
NSArrayController class, 78

arranged objects, 84
bindings, 82
deleting extra, 262

NSAssert() macro, 192
NSBundle class, 62
NSCoder Night Web site, 504
NSCoding protocol, 57, 185
NSController class, 77-78, 81
NSDocument class, 51
NSEntityDescription, 245
NSForm class, 68
NSHumanReadableCopyright key, 161
NSJavaNeeded key, 163
NSJavaPath key, 164
NSJavaRoot key, 164
NSMainNibFile key, 163
NSManagedObject, 245
NSManagedObjectContext, 245
NSManagedObjectModel, 245
NSMatrix class, 68, 464
NSMutableArray class, 50
NSNumberFormatter, 257-258
NSObjectController class, 78-82
NSPersistentDocument, 255
NSPrefPaneIconFile key, 164
NSPrefPaneIconLabel key, 164
NSPrincipalClass key, 160
NSServices key, 163
NSTask object, 50
NSZombieEnabled switch, 388-389
numeric values in user interface with Core

Data, 257-258

O
Object Allocations template (Instruments

application), 459
Object File target (BSD), 496
Object File target (Carbon), 497

Object File target (Cocoa), 497
object files, defined, 42
object properties, editing in Interface

Builder, 123
object storage formats in Core Data, 256
OBJECT_FILE_DIR build variable, 480
OBJECT_FILE_DIR_normal build variable, 480
ObjectAlloc instrument, 316, 319-320, 433,

452-453
Objective-C

debugging and, 36
formal protocols, 58
informal protocols, 58
message invocation, 57-58
method invocation, 58

Objective-C 2.0, 58
built-in accessors, 50
converting Cocoa projects to, 172-173

Objective-C Pocket Reference (Duncan), 502
objects, connecting to outlets, 184-187
OBJROOT build variable, 479
online resources. See also resources

mailing lists, 502-503
Usenet newsgroups, 503
Web sites, 503-504

opaque pointers in linear regression example
library, 143

OpeGL Driver instrument, 451
opening

console windows, 15
editor window, 22
Mini Debugger window, 389
NIB files in Interface Builder, 64
Target Info window, 53

OpenStep, 132
operating systems. See cross-development
optimization. See also performance tuning

distributed builds, 397-399
effect on order of operations, 41
indexing, 399-401
precompiled headers, 395-396
predictive compilation, 396
settings, 467-468

Option-clicking disclosure triangles, 424

NIB loader, filling outlets524

organization name, setting default, 56
Organizer window, 405

benefits of, 419
configuring and building in, 409-411
Files List actions, 405-407
installing in, 411-412
running in, 412-413
script editing, 407-409
snapshots, creating, 409
toolbar for, 407-409

organizing Groups & Files list, 58, 149
orphan breakpoints, removing, 376
OS type codes, 91
Other tab (condensed layout), 352
OTHER_CFLAGS build variable, 481
OTHER_CFLAGS_normal build variable, 481
otool command, 150-151
outlets

actions and, 84-85
connecting to objects, 184-187
defined, 77
emptying, 186
filling with NIB loader, 197
identifying in Interface Builder, 182
linking, 79-80

P
p (print) command, 378-379
Package legacy target, 500
Package target (Java), 498
packages. See also bundles

explained, 153-154
RTFD package, 154-155
structured directory trees as, 91
viewing contents of, 154-155

PACKAGE_TYPE build variable, 478
packaging Spotlight plug-in project, 293-294
parsing

gcc error messages, 363
Interface Builder and, 461

paths
for file references, 469-470
for header files, 462

How can we make this index more useful? Email us at indexes@samspublishing.com

Pause button (Debugger window), 32
.pbxuser file, 463
Perforce, 94-95
performance tuning. See also optimization

with BigTop, 432
with CHUDRemover, 436
FileVault effect on, 11
with MallocDebug, 433
with ObjectAlloc, 433
optimization settings, 467-468
with Quartz Debug, 433-435
with Reggie SE, 432
with Sampler, 433
with Saturn, 432
with Shark. See Shark
with Spin Control, 435
with SpindownHD, 432
with Thread Viewer, 435-436
viewing background tasks, 332

