BJARNE STROUSTRUP

Programming

Principles and Practice Using G++

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

A complete list of photo sources and credits appears on pages 1235-1236.

The author and publisher have taken care in the preparation of this book, but make no expressed or im-
plied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed
for incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or spe-
cial sales, which may include electronic versions and/or custom covers and content particular to your busi-
ness, training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international @pearsoned.com

Copyright © 2009 Pearson Education, Inc.

Stroustrup, Bjarne.
Programming principles and practice using C++ / Bjarne Stroustrup.
p- cm.
Includes bibliographical references and index.
ISBN 978-0-321-54372-1 (pbk. : alk. paper) 1. C++ (Computer program language) I. Title.

QA76.73.C153582 2008
005.13'3—dc22
2008032595

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or
likewise. For information regarding permissions, write to:

Pearson Education, Inc.

Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116

Fax (617) 671-3447

ISBN-13: 978-0-321-54372-1

ISBN-10: 0-321-54372-6

Text printed in the United States on recycled paper at Courier in Kendallville, Indiana.
First printing, December 2008

Preface

“Damn the torpedoes!
Full speed ahead.”

—Admiral Farragut

Programming is the art of expressing solutions to problems so that a computer
can execute those solutions. Much of the effort in programming is spent finding
and refining solutions. Often, a problem is only fully understood through the
process of programming a solution for it.

This book is for someone who has never programmed before but is willing
to work hard to learn. It helps you understand the principles and acquire the
practical skills of programming using the C++ programming language. My aim
is for you to gain sufficient knowledge and experience to perform simple useful
programming tasks using the best up-to-date techniques. How long will that
take? As part of a first-year university course, you can work through this book in
a semester (assuming that you have a workload of four courses of average diffi-
culty). If you work by yourself, don’t expect to spend less time than that (maybe
15 hours a week for 14 weeks).

Three months may seem a long time, but there’s a lot to learn and you’ll be
writing your first simple programs after about an hour. Also, all learning is grad-
ual: each chapter introduces new useful concepts and illustrates them with exam-
ples inspired by real-world uses. Your ability to express ideas in code — getting a
computer to do what you want it to do — gradually and steadily increases as you
go along. I never say, “Learn a month’s worth of theory and then see if you can
use it.”

XXiii

XXiv

PREFACE

Why would you want to program? Our civilization runs on software. With-
out understanding software you are reduced to believing in “magic” and will be
locked out of many of the most interesting, profitable, and socially useful techni-
cal fields of work. When I talk about programming, I think of the whole spec-
trum of computer programs from personal computer applications with GUIs
(graphical user interfaces), through engineering calculations and embedded sys-
tems control applications (such as digital cameras, cars, and cell phones), to text
manipulation applications as found in many humanities and business applica-
tions. Like mathematics, programming — when done well — is a valuable intellec-
tual exercise that sharpens our ability to think. However, thanks to feedback
from the computer, programming is more concrete than most forms of math, and
therefore accessible to more people. It is a way to reach out and change the world
— ideally for the better. Finally, programming can be great fun.

Why C++? You can’t learn to program without a programming language,
and G++ directly supports the key concepts and techniques used in real-world
software. C++ is one of the most widely used programming languages, found in
an unsurpassed range of application areas. You find G++ applications every-
where from the bottom of the oceans to the surface of Mars. G++ is precisely
and comprehensively defined by a nonproprietary international standard. Qual-
ity and/or free implementations are available on every kind of computer. Most of
the programming concepts that you will learn using C++ can be used directly in
other languages, such as C, C#, Fortran, and Java. Finally, I simply like C++ as
a language for writing elegant and efficient code.

This is not the easiest book on beginning programming; it is not meant to
be. I just aim for it to be the easiest book from which you can learn the basics of
real-world programming. That’s quite an ambitious goal because much modern
software relies on techniques considered advanced just a few years ago.

My fundamental assumption is that you want to write programs for the use
of others, and to do so responsibly, providing a decent level of system quality;
that is, I assume that you want to achieve a level of professionalism. Conse-
quently, I chose the topics for this book to cover what is needed to get started
with real-world programming, not just what is easy to teach and learn. If you
need a technique to get basic work done right, I describe it, demonstrate concepts
and language facilities needed to support the technique, provide exercises for it,
and expect you to work on those exercises. If you just want to understand toy
programs, you can get along with far less than I present. On the other hand, I
won’t waste your time with material of marginal practical importance. If an idea
1s explained here, it’s because you’ll almost certainly need it.

If your desire is to use the work of others without understanding how things
are done and without adding significantly to the code yourself, this book is not
for you. If so, please consider whether you would be better served by another
book and another language. If that is approximately your view of programming,
please also consider from where you got that view and whether it in fact is ade-
quate for your needs. People often underestimate the complexity of program-

PREFACE

ming as well as its value. I would hate for you to acquire a dislike for program-
ming because of a mismatch between what you need and the part of the software
reality I describe. There are many parts of the “information technology” world
that do not require knowledge of programming. This book is aimed to serve
those who do want to write or understand nontrivial programs.

Because of its structure and practical aims, this book can also be used as a
second book on programming for someone who already knows a bit of C++ or
for someone who programs in another language and wants to learn C++. If you
fit into one of those categories, I refrain from guessing how long it will take you
to read this book, but I do encourage you to do many of the exercises. This will
help you to counteract the common problem of writing programs in older, famil-
iar styles rather than adopting newer techniques where these are more appropri-
ate. If you have learned C++ in one of the more traditional ways, you’ll find
something surprising and useful before you reach Chapter 7. Unless your name
1s Stroustrup, what I discuss here is not “your father’s G++.

Programming is learned by writing programs. In this, programming is similar
to other endeavors with a practical component. You cannot learn to swim, to play
a musical instrument, or to drive a car just from reading a book — you must prac-
tice. Nor can you learn to program without reading and writing lots of code. This
book focuses on code examples closely tied to explanatory text and diagrams. You
need those to understand the ideals, concepts, and principles of programming and
to master the language constructs used to express them. That’s essential, but by it-
self, it will not give you the practical skills of programming. For that, you need to
do the exercises and get used to the tools for writing, compiling, and running pro-
grams. You need to make your own mistakes and learn to correct them. There is
no substitute for writing code. Besides, that’s where the fun is!

On the other hand, there is more to programming — much more — than fol-
lowing a few rules and reading the manual. This book is emphatically not fo-
cused on “the syntax of C++.” Understanding the fundamental ideals, principles,
and techniques is the essence of a good programmer. Only well-designed code
has a chance of becoming part of a correct, reliable, and maintainable system.
Also, “the fundamentals” are what last: they will still be essential after today’s
languages and tools have evolved or been replaced.

What about computer science, software engineering, information technol-
ogy, etc.? Is that all programming? Of course not! Programming is one of the
fundamental topics that underlie everything in computer-related fields, and it has
a natural place in a balanced course of computer science. I provide brief intro-
ductions to key concepts and techniques of algorithms, data structures, user in-
terfaces, data processing, and software engineering. However, this book is not a
substitute for a thorough and balanced study of those topics.

Code can be beautiful as well as useful. This book is written to help you see
that, to understand what it means for code to be beautiful, and to help you to
master the principles and acquire the practical skills to create such code. Good
luck with programming!

XXv

XXVi

PREFACE

A note to students

Of the 1000+ first-year students we have taught so far using drafts of this book at
Texas A&M University, about 60% had programmed before and about 40% had
never seen a line of code in their lives. Most succeeded, so you can do it, too.

You don’t have to read this book as part of a course. I assume that the book
will be widely used for self-study. However, whether you work your way through
as part of a course or independently, try to work with others. Programming has
an — unfair — reputation as a lonely activity. Most people work better and learn
faster when they are part of a group with a common aim. Learning together and
discussing problems with friends is not cheating! It is the most efficient — as well
as most pleasant — way of making progress. If nothing else, working with friends
forces you to articulate your ideas, which is just about the most efficient way of
testing your understanding and making sure you remember. You don’t actually
have to personally discover the answer to every obscure language and program-
ming environment problem. However, please don’t cheat yourself by not doing
the drills and a fair number of exercises (even if no teacher forces you to do
them). Remember: programming is (among other things) a practical skill that
you need to practice to master. If you don’t write code (do several exercises for
each chapter), reading this book will be a pointless theoretical exercise.

Most students — especially thoughtful good students — face times when they
wonder whether their hard work is worthwhile. When (not if) this happens to you,
take a break, reread the preface, and look at Chapter 1 (“Computers, People, and
Programming”) and Chapter 22 (“Ideals and History”). There, I try to articulate
what I find exciting about programming and why I consider it a crucial tool for
making a positive contribution to the world. If you wonder about my teaching phi-
losophy and general approach, have a look at Chapter 0 (“Notes to the Reader”).

You might find the weight of this book worrying, but it should reassure you
that part of the reason for the heft is that I prefer to repeat an explanation or add an
example rather than have you search for the one and only explanation. The other
major part of the reason is that the second half of the book is reference material and
“additional material” presented for you to explore only if you are interested in
more information about a specific area of programming, such as embedded sys-
tems programming, text analysis, or numerical computation.

And please don’t be too impatient. Learning any major new and valuable
skill takes time and is worth it.

A note to teachers

No. This is not a traditional Computer Science 101 course. It is a book about
how to construct working software. As such, it leaves out much of what a com-
puter science student is traditionally exposed to (Turing completeness, state ma-

PREFACE

chines, discrete math, Chomsky grammars, etc.). Even hardware is ignored on
the assumption that students have used computers in various ways since kinder-
garten. This book does not even try to mention most important CS topics. It is
about programming (or more generally about how to develop software), and as
such it goes into more detail about fewer topics than many traditional courses. It
tries to do just one thing well, and computer science is not a one-course topic. If
this book/course is used as part of a computer science, computer engineering,
electrical engineering (many of our first students were EE majors), information
science, or whatever program, I expect it to be taught alongside other courses as
part of a well-rounded introduction.

Please read Chapter 0 (“Notes to the Reader”) for an explanation of my
teaching philosophy, general approach, etc. Please try to convey those ideas to
your students along the way.

Support

The book’s support website, www.stroustrup.com/Programming, contains a va-
riety of materials supporting the teaching and learning of programming using
this book. The material is likely to be improved with time, but for starters, you
can find:

* Slides for lectures based on the book

* An instructor’s guide

* Header files and implementations of libraries used in the book

* CGode for examples in the book

* Solutions to selected exercises

* Potentially useful links

e FErrata

Suggestions for improvements are always welcome.

Acknowledgments

I'd especially like to thank my late colleague and co-teacher Lawrence “Pete” Pe-
tersen for encouraging me to tackle the task of teaching beginners long before I'd
otherwise have felt comfortable doing that, and for supplying the practical teach-
ing experience to make the course succeed. Without him, the first version of the
course would have been a failure. We worked together on the first versions of the
course for which this book was designed and together taught it repeatedly, learn-
ing from our experiences, improving the course and the book. My use of “we” in
this book initially meant “Pete and me.”

Xxvii

Xxviii

PREFACE

Thanks to the students, teaching assistants, and peer teachers of ENGR 112
at Texas A&M University who directly and indirectly helped us construct this
book, and to Walter Daugherity, who has also taught the course. Also thanks to
Damian Dechev, Tracy Hammond, Arne Tolstrup Madsen, Gabriel Dos Reis,
Nicholas Stroustrup, J. C. van Winkel, Greg Versoonder, Ronnie Ward, and Leor
Zolman for constructive comments on drafts of this book. Thanks to Mogens
Hansen for explaining about engine control software. Thanks to Al Aho, Stephen
Edwards, Brian Kernighan, and Daisy Nguyen for helping me hide away from
distractions to get writing done during the summers.

Thanks to the reviewers that Addison-Wesley found for me. Their comments,
mostly based on teaching either C++ or Computer Science 101 at the college
level, have been invaluable: Richard Enbody, David Gustafson, Ron McCarty,
and K. Narayanaswamy. Also thanks to my editor, Peter Gordon, for many useful
comments and (not least) for his patience. I'm very grateful to the production
team assembled by Addison-Wesley; they added much to the quality of the book:
Julie Grady (proofreader), Chris Keane (compositor), Rob Mauhar (illustrator),
Julie Nahil (production editor), and Barbara Wood (copy editor).

In addition to my own unsystematic code checking, Bashar Anabtawi, Yinan
Fan, and Yuriy Solodkyy checked all code fragments using Microsoft C++ 7.1
(2003) and 8.0 (2005) and GCC 3.4.4.

I would also like to thank Brian Kernighan and Doug Mcllroy for setting a
very high standard for writing about programming, and Dennis Ritchie and Kristen
Nygaard for providing valuable lessons in practical language design.

Notes to the Reader

“When the terrain disagrees with the map,
ar 1%
trust the terrain.”

—Swiss army proverb

his chapter is a grab bag of information; it aims to give you
T an idea of what to expect from the rest of the book. Please
skim through it and read what you find interesting. A teacher
will find most parts immediately useful. If you are reading this
book without the benefit of a good teacher, please don’t try to
read and understand everything in this chapter; just look at “The
structure of this book” and the first part of the “A philosophy of
teaching and learning” sections. You may want to return and
reread this chapter once you feel comfortable writing and execut-

ing small programs.

CHAPTER O e NOTES TO THE READER

0.1 The structure of this book 0.3 Programming and computer science
0.1.1 General approach 0.4 Creativity and problem solving
0.1.2 Drills, exercises, etc.
0.1.3 What comes after this book? 0.5 Request for feedback
0.2 A philosophy of teaching and 0.6 References
learning 0.7 Biographies

0.2.1 The order of topics
0.2.2 Programming and programming

language

0.2.3 Portability

0.1 The structure of this book

This book consists of four parts and a collection of appendices:

Purt I, “The Basics,” presents the fundamental concepts and techniques of
programming together with the C++ language and library facilities
needed to get started writing code. This includes the type system, arith-
metic operations, control structures, error handling, and the design, im-
plementation, and use of functions and user-defined types.

FPart II, “Input and Output,” describes how to get numeric and text data
from the keyboard and from files, and how to produce corresponding
output to the screen and to files. Then, it shows how to present numeric
data, text, and geometric shapes as graphical output, and how to get
input into a program from a graphical user interface (GUI).

FPart ITI, “Data and Algorithms,” focuses on the C++ standard library’s con-
tainers and algorithms framework (the STL, standard template library).
It shows how containers (such as vector, list, and map) are implemented
(using pointers, arrays, dynamic memory, exceptions, and templates)
and used. It also demonstrates the design and use of standard library al-
gorithms (such as sort, find, and inner_product).

Fart IV, “Broadening the View,” offers a perspective on programming
through a discussion of ideals and history, through examples (such as
matrix computation, text manipulation, testing, and embedded systems
programming), and through a brief description of the C language.

Appendices provide useful information that doesn’t fit into a tutorial presen-
tation, such as surveys of C++ language and standard library facilities,
and descriptions of how to get started with an integrated development en-
vironment (IDE) and a graphical user interface (GUI) library.

0.1 THE STRUCTURE OF THIS BOOK

Unfortunately, the world of programming doesn’t really fall into four cleanly sep-
arated parts. Therefore, the “parts” of this book provide only a coarse classifica-
tion of topics. We consider it a useful classification (obviously, or we wouldn’t
have used it), but reality has a way of escaping neat classifications. For example,
we need to use input operations far sooner than we can give a thorough explana-
tion of C++ standard I/O streams (input/output streams). Where the set of topics
needed to present an idea conflicts with the overall classification, we explain the
minimum needed for a good presentation, rather than just referring to the com-
plete explanation elsewhere. Rigid classifications work much better for manuals
than for tutorials.

The order of topics is determined by programming techniques, rather than
programming language features; see §0.2. For a presentation organized around
language features, see Appendix A.

"To ease review and to help you if you miss a key point during a first reading
where you have yet to discover which kind of information is crucial, we place
three kinds of “alert markers” in the margin:

* Blue: concepts and techniques (this paragraph is an example of that)
* Green: advice

* Red: warning

0.1.1 General approach

In this book, we address you directly. That is simpler and clearer than the con-
ventional “professional” indirect form of address, as found in most scientific pa-
pers. By “you” we mean “you, the reader,” and by “we” we refer either to
“ourselves, the author and teachers,” or to you and us working together through
a problem, as we might have done had we been in the same room.

This book is designed to be read chapter by chapter from the beginning to
the end. Often, you'll want to go back to look at something a second or a third
time. In fact, that’s the only sensible approach, as you’ll always dash past some
details that you don’t yet see the point in. In such cases, you’ll eventually go back
again. However, despite the index and the cross-references, this is not a book that
you can open on any page and start reading with any expectation of success.
Each section and each chapter assume understanding of what came before.

Each chapter is a reasonably self-contained unit, meant to be read in “one sit-
ting” (logically, if not always feasible on a student’s tight schedule). That’s one
major criterion for separating the text into chapters. Other criteria include that a
chapter is a suitable unit for drills and exercises and that each chapter presents
some specific concept, idea, or technique. This plurality of criteria has left a few
chapters uncomfortably long, so please don’t take “in one sitting” too literally. In
particular, once you have thought about the review questions, done the drill, and

©

CHAPTER O o NOTES TO THE READER

worked on a few exercises, you'll often find that you have to go back to reread a
few sections and that several days have gone by. We have clustered the chapters
into “parts” focused on a major topic, such as input/output. These parts make
good units of review.

Common praise for a textbook is “It answered all my questions just as I
thought of them!” That’s an ideal for minor technical questions, and early read-
ers have observed the phenomenon with this book. However, that cannot be the
whole ideal. We raise questions that a novice would probably not think of. We
aim to ask and answer questions that you need to consider to write quality soft-
ware for the use of others. Learning to ask the right (often hard) questions is an
essential part of learning to think as a programmer. Asking only the easy and ob-
vious questions would make you feel good, but it wouldn’t help make you a pro-
grammer.

We try to respect your intelligence and to be considerate about your time. In
our presentation, we aim for professionalism rather than cuteness, and we’d
rather understate a point than hype it. We try not to exaggerate the importance
of a programming technique or a language feature, but please don’t underesti-
mate a simple statement like “This is often useful.” If we quietly emphasize that
something is important, we mean that you’ll sooner or later waste days if you
don’t master it. Our use of humor is more limited than we would have preferred,
but experience shows that people’s ideas of what is funny differ dramatically and
that a failed attempt at humor can be confusing.

We do not pretend that our ideas or the tools offered are perfect. No tool, li-
brary, language, or technique is “the solution” to all of the many challenges fac-
ing a programmer. At best, it can help you to develop and express your solution.
We try hard to avoid “white lies”; that is, we refrain from oversimplified explana-
tions that are clear and easy to understand, but not true in the context of real lan-
guages and real problems. On the other hand, this book is not a reference; for
more precise and complete descriptions of C++, see Bjarne Stroustrup, The C++
Programming Language, Special Edition (Addison-Wesley, 2000), and the ISO C++
standard.

0.1.2 Drills, exercises, etc.

Programming is not just an intellectual activity, so writing programs is necessary
to master programming skills. We provide two levels of programming practice:

* Dnlls: A drill 1s a very simple exercise devised to develop practical, al-
most mechanical skills. A drill usually consists of a sequence of modifica-
tions of a single program. You should do every drill. A drill is not asking
for deep understanding, cleverness, or initiative. We consider the drills
part of the basic fabric of the book. If you haven’t done the drills, you
have not “done” the book.

0.1 THE STRUCTURE OF THIS BOOK

» Exercises: Some exercises are trivial and others are very hard, but most
are intended to leave some scope for initiative and imagination. If you
are serious, you'll do quite a few exercises. At least do enough to know
which are difficult for you. Then do a few more of those. That’s how
you’ll learn the most. The exercises are meant to be manageable without
exceptional cleverness, rather than to be tricky puzzles. However, we
hope that we have provided exercises that are hard enough to challenge
anybody and enough exercises to exhaust even the best student’s avail-
able time. We do not expect you to do them all, but feel free to try.

In addition, we recommend that you (every student) take part in a small project
(and more if time allows for it). A project is intended to produce a complete useful
program. Ideally, a project is done by a small group of people (e.g., three people)
working together for about a month while working through the chapters in Part
III. Most people find the projects the most fun and what ties everything together.
Some people like to put the book aside and try some examples before read-
ing to the end of a chapter; others prefer to read ahead to the end before trying to
get code to run. To support readers with the former preference, we provide sim-
ple suggestions for practical work labeled “Try this:” at natural breaks in the
text. A Try this is generally in the nature of a drill focused narrowly on the topic
that precedes it. If you pass a Try this without trying — maybe because you are
not near a computer or you find the text riveting — do return to it when you do
the chapter drill; a Try this either complements the chapter drill or is a part of it.
At the end of each chapter you'll find a set of review questions. They are in-
tended to point you to the key ideas explained in the chapter. One way to look at
the review questions is as a complement to the exercises: the exercises focus on the
practical aspects of programming, whereas the review questions try to help you ar-
ticulate the ideas and concepts. In that, they resemble good interview questions.
The “Terms” section at the end of each chapter presents the basic vocabulary
of programming and of C++. If you want to understand what people say about
programming topics and to articulate your own ideas, you should know what
each means.
Learning involves repetition. Our ideal is to make every important point at
least twice and to reinforce it with exercises.

0.1.3 What comes after this book?

At the end of this book, will you be an expert at programming and at C++? Of €

course not! When done well, programming is a subtle, deep, and highly skilled
art building on a variety of technical skills. You should no more expect to be an
expert at programming in four months than you should expect to be an expert in
biology, in math, in a natural language (such as Chinese, English, or Danish), or
at playing the violin in four months — or in half a year, or a year. What you

_/

CHAPTER O o NOTES TO THE READER

should hope for, and what you can expect if you approach this book seriously, is
to have a really good start that allows you to write relatively simple useful pro-
grams, to be able to read more complex programs, and to have a good concep-
tual and practical background for further work.

