
 Appendix L

L.std140 Uniform Buffer Layout

This appendix describes the layout of the members of a uniform buffer
object when the layout is specified with the layout modifier std140. It has
the following major sections:

• “Using the std140 Layout Qualifier”

• “std140 Layout Rules”
1

2

Using the std140 Layout Qualifier

Generally, when you group a number of uniform variables in a uniform
buffer object, you need to query the offset (and format and type, if you
don’t know those values from the shader source). For large collections of
uniforms, this process can result in needed to make many queries. The
std140 layout qualifier requests that the GLSL shader compiler organize the
variables in uniform block according to a set of rules, where you can
predictably compute the offset of any member in the block, knowing its
type and offset. This feature is only available with GLSL Version 1.40 at the
time of this writing (but will presumably be backward compatible with
future versions of GLSL).

In order to qualify a block to use the std140 layout, you need to add layout
directive to its declaration, as demonstrated below:

layout (std140) uniform UniformBlock {
// declared variables

};

std140 Layout Rules

The set of rules shown in Table L-1 are used by the GLSL compiler to layout
members in a std140-qualified uniform block. The offsets of members in
the block are accumulated based on the sizes of the previous members in the
block (those declared before the variable in question), and the starting
offset. The starting offset of the first member is always zero.

Variable Type Variable Size/Offset

Scalar variable type (bool, int, uint,
float)

Size of the scalar in basic machine types
(e.g., sizeof(GLfloat))

Two-element vector (bvec2, ivec2,
uvec2, vec2)

Twice the size of the underlying scalar
type

Three-element vector (bvec3, ivec3,
uvec3, vec3)
Four-element vector (bvec4, ivec4,
uvec4 vec2)

Four times the size of the underlying
scalar type

Table L-1 std140 Layout Rules
Appendix L: std140 Uniform Buffer Layout

An array of scalars or vectors Each element in the array is the size of
the underlying type, and the offset of
any element is its index (using zero-
based indexing) times the elements size.
The entire array is padded to be a
multiple of the size of a vec4.

Single, or arrays of column-major
matrices of size C columns and R rows

Stored as an array of C vectors each with
R components, and potentially padded
like other arrays.

If the variable is an array of M column-
major matrices, it is stored as an array of
M × C vectors each with R components
(and potentially padded).

Single, or arrays of row-major matrices
with R rows and C columns

 Stored as an array of R vectors each with
C components, and potentially padded
like other arrays.

If the variable is an array of M column-
major matrices, it is stored as an array of
M × R vectors each with C components
(and potentially padded).

A single structure definition, or an array
of structures

Offsets and sizes of the structure’s
members are computed using the
preceding rules. The structure’s size will
be padded out to a multiple of the size of
a vec4.

An array of structures’ offsets are
computed considering the alignment
and padding of the individual
structures, with structure member’s
offsets computed using the preceding
rules.

Variable Type Variable Size/Offset

Table L-1 (continued) std140 Layout Rules
std140 Layout Rules 3

	Using the std140 Layout Qualifier
	std140 Layout Rules