PER_ARCH_CFLAGS build variable, 482
phases. See build phases
pixels, points versus, 434
PkgInfo file, copying in example build

transcript, 359-360
playback head (Instruments application), 442
.plist files. See Info.plist files; property lists;

XML property lists
plug-ins, Info.plist keys for, 163
Plugin key, 165
plutil tool, 129
po (print-object) command, 378
pointers

opaque pointers in linear regression
example library, 143

released-pointer aliasing, 386-387
points, pixels versus, 434
prebinding libraries, 45
precompiled headers, 361, 395-396,

464-465
predictive compilation, 396
preference modes for editor panes, 337-338
preference panes, Info.plist keys for, 164
PreferencePane project, 494

PreferencePane project 525

preferences, setting, 466
prefix files, defined, 395
preparing makefile projects, 404-405
Preserve Bundle Contents check box (version

control), 73
principal class for applications, 90
print (p) command, 378-379
print-object (po) command, 378
printing variable values, 377-379
private framework headers, 210
private frameworks, installation locations

for, 217-219
Process instrument, 454
processor types, specifying in otool

command, 151. See also cross-
development

product directories for projects, 52
PRODUCT_NAME build variable, 478
products, version control and, 230
Products group, 310
profiling options in Shark, 431
project files for Spotlight plug-in project, 287

GetMetadataForFile.c, 290-293
Info.plist, 288
schema.strings, 290
schema.xml, 288-290

Project Find window, 105-106, 338-339
Project group, 339-341
project headers, 210
Project Info window, Target Info window

versus, 215
Project Symbols smart group, 345
project templates, 485-486

Action, 486-487
Application, 487-489
Audio Units, 489
Bundle, 489
Command-Line Utility, 490
Dynamic Library, 490-491
Empty Project, 486
External Build System, 491-492
Framework, 491
Java, 492-493

Kernel Extension, 493
Standard Apple Plug-Ins, 493-495
Static Library, 495

project window, 14-15
PROJECT_DIR build variable, 479
PROJECT_FILE_PATH build variable, 479
PROJECT_NAME build variable, 478
ProjectBuilder IDE, 414
projects

building, cleaning before, 219
cleaning, 219
command-line utilities as, 14
committing files in version control, 110
comparing files in version control, 107
compiling, 395-399
configuring/building in Organizer window,

409-411
conflict resolution in version control,

110-113
defined, 12
dependent targets, 148-149
discarding file revisions, 109
files included in, 354
Hello, World project, 12-17
indexing, 399-401
installing in Organizer window, 411-412
layout formats, 348-352
libraries. See libraries
linear regression command-line tool,

22-26, 29-30
linking frameworks to, 211-213
menu bars, editing, 301-302
merging files, 111-112
multiple projects per repository, 98
NIB files, associating, 183
organized around makefiles, 404-419
placement in Groups & Files list, 310
product directories, 52
removing methods to libraries, 146-147
repository, adding to, 99-104
revising in version control, 105-113
rolling back revisions, 114-115
root directory for, 173

preferences, setting526

running in Organizer window, 412-413
saving before building, 23
selecting SDKs for, 267
Spotlight plug-in project. See Spotlight

plug-in project
starting new, 52
tagging revision files, 115-116
targets, adding, 53, 141-142
working copies, checking out, 103-104
Xcode version compatibility, 279

properties. See also property lists
for Cocoa applications, 88-91
in Objective-C 2.0, 172

property accessors. See accessors
Property List Editor, 128-132
property lists, 117. See also Info.plist file;

XML property lists
ASCII property lists, 132-133
binary property lists, 133
configuring colors from, 189, 191-192
data types in, 117-118
for user scripts, 229
viewing contents of, 127-132
writing, 118-126

protocols, informal, 187
public framework headers, 210
public frameworks, installation locations for,

216-217
public interface for linear regression example

library, 143

Q–R
Quartz Composer Application project, 489
Quartz Composer Core Data Application

project, 489
Quartz Composer Plug-In project, 494
Quartz Composer Plug-In with Internal

Settings and User Interface project, 494
Quartz Debug, 433-435
Quartz Extreme, 434
Quick Look Plug-In project, 494
Quick Start keys. See hotkeys
quitting Xcode 3, 15