The best follow-up to this initial course is to work on a real project develop-
ing code to be used by someone else. After that, or (even better) in parallel with a
real project, read either a professional-level general textbook (such as Stroustrup,
The C++ Programming Language), a more specialized book relating to the needs of
your project (such as Qt for GUI, or ACE for distributed programming), or a
textbook focusing on a particular aspect of C++ (such as Koenig and Moo, Accel-
erated C++; Sutter’s Exceptional C++; or Gamma et al., Design Patterns). For com-
plete references, see §0.6 or the Bibliography section at the back of the book.

Eventually, you should learn another programming language. We don’t con-
sider it possible to be a professional in the realm of software — even if you are not
primarily a programmer — without knowing more than one language.

0.2 A philosophy of teaching and learning

What are we trying to help you learn? And how are we approaching the process
of teaching? We try to present the minimal concepts, techniques, and tools for
you to do effective practical programs, including

* Program organization

* Debugging and testing

* Class design

+ Computation

* Function and algorithm design

* Graphics (two-dimensional only)

* Graphical user interfaces (GUIs)

¢ Text manipulation

* Regular expression matching

* Files and stream input and output (I/O)

* Memory management

* Scientific/numerical/engineering calculations

* Design and programming ideals

* The G++ standard library

*+ Software development strategies

* (G-language programming techniques

0.2 A PHILOSOPHY OF TEACHING AND LEARNING

Working our way through these topics, we cover the programming techniques
called procedural programming (as with the C programming language), data ab-
straction, object-oriented programming, and generic programming. The main
topic of this book is programming, that is, the ideals, techniques, and tools of ex-
pressing ideas in code. The C++ programming language is our main tool, so we
describe many of C++’s facilities in some detail. But please remember that C++
is just a tool, rather than the main topic of this book. This is “programming using
G++,” not “C++ with a bit of programming theory.”

Each topic we address serves at least two purposes: it presents a technique,
concept, or principle and also a practical language or library feature. For exam-
ple, we use the interface to a two-dimensional graphics system to illustrate the use
of classes and inheritance. This allows us to be economical with space (and your
time) and also to emphasize that programming is more than simply slinging code
together to get a result as quickly as possible. The C++ standard library is a
major source of such “double duty” examples — many even do triple duty. For
example, we introduce the standard library vector, use it to illustrate widely use-
ful design techniques, and show many of the programming techniques used to
implement it. One of our aims is to show you how major library facilities are im-
plemented and how they map to hardware. We insist that craftsmen must under-
stand their tools, not just consider them “magical.”

Some topics will be of greater interest to some programmers than to others.
However, we encourage you not to prejudge your needs (how would you know
what you'll need in the future?) and at least look at every chapter. If you read this
book as part of a course, your teacher will guide your selection.

We characterize our approach as “depth-first.” It is also “concrete-first” and
“concept-based.” First, we quickly (well, relatively quickly, Chapters 1-11) assem-
ble a set of skills needed for writing small practical programs. In doing so, we
present a lot of tools and techniques in minimal detail. We focus on simple con-
crete code examples because people grasp the concrete faster than the abstract.
That’s simply the way most humans learn. At this initial stage, you should not
expect to understand every little detail. In particular, you’ll find that trying some-
thing slightly different from what just worked can have “mysterious” effects. Do
try, though! And please do the drills and exercises we provide. Just remember
that early on you just don’t have the concepts and skills to accurately estimate
what’s simple and what’s complicated; expect surprises and learn from them.

We move fast in this initial phase — we want to get you to the point where
you can write interesting programs as fast as possible. Someone will argue, “We
must move slowly and carefully; we must walk before we can run!” But have you
ever watched a baby learning to walk? Babies really do run by themselves before
they learn the finer skills of slow, controlled walking. Similarly, you will dash
ahead, occasionally stumbling, to get a feel of programming before slowing down
to gain the necessary finer control and understanding. You must run before you
can walk!

©

CHAPTER O o NOTES TO THE READER

It is essential that you don’t get stuck in an attempt to learn “everything”
about some language detail or technique. For example, you could memorize all of
C++'s built-in types and all the rules for their use. Of course you could, and
doing so might make you feel knowledgeable. However, it would not make you a
programmer. Skipping details will get you “burned” occasionally for lack of
knowledge, but it 1s the fastest way to gain the perspective needed to write good
programs. Note that our approach is essentially the one used by children learning
their native language and also the most effective approach used to teach foreign
languages. We encourage you to seek help from teachers, friends, colleagues, in-
structors, Mentors, etc. on the inevitable occasions when you are stuck. Be as-
sured that nothing in these early chapters is fundamentally difficult. However,
much will be unfamiliar and might therefore feel difficult at first.

Later, we build on the initial skills to broaden your base of knowledge and
skills. We use examples and exercises to solidify your understanding, and to pro-
vide a conceptual base for programming.

We place a heavy emphasis on ideals and reasons. You need ideals to guide
you when you look for practical solutions — to know when a solution is good and
principled. You need to understand the reasons behind those ideals to under-
stand why they should be your ideals, why aiming for them will help you and the
users of your code. Nobody should be satisfied with “because that’s the way it is”
as an explanation. More importantly, an understanding of ideals and reasons al-
lows you to generalize from what you know to new situations and to combine
ideas and tools in novel ways to address new problems. Knowing “why” is an es-
sential part of acquiring programming skills. Conversely, just memorizing lots of
poorly understood rules and language facilities is limiting, a source of errors, and
a massive waste of time. We consider your time precious and try not to waste it.

Many C++ language-technical details are banished to appendices and manu-
als, where you can look them up when needed. We assume that you have the ini-
tiative to search out information when needed. Use the index and the table of
contents. Don’t forget the online help facilities of your compiler, and the web. Re-
member, though, to consider every web resource highly suspect until you have
reason to believe better of it. Many an authoritative-looking website is put up by
a programming novice or someone with something to sell. Others are simply out-
dated. We provide a collection of links and information on our support website:
www.stroustrup.com/Programming.

Please don’t be too impatient for “realistic” examples. Our ideal example is
the shortest and simplest code that directly illustrates a language facility, a con-
cept, or a technique. Most real-world examples are far messier than ours, yet do
not consist of more than a combination of what we demonstrate. Successful com-
mercial programs with hundreds of thousands of lines of code are based on tech-
niques that we illustrate in a dozen 50-line programs. The fastest way to
understand real-world code is through a good understanding of the fundamentals.

0.2 A PHILOSOPHY OF TEACHING AND LEARNING

On the other hand, we do not use “cute examples involving cuddly animals”
to illustrate our points. We assume that you aim to write real programs to be
used by real people, so every example that is not presented as language-technical
1s taken from a real-world use. Our basic tone is that of professionals addressing
(future) professionals.

0.2.1 The order of topics

There are many ways to teach people how to program. Clearly, we don’t sub-
scribe to the popular “the way I learned to program is the best way to learn” the-
ories. To ease learning, we early on present topics that would have been
considered advanced only a few years ago. Our ideal is for the topics we present
to be driven by problems you meet as you learn to program, to flow smoothly
from topic to topic as you increase your understanding and practical skills. The
major flow of this book is more like a story than a dictionary or a hierarchical
order.

It is impossible to learn all the principles, techniques, and language facilities
needed to write a program at once. Consequently, we have to choose a subset of
principles, techniques, and features to start with. More generally, a textbook or a
course must lead students through a series of subsets. We consider it our respon-
sibility to select topics and to provide emphasis. We can’t just present everything,
so we must choose; what we leave out is at least as important as what we leave in
— at each stage of the journey.

For contrast, it may be useful for you to see a list of (severely abbreviated)
characterizations of approaches that we decided not to take:

* “C first”: This approach to learning C++ is wasteful of students’ time
and leads to poor programming practices by forcing students to ap-
proach problems with fewer facilities, techniques, and libraries than nec-
essary. C++ provides stronger type checking than C, a standard library
with better support for novices, and exceptions for error handling.

s Bottom-up: This approach distracts from learning good and effective pro-
gramming practices. By forcing students to solve problems with insuffi-
cient support from the language and libraries, it promotes poor and
wasteful programming practices.

s U you present something, you must present it fully”: This approach implies a
bottom-up approach (by drilling deeper and deeper into every topic
touched). It bores novices with technical details they have no interest in
and quite likely will not need for years to come. Once you can program,
you can look up technical details in a manual. Manuals are good at that,
whereas they are awful for initial learning of concepts.

10

€

CHAPTER O o NOTES TO THE READER

* Top-down: This approach, working from first principles toward details,
tends to distract readers from the practical aspects of programming and
force them to concentrate on high-level concepts before they have any
chance of appreciating their importance. For example, you simply can’t
appreciate proper software development principles before you have
learned how easy it is to make a mistake in a program and how hard it
can be to correct it.

* “Abstract first”: Focusing on general principles and protecting the student
from nasty real-world constraints can lead to a disdain for real-world
problems, languages, tools, and hardware constraints. Often, this ap-
proach is supported by “teaching languages” that cannot be used later
and (deliberately) insulate students from hardware and system concerns.

* Software engineering principles first: This approach and the abstract-first ap-
proach tend to share the problems of the top-down approach: without
concrete examples and practical experience, you simply cannot appreci-
ate the value of abstraction and proper software development practices.

* “Object-oriented from day one”: Object-oriented programming is one of the
best ways of organizing code and programming efforts, but it is not the
only effective way. In particular, we feel that a grounding in the basics of
types and algorithmic code is a prerequisite for appreciation of the design
of classes and class hierarchies. We do use user-defined types (what some
people would call “objects”) from day one, but we don’t show how to de-
sign a class until Chapter 6 and don’t show a class hierarchy until Chap-
ter 12.

* “Yust believe in magic”: This approach relies on demonstrations of power-
ful tools and techniques without introducing the novice to the underly-
ing techniques and facilities. This leaves the student guessing — and
usually guessing wrong — about why things are the way they are, what it
costs to use them, and where they can be reasonably applied. This can
lead to overrigid following of familiar patterns of work and become a
barrier to further learning.

Naturally, we do not claim that these other approaches are never useful. In fact,
we use several of these for specific subtopics where their strengths can be appre-
ciated. However, as general approaches to learning programming aimed at real-
world use, we reject them and apply our alternative: concrete-first and depth-first
with an emphasis on concepts and techniques.

0.2.2 Programming and programming language

We teach programming first and treat our chosen programming language as sec-
ondary, as a tool. Our general approach can be used with any general-purpose

0.2 A PHILOSOPHY OF TEACHING AND LEARNING

programming language. Our primary aim is to help you learn general concepts,
principles, and techniques. However, those cannot be appreciated in isolation.
For example, details of syntax, the kinds of ideas that can be directly expressed,
and tool support differ from programming language to programming language.
However, many of the fundamental techniques for producing bug-free code, such
as writing logically simple code (Chapters 5 and 6), establishing invariants
(§9.4.3), and separating interfaces from implementation details (§9.7 and
§14.1-2), vary little from programming language to programming language.

Programming and design techniques must be learned using a programming
language. Design, code organization, and debugging are not skills you can ac-
quire in the abstract. You need to write code in some programming language and
gain practical experience with that. This implies that you must learn the basics of
a programming language. We say “the basics” because the days when you could
learn all of a major industrial language in a few weeks are gone for good. The
parts of C++ we present were chosen as the subset that most directly supports
the production of good code. Also, we present C++ features that you can’t avoid
encountering either because they are necessary for logical completeness or are
common in the C++ community.

0.2.3 Portability

It is common to write C++ to run on a variety of machines. Major C++ applica-
tions run on machines we haven’t ever heard of! We consider portability and the use
of a variety of machine architectures and operating systems most important. Essen-
tially every example in this book is not only ISO Standard C++, but also portable.
Unless specifically stated, the code we present should work on every C++ imple-
mentation and has been tested on several machines and operating systems.

The details of how to compile, link, and run a C++ program differ from system
to system. It would be tedious to mention the details of every system and every
compiler each time we need to refer to an implementation issue. In Appendix E, we
give the most basic information about getting started using Visual Studio and
Microsoft C++ on a Windows machine.

If you have trouble with one of the popular, but rather elaborate, IDEs (inte-
grated development environments), we suggest you try working from the com-
mand line; it’s surprisingly simple. For example, here is the full set of commands
needed to compile, link, and execute a simple program consisting of two source
files, my_file1.cpp and my_file2.cpp, using the GNU C++ compiler, g++, on a
Unix or Linux system:

g++—0 my_program my_file1l.cpp my_file2.cpp
my_program

Yes, that really is all it takes.

1

12

CHAPTER O o NOTES TO THE READER

0.3 Programming and computer science

Is programming all that there is to computer science? Of course not! The only
reason we raise this question is that people have been known to be confused
about this. We touch upon major topics from computer science, such as algo-
rithms and data structures, but our aim is to teach programming: the design and
implementation of programs. That is both more and less than most accepted no-
tions of computer science:

* More, because programming involves many technical skills that are not
usually considered part of any science

* Less, because we do not systematically present the foundation for the
parts of computer science we use

The aim of this book is to be part of a course in computer science (if becoming a
computer scientist is your aim), to be the foundation for the first of many courses
in software construction and maintenance (if your aim is to become a program-
mer or a software engineer), and in general to be part of a greater whole.

We rely on computer science throughout and we emphasize principles, but
we teach programming as a practical skill based on theory and experience, rather
than as a science.

0.4 Creativity and problem solving

The primary aim of this book is to help you to express your ideas in code, not to
teach you how to get those ideas. Along the way, we give many examples of how
we can address a problem, usually through analysis of a problem followed by
gradual refinement of a solution. We consider programming itself a form of prob-
lem solving: only through complete understanding of a problem and its solution
can you express a correct program for it, and only through constructing and test-
ing a program can you be certain that your understanding is complete. Thus,
programming is inherently part of an effort to gain understanding. However, we
aim to demonstrate this through examples, rather than through “preaching” or
presentation of detailed prescriptions for problem solving.

0.5 Request for feedback

We don’t think that the perfect textbook can exist; the needs of individuals differ
too much for that. However, we’d like to make this book and its supporting ma-
terials as good as we can make them. For that, we need feedback; a good text-
book cannot be written in isolation from its readers. Please send us reports on

0.6 REFERENCES

errors, typos, unclear text, missing explanations, etc. We’d also appreciate sug-
gestions for better exercises, better examples, and topics to add, topics to delete,
etc. Constructive comments will help future readers and we’ll post errata on our
support website: www.stroustrup.com/Programming.

0.6 References

Along with listing the publications mentioned in this chapter, this section also in-
cludes publications you might find helpful.

Austern, Matthew H. Generic Programming and the STL: Using and Extending the C++
Standard Template Library. Addison-Wesley, 1999. ISBN 0201309564

Austern, Matthew H. (editor). “Technical Report on C++ Standard Library Ex-
tensions.” ISO/IEC PDTR 19768.

Blanchette, Jasmin, and Mark Summerfield. C++ GUI Programming with Ot 4.
Prentice Hall, 2006. ISBN 0131872493.

Gamma, Erich, Richard Helm, Ralph Johnson, and John M. Vlissides. Design
Fatterns: Elements of Reusable Object-Oriented Software. Addison-Wesley, 1994. ISBN
0201633612.

Goldthwaite, Lois (editor). “Technical Report on C++ Performance.” ISO/IEC
PDTR 18015.

Koenig, Andrew (editor). The C++ Standard. ISO/TEC 14882:2002. Wiley, 2003.
ISBN 0470846747.

Koenig, Andrew, and Barbara Moo. Acelerated C++: Practical Programming by Example.
Addison-Wesley, 2000. ISBN 020170353X.

Langer, Angelika, and Klaus Kreft. Standard C++ 10Streams and Locales: Advanced
Programmer’s Guide and Reference. Addison-Wesley, 2000. ISBN 0201183951.

Meyers, Scott. Effective STL: 50 Specific Ways to Improve Your Use of the Standard Tem-
plate Library. Addison-Wesley, 2001. ISBN 0201749625.

Meyers, Scott. Effective C++: 55 Specific Ways to Improve Your Programs and Designs
(3rd Edition). Addison-Wesley, 2005. ISBN 0321334876.

Schmidt, Douglas C., and Stephen D. Huston. C++ Network Programming, Volume
1: Mastering Complexity with ACE and Fatterns. Addison-Wesley, 2002. ISBN
0201604647.

Schmidt, Douglas C., and Stephen D. Huston. C++ Network Programming, Volume
2: Systematic Reuse with ACE and Frameworks. Addison-Wesley, 2003. ISBN
0201795256.

Stroustrup, Bjarne. The Design and Evolution of C++. Addison-Wesley, 1994. ISBN
0201543303.

Stroustrup, Bjarne. “Learning Standard C++ as a New Language.” C/C++ Users
Fournal, May 1999.

13

14

CHAPTER O o NOTES TO THE READER

Stroustrup, Bjarne. The C++ Programming Language (Special Edition). Addison-
Wesley, 2000. ISBN 0201700735.

Stroustrup, Bjarne. “C and C++: Siblings”; “C and C++: A Case for Compati-
bility”; and “G and C++: Case Studies in Compatibility” C/C++ Users Journal,
July, Aug., Sept. 2002.

Sutter, Herb. Exceptional C++: 47 Engineering Puzdes, Programming Problems, and Solu-
tions. Addison-Wesley, 2000. ISBN 0201615622.

A more comprehensive list of references can be found in the Bibliography section
at the back of the book.

0.7 Biographies

You might reasonably ask, “Who are these guys who want to teach me how to
program?” So here is some biographical information. I, Bjarne Stroustrup, wrote
this book, and together with Lawrence “Pete” Petersen, I designed and taught the
university-level beginner’s (first-year) course that was developed concurrently
with the book, using drafts of the book.

Bjarne Stroustrup
oY AR I'm the designer and original implementer of the
C++ programming language. I have used the lan-
guage, and many other programming languages,
for a wide variety of programming tasks over the
last 30 years or so. I just love elegant and efficient
code used in challenging applications, such as
robot control, graphics, games, text analysis, and
networking. I have taught design, programming,
and C++ to people of essentially all abilities and
interests. I'm a founding member of the ISO stan-
dards committee for C++ where I serve as the
chair of the working group for language evolution.

This is my first introductory book. My other books, such as The C++ Pro-
gramming Language and The Design and Evolution of C++, were written for experi-
enced programmers.

I was born into a blue-collar (working-class) family in Arhus, Denmark, and
got my master’s degree in mathematics with computer science in my hometown
university. My Ph.D. in computer science is from Cambridge University, Eng-
land. I worked for AT&T for about 25 years, first in the famous Computer Sci-
ence Research Center of Bell Labs — where Unix, C, C++, and so much else
were invented — and later in AT&T Labs—Research.

I'm a member of the U.S. National Academy of Engineering, a Fellow of the
ACM, an IEEE Fellow, a Bell Laboratories Fellow, and an AT&T Fellow. As the

0.7 BIOGRAPHIES

first computer scientist ever, I received the 2005 William Procter Prize for Scien-
tific Achievement from Sigma Xi (the scientific research society).

I do have a life outside work. I'm married and have two children, one a med-
ical doctor and one a Ph.D. student. I read a lot (including history, science fiction,
crime, and current affairs) and like most kinds of music (including classical, rock,
blues, and country). Good food with friends is an essential part of life, and I
enjoy visiting interesting places and people, all over the world. To be able to
enjoy the good food, I run.

For more information, see my home pages: www.research.att.com/~bs and
www.cs.tamu.edu/people/faculty/bs. In particular, there you can find out how to
pronounce my name.

Lawrence “Pete” Petersen

In late 2006, Pete introduced himself as follows: “I
am a teacher. For almost 20 years, I have taught
programming languages at Texas A&M. I have
been selected by students for Teaching Excellence
Awards five times and in 1996 received the Distin-
guished Teaching Award from the Alumni Associ-
ation for the College of Engineering. I am a
Fellow of the Wakonse Program for Teaching Ex-
cellence and a Fellow of the Academy for Educa-
tor Development.

As the son of an army officer, I was raised on
the move. After completing a degree in philosophy at the University of Washing-
ton, I served in the army for 22 years as a Field Artillery Officer and as a Research
Analyst for Operational Testing. I taught at the Field Artillery Officer’s Advanced
Course at Fort Sill, Oklahoma, from 1971 to 1973. In 1979 I helped organize a
Test Officer’s Training Course and taught it as lead instructor at nine different lo-
cations across the United States from 1978 to 1981 and from 1985 to 1989.

In 1991 I formed a small software company that produced management soft-
ware for university departments until 1999. My interests are in teaching, design-
ing, and programming software that real people can use. I completed master’s
degrees in industrial engineering at Georgia Tech and in education curriculum
and instruction at Texas A&M. I also completed a master’s program in micro-
computers from NTS. My Ph.D. is in information and operations management
from Texas A&M.

My wife, Barbara, and I live in Bryan, Texas. We like to travel, garden, and
entertain; and we spend as much time as we can with our sons and their families,
and especially with our grandchildren, Angelina, Carlos, Tess, Avery, Nicholas,
and Jordan.”

Sadly, Pete died of lung cancer in 2007. Without him, the course would never
have succeeded.

15

CHAPTER O ¢ NOTES TO THE READER

Postscript

Most chapters provide a short “postscript” trying to give some perspective on the
information presented in the chapter. We do that in the realization that the infor-
mation can be — and often is — daunting and will only be fully comprehended
after doing exercises, reading further chapters (which apply the ideas of the chap-
ter), and a later review. Don’t panic. Relax; this is natural and expected. You
won'’t become an expert in a day, but you can become a reasonably competent
programmer as you work your way through the book. On the way, you’ll en-
counter much information, many examples, and many techniques that lots of
programmers have found stimulating and fun.

A Display Model

“T'’he world was black and white then.
[It] didn’t turn color
until sometime in the 1930s.”

—Calvin’s dad

his chapter presents a display model (the output part of GUI),
T giving examples of use and fundamental notions such as
screen coordinates, lines, and color. Line, Lines, Polygons, Axis, and
Text are examples of Shapes. A Shape is an object in memory that
we can display and manipulate on a screen. The next two chapters
will explore these classes further, with Chapter 13 focusing on their

implementation and Chapter 14 on design issues.

