

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a
trademark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales, which may include electronic versions and/or custom covers and content particular to your
business, training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: www.informit.com/aw

Library of Congress Cataloging-in-Publication Data

Collberg, Christian.
Surreptitious software : obfuscation, watermarking, and tamperproofing for software protection /

Christian Collberg, Jasvir Nagra. – 1st ed.
p. cm.

Includes bibliographical references and index.
ISBN 0-321-54925-2 (pbk. : alk. paper)
1. Computer security. 2. Cryptography. 3. Data protection. 4. Copyright and electronic data

processing–United States. I. Nagra, Jasvir. II. Title.
QA76.9.A25C6165 2009
005.8–dc22 2009015520

Copyright c© 2010 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-321-54925-9
ISBN-10: 0-321-54925-2

Text printed in the United States on recycled paper at Edwards Brothers in Ann Arbor, Michigan.
First printing, July 2009

www.informit.com/aw

Preface

Surreptitious software is the term we have chosen to describe a new branch of
computer security research that has emerged over the last decade. It’s a field that
borrows techniques not only from computer security, but also from many other
areas of computer science, such as cryptography, steganography, media watermark-
ing, software metrics, reverse engineering, and compiler optimization. Surreptitious
software applies these techniques in order to solve very different problems: It is con-
cerned with protecting the secrets contained within computer programs. We use the
word secrets loosely, but the techniques we present in this book (code obfuscation,
software watermarking and fingerprinting, tamperproofing, and birthmarking) are
typically used to prevent others from exploiting the intellectual effort invested in
producing a piece of software. For example, software fingerprinting can be used
to trace software pirates, code obfuscation can be used to make it more difficult to
reverse engineer a program, and tamperproofing can make it harder for a hacker to
remove a license check.

So let’s look at why someone should read this book, who they might be, and
what material the book will cover.

Why Should You Read This Book?
Unlike traditional security research, surreptitious software is not concerned with
how to protect your computer from viruses, but rather how virus writers protect
their code from you! Similarly, we’re not interested in how to make your code free
from security bugs, but rather how to riddle your program with buggy code that gets
run only when someone tries to tamper with the program. And unlike cryptography
research that protects the confidentiality of data, assuming that a secret key remains
hidden, we’re interested in how to hide that key. While software engineering research
has devised a multitude of software metrics in order to be able to make programs
well structured, we will use the same techniques to make your programs more

xv

xvi Preface

convoluted! Many of the techniques that we will describe in this book are based on
algorithms developed by compiler optimization researchers, but unlike them, we’re
not interested in making your program faster or smaller. Rather, after you apply the
algorithms in this book to your own code, your programs will be larger and slower!
Finally, unlike traditional media watermarking and steganography that hides secrets
in images, audio, video, or English text, surreptitious software hides secrets inside
computer code.

So why, then, should you be interested in this book? Why learn about a branch
of computer security research that doesn’t teach how to protect yourself against
viruses and worms? Why study optimizing compiler transformations that make
your code slower and larger? Why bother with a branch of cryptography that breaks
the most basic assumption of that field, namely, that the secret key must be kept
hidden?

The answer is that there are real-world problems that don’t fit neatly into
traditional computer security and cryptography research but that are interesting
nonetheless. For example, in this book we will show you how to use software
watermarking to fight piracy. A software watermark is a unique identifier (such
as someone’s credit card number or your copyright notice) that you embed into
your program to uniquely bind it to you (the author) or your customer. If you find
illegal copies of your program being sold at a market in Singapore, you can extract
the watermark and trace the illegal copy back to the original purchaser. You can use
the same technique when you distribute beta copies of your new computer game
to your partner companies—should any of them leak the code, you can trace the
culprit and sue for damages.

Or if the new version of your program contains a novel algorithm that you don’t
want your competitors to get their hands on and incorporate into their competing
product, you can obfuscate your program and make it as convoluted and hard to
understand as possible in order to slow down your competitors’ reverse engineering
efforts. If you do suspect someone has stolen your code, we’ll show you how to use
software birthmarking techniques to identify the offending sections.

Or, say that you have included a secret in your program and you want to make
sure that without this secret remaining intact, no one can execute the program. For
example, you don’t want a hacker to be able to modify your license checking code
or the cryptographic key that unlocks an mp3 file in your digital rights management
system. Our chapter on tamperproofing will discuss various techniques for ensuring
that programs that have been tampered with will cease to function properly.

Now, we hear you object that including a crypto key in an executable is a Really
Bad Idea! Surely experience has shown us that security by obscurity never works,

Preface xvii

and whatever secret we try to hide in our program will eventually be discovered
by a sufficiently determined hacker. And yes—we have to concede—you’re right.
None of the techniques we’re advocating in this book are foolproof. They won’t
hide a secret forever. They won’t make your program safe from tampering forever.
They won’t identify software theft all of the time. All we can hope for, barring major
advances in the field, is that we can slow down our adversaries. Our goal is to slow
them down enough so that either they give up on cracking our code because they
figure it’s too painful and not worth the trouble, or so that by the time they’ve come
up with a successful attack we’ve already made enough of a profit or have moved
on to the next version of the code.

For example, say that you’re running a pay-TV channel that your customers
access through a set-top box. Each box is personalized—hidden somewhere in the
code is their unique identifier—so that you can grant and revoke viewing privileges
depending on whether they’ve paid their bill or not. Now, an enterprising hacker
extracts and disassembles the code, finds their unique identifier, and starts selling
it over the Web at a fraction of the price you charge, along with instructions on
how to implant it in the box. How do you counter this attack? Well, you may use
tamperproof smartcards, which are not that hard to tamper with, as you will see
in our chapter on hardware protection techniques. Or maybe you’ll obfuscate your
code to make it harder to analyze. Or maybe you’ll use software tamperproofing
to stop the code from executing once it is mucked with. More likely, you’ll use
a combination of all these techniques in order to protect your code. Even when
employing all these techniques, you must know, and accept, that your code will
eventually be broken and your secret will be out of the bag (or box, in this case).
So why should you bother? If security through obscurity is a fundamentally flawed
idea, and if none of the techniques you will read about in this book will give you
“perfect and long-term security,” why go through the trouble? Why should you buy
this book? You will bother for the very simple reason that the longer you can keep
your code safe, the more subscriptions you’ll sell and the longer between set-top
box upgrades, and hence, the more money you’ll make.

It’s as simple as that.

Who Uses Surreptitious Software?
Many well-known companies have shown an interest in surreptitious software. It’s
difficult to get a grip on the extent to which these techniques are actually being used
in practice (most companies are notoriously tight-lipped about how they protect
their code), but we can gauge their level of interest from their patents and current

xviii Preface

patent applications. Microsoft owns several software watermarking [104,354], ob-
fuscation [62,62,69,69,70,70,180,378], and birthmarking [364] patents. Intertrust
holds a huge patent portfolio related to digital rights management, including patents
on obfuscation [91,169] and tamperproofing [168]. In 2004, to the tune of $440
million [176], Microsoft settled a long-running lawsuit with Intertrust by licens-
ing their entire patent portfolio. That same year Microsoft also partnered [250]
with PreEmptive Solutions in order to include PreEmptive’s identifier obfuscator
(which is based on their patent [351]) in Visual Studio. Arxan, a spin-off from Pur-
due University researchers, has made a successful business from their tamperproof-
ing algorithm [24,305]. Apple holds a patent on code obfuscation [197], perhaps
intended to protect their iTunes software. Intel spun off a company, Convera, to ex-
plore their tamperproofing algorithm [27,268–270] for digital rights management.
The Canadian telecom Northern Telecom spun off what to date has been the most
successful company in this area, Cloakware, which holds patents [67,68,182] on
what they call whitebox cryptography, how to hide cryptographic algorithms and
keys in computer code. In December 2007 Cloakware was sold for $72.5 million to
Irdeto, a Dutch company in the pay-TV business [162]. A relative latecomer, Sun
Microsystems, has also recently filed several patent applications on code obfusca-
tion [105–110].

Skype’s VoIP client is highly obfuscated and tamperproofed by techniques sim-
ilar to those of Arxan [24], Intel [27], and ourselves [89]. Protecting the integrity
of their client is undoubtedly of the highest importance for Skype, since, if cracked,
their protocol could be easily hijacked by cheaper competitors. Keeping their pro-
tocol secret allowed them to build an impressive user base, and this might have been
one of the reasons eBay decided to acquire them for $2.6 billion in 2005. In essence,
the protection afforded Skype by surreptitious software techniques bought them
enough time to become VoIP market leaders. Even if, at this point, their protocol
has been cracked (which it has; see Section 7.2.4), it will be difficult for a competitor
to threaten this position.

Academic researchers have approached surreptitious software from a variety
of angles. Some, like us, come from a compiler and programming languages back-
ground. This is natural since most algorithms involve code transformations that
require static analysis, with which compiler optimization researchers are intimately
familiar. In spite of the disdain cryptography researchers have in the past had for
security through obscurity, some have recently applied their techniques to software
watermarking and to discovering the limits of obfuscation. Researchers from me-
dia watermarking, computer security, and software engineering have also published
in surreptitious software. Unfortunately, progress in the area has been hampered

Preface xix

by the lack of natural publication venues. Instead, researchers have struggled, and
continue to struggle, to get their works accepted in traditional conferences and
journals. Papers have appeared in venues such as the ACM Symposium on Principles
of Programming Languages (POPL), the Information Hiding Workshop, IEEE
Transactions on Software Engineering, Advances in Cryptology (CRYPTO), and
Information Security Conference (ISC), as well as in various digital rights manage-
ment conferences. As the field becomes more mainstream, we can expect journals,
workshops, and conferences dedicated exclusively to surreptitious software, but
this has yet to happen.

The military has also spent much effort (and taxpayer money) on surreptitious
software research. For example, the patent [96] held on Cousot’s software water-
marking algorithm [95] is assigned to the French Thales group, the ninth-largest
defense contractor in the world. Here’s a quote from a recent (2006) U.S. Army
solicitation [303] for what they term AT, anti-tamper research:

All U.S. Army Project Executive Offices (PEOs) and Project Managers
(PMs) are now charged with executing Army and Department of Defense
(DoD) AT policies in the design and implementation of their systems.
Embedded software is at the core of modern weapon systems and is one
of the most critical technologies to be protected. AT provides protection
of U.S. technologies against exploitation via reverse engineering. Standard
compiled code with no AT is easy to reverse engineer, so the goal of em-
ployed AT techniques will be to make that effort more difficult. In attacking
software, reverse engineers have a wide array of tools available to them,
including debuggers, decompilers, disassemblers, as well as static and dy-
namic analysis techniques. AT techniques are being developed to combat
the loss of the U.S. technological advantage, but further advances are nec-
essary to provide useful, effective and varied toolsets to U.S. Army PEOs
and PMs. . . . The goal of software AT technologies/techniques developed
is to provide a substantial layer of protection against reverse engineering,
allowing for maximum delay in an adversary compromising the protected
code. This capability will allow the U.S. time to advance its own technology
or otherwise mitigate any losses of weapons technologies. As a result, the
U.S. Army can continue to maintain a technological edge in support of its
warfighters.

This particular solicitation comes from the Army’s Missile and Space program and
focuses on providing protection in real-time embedded systems. So it’s reasonable

xx Preface

to assume that the Army is worried about one of their missiles not exploding on
impact, allowing the enemy access to the embedded targeting flight software.

The DoD’s current interest in protecting their software goes back to the infa-
mous incident in 2001 when a—what CNN [359] calls a US “Navy reconnaissance
plane” but the rest of us know as a “spy plane”—had a run-in with a Chinese fighter
jet and had to make an emergency landing on the Chinese island of Hainan. In
spite of George W. Bush’s plea [116] for the “prompt return ‘without further dam-
age or tampering’ of the crew and plane,” the Chinese stalled, presumably so that
they could gather as much information as possible from the plane’s hardware and
software. There is a claim [116] that all the software was erased:

A former Pentagon intelligence official told United Press International the
crew would have “zeroed” out the crypto analytic equipment and other
software on landing, essentially wiping their memories clean. Although the
Chinese might have access to the hardware, the software that runs it would
be almost impossible to penetrate.

Regardless of whether this is accurate1 or a carefully orchestrated leak to reassure the
U.S. public (why was the software just almost impossible to penetrate if it was in fact
successfully wiped?), the DoD got significantly spooked and initiated a program to
investigate technologies such as obfuscation and tamperproofing in order to protect
sensitive weapons systems software. As one DoD official put it, “[T]he next time
a plane goes down, we don’t want to end up on the cover of the New York Times
again [291].”

Here’s another quote from the DoD [115]:

The Software Protection Initiative (SPI) is an undertaking of the Depart-
ment of Defense (DoD) to develop and deploy technologies to secure
special-purpose computer programs containing information critical to DoD
weapon programs. SPI offers a novel approach to protecting high value
computer programs. It doesn’t secure the computer or the network. In-
stead it empowers a single computer program to secure itself. This approach
promises to significantly improve DoD’s Information Assurance posture.
SPI protection technology is effective on systems ranging from desktop

1. During a particularly lively dinner in Beijing in January 2008 with Chinese security researchers, we
(Collberg) asked about this incident. One person proudly announced, “Yes, some of the information
was recovered!” and then, realizing his mistake, immediately clammed up. This was later corroborated
by a different researcher at a second dinner: “The Americans didn’t have time to destroy everything!”

Preface xxi

computers to supercomputers. It is an integral layer of the defense-in-depth
security paradigm. SPI technologies complement, but do no[t] rely upon,
network firewalls, or physical security. These SPI products are currently
being deployed to selected HPC centers and are in use at over 150 DoD
government and contractor sites. Broader deployment will play a significant
role in protecting the DoD’s and the nation’s critical application software.

What does this mean? The DoD is worried not only about dud missiles falling into
the wrong hands, but also about software in use at hardened high-performance
computer centers. In fact, theft of any software developed for the defense and
intelligence communities may have negative consequences. Anecdotally, when the
software on a fighter jet is to be updated, a service technician simply walks out
to the plane with a laptop, hooks it up, and uploads the new code. What would
happen if that laptop got lost or liberated by a technician in the service of a foreign
government, as seems to happen [375] every so often? The code could be reverse
engineered to be used in an adversary’s planes, or even modified with a Trojan horse
that would make the avionics fail at a particular time. While there is no substitute
for good security practices, surreptitious software techniques can be used as a last
line of defense. For example, the avionics software could be fingerprinted with the
identifiers of those who have had it in their possession. If one day we find copies
of the code in the onboard computers of a North Korean plane we’ve shot down
and are now reverse engineering, we could trace it back to the person who last had
authorized access to it.

But, we hear you say, why should I be interested in how evil government agencies
or companies with monopolistic tendencies are protecting their secrets? If crackers
rip them off, maybe they’re just getting what they deserve. Well, maybe so, but
technical means of protecting against software theft may ultimately benefit the little
guy more than big government or big industry. The reason is that legal forms of
protection (such as patents, trademarks, and copyrights) are available to you only
if you have the financial means to defend them in a court of law. In other words,
even if you think you have a pretty good case against Microsoft for ripping off
your code, you will still not prevail in court unless you have the financial backing
to outlast them through the appeals process.2 The technical means of protection
that we will discuss in this book such as obfuscation and tamperproofing, on the
other hand, can be cheap and easy to apply for the little guy as well as the big guy.
And, if you find yourself up against Microsoft in a court of law, techniques such as

2. You don’t.

xxii Preface

watermarking and birthmarking can bolster your case by allowing you to present
evidence of theft.

There is one final category of people that we have yet to touch upon that makes
extensive use of surreptitious software: bad guys. Virus writers have been spectac-
ularly successful in obfuscating their code to prevent it from being intercepted by
virus scanners. It is interesting to note that while the techniques the good guys use
(for example, to protect DVDs, games, or cable TV) seem to be regularly broken
by the bad guys, the techniques the bad guys use (to build malware) seem much
harder for the good guys to protect against.

What’s the Goal of This Book?
The goal of surreptitious software research is to invent algorithms that slow down
our adversaries as much as possible while adding as little computational overhead
as possible. We also need to devise evaluation techniques that allow us to say, “After
applying algorithm A to your program, it will take an average hacker T extra time
to crack it compared to the original code, while adding O amount of overhead,”
or, failing that, at least be able to say that “compared to algorithm B , algorithm A
produces code that is harder to crack.” It’s important to emphasize that research into
surreptitious software is still in its infancy, and that the algorithms and evaluation
techniques that we’ll present in this book, while representing the state of the art,
are nowhere near perfect.

In this book we attempt to organize and systematize all that is currently known
about surreptitious software research. Each chapter covers a particular technique
and describes application areas and available algorithms. In Chapter 1 (What Is Sur-
reptitious Software?), we give an overview of the area, and in Chapter 2 (Methods of
Attack and Defense), we discuss our adversarial model, i.e., what hacker tools and
techniques we should try to protect ourselves against and what ideas are available
to us as defenders. In Chapter 3 (Program Analysis), we detail the techniques that
both attackers and defenders can use to analyze programs. Chapter 4 (Code Obfus-
cation), Chapter 5 (Obfuscation Theory), and Chapter 6 (Dynamic Obfuscation)
give algorithms for code obfuscation. Chapter 7 (Software Tamperproofing) gives
tamperproofing algorithms, Chapter 8 (Software Watermarking) and Chapter 9
(Dynamic Watermarking) give watermarking algorithms, and Chapter 10 (Software
Similarity Analysis) gives birthmarking algorithms. Chapter 11 (Hardware for Pro-
tecting Software) presents hardware-based protection techniques.

If you’re a manager interested in learning about the state of the art in surrepti-
tious software research and how it can be applied in your organization, you’ll want to

Preface xxiii

read Chapter 1 and Chapter 2. If you’re a researcher with a background in compiler
design, you can skip Chapter 3. It’s advantageous to read the algorithm chapters in
order, since, for example, the watermarking chapter relies on ideas you’ve learned
in the obfuscation chapter. Still, we’ve tried to make each chapter as self-contained
as possible, so skipping around should be possible. If you’re an engineer charged
with adding protection to your company’s product line, you should read Chapter 3
carefully and maybe complement that by reading up on static analysis in a good
compiler text. You can then move on to the algorithm chapter relevant to you. If
you’re a graduate student reading this book for a class, read the entire thing from
cover to cover, and don’t forget to review for the final!