How can we make this index more useful? Email us at indexes@samspublishing.com

Reads/Writes instrument, 451
rebuilding

Code Sense indexes, 332
indexes, 400-401

recording in instruments, 447-448
red filenames, explanation for, 113-114
redesigning data model files, 247-256

accessors, 250-251
DataPoint class, 248-249
initializers, 249-250
Mydocument class, 255-256
Regression class, 251-255

refactoring, 171-174
references

file references, paths for, 469-470
folder references, creating, 466-467

Reggie SE, 432
registering repositories, 98-99
regression lines, defined, 19
Regression model class

redesigning data model, 251-255
source file, creating, 58-62

relationships, creating, 260
Release build configuration, 323-325, 368

Debug build configuration versus, 216,
275, 318

release notes, 502
released-pointer aliasing, 386-387
releasing top-level objects, 182
removing

files, 341, 406
hotkeys, 448
methods from projects to libraries,

146-147
NSArrayController, 262
orphan breakpoints, 376

renaming
directories in Subversion, 101
files, 341, 406

Rentzsch, Johnathan, 504
replaying

human-interface events, 447
human-interface traces, 322

replaying 527

Repositories window, 100
repository

adding projects to, 99-103
associating projects with, 104
checking out working copies of files,

103-104
committing changed files, 110
comparing files, 107
conflict resolution, 110-113
discarding file revisions, 109
registering, 98-99
revising files, 105-113
rolling back revisions, 114-115
setting up, 95-96
subdirectories in, 98
tagging revision files, 115-116
updates, 109
viewing contents, 103

Research Assistant window, 179,
240-241, 355

resizing
entity interfaces, 263
form labels, 307
forms, 68
views, 69-72

resolution, points versus pixels, 434
Resource File target (Carbon), 497
resource files, 153
resource fork, 153
Resource Manager, 153
resources

books, 501-502
Documentation window, 502
explained, 153-154
mailing lists, 502-503
text editors, 505
Usenet newsgroups, 503
user groups, 504
Web sites, 503-504

Resources directory (application
bundles), 156

responder chains, 123
Restart button (Debugger window), 32
retain count of top-level objects, 182

revising project files
discarding file revisions, 109
rolling back revisions, 114-115
tagging revision files, 115-116
in version control, 105-113

revision numbers, incrementing, 104
roles for applications, 91
rolling back file revisions, 114-115
root directory for projects, 173
root file system, adding libraries/frameworks

from, 270
rows, adding to forms, 68
RTFD package, 154-155
Ruby Extension project, 491
Ruby target template, 498
rules, creating custom build rules, 356-357
Run command, 31
Run Script build phase, 233-235, 342,

357-358, 360
run scripts, creating in Organizer window,

411-412
running. See also starting

applications, 31
Core Data data files, 258-259
external build system projects, 417-418
Hello, World project in Terminal

application, 16
linear regression example library, 152
projects in Organizer window, 412-413
unit tests, 175-176

S
sample application. See Cocoa applications;

linear regression
Sampler instrument, 433, 454
Saturn, 432
saving

documents as property lists, 121-124
files before snapshots, 173
projects before building, 23
trace documents, 449

schema.strings file in Spotlight plug-in
project, 290

Repositories window528

schema.xml file in Spotlight plug-in project,
288-290

SCM (software configuration management).
See version control

SCM Results window, 350
scopes, editing search scopes, 338
screen, modifying drawing to, 433
Screen Saver project, 494
Script menu, generating property

accessors, 50
scripts

automating docset build process,
233-235

default scripts in Organizer window, 413
editing in Organizer window, 407-409
Run Script build phase, 233-235, 342,

357-358, 360
run scripts, creating in Organizer window,

411-412
user scripts, 225-226

SDK targets, setting, 270
SDKROOT build variable, 479
SDKs for cross-development, 267-270,

277-279
search paths, list of, 482
search scopes, editing, 338
searches

Boolean text searches in
documentation, 471

detail searches, 122
filtering man pages out of, 471
global searches in Organizer window,