407

408

CHAPTER 12 o A DISPLAY MODEL

12.1 Why graphics? 12.7 Using Shape primitives
12.2 A display model 12.7.1 Graphics headers and main
. 12.7.2 An almost blank window
12.3 A first example 12.7.3 Axis
12.4 Using a GUI library 12.7.4 Graphing a function
. 12.7.5 Polygons
12.5 Coordinates 12.7.6 Rectangles
12.6 Shapes 12.7.7 Fill
12.7.8 Text
12.7.9 Images

12.7.10 And much more

12.8 Getting this to run
12.8.1 Source files

12.1 Why graphics?

Why do we spend four chapters on graphics and one on GUIs (graphical user
interfaces)? After all, this is a book about programming, not a graphics book.
There is a huge number of interesting software topics that we don’t discuss, and
we can at best scratch the surface on the topic of graphics. So, “Why graphics?”
Basically, graphics is a subject that allows us to explore several important areas of
software design, programming, and programming language facilities:

Graphics are useful. There is much more to programming than graphics
and much more to software than code manipulated through a GUI.
However, in many areas good graphics are either essential or very im-
portant. For example, we wouldn’t dream of studying scientific comput-
ing, data analysis, or just about any quantitative subject without the
ability to graph data. Chapter 15 gives simple (but general) facilities for
graphing data.

Graphics are fun. There are few areas of computing where the effect of a
piece of code is as immediately obvious and — when finally free of bugs
— as pleasing. We’d be tempted to play with graphics even if it wasn’t
useful!

Graphics provide lots of interesting code to read. Part of learning to program is
to read lots of code to get a feel for what good code is like. Similarly, the
way to become a good writer of English involves reading a lot of books,
articles, and quality newspapers. Because of the direct correspondence
between what we see on the screen and what we write in our programs,
simple graphics code is more readable than most kinds of code of similar
complexity. This chapter will prove that you can read graphics code after
a few minutes of introduction; Chapter 13 will demonstrate how you can
write it after another couple of hours.

12.2

A DISPLAY MODEL

Graphics are a fertile source of design examples. It is actually hard to design and
implement a good graphics and GUI library. Graphics are a very rich
source of concrete and practical examples of design decisions and design
techniques. Some of the most useful techniques for designing classes, de-
signing functions, separating software into layers (of abstraction), and
constructing libraries can be illustrated with a relatively small amount of

graphics and GUI code.

Graphics provide a good introduction to what is commonly called object-oriented pro-
gramming and the language features that support it. Despite rumors to the con-
trary, object-oriented programming wasn’t invented to be able to do
graphics (see Chapter 22), but it was soon applied to that, and graphics
provide some of the most accessible examples of object-oriented designs.

Some of the key graphics concepts are nontrivial. So they are worth teaching,
rather than leaving it to your own initiative (and patience) to seek out in-
formation. If we did not show how graphics and GUI were done, you
might consider them “magic,” thus violating one of the fundamental
aims of this book.

12.2 A display model

The 1ostream library is oriented toward reading and writing streams of characters
as they might appear in a list of numeric values or a book. The only direct sup-
ports for the notion of graphical position are the newline and tab characters. You
can embed notions of color and two-dimensional positions, etc., iIn a one-
dimensional stream of characters. That’s what layout (typesetting, “markup”)
languages such as Troff, Tex, Word, HT'TP, and XML (and their associated
graphical packages) do. For example:

<hr>

<h2>
Organization
</h2>

This list is organized in three parts:

Proposals, numbered EPddd, . . .
Issues, numbered Elddd, . . .
Suggestions, numbered ESddd, . . .

<p>Wetryto...
<p>

This is a piece of HITML specifying a header (<h2>. .. </h2>) a list (. ..
) with list items (<il> . . . </il>) and a paragraph (<p>). We left out most of

409

410

CHAPTER 12 o A DISPLAY MODEL

the actual text because it is irrelevant here. The point is that you can express lay-
out notions in plain text, but the connection between the characters written and
what appears on the screen is indirect, governed by a program that interprets
those “markup” commands. Such techniques are fundamentally simple and im-
mensely useful (just about everything you read has been produced using them),
but they also have their limitations.

In this chapter and the next four, we present an alternative: a notion of graph-
ics and of graphical user interfaces that is directly aimed at a computer screen.
The fundamental concepts are inherently graphical (and two-dimensional,
adapted to the rectangular area of a computer screen), such as coordinates, lines,
rectangles, and circles. The aim from a programming point of view is a direct cor-
respondence between the objects in memory and the images on the screen.

The basic model is as follows: We compose objects with basic objects provided
by a graphics system, such as lines. We “attach” these graphics objects to a window
object, representing our physical screen. A program that we can think of as the dis-
play itself, as “a display engine,” as “our graphics library,” as “the GUI library,” or
even (humorously) as “the small gnome writing on the back of the screen” then
takes the objects we have added to our window and draws them on the screen:

Display

Circle engine

attach 0)dra/o

attach()

Square

The “display engine” draws lines on the screen, places strings of text on the
screen, colors areas of the screen, etc. For simplicity, we’ll use the phrase “our
GUI library” or even “the system” for the display engine even though our GUI
library does much more than just drawing the objects. In the same way that our
code lets the GUT library do most of the work for us, the GUI library delegates
much of its work to the operating system.

12.3 A first example

Our job is to define classes from which we can make objects that we want to see
on the screen. For example, we might want to draw a graph as a series of con-
nected lines. Here is a small program presenting a very simple version of that:

12.3 A FIRST EXAMPLE 411

#include "Simple_window.h" // get access to our window library
#include "Graph.h" // get access to our graphics library facilities
int main()

{

using namespace Graph_lib; // our graphics facilities are in Graph_lib
Point tI(100,100); /I to become top left corner of window
Simple_window win(tl,600,400,"Canvas"); // make a simple window
Polygon poly; /I make a shape (a polygon)
poly.add(Point(300,200)); // add a point

poly.add(Point(350,100)); // add another point
poly.add(Point(400,200)); // add a third point
poly.set_color(Color::red); // adjust properties of poly

win.attach (poly); // connect poly to the window

win.wait_for_button(); /I give control to the display engine

}

When we run this program, the screen looks something like this:

412

CHAPTER 12 o A DISPLAY MODEL

Let’s go through the program line by line to see what was done. First we include
the headers for our graphics interface libraries:

#include "Simple_window.h" // get access to our window library
#include "Graph.h" /I get access to our graphics library facilities

Then, in main(), we start by telling the compiler that our graphics facilities are to
be found in Graph_lib:

using namespace Graph_lib; // our graphics facilities are in Graph_lib
Then, we define a point that we will use as the top left corner of our window:
Point tI(100,100); //to become top left corner of window
Next, we create a window on the screen:
Simple_window win(tl,600,400," Canvas"); // make a simple window

We use a class representing a window in our Graph_lib interface library called
Simple_window. The name of this particular Simple_window is win; that is, win
1s a variable of class Simple_window. The initializer list for win starts with the
point to be used as the top left corner, tl, followed by 600 and 400. Those are the
width and height, respectively, of the window, as displayed on the screen, meas-
ured in pixels. We'll explain in more detail later, but the main point here is that
we specify a rectangle by giving its width and height. The string Canvas is used
to label the window. If you look, you can see the word Canvas in the top left cor-
ner of the window’s frame.

On our screen, the window appeared in a position chosen by the GUI Ii-
brary. In §13.7.2, we’ll show how to choose a particular position, but for now,
we'll just take what our library picks; that’s often just right anyway.

Next, we put an object in the window:

Polygon poly; // make a shape (a polygon)

poly.add(Point(300,200)); //add a point
poly.add(Point(350,100)); // add another point
poly.add(Point(400,200)); //add a third point

We define a polygon, poly, and then add points to it. In our graphics library, a
Polygon starts empty and we can add as many points to it as we like. Since we
added three points, we get a triangle. A point is simply a pair of values giving the
x and y (horizontal and vertical) coordinates within a window.

12.3 A FIRST EXAMPLE 413

Just to show off, we then color the lines of our polygon red:
poly.set_color(Color::red); // adjust properties of poly
Finally, we attach poly to our window, win:
win.attach(poly); // connect poly to the window

If the program wasn’t so fast, you would notice that so far nothing had happened to
the screen: nothing at all. We created a window (an object of class Simple_window,
to be precise), created a polygon (called poly), painted that polygon red (Color::
red), and attached it to the window (called win), but we have not yet asked for that
window to be displayed on the screen. That’s done by the final line of the program:

win.wait_for_button(); /I give control to the display engine

To get a GUI system to display objects on the screen, you have to give control to
“the system.” Our wait_for_button() does that, and it also waits for you to
“press” (“click”) the “Next” button of our Simple_window before proceeding.
This gives you a chance to look at the window before the program finishes and
the window disappears. When you press the button, the program terminates,
closing the window.

In isolation, our window looks like this:

[=]

You'll notice that we “cheated” a bit. Where did that button labeled “Next” come
from? We built it into our Simple_window class. In Chapter 16, we’ll move from

414

CHAPTER 12 o A DISPLAY MODEL

Simple_window to “plain” Window, which has no potentially spurious facilities
built in, and show how we can write our own code to control interaction with a
window.

For the next three chapters, we’ll simply use that “Next” button to move
from one “display” to the next when we want to display information in stages
(“frame by frame”).

You are so used to the operating system putting a frame around each window
that you might not have noticed it specifically. However, the pictures in this and
the following chapters were produced on a Microsoft Windows system, so you
get the usual three buttons on the top right “for free.” This can be useful: if your
program gets in a real mess (as it surely will sometimes during debugging), you
can kill it by hitting the x button. When you run your program on another sys-
tem, a different frame will be added to fit that system’s conventions. Our only
contribution to the frame is the label (here, Canvas).

12.4 Using a GUI library

In this book, we will not use the operating system’s graphical and GUI (graphi-
cal user interface) facilities directly. Doing so would limit our programs to run on
a single operating system and would also force us to deal directly with a lot of
messy details. As with text I/O, we'll use a library to smooth over operating sys-
tem differences, I/O device variations, etc. and to simplify our code. Unfortu-
nately, C++ does not provide a standard GUI library the way it provides the
standard stream I/O library, so we use one of the many available C++ GUI Li-
braries. So as not to tie you directly into one of those GUTI libraries, and to save
you from hitting the full complexity of a GUI library all at once, we use a set of
simple interface classes that can be implemented in a couple of hundred lines of
code for just about any GUI library.

The GUI toolkit that we are using (indirectly for now) is called FLTK (Fast
Light Tool Kit, pronounced “full tick”) from www.fltk.org. Our code is portable
wherever FLTK is used (Windows, Unix, Mac, Linux, etc.). Our interface classes
can also be re-implemented using other toolkits, so code using them is potentially
even more portable.

The programming model presented by our interface classes is far simpler
than what common toolkits offer. For example, our complete graphics and GUI
interface library is about 600 lines of C++ code, whereas the extremely terse
FLTK documentation is 370 pages. You can download that from www.fltk.org,
but we don’t recommend you do that just yet. You can do without that level of
detail for a while. The general ideas presented in Chapters 12-16 can be used
with any popular GUI toolkit. We will of course explain how our interface
classes map to FLTK so that you will (eventually) see how you can use that (and
similar toolkits) directly, if necessary.

12.5 COORDINATES 415

We can illustrate the parts of our “graphics world” like this:

Our code ()
\

Our interface library

\

A graphics/GUTI library
(here FLTK)

N\

The operating system
(e.g., Windows or Linux)

Our screen

Our interface classes provide a simple and user-extensible basic notion of two-
dimensional shapes with limited support for the use of color. To drive that, we
present a simple notion of GUI based on “callback” functions triggered by the
use of user-defined buttons, etc. on the screen (Chapter 16).

12.5 Coordinates

A computer screen is a rectangular area composed of pixels. A pixel is a tiny spot ()
that can be given some color. The most common way of modeling a screen in a
program is as a rectangle of pixels. Each pixel is identified by an x (horizontal) co-
ordinate and a y (vertical) coordinate. The x coordinates start with 0, indicating

the leftmost pixel, and increase (toward the right) to the rightmost pixel. The y
coordinates start with 0, indicating the topmost pixel, and increase (toward the
bottom) to the lowest pixel:

0,0

200,0 —

50,50

0,100 100,200

416

©

CHAPTER 12 o A DISPLAY MODEL

Please note that y coordinates “grow downward.” Mathematicians, in particular,
find this odd, but screens (and windows) come in many sizes, and the top left
point is about all that they have in common.

The number of pixels available depends on the screen: 1024-by-768, 1280-by-
1024, 1450-by-1050, and 1600-by-1200 are common screen sizes.

In the context of interacting with a computer using a screen, a window 1s a
rectangular region of the screen devoted to some specific purpose and controlled
by a program. A window is addressed exactly as a screen. Basically, we see a win-
dow as a small screen. For example, when we said

Simple_window win(tl,600,400," Canvas");

we requested a rectangular area 600 pixels wide and 400 pixels high that we can
address 0-599 (left to right) and 0-399 (top to bottom). The area of a window that
you can draw on is commonly referred to as a canvas. The 600-by-400 area refers to
“the inside” of the window, that is, the area inside the system-provided frame; it
does not include the space the system uses for the title bar, quit button, etc.

12.6 Shapes

Our basic toolbox for drawing on the screen consists of about a dozen classes:

(Window) (Line_style) (Color)

(Simple_window)

[Line) (Lines) (Polygon) (Axis) (Rectangle) (Text) (Image]

An arrow indicates that the class pointing can be used where the class pointed to
1s required. For example, a Polygon can be used where a Shape is required; that
1s, a Polygon is a kind of Shape.

We will start out presenting and using

* Simple_window, Window

* Shape, Text, Polygon, Line, Lines, Rectangle, Function, etc.

* Color, Line_style, Point

* Axis

12.7 USING SHAPE PRIMITIVES

Later (Chapter 16), we'll add GUI (user interaction) classes:
* Button, In_box, Menu, etc.

We could easily add many more classes (for some definition of “easy”), such as
» Spline, Grid, Block_chart, Pie_chart, etc.

However, defining or describing a complete GUI framework with all its facilities
is beyond the scope of this book.

12.7 Using Shape primitives

In this section, we will walk you through some of the primitive facilities of our
graphics library: Simple_window, Window, Shape, Text, Polygon, Line, Lines,
Rectangle, Color, Line_style, Point, Axis. The aim is to give you a broad view of
what you can do with those facilities, but not yet a detailed understanding of any
of those classes. In the next chapters, we explore the design of each.

We will now walk through a simple program, explaining the code line by line
and showing the effect of each on the screen. When you run the program you’ll
see how the image changes as we add shapes to the window and modify existing
shapes. Basically, we are “animating” the progress through the code by looking at
the program as it is executed.

12.7.1 Graphics headers and main

First, we include the header files defining our interface to the graphics and GUI
facilities:

#include "Window.h" // a plain window
#include "Graph.h"

or

#include "Simple_window.h" //if we want that “Next” button
#include "Graph.h"

As you probably guessed, Window.h contains the facilities related to windows
and Graph.h the facilities related to drawing shapes (including text) into win-
dows. These facilities are defined in the Graph_lib namespace. To simplify nota-
tion we use a namespace directive to make the names from Graph_lib directly
available in our program:

using namespace Graph_lib;

417

418

CHAPTER 12 o A DISPLAY MODEL

As usual, main() contains the code we want to execute (directly or indirectly) and
deals with exceptions:

int main ()

try
{

// ... hereisourcode. ..

}

catch(exception& e) {
// some error reporting
return 1;

}

catch(...) {
// some more error reporting
return 2;

12.7.2 An almost blank window

We will not discuss error handling here (see Chapter 5, in particular, §5.6.3), but
go straight to the graphics within main():

Point tI(100,100); // top left corner of our window

Simple_window win(tl,600,400,"Canvas");
/I screen coordinate tl for top left corner
// window size(600*400)
// title: Canvas

win.wait_for_button(); /I display!

This creates a Simple_window, that is, a window with a “Next” button, and dis-
plays it on the screen. Obviously, we need to have #included the header
Simple_window.h rather than Window.h to get Simple_window. Here we are
specific about where on the screen the window should go: its top left corner goes
at Point(100,100). That’s near, but not too near, the top left corner of the screen.
Obviously, Point is a class with a constructor that takes a pair of integers and in-
terprets them as an (x,y) coordinate pair. We could have written

Simple_window win(Point(100,100),600,400," Canvas");

12.7 USING SHAPE PRIMITIVES

However, we want to use the point (100,100) several times so it is more conven-
lent to give it a symbolic name. The 600 is the width and 400 is the height of the
window, and Canvas is the label we want put on the frame of the window.

To actually get the window drawn on the screen, we have to give control to
the GUI system. We do this by calling win.wait_for_button() and the result is:

In the background of our window, we see a laptop screen (somewhat cleaned up
for the occasion). For people who are curious about irrelevant details, we can tell
you that I took the photo standing near the Picasso library in Antibes looking
across the bay to Nice. The black console window partially hidden behind is the
one running our program. Having a console window is somewhat ugly and un-
necessary, but it has the advantage of giving us an effective way of killing our
window if a partially debugged program gets into an infinite loop and refuses to
go away. If you look carefully, you’ll notice that we have the Microsoft C++ com-
piler running, but you could just as well have used some other compiler (such as
Borland or GNU).

For the rest of the presentation we will eliminate the distractions around our
window and just show that window by itself:

419

420

CHAPTER 12 o A DISPLAY MODEL

The actual size of the window (in inches) depends on the resolution of your
screen. Some screens have bigger pixels than other screens.

12.7.3 Axis

An almost blank window isn’t very interesting, so we’d better add some informa-
tion. What would we like to display? Just to remind you that graphics is not all
fun and games, we will start with something serious and somewhat complicated:
an axis. A graph without axes is usually a disgrace. You just don’t know what the
data represents without axes. Maybe you explained it all in some accompanying
text, but it is far safer to add axes; people often don’t read the explanation and
often a nice graphical representation gets separated from its original context. So,
a graph needs axes:

Axis xa(Axis: :x, Point(20,300), 280, 10, "x axis"); // make an Axis

/I an Axis is a kind of Shape

/] Axis::x means horizontal

// starting at (20,300)

/1280 pixels long

// 10 “notches”

// label the axis “x axis”
win.attach(xa); // attach xa to the window, win
win.set_label("Canvas #2"); // relabel the window
win.wait_for_button(); // display!

12.7 USING SHAPE PRIMITIVES

The sequence of actions is: make the axis object, add it to the window, and fi-
nally display it:

M Canvas #2

We can see that an Axis::x is a horizontal line. We see the required number of
“notches” (10) and the label “x axis.” Usually, the label will explain what the axis
and the notches represent. Naturally, we chose to place the x axis somewhere
near the bottom of the window. In real life, we’d represent the height and width
by symbolic constants so that we could refer to “just above the bottom” as some-
thing like y_max-bottom_margin rather than by a “magic constant,” such as 300
(§4.3.1,§15.6.2).

To help identify our output we relabeled the screen to Canvas #2 using
Window’s member function set_label().

Now, let’s add a y axis:

Axis ya(Axis: :y, Point(20,300), 280, 10, "y axis");
ya.set_color(Color::cyan); // choose a color
ya.label.set_color(Color::dark_red); // choose a color for the text
win.attach(ya);

win.set_label("Canvas #3");

win.wait_for_button(); // display!

Just to show off some facilities, we colored our y axis cyan and our label dark red.

421

422

CHAPTER 12 o A DISPLAY MODEL

M Canvas #3

We don’t actually think that it is a good idea to use different colors for x and y
axes. We just wanted to show you how you can set the color of a shape and of in-
dividual elements of a shape. Using lots of color is not necessarily a good idea. In
particular, novices tend to use color with more enthusiasm than taste.

12.7.4 Graphing a function

What next? We now have a window with axes, so it seems a good idea to graph
a function. We make a shape representing a sine function and attach it:

Function sine(sin,0,100,Point(20,150),1000,50,50); // sine curve
/ plot sin() in the range [0:100) with (0,0) at (20,150)
// using 1000 points; scale x values *50, scale y values *50

win.attach(sine);
win.set_label("Canvas #4");
win.wait_for_button();

Here, the Function named sine will draw a sine curve using the standard library
function sin() to generate values. We explain details about how to graph func-
tions in §15.3. For now, just note that to graph a function we have to say where it
starts (a Point) and for what set of input values we want to see it (a range), and
we need to give some information about how to squeeze that information into
our window (scaling):

12.7 USING SHAPE PRIMITIVES

M Canvas #4

Note how the curve simply stops when it hits the edge of the window. Points
drawn outside our window rectangle are simply ignored by the GUI system and
never seen.

12.7.5 Polygons

A graphed function is an example of data presentation. We’ll see much more of
that in Chapter 15. However, we can also draw different kinds of objects in a
window: geometric shapes. We use geometric shapes for graphical illustrations,
to indicate user interaction elements (such as buttons), and generally to make our
presentations more interesting. A Polygon is characterized by a sequence of
points, which the Polygon class connects by lines. The first line connects the first
point to the second, the second line connects the second point to the third, and
the last line connects the last point to the first:

sine.set_color(Color: :blue); /l we changed our mind about sine’s color
Polygon poly; /l a polygon; a Polygon is a kind of Shape
poly.add(Point(300,200)); // three points make a triangle

poly.add(Point(350,100));
poly.add(Point(400,200));

poly.set_color(Color::red);

423

424

CHAPTER 12 o A DISPLAY MODEL

poly.set_style(Line_style::dash);
win.attach(poly);
win.set_label("Canvas #5");
win.wait_for_button();

This time we change the color of the sine curve (sine) just to show how. Then,
we add a triangle, just as in our first example from §12.3, as an example of a
polygon. Again, we set a color, and finally, we set a style. The lines of a Polygon
have a “style.” By default that is solid, but we can also make those lines dashed,
dotted, etc. as needed (see §13.5). We get

M Canvas #5

12.7.6 Rectangles

A screen is a rectangle, a window is a rectangle, and a piece of paper is a rectan-
gle. In fact, an awful lot of the shapes in our modern world are rectangles (or at
least rectangles with rounded corners). There is a reason for this: a rectangle is
the simplest shape to deal with. For example, it’s easy to describe (top left corner
plus width plus height, or top left corner plus bottom right corner, or whatever),
it’s easy to tell whether a point is inside a rectangle or outside it, and it’s easy to
get hardware to draw a rectangle of pixels fast.