We hope this book will do two things. First, we want to convince you, dear
reader, that code obfuscation, software watermarking, birthmarking, and tamper-
proofing are interesting ideas well worth studying, and that they are viable alter-
natives to protecting the intellectual property you have invested in your software.
Second, we want this book to bring together all available information on the subject
so that it can serve as a starting point for further research in the field.

Christian and Jasvir

Tucson and Mountain View
Groundhog Day, 2009

P.S. There is a third reason for writing this book. If, while reading this book, you
are struck by the cleverness of an idea and, as a result, you become inspired to make
your own contributions to the field, well, then, dear reader, our goal with this book
has really been met. And when you’ve come up with your new clever algorithm,
please remember to let us know so we can include it in the next edition!

1What Is Surreptitious
Software?

In this first chapter we will talk about the basic techniques used to protect secrets
stored in software, namely obfuscation, watermarking, tamperproofing, and birth-
marking. These techniques have many interesting applications, such as the use of
obfuscation and tamperproofing to protect media in digital rights management sys-
tems. What we think you will find particularly interesting is that obfuscation and
the three other techniques “solve” problems that traditional computer security and
cryptography can’t touch. We put “solve” in quotation marks because there are
no known algorithms that provide complete security for an indefinite amount of
time. At the present time, the best we can hope for is to be able to extend the
time it takes a hacker to crack our schemes. You might think that this seems highly
unsatisfactory—and you’d be right—but the bottom line is that there are interesting
applications for which no better techniques are known.

1.1 Setting the Scene
When you hear the term computer security, you probably imagine a scenario where
a computer (owned by a benign user we’ll call Alice) is under attack from an evil
hacker (we’ll call him Bob), or from the viruses, worms, Trojan horses, rootkits,
and keyloggers that he’s created. The goal of computer security research is to devise
techniques for building systems that prevent Bob from taking over Alice’s computer
or that alert her when he does. The basic idea behind such techniques is to restrict

1

2 What Is Surreptitious Software?

what Bob can do on Alice’s computer without unduly restricting what she can do
herself. For example, a network firewall allows Alice to access other computers
on the network but restricts the ways in which Bob can access hers. An intrusion
detection system analyzes the network access patterns on Alice’s computer and alerts
her if Bob appears to be doing something unusual or suspicious. A virus scanner
refuses to run Bob’s program unless it can convince itself that the program contains
no harmful code. In other words, Alice adds protective layers around her computer
to prevent someone from entering, to detect that someone has entered, or to stop
someone from doing harm once they’ve entered:

Bob

Alice

Now what happens if we invert the situation? What if, instead of Bob sending an
evil program to penetrate the defenses around Alice’s computer, we have a software
developer, Doris, who sends or sells Axel1 a benign program to run? To make this
interesting, let’s assume that Doris’s program contains some secret S and that Axel
can gain some economic advantage over Doris by extracting or altering S:

Doris
S

S

Axel

1. In this book, Axel is the prototypical bad guy (hence the shaved head). For some variety in prose,
we’ll switch between calling him the adversary, the attacker, the cracker, the reverse engineer, or simply
he. Doris is the person or institution who produces a piece of software with a secret she needs to protect.
We’ll call her the author, the defender, the software developer, she, or, most frequently, you.

1.1 Setting the Scene 3

The secret could be anything: a new super-duper algorithm that makes Doris pro-
gram much faster than Axel’s that he would love to get his hands on; the overall
architecture of her program, which would be useful to Axel as he starts building his
own; a cryptographic key that is used to unlock some media in a digital rights man-
agement system; or a license check that prevents Axel from running the program
after a certain period of time. What can Doris do to protect this secret?

At first blush, you might think that cryptography would solve the problem,
since, after all, cryptography is concerned with protecting the confidentiality of
data. Specifically, a cryptographic system scrambles a cleartext S into a cryptotext
EK(S) so that it can’t be read without access to a secret key K:

EK(S)ENCRYPT DECRYPT

K

S

S

K

So why doesn’t Doris just protect the secret she has stored in her program by
encrypting the program before selling it to Axel? Unfortunately, this won’t work,
since Axel needs to be able to execute the program and hence, at some point, it—and
Doris’ secret—must exist in cleartext!

What makes software protection so different from cryptography and standard
computer security is that once Axel has access to Doris’ program, there is no limit to
what he can do to it: He can study its code (maybe first disassembling or decompiling
it); he can execute the program to study its behavior (perhaps using a debugger);
or he can alter the code to make it do something different than what the original
author intended (such as bypassing a license check).

There are three components to a typical attack in a software protection scenario
against Doris’ program P , namely, analysis, tampering, and distribution:

Tamper/Reuse

Distribute

Analyze

P2

P
P2

P2

P1

4 What Is Surreptitious Software?

Axel starts by analyzing P , extracting algorithms, design, and other secrets such
as cryptographic keys or the location of license-checking code. Next, he modifies
Doris’ code (he may, for example, remove the license check) or incorporates pieces
of it into his own program. Finally, Axel distributes the resulting program, thereby
violating Doris’ intellectual property rights.

There are many variants of this scenario, of course. Axel could remove a license
check without redistributing the hacked program and just enjoy it for his own
pleasure. He could resell the program along with a known license password, without
ever having to tamper with the code. Finally, he could decompile and analyze the
program to verify its safety (for example, that it doesn’t contain damaging viruses
or spyware, or, in the case of voting software, that it correctly counts every vote),
without using this information to improve on his own programs. While these attacks
occur in a variety of guises, they’re all based on the following observation: Once
a program leaves the hands of its author, any secrets it contains become open to
attack.

In the scenarios we study, there is usually some financial motive for Axel to
extract or alter information in the program. There is also typically a certain period of
time during which Doris wants to protect this information. It is the goal of software
protection to provide technical means for keeping the valuable information safe
from attack for this period of time. A computer game developer, for example, may
be happy if software protection prevents his program from being pirated for a few
extra weeks, since most of the revenue is generated during a short time period after
the release.

In a typical defense scenario, Doris adds confusion to her code to make it more
difficult for Axel to analyze, tamper-protection to prevent him from modifying it,
and finally marks the code (for example, with her copyright notice or Axel’s unique
identifier) to assert her intellectual property rights:

Confuse

Mark

Protect

if ()

die;
if ()

die;

die;

if ()

die;
if ()

42

97

c
P1

P2

P3

P3

P3

1.1 Setting the Scene 5

In this book we will consider five methods for Doris to protect her program: Code
obfuscation for preventing analysis; software watermarking, fingerprinting, and birth-
marking for detecting and tracing illegal distribution; and software- and hardware-
based protection against tampering.

Although the primary motivation for the techniques developed in software
protection has been protecting the secrets contained within computer programs,
they also have applications to protecting the distribution chain of digital media
(digital rights management), protecting against computer viruses, steganographic
transfer of secret messages, and protecting against cheating in online computer
games. We will also show how these techniques can be used maliciously to create
stealthy computer viruses and to cheat in computer-based voting.

Software protection is related both to computer security and cryptography, but
it has most in common with steganography, the branch of cryptography that studies
how to transfer a secret stealthily. This is often illustrated by the so-called prisoners’
problem. Here, Alice and Bob are planning a prison break by passing notes through
their warden, Wendy:

ESCAPE
AT
DAWN!

Wendy

Of course, if Wendy finds that a purported love note mentions a prison break,
she will immediately stop any further messages and put Alice and Bob in solitary
confinement. So what can the two conspirators do? They can’t use cryptography,
since as soon as Wendy sees a garbled message she will become suspicious and put
an end to further communication. Instead, they must communicate surreptitiously,
by sending their secrets hidden inside innocuous-looking messages. For example,
Alice and Bob could agree on a scheme where the hidden message (the payload) is
hidden in the first letter of each sentence in the cover message:

Easter is soon, dear! So many flowers! Can you smell

them? Are you cold at night? Prison food stinks! Eat

well, still! Are you lonely? The prison cat is cute!

Don't worry! All is well! Wendy is nice! Need you!):

6 What Is Surreptitious Software?

This is called a null cipher. There are many other possible types of cover messages.
For example, Alice could send Bob a picture of the prison cat in which she has
manipulated the low-order bits to encode the payload. Or she could send him an
mp3-file of their favorite love song in which she has added inaudible echoes—a
short one for every 0-bit of the payload, a longer one for every 1-bit. Or she could
subtly manipulate the line spacing in a pdf-file, 12.0 points representing a 0, 12.1
points representing a 1. Or she could be even sneakier and ask Wendy to pass along
a Tetris program she’s written to help Bob while away the long hours in solitary.
However, unbeknownst to Wendy, the program not only plays Tetris, but inside its
control or data structures Alice has hidden the secret payload detailing their escape
plan. In this book we will consider exactly this scenario and many like it. We call
a program that contains both a secret and any technique for preventing an attack
against this secret surreptitious software.

1.2 Attack and Defense
You cannot do computer security research, or computer security practice, with-
out carefully examining your attack model, your assumptions about the adversary’s
abilities, and the strategies that he’ll use to attack your system. In cryptography
research, for example, you might assume that “the adversary cannot find the se-
cret key” or “the adversary isn’t better at factoring than I am” or “the adversary
won’t successfully tamper with the tamperproof smartcard.” Once you have an ad-
versarial model, you can go ahead and design a system that is secure against these
attack scenarios. In the real world, adversaries will then immediately try to find
scenarios you didn’t think about in order to get past the defenses you’ve put up!
The cheapest way to break a cryptosystem isn’t to spend $100,000 on specialized
hardware to factor a key—it’s to spend $50,000 to bribe someone to give you the
key. The easiest way to get secrets out of a smartcard isn’t to pry the card open (hav-
ing to bypass the security features that the designers put in place to defend against
exactly this attack), but to induce faults in the card by subjecting it to radiation,
modifying its power supply voltage, and so on, attacks the designers didn’t have in
mind.

In surreptitious software research, the situation is no different. Researchers
have often made assumptions about the behavior of the adversary that have no
basis in reality. In our own research, we (the authors of this book) have often
made the assumption that “the adversary will employ static analysis techniques to
attack the system,” because coming from a compiler background, that’s exactly
what we would do! Or, others have speculated that “the adversary will build up a

1.3 Program Analysis 7

complete graph of the system and then look for subgraphs that are weakly connected,
under the assumption that these represent surreptitious code that does not belong
to the original program.” One might assume that those researchers came from
a graph-theoretic background. Some work has endowed the adversary with not
enough power (“the adversary will not run the program”— of course he will!) and
some has endowed him with too much power: “The adversary has access to, or can
construct, a comprehensive test input set for the program he’s attacking, giving him
the confidence to make wholesale alterations to a program he did not write and for
which he does not have documentation or source code.”

Unfortunately, much of the research published on surreptitious software has
not clarified the attack model that was used. One of our stated goals with this book
is to change that. Thus, for each algorithm, we present attacks that are possible now
and that may be possible in the future.

In Chapter 2 we will also look at a defense model, ideas of how we good guys
can protect ourselves against attacks from the bad guys. We will propose a model
that tries to apply ideas taken from the way plants, animals, and human societies
have used surreptition to protect themselves against attackers to the way we can
protect software from attack. We will be using this model in the rest of the book to
classify software protection schemes that have been proposed in the literature.

1.3 Program Analysis
An attack against a program typically will go through two stages: an analysis stage
that gathers information about the program, and a transformation stage that makes
modifications to the program based on the information that was collected. There
are two basic ways of analyzing the program: You can just look at the code itself (this
is called static analysis), or you can collect information by looking at the execution
of the code (dynamic analysis).

Static analyses takes only one input, the program P itself:

data flow
analysis

control flow
analysis

decompilation

disassembly
conservative
informationP

There are a huge number of different kinds of static analysis that have been devel-
oped over the years. The chief designers have been software engineering researchers

8 What Is Surreptitious Software?

who want to analyze programs for defects and compiler researchers who want to
analyze programs to optimize them, but there are also crackers who want to ana-
lyze programs to remove protection codes. Static analysis gathers information that
we call conservative, that is, it may be imprecise but it will always err on the con-
servative side. So for example, if a static analysis tells you that “on line 45, vari-
able x is always 42,” you can be sure that this is the case. Sometimes conservative
analyses will fail to gather a piece of information about the code that is in fact
true, but at the very least, it will never lie and say that something is true when it
isn’t.

Dynamic analyses collect information about a program by executing it on a
sample input data set:

emulation

debugging tracing

Input
Data

profiling

non-
conservative
information

P

The accuracy of the generated information depends on the completeness of the
input data. Because of this, dynamic analysis can only make predictions such as,
“On line 45, variable x is always 42, well, OK, at least for the set of inputs I’ve
tried.” Code transformations that make use of information only from static analyses
are safe in that they won’t turn a working program into a buggy one (assuming, of
course, that the transformation itself is semantics-preserving, i.e., it doesn’t change
the meaning of the program). Transformations that use dynamic analysis results,
on the other hand, will typically not be safe: They can fail if they are based on
information gathered from an insufficient input data set.

Depending on what an attacker is trying to accomplish, he will choose different
types of analyses and transformations. If all he wants to do is to disable a license
check, the simplest of static and dynamic analyses may be all he needs: He can just
run the program under a debugger until the “license expired” alert comes up, find
the approximate location in the code, disassemble the code at that location, read
until he finds something that looks like if today's date ¶ license date then . . . ,
fire up a binary editor on the code, and edit out the offending lines. If, on the other
hand, he wants to extract a complex algorithm from a huge program, being able to
decompile it all the way to source code would be very helpful.

1.3 Program Analysis 9

1.3.1 A Simple Reverse Engineering Example
To make this a little more concrete, let’s look at an example. Assume that your boss
has given you the following string of bytes and asked you to reverse engineer it:

06 3b 03 3c 1b 07 a2 00 15 1a 06 a3 00 0b

06 3b 84 01 01 a7 ff f1 06 3b a7 ff ec b1

He tells you that these bytes correspond to the bytecode for a competitor’s Java
program that contains a very secret and important algorithm. The code actually
corresponds to the following program, but of course as a reverse engineer you don’t
know this yet:

public static void P() Š

int x = 3;

int i = 0;

while (i£4) Š

if (x £= 3)

x = 3;

i++;

else Š

x = 3;

ł

ł

ł

Since your goal is to find and understand the super-duper-secret algorithm, it would
be great if you could turn this bytecode mess into some really clean and easy-to-
read Java source code. If the owner of the code inserted some obfuscations or other
trickery to confuse us, then it would be great if we were able to remove that too, of
course.

As your first step, you’ll want to disassemble the bytes. This means to convert the
raw bytes into a symbolic, assembly code form. For Java bytecode this is essentially
trivial, and there are many tools (such as jasmin or javap) that will do the job:

10 What Is Surreptitious Software?

0: [06] iconst_3

1: [3b] istore_0

2: [03] iconst_0

3: [3c] istore_1

4: [1b] iload_1

5: [07] iconst_4

6: [a2,00,15] if_icmpge 27

9: [1a] iload_0

10: [06] iconst_3

11: [a3,00,0b] if_icmpgt 22

14: [06] iconst_3

15: [3b] istore_0

16: [84,01,01] iinc 1, 1

19: [a7,ff,f1] goto 4

22: [06] iconst_3

23: [3b] istore_0

24: [a7,ff,ec] goto 4

27: [b1] return

We’ve shaded the source code and instructions to make it easy for you to identify
which part of the source code corresponds to which bytecode instructions. We’ve
put the codebytes themselves in brackets.

Java bytecode was designed to make disassembly easy. The bytecode contains
enough information to allow for the recovery of types and control flow. This is not
true of other machine codes, such as those for x86 and other processors. For these
binary codes, it is easy to insert code that will confuse disassembly. We will talk
more about this in Chapter 3.

Now that you have the Java bytecode in an assembly code format, your next
step is to perform control flow analysis, which will recover the order in which the
code can be executed. The result of this analysis is a control flow graph (CFG). A
node of this graph consists of straight-line code, except that the last statement can
be a jump. There is an edge from one node to another if it is possible for us take

1.3 Program Analysis 11

this path through the code during execution:

F

T F

T

ENTER

EXIT

x £= 3

i £ 4

x = 3

i = 0

x = 3

i++

x = 3

The nodes in the CFG are called basic blocks. CFGs are the central data structure
around which many compilers and reverse engineering tools are built. We’ve again
used shading to make it easy to see which basic blocks correspond to which bytecode
instruction sequences.

Next, you will want to perform a variety of analysis tasks to gather as much
information as you can about the code. This information may allow you to perform
transformations that will make the code simpler and easier to understand, or even to
remove some of the obfuscations that may have been added. One family of analyses
common in optimizing compilers and reverse engineering tools is called data flow
analysis. You’ll learn more about this in Section 3.1.2�127. In our example, an analysis
called Constant Propagation can be used to track the value of variable x in order to
see at which points in the code it will always have the same (constant) value:

x=?
x=?

x=?

x=?

x=?

x=?

x=?x=?

ENTER

EXIT

x £= 3

i £ 4

x = 3

i = 0

x = 3

i++

x = 3

x=3
x=3

x=?

x=?

x=?

x=3

x=?x=?

ENTER

EXIT

x £= 3

i £ 4

x = 3

i = 0

x = 3

i++

x = 3

x=3
x=3

x=3

x=3

x=?

x=3

x=3x=3

ENTER

EXIT

x £= 3

i £ 4

x = 3

i = 0

x = 3

i++

x = 3

12 What Is Surreptitious Software?

In the leftmost flow graph, we’ve indicated that at first we know nothing about
the value of x at the entry and exit of each basic block. In the second step, we’ve
considered each basic block once, and have gathered some information. After a
basic block has executed the statement x = 3, for example, it is clear that x must
have the value 3. Also, if a basic block doesn’t change the value of x, then x must
have the same value after the block executes as it did before. When control can flow
into a basic block from two different directions and we’ve computed that x has the
same value on both paths, then we can safely assume that it will always have that
value at the entry to the block. After considering all the basic blocks one more time,
you’re left with the annotated control flow graph to the left:

x=3
x=3

x=3

x=3

x=?

x=3

x=3x=3

ENTER

EXIT

x £= 3

i £ 4

x = 3

i = 0

x = 3

i++

x = 3

x=3
x=3

x=3

x=3

x=?

x=3

x=3x=3

ENTER

EXIT

true

i £ 4

x = 3

i = 0

x = 3

i++

x = 3

ENTER

EXIT

i £ 4

i = 0

i++

Given this CFG, you can now start to perform transformations. First, wherever x is
used and you’ve determined that its value is constant, you can go ahead and replace
xwith the computed value. So, for example, x£=3 can be replaced by true, since x=3
at the entrance to this basic block. Given this transformation, you can now perform
a Dead Code Elimination, getting rid of any basic block that can never be executed,
and you can also get rid of any redundant statements. The result is the last CFG
discussed earlier.