410-411
with Project Find window, 338-339

security, Instruments application, 316, 439
selecting

project SDKs, 267
target SDKs, 268

SenTestingKit framework, 167, 169
set accessors, Key-Value Observing protocol

and, 147. See also accessor methods
setting names for build variables, 475

How can we make this index more useful? Email us at indexes@samspublishing.com

setting titles for build variables, 476
settings hierarchy for build system, 366-368
Shared Libraries window, 385
Shared Memory instrument, 452
Shared Workgroup builds, 397-399
sharing precompiled header files, 464-465
Shark, 320, 421-422

callstack data mining, 425-427
Instruments application compared,

437-438
optimizing Linear Regression example,

428-431
starting, 422
viewing analysis, 423-425

Shark User Guide, 502
Shell Script Automator Action project, 487
Shell Script Target target, 499
Shell Script targets, creating, 233-235
Shell Tool target (BSD), 496
Shell Tool target (Carbon), 497
Shell Tool target (Cocoa), 497
Shipley, Wil, 504
shortcut keys. See hotkeys
single build directory, setting preferences

for, 465
singularity, avoiding, 302-304
Size inspector, 69
sizing. See resizing
smart groups, 344-345
snapshots, 173-174

creating in Organizer window, 409
saving files before, 173
version control versus, 174

software configuration management (SCM).
See version control

source code
compiling, 39-41
defined, 39
linking, 42-46
for sample application controller, 85-88
viewing for HeaderDoc-generated HTML

files, 239

source code 529

source files
for DataPoint model class, creating,

55-58
for Regression model class, creating,

58-62
source locations, list of, 479
source trees, 483
source-code management (SCM). See version

control
Special Targets target template, 499
speed. See optimization
Spin Control, 435
Spin Monitor instrument, 454
SpindownHD, 432
splitting views, 72
Spotlight importers, 284, 286
Spotlight Plug-In project, 494. See also

metadata
directory structure, 286
packaging, 293-294
project files in, 287-293
template for, 286
testing, 297-299
troubleshooting, 294
verifying, 294
version control, 286-287

SQL format (Core Data), 256
SRCROOT build variable, 479
STABS debug information format, 376
Standard Apple Plug-Ins template, 493-495
standard error stream, writing to Console,

377-379
Standard Tool project, 490
starting. See also running

Instruments application, 438-439
new projects, 52
Shark, 422
Xcode 3, 11

static class models, 346
static libraries, 43

adding as targets, 141-142
defined, 495
designing, 143-146
limitations of, 203

moving methods to, 146-147
running, 152
stripping dead code, 327-328
verifying contents of, 149-151

Static Library target (BSD), 496
Static Library target (Carbon), 497
Static Library target (Cocoa), 497
Static Library template, 495
statistical profilers, 421
Step Into button (Debugger window), 32
Step into Xcode: Mac OS X Development

(Anderson), 501
Step Out button (Debugger window), 32
Step Over button (Debugger window), 32
stepping through code, 33-35
Stevenson, Scott, 504
Stop button (Debugger window), 31
storage types (Core Data), 91
stripping, 325

dead code, 327-328
symbol tables, 326-327

structured directory trees, as packages, 91
struts, 69
Style menu (instrument configuration), 446
subdirectories in repository, 98
SubEthaEdit editor, 505
subgroups, 340
substitution markers, 227-228
Subversion, 94

branching in, 243-245
changed recorded by, 149
directories, renaming, 101
home directory, setting up, 96-98
repository. See repository
revision numbers, incrementing, 104

.subversion configuration directory
creating, 96
editing, 96-98

symbol definitions, jumping to, 333-334
symbol tables, 149-150, 325-327
symbolic breakpoints, setting, 373
symbols

defined, 41
documentation for, 238-241

source files530

lazy loading, 384-385, 418
Project Symbols smart group, 345
refactoring, 174

SYMROOT build variable, 479
Sync Schema project, 494
system frameworks, 213-214
system instruments, list of, 454-455
system tables, debugging information

versus, 326

T
tables, adding to application windows, 67
tagging

HeaderDoc support for, 222
revision files, 115-116

tags directory, 99
tail-recursive functions, 377
tarballs, 403-405
Target Info window

Build tab, 177
opening, 53
Project Info window versus, 215

target templates, 495-496
BSD, 496
Carbon, 496-497
Cocoa, 497-498
Java, 498
Kernel Extension, 498
for legacy targets, 499-500
Ruby, 498
Special Targets, 499

target-dependency-action group, 354
TARGET_BUILD_DIR build variable, 480
TARGET_NAME build variable, 478
targets

active targets, 141, 148
build configurations versus, 92
build phases for, 41, 342
build targets, list of, 478-479
building, 15
cleaning before building, 268
defined, 12
dependent targets, 148-149