So, most higher-level graphics libraries deal better with rectangles than with
other closed shapes. Consequently, we provide Rectangle as a class separate from
the Polygon class. A Rectangle is characterized by its top left corner plus a width
and height:

12.7 USING SHAPE PRIMITIVES 425

Rectangle r(Point(200,200), 100, 50); // top left corner, width, height
win.attach(r);

win.set_label(“Canvas #6”);

win.wait_for_button();

From that, we get

M Canvas #6

Please note that making a polyline with four points in the right places is not
enough to make a Rectangle. It is easy to make a Closed_polyline that looks like
a Rectangle on the screen (you can even make an Open_polyline that looks just
like a Rectangle); for example:

Closed_polyline poly_rect;
poly_rect.add(Point(100,50));
poly_rect.add(Point(100,50));
poly_rect.add(Point(200,100));
poly_rect.add(Point(100,100));

426

CHAPTER 12 e« A DISPLAY MODEL

M Canvas #6.1

In fact, the #mage on the screen of such a poly_rect is a rectangle. However, the
poly_rect object in memory is not a Rectangle and it does not “know” anything
about rectangles. The simplest way to prove that is to add another point:

poly_rect.add(Point(50,75));

No rectangle has five points:

M Canvas #6.2

It is important for our reasoning about our code that a Rectangle doesn’t just
happen to look like a rectangle on the screen; it maintains the fundamental guar-

12.7 USING SHAPE PRIMITIVES 427

antees of a rectangle (as we know them from geometry). We write code that de-
pends on a Rectangle really being a rectangle on the screen and staying that way.

12.7.7 Fill

We have been drawing our shapes as outlines. We can also “fill” a rectangle with
color:

r.set_fill_color(Color::yellow); // color the inside of the rectangle
poly.set_style(Line_style(Line_style::dash,4));
poly_rect.set_style(Line_style(Line_style::dash,2));
win.set_label("Canvas #7");

win.wait_for_button();

We also decided that we didn’t like the line style of our triangle (poly), so we set
its line style to “fat (thickness four times normal) dashed.” Similarly, we changed
the style of poly_rect (now no longer looking like a rectangle):

M Canvas #7

If you look carefully at poly_rect, you'll see that the outline is printed on top of
the fill.

It is possible to fill any closed shape (see §13.9). Rectangles are just special in
how easy (and fast) they are to fill.

12.7.8 Text

Finally, no system for drawing is complete without a simple way of writing text — (}
drawing each character as a set of lines just doesn’t cut it. We label the window itself,
and axes can have labels, but we can also place text anywhere using a Text object:

428

CHAPTER 12 o A DISPLAY MODEL

Text t(Point(150,150), "Hello, graphical world! ");
win.attach(t);

win.set_label("Canvas #8");
win.wait_for_button();

M Canvas #8

. graphical world!

From the primitive graphics elements you see in this window, you can build dis-
plays of just about any complexity and subtlety. For now, just note a peculiarity
of the code in this chapter: there are no loops, no selection statements, and all
data was “hardwired” in. The output was just composed of primitives in the
simplest possible way. Once we start composing these primitives using data and
algorithms, things will start to get interesting.

We have seen how we can control the color of text: the label of an Axis
(§12.7.3) is simply a Text object. In addition, we can choose a font and set the size
of the characters:

t.set_font(Font::times_bold);
t.set_font_size(20);
win.set_label("Canvas #9");
win.wait_for_button();

We enlarged the characters of the Text string Hello, graphical world! to point size
20 and chose the Times font in bold:

12.7 USING SHAPE PRIMITIVES 429

M Canvas #9

12.7.9 Images

We can also load images from files:

Image ii(Point(100,50), "image.jpg"); /1 400*212-pixel jpg
win.attach(ii);

win.set_label("Canvas #10");

win.wait_for_button();

As it happens, the file called image.jpg is a photo of two planes breaking the
sound barrier:

M Canvas #10

430

CHAPTER 12 o A DISPLAY MODEL

That photo is relatively large and we placed it right on top of our text and

shapes. So, to clean up our window a bit, let us move it a bit out of the way:

ii.move(100,200);
win.set_label("Canvas #11");
win.wait_for_button();

M Canvas #11

Note how the parts of the photo that didn’t fit in the window are simply not rep-

resented. What would have appeared outside the window is “clipped” away.

12.7.10 And much more

And here, without further comment, is some more code:

Circle c(Point(100,200),50);
Ellipse e(Point(100,200), 75,25);
e.set_color(Color: :dark_red);
Mark m(Point(100,200),'x");

ostringstream oss;
oss << "screen size: " << x_max() << "*" <<y_max()

<<"; window size: " << win.x_max() << "*" << win.y_max();
Text sizes(Point(100,20),0ss.str());

Image cal(Point(225,225),"snow_cpp.gif"); /1 320*240-pixel gif

cal.set_mask(Point(40,40),200,150); // display center part of image

12.8 GETTING THIS TO RUN 431

win.attach(c);
win.attach(m);
win.attach(e);

win.attach(sizes);
win.attach(cal);
win.set_label("Canvas #12");
win.wait_for_button();

Can you guess what this code does? Is it obvious?

M Canvas #12

screen size: 1400*1020; window size: 600*400

The connection between the code and what appears on the screen is direct. If ()
you don’t yet see how that code caused that output, it soon will become clear.

Note the way we used a stringstream (§11.4) to format the text object displaying

sizes.

12.8 Getting this to run

We have seen how to make a window and how to draw various shapes in it. In
the following chapters, we’ll see how those Shape classes are defined and show
more ways of using them.

Getting this program to run requires more than the programs we have pre-
sented so far. In addition to our code in main(), we need to get the interface library
code compiled and linked to our code, and finally, nothing will run unless the FLTK
library (or whatever GUI system we use) is installed and correctly linked to ours.

432

CHAPTER 12 o A DISPLAY MODEL

One way of looking at the program is that it has four distinct parts:

* Our program code (main(), etc.)

* Our interface library (Window, Shape, Polygon, etc.)
* The FLTK library
* The C++ standard library

Indirectly, we also use the operating system. Leaving out the OS and the stan-
dard library, we can illustrate the organization of our graphics code like this:

Point.h:

struct Point { ... };

FLTK headers

Graph.h:

Window.h:

FLTK code

struct Shape { ...

// graphing interface:

// window interface:
class Window {...};

b

Graph.cpp:

Graph code

chapter12.cpp:

window.cpp:

Window code

Simple_window.h:

// GUI interface:
struct In_box { ... };

// window interface:
class Simple_window {...};

#include "Graph.h"
#include "Simple_window.h"
intmain() { ...

}

GUI.cpp:

Appendix D explains how to get all of this to work together.

12.8.1 Source files

Our graphics and GUT interface library consists of just five header files and three

code files:

CHAPTER 12 REVIEW

Headers:
* Point.h
* Window.h
* Simple_window.h
* Graph.h
* GULh
Code files:
* Window.cpp
* Graph.cpp
* GUl.cpp

Until Chapter 16, you can ignore the GUTI files.

% Drill

The drill is the graphical equivalent to the “Hello, World!” program. Its purpose
1s to get you acquainted with the simplest graphical output tools.

1.

Get an empty Simple_window with the size 600 by 400 and a label My
window compiled, linked, and run. Note that you have to link the FLTK
library as described in Appendix D; #include Graph.h, Window.h, and
GULh in your code; and include Graph.cpp and Window.cpp in your
project.

. Now add the examples from §12.7 one by one, testing between each

added subsection example.

. Go through and make one minor change (e.g., in color, in location, or in

number of points) to each of the subsection examples.

Review

FU > £9 08

R

Why do we use graphics?

When do we try not to use graphics?

Why is graphics interesting for a programmer?

What is a window?

In which namespace do we keep our graphics interface classes (our graphics
library)?

What header files do you need to do basic graphics using our graphics
library?

433

434

CHAPTER 12 o A DISPLAY MODEL

7. What is the simplest window to use?
8. What is the minimal window?
9. What’s a window label?
10. How do you label a window?
11. How do screen coordinates work? Window coordinates? Mathematical
coordinates?
12. What are examples of simple “shapes” that we can display?
13. What command attaches a shape to a window?
14. Which basic shape would you use to draw a hexagon?
15. How do you write text somewhere in a window?
16. How would you put a photo of your best friend in a window (using a
program you wrote yourself)?
17. You made a Window object, but nothing appears on your screen. What
are some possible reasons for that?
18. You have made a shape, but it doesn’t appear in the window. What are
some possible reasons for that?
Terms
color graphics JPEG
coordinates GUI line style
display GUTI library software layer
fill color HTTP window
FLTK image XML
Exercises

We recommend that you use Simple_window for these exercises.

1.

2.
3

S

Draw a rectangle as a Rectangle and as a Polygon. Make the lines of the
Polygon red and the lines of the Rectangle blue.
Draw a 100-by-30 Rectangle and place the text “Howdy!” inside it.

. Draw your initials 150 pixels high. Use a thick line. Draw each initial in

a different color.
Draw a checkers board: 8-by-8 alternating white and red squares.

. Draw a red Ys-inch frame around a rectangle that is three-quarters the

height of your screen and two-thirds the width.

What happens when you draw a Shape that doesn’t fit inside its win-
dow? What happens when you draw a Window that doesn’t fit on your
screen? Write two programs that illustrate these two phenomena.

Draw a two-dimensional house seen from the front, the way a child
would: with a door, two windows, and a roof with a chimney. Feel free to
add details; maybe have “smoke” come out of the chimney.

CHAPTER 12 POSTSCRIPT

8. Draw the Olympic five rings. If you can’t remember the colors, look
them up.

9. Display an image on the screen, e.g., a photo of a friend. Label the image
both with a title on the window and with a caption in the window.

10. Draw the file diagram from §12.8.

11. Draw a series of regular polygons, one inside the other. The innermost
should be an equilateral triangle, enclosed by a square, enclosed by a
pentagon, etc. For the mathematically adept only: let all the points of
each N-polygon touch sides of the (N+1)-polygon.

12. A superellipse is a two-dimensional shape defined by the equation

n

2l = 1; m,n > 0.

b

+

Look up superellipse on the web to get a better idea of what such shapes look
like. Write a program that draws “starlike” patterns by connecting points on
a superellipse. Take a, b, m, n, and N as arguments. Select N points on the
superellipse defined by a, b, m, and n. Make the points equally spaced for
some defmition of “equal” Connect each of those N points to one or more
other points (if you like you can make the number of points connect to an-
other argument or just use N-1, i.e., all the other points).

13. Find a way to add color to the superellipse shapes from the previous ex-
ercise. Make some lines one color and other lines another color or other
colors.

Postscript

The ideal for program design is to have our concepts directly represented as enti-
ties in our program. So, we often represent ideas by classes, real-world entities by
objects of classes, and actions and computations by functions. Graphics is a do-
main where this idea has an obvious application. We have concepts, such as cir-
cles and polygons, and we represent them in our program as class Circle and
class Polygon. Where graphics is unusual is that when writing a graphics pro-
gram, we also have the opportunity to see objects of those classes on the screen;
that is, the state of our program is directly represented for us to observe — in
most applications we are not that lucky. This direct correspondence between
ideas, code, and output is what makes graphics programming so attractive.
Please do remember, though, that graphics are just illustrations of the general
idea of using classes to directly represent concepts in code. That idea is far more
general and useful: just about anything we can think of can be represented in
code as a class, an object of a class, or a set of classes.

435

1. See Not, 1050
1=. See Not equal (inequality), 67, 1052,
1064
", .M See String literal, 62
#. See Preprocessor directives, 1090
1091
$. See End of line, 837, 1134
%. See
Output format specifier, 1141
Remainder (modulo); 68
%=. See Remainder and assign, 1053
&. See
Address of, 574, 1050
Bitwise logical operations (and),
917, 1052, 1057
Reference to (in declarations), 273-
277,1062
&&. See Logical and, 1053, 1057
&=. See Bitwise logical operations (and
and assign), 1053
I...". See Character literals, 159, 1043-
1044
0. See
Expression (grouping), 95, 831,
837, 840
Function call, 282, 735-736
Function of (in declarations), 112-
114, 1062
Regular expression (grouping), 1133

Index

*, See
Contents of (dereference), 579-580
Multiply, 1051
Pointer to (in declarations), 573,
1062
Repetition (in regex), 832, 837-
838, 1133-1134
*/ end of block comment, 237
*=. See Multiply and assign (scale), 67
+. See
Add, 66, 1051
Concatenation (of strings), 68-69,
815,1132
Repetition in regex, 837-839,
1133-1134
++. See Increment, 66, 695
+=. See
Add and assign, 1053
Move forward, 1064
string (add at end), 815, 1132
, (comma). See
Comma operator, 1054
List separator, 1066, 1084
—. See
Minus (subtraction), 66, 1051
Regular expression (range), 841
——. See Decrement, 66, 1102, 1050
-> (arrow). See Member access, 593,
1050-1051, 1072, 1102

1181

1182

—=. See
Move backward, 1064
Subtract and assign, 67, 1053, 1103
. (dot). See
Member access, 302, 592-593,
1050-1051
Regular expression, 837, 1133
.. (ellipsis). See
Arguments (unchecked), 1068-
1069
Catch all exceptions, 150
/. See Divide, 66, 1051
//. See Line comment, 45
/*. . */. See Block comment, 237
/=. See Divide and assign, 67, 1053
: (colon). See
Base and member initializers, 310,
471, 543
Conditional expression, 266
Label, 104-107, 302, 502, 1059
:. See Scope (resolution), 291, 310,
1049
; (semicolon). See Statement (termina-
tor), 50, 99
<. See Less than, 67, 1052
<<. See
Bitwise logical operations (left
shift), 917, 1051
Output, 357-359, 1129
<=. See Less than or equal, 67, 1052
<<=. See Bitwise logical operations
(shift left and assign), 1053
<...>. See Template (arguments and
parameters), 151, 656-657
=. See
Assignment, 66, 1053
Initialization, 69-73, 1173
==. Se¢ Equal, 67, 1052
>. See
Greater than, 67, 1052
Input prompt, 221
"Template (argument-list terminator),
656-657
>=. See Greater than or equal, 67, 1052
>>. See
Bitwise logical operations (right

shift), 917, 1051

INDEX

Input, 61, 359
>>=. See Bitwise logical operations
(shift right and assign), 1053
2. See
Conditional expression 2:, 266,
1053
Regular expression, 831-832, 837,
838-839, 1134
[1. See
Array of (in declaration), 627, 1062
Regular expression (character
class), 837, 1133
Subscripting, 579-590, 628, 1064
\ (backslash). See
Character literal, 1043
Escape character, 1133
Regular expression (escape charac-
ter), 830-831, 837, 841
A, See
Bitwise logical operations (exclu-
sive or), 917-918, 1052, 1057
Regular expression (not), 837,
1134
A=. See Bitwise logical operations (xor
and assign), 1053
_. See Underscore, 75, 76, 1045
{3. See
Block delimiter, 47, 110
Regular expression (range), 831,
837-839, 1133-1134
|. See
Bitwise logical operations (bitwise
or), 917, 1052, 1057
Regular expression (or), 831-832,
837, 840-841, 1134
| =. See Bitwise logical operations (or
and assign), 1053
||. See Logical or, 1053, 1057
~. See
Bitwise logical operations (comple-
ment), 917, 1050
Destructors, 586-588
0 (zero). See
Null pointer, 583-584
Prefix, 378, 380
printf() format specifier, 1142
0x. See Prefix, 378, 380

INDEX

A

a, append file mode, 1140
\a alert, character literal, 1043
abort(), 1149
abs(), absolute value, 879, 1137
complex, 881, 1139
Abstract classes, 487, 1171
class hierarchies, 503
creating, 487, 503-504, 1080-1081
Shape example, 487-488
Abstract-first approach to programming,
10
Abstraction, 92-93, 1171
level, ideals, 778-779
Access control, 302, 496, 501-502
base classes, 501-502
encapsulation, 496
members, 484-485
private, 496, 501-502
private by default, 302-303
private vs. public, 302-304
private: label, 302
protected, 496, 502
protected: label, 502
public, 302, 496, 501-502
public by default, 303-304. See also
struct.
public: label, 302
Shape example, 488-491
accumulate(), 729, 739-740, 1139
accumulator, 739
generalizing, 740-742
acos(), arccosine, 879, 1137
Action, 47
Activation record, 284. See also Stacks.
Ad hoc polymorphism, 659-661
Ada language, 796-798
Adaptors
bind1st(), 1123
bind2nd(), 1123
container, 1106
function objects, 1123
mem_fun(), 1123
mem_fun_ref(), 1123
not1(), 1123
not2(), 1123

priority_queue, 1106
queue, 1106
stack, 1106

add(), 445, 483-484, 600-602

Add (plus) +, 66, 1051

Add and assign +=, 66, 73, 1053

Additive operators, 1051

Address, 574, 1171
unchecked conversions, 905

Address of (unary) &, 574, 1050

adjacent_difference(), 739, 1139

adjacent_find(), 1113

advance(), 600-602, 708-710, 1103

Affordability, software, 34

Age distribution example, 527-528

Alert markers, 3

Algol family of languages, 791-798

Algol60 language, 792-794

<algorithm>, 729, 1095

Algorithms, 1171
and containers, 696
header files, 1095-1096
numerical, 1139
passing arguments to. See Function

objects.

Algorithms, numerical, 739, 1139
accumulate(), 729, 739-742, 1139
adjacent_difference(), 739, 1139
inner_product(), 729, 739, 742-744,

1139
partial_sum(), 739, 1139

Algorithms, STL, 1112-1113
<algorithm>, 729
binary_search(), 764
comparing elements, 729
copy(), 728, 757-758
copy_if(), 757
copying elements, 728
count(), 728
count_if(), 728
equal(), 729
equal_range(), 728, 763-764
find(), 728, 729-732
find_if(), 728, 732-734
heap, 1119-1120
lower_bound(), 764
max, 1121

1183

Algorithms, STL (continued)

merge(), 728

merging sorted sequences, 728

min, 1121

modifying sequence, 1114-1116

mutating sequence, 1114-1116

nonmodifying sequence, 1113-
1114

numerical. See Algorithms, numeri-
cal.

permutations, 1120

search(), 763-764

searching, 1117-1118. See also
find(); find_if().

set, 1118-1119

shuffle, 1115-1116

sort(), 728, 762-763

sorting, 728, 762-763, 1117~
1118

summing elements, 729

testing, 961-968

unique_copy(), 728, 757, 760-761

upper_bound(), 764

utility, 1116-1117

value comparisons, 1120-1121

Aliases, 1089, 1171. See also References.

Allocating memory
See also Deallocating memory;
Memory.
allocator_type, 1108
bad_alloc exception, 1058
C++ and C, 1009-1010
calloc(), 1147
embedded systems, 897-898, 902-
904
free store, 578-579
malloc(), 1009, 1147
new, 1057-1058
pools, 902-903
realloc(), 1010
stacks, 903-904
allocator_type, 1108
Almost containers, 721-722, 1106
alnum, regex character class, 842,
1134
alpha, regex character class, 842, 1134

INDEX

Alternation

patterns, 192-193

regular expressions, 840-841
Ambiguous function call, 1067-1068
Analysis, 35, 174, 177
and, synonym for &, 1003, 1004
and_eq, synonym for &=, 1003, 1004
app mode, 385, 1126
append(), 815, 1132

Append
files, 385, 1140
string +=, 815
Application

collection of programs, 1172
operator (), 735-736
Approximation, 521-526, 1172
Arccosine, acos(), 879
Arcsine, asin(), 879
Arctangent, atan(), 879
arg(), of complex number, theta, 881,
1139
Argument deduction, 664-665
Argument errors
callee responsibility, 141-143
caller responsibility, 140-141
reasons for, 142-143
Arguments, 270, 1172
formal. See Parameters.
functions, 1068-1069
passing. See Passing arguments.
program input, 91
source of exceptions, 145-146
templates, 1083-1084
types, class interfaces, 319-321
unchecked, 995-996, 1068-1069
unexpected, 134
Arithmetic if 2:, 266. See also Condi-
tional expression.
Arithmetic operations. Se¢ Numerics.
array standard library class, 718-719,
1105
<array>, 1095
Arrays, 627-628, 1172
See also Containers; vector.
[1 declaration, 627
[1 dereferencing, 628

INDEX

accessing elements, 628, 863-865
assignment, 633
associative. See Associative contain-
ers.
built-in, 718-719
C-style strings, 633-634
copying, 632
dereferencing, 628
element numbering, 627
initializing, 582-583, 633-634
multidimensional, 859-861, 1065
palindrome example, 638-640
passing pointers to arrays, 905-
912
pointers to elements, 628-631
range checking, 628
subscripting [], 628
terminating zero, 633
vector alternative, 909-912
Arrays and pointers, 630-636
debugging, 634-637
asin(), arcsine, 879, 1137
asm, assembler insert, 1003
Assemblers, 785
Assertions
assert(), 1026-1027
<cassert>, 1097
debugging, 161
definition, 1172
assign(), 1109
Assignment =, 69-73
arrays, 633
assignment and initialization, 69—
73
composite assignment operators,
73-74
containers, 1108-1109
Date example, 305-306
enumerators, 314
expressions, 1053
string, 815
vector, resizing, 653-655
Assignment operators (composite), 66
%=, 73, 1053
&=, 1053
*=,73, 1053

+=, 73,1053, 1103
-=, 73,1053, 1103
/=,73,1053

<<=, 1053

>>=, 1053

A=, 1053

|=, 1053

Associative arrays. See Associative con-

tainers.