Now, eyeballing this code, it’s clear that further transformations are possible.
In fact, the loop reduces to a single statement, i=4, and since the procedure returns
nothing and has no side effects, it can be removed altogether! In this particular case,
this is easy to see, but in general, the result will depend on the power of the analyses
and the complexity of the programs.

You can’t be sure whether the “extra” code that you’ve been able to eliminate
was inserted by a code obfuscator with the purpose of sowing confusion or was just

1.4 Code Obfuscation 13

the result of a really broken compiler. All you know is that you’ve been able to turn
the raw sequence of bytes your boss gave you into a much simpler structured form
and to get rid of some irrelevant code in the process.

The final step of your reverse engineering effort should be to take the trans-
formed control flow graph and turn it into source code. The graph is so simple that
this decompilation step is trivial. You get:

public static void P() Š

int i = 0;

while (i£4)

i++;

ł

Obviously, other source forms are possible, for example, using a for loop.
Now, turning raw bytes into readable source code is very helpful for a reverse

engineer, but the process typically won’t stop when source code is generated. The
final stage, extracting a deep understanding of the algorithms employed or modifying
the code to bypass license checks, and so on, will often have to be done by hand.

In Chapter 2 (Methods of Attack and Defense), we’ll show you the general
strategies that reverse engineers go through when they attack code in order to re-
veal its secrets or to make it perform tasks it wasn’t designed to do. In Chapter 3
(Program Analysis), we’ll delve into even more detail and discuss the many kinds of
tools and analysis techniques available to your adversary. We will not simply present
the off-the-shelf tools that happen to be available now, but will discuss those that
could be built given currently known techniques. It’s much too easy to say, “Our soft-
ware protection algorithm is secure because we’ve implemented it for dynamically
linked x86 executables, and current decompilers only handle statically linked code.”
A much more interesting statement would be, “This algorithm employs protection
techniques that can cause code explosion in any decompiler, current and future.”

1.4 Code Obfuscation
The first protection technique we’re going to look at is code obfuscation. What’s
particularly interesting about obfuscation is that it’s a double-edged sword: Bad
guys use it to protect their malware from discovery (you will see this in the next
section), good guys use it to protect their programs from reverse engineering, and
bad guys can also use it to destroy secrets (such as watermarks) stored in the good
guys’ programs.

14 What Is Surreptitious Software?

In the most general sense, to obfuscate a program means to transform it into
a form that is more difficult for an adversary to understand or change than the
original code. We are deliberately vague about defining “difficult,” but we typically
take it to mean that the obfuscated program requires more human time, more
money, or more computing power to analyze than the original program. Under this
definition, to distribute a program in a compiled form rather than as source code is
a form of obfuscation, since analyzing binary machine code is more demanding than
reading source. Similarly, we would consider a program that has been optimized
to be more obfuscated than one that has not, since many code optimizations make
analysis (both by humans and tools such as disassemblers and decompilers) more
onerous.

However, the tools and techniques we present in this book go further than
compilation and optimization in order to make a program hard to understand. In
contrast to an optimizer that rearranges code for the purposes of efficiency, a code
obfuscator transforms code for the sole purpose of making it difficult to analyze. A
negative by-product of obfuscating transformations is that the resulting code often
becomes larger, slower, or both. The author of the code has to decide whether the
protection that the transformations afford is worth this overhead.

Obfuscation is often confused with security through obscurity, a term (used
contemptuously) for the “branch” of cryptography or security where the algorithms
used are expected to remain secret. This is in contrast to mainstream research that
teaches that you must assume that all algorithms are public, and the only secrets
you may keep are the cryptographic keys, and so on, that are the inputs to the
algorithms. The idea is that many eyes examining the same algorithm or piece
of code will likely be able to find flaws, and the more eyes that have failed to
find a flaw, the more confident you can be that the algorithm is, in fact, secure.
This principle is frequently violated, and you’ll often see unscrupulous web-sites
advertise “military-strength, proprietary” cryptographic algorithms, arguing that
“since no one knows what our algorithm does, this will make it that much harder to
break.” The same argument is sometimes made in reverse by software vendors like
Microsoft: “Open-source software is inherently more vulnerable to attacks than our
closed-source code since you can easily read the source and find bugs to exploit.”
We know from experience that both claims are false. Hackers have no problem
finding holes in closed-source software, and once a proprietary algorithm is leaked
(which, inevitably, happens) it is often found to have serious and exploitable flaws.

As we define it in this book, obfuscation isn’t security through obscurity. As with
research in cryptography, we generally expect that the obfuscating code transforma-
tion algorithms are known to the attacker and that the only thing the defender can

1.4 Code Obfuscation 15

Listing 1.1 Obfuscation example. The original unobfuscated version of the code
can be found on the book’s Web site.

public class C Š

static Object get0(Object[] I) Š
Integer I7, I6, I4, I3; int t9, t8;

I7=new Integer(9);

for (;;) Š
if (((Integer)I[0]).intValue()%((Integer)I[1]).intValue()==0)

Št9=1; t8=0;ł else Št9=0; t8=0;ł
I4=new Integer(t8);

I6=new Integer(t9);

if ((I4.intValue()ˆI6.intValue())!=0)
return new Integer(((Integer)I[1]).intValue());

else Š
if ((((I7.intValue()+ I7.intValue()*I7.intValue())%2!=0)?0:1)!=1)

return new Integer(0);

I3=new Integer(((Integer)I[0]).intValue()%((Integer)I[1]).intValue());

I[0]=new Integer(((Integer)I[1]).intValue());

I[1]=new Integer(I3.intValue());

ł

ł

ł

assume is kept secret are the seeds that determine how and where these algorithms
are applied.

Before we look at some applications of code obfuscation, let’s have a look at
what obfuscated code might actually look like. Check out Listing 1.1 for a very
simple example generated by the SandMark Java code obfuscator. Without peeking
(the answer is in footnote 2), time yourself to see how long it takes you to analyze this
20-line program and figure out what it does. Now imagine that rather than being 20
lines long, it’s of a “normal” size for a program today: hundreds of thousands of lines
to a few million lines. Then how long would it take you? What does your intuition tell
you? Does the time to understanding grow linearly with the size of the code and the
number of obfuscations applied? Do you think some obfuscations would add more
confusion than others? Might some obfuscations be harder to undo than others? If
so, how much harder? Are some impossible to undo? Unfortunately, the answers
to these questions are largely unknown. As of now, we don’t have any models that
can tell us how much longer it would take to reverse engineer a program that’s

2. TheprogramcomputestheGreatestCommonDenominatorofitsarguments.

16 What Is Surreptitious Software?

been obfuscated by a particular transformation or sequence of transformations,
nor do we know what overhead these transformations will entail (although this is
certainly easier to measure). Much current obfuscation research tries to devise such
models [289], but we don’t yet have any that are developed enough to be used by
practitioners.

1.4.1 Applications of Code Obfuscation
Now let’s look at a few scenarios where you can use code obfuscation to protect
your code.

1.4.1.1 Malicious Reverse Engineering In the first scenario, malicious reverse en-
gineering, Doris builds a program that contains a valuable trade secret (a clever
algorithm or design), which Axel, a rival developer, extracts and incorporates into
his own program and sells to his customer, Carol:

Buy one
copy Sell

Reuse
module

Axel
CarolDoris Q

X
Y

M
P

O
N

M

This scenario is what most people have in mind when they think of code obfus-
cation. As we’ll soon see, it’s far from the only one. The assumption (although
there’s no formal proof of this proposition) is that given enough time and resources,
Axel will be able to reverse engineer any program. In other words, no secret hid-
den in a program will remain a secret forever. Doris’ goal, instead, has to be to
use obfuscation to slow Axel down as much as possible, while at the same time
adding as little overhead as possible. Ideally, the code is convoluted enough that
Axel gives up trying to understand it and says “OK, fine, then! I’ll just reinvent
this darned algorithm myself from scratch.” Ideally, Doris is able to choose just
the right set of obfuscating transformations and apply them in just the right places
to not make her program so slow and bloated that her customers will no longer
buy it.

1.4.1.2 Digital Rights Management In a digital rights management scenario, Doris
is in the business of building a software media player. The player will only play music,
images, or video that is distributed encrypted in a special file format known as a

1.4 Code Obfuscation 17

cryptolope. The player contains cryptographic keys that are necessary to unlock and
play the media:

Modify
container

Extract
media

Resell

Cryptolope

Software PlayerPartial Keys
Codecs

Encrypted
media

Partial Keys

Signatures

Business Rules

FREE PLAY!

Carol
Axel

Doris

Since you want to be able to enjoy the encrypted media that you’ve bought in
an “untethered environment,” say, watching a movie on your laptop on a plane
where there’s no network connectivity, Doris is forced to store the decryption keys
somewhere on your computer, probably inside your player’s code. Along with the
keys, of course, the code will also contain the decryption algorithm and a decoder
that turns the decrypted media into analog signals that you can hear or watch. In a
typical player, the decoding chain looks like this:

Decode

decrypted
digital
media

analog
media

Keys

Decrypt

encrypted
digital
media

You should notice that there are three targets for Axel to attack here. He could
steal the keys (and if they’re universal keys he can now decode any media designed
for this player, and, if they’re not tied specifically to him, he can sell them on the
Web), he could steal the digital media, or he could steal the less desirable analog
output. The possible weak points of such a system are many. First of all, it’s probably
unreasonable to believe that the cryptographic algorithm used by the system will
not be well known to an attacker. So unless the decryptor is obfuscated, a simple
pattern-matching attack may be all that is necessary in order to locate the decryptor

18 What Is Surreptitious Software?

and the keys it uses. Dynamic attacks are also possible. For example, cryptographic
algorithms have very specific execution patterns (think tight loops with lots of xors)
and if they’re not heavily obfuscated, they’d be easy to find using a dynamic trace
of the program. The keys themselves are a weak point. They’re long strings of bits
with a high degree of randomness, and as such, unusual beasts in most programs.
So Axel could simply scan through the player code looking for, say, a 512-bit long
string that’s more random than expected. Any code that uses this string is likely
to be the decryptor. Once Axel has found the location of the decryptor, he should
have little problem finding where the decrypted media is generated and sent to the
decoder. He can then simply add some code that writes the decrypted content to a
file, and he’s done. What we learn from this is that Doris needs to obfuscate her code
so that a simple pattern-match against it won’t reveal the location of the decryptor
or decoder, or the interfaces between them. She needs to tamperproof the code so
that Axel can’t insert new code, she needs to obfuscate not only the static code but
also the dynamic behavior of the player, and she needs to obfuscate static data (the
keys) in the code as well. And, still, she has to assume that these defense measures
are only temporary. Given enough time, Axel will bypass them all, and so she needs
to have a plan for what to do when the system is broken.

1.4.1.3 Mobile Agent Computing In our next scenario, Doris sends out a mobile
shopping agent, which visits online stores in order to find the best deal on a particular
CD. The agent traverses the Web and asks every store it encounters if they have
the CD and how much it costs, records the best price so far, and eventually, returns
to Doris with the site where she can get the best deal. Of course, if evil Axel runs
a store there’s no reason why he wouldn’t cheat. First of all, he can just erase the
information that the agent has collected so far and substitute his own price:

CDAxel.com

Mobile Shopping
Agent

Best price: $9.95
Best vendor: CD4Thee.com

Mobile Shopping
Agent

Best price: $12.95
Best vendor: CDAxel.com

Axel
Doris

This strategy will only help him if the agent returns directly to Doris when it’s done
with Axel’s site. Much better (for Axel) would be to manipulate the code so that
regardless of which stores it visits after his, it will still record his (higher) price as
the best one.

1.4 Code Obfuscation 19

One defense that has been proposed (there are many others) is for Doris to
obfuscate the agent [165], thereby slowing down an attack. Ideally, this way Axel
won’t have enough resources (he’s servicing many simultaneous requests, after all)
to reverse engineer and modify the agent. Also, Doris might be able to detect that the
agent spends a suspicious amount of time at Axel’s site. She can further complicate
Axel’s attack by differently obfuscating every agent she sends out. This way, he won’t
be able to speed up his analyses over time as he gathers more information about the
agents and their defenses.

1.4.1.4 Grid Computing In the grid computing scenario, Doris wants to run her
program P but lacks the computational resources to do so. So she buys cycles from
Axel to run P on his supercomputer, sends Axel P and the input data, and receives
the output data in return. The problem arises when one or more of P , the inputs,
or the outputs are confidential:

Confidential
results

Confidential
inputs

P

Super−
computer Axel

Doris

Doris must worry not only about Axel snooping on her algorithms or her inputs
and outputs but also about his tampering with her program. If she can’t trust that
P maintains its integrity on Axel’s site, she can’t trust the validity of the output data
that Axel returns to her.

One way to defend the confidentiality of the inputs and outputs is to encrypt
them and transform P into a program that operates directly on encrypted inputs and
produces encrypted results. There is considerable research on such homomorphic
encryption schemes, but the ones invented so far are inefficient and not applicable
to real programs.

Alternatively, Doris can obfuscate P to help maintain confidentiality of its al-
gorithms or tamperproof it to help maintain its integrity by using the techniques in
this book. To preserve the confidentiality of the data, something similar to a DRM
scheme can be used, where obfuscation and tamperproofing are used to hide and
protect the encryption code.

20 What Is Surreptitious Software?

Grid computing is a harder scenario to protect than many others. The reason
is that you care about the confidentiality of algorithms and data, integrity of code,
and on top of that, performance. The reason that Doris sent her code to Axel, after
all, was so that it would execute faster on his superior hardware! She would be very
unhappy, indeed, if the protection techniques she applied negated the performance
boost she was paying for.

1.4.1.5 Artificial Diversity Code obfuscation techniques have also been applied
to operating systems to protect them against attacks by malware such as viruses and
worms [74,75]. The idea is for Doris to randomize her code so that a malicious
agent will not be able to locate or take advantage of a known vulnerability. Just like
in the mobile agent scenario, we can take advantage of multi-versioning: If every
distributed version of Doris’ code is obfuscated differently, Axel’s virus will need to
be very clever to infect all of them:

K2

K1

K3

P P2

P3

P1

This is known as artificial diversity. Of course, viruses themselves make use of
obfuscation techniques to avoid detection by virus scanners, and with spectacular
success. We will talk about this in the next section.

1.4.2 Obfuscating Transformations
It’s of course possible to take your program with its precious cargo and manually
transform it into a mess that’s hard for your adversary to understand and manipulate.
In practice, though, that’s too tedious and error-prone. A better idea is to build
an obfuscation tool that translates your well-designed, easy-to-comprehend, easy-
to-modify program into an incomprehensible mess of spaghetti code that’s near-
impossible to alter. Such an obfuscator is similar to a compiler, except that instead
of generating efficient and compact code, it generates code that’s hard for your
adversary to comprehend.

1.4 Code Obfuscation 21

Conceptually, an obfuscation tool takes four inputs: the program P you want to
transform, the amount of obfuscation you would like to add, the amount of overhead
you can accept, and a list of the code locations that are particularly precious to you
that you would like to protect the most:

Program
analysis

Acceptable
overhead

Precious
code

Obfuscation
Level

Obfuscation Tool

1. Select code
2. Select transformation
3. Apply transformation
4. Done?

Obfuscating
transformations

P

P'

Internally, the obfuscator has a set of obfuscating code transformations, a set of
program analyses needed to implement those transformations, and a loop that iter-
atively applies the transformations to P . The analyses will be similar to those used
by compilers and reverse engineering tools. The process continues until the amount
of obfuscation you desire has been reached or the maximum amount of overhead
you can accept has been exceeded. The output is a program P ′ that behaves the
same as P but whose internal structure is very different. Practical code obfuscators
may have a simpler structure than this. It’s common, for example, to have just a
small number of transformations and to apply them in a fixed order.

There are four broad classes of obfuscating code transformations. Abstraction
transformations break down the overall structure of the program, i.e., they obfuscate
the way the programmer has organized the program into classes, modules, and
functions. Data transformations replace the data structures the programmer has
selected with others that reveal less information. Control transformations modify
the control structures (if- and while-statements) in the program to hide the paths it
may take at runtime. Dynamic transformations, finally, insert a transformer T into
the program so that, at runtime, T causes the program to continuously transform
itself. At runtime, the program therefore looks like this:

Obfuscation Tool

P
P'

T

22 What Is Surreptitious Software?

We’ve spread our discussion of code obfuscation over three chapters. In Chap-
ter 4 (Code Obfuscation), you will see many control, data, and abstraction trans-
formations. We’ll discuss the amount of confusion they add, how hard they are
to defeat, and the amount of overhead they incur. In Chapter 6 (Dynamic Ob-
fuscation), we’ll do the same for dynamic obfuscation. In Chapter 5 (Obfuscation
Theory), we will look at the theoretical underpinnings of obfuscation. In particular,
we’ll be interested in finding out what can be obfuscated, and what can’t.

To give you some idea of what obfuscating code transformations do, let’s go
through a really trivial example. We’ll start with a little C program in its original
form and show how it changes as you apply, first, an abstraction transformation,
then a data transformation, next a control transformation, and finally, a dynamic
transformation. Here’s the original program:

� �

int main() Š

int y = 6;

y = foo(y);

bar(y,42);

ł
� �

� �

int foo(int x) Š

return x*7;

ł
� �

� �

void bar(int x, int z) Š

if (x==z)

printf(ç%i\nç,x);
ł

� �

The first thing we’re going to do is to hide the fact that the program consists
of two functions. The programmer had something in mind when he decided to
break the program into three parts, main, foo, and bar; presumably, this matched
the mental model he had of his program. So let’s break this abstraction by merging
foo and bar into one function, foobar. This new function takes three parameters.
Two of them, x and z, are necessary to accommodate bar’s arguments, and the third,
s, we’ll use to distinguish calls that should execute foo’s and bar’s bodies. Here’s
foobar and the transformed version of main:

� �

int main() Š

int y = 6;

y = foobar(y,99,1);

foobar(y,42,2);

ł
� �

� �

int foobar(int x, int z, int s) Š

if (s==1)

return x*7;

else if (s==2)

if (x==z)

printf(ç%i\nç,x);
ł

� �

Notice how it appears as if main calls the same function twice when, in fact, it’s really
calling two different functions.