How can we make this index more useful? Email us at indexes@samspublishing.com

deployment targets, setting, 270
editing settings for, 53
files in, 354
framework targets, 204-210
product types in, 354
projects, adding to, 53, 141-142
SDK targets, setting, 270
selecting SDKs for, 268
Shell Script targets, creating, 233-235
unit test targets, creating, 167-171

Targets group, 310, 341-343
Targets tab (condensed layout), 352
technical support. See resources
templates. See also project templates; target

templates
index templates, defined, 400
in Instruments application, 458-459
for Spotlight plug-in project, 286

Terminal application, running Hello, World
project in, 16

terminating input streams, 34
TesseractOCR, 404

in external build system project, 413-418
Organizer window, 405

configuring and building in, 409-411
Files List actions, 405-407
installing in, 411-412
running in, 412-413
script editing, 407-409
snapshots, creating, 409
toolbar for, 407-409

unpacking from archive, 404-405
test classes, creating, 168
testing. See also unit testing

custom views, 196-198
localization, 310-311
loop conditions, 34
Spotlight plug-in project, 297-299
universal binaries, 276-277

text, viewing property list contents as,
127-129

text editors
file associations, setting, 468-469
list of, 505

text editors 531

text files, treating .xcodeproj package as,
97-98

text macros, 133-139
TextMate editor, 505
TextWrangler editor, 505
Thread Viewer, 435-436
threads instruments, list of, 455
three-way file merges, 111-112
Time Analysis window (Shark), 423-425
Time Profile (All Thread States) mode

(Shark), 431
Time Profile (WTF) mode (Shark), 430
to-many relationships, creating, 260
Tokens.xml file, 238-241
toll-free bridging, defined, 389
Tool legacy target, 500
Tool target (Java), 498
toolbar buttons. See buttons
toolbars

Organizer window, 407-409
trace document windows, 439-441

tools, embedding in Cocoa applications,
52-54

top-down view (Shark analysis results), 425
top-level objects, retain count at

instantiation, 182
Touch command in example build

transcript, 365
trace documents, 438

saving, 449
window for, 439

Action menu, 445
Detail pane, 442-444
Extended Detail pane, 444-445
Full Screen toggle, 445
toolbar, 439-441
Track pane, 441-442

traces, marking with human-interface events,
321-323

tracing, enabling, 433
Track pane (trace document window),

441-442
tracking class models, 346
translation. See localization

troubleshooting. See also resources
broken links, 461-462
DTrace crashes, 457
file associations, 113-114
file encoding, 312
full-screen mode (Instruments

application), 445
indexing, 399-401
library links, 463
parsing problems, 461
Spotlight plug-in project, 294
XML property lists, 129

trunk directory, 99
tuning. See optimization; performance tuning
type codes, 89
Type menu (instrument configuration), 447

U
UI Recorder template (Instruments

application), 459
umbrella frameworks, 214
unarchiving custom views, 185
unavailable methods in cross-development,

handling, 268-270
undoing. See rolling back
uniform type identifiers. See UTIs
uninstalling Xcode 3, 7-8
Unit Test Bundle target (Carbon), 497
Unit Test Bundle target (Cocoa), 498
Unit Test Target target (Ruby), 498
unit testing, 167

dependent tests, 176-179
multiple architectures, 179-180
refactoring, 171-174
running tests, 175-176
targets, creating, 167-171

units of measurement, converting, 200
universal binaries, 274-276

creating in example build transcript, 365
Intel-porting issues in Linear

example, 276
testing, 276-277

text files, treating .xcodeproj package as532

UNLOCALIZED_RESOURCES_FOLDER_PATH
build variable, 480

unpacking tarballs, 404-405
updating

documentation, 470-471
modification date in example build

transcript, 365
in Subversion, 109

Usenet newsgroups for additional
information, 503

USER environment variable, 477
user groups for additional information, 504
user interface instruments, list of, 455
user interface traces. See human-interface

traces
User Interface track, 452. See also

human-interface logging
user scripts

%%%{PBX}%%% substitution markers,
227-228

creating documentation with, 225-229
editing, caution about, 228

UTExportedTypeDeclarations key, 160
UTImportedTypeDeclarations key, 160
UTIs (uniform type identifiers), 90, 283-286