Associative containers, 744, 1105
email example, 820-824
header files, 744
map, 744
multimap, 744, 824-825
multiset, 744
operations, 1111-1112
set, 744
unordered_map, 744
unordered_multimap, 744
unordered_multiset, 744
unordered_set, 744

Assumptions, testing, 976-978

at(), range-checked subscripting, 668-

669, 1109

atan(), arctangent, 879, 1137

ate mode, 385, 1126

atof(), string to double, 1146

atoi(), string to int, 1146

atol(), string to long, 1146

AT&T Bell Labs, 803

AT&T Labs, 803

attach() vs. add() example, 483-484

Automatic storage, 577

auto_ptr, 678

Axis example, 420-422, 439, 518-521,

532-534

B

b, binary file mode, 1140

Babbage, Charles, 797

back(), last element, 708, 1109
back_inserter(), 1122

Backus, John, 788

Backus-Naur (BNF) Form, 788, 793
bad() stream state, 349, 1127

1185

1186

bad_alloc exception, 1058
Balanced trees, 748-750
Base-2 number system (binary), 1042
Base-8 number system (octal), 1041-
1042
Base-10
logarithms, 879
number system (decimal), 1041-
1042
Base-16 number system (hexadecimal),
1041-1042
Base and member initializers, 310, 471,
543
Base classes, 485-488, 496-499, 1172
abstract classes, 487, 503-504,
1080-1081
access control, 501-502
derived classes, 1078-1079
description, 496-497
initialization of, 417, 543
interface, 503-505
object layout, 497-499
overriding, 500-501
Shape example, 487-488
virtual function calls, 493, 498-
499
vptr, 498
vibl, 498
Base-e exponentials, 879
Basic guarantee, 677
basic_string, 816
BCPL language, 803
begin()
iterator, 1109
numeric example, 121-122
string, 815, 1132
vector, 695
Bell Telephone Laboratories (Bell
Labs), 801, 803-806, 988-989
Bentley, John, 895, 926
Bidirectional iterator, 1104
bidirectional iterators, 722-723
Big-O notation, complexity, 573
Binary I/O, 386-389
binary mode, 385, 1126
Binary number system, 1042

INDEX

Binary search, 728, 747, 763-764
binary_search(), 764, 1117
bind1st() adaptor, 1123
bind2nd() adaptor, 1123
bitand, synonym for &, 1003, 1004
Bitfields, 917, 928-930, 1082
bitor, synonym for |, 1003, 1004
Bits, 78, 916, 1172
bitfields, 917
bool, 917
char, 917
enumerations, 917
mteger types, 917
manipulating, 926-928
signed, 922-926
size, 916-917
two’s complement, 922
unsigned, 922-926
<bitset>, 1095
bitset, 920-922
bitwise logical operations, 922
construction, 921
exceptions, 1099
1/0, 922
Bitwise logical operations, 917-920,
1057
and &, 917-918, 1052, 1057
and and assign &=, 1053
complement ~, 917
exclusive or A, 917-918, 1052,
1057
exclusive or and assign A=, 1053
left shift <<, 917
left shift and assign <<=, 1053
or |,917-918, 1052, 1057
or and assign, |=, 927
right shift >>, 917
right shift and assign >>=, 1053
Black-box testing, 952-953
Blackboard, 36
blank, character class, regex, 842, 1134
Block, 110
debugging, 159
delimiter {}, 47, 110
nesting within functions, 268-269
try block, 144-145

INDEX

Block comment /*. . .*/, 237
Blue marginal alerts, 3
BNF (Backus-Naur) Form, 788, 793
Body, functions, 113
bool, 63, 66-67, 1062
bit space, 917
bits in memory, 78
C++ and C, 992, 1003, 1004
size, 78
boolalpha, manipulator, 1129
Boolean conversions, 1055
Borland, 796
Bottom-up approach, 9, 776-777
Bounds error, 147
Branching, testing, 966-968. See also
Conditional statements.
break, case label termination, 104-107
Broadcast functions, 867
bsearch(), 1149
Buffer, 342
flushing, 239-240
iostream, 402
overflow, 639, 759, 966. See also
gets(), scanf().
Bugs, 156, 1172
See also Debugging; Testing.
finding the last, 164-165
first documented, 790
regression tests, 953
Built-in types, 300, 1062
arrays, 718-719, 1064-1065
bool, 77, 1063
characters, 77, 855, 1063
default constructors, 323
exceptions, 1087
floating-point, 77, 855-858, 1063
integers, 77, 855-858, 922-926, 1063
pointers, 574-586, 1063-1064
references, 277-278, 1065-1066
Button example, 439, 548-550
attaching to menus, 558
detecting a click, 544-546
“Next,” 418-420, 541-542
Byte, 78, 1172
operations, C-style strings, 1014-
1015

1187

C

.c suffix, 995
.cpp, suffix, 48, 1154
C# language, 796
C++ language, 804-806
See also Programming; Programs;
Software.
coding standards, list of, 943
portability, 11
use for teaching, xxiv, 6-9
C++ and C, 988-990
C functions, 994-998
C linkage convention, 999
C missing features, 991-993
calling one from the other, 998-1000
casts, 1006-1007
compatibility, 990-991
const, 1020-1021
constants, 1020-1021
container example, 1025-1031
definitions, 1004-1006
enum, 1008
extern "C", 999
family tree, 989
free-store, 1009-1011
input/output, 1016-1020
keywords, 1003-1004
layout rules, 1000
macros, 1020-1025
malloc(), 1009
namespaces, 1008
nesting structs, 1003
old-style casts, 1006
opaque types, 1026
performance, 990
realloc(), 1010
structure tags, 1002-1003
type checking, 998-999
void, 996
void*, 1007-1008
“C first” approach to programming, 9
C language, 800-804
See also C standard library.
C++ compatibility, 988-990. See
also C++ and C.

1188

C language (continued)
K&R, 802, 988-989
linkage convention, 999
missing features, 991-993
C standard library
C-style strings, 1145-1146
header files, 1097
input/output. See C-style I/O
(stdio).
memory, 1146-1147
C-style casts, 1006-1007, 1051, 1058
C-style I/O (stdio)
%, conversion specification, 1141
conversion specifications, 1141-
1143
file modes, 1140-1141
files, opening and closing, 1140-
1141
fprintf(), 1017, 1141
getch(), 1018, 1145
getchar(), 1010, 1017-1019, 1145
gets(), 1018, 1144-1145
output formats, user-defined types,
1144
padding, 1143
printf(), 1016-1017, 1141
scanf(), 1017-1019, 1144-1145
stderr, 1144
stdin, 1144
stdout, 1144
truncation, 1143
C-style strings, 633-634, 1011-1013,
1145
byte operations, 1014-1015
from string, c_str(), 344, 815
const, 1013-1014
copying, 1012-1013, 1015
executing as a command, system(),
1149
lexicographical comparison, 1012
operations, 1146
pointer declaration, 1015-1016
strcat(), concatenate, 1012-1013
strchr(), find character, 1014
stremp(), compare, 1011-1013
strepy(), copy, 1012-1013, 1015

INDEX

strlen(), length of, 1012
strncat(), 1012-1013
strncmp(), 1012-1013
strncpy(), 1012-1013
three-way comparison, 1012
CAD/CAM, 27, 33
Calculator example, 172, 185-186
analysis and design, 174-177
expression(), 194-198
get_token(), 194
grammars and programming, 186—
193
parsing, 188-191
primary(), 194, 206
symbol table, 246
term(), 194, 195-200, 204-205
Token, 182-183
Token_stream, 204-212, 239-240
Call stack, 287
Callback functions, 544-546
Callback implementation, 1162-1163
Calling functions. See Function calls.
calloc(), 1147
Cambridge University, 803
capacity(), 651-652, 1111
Capital letters. See Gase.
Case (of characters)
formatting, 393-394
identifying, 393
islower(), 393, 1131
map container, 750
in names, 74-77
sensitivity, 393-394
tolower(), changing case, 394, 1131
toupper(), changing case, 394,
1131
case labels, 104-107
<cassert>, 1097
Casting away const, 594-595
Casts
See also Type conversion.
C++ and C, 992, 1003
C-style casts, 1006-1007
casting away const, 594
const_cast, 1058
dynamic_cast, 894, 1058

INDEX

lexical_cast example, 819
narrow_cast example, 151
reinterpret_cast, 594
static_cast, 594, 905, 1058
unrelated types, 594
CAT scans, 30
catch, 145, 1003
Catch all exceptions ..., 150
Catching exceptions, 144-150, 238-
240, 1087
cb_next() example, 544-546
<cctype>, 1097, 1131
ceil(), 879, 1137
cerr, 149, 1125, 1144
<cerrno>, 1097
<cfloat>, 1097
Chaining operations, 178-179
char type, 63, 66-67, 78
bits, 917
built-in, 1062
properties, 712-713
signed us. unsigned, 858, 925
Character classes
list of, 1134-1135
m regular expressions, 837-838,
842
Character classification, 393-394,
1131
Character literals, 159, 1043-1044
CHAR_BIT limit macro, 1136
CHAR_MAX limit macro, 1136
CHAR_MIN limit macro, 1136
cin, 61
C equivalent. See stdin.
standard character input, 61, 341,
1125
Circle example, 464-467, 489
vs. Ellipse, 467
Circular reference. See Reference (cir-
cular).
class, 181, 1002-1003
Class
abstract, 487, 503-504, 1080-1081.
See also Abstract class.
base, 496-497
coding standards, 941-942

1189

concrete, 487-488, 1172

const member functions, 1073

constructors, 1075-1077, 1081

copying, 1077-1078, 1081

creating objects. See Concrete
classes.

default constructors, 322-325

defining, 210, 301, 1071, 1172

derived, 496

destructors, 1077, 1081

encapsulation, 496

friend declaration, 1073-1074

generated operations, 1081

grouping related, 503-504

hierarchies, 503

history of, 799

implementation, 302-304

inheritance, 496-497, 504-505

interface, 504-505

member access. See Access control.

naming. See Namespaces.

nesting, 268

object layout, 497-499

organizing. See Namespaces.

parameterized, 659-661. See also
Templates.

private, 302-304, 496, 501-502,
1071-1072

protected, 487, 496, 501-502

public, 302-304, 496, 501-502,
1071-1072

run-time polymorphism, 496

subclasses, 496-497. See also De-
rived class.

superclasses, 496-497. See also Base
class.

templates, 658-661

testing, 973-976

this pointer, 1073

types as parameters. See Tem-
plates.

union, 1082-1083

unqualified name, 1072

uses for, 301

Class interfaces, 318, 1071

argument types, 319-321

1190

const member functions, 325-326
constants, 325-326. See also const.
copying, 321-322
helper functions, 326-328
immutable values, 325, 326
initializing objects, 322-325
members, 326-328
mutable values, 326-328
public vs. private, 302-304
symbolic constants, defining, 321
uninitialized variables, 322-325
Class members, 301, 1071
-> (arrow), 1072
. (dot), 302, 1072
it (scope resolution), 1072
accessing, 302. See also Access con-
trol.
allocated at same address, 1082-
1083
bitfields, 1082
class interfaces, 326-328
data, 301
definitions, 1074-1075
function, 309-313
in-class definition, 1074-1075
static const int members, 1075
Token example, 181-182
Token_stream example, 210
out-of-class definition, 1074-1075
Class scope, 264, 1046
Class template
parameterized class, 659-661
parameterized type, 659-661
specialization, 658-659
type generators, 658-659
classic_elimination() example, 874-875
Cleaning up code
comments, 236-237
functions, 233-234
layout, 234-236
logical separations, 233-234
revision history, 236-237
scaffolding, 233-234
symbolic constants, 231-233
clear(), 349-352, 1110
<climits>, 1097

INDEX

<clocale>, 1097
clock(), 981-983
clock_t, 1147
clone() example, 496
close() file, 346
Closed_polyline example, 451-453
vs. Polygon, 453
<cmath>, 879, 1097, 1137
cntrl, 842, 1134
COBOL language, 788-790
Code
definition, 1172
layout, cleaning up, 234-236
libraries, uses for, 175
storage, 577
structure, ideals, 776
test coverage, 968
Coding standards, 935-936
C++, list of, 943
complexity, sources of, 935-936
ideals, 936-937
sample rules, 938-943
Color example, 421-422, 445-447
color chat example, 459-461
fill, 427-428, 456-458, 492
transparency, 447
Columns, matrices, 864-865, 870
Comments, 45-46
block /*. . .*/, 237, 1040
C++ and C, 992
cleaning up, 236-237
vs. code, 237
line //, 45-46, 1040
role in debugging, 157-158
Common Lisp language, 790

Communication skills, programmers, 22

Compacting garbage collection, 900-
901
Comparison, 67
See also ==; <.
C-style strings, 1011-1012
characters, 711
containers, 1111
key_compare, 1108
lexicographical, C-style strings,
1012

INDEX

lexicographical_compare(), 1121
min/max algorithms, 1120-1121
string, 815
three-way, 1012
Compatibility. See G++ and C.
Compile-time errors. See Errors,
compile-time.
Compiled languages, 47-48
Compilers, 48, 1172
compile-time errors, 51
conditional compilation, 1024-
1025
syntax checking, 48-50
compl, synonym for ~, 1003, 1045
complex
!=, not equal (inequality), 881,
1138
*, multiply, 881, 1138
+, add (plus), 881, 1138
-, subtract (minus), 881, 1138
<<, output, 881, 1139
==, equal, 881, 1138
>>, input, 881, 1139
/, divide, 881, 1138
abs(), absolute value, 881, 1139
conj(), conjugate, 881
Fortran language, 882
imag(), imaginary part, 881
norm(), square of abs(), 881
number types, 1138-1139
polar(), polar coordinate, 881
real(), real part, 881
rho, 881
square of abs(), 881
theta, 881
<complex> 1096
complex operators, 881, 1138-1139
standard math functions, 1137
Complex numbers, 880-882
Complexity, 1172
sources of, 935-936
Composite assignment operators, 73—74
Compound statements, 110
Computation, 91
See also Programs; Software.
correctness, 92-94

data structures, 90

efficiency, 92-94

input/output, 91

objectives, 92-94

organizing programs, 92-94

programmer ideals, 92-94

simplicity, 92-94

state, definition, 90
Computation vs. data, 691-693
Computer-assisted surgery, 30
Computer science, 12, 24-25
Computers

CAT scans, 30

computer-assisted surgery, 30

in daily life, 19-21

information processing, 31-32

Mars Rover, 32-33

medicine, 30

pervasiveness of, 19-21

server farms, 31

shipping, 26-28

space exploration, 32-33

telecommunications, 28-29

timekeeping, 26

world total, 19
Concatenation of strings, 66

+, 68-69, 815, 1132

+=, 68-69, 815, 1132
Concept-based approach to program-

ming, 6
Concrete classes, 487-488, 1172
Concrete-first approach to program-
ming, 6

Concurrency, 894
Conditional compilation, 1024-1025
Conditional expression 2:, 266, 1053
Conditional statements

See also Branching, testing.

for, 110-112

if, 101-103

switch, 104-107

while, 108-109
Conforming programs, 1039
Confusing variable names, 77
conj(), complex conjugate, 881, 1138
Conjugate, 881

1192

Consistency, ideals, 780
Console, as user interface, 540
Console input/output, 540
Console window, displaying, 160
const, 95-96
See also Constant; Static storage,
static const.
C++and C, 992, 1020-1021
C-style strings, 1013-1014
class interfaces, 325-326
declarations, 260-261
initializing, 260
member functions, 325-326, 1073
overloading on, 626-627
passing arguments by, 273-276,
279-281
type, 1062
*const, immutable pointer, 1062
Constant
See also const.
expressions, 1056-1057
const_cast, casting away const, 594, 1058
const_iterator, 1108
Constraints, vector range checking, 670
Constructors, 306-309, 1075-1077
See also Destructors; Initializers.
containers, 1108-1109
copy, 614-616, 620-624
Date example 307, 319-321
debugging, 622-624
default, 322-325, 1081
error handling 309, 675-677
essential operations, 620-624
exceptions, 675-677
explicit, 621-622
implicit conversions, 621-622
initialization of bases and members,
310, 471, 543
invariant, 309, 676-677
need for default, 620-621
Token example, 182-183
Token_stream example, 210
Container adaptors, 1106
Containers, 146, 720-721, 1172
See also Arrays; list; map; vector.
and algorithms, 696

INDEX

almost containers, 721-722, 1106
assignments, 1108-1109
associative, 1105, 1111-1112
capacity(), 1110-1111
of characters. See string.
comparing, 1111
constructors, 1108-1109
contiguous storage, 712
copying, 1111
destructors, 1108-1109
element access, 1109
embedded systems, 912-916
header files, 1095-1096
information sources about, 720-721
iterator categories, 722-723
iterators, 1109
list operations, 1110
member types, 1108
operations overview, 1107
queue operations, 1110
sequence, 1105
size(), 1110-1111
stack operations, 1110
standard library, 1105-1111
swapping, 1111
templates, 661-662

Contents of * (dereference, indirec-

tion), 579-580

Contiguous storage, 712

Control characters, iscntrl(), 393

Control inversion, GUIs, 556-557

Control variables, 109

Controls. See Widgets.

Conversion specifications, printf(),

1141-1143

Conversion
See also Type conversion.
character case, 394
representation, 368-370
unchecked, 905

Coordinates
See also Point.
computer screens, 415-416
graphs, 422-423

copy(), 757-758, 1114

Copy assignments, 616-618, 620-624

INDEX

Copy constructors, 614-616, 620-624

copy_backward(), 1114
copy_if(), 757
Copying, 613-619
arrays, 632
C-style strings, 1012-1013, 1015
class interfaces, 321-322
containers, 1111
1/O streams, 758-761
objects, 494-496
sequences, 728, 757-762
vector, 613-618, 1108-1109
Correctness
definition, 1172
ideals, 92-94, 775
importance of, 891-892
software, 34
cos(), cosine, 517-518, 879, 1137
cosh(), hyperbolic cosine, 1137
Cost, definition, 1172
count(), 728, 1113
count_if(), 728, 1113
cout, 45
C equivalent. See stdout.
“Hello, World!” example, 45-46
printing error messages, 149. See
also cerr.
standard output, 341, 1125
Critical systems, coding standards,
942-943
<cstddef>, 1097
<cstdio>, 1097
<cstdlib>, 1097, 1147, 1149
c_str(), 1132
<cstring>, 1097, 1131, 1147
<ctime>, 1097, 1147
Current object, 312-313. See also this
pointer.
Cursor, definition, 45
<cwchar>, 1097
<cwctype>, 1097

D

d, any decimal digit, regex, 842, 1134
\d, decimal digit, regex, 837, 1135

1193

\D, not a decimal digit, regex, 838, 1135
d suffix, 1042
Dahl, Ole-Johan, 798-800
Data
See also Containers; Sequences;
vector; map; list.
abstraction, 781
collections. See Containers.
vs. computation, 691-693
generalizing code, 688-690
in memory. See Free store.
processing, overview, 686-690
separating from algorithms, 696
storing. See Containers.
structure. See Containers; struct;
class.
traversing. See Iteration; Iterators.
uniform access and manipulation,
688-690. See also STL.
Data member, 301, 484-485
Data structure. See Data; struct.
Data type. See Type.
Date and time, 1147-1149
Date example. See Chapters 6-7.
DBL_EPSILON limit macro, 1137
DBL_MAX limit macro, 1137
DBL_MIN limit macro, 1137
Deallocating memory, 584-586, 1057-
1058. Sec also delete; delete[].
Debugging, 52, 156, 1172
See also Errors; Testing.
arrays and pointers, 634-637
assertions, 161
block termination, 159
bugs, 156
character literal termination, 159
commenting code, 157-158
compile-time errors, 159
consistent code layout, 158
constructors, 622—-624
declaring names, 159
displaying the console window,
160
expression termination, 159
finding the last bug, 164-165
function size, 158

Debugging (continued)
GUTIs, 562-564
input data, 164
mvariants, 160-161
keeping it simple, 158
logic errors, 152-154
matching parentheses, 159
naming conventions, 158
post-conditions, 163-164
pre-conditions, 161-163
process description, 156-157
reporting errors, 157
stepping through code, 160
string literal termination, 159
systematic approach, 164-165
test cases, 164, 225
testing, 979
tracing code execution, 160-161
transient bugs, 581
using library facilities, 158
widgets, 563-564
dec manipulator, 378-379, 1130
Decimal digits, isdigit(), 393
Decimal integer literals, 1041
Decimal number system, 377-379,
1041-1042
Deciphering (decryption), example,
930-935
Declaration operators, 1062
& reference to, 273-277, 1062
() function of, 112-114, 1062
* pointer to, 573, 1062
[1 array of, 627, 1062
Declarations, 51, 1061-1062
C++ and C, 992
classes, 302
collections of. See Header files.
constants, 260-261
definition, 51, 77, 255, 1173, 1061-
1062
vs. definitions, 257-258
entities used for, 259
extern keyword, 257
forward, 259
function, 255-256, 1066
function arguments, 270-271

INDEX

function return type, 270-271
grouping. See Namespaces.
managing. See Header files.
need for, 259
order of, 213-214
parts of, 1061
subdividing programs, 258-259
“undeclared identifier” errors, 256
uses for, 1061
variables, 258, 260-261
Decrementing —-, 97-98
iterator, 1101-1104
pointer, 630
Deep copy, 619
Default constructors, 323-324
alternatives for, 324-325
for built-in types, 323
mitializing objects, 322-323
need for, identifying, 620-621
uses for, 323-324
#define, 1090-1091
Definitions. 77, 256-257, 1173
See also Declarations.
C++ and C, 1004-1006
vs. declarations, 257-258
function, 112-114, 270-271
delete
C++ and C, 992, 1003
deallocating free store, 1057-1058
destructors, 586-590
embedded systems, 894, 898-901,
901-902
free-store deallocation, 584-586
In unary expressions, 1051
delete[], 585, 1051, 1057-1058
Delphi language, 796
Dependencies, testing, 962-963
Depth-first approach to programming,
6

deque, double ended queue, 1105
<deque>, 1095
Dereference/indirection
* 579-580. See also Contents of.
->, 593. See also Member access.
[1, 116-117. See also Subscripting.
Derivation, classes, 496

INDEX

Derived classes, 496, 1173
access control, 501-502
base classes, 1078-1079
inheritance, 1078-1079
multiple inheritance, 1079
object layout, 497-499
overview, 496-497, 1078-1079
private bases and members, 501-
502
protected bases and members, 502
public bases and members, 502
specifying, 499
virtual functions, 1079-1080
Design, 35, 174, 177, 1173
Design for testing, 978-979
Destructors, 586-588, 1077, 1173
See also Constructors.
containers, 1108-1109
debugging, 622-624
default, 1081
essential operations, 620-624
exceptions, 675-677
and free store, 589-590
freeing resources, 318, 675-677
generated, 588-589
RAII, 675-677
virtual, 589-590
where needed, 621
Device drivers, 340
Dictionary examples, 121-123, 756
difference(), 1103
difference_type, 1108
digit, character class, 842, 1134
Digit, word origin, 1041
Dijkstra, Edsger, 792-793, 952
Dimensions, matrices, 862-865
Direct expression of ideas, ideals, 777-
778
Dispatch, 496
Display model, 409-410
Divide /, 66, 1051
Divide and assign /=, 67, 1053
Divide and conquer, 93
Divide-by-zero error, 199-200
divides(), 1123
Domain knowledge, 896

1195

Dot product. See inner_product().
double floating-point type, 63, 66-67,
78, 1062
Doubly-linked lists, 598, 698. See also
list.
draw() example
fill color, 492
line visibility, 492
Shape, 491-494
draw_lines() example
See also draw() example.
Closed_polyline, 452
Marked_polyline, 469
Open_polyline, 451
Polygon, 454-455
Rectangle, 459
Shape, 491-494
Dynamic dispatch, 496. See also Virtual
functions.
Dynamic memory. See Free store.
dynamic_cast, type conversion, 1058
exceptions, 1099
predictability, 894

E

Efficiency
ideals, 92-94, 775-776
vector range checking, 670
Einstein, Albert, 780
Elements
See also vector.
numbering, 627
pointers to, 628-631
variable number of, 628
Ellipse example, 466-468
uvs. Circle, 467
else, in if-statements, 102-103
Email example, 820-830
Embedded systems
coding standards, 935-937, 943
concurrency, 894
containers, 912-916
correctness, 891-892
delete operator, 894
domain knowledge, 896

Embedded systems (continued)
dynamic_cast, 894
error handling, 895-897
examples of, 888-890
exceptions, 894
fault tolerance, 892
fragmentation, 898, 899
free-store, 898-902
hard real time, 893
ideals, 894-895
maintenance, 891
memory management, 902-904
new operator, 894
predictability, 893, 894
real-time constraints, 893
real-time response, 890
reliability, 890
resource leaks, 893
resource limitations, 890
soft real time, 893
special concerns, 890-891
Ellipsis ...
arguments (unchecked), 1068-
1069
catch all exceptions, 150
Empty
empty(), is container empty?, 1111
lists, 702
sequences, 702
statements, 100
Encapsulation, 496
Enciphering (Encryption), example,
930-935
end()
iterator, 1109
string, 815, 1132
vector, 695
End of line $ (in regular expressions),
837, 1134
End of file
eof(), 349, 1127
file streams, 360
I/O error, 349
stringstream, 390-391
Ending programs. See Terminating,
programs.