1.4 Code Obfuscation 23

Now, in many programs the precious thing that you want to protect is data rather
than code or design. This is, for example, the case in a digital rights management
system where you want to prevent the adversary from getting their hands on the
cleartext media. Ideally, in a system like that, the data is never in cleartext. Rather,
it is always encoded in some incomprehensible (to the attacker) format and always
operated on in this format. Let’s assume that, in our little example program, we
want to protect all the integer values from the prying eyes of an attacker, who, for
example, might be examining the program by running it under a debugger.

As it turns out, we’re lucky. The program only performs three operations on the
data, namely, assignment, multiplication, and comparison for equality. Why is this
lucky? Well, there’s a very simple encoding on integers that supports exactly these
operations, namely, RSA encryption! We’ll leave the details of this encoding to later
in the book. For right now, you’ll just have to take our word that setting

p = 3

q = 17

N = pq = 51

E(x) = x3 mod 51

D(x) = x11 mod 51

leads to a program where no integer values are ever in cleartext:

� �

int main() Š

/ / E(6) = 12

int y = 12;

y = foobar3(y,99,1);

/ / E(42) = 36

foobar3(y,36,2);

ł
� �

� �

int foobar(int x, int z, int s) Š

if (s==1)

return (x*37)%51; / / E(7) = 37

else if (s==2)

if (x==z) Š / / x11 = D(x)

int x2=x*x % 51, x3=x2*x % 51;

int x4=x2*x2 % 51, x8=x4*x4 % 51;

int x11=x8*x3 % 51; printf(ç%i\nç,x11);
ł

ł
� �

In particular, you can see how 6 is encoded as 12, 42 as 36, and 7 as 37! Not until
the program absolutely has to have a value in cleartext (when it needs to pass it to
printf to print it out) is it finally decoded. Note also that the multiplication x*7
takes place in the encoded domain; again, no values are in cleartext until necessary.

24 What Is Surreptitious Software?

Structured programming dictates that you organize your functions by properly
nesting conditional and loop statements. This makes the code easy to understand and
modify. One popular kind of obfuscating control transformation, control flow flat-
tening, rewrites functions to turn structured statements into spaghetti code. Here’s
what the last version of the foobar function looks like after control structures have
been replaced by plain old goto statements:

int foobar(int x, int z, int s) Š

char* next = &&cell0;

int retVal = 0;

cell0: next = (s==1)?&&cell1:&&cell2; goto *next;

cell1: retVal=(x*37)%51; goto end;

cell2: next = (s==2)?&&cell3:&&end; goto *next;

cell3: next = (x==z)?&&cell4:&&end; goto *next;

cell4: Š

int x2=x*x % 51, x3=x2*x % 51;

int x4=x2*x2 % 51, x8=x4*x4 % 51;

int x11=x8*x3 % 51;

printf(ç%i\nç,x11); goto end;
ł

end: return retVal;

ł

Have a look at Listing 1.2�25. Here, we’ve broken the body of foobar into two
functions, A and B. This, by itself, isn’t a very effective transformation, but what’s
interesting here is what happens to A and B at runtime. Every time foobar is called,
it makes A and B trade places:

Afoobarmain B

From an attacker’s point of view this code is hard to understand in two different
ways. If he looks at our program statically, i.e., without running it, the abstraction
transformation will have removed the way we chose to organize the program, the
data transformation the way we chose our data structures, and the control transfor-
mations the way we structured our flow of control. If, instead, he decides to learn

1.4 Code Obfuscation 25

Listing 1.2 The result of a dynamic obfuscating transformation. The functions A and
B will continuously trade places at runtime. The swap function is in Listing 6.3�377.

int start = 0;

typedef int (*printfT) (char const *str,...);

typedef int (*FuncPtr)(int,int,int,uint32,int,printfT,void * funcs);

typedef FuncPtr FuncPtrArr[];

static FuncPtrArr funcs =Š&A,&Bł;

int A(int x, int z, int s, uint32 begin,

int start, printfT printf,void * funcs) Š

int next = 0;

int retVal = 0;

char* cells[]=Š&&cell0-(uint32)&A,&&cell1-(uint32)&A,

&&cell2-(uint32)&A,&&cell3-(uint32)&A,

&&cell4-(uint32)&A,&&end-(uint32)&Ał;
goto *(cells[next]+begin);

cell0: next = (s==1)?1:2; goto *(cells[next]+begin);

cell1: retVal=(x*37)%51; next=5; goto *(cells[next]+begin);

cell2: next = (s==2)?3:5; goto *(cells[next]+begin);

cell3: next = (x==z)?4:5; goto *(cells[next]+begin);

cell4: FuncPtr f = ((FuncPtr*) funcs)[(1+start)%2];

f(x,z,s,(uint32)f,start,printf,funcs);

next=5; goto *(cells[next]+begin);

end: return retVal;

ł

int B(int x, int z, int s, uint32 begin,

int start,printfT printf,void * funcs) Š

int x2=x*x % 51; int x3=x2*x % 51; int x4=x2*x2 % 51;

int x8=x4*x4 % 51; int x11=x8*x3 % 51; printf(ç%i\nç,x11);
ł

int foobar(int x, int z, int s) Š
int retVal = funcs[0+start](x,z,s,(uint32)funcs[0+start],

start,printf,funcs);

swap((caddr-t)funcs[0],(caddr-t)funcs[1],1024);

start = (start+1) % 2;

return retVal;

ł

26 What Is Surreptitious Software?

about the program by executing it, he will find that the dynamic obfuscation has
violated a very basic assumption about programs, namely, that every time control
reaches a particular point, the same code is executed.

1.4.3 Black Hat Code Obfuscation
For many years obfuscation was considered nothing more than a curiosity, something
that no serious researcher would touch. The International Obfuscated C Code Contest
(IOCCC) [177,227], for example, is an annual event that (humorously) tries to
write the worst programs possible, C being a particularly suitable language for
this task. It was generally assumed that there could be no real value to any code
obfuscation technique and that anyone using one was just foolish for not using
“real” security algorithms. Only fairly recently has it been acknowledged that there
are legitimate applications where obfuscation and related techniques are the only
available methods of protection.

Unfortunately, however, it’s turned out that the applications where obfuscation
has had its most spectacular success are in what we like to call black hat scenarios.
This should probably not come as much of a surprise. It’s not uncommon for the
bad guys to adopt techniques first designed by the good guys. Cryptography, for
example, can be used to protect the communication between criminals as well as
between law enforcement agents. Steganography can be used by freedom fighters
to avoid detection by an oppressive regime as well as by terrorists to avoid detection
by national security forces. TV set-top box hackers have been known to first break
through the smartcard-based defenses of the box and then turn around and use
smartcards themselves to protect these hacks from counterattacks by the set-top
box manufacturers!

One black hat scenario is when Axel uses obfuscation to protect his virus V
from detection by Doris:

...

Axel
Doris

P

Payload
Obfuscator

V

Q

Payload
Obfuscator

V
P'

R

Payload’
Obfuscator’

V'
Q'

The virus comes in two parts, the payload, which is the code that’s designed to cause
harm, and the obfuscator, which the virus uses to protect itself from discovery. In
the first step, Axel infects a program P with V and sends it out into the wild. If

1.4 Code Obfuscation 27

Doris installs the infected P ′ on her site, the virus may be able to infect another
program, Q. Before infection, however, the virus uses the obfuscator to generate a
different version of itself. The idea is that if every version of the virus is different, it
will be difficult for Doris’ virus scanner to detect it. This is similar to the artificial
diversity scenario you saw earlier, only this time the good guy and the bad guy have
traded places!

1.4.3.1 Misdirection—Stealthy Obfuscation If you look at a few of the programs
submitted to the IOCCC, it should be clear that the code looks far from natural.
While machine-generated code, obfuscated code, or optimized code can often look
this bad, code written by humans typically doesn’t. For example, you can tell by
looking at the obfuscator-generated code in Listing 1.1�15 that it wasn’t written by
a typical human programmer. So if Axel was looking for a secret in Doris’ program,
a section that looked like this would likely raise his suspicion—could the secret be
hidden behind this obviously obfuscated mess? You’ll see many cases in this book
where the stealthiness of a protection technique is important; the attacker mustn’t
be given a clue as to where in the code the technique was applied or the order in
which a sequence of techniques were applied.

Misdirection is a particularly nasty black hat obfuscation technique that is based
on the extreme stealthiness of an inserted bug. Look at Listing 1.3�28, which shows
a program to collect and tally the votes for American Idol. The program reads votes
from standard input, and after the contest displays a summary of the votes cast.
Here is a sample run of the program:

¶ cat votes-cast.txt

alice

alice

bob

alice

dmitri

bob

zebra

¶ java Voting £ votes-cast.txt

Total: 7

Invalid: 1

alice: 3

bob: 2

charles: 0

dmitri: 1

28 What Is Surreptitious Software?

Listing 1.3 Obfuscated voting code.

public class Voting Š
final int INVALID-VOTE = -1;

int invalidVotes, totalVotes = 0;

String[] candidates = Šçaliceç, çbobç, çcharlesç, çdmitriçł;
int[] tally = new int [candidates.length];

BufferedReader in = null; BufferedWriter log = null;

public Voting () Š
in = new BufferedReader (new InputStreamReader (System.in));

ł

public String readVote () Š

try Šreturn in.readLine();ł

catch (Exception e) Šreturn null;ł

ł

public boolean isValidTime (Date today) Š

SimpleDateFormat time = new SimpleDateFormat (çHHç);
int hour24 = Integer.decode (time.format(today)).intValue();

return !(hour24 £ 9 šš hour24 ¶ 21);

ł

public int decodeVote (String input) Š

for (int i=0; i £ candidates.length; i++)
if (candidates[i].equals (input)) return i;

return INVALID-VOTE;

ł

public void logVote (Date date, int vote) throws Exception Š
if (log == null)

log = new BufferedWriter (new FileWriter (çlog.txtç));

log.write (çTIME: ç + date + ç VOTE: ç + vote);

ł

public void printSummary () Š

System.out.println (çTotal:ç+totalVotes +

ç\nInvalid:ç+invalidVotes);
for (int i=0; i £ candidates.length; i++)

System.out.println (çVotes for ç + candidates[i] +ç: ç+tally[i]);

ł

public void go () Š

while (true) Š
String input = readVote();

int vote = 0;

if (input == null)break;

try Š
Date today = new Date();

if (isValidTime (today)) vote = decodeVote (input);

else vote = INVALID-VOTE;

1.4 Code Obfuscation 29

Listing 1.3 Obfuscated voting code. (Continued)

logVote (today, vote);

ł catch (Exception e) Šł
totalVotes++;

if (vote == INVALID-VOTE) invalidVotes++;

else tally[vote]++;

ł
printSummary();

ł

public static void main (String args[]) Š
Voting voting = new Voting (); voting.go();

ł

ł

Can you tell whether the program produces a fair count or not, or has it, in fact,
been deliberately manipulated to favor a particular candidate? Before reading the
answer in footnote 3, time yourself to see how long it took to analyze this 58-line
program. Now, how long would it take for you to find a potential problem in a
real-world voting system comprising hundreds of thousands of lines of code? What
if the techniques used in Listing 1.3 were combined with those in Listing 1.1�15?
Might it be possible to provide enough confusion so that by the time the obfuscation
has been penetrated and any irregularities identified, the next American Idol has
already been selected (or, in the case of the United States’ presidential election, the
Electoral College has convened and cast their votes)?

1.4.3.2 Obfuscating Viruses As you will see in this book, there are important
real-world problems that, to date, only obfuscation is able to tackle. Unfortunately,
however, it’s in black hat code scenarios where obfuscation has had its most spec-
tacular successes: Obfuscation is used by malware writers to protect their viruses,
worms, trojans, and rootkits from detection. It is entertaining to examine techniques
that hackers have invented and successfully used to foil security researchers, and
to see whether the good guys can make use of the same techniques. Virus writers
and virus scanner writers are engaged in a cat-and-mouse game: When a new virus
detection technique is invented, the virus writers counter with a more sophisticated

3.

Java’sintegerdecodingroutineinterpretsnumbersthatstartwithzeroasoctal.Asaresult,this
routinethrowsanunexpectednumber-formatexceptionbetween8a.m.and9:59a.m.,whichinturn
resultsintheincorrectvalueofvotebeingcounted.

30 What Is Surreptitious Software?

code obfuscation technique, which is then countered by a more powerful detection
technique, and so on. So far, the hackers seem to be winning. Recent reports claim
that 25% of the world’s computers have been penetrated and taken over by bot-
nets [368]. Obviously, this can be attributed not only to the success of obfuscated
malware but also to the fact that many people run unpatched operating systems,
outdated virus scanners, and so on.

Virus writers typically beat virus scanners by making their virus code “invisible”
to the scanners. Scanners have only a limited amount of resources and cannot fully
analyze a file to decide whether or not it’s malicious. Even if they could, there are
theoretical results [74] that state that it may still fail. The scanner therefore identifies
a virus by its signature, some aspect of it that is easy enough to extract and that does
not change from one infection to the next. This is similar to birthmarks, which you
will see in Chapter 10 (Software Similarity Analysis).

What sort of tricks does a virus writer use to make the viruses stay “invisible”
to virus scanners? Look at the self-reproducing viral Java program in Listing 1.4�31.
Real viruses are rarely, if ever, written in Java, but this simplified example will help
you understand how a virus can use obfuscation to protect itself.

There are several things that are noteworthy in this Java virus. The first thing
to note is that the program seems to have its entire source code encoded as a string
within itself. In order to manage this in a finite space, a program takes advantage
of the duplicate structure of the program. This trick is used in a common geek
amusement to devise quines—programs that when run produce their own source
code as their only output [1].

The source code is built in the variable self. It’s eventually written to a file and
compiled using Sun’s internal Java compiler. The recent Slapper worm [320] and
its variants also used a compiler to make the virus less platform-dependent. Using a
compiler in this way has another side effect that is advantageous for a virus writer.
Different compilers can produce slightly different (though semantically equivalent)
programs from the same source code. This makes it a bit harder to find good
signatures that scanners can use to reliably detect a virus.

In Listing 1.4�31, the example goes one step further. Before the new copy of the
virus is written to a file, it is passed to the function morph. The morph function adds a
i++ statement between every line of the main program. This instruction has no effect
on the output or behavior of the program. However, this trivial obfuscation ensures
that every new version of the program will be different from its predecessor! This
means that a virus scanner that uses a trivial checksum-based signature detector will
not be powerful enough to identify the virus.

1.4 Code Obfuscation 31

Listing 1.4 A metamorphic virus in Java.

import java.io.*;

public class m Š
private static int i = 0;

private static com.sun.tools.javac.Main javac=

new com.sun.tools.javac.Main();

public static String morph (String text) Š
return text.substring(0,360) +

text.substring(360).replaceAll (

new String (new char[] Š ';' ł),

new String (new char[] Š ';','i','+','+',';' ł));

ł

public static void main (String[] a) throws IOException Š

String self=çimport java.io.*; public class m Š private

static int i = 0; private static com.sun.tools.javac.Main

javac=new com.sun.tools.javac.Main();public static String

morph (String text) Š return text.substring(0,360) +
text.substring(360).replaceAll (new String (new char[]

Š ';' ł),new String (new char[] Š ';','i','+','+',';' ł)

);ł public static void main (String[] a) throws IOException

Š String self=@;char q=34;char t=64;String text=
self.replaceAll(String.valueOf(t),q+morph(self)+q);String

filename = new String (new char[] Š 'm','.','j','a','v',

'a' ł);File file=new File(filename); file.deleteOnExit();
PrintWriter out=new PrintWriter(new FileOutputStream(file

)); out.println(text);out.close(); javac.compile(new

String[]Šfilenameł);łłç;
char q=34; char t=64;

String text=self.replaceAll(String.valueOf((char)64),

q+morph(self)+q);

text=text.replaceAll(String.valueOf((char)35),

String.valueOf((char)34));

String filename =

new String (new char[] Š 'm','.','j','a','v','a' ł);
File file = new File(new String (filename));

file.deleteOnExit();

PrintWriter out =

new PrintWriter(new FileOutputStream(file));

out.println(text);

out.close();

javac.compile(new String[] Š filename ł);

ł

ł

32 What Is Surreptitious Software?

Imagine if, instead of our very trivial morph function, a virus writer included and
used one of the more sophisticated obfuscations we discussed in the last section.
What sort of analysis would a scanner need to perform to detect such a virus?

Real viruses use obfuscation to counter detection by ensuring that as many prop-
erties as possible change between infections. Metamorphic viruses use obfuscating
transformations to change the entire body of the program from one generation to the
next. Polymorphic viruses are a simpler variation of metamorphic viruses. Instead
of morphing the entire program, each generation of the virus encrypts itself with
a different key. Of course, for the virus to still be functional it must also contain a
decryption and execution routine. Polymorphic viruses only morph this decryption
and execution routine. In this way, morphing protects the decryption and execution
routine from the scanner, while encryption protects the rest of the program.

1.5 Tamperproofing
One of the uses of obfuscation is to add so much confusion to a program that
an adversary will give up trying to understand or modify it. But what if Axel is
able to break through Doris’ obfuscation defenses, then what? Well, in addition
to obfuscating her code, Doris can also tamperproof it. This means that if Axel
tries to make modifications to Doris’ program, he will be left with a program with
unintended side effects: The cracked program may simply refuse to run, it could
crash randomly, it could destroy files on Axel’s computer, or it could phone home
and tell Doris about Axel’s attack, and so on.

In general, a tamperproofing algorithm performs two duties. First, it has to
detect that the program has been modified. A common strategy is to compute
a checksum over the code and compare it to an expected value. An alternative
strategy is check that the program is in an acceptable execution state by examining
the values of variables.

Once tampering has been detected, the second duty of a tamperproofing al-
gorithm is to execute the tamper response mechanism, for example causing the
program to fail. This is actually fairly tricky: You don’t want to alert the attacker
to the location of the tamperproofing code since that will make it easier for him to
disable it. For example, tamperproofing code like

if (tampering-detected()) abort()

is much too weak because it’s easy for the attacker to trace back from the location
where the program failed (the call to abort()) to the location where tampering

1.5 Tamperproofing 33

was detected. Once he has that information, the tamperproofing is easy to disable.
A good tamperproofing system separates the tamper detection from the tamper
response in both space and time.