V
VALID_ARCHS build variable, 481
validation of data, 302-304
value binding, 82-83
variables. See also build variables

environment variables, viewing, 358
global variables in Debugger window, 375
printing values of, 377-379
viewing with data formatters, 379-381

verifying
library contents, 149-151
Spotlight plug-in project, 294

version compatibility in Xcode projects, 279
version control, 27, 93-94

branching, 243-245
CVS (Concurrent Versions System), 94

How can we make this index more useful? Email us at indexes@samspublishing.com

for docset directories, 230-231
home directory, setting up for Subversion,

96-98
Interface Builder and, 73
localization and, 307-308
Perforce, 94-95
products and, 230
for property list files, 120
repository. See repository
revision numbers, incrementing, 104
snapshots versus, 174
for Spotlight plug-in project, 286-287
Subversion, 94, 149
Xcode support for, 94-95
of XIB files, 274

Version Control with Subversion (Collins-
Sussman, Fitzpatrick, Pilato), 501

versioned bundles, 156
vertical layout in Debugger window, 373
vi editor, 505
view classes, adding, 183
view objects (MVC design pattern), 48, 51,

63-73
View phase (MVC design pattern)

creating custom views, 183-187
writing property lists, 121-124

viewing
background tasks, 332
build settings, list of, 466
build variables, 475-476
data sources for created entities,

265-266
environment variables, 358
Info.plist file contents, 158-165
metadata, 281-284
package contents, 154-155
property list contents, 127-132
repository contents, 103
Shark analysis results, 423-425
source code for HeaderDoc-generated

HTML files, 239
variables with data formaters, 379-381

viewing 533

views. See also custom views
layout of, 66-68
moving in Interface Builder, 467
resizing, 69-72
splitting, 72

visualization of nested scopes, 335-336

W
WARNING_CFLAGS build variable, 482
watchpoints, setting, 375
weak linking, 271
Web sites for additional information,

503-504
WebKit Plug-In project, 495
WebOjbects.mpkg, 4
Welcome to Xcode window, 12-13
widgets, Info.plist keys for, 164-165
Width key, 164
Windowed Time Facility (WTF), 430
windows. See also editor panes; Groups &

Files list; trace documents, windows for
adding interface elements to, 66-68
Build Results window, 349, 359
changing default layout, 464
Class Browser window, 345-346
Console window, 349-350
displaying for custom views, 196
editing, effect of resizing on, 71
favorites bar, 339
Info windows for multiple items, 470
Library window (Instruments application),

445-446
Mini Instruments window, 448
Project Find window, 338-339
Research Assistant window, 355
SCM Results window, 350

working copies, checking out, 103-104
WRAPPER_NAME build variable, 479

writing property lists, 118
adding categories to classes, 118-121
linking to implementers, 125-126
saving documents as property lists,

121-124
WTF (Windowed Time Facility), 430

X–Z
x command, 378-379
Xcode, version compatibility, 279
Xcode 2.5, 8
Xcode 3

downloading, 3
installing, 3-7
launching, 11
new features, 1-2
obtaining, 3
quitting, 15
uninstalling, 7-8

Xcode News tab (Welcome to Xcode
window), 12

Xcode User Guide, 502
xcode-users mailing list, 503
xcodebuild tool, 365-366
.xcodeproj package, treating as text, 97-98
XcodeTools.mpkg, 3
xed utility, 224
XIB files, 273-274

compiling in example build transcript,
360

creating in New File Assistant, 464
XML format (Core Data), 256
XML property lists, 128

Code Focus and, 336
creating text macros for, 133-139
troubleshooting, 129

ZERO_LINK build variable, 482
ZeroLink, 45-46
zombies, debugging with, 385-389
Zoom slider (instrument configuration), 447

views534

	Introduction
	What’s New in Xcode 3
	Obtaining Xcode
	Installing Xcode
	Uninstalling Xcode
	Xcode 2.5

	26 Instruments
	What Instruments Is
	Running Instruments
	The Trace Document Window
	The Library
	Running an Instrument
	The Instruments
	Custom Instruments
	The Templates
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J–K
	L
	M
	N
	O
	P
	Q–R
	S
	T
	U
	V
	W
	X–Z