INDEX

endl manipulator, 1130
ends manipulator, 1130
English grammar vs. programming
grammar, 191-192
enum, 314-317, 1008. See also Enumer-
ations.
Enumerations, 314-317, 1070
enum, 314-317, 1008
enumerators, 314-317, 1070-1071
EOF macro, 1019-1020
eof() stream state, 349, 1127
equal(), 729, 1113
Equal ==, 67, 1052
Equality operators, expressions, 1052
equal_range(), 728, 763-764
equal_to(), 1122
erase()
list, 713-715, 1110
list operations, 600-602
string, 815, 1132
vector, 715-718
errno, error indicator, 880, 1138
error() example, 140-141
passing multiple strings, 150
“uncaught exception” error, 151
Error diagnostics, templates, 661
Error handling
See also Errors; Exceptions.
% for floating-point numbers,
228-231
catching exceptions, 238-240
files fail to open, 385
GUIs, 563
hardware replication, 896
1/O errors. See I/O errors.
1/O streams, 1127
mathematical errors, 880
modular systems, 896-897
monitoring subsystems, 897
negative numbers, 227-228
positioning in files, 389
predictable errors, 895
recovering from errors, 238-240
regular expressions, 842-844
resource leaks, 896
self-checking, 896

INDEX

STL (Standard Template Library),
1098-1100
testing for errors, 224-227
transient errors, 895-896
vector resource exceptions, 677
Error messages
See also error(); Reporting errors;
runtime_error.
exceptions, printing, 148-149
templates, 661
writing your own, 140
Errors, 1173
See also Debugging; Testing.
classifying, 132
compile-time, 48-50, 132, 134-135
detection ideal, 133
error(), 140-141
estimating results, 155-156
incomplete programs, 134
input format, 64-65
link-time, 132, 137-138
logic, 132, 152-154
poor specifications, 134
recovering from, 238-240. See also
Exceptions.
sources of, 134
syntax, 135-136
translation units, 137-138
type mismatch, 136-137
undeclared identifier, 256
unexpected arguments, 134
unexpected input, 134
unexpected state, 134
Errors, run-time, 132, 138-140
See also Exceptions.
callee responsibility, 141-143
caller responsibility, 140-141
hardware violations, 139
reasons for, 142-143
reporting, 143-144
Estimating development resources, 175
Estimating results, 155-156
Examples
age distribution, 527-528
calculator. See Calculator example.
Date. See Date example.

1197

deciphering, 930-935

deleting repeated words, 71-73

dictionary, 121-123, 756

Dow Jones tracking, 750-753

email analysis, 820-830

embedded systems, 888-890

enciphering (encryption), 930~
935

exponential function, 517-518

finding largest element, 687-690,
696-697

fruits, 747-750

Gaussian elimination, 874-876

graphics, 410-414, 432

graphing data, 527-528

graphing functions, 517-518

GUI (graphical user interface),
552-556, 560-561, 563-564

Hello, World!, 45-46

intrusive containers, 1025-1031

Lines_window, 552-556, 560-561,
563-564

Link, 598-607

list (doubly linked), 598-607

map container, 747-753

Matrix, 872-877

palindromes, 637-641

Pool allocator, 902-903

Punct_stream, 397-401

reading a single value, 353-357

reading a structured file, 361-370

regular expressions, 844-849

school table, 844-849

searching, 828-836

sequences, 696-698

Stack allocator, 903-904

TEA (Tiny Encryption Algorithm),
930-935

text editor, 704-711

vector. See vector example.

Widget manipulation, 552-556,
1167-1170

windows, 552-556

word frequency, 745-477

writing a program. See Calculator
example.

Examples (continued)

writing files, 346-348

ZIP code detection, 828-836
<exception>, 1097
Exceptions, 144-148, 1086

See also Error handling; Errors.

bounds error, 147

C++ and C, 992

catch, 145, 238-240, 1087

cerr, 149

cout, 149

destructors, 1088

embedded systems, 894

error messages, printing, 148-149

exception, 150, 1099-1100

failure to catch, 151

GUIs, 563

input, 148-151

narrow_cast example, 151

off-by-one error, 147

out_of_range, 147

overview, 144-145

RAII (Resource Acquisition Is Ini-

tialization), 1087

range errors, 146-148

re-throwing, 677, 1087

runtime_error, 140, 149, 151

stack unwinding, 1088

standard library exceptions, 1099-

1100

terminating a program, 140

throw, 145, 1086

truncation, 151

type conversion, 151

uncaught exception, 151

user-defined types, 1087

vector range checking, 668-669

vector resources. Se¢ vector.
Executable code, 48, 1173
Executing a program, 11, 1154
exit(), terminating a program, 1149
explicit constructor, 621-622, 1003
Expression, 94-95, 1049-1054

coding standards, 940-941

constant expressions, 1056-1057

INDEX

conversions, 1054-1056
debugging, 159
grouping (), 95, 831, 837, 840
lvalue, 94-95, 1054
magic constants, 96, 141, 231-233,
697
memory management, 1057-1058
mixing types, 98-99
non-obvious literals, 96
operator precedence, 95
operators, 97, 1049-1059
order of operations, 179
precedence, 1054
preserving values, 1054-1055
promotions, 98-99, 1054-1055
rvalue, 94-95, 1054
scope resolution, 1049
type conversion, 98-99, 1058-
1059
usual arithmetic conversions, 1056
Expression statement, 99
Empty statement, 1001
extern, 257, 999
Extracting text from files, 820-825,
828-830

F

f/F suffix, 1042
fail() stream state, 349, 1127
Falling through end of functions, 272
false, 1003-1004
Fault tolerance, 892
fclose(), 1019-1020, 1140
Feature creep, 186, 199, 1173
Feedback, programming, 36
Fields, formatting, 383-384
FILE, 1019-1020
File 1/O, 343-344
binary I/O, 387
converting representations, 368-
370
close(), 346
closing files, 346, 1140-1141
modes, 1140-1141

INDEX

open(), 346
opening files. See Opening files.
positioning in files, 389
reading. See Reading files.
writing. See Writing files.
Files, 1173
See also File 1/O.
C++ and C, 1019-1020
opening and closing, C-style I/O,
1140-1141
fill), 1116
Hill color example, 456-459, 492
fill_n(), 1116
find(), 728-731
associative container operations,
1111
finding links, 600-602
generic use, 731-732
nonmodifying sequence algo-
rithms, 1113
string operations, 815, 1132
find_end(), 1113
find_first_of(), 1113
find_if(), 728, 732-734
Finding
See also Matching; Searching.
associative container operations,
1111
elements, 728
links, 600-602
patterns, 828-830, 833-836
strings, 815, 1132
fixed format, 383
fixed manipulator, 381, 1130
float type, 1062
<float.h>, 858, 1136
Floating-point, 63, 855, 1173
% remainder (modulo), 199
assigning integers to, 856-857
assigning to integers, 857
conversions, 1055
fixed format, 383
general format, 383
mput, 180, 199-200
integral conversions, 1055

1199

literals, 180, 1042-1043
mantissa, 857
output, formatting, 380-381
precision, 382-383
and real numbers, 855
rounding, 382-383
scientific format, 383
truncation, 857
vector example, 119-121
floor(), 879, 1137
FLT_DIG limit macro, 1137
FLTK (Fast Light Toolkit), 414, 1158
code portability, 414
color, 447, 459-461
current style, obtaining, 492
downloading, 1158
fill, 459
in graphics code, 432
installing, 1159
lines, drawing, 449, 452-453
outlines, 459
rectangles, drawing, 459
testing, 1160
in Visual Studio, 1159-1160
waiting for user action, 547-548,
556-557
FLT_MAX limit macro, 1137
FLT_MAX_10_EXP limit macro, 1137
FLT_MIN limit macro, 1137
flush manipulator, 1130
Flushing a buffer, 239-240
Fonts for Graphics example, 463-464
fopen(), 1019-1020, 1140
for-statement, 110-112
Ford, Henry, 772
for_each(), 1113
Formal arguments. See Parameters.
Formatting
See also 1/O streams, 1128-1129.
See also G-style 1/O, 1016-1019.
See also Manipulators, 1129-1130.
case, 393-394
fields, 383-384
precision, 382-383
whitespace, 393

1200

Fortran language, 786-788
array indexing, 863
complex, 882
subscripting, 863
Forward declarations, 259
Forward iterators, 722-723, 1103
fprintf(), 1017, 1141
Fragmentation, embedded systems,
898, 899
free(), deallocate, 1009-1010, 1147
Free store (heap storage)
allocation, 578-579
C++ and C, 1009-1011
deallocation, 584-586
delete, 584-586, 586-590

and destructors. See destructors.

embedded systems, 898-902
garbage collection, 585
leaks, 584-586, 586-590
new, 578-579
object lifetime, 1048
Freeing memory. See Deallocating
memory.
friend, 1003, 1073-1074
from_string() example, 817-818
front(), first element, 1109
front_inserter(), 1122
fstream(), 1126
<fstream>, 1096
fstream type, 344-346
Fully qualified names, 291-293
Function example, 439, 515-518
Function, 47, 112-114
See also Member functions.

accessing class members, 1073-1074

arguments. See Function argu-
ments.

in base classes, 496

body, 47, 113

C++ and C, 994-998

callback, GUIs, 544-546

calling, 1066

cleaning up, 233-234

coding standards, 940-941

common style, 482-483

debugging, 158

INDEX

declarations, 115-116, 1066

definition, 112, 269, 1173

in derived classes, 493, 496

falling through, 272

formal arguments. See Function pa-
rameters.

friend declaration, 1073-1074

generic code, 483

global variables, modifying, 267

graphing. See Function example.

inline, 312, 992

linkage specifications, 1069

naming. See Namespaces.

nesting, 267

organizing. See Namespaces.

overload resolution, 1067-1068

overloading, 316-318, 516, 992

parameter, 113. See also Function
parameters.

pointer to, 1000-1002

post-conditions, 163-164

pre-conditions, 161-163

pure virtual, 1175

requirements, 151. See also Pre-
conditions.

return type, 47, 270-271

return, 112-113, 271-272, 1066

standard mathematical, 518, 1137-
1138

types as parameters. See Templates.

uses for, 114-115

virtual, 1000-1002. See also Virtual
functions.

Function activation record, 284
Function argument

See also Function parameter;
Parameters.

checking, 281-282

conversion, 281-282

declaring, 270-271

formal. See Parameters.

naming, 270-271

omitting, 270

passing. See Function call.

Function call, 282

() operator, 735-736

INDEX

call stack, 287
expression() call example, 284-287
function activation record, 284
history of, 785
memory for, 577
pass by const reference, 273-276,
279-281
pass by non-const reference, 279-
281
pass by reference, 276-281
pass by value, 273, 279-281
recursive, 286
stack growth, 284-287. See also
Function activation record.
temporary objects, 280
Function-like macros, 1022-1023
Function member
definition, 301-302
same name as class. See Construc-
tors.
Function object, 734-736
() function call operator, 735-736
abstract view, 736-737
adaptors, 1123
arithmetic operations, 1123
parameterization, 736-737
predicates, 737-738, 1122-1123
Function parameter (formal argument)
... ellipsis, unchecked arguments,
1068
pass by const reference, 273-276,
279-281
pass by non-const reference, 279-281
pass by reference, 276-281
pass by value, 273, 279-281
temporary objects, 280
unused, 270
Function template
algorithms, 659-661
argument deduction, 664-665
parameterized functions, 659-661
<functional>, 1095, 1122-1123
Functional cast, 1058
Functional programming, 788
Fused multiply-add, 868

1201

G

Gadgets. See Embedded systems.
Garbage collection, 585, 900-901
Gaussian elimination, 874-875
gcount(), 1128
general format, 383
general manipulator, 381
generate(), 1116
generate_n(), 1116
Generic code, 483
Generic programming, 659-661, 782,
1173
Geometric shapes, 423
get(), 1128
getc(), 1018, 1145
getchar(), 1019, 1145
getline(), 391-392, 815, 819, 1128
gets(), 1018
C++ alternative >>, 1019
dangerous, 1018
scanf(), 1144-1145
get_token() example, 194
GIF images, 473-475
Global scope, 264, 267, 1046
Global variables
functions modifying, 267
memory for, 577
order of initialization, 288-290
Going out of scope, 266-267, 287
good() stream state, 349, 1127
GP. See Generic programming.
Grammar example
alternation, patterns, 192-193
English grammar, 191-192
Expression example 186-191, 195-
198, 200201
parsing, 188-191
repetition, patterns, 192-193
rules vs. tokens, 192-193
sequencing rules, 192-193
terminals. See Tokens.
writing, 187, 192-193
Graph.h, 417-418
Graphical user interfaces. See GUIs.
Graphics, 408

Graphics (continued)

See also Color; Graphics example;
Shape.

display model, 409-410

displaying, 472-475

drawing on screen, 419-420

encoding, 473

filling shapes, 427

formats, 473

geometric shapes, 423

GIF, 473-475

graphics libraries, 474-475

graphs, 422-423

images from files, 429-430

importance of, 408-409

JPEG, 473-475

line style, 427

loading from files, 429-430

screen coordinates, 415-416

selecting a sub-picture from, 473

user interface. See GUIs (graphical
user interfaces).

Graphics example

Graph.h, 417-418

GUI system, giving control to,
419

header files, 417-418

main(), 417-418

Point.h, 440

points, 422-423

Simple_window.h, 440

wait_for_button(), 419

Window.h, 440

Graphics example, design principles

access control. See Access control.

attach() vs. add(), 483-484

class diagram, 497

class size, 481-482

common style, 482-483

data modification access, 484-485

generic code, 483

inheritance, interface, 504-505

mbheritances, implementation, 504
505

mutability, 484-485

naming, 483-484

INDEX

object-oriented programming, ben-
efits of, 504-505

operations, 482-483

private data members, 484-485

protected data, 484-485

public data, 484-485

types, 480-482

width/height, specifying, 482

Graphics example, GUT classes, 438-

440
See also Graphics example (interfaces).
Button, 439
In_box, 439
Menu, 439
Out_box, 439
Simple_window, 418-420, 439
Widget, 548-550, 1163-1164
Window, 439, 1164-1166

Graphics example, interfaces, 438-

439

See also Graphics example (GUI
classes).

Axis, 420-422, 439, 518-521

Circle, 464-467, 489

Closed_polyline, 451-453

Color, 445-447

Ellipse, 466-468

Function, 439, 514-518

Image, 439, 472-475

Line, 441-444

Lines, 443-445, 489

Line_style, 448-450

Mark, 470-472

Marked_polyline, 468-469

Marks, 469-470, 489

Open_polyline, 450-451, 489

Point, 422-423, 441

Polygon, 423-424, 453-455, 489

Rectangle, 424-427, 455-459, 489

Shape, 440-441, 445, 485-499,
504-505

Text, 427-429, 462-464

Graphing data example, 527-534
Graphing functions example, 510-514,

521-526

Graph_lib namespace, 417-418

INDEX

Graph example
See also Grids.
Axis, 420-422
coordinates, 422-423
drawing, 422-423
points, labeling, 468-469
greater(), 1122
Greater than >, 67, 1052
Greater than or equal >=, 1052
greater_equal(), 1122
Green marginal alerts, 3
Grids, drawing, 444-445, 448-450
Grouping regular expressions, 831,
837, 840
Guarantees, 676-678
GUI system, giving control to, 419
Guidelines. See Ideals.
GUIs (graphical user interfaces), 540-
541
See also Graphics example (GUI
classes).
callback functions, 544-546
callback implementation, 1162—
1163
cb_next() example, 544-546
common problems, 562-564
control inversion, 556-557
controls. See Widgets.
coordinates, computer screens,
415-416
debugging, 562-564
error handling, 563
examples, 552-556, 560-561,
563-564
exceptions, 563
FLTK (Fast Light Toolkit), 414
layers of code, 544-545
next() example, 546
pixels, 415-416
portability, 414
standard library, 414-415
system tests, 969-973
toolkit, 414
vector of references, simulating,
1166-1167
vector_ref example, 1166-1167

wait loops, 547-548

wait_for_button() example, 547-548

waiting for user action, 547-548,
556-557

Widget example, 548-556, 1163
1164, 1167-1170

Window example, 5562-556, 1164-
1166

H

.h file suffix, 46
Half open sequences, 694-695
Hard real-time, 893, 942
Hardware replication, error handling,
896
Hardware violations, 139
Hash function, 753-754
Hash tables, 753
Hash values, 753
Hashed container. See unordered_map.
Hashing, 753
Header files, 46, 1173
C standard library, 1097
declarations, managing, 261-262
definitions, managing, 261-262
graphics example, 417-418
including in source files, 262-264,
1090-1091
multiple inclusion, 1025
standard library, 1095-1097
Headers. See Header files.
Heap algorithm, 1119-1120
Heap memory, 897-898. See¢ also Free
store.
Hejlsberg, Anders, 796
“Hello, World!” program, 45-47
Helper functions
!= inequality, 328
== equality, 328
class interfaces, 326-328
Date example, 305-306, 327
namespaces, 328
validity checking date values, 306
hex manipulator, 378-379, 1130
Hexadecimal digits, 393

1204

Hexadecimal number system, 377-379,
1041-1042

Hiding information, 1173

Hopper, Grace Murray, 789-790

Hyperbolic cosine, cosh(), 879

Hyperbolic sine, sinh(), 879

Hyperbolic tangent, tanh(), 879

1/O errors
bad() stream state, 349
clear(), 349-352
end of file, 349
eof() stream state, 349
error handling, 1127
fail() stream state, 349
good() stream state, 349
ios_base, 351
stream states, 349
recovering from, 349-352
unexpected errors, 349
unget(), 349-352

I/O streams, 1124-1125
<< output operator, 819
>> input operator, 819
cerr, standard error output stream,

149, 1125, 1144
cin standard input, 341
class hierarchy, 819, 1126-1127
cout standard output, 341
error handling, 1127
formatting, 1128-1129
fstream, 384-386, 389, 1126
get(), 819
getline(), 819
header files, 1096
ifstream, 384-386, 1126
input operations, 1128
input streams, 341-343
iostream library, 341-343, 1124-
1125

istream, 341-343, 1125-1126
istringstream, 1126
ofstream, 384-386, 1126
ostream, 341-343, 1124-116

INDEX

ostringstream, 384-386, 1126
output operations, 1128-1129
output streams, 341-343
standard manipulators, 378, 1129-
1131
standard streams, 1125
states, 1127
stream behavior, changing, 378
stream buffers, streambufs, 1125
stream modes, 1126
string, 819
stringstream, 390-391, 1126
throwing exceptions, 1127
unformatted input, 1128
IBM, 786-788
Ichbiah, Jean, 797
IDE (interactive development environ-
ment), 52
Ideals
abstraction level, 778-779
bottom-up approach, 776-777
class interfaces, 318
code structure, 776
coding standards, 936-937
consistency, 780
correct approaches, 776-777
correctness, 775
definition, 1173
direct expression of ideas, 777-778
efficiency, 775-776
embedded systems, 894-895
importance of, 8
KISS, 780
maintainability, 775
minimalism, 780
modularity, 779-780
on-time delivery, 776
overview, 774-775
performance, 775-776
software, 34-37
top-down approach, 776-777
Identifiers, 1045. See also Names.
reserved, 75-76. See also Keywords.
if-statements, 101-103
#ifdef, 1024-1025
#ifndef, 1025

INDEX

ifstream type, 344-346

imag(), imaginary part, 881, 1139

Image example, 439, 472-475

Images. See Graphics.