1.5.1 Applications of Tamperproofing
Tamperproofing is important in digital rights management systems where any change
to the code could allow Axel to enjoy media for free. Here’s a top-level view of a
DRM system:

static final long key = 0xb0b5b0b5;

void play(byte[] media) Š

// if (! hasPaidMoney ("Bob ")) return;

System.out.print(key);

byte[] clear = decrypt(key ,media);

System.out.print(clear);

float[] analog = decode(clear);

System.out.print(analog);

device.write(analog);

ł

Notice how Axel has been able to delete a check (light gray) that prevented him
from playing the media if he had no money, and to insert extra code (dark gray) to
dump the secret cryptographic key and the decrypted (digital and analog) media. In
general, tampering with a program can involve deleting code, inserting new code,
or modifying original code. All can be equally devastating.

Another common use of tamperproofing is to protect a license check. Doris
inserts a check in the code that stops Axel from running the program after a specific
date or after a certain number of executions, or to let no more than a given number
of Axel’s employees run the program at any one time. Axel, being an unscrupulous
user, locates and disables the license check to give him unlimited use of the program.
Doris can obfuscate her program (to make it hard for Axel to find the license code),
but she can also tamperproof the license check so that if Axel finds and alters it, the
program will no longer function properly:

P'

abort()

max_seats=2
max_execs=3
max_date="Aug 17"
if (users§max_seats ||

execs§max_execs ||
date§max_date)

P
Axel

Doris

34 What Is Surreptitious Software?

There are situations where simply failing when tampering is detected isn’t
enough; you also need to alert someone that an attack has been attempted. For
example, consider a multi-player online computer game where, for performance
reasons, the client program caches information (such as local maps) that it won’t let
the player see. A player who can hack around such limitations will get an unfair ad-
vantage over his competitors. This is a serious problem for the game manufacturer,
since players who become disillusioned with the game because of rampant cheating
may turn to another one. It’s therefore essential for the game administrators to de-
tect any attempt at tampering so that anyone who tries to cheat can immediately be
ejected from the game. The term we use for this problem is remote tamperproofing.
The goal is to make sure that a program running on a remote untrusted host is the
correct, unadulterated version, and that it is running in a safe environment. “Safe”
here can mean that the program is running on the correct hardware (and not under
a hacked emulator), that the operating system is at the correct patch-level, that all
environment variables have reasonable values, that the process has no debugger
attached, and so on. As long as the client code determines that it is running safely
and hasn’t been tampered with, it sends back a stream of surreptitious “I’m-OK”
signals to the server:

1 0 0 1 S

In this figure, the program is using steganographic techniques to embed this secret
bitstream in TCP/IP headers.

Even if you don’t intend to cause harm to a cheating game player, monitor-
ing your protected programs for evidence of an ongoing attack can still be use-
ful. We know of at least one major software protection company that includes
a phone home facility in their code that allows them to watch, in real time, an
attack in progress. Being able to see which strategies the attacker is using, see
which strategies are successful, measure how long an attack takes to complete
and thus, ultimately, get a feel for which protection algorithms are effective and
which are not is definitely useful. However, we know that other software

1.5 Tamperproofing 35

protection companies eschew such eavesdropping because of its problematic pri-
vacy issues.

1.5.2 An Example
If you have ever run a signed Java applet or installed a program signed by
Microsoft, you’ve already had experience with programs designed to detect tamper-
ing. A signed program carries a certificate issued by a known authority that can be
used to detect if some part of the program has been changed. Usually such detection
is extrinsic to the program itself. For example, if you try to install a signed Microsoft
program that has been tampered with, the OS will check that the signature is one
that Microsoft trusts and that the program has not been altered since it was signed.
Unfortunately, the obvious way of extending such a scheme to allow a program to
check itself for tampering is not effective. To see this, have a look at the program
in Listing 1.5�36, which converts temperatures expressed in Fahrenheit into Cel-
sius. The function bad-check-for-tampering protects the program from tampering
by comparing a checksum of the program file to a checksum computed when the
program was compiled. If they’re not the same, the program simply quits.

Can you think of any difficulties in writing such a program? One problem is
that checksum is embedded in the program and as a result affects the checksum
itself! To successfully construct such a program requires searching for a value that,
when inserted into the program as a checksum, results in the program having that
value as a checksum.

A further problem is that in spite of its clever construction, once a function has
been identified by the attacker as a tamper-detection function, it’s easy to remove
any calls to it.

The function better-check-for-tampering is slightly better. Instead of merely
checking for tampering, it incorporates the output of the checksum into the code
itself. If the program is altered, the value returned by this function changes, which
in turn makes the program subtly incorrect.

In spite of the improvements, better-check-for-tampering remains vulnerable
to the same attack as bad-check-for-tampering. Both tamper-checking functions
are easy to identify, because programs rarely attempt to read themselves. Once a
function is identified as a tamper-checking function, it can be replaced by a simple
function that returns the original checksum as a constant. Thereafter, an attacker
can go ahead and modify the program arbitrarily.

These weaknesses notwithstanding, checksumming code forms the basis of
many tamperproof detection techniques used in practice. You’ll see some of them
in Chapter 7 (Software Tamperproofing).

36 What Is Surreptitious Software?

Listing 1.5 A self-checking program in Java.

import java.io.*;

import java.security.*;

public class tamper Š

public static int checksum-self () Š

File file = new File(çtamper.classç);
FileInputStream fr = new FileInputStream (file);

DigestInputStream sha = new DigestInputStream (fr,

MessageDigest.getInstance (çSHAç));

while (fr.read () != -1) Šł
byte[] digest = sha.getMessageDigest().digest ();

int result = 12;

for (int i=0; i £ digest.length; i++) Š
result = (result + digest[i]) % 16;

ł

ł

public static boolean bad-check-for-tampering () throws Exception Š

return checksum-self() != 9;

ł

public static int better-check-for-tampering () throws Exception Š

return checksum-self();

ł

public static void main (String args[]) throws Exception Š
if (bad-check-for-tampering()) System.exit (-1);

float celsius=Integer.parseInt (rgs[0]);

float fahrenheit=better-check-for-tampering() * celsius / 5 + 32;

System.out.println (celsius + çC = ç + fahrenheit + çFç);

ł

ł

1.6 Software Watermarking
There are various scenarios where you would like to mark an object to indicate that
you claim certain rights to it. Most famously, the government marks all their paper
currency with a watermark that is deeply embedded in the paper and is therefore
difficult to destroy or reproduce. For example, if you found a torn or damaged part
of a note, you could hold it up to the light and use the watermark to identify the
original value of the note. Also, if a forger attempts to pay you using photocopied

1.6 Software Watermarking 37

currency, the missing watermark will alert you to the fact that the currency is not
genuine.

There has been much work in the area of media watermarking, where the goal
is to embed unique identifiers in digital media such as images, text, video, and
audio. In a typical scenario, Doris has an online store that sells digital music. When
Axel buys a copy of a song, she embeds two marks in it: a copyright notice A (the
same for every object she sells) that asserts her rights to the music, and a customer
identification number B (unique to Axel) that she can use to track any illegal copies
he might make and sell to Carol:

Buy one
copy

Resell
Make illegal

copiesAxel

Carol

Doris

B
A

B
A

B
A

If Doris gets ahold of an illegal copy of a song, she can extract the customer mark
B (B is often referred to as a fingerprint), trace the copy back to Axel as the original
purchaser, and then take legal action against him. If Axel were to claim “Well, I
wrote and recorded this song in the first place,” Doris can extract her copyright
notice A to prove him wrong.

Media watermarking algorithms typically take advantage of limitations in the
human sensory systems. For example, to embed a watermark in a piece of music,
you can add short—and to the human ear, imperceptible—echos. For every 0-bit
of the mark, you’d add a really short echo and for a 1-bit, you would add a slightly
longer echo. To mark a PDF file, you’d slightly alter the line spacing: 12 points for
a 0-bit, and 12.1 points for a 1-bit. To mark an image, you’d slightly increase or
decrease the brightness of (a group of) pixels. In all these cases you also need to
decide where in the digital file you will make the changes. This is often done by
means of a random number generator that traces out a sequence of locations in
the file. The seed to the generator is the key without which you cannot extract the
watermark. So a typical watermarking system consists of two functions, embed and
extract:

38 What Is Surreptitious Software?

42Extract

key

42
P’

P

Embed

key

42

Attack

Both functions take the secret key as input. The embed function also takes the
original object (known as the cover object) and the watermark (the payload) as
input, and produces a watermarked copy (the stego object) as output. The extract
function, as the name implies, extracts the watermark from the stego object, given
the correct key. This is just one basic watermarking system, and we’ll discuss others
in Chapter 8 (Software Watermarking).

As you see from the figures above, we also have to take the adversary into
account. Axel will want to make sure that before he resells Doris’ object he’s de-
stroyed every watermark she’s embedded. More precisely, he needs to somehow
disturb the watermark extraction process so that Doris can no longer extract the
mark, even given the right key. In a typical attack, Axel inserts small disturbances
into the watermarked object, small enough that they don’t diminish its value (so he
can still resell it), but large enough that Doris can no longer extract the mark. For
example, he might randomly adjust the line spacing in a PDF file, spread a large
number of imperceptible echoes all over an audio file, or reset all low-order bits in
an image file to 0. Media watermarking research is a game between the good guys
who build marking algorithms that produce robust marks and the bad guys who
build algorithms that attempt to destroy these marks. In both cases, they want the
algorithms to have as little impact on a viewer’s/listener’s perception as possible.

Of course, our interest in this book is watermarking software, not media. But
many of the principles are the same. Given a program P , a watermark w, and a
key k, a software watermark embedder produces a new program Pw. We want Pw

to be semantically equivalent to P (have the same input/output behavior), be only
marginally larger and slower than P , and of course, contain the watermark w. The
extractor takes Pw and the key k as input and returns w.

1.6.1 An Example
Take a look at the example in Listing 1.6�39. How many fingerprints with the value
çBobç can you find? Actually, that’s not a fair question! As we’ve noted, we must

1.6 Software Watermarking 39

Listing 1.6 Watermarking example.

import java.awt.*;

public class WMExample extends Frame Š

static String code (int e) Š

switch (e) Š

case 0 : return çvoidedç;

case 6 : return çcheckç;

case 5 : return çbalanceç;

case 4 : return çoverdraftç;

case 2 : return çtransferç;

case 1 : return çcountersignç;

case 3 : return çbillingç;

default: return çBogus!ç;

ł

ł

public void init(String name) Š
Panel panel = new Panel();

setLayout(new FlowLayout(FlowLayout.CENTER, 10, 10));

add(new Label(name));

add (çCenterç, panel);
pack();

show();

ł

public static void main(String args[]) Š

String fingerprint = çBobç;

if (args[0].equals(ç42ç))
new WMExample().init(code(7).substring(0,2) + code(5).charAt(0));

int x = 100;

x = 1 - (3 % (1 - x));

ł

ł

assume that the algorithms Doris is using are public, and that the only thing she’s
able to keep secret are the inputs to these algorithms. But nevertheless, have a look
and see what you can find. One fingerprint stands out, of course, the string variable
çfingerprintç! Not a very clever embedding, one might think, but easy to insert
and extract, and if nothing else it could serve as a decoy, drawing Axel’s attention
away from more subtle marks.

40 What Is Surreptitious Software?

What else? Take a look at the codemethod. What Doris did here was to encode
the string çBobç in base 26 as bob26 = 1 ·262 + 14 ·161 + 1 = 104110, using a = 0, b =
1, . . . , o = 14, . . . , z = 25. She then turned 1041 into a permutation of the integers
〈0, 1, 2, 3, 4, 5, 6〉, getting

〈0 → 0, 1 → 6, 2 → 5, 3 → 4, 4 → 2, 5 → 1, 6 → 3〉

This permutation, in turn, she used to reorder the cases of the switch statement
in the code method. To extract the mark, she would have to do the process in
reverse. First, she would need to find the method into which the mark is embed-
ded (the secret key would point out the code method), extract the permutation
from the switch statement, turn the permutation into 1041, and finally, decode that
as the string çbobç. There are many algorithms that, like this one, are based on
permuting aspects of a program to embed a mark. The very first published water-
marking algorithm [104,263] (a Microsoft patent), for example, permutes the basic
blocks of a function’s control flow graph. In Section 8.4�486, we will discuss this
further.

Now what about the statement x=1-(3%(1-x))? Here, Doris created a translation
table from letters to binary operators:

+ − * / %
1 a b c d e
2 f g h i j
3 k l m n o
4 p q r s t
5 u v w x y
6 z

Thus, the three letters of the string çbobç turn into the operand/operator-pairs
1-, 3%, 1-, which when stitched together become x=1-(3%(1-x)). This is similar in
flavor to an algorithm by Monden [252,263] et al., which we will talk about in
Section 8.7.1�505.

The three marks we’ve seen so far are all static, i.e., they’re embedded directly
into the code of the program. In our example we’ve embedded into source code,
but we could have used any convenient program representation, including binary
code, Java bytecode, or any of the many intermediate code forms used in compilers.
We will discuss static algorithms further in Chapter 8.

There is one final mark in the program, however, and this is a dynamic finger-
print. What this means is that the fingerprint only appears at runtime, and only for

1.6 Software Watermarking 41

a particular input to the program. When Doris starts the example program with the
secret input key 42, the statement

new WMExample().init(code(7).substring(0,2) + code(5).charAt(0));

executes and displays the embedded fingerprint:

In Chapter 9 (Dynamic Watermarking), we will discuss these types of watermarks.
In practice, of course, they are never as obvious as this: It’s too easy for Axel to find
the code that would pop up a window with a string in it. Rather, the watermark is
hidden somewhere in the dynamic state of the program, and this state gets built only
for the special, secret input. A debugger or a special-purpose recognizer can then
examine the state (registers, the stack, the heap, and so on) to find the fingerprint.

1.6.2 Attacks on Watermarking Systems
As in every security scenario, you need to consider possible attacks against the
watermark. Doris has to assume, of course, that Axel will try to destroy her marks
before trying to resell the program. And, unfortunately, there’s one attack that will
always succeed, that will always manage to destroy the watermark. Can you think of
what it is? To be absolutely sure that the program he’s distributing doesn’t contain
a watermark, well, Axel can just rewrite the program from scratch, sans the mark!4

We call this a rewrite attack:

Extract ?Rewrite
Attack P”

42
P’

Axel can also add his own watermarks to the program. We call this an additive
attack:

4. Yeah, yeah, so what if it was a trick question?

42 What Is Surreptitious Software?

Extract ?Additive
Attack42

P’
42
P” 11

23
19

An additive attack might confuse Doris’ recognizer, but more important, it may help
Axel to cast doubt in court as to whose watermark is the original one. A distortive
attack applies semantics-preserving transformations (such as code optimizations,
code obfuscations, and so on) to try to disturb Doris’ recognizer:

?Distortive
Attack

Semantics-
preserving

transformations

P’
42

ExtractP”
42

Finally, Axel can launch a collusive attack against a fingerprinted program by buying
two differently marked copies and comparing them to discover the location of the
fingerprint:

P2
17

P1
42

P’’ Extract
Collusive

Attack ?

To prevent such an attack, Doris should apply a different set of obfuscations to each
distributed copy, ensuring that comparing two copies of the same program will yield
little information.

One clever attack that Axel may try to use is not an attack on the watermark
itself. Rather, Axel could try to bring into question the validity of Doris’ watermark
by pretending that the software contains his own watermark. Axel simply writes
his own recognizer that “recognizes” this program as containing his mark. If he is
successful, we could not tell which was the true recognizer and Doris would not be
able to present a legally convincing claim on her own program.

In Chapter 8 and Chapter 9 we will describe many software watermarking
algorithms. Some will be useful for watermarking entire applications, others are

1.7 Software Similarity 43

good for parts of applications. Some will work for binary code, others are for typed
bytecode. Some will embed stealthy marks, some will embed large marks, some will
embed marks that are hard to remove, and some will have low overhead. However,
we know of no algorithm that satisfies all these requirements. This is exactly the
challenge facing the software watermarking researcher.

1.7 Software Similarity
There’s a class of software protection problems that are not amenable to algorithms
based on code transformations, and we lump them together under the term soft-
ware similarity analysis. They have in common that, conceptually, they rely on your
being able to determine if two programs are very similar or if one program is (par-
tially) contained in another. We capture this in the two functions similarity and
containment:

similarity P , Q = ?%

containment Q ,
P

Q' = ?%

1.7.1 Plagiarism
We think of plagiarism as chiefly occurring in academic settings where students
copy each other’s assignments or researchers copy each other’s work, but it’s really
found anywhere that some humans create and others try making a shortcut to profit
by “borrowing” these creations. Ideas from works of art are copied, as are pieces
of music, furniture, or fashion designs and so on. Over the years, many famous
authors, artists, and musicians have found themselves in court for incorporating
too much of a colleague’s work into their own. Exactly what “too much” means
is ultimately left up to the courts to define. Famous cases include John Fogerty,
who was sued for plagiarizing himself (known as self-plagiarism) when his new
songs sounded too much like his old ones that were under copyright to a previous
publisher.

In this book, we’re interested in plagiarism of code. This occurs frequently in
computer science classes where students find it easier and faster to borrow their
classmates’ assignments than to write them from scratch themselves. Here, Axel

44 What Is Surreptitious Software?

has copied a piece of Doris’ program Q, inserted it into his own program P , and
submitted it as his own:

Carol AxelDoris

RQ
P

Q'

With large classes, it becomes impossible for computer science professors to man-
ually look for code copying in every pair of submitted programming assignments.
Instead (being programmers and used to automating everything), they build tools
that perform the comparisons automatically. For the example above, the output
might look something like this, listing all the pairs of programs in order, from most
likely to least likely to have been enhanced by copying:

similarity Q , R = 20%

similarity Q ,
P

Q'

P
Q'

= 80%

similarity R, = 10%

Automatic methods are best used to weed out from consideration programs highly
unlikely to be the result of plagiarism, leaving a few serious suspects for the professor
to examine by hand.

Students who are aware that instructors are using tools to look for copying will
naturally try to fool them. Simple code transformations such as renaming identifiers
and reordering functions are common, and it’s therefore important that plagiarism
detectors are immune to such transforms.