Imaginary part, 881

Immutable values, class interfaces,

325-326

Implementation, 1173
class, 302-304
inheritance, 504-505
programs, 35

Implementation-defined feature, 1039

Implicit conversions, 621-622

In-class member definition, 1074-1075

in mode, 385, 1126

In_box example, 439, 550-551

#include, 46, 262-264, 1090

Include guard, 1025

includes(), 1119

Including headers, 1090-1091. See also

#include.

Incrementing ++, 66, 695
iterators, 694-695, 721, 1101-1104
pointers, 630
variables, 73-74, 97-98

Indenting nested code, 269

Inequality != (not equal), 67, 1052,

1064
complex, 881, 1138
containers, 1111
helper function, 328
iterators, 695, 1102
string, 67, 815, 1132

Infinite loop, 1173

Infinite recursion, 196, 1173

Information hiding, 1173

Information processing, 31-32

Inheritance
class diagram, 497
definition, 496
derived classes, 1078-1079
embedded systems, 912-916
history of, 799
implementation, 504-505
interface, 504-505
multiple, 1079

1205

pointers vs. references, 598
templates, 661-662
Initialization, 69-73, 1173
arrays, 582-583, 633-634
constants, 260, 324-325, 1062
constructors, 306-309
Date example, 305-309
default, 261, 322-323, 1048
invariants, 309, 676-677
menus, 558
pointer targets, 582-583
pointers, 582-583, 635
Token example, 183
inline, 1003
Inline
functions, 992
member functions, 312
inner_product(), 729
See also Dot product.
description, 742-743
generalizing, 743-744
matrices, 868
multiplying sequences, 1139
standard library, 729, 739
inplace_merge(), 1118
Input, 60-62
See also I/O streams; Input >>.
binary I/O, 386-389
C++and C, 1017-1019
calculator example, 177, 180, 183-
184, 199-200, 204-206
case sensitivity, 64
cin, standard input stream, 61
dividing functions logically, 353-
356
files. See File 1/0O.
format errors, 64-65
individual characters, 392-394
integers, 379-380
istringstream, 390
line-oriented input, 391-392
newline character \n, 61-62, 64
potential problems, 352-357
prompting for, 61, 177
separating dialog from function,
356-357

1206

Input (continued)
a series of values, 350-352
a single value, 352-357
source of exceptions, 148-151
stringstream, 390-391
tab character \t, 64
terminating, 61-62
type sensitivity, 64-65
whitespace, 64
Input >>, 61
case sensitivity, 64
complex, 881, 1139
formatted input, 1128
multiple values per statement, 65
strings, 815, 1132
text input, 815, 819
user-defined, 359
whitespace, ignoring, 64
Input devices, 340-341
Input iterators, 722-723, 1103
Input loops, 359-361
Input/output, 341-343
See also Input; Output.
buffering, 342, 402
C++ and C. See stdio.
computation overview, 91
device drivers, 340
errors. See I/O errors.
files. See File I/O.
formatting. See Manipulators; printf().
irregularity, 376
istream, 341-348
natural language differences, 402
ostream, 341-348
regularity, 376
streams. See I/O streams
strings, 819
text in GUIs, 550-551
whitespace, 393, 394-401
Input prompt >, 221
Input streams, 341-343. See also I/O
streams.
Inputs, testing, 961
insert()
list, 600-602, 713-715

INDEX

map container, 750, 751
string, 815, 1110, 1132
vector, 715-718
inserter(), 1122
Inserters, 1121-1122
Inserting
list elements, 713-715
into strings, 815, 1110, 1132
vector elements, 715-718
Installing
FLTK (Fast Light Toolkit), 1159
Visual Studio, 1152
Instantiation, templates, 658-659,
1084-1085
int, integer type, 66-67, 78, 1062
bits in memory, 78, 917
Integers, 77-78, 854-855, 1174
assigning floating-point numbers
to, 857
assigning to floating-point num-
bers, 856-857
decimal, 377-379
mput, formatting, 379-380
largest, finding, 879
literals, 1041
number bases, 377-379
octal, 377-379
output, formatting, 377-379
reading, 379-380
smallest, finding, 879
Integral conversions, 1055
Integral promotion, 1054-1055
Interactive development environment
(IDE), 52
Interface classes. See Graphics example
(interfaces).
Interfaces, 1174
classes. See Class interfaces.
inheritance, 504-505
user. See User interfaces.
internal manipulator, 1130
INT_MAX limit macro, 1136
INT_MIN limit macro, 1136
Intrusive containers, example, 1025-

1031

INDEX

Invariants, 309, 1174
See also Post-conditions; Pre-condi-
tions.
assertions, 161
debugging, 160-161
default constructors, 620
documenting, 780
Date example, 309
invention of, 793
Polygon example, 455
Invisible. See Transparency.
<iomanip>, 1096, 1129
<ios>, 1096, 1129
<iosfwd>, 1096
iostream
buffers, 402
C++and C, 1016
exceptions, 1099
library, 341-343
<iostream>, 1096, 1129
Irregularity, 376
is_open(), 1126
isalnum() classify character, 393, 1131
isalpha() classify character, 247, 393,
1131
iscntrl() classify character, 393, 1131
isdigit() classify character, 393, 1131
isgraph() classify character, 393, 1131
islower() classify character, 393, 1131
isprint() classify character, 393, 1131
ispunct() classify character, 393, 1131
isspace() classify character, 393, 1131
istream, 341-343, 1125-1126
>>, text input, 815, 1128
>>, user-defined, 359
binary 1/O, 386-389
connecting to input device, 1126
file I/O, fstream, 343-348, 1126
get(), get a single character, 393
getline(), 391-392, 1128
stringstreams, 390-391
unformatted input, 391-393, 1128
using together with stdio, 1016—
1017
<istream>, 1096, 1124, 1128-1129

1207

istream_iterator type, 758-761
istringstream, 390
isupper() classify character, 393, 1131
isxdigit() classify character, 393, 1131
Iteration
See also Iterators.
control variables, 109
definition, 1174
example, 708-711
for-statements, 110-112
linked lists, 701-703, 708-711
loop variables, 109
strings, 815
through values. See vector.
while-statements, 108-109
iterator, 1108
<iterator>, 1095, 1121
Iterators, 694-696, 1100-1101, 1174
See also STL iterators.
bidirectional iterator, 722-723
category, 722-723, 1103-1105
containers, 1109, 1104-1105
empty list, 702
example, 708-711
forward iterator, 722-723
header files, 1095-1096
input iterator, 722-723
operations, 695, 1102-1103
output iterator, 722-723
vs. pointers, 1101
random-access iterator, 723
sequence of elements, 1101-1102
iter_swap(), 1116

)

Japanese age distribution example,
527-528
JPEG images, 473-475

K

Kernighan, Brian, 802-803, 988-989
key_comp(), 1112
key_compare, 1108

1208

key_type, 1108

Key,value pairs, containers for, 744
Keywords, 1003-1004, 1045-1046
KISS, 780

Knuth, Don, 774-775

K&R, 802, 988

L

I/L suffix, 1041
\l, “lowercase character,” regex, 837,
1135
\L, “not lowercase,” regex, 939, 1135
Label
access control, 302, 502
case, 104-107
graph example, 518-521
of statement, 1059
Largest integer, finding, 879
Laws of optimization, 893
Layers of code, GUIs, 544-545
Layout rules, 939-940, 1000
Leaks, memory, 584-586, 586-590,
899
Leap year, 305
left manipulator, 1130
Legal programs, 1039
length(), 815, 1132
Length of strings, finding, 815, 1012,
1132
less(), 1122
Less than <, 1052
Less than or equal <=, 67, 1052
less_equal(), 1122
Letters, identifying, 247, 393
lexical_cast, 819
Lexicographical comparison
< comparison, 815, 1132
<= comparison, 1132
> comparison, 1132
>= comparison, 1132
C-style strings, 1012
lexicographical_compare(), 1121
Libraries, 51, 1174
See also Standard library.
role in debugging, 158

INDEX

uses for, 175
Lifetime, objects, 1048-1049, 1174
Limit macros, 1136-1137
Limits, 858
<limits>, 858, 1096, 1135
<limits.h>, 858, 1136
Line comment //, 45
Line example, 441-443
vs. Lines, 444
Line-oriented input, 391-392
Linear equations example, 872-877
back_substitution(), 874-875
classic_elimination(), 874-875
Gaussian elimination, 874-875
pivoting, 875-876
testing, 876-877
Lines example, 443-445, 489
vs. Line, 444
Lines (graphic), drawing
See also draw_lines(); Graphics.
on graphs, 518-521
line styles, 448-450
multiple lines, 443-445
single lines, 441-443
styles, 427, 449
visibility, 492
Lines (of text), identifying, 707-708
Line_style example, 448-450
Lines_window example, 552-556, 560-
561, 563-564
Link example, 598-607
Link-time errors. See Errors, link-time.
Linkage convention, G, 999
Linkage specifications, 1069
Linked lists, 698. See also Lists.
Linkers, 51, 1174
Linking programs, 51
Links, 598-602, 606-607, 699
Lint, consistency checking program, 801
Lisp language, 790-791
list, 700, 1107-1111
add(), 600-602
advance(), 600-602
back(), 708
erase(), 600-602, 713-715
find(), 600-602

INDEX

insert(), 600-602, 713-715
operations, 600-602
properties, 712-713
referencing last element, 708
sequence containers, 1105
subscripting, 700
<list>, 1095
Lists
containers, 1110
doubly linked, 598, 698
empty, 702
erasing elements, 713-715
examples, 598-600, 704-711
finding links, 600-602
getting the nth element, 600-602
mserting elements, 600-602, 713—
715
iteration, 701-703, 708-711
link manipulation, 600-602
links, examples, 598-600, 606-607,
699
operations, 699-700
removing elements, 600-602
singly linked, 598, 698
this pointer, 603-605
Literals, 62, 1041, 1174
character, 159, 1043-1044
decimal integer, 1041
n expressions, 96
f/F suffix, 1042
floating-point, 1042-1043
hexadecimal integer, 1041
integer, 1041
I/L suffix, 1041
magic constants, 96, 141, 231-233,
697
non-obvious, 96
null pointer, 0, 1044-1045
number systems, 1041-1042
octal integer, 1041
special characters, 1043-1044
string, 159, 1044
termination, debugging, 159
for types, 63
u/U suffix, 1041
unsigned, 1041

1209

Local (automatic) objects, lifetime, 1048
Local classes, nesting, 268
Local functions, nesting, 268
Local scope, 265-266, 1046
Local variables, array pointers, 636-637
Locale, 402
<locale>, 1097
log(), 879, 1137
log10(), 879, 1137
Logic errors. See Errors, logic.
Logical and &&, 1052, 1057
Logical operations, 1057
Logical or ||, 1053, 1057
logical_and(), 1122
logical_not(), 1122
logical_or(), 1122
Logs, graphing, 517-518
long integer, 917, 1062
LONG_MAX limit macro, 1137
LONG_MIN limit macro, 1137
Look-ahead problem, 202-207
Loop, 109, 111, 1174
examples, parser, 198
infinite, 196, 1173
testing, 965-966
variable, 109, 111
Lovelace, Augusta Ada, 797
lower, 842, 1134
lower_bound(), 764, 1112, 1117
Lower case. See Case.
Lucent Bell Labs, 803
Lvalue, 94-95, 1054

M

Machine code. See Executable code.
Macro substitution, 1090-1091
Macros, 1021-1022

conditional compilation, 1024—

1025

#define, 1022-1024, 1090-1091

function-like, 1022-1023

#ifdef, 1024-1025

#ifndef, 1025

#include, 1024, 1090

include guard, 1025

1210

Macros (continued)
naming conventions, 1021
syntax, 1023-1024
uses for, 1021
Maddoc, John, 830
Magic constants, 96, 141, 231-233,
697
Magical approach to programming, 10
main(), 46-47
arguments to, 1040
global objects, 1040
return values, 47, 1039-1040
starting a program, 1039-1040
Maintainability, software, 34, 775
Maintenance, 891
make_heap(), 1119
make_pair(), 751, 1124
make_vec(), 677
malloc(), 1009, 1147
Manipulators, 378, 1129-1131
complete list of, 1129-1130
dec, 1130
endl, 1130
fixed, 1130
hex, 1130
noskipws, 1129
oct, 1130
resetiosflags(), 1130
scientific, 1130
setiosflags(), 1130
setprecision(), 1130
skipws, 1129
Mantissa, 857
map, associative array, 744-750
See also set; unordered_map.
[1, subscripting, 745, 1111
balanced trees, 748-750
binary search trees, 747
case sensitivity, No_case example,
762-763
counting words example, 745-747
Dow Jones example, 750-753
email example, 820-836
erase(), 749, 1110
finding elements in, 745, 749,
1111-1112

INDEX

fruits example, 747-750
insert(), 750, 751, 1110
iterators, 1105
key storage, 745
make_pair(), 751
No_case example, 750, 762-763
Node example, 747-750
red-black trees, 747
vs. set, 756
standard library, 1107-1112
tree structure, 747-750
without values. See set.
<map>, 744, 1095
mapped_type, 1108
Marginal alerts, 3
Mark example, 470-472
Marked_polyline example, 468-469
Marks example, 469-470, 489
Mars Rover, 32-33
Matching
See also Finding; Searching.
regular expressions, regex, 1133-1135
text patterns. See Regular expressions.
Math functions, 518, 1137-1138
Mathematics. See Numerics.
Mathematical functions, standard
abs(), absolute value, 879
acos(), arccosine, 879
asin(), arcsine, 879
atan(), arctangent, 879
ceil(), 879
<cmath>; 879, 1096
<complex>, 881
cos(), cosine, 879
cosh(), hyperbolic cosine, 879
errno, error indicator, 880
error handling, 880
exp(), natural exponent, 879
floor(), 879
log(), natural logarithm, 879
log10(), base-10 logarithm, 879
sin(), sine, 879
sinh(), hyperbolic sine, 879
sqrt(), square root, 879
tan(), tangent, 879
tanh(), hyperbolic tangent, 879

INDEX

Matrices, 863-865, 869
Matrix library example, 863-865, 869
(), subscripting (Fortran style), 863
[1, subscripting (G style), 860, 863
accessing array elements, 863-865
apply(), 867
broadcast functions, 867
clear_row, 870
columns, 864-865, 870
dimensions, 862-865
dot product, 868
fused multiply-add, 868
initializing, 870
inner_product, 868
input/output, 870-871
linear equations example, 874-877
multidimensional matrices, 862-872
rows, 864-865, 870
scale_and_add(), 868
slice(), 865-866, 869
start_row, 870
subscripting, 863-865, 869
swap_columns(), 870
swap_rows(), 870
max(), 1120-1121
max_element(), 1121
max_size(), 1111
McCarthy, John, 791
Mcllroy, Doug, 802, 998
Medicine, computer use, 30
Member, 301-303
See also Class.
allocated at same address, 1082-
1083
class, nesting, 268
definition, 1071
definitions, 1074-1075
in-class definition, 1074-1075
out-of-class definition, 1074-1075
static const int members, 1075
Member access
See also Access control.
. (dot), 1072
-> (arrow), 593, 1072
:: scope resolution, 310, 1072
notation, 182

1211

operators, 593
this pointer, 1073
by unqualified name, 1072
Member function
See also Class members; Constructors;
Destructors; Date example.
calls, 118
nesting, 267
Token example, 182-183
Member initializer list, 183
Member selection, expressions, 1051
Member types
containers, 1108
templates, 1086
memchr(), 1147
memcmp(), 1147
memcpy(), 1147
mem_fun() adaptor, 1123
mem_fun_ref() adaptor, 1123
memmove(), 1147
Memory, 574-576
addresses, 574
allocating. See Allocating memory.
automatic storage, 577
bad_alloc exception, 1058
C standard library functions,
1146-1147
for code, 577
deallocating, 584-586
embedded systems, 902-904
exhausting, 1058
free store, 577-579
freeing. See Deallocating memory.
for function calls, 577
for global variables, 577
heap. See Free store.
layout, 577
object layout, 497-499
object size, getting, 576-577
pointers to, 574-576
sizeof, 576-577
stack storage, 577
static storage, 577
text storage, 577
<memory>, 1095
memset(), 1147

1212

Menu example, 439, 551, 557-562

merge(), 728, 1118

Messages to the user, 551

min(), 1120-1121

min_element(), 1121

Minimalism, ideals, 780

Minus -. See Subtraction.

minus(), 1123

Missing copies, 624

MIT, 791, 803

Modifying sequence algorithms, 1114—
1116

Modular systems, error handling,
896-897

Modularity, ideals, 779-780

Modulo (remainder) %, 66. Se¢ also
Remainder.

modulus(), 1123

Monitoring subsystems, error handling,
897

move(), 494, 549

Move backward —=, 1064

Move forward +=, 1064

Multi-paradigm programming languages,
783

Multidimensional matrices, 862-872

multimap, 744, 824-825, 1105

<multimap>, 744

Multiplicative operators, expressions,
1051

multiplies(), 1123

Multiply *, 66, 1051

Multiply and assign *=, 67

multiset, 744, 1105

<multiset>, 744

Mutability, 484-485, 1174

class interfaces, 326-328
and copying, 494-496

mutable, 1003

Mutating sequence algorithms, 1114-
1116

N

\n newline, character literal, 61-62,
64, 1043

INDEX

Named character classes, in regular ex-
pressions, 841-842
Names, 74-77
_ (underscore), 75, 76
capital letters, 76-77
case sensitivity, 75
confusing, 77
conventions, 74-75
declarations, 255-256
descriptive, 76
function, 47
length, 76
overloaded, 138, 500, 1067-1068
reserved, 75-76. See also Keywords.
namespace, 269, 1003
Namespaces, 290, 1088
See also Scope.
:: scope resolution, 291
C++ and C, 1008
fully qualified names, 291-293
helper functions, 328
objects, lifetime, 1048
scope, 264, 1046
std, 291-292
for the STL, 1098
using declarations, 291-293
using directives, 291-293, 1089
variables, order of initialization,
288-290
Naming conventions, 74-77
coding standards, 939-940
enumerators, 316
functions, 483-484
macros, 1021
role in debugging, 158
scope, 267
narrow_cast example, 151
Narrowing conversions, 80-83
Narrowing errors, 151
Natural language differences, 402
Natural logarithms, 879
Naur, Peter, 792-793
negate(), 1123
Negative numbers, 227-228
Nested blocks, 268-269
Nested classes, 268

INDEX

Nested functions, 268
Nesting
blocks within functions, 268-269
classes within classes, 268
classes within functions, 268
functions within classes, 267
functions within functions, 268
indenting nested code, 269
local classes, 268
local functions, 268
member classes, 268
member functions, 267
structs, 1003
new, 578, 582
C++ and C, 992, 1003
and delete, 1057-1058
embedded systems, 894, 898-901,
901-902
example, 578-579
exceptions, 1099
types, constructing, 1050, 1051
<new>, 1097
New-style casts, 1006
next_permutation(), 1120
No-throw guarantee, 677
noboolalpha, 1129
No_case example, 750
Node example, 747-750
Non-algorithms, testing, 961-968
Non-errors, 137
Non-intrusive containers, 1025
Nonmodifying sequence algorithm,
1113-1114
Nonstandard separators, 394-401
norm(), 881, 1138
Norwegian Computing Center, 798—
800
noshowbase, 379, 1129
noshowpoint, 1129
noshowpos, 1129
noskipws, 1129
not, synonym for !, 1003, 1004
Not-conforming constructs, 1039
Not !, 1050
not1() adaptor, 1123
not2() adaptor, 1123

1213

Notches, graphing data example, 518-
521, 532-534
Not equal != (inequality), 67, 1052,
1064
not_eq, synonym for !=, 1003, 1004
not_equal_to(), 1122
nouppercase manipulator, 1130
nth_element(), 1117
Null pointer, 583-584, 634-635,
1044-1045
Number example, 187
Number systems
base-2, binary, 1042
base-8, octal, 377-380, 1041-1042
base-10, decimal, 377-380, 1041-
1042
base-16, hexadecimal, 377-380,
1041-1042
<numeric>, 1096, 1139
Numerical algorithms. See Algorithms,
numerical.
Numerics, 854-855
absolute values, 879
arithmetic function objects, 1123
arrays. See Matrix library example.
<cmath>, 879
columns, 859
complex, 881, 1138-1139
<complex>, 881
floating-point rounding errors,
856-857
header files, 1096
integer and floating-point, 856-857
integer overflow, 854-857
largest integer, finding, 879
limit macros, 1136-1137
limits, 858
mantissa, 857
mathematical functions, 879-880
Matrix library example, 861-872
multi-dimensional array, 859-861
numeric_limits, 1135-1136
numerical algorithms, 1139
overflow, 854-858
precision, 854-858
rand(), random number, 878

1214

Numerics (continued)
random numbers, 877-879
real numbers, 855. See¢ also Floating-
point.
results, plausibility checking, 855
rounding errors, 855
rows, 859
size, 854-858
sizeof(), 856
smallest integer, finding, 879
srand(), seed random number gen-
erator, 878
standard mathematical functions,
879-880, 1137-1138
truncation, 857
valarray, 1139
whole numbers. See Integers.
Nygaard, Kristen, 798-800

O

.obj file suffix, 48
Object code, 48, 1174. See also Exe-
cutable code.
Object-oriented programming, 1174
“from day one,” 10
vs. generic programming, 660
for graphics, benefits of, 504-505
history of, 781-783, 798-799
Object, 60, 1174
aliases. See References.
behaving like a function. See Func-
tion object.
constructing, 182-183
copying, 1077-1078, 1081
current (this), 312-313
Date example, 328-332
initializing, 322-325. See also Con-
structors.
layout in memory, 304, 497-499
lifetime, 1048-1049
named. See Variables.
Shape example, 487
sizeof(), 576-577
state, 301. See also Value.
type, 77-78

INDEX

value. See Value.
oct manipulator, 378-379, 1130
Octal number system, 377-379, 1041-
1042
Off-by-one error, 147
ofstream, 345-346
Old-style casts, 1006
On-time delivery, ideals, 776
One-dimensional (1D) matrices, 865-
868
\ooo octal, character literal, 1043
OOQOP. See Object-oriented programming,.
Opaque types, 1026
open(), 346, 1126
Open modes, 385-386
Open shapes, 450-451
Opening files, 344-346
See also File I/O.
app mode (“append”), 385
ate mode (“at end”), 385
binary files, 386-389
binary mode, 385
Costyle /0, 1140-1141
failure to open, 385
file streams, 344-346
in mode (“for reading”), 385
nonexistent files, 385-386
open modes, 385-386
out mode (“for writing”), 385
testing after opening, 346
trunc mode (“truncate”), 385
Open_polyline example, 450-451, 489
Operations, 66-69, 301, 1174
chaining, 178-179
graphics classes, 482-483
operator, 1003
Operator overloading, 316
C++ standard operators, 317-
318
restrictions, 317
user-defined operators, 317
uses for, 316-318
Operator, 97
! not, 1050
!= not-equal (inequality), 1052
& (unary) address of, 574, 1050

INDEX

& (binary) bitwise and, 917, 1052,
1057

&& logical and, 1052, 1057

&= and and assign, 1053

% remainder (modulo), 1051

%= remainder (modulo) and as-
sign, 1053

* (binary) multiply, 1051

* (unary) object contents, pointing
to, 1050

*= multiply and assign, 1053

+add (plus), 1051

++ increment, 1050

+= add and assign, 1053

- subtract (minus), 1051

—- decrement, 1050

-= subtract and assign, 1053

-> (arrow) member access, 1050-
1051

. (dot) member access, 1050, 1051

/ divide, 1051

/= divide and assign, 1053

:: scope resolution, 1049

< less than, 1052

<< shift left, 1051. See also ostream.