1.7.2 Software Forensics
Software forensics answers the question, “Who, out of a group of suspected pro-
grammers, wrote program S?” To answer the question, you need to start out with
code samples from all the programmers you think might have written S :

1.7 Software Similarity 45

Axel
Doris Carol

Q1

Q2

R1

R2

P1

P2

From these samples, you extract features that you believe are likely to uniquely iden-
tify each programmer and then compare them to the same features extracted from
S . From the example above, the output might look something like this, indicating
that Axel is much more likely to have written S than either Doris or Carol:

similarity f (Doris), f S = 20%

similarity f (Axel), f S = 80%

similarity f (Carol), f S = 10%

Here, f is the function that extracts a feature set from a program. Exactly which
set of features will best indicate authorship is hotly debated, but the feature sets
often include measures related to line length, function size, or the placement of
curly braces.

Most work on software forensics has been done on source code, but binary
code forensics is just as interesting. For example, once the FBI catches a suspected
malware author, they could compare his programming style to those of all known
viruses. Being able to bring a large collection of malware to court as evidence against
him might strengthen the government’s case.

1.7.3 Birthmarking
You’ve already encountered the idea of code lifting, a competitor copying a module
M from your program P into his own program Q:

Axel
Doris

P
M

Q
M

46 What Is Surreptitious Software?

Both obfuscation and watermarking can make this attack harder to mount success-
fully. By obfuscating P you make it more difficult to find M, or more difficult to
extract it cleanly from P . For example, you could mix M with code from other
modules so that along with M’s code any automatic extraction tool would produce
a whole lot of irrelevant code.

You could also embed a watermark or fingerprint in M. Say, for example, that
M is a graphics module produced by a third party (you) that Doris licenses to use
in her own game. If Doris’ fingerprint shows up in a program sold by Axel, you
could use that as evidence that he’s lifted it, and even evidence that he’s lifted it from
Doris’ program. You could take legal action against Axel for code theft or against
Doris if she’s not lived up to her license agreement to properly protect the module
from theft.

For a variety of reasons, you may choose not to use obfuscation and water-
marking. For example, both come with a performance penalty, and obfuscation can
make debugging and quality assurance difficult. Also, you may want to detect theft
of legacy code that was never protected against intellectual property attacks. Instead
of using either one, you could simply search for your module M inside the attacker’s
program Q:

containment
,

>> 50%
Q

MM

This works fine, unless the adversary has anticipated this and applied some code
transformations, such as obfuscation, to M (or possibly all of Q) to make it hard to
find M:

Axel
Doris

Q
M

Q
M'

P
M

Depending on the severity of the code transformations, this could make a
straightforward search for M difficult:

containment
,

<< 50%M
Q

M'

1.7 Software Similarity 47

This is where the concept of birthmark comes in. The idea is to extract “signals”
from Q and from M, and then look for M’s signal within Q’s signal rather than
looking for M directly within Q:

containment
f , f

>> 50%M
Q

M'

Here, f is a function that extracts the signal, which we call a birthmark, from a
program or module. The idea is to select the birthmark so that it’s invariant under
common code transformations such as obfuscation and optimization.

We know of at least one case where birthmarking was successfully used to
argue code theft. In a court case in the early 1980s [128], IBM sued a rival for
theft of their PC-AT ROM. They argued that the defendant’s programmers pushed
and popped registers in the same order as in the original code, which was essen-
tially a birthmark. They also argued that it would be highly unlikely for two pro-
grams to both say push R1; push R2; add when push R2; push R1; add is semantically
equivalent.

1.7.4 A Birthmarking Example
To be effective, a birthmarking algorithm must extract the mark from a language
feature that is hard for an attacker to alter. One idea that has been reinvented several
times and that we’ll explore further in Chapter 10 (Software Similarity Analysis) is
to compute the birthmark from the calls the program makes to standard library
functions or system calls. Some of these functions are difficult for the adversary to
replace with his own functions. For example, the only way to write to a file on Unix
is to issue the write system call. A birthmark extracted from the way the program
uses write system calls should therefore be reasonably robust against semantics-
preserving transformations.

Consider this C function that reads two strings from a file, converts them to
integers, and returns their product:

int x() Š

char str [100];

FILE *fp = fopen("myfile", "rb");

fscanf(fp,"%s",str);

int v1 = atoi(str);

fscanf(fp,"%s",str);

int v2 = atoi(str);

fclose(fp);

return v1*v2;

ł

48 What Is Surreptitious Software?

Several birthmark-extracting functions are possible. You could, for example, make
the birthmark be the sequence of calls to standard library functions:

bm1(x) = 〈fopen, fscanf, atoi, fscanf, atoi, fclose〉

Or you could ignore the actual sequence, since some calls are independent and could
easily be reordered. The resulting birthmark is now a set of the calls the function
makes:

bm2(x) = {atoi, fclose, fopen, fscanf}

Or you could take into account the number of times the function calls each library
function. The birthmark becomes a set of system calls and their frequency:

bm3(x) = {atoi �→ 2, fclose �→ 1, fopen �→ 1, fscanf �→ 2}

An attacker would get a copy of x, include it in his own program, P, and perform
a variety of transformations to confuse our birthmark extractor. Here, he’s renamed
the function, added calls to gettimeofday and getpagesize (functions he knows have
no dangerous side effects), reordered the calls to fclose and atoi, and added further
bogus calls to fopen and fclose:

void y() Š . . . ł

int f() Š

FILE *fp = fopen("myfile", "rb");

char str [100];

struct timeval tv;

gettimeofday (&tv, NULL);

fscanf(fp ,"%s",str);

int v1 = atoi(str);

fscanf(fp ,"%s",str);

fclose(fp);

int v2 = atoi(str);

int p = getpagesize () * getpagesize ();

fp = fopen("myfile", "rb");

fclose(fp);

return v1*v2;

ł

void z() Š . . . ł

1.8 Hardware-Based Protection Techniques 49

Bogus calls are shaded in dark gray. Assuming that the rest of P (functions y and z)
don’t contain any standard library calls, you get these possible birthmarks for P:

bm1(P) = 〈fopen, gettimeofday, fscanf, atoi, fscanf, fclose,
atoi, getpagesize, getpagesize〉

bm2(P) = {atoi, fclose, fopen, fscanf, getpagesize, gettimeofday}
bm3(P) = {atoi �→ 2, fclose �→ 2, fopen �→ 2, fscanf �→ 2,

getpagesize �→ 2, gettimeofday �→ 1}

To determine whether the attacker has included your function x in his program
P, you compute containment(bmi (x), bmi (P)), where containment returns a value
between 0.0 and 1.0 representing the fraction of x that’s contained in P. In this case,
it would seem like the attacker has done a pretty good job of covering his tracks and
altering the sequence of calls, the set of functions being called, and the frequency
of calls to the different functions.

1.8 Hardware-Based Protection Techniques
What makes it so difficult to design unassailable software protection techniques is
that you never have any solid ground to stand on. The difference between software
security and cryptography is that in cryptography you’re allowed to assume that
there is one secret (the key) that your adversary will never be able to get his hands
on. All security rises and falls with that assumption. In software protection, you
can assume no such safe zone. The code of your obfuscated, watermarked, and
tamperproofed program will always be available to the attacker for analysis because
the attacker (who may also be your customer!) needs the code in order to run it.

Hardware-based protection techniques try to change that by providing a safe
haven for data, code, and/or execution. The applications are the same as you’ve
already seen: to protect the code from reverse engineering, to prevent the code from
being tampered with, and to prevent illegal copying of the code. The difference is
that now you’ve got one piece of hardware whose integrity you can trust and on
which you can build protection schemes.

1.8.1 Distribution with Physical Token
The root cause of software piracy is that digital objects are trivial to clone. Cloning is
not unheard of in the physical world, of course: To see that, just visit one of the many
clothing and antique markets in China where near-identical copies of name-brand

50 What Is Surreptitious Software?

clothing lines and replicas of ancient artifacts are sold at cut-rate prices. Still, physical
cloning requires considerable skill and sophisticated tools, whereas cloning in the
virtual world only requires the attacker to learn how to use his computer’s copy
command.

Several software anti-piracy techniques are based on the idea that a program
will refuse to run unless the user first shows possession of a physical object. Thus,
you ship your program in two parts: the easily clonable binary code itself and a
hard-to-clone physical object that’s required for the binary to execute. The physical
object needs to somehow be connected to the computer so that the program can
occasionally check to see that the user actually has possession of it:

Axel
P
if(!present)

abort()

For the physical object to be effective, you need to manufacture it in such a way that
it’s difficult to clone without specialized and expensive tools. Two types of objects
have been common: dongles and program distribution disks (floppy disks, CDs, and
DVDs). Dongles are connected to a port on the computer, these days mostly the
USB port. The CD containing the application must be inserted into the computer’s
CD drive in order for it to run. Often, the CD is manufactured so that ordinary
copying software and hardware won’t be able to make an identical copy.

This anti-piracy technique has fallen out of favor for all but the most expensive
programs. There are many reasons. First, the technique has proven to be highly an-
noying to legitimate users who can’t make backup copies of their legally purchased
program, who lose the use of a port or a CD drive, and who can no longer use the
program if they misplace the physical object. Second, it’s also annoying to the man-
ufacturer who loses revenue from making and distributing the CD or dongle, who
needs to deal with users who misplace it, and who can no longer simply distribute
the program over the Internet.

1.8.2 Tying the Program to the CPU
If every manufactured copy of a CPU has a unique identity, you can solve the piracy
problem by distributing your program so that each copy is only executable by a

1.8 Hardware-Based Protection Techniques 51

CPU with a particular identity. In practice, this is typically done by including in
each CPU the private part of a unique public key cryptography key-pair along with
a decryption unit. Here, Doris encrypts her program with Axel’s public key and
distributes the encrypted program to him:

Encrypt
with

Axelpub

Doris
Axel

P' Decrypt

CPU

Axelpriv

P

P

As a result, even if Axel were to resell the program to his friends, their CPUs will
have different private keys and won’t be able to run the program.

This scheme isn’t without its own problems. First, manufacturing the CPU
becomes more complicated since every copy will have to contain a different key. One
solution is to squirt the key into the CPU after manufacturing and then disable any
further modifications. Second, selling shrink-wrapped programs becomes difficult
since every distributed copy needs to be differently encrypted. This may not be
much of a problem these days, when many programs are sold and downloaded over
the Internet. Finally, what happens when the user upgrades to a new computer with
a faster CPU? Since it will have a different private key, he will need new versions of
all the encrypted programs he ever bought. This means there must be some way for
him to convince the program manufacturer that he’s no longer using the old CPU
and that they should issue him a version to run on his new one.

1.8.3 Ensuring Safe Execution Environment
In the scenarios we consider in this book, Doris assumes that Axel’s computer, on
which her program is running, is an unsafe environment; it could contain hostile
programs (such as debuggers, binary editors, emulators, and disk copiers) that Axel
can use to pirate, tamper with, or reverse engineer her program.

There has been considerable effort to build protection systems that would
instead assure Doris that Axel’s computer is trustworthy, and that she can safely
allow him to run her program without fear of it being violated. This is difficult to do
using only software: The code on Axel’s computer that checks to see if he’s running
any unsafe programs could itself be hacked! The idea instead is to have one small
trusted hardware unit on Axel’s computer that helps Doris collect a reliable list of

52 What Is Surreptitious Software?

software that he’s running:

Whitelist

............

Linux 2.6.28

OpenBIOS 0.9

Scripts

OS

BIOS

Firmware

Trusted
Hardware

Axel Doris

Linux 2.6.28
OpenBIOS 1.0
............

Axel’s software

P

I trust you!

Here’s P !

The protocol starts with Axel asking Doris for a copy of her program P to run,
to which Doris responds, “Not so fast, prove to me that I can trust you first!”
Axel’s computer (with the help of the trusted hardware) then collects a list of all
its security-sensitive software and firmware and sends it to Doris. She compares it
to a list of software she trusts, and only when she’s convinced herself that Axel’s
computer constitutes a safe environment for P does she send it to him.

We’ve omitted many details here that you’ll learn about in Chapter 11. But
it shouldn’t be hard for you to spot right now some fundamental issues with this
scheme. First, any user who wants to run Doris’ program has to have a computer
that’s been fitted with extra hardware, and obviously this will come at a cost. Second,
Doris has to maintain a whitelist of all versions of all programs that she trusts, or a
blacklist of all versions of all programs that she doesn’t trust. Given the vast number
of programs available to run on many different hardware platforms and operating
system configurations, this is likely to be a huge logistic nightmare. Finally, an actual
protocol needs to take into account any privacy issues. For example, a user may not
want to reveal to every site he’s communicating with which software he’s running.

An additional issue that makes many people queasy is that this protocol would
be very useful in a digital rights management scenario. P would be the DRM player
and the protocol would assure Doris that Axel won’t be able crack it to get to the
decrypted media. This, in turn, would give Doris the confidence to allow Axel to
download encrypted media to play.

1.8.4 Encrypted Execution
The ultimate solution to the software protection problem is to encrypt the program.
As long as the program remains encrypted, the adversary can’t easily tamper with it,

1.8 Hardware-Based Protection Techniques 53

and can’t learn anything about its internal algorithms, and pirating it makes no sense
since it’s not executable. However, eventually you’ll want your user (and potential
adversary) to run the program. This means they will need access to the decryption
key, which will give them access to your program in cleartext, which means they can
do with it what they want. Game over.

For cryptography to provide unassailable protection, the program must remain
encrypted throughout its lifetime, until it’s safely within the CPU itself. The CPU
contains the key with which the program is encrypted. The key must never es-
cape the CPU capsule or the adversary will gain access to the cleartext program.
Schematically, crypto-processors are organized roughly like this:

Encrypted
data

RAM

Encrypted
code

encrypted
data bus

encrypted
address bus

Encrypt/
Decrypt

ALU

CPU

Cleartext
code

Cleartext
data

key

Axel

The program (and any sensitive data) is stored encrypted in RAM but decrypted
on the CPU itself. An encryption/decryption unit sits between the RAM and any
on-chip caches and decrypts incoming code and data and encrypts any outgoing
data.

As you will see in Chapter 11, to get this to work without revealing any infor-
mation, everything must be protected once it leaves the safe haven of the CPU. The
sequence of addresses that appear on the address bus can reveal information unless
they’re properly scrambled, the sequence of encrypted data values that appear on
the data bus can reveal information if they don’t change on every store, and the
adversary might even get away with tampering with the encrypted program unless
you check on every read that nothing has changed.

All this extra machinery obviously comes at a price, namely, performance. For
example, modern CPUs are designed to take advantage of the locality of reference
that programs typically display. If addresses are scrambled to hide access patterns,
then the advantages of caches and locality-improving code optimizations are nulli-
fied. There’s also the question of how you convince your ordinary users that they
should “upgrade” to a slower crypto-processor only for the benefit of protecting
your program from piracy and tampering by themselves. Even if it’s unlikely that

54 What Is Surreptitious Software?

they’ll make it into commodity PCs any time soon, crypto-processors have an im-
portant role to fill in financial systems such as ATMs.

1.8.5 Physical Barriers
Any software protection system that makes use of a crypto-processor assumes that
the secret key hidden within the CPU, in fact, remains hidden. An adversary, of
course, will try to violate that assumption! There have been many attacks devised
against smartcards, for example, since they are used in pay-TV systems, as stored-
value cards, and as tickets on mass-transit systems, and thus breaking their security
can provide financial gains to the attacker.

Attacks against crypto-processors are either invasive or non-invasive. Invasive
attacks, essentially, scrape off the top of the packaging to give direct physical access
to the internal circuitry. This can then be probed to reveal secret data (such as
keys) and algorithms encoded in hardware. A non-invasive attack doesn’t physically
abuse the CPU but rather feeds it bogus code or data, or forces it to operate under
adverse environmental conditions, all with the intention of coaxing it to give up its
secrets. For example, popular non-invasive attacks include delivering power spikes
or irregular clock signals to the processor, or subjecting it to radiation. This can
make it execute in a way its designers didn’t intend and, possibly, force it to reveal
secret code and data.

Crypto-processors include physical layers of protection to prevent these kinds
of attacks:

temperature radiation

power clock

penetration

CPU

if (tampering)

shut down

destroy private data

Axel
R
A
M

For example, sensors will alert the CPU if the temperature, voltage, clock signal,
or radiation level appears abnormal. If the CPU believes it’s under attack, it will
destroy any private data (such as keys), shut down, or even self-destruct. To prevent

1.9 Discussion 55

invasive attacks, the processor will have layers of shielding that make it difficult to
drill down to the internal circuitry. These shields can also have sensors that can alert
the CPU that it’s being probed.

Unfortunately, adding physical barriers will affect cost as well as performance.
The higher the clock frequency, the more heat the CPU dissipates, and the thicker
the layers of protection, the harder it will be for the processor to get rid of this
excess heat! As a result, processors with thick physical protection barriers will have
to be clocked at a lower frequency than equivalent unprotected processors.

1.9 Discussion
There are plenty of reasons to use the techniques you will read about in this book
to protect your code, and plenty of reasons not to. In the end, you must weigh the
pros and cons to see if using them makes sense in your particular case.

1.9.1 Reasons to Use Software Protection . . .
On the plus side, there are situations where even a short delay in cracking your code
will be beneficial. For example, these days computer games often escape into the
wild within days or a few weeks of release. Sometimes, as the result of insider attacks,
they even escape before they’re released! Since gamers are interested in playing the
latest and greatest, the revenue from a new game is typically collected within the
first few weeks of its release. Game manufacturers have therefore traditionally been
eager to adopt software protection techniques, even those that are sure to be cracked
within a very short time.

In situations where you’re selling a particularly high-value program, software
protection might also make sense. If every year you sell only a few tens of copies of a
software system that costs $100,000 per seat, the loss of even one sale due to piracy
could be devastating to your bottom line. In these situations, it’s common to use
a combination of hardware techniques (such as dongles) to prevent illegal copying
and software techniques (such as obfuscation) to protect the interface between the
hardware and the application.

In some situations, you may want to use software protection to prevent indi-
viduals from cracking your program, individuals you are unlikely to catch (because
they’re far off in another country) or who are legally untouchable (because they
have no assets to forfeit). In other cases, you may want to use software protection
as an aid in criminal prosecution. It is said that more money is lost to piracy per-
formed by corporations than by individuals. The reason is that corporations often

56 What Is Surreptitious Software?

will buy, say, 10 licenses to use a program but will let 50 of their employees use
it. These corporations have huge assets, and if you can prove license infringement,
you may actually have a chance to use the legal system to force them to abide by
the license agreement. Individuals, on the other hand, often crack a program or
download a pirated program that they would never have bought legally anyway.
The amount of revenue lost to this type of piracy may therefore not be as high
as often reported, and going after these types of adversaries is less likely to be
profitable.

1.9.2 . . . and Reasons Not To
On the downside, adding software protection to your program can cause problems
in terms of cost, performance, a more complex software development cycle, and
last but not least, annoyance to your legitimate users.

Costs can increase both during development and distribution. During develop-
ment, you have the option of purchasing a protection tool, developing one yourself,
or applying the protection techniques by hand. Regardless, you will be adding a
step and complexity to the development cycle. In several techniques you’ll see in
this book (such as fingerprinting and code encryption), every distributed copy of
your program will be unique. This means additional headaches during distribution,
quality assurance, and when fielding bug reports.

Many of the techniques you’ll see come with significant performance overhead.
And when we say “significant” we mean significant. Whether higher levels of pro-
tection necessarily incur a more severe performance hit is unknown, but it seems
not an unreasonable possibility. In the end, this may require you to make difficult
trade-offs: using techniques with low overhead and a low level of protection, using
powerful techniques with high overhead but only for the security-sensitive parts of
your program, or accepting the high overhead of a powerful protection technique
but only selling to users with sufficiently powerful computers.

Many software protection techniques have been cracked not because the at-
tacker necessarily wanted to pirate or reverse engineer the program, but because he
wanted to perform what to him seemed like reasonable operations on it. Maybe he
wanted to run the program on his laptop as well as his desktop computer, maybe
he wanted to make a backup copy of it, maybe he wanted to transfer it from his old
machine to his newly bought one, maybe he wanted to run the program without the
annoyance of having to enter a password or insert a CD or USB token every time,
and so on. Whether or not you, as the software developer, think these are legitimate
concerns, and whether or not the software license agreement allows it, the user may
well get ticked off enough to feel no qualms about cracking the program.

1.9 Discussion 57

And that’s not to mention bugs. Many of the techniques you will see in this
book are based on code transformations. As such, they’re very similar to the op-
timizing code transformations you’ll find in sophisticated compilers. And as such,
they’re susceptible to the usual menagerie of bugs. As a result, your program that
was perfectly functional before protection was added may exhibit erratic behavior
afterward, either as a result of a bug in the protection tool itself, or because its code
transformations revealed a latent bug in your own code.

1.9.3 So Which Algorithms Should I Use?
So you’ve written your fantastic new program and for whatever reasons you’ve
decided that it makes sense to add some sort of software protection to it. You’ve
bought this book5 and read it cover to cover in search of the One True Algorithm
to implement. Unfortunately, if this was your attitude, you will have been sorely
disappointed.

The problems facing software protection research are multitudinous, but it boils
down to one central issue: How do you evaluate the effectiveness of an algorithm?
Unfortunately, the state of the art is sorely lacking. Ideally, this book would end with
a single large table over all the algorithms that lists for each one effort to implement,
effort to defeat, parallelizability of attacks, and performance overhead.6 As you may
have already guessed, there’s no such table.

Without knowing how many more hours/days/weeks/months your program
will remain uncracked if you protect it with the algorithms in this book, how can
you know if software protection will make sense in your particular case? And without
being able to compare two algorithms to say that one is better than another, how can
you pick the right algorithm to use? And how does the field progress when a paper
purporting to present a new, improved algorithm can’t substantiate its claims?

Disturbing questions, indeed. In practice, software protection takes a belt-
and-suspenders approach to security. You layer protection algorithms until you’ve
convinced yourself that your program is secure “enough” while at the same time
remaining within performance bounds. If you can afford to, maybe you employ a
professional red-team to try to break through the defenses and give you some feel
for how long the protection will survive in the wild. But in the end, you have to
accept the fact that you’re engaged in a cat-and-mouse game: If crackers deem your
program sufficiently crack-worthy, eventually they’ll succeed. This situation may

5. Thanks!
6. Effort is measured in person wall-clock hours. A parallelizable attack can be sped up by simply
throwing more crackers at the problem.

58 What Is Surreptitious Software?

seem depressing, but it is not much different from other areas of life. In the end,
all it means is that you will have to monitor the efforts of your adversaries and be
prepared to continuously update your defenses.

1.10 Notation
In this book we have tried to devise a uniform naming convention for surreptitious
software algorithms. Every algorithm is referred to by a name that consists of a
prefix (WM for watermarking, OBF for obfuscation, TP for tamperproofing, and SS

for software similarity) followed by the authors’ surname initials. For algorithms
that attack programs we use the prefix RE (for reverse engineering). For a single
author algorithm, we use the initial of the surname followed by the initial of the
given name. When a list of authors have multiple algorithms, we add a subscript. If
two different lists of authors share the same initials, we add given name initials and
initials from the article title until names are disambiguated.

To facilitate navigating through the book, we’ve added page numbers to all
cross-references, using the following notation: “In Section 3.2.3�163 you will see the
totally awesome Algorithm 3.1�165”

Index

A
Abstract interpretation, 143–145,

516–521
Abstract operations, defined, 143
Abstract syntax tree (AST)

analysis based on, 631–635
defined, 181

Abstractions
algorithms for breaking, 277–297
defined, 143
role of, 277
transformation of, 21

Access, program
oracle, 336
types of, 337

Access control, 317–320
Additive attacks, 41–42, 484
Address bus, securing of, 690–694
Advertise primitive, 96, 107, 108–109
Alias analysis, 117

algorithms for, 138–141
described, 134–135
issues in, 136–138
protecting against, 560–561
settings for, 135–136

Aliases, 229–231
adding, 230
array, 250–251
and watermarking, 546–565

Analysis stage, 7
Anti-tamper research (AT), xix
API-based analysis, 625–626

algorithms for, 626–631
Aposematic coloration, 108
Apple Computer, xviii
Architecture-neutral formats, 67
Arrays

aliasing, 250–251
folding of, 276

merging of, 275
permutation of, 272–273
restructuring of, 274–276
splitting of, 274

Artificial diversity, 20
Arxan, xviii
Assertion checks, 445
Asset, defined, 305–306, 311
Attack

automation of, 71–72
on black box, 70
cracking, 68–69, 70, 75–81
differential, 81–82
motivation of, 61–65
methodologies of, 68–72
phases of, 68
preparatory phase of, 66–68
techniques of, 72–83
tools of, 72
on watermark, 484–485

Attack model, 6, 114–115
building algorithms from, 115–116
importance of, 60–61
issues addressed by, 60
for watermarking, 539–540

Attack semantics, 64
Attack strategies, 41–42

analyzing, 60–61
Attacker limits, defined, 311
Attestation identity key (AIK), 679–680
Audio, watermarking of, 472–474
Audio CDs, protection schemes for, 658–659
Authenticated boot, 670–673

distinguished from secure boot, 673
Authorship, of software, 605–606

algorithms to determine, 607, 646–652
Authorship mark, 470

inadvertent, 472
Availability, 63

737

738 Index

B
Basic blocks, 11

defined, 119
marking of, 515

Bidirectional debugging, 153
Binaries

encryption of, 359
stripped, 65, 66, 172–174

Birthmarking, xvi, 5, 30, 602
algorithms for, 610
credibility of, 612
described, 47, 472, 610–611
dynamic vs. static, 612
dynamic function call, 629–630
example of, 47–49
functions in, 612
indications for use of, 45–46
Java bytecode, 623–625
k-gram API, 630–631
object-oriented, 626–629
whole program, 641–644

Black hat code obfuscation, 26–27
types of, 27–32

Blackbox, 336
virtual, 338, 350

Block address table (BAT), 693–694
Block splitting, 235
Blu-ray discs, protection schemes

for, 664
Board-level protection, 708–711
Booleans

encoding of, 266–268
splitting of, 268–269

Boomerang, 71
Branch functions, 239, 592

attacks against, 245–246
Break points, 146

hardware, 149, 150
software, 150–152

Broadcast monitoring, 471
Brute-force attacks, 484
Build-and-execute strategy, 357–358
Bus encryption, 697

C
Call graph, 125–126
Camouflage, 106
CD-ROMs, protection schemes for,

660–661
CDs, protection schemes for, 658–659
Cheapskate problem, 347–348

CHECK function, 406, 411
accuracy and precision of, 409
distributed, 454

Checker network, 414–418
Checkpointing, 154, 157
Checksumming, 412
Chenxification, 226, 228, 234
Classes, splitting and merging of, 279–281
Classification marks, 472
Cleft sentence transformation, 477
Cloakware, xviii
Clone detection, 602

algorithm for, 604
AST-based, 631–635
metrics-based, 645–646
PDG-based, 636–639
phases of, 603

Clone detectors, 418, 603
Cloning, 49–50
Code checking, 406
Code obfuscation, xv, 5

of abstractions, 277–297
aliases, 229–231
background for, 201–202
black hat, 26–32
branch functions, 239
to complicate control flow, 225–246
described, 14
data encoding, 258–276
disadvantages of, 46
dynamic. See Dynamic obfuscation
example of, 15–16
history of, 202
non-semantics-preserving, 349–354
opaque predicates, 246–251
practicality of, 307–313
semantics-preserving, 202–217
and tamperproofing, 401
transformations in, 20–25
uses of, 16–20

Collusive attacks, 42, 158
Common subgraph, defined, 615
Computer security, aspects of, 1
Confidentiality, 63
Confusion, 103
Containment, 43

defined, 614–615
graph, 615

Contains function, 612
Content Scrambling System (CSS), 661–664
Continuous replacement, 462–464

Index 739

Control flow
bogus, 235–239
complicating, 225–246

Control flow analysis, 10, 119
CFGs in, 119–121
exceptions and, 121–122
interprocedural, 125
loops and, 125
self-modifying code and, 122–124

Control flow graphs (CFGs), 10, 117, 119
algorithm for building, 120–121
irreducible vs. reducible, 237
sample, 120

Control transformations, 21
Control-flow flattening, 24, 226–228

attacks against, 243–245
Convera, xviii
Copy protection, 657–658
Copy-on-write, defined, 157
Copy-paste-modify, 603
Copying code, 206–207
Core root of trust for measurement (CRTM), 672
Core semantics, 64
Correctness, defined, 305
Corrector slot values, 430–431
Cost, described, 224
Cover primitive, 89, 90–93
Cracking, 68–69

decompilation, 82–86
dynamic pattern matching in, 79–81
memory watching, 76–78
motivations for, 63–65
recovery of internal data in, 78–79
skills needed for, 83
static analysis in, 70
static pattern matching in, 75–76
tampering with environment, 79
targets of, 60–63

Crackmes, 86
Credibility

of birthmarking, 612
through sparse codes, 531, 533
of watermark, 482–483, 491–494

Crema, 209
Crypto-processors, 53, 54
Cryptography, xvi

incompleteness of protection afforded by, 3

D
Dallas Semiconductor DS50002FB

components of, 698

defenses of, 698–699
function of, 699
hacking of, 695–696, 699–700

Dash0, 210
Data bus, securing of, 694
Data dependence analysis, 132–133
Data encoding, 258–260

of arrays, 272
of booleans, 266–269
complications of, 260–261
of integers, 261–266
of literal data, 269–272

Data flow analysis, 11
described, 127–132

Data transformations, 21
Databases, obfuscation of, 322–324, 325–326
Debugging, 68–69, 146

breakpoints and, 146–147
checking for, 407–408
procedures in, 147–152
relative, 82, 146, 158–161
reverse, 146, 152–157

Decompilation, 13, 82–83, 118
algorithms for, 183–190
challenges of, 181–182
described, 180–181
example of, 83–86, 182–183
of high-level control flow, 183–188
of high-level languages, 188–190

Defense Department (DoD), xix–xi
Defense model, 6, 114–115

building algorithms from, 115–116
Defense strategies, 86

defense-in-depth, 89
evaluating, 87
notation conventions for, 87–89

Definition-use chain (du-chain), 131–132
Delete-empty function, 280
Demons, 88
Deobfuscating transformation

algorithm for, 312–313
defined, 311–312 [ed: here in text it’s

de-obfusc . . . , elsewhere it’s run in]
Deobfuscation, 217–219, 242

algorithms for, 243–246
combating, 301–304

DES
obfuscation of, 333–335
traditional, 331–333
Whitebox, 329–331

Detect function, 612

740 Index

Detect-respond primitive, 93, 110–111
Detection, of watermark, 481
Detector, in tamperproofing system

dynamic vs. static, 410
execution by, 410
precision of, 409–410

Differential attacks, 81–82
Differential power analysis (DPA), 707
Diffusion, 103
Digital rights management, 5, 16–18
Digital Rights Management (DRM) players,

crackability of, 60–65
Digital watermarks, 468
Direct threaded interpreter, 207
Disassembly, 10, 118

algorithm for, 178–180
challenges of, 172–174
dynamic vs. static, 173
linear vs. recursive, 174–178

Discriminant analysis, 651
Discrimination, software, 608
Disk-based protection, 50, 656

for anti-piracy, 657–664
Distance, types of, 613–614
Distortive attacks, 42, 484–485
Diversifying transformations, 203–204
Dominance tree, 125
Dongles, 50, 170

API for, 665–669
attacks on, 669–670
described, 665
disadvantages of, 711
emulators for, 669–670
function of, 656
history of, 664–665
obfuscation of API for, 667–669

Dotfuscator, 210
Duplicate primitive, 93–96, 299
DVDs, protection schemes for, 661–664
Dynamic analysis, 7, 8–9, 117

debugging, 146–161
emulation, 168–170
profiling, 161–163
tracing, 163–168

Dynamic code merging, 376–383
Dynamic fingerprints, 40–41, 158–159
Dynamic function call birthmarks, 629–630
Dynamic k-gram API birthmarks, 630–631
Dynamic obfuscation, 357

defined, 361
strategies for, 357

Dynamic obfuscator, described, 360–361
Dynamic primitive, 112–113, 398–399
Dynamic transformations, 21
Dynamic watermarking

algorithms for, 546–597
defined, 543–544
drawbacks of, 545–546, 598
need for, 541–543, 544

Dynamic whole program birthmarks, 641–644

E
Echo hiding, 473
Edge flips, protecting against, 557–558
Edge profiling, 162
Edit distance and similarity, 613, 614
Edit-compile-test cycle, 69
Effective obfuscating transformation,

defined, 220
Efficient program, defined, 339
Embedding

steganographic, 468, 522–526
techniques for, 539
of watermark, 481, 495–498

Emulation, 168
Emulators, 168–169

problems with, 170
uses of, 169–170

Encoding. See Data encoding
Encrypted execution

design for, 683–684
future of, 694–695
problems with, 688–694
XOM architecture, 685–688

Encryption
algorithms for, 385–392
of binaries, 359
bus traffic, 697
combined with self-modification, 392–398
drawbacks of, 384
homomorphic, 324, 326–329
implementation of, 384–385
program, 52–54
purpose of, 383

Environment checking, 406–407
Execution paths

expanding, 583–592
tamperproofing, 592–598

Expressions, equivalent, 203–204
External-checking, defined, 411
External-responding, defined, 411
Extract function, 481

Index 741

F
Faraday cage, 710
Fault induction attacks, 705–706
Filtering marks, 472
Fingerprint mark, 470–471
Fingerprinting, xv, 5, 38–39, 158

dynamic and static, 40–41
purpose of, 64, 467
system design for, 425–427
vs. watermarking, 485–486

Finite State Automaton, 215, 216
Flattening, control-flow, 24, 226–228
Floppy disks, protection schemes for, 661
Flow dependence, 132
Flow sensitivity, 118, 137
Forking, defined, 157
Fragile watermarks, 469–470
Frames, 87–88
Frequency spectrum analysis, 161
Function call birthmarks, 629–630
Functions

signatures of, 277–279
splitting and merging of, 205–206

G
General Chinese Remainder Theorem,

528
Glitch attacks, 705–706
Global analysis, 125
Global variables, as security risk, 562
Graph codecs, 533–534
Graph coloring, 492
Graph similarity, 615
Graph-based analysis, 635–636

algorithms for, 636–644
Graphical enumerations, 534
Grid computing, 19–20
Guard functions, 412

H
Halting problem, 308–309

and obfuscation, 310
Hamming distance and similarity, 613
Hardware breakpoints, 146, 149–150
Hardware-based protection, 49

to augment software-based protection,
655–656

board-level protection, 708–711
costs vs. benefits of, 711–712
cryptographic coprocessor, 708–711
disadvantages of, 711

distribution with physical token, 49–51,
656–670

ensuring a safe execution environment,
51–52

physical barriers, 54–55
program encryption, 52–54
tamperproof devices, 695–711
TPMs, 656, 670–683
tying program to the CPU, 50–51, 683–695

Hash functions, 239, 412
generating, 418–423
oblivious, 404, 447–450

Heap analysis, 138
High-definition movies, protection schemes

for, 664
High-level structures, destroying, 281–293
Homomorphism, defined, 265
Homomorphic encryption, 19, 324, 326–329
HoseMocha, 209

I
IBM 4758 coprocessor, 708

advantages and disadvantages of,
710–711

capabilities of, 708
characteristics of, 709
layers of protection of, 709–710
and processing power, 710

Identifier renaming, 209–212
Images, watermarking of, 474–475
Inadvertent authorship mark, 472
Indirect primitive, 104–105, 299
Inlining, function, 205
Input programs, defined, 311
Insert-empty function, 280
Instruction encodings, modifying, 293–297
Instructions

overlapping, 450–453
replacing, 362–366

Integers, encoding of, 261–263
Integrity, 63
Intel, xviii
Interesting events, defined, 195
Interference graph, 492
International Obfuscated C Code Contest

(IOCCC), 26
Interpreter, direct threaded, 207
Interprocedural analysis, 125
Intertrust, xviii
Interval construction, 427–428
Intraprocedural analysis, 124

742 Index

Introspection, 404, 412–413
algorithms for, 414–418
attacks on, 413
issues with, 444–445

Intrusion detection, 2
Invisible watermarks, 469
Irdeto, xviii
Irreducible, defined, 237
Isomorphic, defined, 616

J
Java bytecode birthmarks, 623–625
Java code, disassembly of, 10

K
k-gram, defined, 616
k-gram API birthmarks, 630–631
k-gram hashes, 616–619
k-gram-based analysis, 616

algorithms for, 616–625
Kruskal count, 174

L
Learnable functions, obfuscation of, 340–341
Least Significant Bit (LSB) encoding, 474
Levenshtein distance and similarity,

613–614
Library functions, vulnerability of, 73–75
Licensing marks, 471
Linear sweep, 174–178
Literal data, encoding of, 269–272
Local analysis, 125
Local stealth, 223
Locate-alter-test cycle, 69–70
Loops, identifying, 125

M
Map primitive, 101–104, 105, 108, 299, 399
Maximal common subgraph, defined, 615
May-alias problems, 136, 137
Mealy machine, 270–272
Media watermarking, 37–38, 468, 469

embedding in, 494–498
Memory remanence, 710
Memory splitting, 438–439
Memory watching, 76–78
Memory watchpoints, 150
Merge primitive, 96–100, 298, 399
Merging, 298

of classes, 279–281
of functions, 205–206

Meta-data marks, 471
Metamorphic virus, 32
Metrics

software complexity, 190, 193–195
style, 190, 191–193

Metrics-based analysis, 644–645
algorithms for, 645–652

Microsoft, xviii
Military, use of surreptitious software

by, xix–xxi
Millionaire problem, 348–349
Mimic functions, 106
Mimic primitive, 106–108, 298
Misdirection, 27
Mobile agent computing, 18–19
Mocha, 209
Modular exponentiation, 691
MoveUp function, 280, 282
Must-alias problems, 136
Mutual exclusion object, 566

N
Natural language text, watermarking

of, 475–478
Network firewall, 2
Node classes, unstealthy, 562–563
Node splitting, 237

protecting against, 558–559
Nodes-and-arcs, defined, 196
Nonce, defined, 679
Northern Telecom, xviii
Null cipher, 6

O
OBFAGcrypt algorithm, 392–394

deriving keystream, 394–396
example of, 396–398

OBFAGswap algorithm, 366–369, 378
auxiliary routines used in, 377
coding of, 376
example execution of, 374
function of, 369–374
overview of, 370

OBFAJV algorithm, 293–297, 299
OBFBDKMRVbool algorithm, 267–268
OBFBDKMRVcrypto algorithm, 263–266
OBFBDKMRVnum algorithm, 263
OBFCEJO algorithm, 329–335
OBFCF algorithm, 203–204
OBFCFcopy algorithm, 206–207, 299

Index 743

OBFCFinoutline algorithm, 205–206, 298
OBFCFinterp algorithm, 207–209, 299
OBFCFOE algorithm, 213
OBFCFreorder algorithm, 204–205, 299
OBFCKSP algorithm, 384–390

dealing with multiple paths, 391
encryption guards used in, 388
example of, 389–390
overview of, 386–387

OBFCTJalias algorithm, 230
OBFCTJarray algorithm, 274–276, 298
OBFCTJbogus algorithm, 235–239, 299
OBFCTJbool algorithm, 268–269
OBFCTJclass algorithm, 279–281, 298
OBFCTJOE algorithm, 213–215
OBFCTJpointer algorithm, 247–250, 299
OBFCTJslice algorithm, 257–258
OBFCTJthread algorithm, 251–253
OBFDMRVSL algorithm, 281

evaluation of, 291–293
example of use of, 284–291

OBFHC algorithm, 215–216
OBFKMNM algorithm, 362–364

example of, 364
function of, 365–366

OBFLBS algorithm, 314–322
OBFLDK algorithm, 239–242, 299
OBFMAMDSB algorithm, 376–380

concerns regarding, 383
examples of, 381–382
overview of, 380

OBFNS algorithm, 322–324
OBFPP algorithm, 324, 326–329
OBFTP algorithm, 209–212, 299
Obfuscated, defined, 339–340
Obfuscating transformation

defined, 219, 306
described, 20
efficiency of, 222
example of, 22–25
mechanics of, 21
strength of, 306
types of, 21, 220–222

Obfuscating viruses, 29–32
Obfuscation, xvi

general, 336–340
impossibility of, 340, 341–343
interactive, 346–349
possibility of, 313–335
provable, 313, 344–346
See also Code obfuscation

Obfuscation executives, 213–217
OBFWCsig algorithm, 277–279, 298
OBFWHKD algorithm, 226–228, 299
OBFWHKDalias algorithm, 230–234
OBFWHKDopaque algorithm, 250–251
OBFZCW algorithm, 272–273, 299
Object-oriented birthmarks, 626–629
Oblivious hashing, 404, 447–450
Observable behavior, defined, 219–220
Opaque expression, defined, 225
Opaque predicates, 246–247, 253

algorithms for, 247–251
attacks against, 253–258
defined, 143
interdependent, 238
types of, 225–226

Oracle access, 336
Oracle access computable probability, 338
Oriented parent-pointer tree codec, 534, 552
Outlining, function, 205
Overlap factor, 427

P
Parallelism, 566–569
Partial Sum Splitter, 524, 527
Passivization, natural language transformation,

477
Patchwork, 474
Pattern-matching attacks, 579–580
Permutation, 486–487

of arrays, 272–273
renumbering, 490–491
reordering, 488–490

Permutation graphs, 535–536
Phase-ordering problem, 212
Physical tokens, 49–51
Pioneer Protocol, 460–462
Plagiarism, 43

software, 43–44
types of, 608–609

Plagiarism detection, 602
algorithms for, 609–610, 619–623
PDG-based, 640–641

Planted plane cubic trees (PPCTs), 536
Platform configuration registers (PCRs), 675
Point functions, 314–322
Pointer analysis. See Alias analysis
Polymorphic virus, 32
Potency, described, 224
Potent obfuscating transformation, defined,

220–222

744 Index

Power analysis, 707–708
Pragmatic analysis, 118

software complexity metrics, 190, 193–195
style metrics, 190, 191–193

Precision, 409
defined, 409–410

PreEmptive Solutions, xviii
Primitives, 87

dynamic nature of, 112–113
listed, 90–112

Prisoner’s problem, 5
Privacy Certification Authority (PCA), 680
Product cipher, 104
Profiling

described, 161
implementation of, 162–163

Program analysis
dynamic and static, 7–8
stages of, 7

Program dependency graph (PDG), 133
clone detection based on, 636–639
plagiarism detection based on, 640–641

Program distribution disks, 50, 656
for anti-piracy, 658–664

Program encryption, 52–54
Program transformations, 118
Programming layout metrics, 647, 649
Programming structure metrics, 647, 650
Programming style metrics, 647, 650
Protection semantics, 64
Protocol attacks, 485

Q
Quines, 30

R
Race conditions, 251
Radix graphs, 535, 552
REAA algorithm, 311–313
Reaching definitions, 128, 130–131
REAMB algorithm, 122–124
REBB algorithm, 152–157
REBD algorithm, 433–435
RECG algorithm, 183–188
Recognition, of watermark, 481, 513–515
Recursive traversal, 174–178
Reducible, defined, 237
Reducible permutation graphs (RPGs), 536–537
References, 88
Regular expressions, obfuscating, 320–322
REHM algorithm, 178–180

Relative debugging, 82, 146, 159–161
defined, 158

RELJ algorithm, 163–168
REMASB algorithm, 245–246
Remote hardware, measuring, 459–462
Remote procedure call (RPC), 351–352
Remote tamperproofing, 34, 347, 404–405

algorithms for, 455–464
described, 453–454
distributed check and respond, 454
strategies for, 454–455

Remote-checking, defined, 411
Remote-responding, defined, 411
Renumbering, watermarking by, 490–491
Reorder primitive, 100–101, 299, 399
Reordering

of code and data, 204–205, 299
watermarking by, 488–490

Replay attacks, 688–690
REPMBG algorithm, 256–257
Resilience

described, 224
of watermark, 498–504

RESPOND function, 406, 411
distributed, 454
responses by, 410

Result checking, 406
REUDM algorithm, 243–245
Reverse debugging, 146, 152–157
Reverse engineering, xix, 8

combating through code obfuscation, 16
example of, 9–13

REWOS algorithm, 435–437, 440
responses to, 440–444

Rewrite attacks, 41
Robust watermarks, 469–470
Root of trust, 655, 656, 657

S
SandMark, 215
Secret marks, 472. See also Steganography
Secure boot, 673
Security

goals of, 63
through obscurity, xvi-xviii, 14, 102

Self-checking, defined, 411
Self-collusive attacks, 418
Self-hashing, attacking, 435–437
Self-modification strategy, 358–359

algorithms for, 366–376
combined with encryption, 392–398

Index 745

Self-modifying code, 122, 174
dealing with, 122–124
performance issues with, 362, 398
and stealth, 398

Self-plagiarism, 43
Self-Protecting Mobile Agents (SPMA), 281
Self-responding, defined, 411
Semantics, of program, 64
Semantics-preserving, defined, 118
Sequence similarity, 613
Series-parallel graphs, 636
Shape analysis, 138
SHriMP views, defined, 197–198
Shuffle buffer, 692
Side-channel attack, 691
Signature, of function, 277–279
Similarity

defined, 614
graph, 615
types of, 613–615

Simple power analysis (SPA), 707
Skype, xviii
Skype protocol, 431–433

attacks on, 433–435
Slicing, 141–143

preventing, 257–258
using, 455–459

Slots, 88
Small program, defined, 339
Smartcards

architecture and function of, 701–702
attacks against, 702
defense against attacks, 707–708
invasive attacks against, 703–705
non-invasive attacks against, 705–707
uses of, 701

Software birthmarking. See Birthmarking
Software breakpoints, 146, 150–152
Software complexity metrics, 190,

193–195
Software fingerprinting. See Fingerprinting
Software forensics, 44–45, 602

algorithm for, 607
attack model for, 607
described, 605
premises of, 606

Software protection
algorithm choice for, 57–58
distinguished from cryptography, 3–5
drawbacks of, 56–57
importance of, 54–55

Software Protection Initiative (SPI), xx–xxi
Software as a service (SAAS), 454
Software similarity analysis, 43

algorithm overview for, 652–653
API-based, 625–631
birthmarking, 47–49, 472, 610–612
clone detection, 602–604
graph-based, 635–644
k-gram based, 616–625
metrics-based, 644–652
plagiarism detection, 609–610
software forensics, 44–45, 606–607
tree-based, 631–635
types of, 602

Software tamperproofing. See Tamperproofing
Software visualization, 195–198
Software watermarking. See Watermarking
Source-code computable probability,

defined, 338
Sparse cut, 506
Split primitive, 96–100, 298
Splitting, 298, 404

of classes, 279–281
of functions, 205–206
of graphs, 554–556
of memory, 438–439
of watermark integers, 526–533

Spread spectrum, 498–499
SSEFM algorithm, 631–635
SSKH algorithm, 636–639
SSKK algorithm, 645–646
SSLCHY algorithm, 640–641
SSLM algorithm, 646–652

histograms in, 647
metrics selection for, 647, 649–650
overview of, 648

SSMCkgram algorithm, 623–625
SSMCwpp algorithm, 641–644
SSSDL algorithm, 630–631
SSSWAMOSS algorithm, 619–622

example of, 622–623
SSSWAWINNOW algorithm, 616–619
SSTNMM algorithm, 626–629
SSTONMM algorithm, 629–630
State inspection

algorithms for, 447–453
need for, 444–447

Static analysis, 7–8, 117, 398
abstract interpretation, 143–145
alias analysis, 134–141
control flow analysis, 119–126

746 Index

Static analysis (continued)
data dependence analysis, 132–133
data flow analysis, 127–132
described, 118–119
slicing, 141–143

Static fingerprints, 40
Static path feasibility analysis, 244
Stealth, 222–223

described, 224
local, 223
steganographic, 223, 224
of watermark, 505–516, 561

Steganographic embeddings, 468
algorithms for, 523–526
goals of, 522
systems for, 522

Steganographic stealth, 223
defined, 224

Steganography, 5
Stirmark, 470, 495
Stored measurement list (SML), 675
Stripped binaries, 65, 66

advantages of, 172
disassembly of, 172–174

Strong obfuscating transformation, defined, 306
Style metrics, 190, 191–193
Substitution, 103
Subtractive attacks, 484
Sun Microsystems, xviii
Superoperators, 207
Surreptitious software, xv

function of, xvi
importance of, xvi–xxii

Surreptitious software research
attack model and, 6–7
military use of, xviii–xxi

T
Tampering

checking for, 406–410
defined, 405
responding to, 410

Tamperproof devices
Dallas Semiconductor DS50002FB, 695–696,

698–700
IBM 4758, 708–711
Smartcards, 701–708
XBOX, 695–697

Tamperproof module, 672
Tamperproofing, xv, xvi

defined, 405

described, 32
example of, 35–36
of execution paths, 592–598
functions in, 404–405
obfuscation as adjunct to, 401
related to watermarking, 402, 494–498
remote, 34, 347, 404–405
system design for, 411–412, 425–427
uses of, 33–35, 402–404, 464
of watermarking widgets, 580–581

Tamper-resistant watermarks, 469
TEA (Tiny Encryption Algorithm), 79–80
Testing functions, 412
Text, watermarking of, 475–478
Thales Group, xix, 516
Threat model, developing, 83
Timing attacks, 706–707
TPCA algorithm, 414, 417–418

advantages of, 439
example of, 416–417
overview of, 415

TPCNS algorithm, 462–464
TPCVCPSJ algorithm, 447–450
TPGCK algorithm, 438–439
TPHMST algorithm, 423–424

advantages of, 439
corrector slot values, 430–431
example of, 428–429
interval construction in, 427–428
overview of, 424
and system design, 425–427

TPJJV algorithm, 450–453
TPSLSPDK algorithm, 459–460

uses of, 460–462
TPTCJ algorithm, 440–444

overview of, 442
TPZG algorithm, 455–459, 465

overview of, 456
Tracing, 163

algorithm for, 163–168
Transformation stage, 7
Translation, 101, 103
Tree-based analysis, 631–635
Treemap views, defined, 197–198
Trusted platform module (TPM), 656

applications of, 682–683
authenticated boot based on, 670–673
challenging of, 677–679
components of, 676
controversies regarding, 681–683
function of, 657, 670–671

Index 747

Java model of, 674
life events of, 676–677
measurements for, 673–676
privacy issues in, 680–681

U
Use-definition chain (ud-chain),

128–131

V
Validation marks, 471–472
Vertex profiling, 162
Virtual blackbox

alternate definition of, 350
defined, 338

Virus scanning, 2
Viruses, obfuscating, 29–32

signature of, 30
Visible watermarks, 469

W
Watermarking, 5

attacks on, 41–43, 484–485
of audio, 472–474
in CFGs, 506–508
credibility in, 482–483, 491–494,

531, 533
digital, 468
disadvantages of, 46
dynamic. See Dynamic watermarking
embedding of, 481, 495–498
example of, 38–41
vs. fingerprinting, 485–486
functions in, 480–482
history of, 468
of images, 474–475
issues in, 537–540
media, 37–38, 468, 469
by permutation, 486–494
purpose of, 64, 467
redundant pieces in, 528–531, 533
resiliency of, 498–504
robust vs. fragile, 469–470
of software, 478–480
splitting in, 526–533
static, 479–480
statistical, 498–504
stealth of, 505–516
tamperproofing of, 402, 494–498

of text, 475–478
uses of, 468–472
visible vs. invisible, 469

Weak cuts, 563–564
Whitebox cryptography, xviii
Whitebox DES, 329–331
Whitebox remote program execution,

352–354
Whole program birthmarks, 641–644
WMASB algorithm, 511–512, 523–526
WMCC algorithm, 516–521

advantages of, 520–521
embedding of watermark, 518–520
recognition of watermark, 520

WMCCDKHLSbf algorithm, 592
advantages and disadvantages of, 597–598
embedding in, 593
overview of, 594
recognition by, 595–596
tamperproofing of, 596–597

WMCCDKHLSpaths algorithm, 599, 600
advantages and disadvantages of, 591
described, 583
encoding and embedding in, 584–590
overview of, 584
recognition by, 590

WMCT algorithm, 546–547, 598
and data bitrate, 551–556
evaluation of, 564–565
example of, 547–549
graph encoding for, 552–554
graph splitting for, 554–556
overview of, 550
recognition problems with, 540–551
resiliency of, 557–561
stealth of, 561–564

WMDM algorithm, 468, 488–490
WMMC algorithm, 495–498
WMMIMIT algorithm, 505–506
WMNT algorithm, 565–566, 598, 599, 600

advantages and disadvantages of, 582–583
avoiding pattern-matching attacks,

579–580
example of, 574–577
function of, 566–568
issues with, 569
overview of, 574
recognition issues, 577–579
tamperproofing of, 580–581, 582
watermarking widgets in, 569–572

WMQP algorithm, 491–494

748 Index

WMSHKQ algorithm, 498–504
embedding of watermark, 500–502
problems with, 504
recognition of watermark, 502–504

WMVVS algorithm, 506–508, 599
embedding of watermark, 508–510, 513
recognition by, 513–515

X
XBOX

components of, 696–697
design of, 697
hacking of, 695, 696–697

XOM architecture, 685–686
instruction set modification for, 687–688

	Preface
	1 What Is Surreptitious Software?
	1.1 Setting the Scene
	1.2 Attack and Defense
	1.3 Program Analysis
	1.3.1 A Simple Reverse Engineering Example

	1.4 Code Obfuscation
	1.4.1 Applications of Code Obfuscation
	1.4.2 Obfuscating Transformations
	1.4.3 Black Hat Code Obfuscation

	1.5 Tamperproofing
	1.5.1 Applications of Tamperproofing
	1.5.2 An Example

	1.6 Software Watermarking
	1.6.1 An Example
	1.6.2 Attacks on Watermarking Systems

	1.7 Software Similarity
	1.7.1 Plagiarism
	1.7.2 Software Forensics
	1.7.3 Birthmarking
	1.7.4 A Birthmarking Example

	1.8 Hardware-Based Protection Techniques
	1.8.1 Distribution with Physical Token
	1.8.2 Tying the Program to the CPU
	1.8.3 Ensuring Safe Execution Environment
	1.8.4 Encrypted Execution
	1.8.5 Physical Barriers

	1.9 Discussion
	1.9.1 Reasons to Use Software Protection . . .
	1.9.2 . . . and Reasons Not To
	1.9.3 So Which Algorithms Should I Use?

	1.10 Notation

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