<<= shift left and assign, 1053

<= less than or equal, 1052

= assign, 1053

== equal, 1052

> greater than, 1052

>= greater than or equal, 1052

>> shift right, 1051. See also
istream.

>>= shift right and assign, 1053

2: conditional expression (arith-
metic if), 1053

[1 subscript, 1050

A bitwise exclusive or, 1052, 1057

A= xor and assign, 1053

| bitwise or, 1052, 1057

| = or and assign, 1053

|| logical or, 1053, 1057

~ complement, 1050

additive operators, 1051

const_cast, 1050, 1058

delete, 1051, 1057-1058

delete[], 1051, 1057-1058
dereference. See Contents of.
dynamic_cast, 1050, 1058
expressions, 1049-1059
new, 1050, 1051, 1057-1058
reinterpret_cast, 1050, 1058
sizeof, 1050, 1057
static_cast, 1050, 1058
throw, 1053
typeid, 1050
Optimization, laws of, 893
or, synonym for |, 1003, 1004
Order of evaluation, 287-288
or_eq, synonym for |=, 1003, 1004
ostream, 341-343, 1124-1125
<<, text output, 815, 819
<<, user-defined, 357-359
binary I/O, 386-389
connecting to output device, 1126
file I/O, fstream, 343-348, 1126
stringstreams, 390-391
using together with stdio, 1016—
1017
<ostream>, 1096, 1124, 1129
ostream_iterator type, 758-761
ostringstream, 390
out mode, 385, 1126
Out-of-class member definition, 1074—
1075
Out-of-range conditions, 581
Out_box example, 439, 550-551
out_of_range, 147
Output, 1174
See also Input/output; I/O streams.
devices, 340-341
to file. See File I/O, writing files.
floating-point values, 380-381
format specifier %, 1141
formatting. See Input/output (for-
matting).
integers, 377-379
iterator, 722-723, 1103
operations, 1128-1129
streams. See I/O stream model.
to string. See stringstream.
testing, 961

1215

1216

Output <<, 47, 67, 1129
complex, 881, 1139
string, 815
text output, 815, 819
user-defined, 357-359
Overflow, 854-858, 1174
Overloading, 1067-1068, 1174
alternative to, 516
C++ and C, 992
on const, 626-627
linkage, 138
operators. See Operator overloading.
and overriding 500
resolution, 1067-1068
Opverride, 500-501, 1174

P

Padding, C-style I/O, 1143
pair, 1123-1124
reading sequence elements, 1112-
1113
searching, 1117-1118
sorting, 1117-1118
Palindromes, example, 637-638
Paradigm, 781-783, 1174
Parameterization, function objects,
736-737
Parameterized type, 659-661
Parameters, 1174
functions, 47, 113
list, 113
naming, 270-271
omitting, 270
templates, 656-659, 662-664
Parametric polymorphism, 659-661
Parsers, 188, 193
functions required, 194
grammar rules, 192-193
Expression example, 187, 195-198,
200-201
rules vs. tokens, 192-193
Parsing
expressions, 188-191
grammar, English, 191-192
grammar, programming, 188-191

INDEX

tokens, 188-191
partial_sort(), 1117
partial_sort_copy(), 1117
partial_sum(), 739, 1139
partition(), 1118
Pascal language, 794-796
Passing arguments
by const reference, 273-276, 279-281
copies of, 273
modified arguments, 276-279
by non-const reference, 279-281
by reference, 276-281
temporary objects, 280
unmodified arguments, 275
by value, 273, 279-281
Patterns. See Regular expressions.
Performance
C++ and C, 990
ideals, 775-776
testing, 979-981
timing, 981-983
Permutations, 1120
Petersen, Lawrence, 15
Pictures. See Graphics.
Pivoting, 875-876
Pixels, 415-416
plus(), 1123
Point example, 441-423
pointer, 1108
Pointers, 579-580
See also Array; Iterators; Memory.
* contents of, 579-580
* pointer to (in declarations), 573,
1062
-> (arrow) member access, 593,
1050-1051
[1 subscripting, 579-580
arithmetic, 630-631
array. See Pointers and arrays.
casting. See Type conversion.
to class objects, 591-593
conversion. See Type conversion.
to current object, this, 603-605
debugging, 634-637
declaration, C-style strings, 1015-
1016

INDEX

decrementing, 630
definition, 573-574, 1175
deleted, 636
explicit type conversion. See Type
conversion.
to functions, 1000-1002
incrementing, 630
initializing, 582-583, 635
vs. iterators, 1101
literal (0), 1044-1045
to local variables, 636-637
moving around, 630
to nonexistent elements, 635-636
null, 0, 583-584, 634-635, 1044-
1045
NULL macro, 1144
vs. objects pointed to, 579
out-of-range conditions, 581
palindromes, example, 640-641
ranges, 580-582
reading and writing through, 579-
582
semantics, 619
size, getting, 576-577
subscripting [1, 579-580
this, 654-655
unknown, 593-595
void*, 593-595
Pointers and arrays
converting array names to, 631-
633
pointers to array elements, 628-
631
Pointers and inheritance
polymorphism, 912-916
a problem 905-909
a solution, 909-912
user-defined interface class, 909-912
vector alternative, 909-912
Pointers and references
differences, 595-596
inheritance, 598
list example, 598-607
this pointer, 603-605
parameters, 596-597
polar(), 881, 1138

Polar coordinates, 881, 1138
Polygon example, 423-424, 453-455,
489
vs. Closed_polyline, 453
invariants, 455
Polyline example
closed, 451-453
marked, 468-469
open, 450-451
vs. rectangles, 425-427
Polymorphism
ad hoc, 659-661
embedded systems, 912-916
parametric, 659-661
run-time, 496
templates, 660-661
Pools, embedded systems, 902-903
Pop-up menus, 559
pop_back(), 1110
pop_front(), 1110
pop_heap(), 1120
Portability, 11
C++, 1039
FLTK, 414, 1158
Positioning in files, 389
Post-conditions, 163-164, 961-962,
1175. See also Invariants.
Post-decrement ——, 1050, 1064
Post-increment ++, 1050, 1064
Postfix expressions, 1050
Pre-conditions, 161-163, 961-962,
1175. See also Invariants.
Pre-decrement ——, 1050, 1064
Pre-increment ++, 1050, 1064
Precedence, in expressions, 1054
Precision, numeric, 382-383, 854-858
Predicates, 733
on class members, 737-738
function objects, 1122-1123
passing. See Function objects.
searching, 733-734
Predictability, 893
error handling, 895
features to avoid, 894
memory allocation, 898, 902
Preprocessing, 263

1217

1218

Preprocessor directives
#define, macro substitution, 1090-
1091
#ifdef, 1024
#ifndef, 1025
#include, including headers, 1090-
1091
Preprocessor, 1090
coding standards, 939
prev_permutation(), 1120
Princeton University, 803
print, character class, 842, 1134
Printable characters, identifying, 393
printf() family
%, conversion specification, 1141
conversion specifications, 1141-
1143
gets(), 1018, 1144-1145
output formats, user-defined types,
1144
padding, 1143
printf(), 1016-1017, 1141
scanf(), 1017-1019, 1144-1145
stderr, 1144
stdin, 1144
stdio, 1144-1145
stdout, 1144
synchronizing with I/O streams,
1016-1017
truncation, 1143
Printing
error messages, 148-149
variable values, 246
priority_queue container adaptor, 1106
Private, 308
base classes, 502
implementation details, 208, 302-
304, 308-309
members, 484-485, 496, 501-502
private: label, 302, 1003
Problem analysis, 173
development stages, 174
estimating resources, 175
problem statement, 174-175
prototyping, 176
strategy, 174-176

INDEX

Problem statement, 174-175
Procedural programming languages,
781
Programmers
See also Programming.
communication skills, 22
computation ideals, 92-94
skills requirements, 22-23
stereotypes of, 21-22
worldwide numbers of, 807
Programming, xxiii, 1175
See also Computation; Software.
abstract-first approach, 10
analysis stage, 35
author’s philosophy, 6-9
bottom-up approach, 9
C first approach, 9
concept-based approach, 6
concrete-first approach, 6
depth-first approach, 6
design stage, 35
environments, 52
feedback, 36
generic, 1173
mmplementation, 35
magical approach, 10
object-oriented, 10, 1174
programming stage, 35
software engineering principles
first approach, 10
stages of, 35
testing stage, 35
top-down approach, 10
writing a program. See Calculator
example.
Programming languages, 783-784,
786, 807
Ada, 796-798
Algol family, 791-798
Algol60, 792-794
assemblers, 785
auto codes, 785
BCPL, 803
C, 800-804
C#, 796
C++, 804-806

INDEX

COBOL, 788-790
Common Lisp, 790
Delphi, 796
Fortran, 786-788
Lisp, 790-791
Pascal, 794-796
Scheme, 790
Simula, 798-800
Turbo Pascal, 796
Programming philosophy, 772-773, 1175.
See also G++ programs; Program-
ming ideals; Programming lan-
guages.
Programming ideals
abstraction level, 778-779
aims, 772-774
bottom-up approach, 776-777
code structure, 776
consistency, 780
correct approaches, 776-777
correctness, 775
data abstraction, 781
desirable properties, 773
direct expression of ideas, 777-778
efficiency, 775-776
generic programming, 782
KISS, 780
maintainability, 775
minimalism, 780
modularity, 779-780
multi-paradigm, 783
object-oriented programming, 781-
783
on-time delivery, 776
overview, 774-775
paradigms, 781-783
performance, 775-776
philosophies, 772-774
procedural, 781
styles, 781-783
top-down approach, 776-777
Programming, history, 783-784
See also Programming languages.
BNF (Backus-Naur) Form, 788,
793
classes, 799

1219

CODASYL committee, 789

early languages, 784-786

first documented bug, 790

first modern stored program, 784-
786

first programming book, 785

function calls, 785

functional programming, 788

inheritance, 799

K&R, 802

lint, 801

object-oriented design, 798-799

STL (Standard Template Library),
805-806

virtual functions, 799

Programs, 44, 1175

See also Gomputation; Software.

audiences for, 46

compiling. See Compilation.

computing values. See Expressions.

conforming, 1039

experimental. See Prototyping.

flow, tracing, 72

implementation defined, 1039

legal, 1039

linking, 51

not-conforming constructs, 1039

run. See Visual Studio; Command
line.

starting execution, 46-47, 1039-1040

stored on a computer, 108

subdividing, 175-176

terminating, 206-207, 1039-1040

text of. See Source code.

translation units, 51

troubleshooting. See Debugging.

unspecified constructs, 1039

valid, 1039

writing, example. See Calculator
example.

writing your first, 45-47

Program organization

See also Programming ideals.
abstraction, 92-93
divide and conquer, 93

Projects, Visual Studio, 1153-1154

1220

Promotions, 98-99, 1054-1055
Prompting for input, 61
>, input prompt, 221
calculator example, 177
sample code, 220-223
Proofs, testing, 952
protected, 484-485, 496, 502, 1003
Prototyping, 176
Pseudo code, 177, 1175
Public, 302, 1003
base class, 500-501
interface, 208, 488-491
member, 302
public by default, struct, 303
public: label, 302
punct, punctuation character class,
842, 1134
Punct_stream example, 397-401
Pure virtual functions, 487, 1175
push_back()
growing a vector, 118-119
queue operations, 1110
resizing vector, 652-653
stack operations, 1110
string operations, 1132
push_front(), 1110
push_heap(), 1119
put(), 1129
putback()
naming convention, 209
putting tokens back, 204-205
return value, disabling, 210
putc(), 1145
putchar(), 1145
Putting back mput, 204-206

Q

qgsort(), 1149

<queue>, 1095

queue container adaptor, 1106
Queue operations, 1110

R

\r carriage return, character literal,

1043

INDEX

r, reading file mode, 1140
r+, reading and writing file mode, 1140
RAII (Resource Acquisition Is Initial-
1zation)
definition, 1175
exceptions, 675-676, 1087
testing, 964-965
for vector, 678-680
rand(), 878, 1149
<random>, 1096
Random numbers, 877-879
Random-access iterators, 723, 1104
Range
definition, 1175
errors, 146-148
pointers, 580-582
regular expressions, 841-842
Range checking
[1, 628-631, 668-671
arrays, 628-631
at(), 668-669
compatibility, 670
constraints, 670
design considerations, 670-671
efficiency, 670
exceptions, 668-669
macros, 671-672
optional checking, 671
overview, 668-669
pointer, 628-631
vector, 668-671
rbegin(), 1109
Re-throwing exceptions, 677, 1087
read(), unformatted mput, 1128
Readability
expressions, 95
mdenting nested code, 269
nested code, 269
Reading
dividing functions logically, 353—
356
files. See Reading files.
with iterators, 1101-1102
numbers, 212-213
potential problems, 352-357
separating dialog from function,

356-357

INDEX

a series of values, 350-352
a single value, 352-357
nto strings, 815
tokens, 183-184
Reading files
binary I/O, 387
converting representations, 368-
370
to end of file, 360
example, 346-348
fstream type, 344-346
ifstream type, 344-346
In-memory representation, 362-
364
mput loops, 359-361
istream type, 343-348, 387
ostream type, 387
process steps, 344
structured files, 361-370
structured values, 364-368
symbolic representations, 368-370
terminator character, specifying,
360
real(), 881, 1138
Real numbers, 855
Real part, 881
Real-time constraints, 893
Real-time response, 890
realloc(), 1010, 1147
Recovering from errors, 238-240, 349-
352. See also Error handling;
Exceptions.
Rectangle example, 424-427, 455-459,
489
Recursion
definition, 1175
infinite, 196, 1173
looping, 198
Recursive function calls, 286
Red-black trees, 747. See also Associative
containers; map.
Red margin alerts, 3
Reference semantics, 619
References, 227, 1175
See also Aliases.
& in declarations, 273-277
to arguments, 274-276

1221

circular. See Circular reference.
to last vector element, back(), 708
vs. pointers. See Pointers and refer-
ences.
<regex>, 1096, 1131
regex. See Regular expressions.
regex_error exception, 1099
regex_match(), 1133
vs. regex_search(), 847
regex_search(), 1133
vs. regex_match(), 847
Regression tests, 953
Regular expressions, 830-832, 836,
1175
See also regex pattern matching.
character classes, 837-838
error handling, 842-844
grouping, 831, 837, 840
syntax. See regex operators.
uses for, 830
ZIP code example, 844-849
regex pattern matching, 830-832
$ end of line, 837, 1134
() grouping, 831, 837, 840
* zero or more occurrences, 832,
837-838
+ one or more occurrences, 837,
838-839
- range specification, 841
. wildcard, 837
2 optional occurrence, 831-832,
837, 838-839
[1 character class, 837
\ escape character, 830-831, 837
\ as literal, 841
A negation, 837
A start of line, 837
{} count, 831, 837-839
| alternative (or), 831-832, 837,
840-841
alternation, 840-841
character classes. See regex charac-
ter classes.
character sets, 841-842
definition, 834
grouping, 840
matches, 834

regex pattern matching (continued)
pattern matching, 836-837
ranges, 841-842
regex_match(), 1133
regex_search(), 1133
repeating patterns, 838-840
searching with, 833-836, 844
smatch, 834
special characters. See regex opera-
tors.
sub-patterns, 831, 834
regex operators, 837, 1133-1134
regex character classes, 841-842
alnum, 842
alpha, 842
blank, 842
cntrl, 842
d, 842
\D, 838
\d, 837
digit, 842
graph, 842
\L, 838
\I, 837
lower, 842
print, 842
punct, 842
regex_match() us. regex_search(), 847
s, 842
\S, 838
\s, 837
space, 842
\U, 838
\u, 837
upper, 842
w, 842
\W, 837
\w, 837
xdigit, 842
Regularity, 376
reinterpret_cast, 594-595, 1058
casting unrelated types, 594
hardware access, 905
Relational operators, 1052
Reliability, software, 34, 890
Remainder and assign %=, 1053

INDEX

Remainder % (modulo), 66, 1051
correspondence to * and /, 68
floating-point, 199, 228-231
integer and floating-point, 66

remove(), 1115

remove_copy(), 1115

remove_copy_if(), 1115

rend(), 1109

Repeated words examples, 71-74

Repeating patterns, 192-193

Repetition, 1134. See also Iterating; regex.

replace(), 1114

replace_copy(), 1114-1115

Reporting errors
Date example, 313-314
debugging, 157
error(), 140-141
run-time, 143-144
syntax errors, 135-136

Representation, 301, 649-651

Requirements, 1175
See also Invariants; Post-conditions;

Pre-conditions.
for functions, 151

reserve(), 651-652, 717, 1111

Reserved names, 75-76. See also Key-

words.

resetiosflags() manipulator, 1130

resize(), 652, 1111

Resource, 1175
leaks, 893, 896
limitations, 890
management. See Resource man-

agement.
testing, 962
vector example, 672-673
Resource Acquisition Is Initialization
(RAII), 1175
exceptions, 675-676, 1087
testing, 964-965
for vector, 678-680

Resource management, 672-677
See also vector example.
auto_ptr, 678
basic guarantee, 677
error handling, 677

INDEX

guarantees, 676-678
make_vec(), 677
no-throw guarantee, 677
problems, 673-675
RAII, 675-676, 678-680
resources, examples, 672-673
strong guarantee, 677
testing, 964-965
Results, 91. See also Return values.
return statement, 271-272
Return types, functions, 47, 270-271
Return values, 112
functions, 1066
no return value, void, 210
omitting, 113
returning, 271-272
reverse(), 1115
reverse_copy(), 1115
reverse_iterator, 1108
Revision history, 236-237
Rho, 881
Richards, Martin, 803
right manipulator, 1130
Ritchie, Dennis, 801, 806, 988-989,
998
Robot-assisted surgery, 30
rotate(), 1115
rotate_copy(), 1115
Rounding, 382, 1175
See also Truncation.
errors, 855
floating-point values, 382-383
Rows, matrices, 864-865, 870
Rules, for programming. See Ideals.
Rules, grammatical, 192-193
Run-time dispatch, 496. See also Virtual
functions.
Run-time errors. See Errors, run-time.
Run-time polymorphism, 496
runtime_error, 140, 149, 151
Rvalues, 94-95, 1054

S

s, character class, 842, 1134
\S, “not space,” regex, 838, 1135

1223

\s, “space,” regex, 837, 1135
Safe conversions, 79-80
Safety, type. See Type, safety.
Scaffolding, cleaning up, 233-234
scale_and_add() example, 868
scale_and_multiply() example, 876
Scaling data, 531
scanf(), 1018, 1144-1145
Scenarios. See Use cases.
Scheme language, 790
scientific format, 383
scientific manipulator, 381, 1130
Scope, 264-265, 1046-1047, 1175
class, 264, 1046
enumerators, 316
global, 264, 267, 1046
going out of, 266-267
kinds of, 264-265
local, 265-266, 1046
namespace, 264, 269, 1046
resolution ::, 291, 1049
statement, 265, 1046
Scope and nesting
blocks within functions, 268-269
classes within classes, 268
classes within functions, 268
functions within classes, 267
functions within functions, 268
indenting nested code, 269
local classes, 268
local functions, 268
member classes, 268
member functions, 267
nested blocks, 268-269
nested classes, 268
nested functions, 268
Scope and object lifetime, 1048-1049
free-store objects, 1048
local (automatic) objects, 1048
namespace objects, 1048
static class members, 1048
temporary objects, 1048
Scope and storage class, 1047-1048
automatic storage, 1047
free store (heap), 1047
static storage, 1047

Screens
See also GUIs (graphical user inter-
faces).
data graph layout, 530-531
drawing on, 419-420
labeling, 421
search(), 763-764, 1113
Searching
See also find(); find_if(); Finding;
Matching.
algorithms for, 1117-1118
binary searches, 747, 763-764
in C, 1149
for characters, 711
(key,value) pairs, by key. See Asso-
ciative containers.
for links, 600-602
map elements. See unordered_map.
predicates, 733
with regular expressions, 833-836,
844-849, 1133-1135
search_n(), 1113
Self reference. See this.
Self assignment, 654
Self-checking, error handling, 896
Separators, nonstandard, 394-401
Sequence containers, 1105
Sequences, 694, 1175
algorithms. See standard library al-
gorithms.
differences between adjacent ele-
ments, 739
empty, 702
example, 696-698
half open, 694-695
Sequencing rules, 192-193
Server farms, 31
set, 744, 755-757
iterators, 1105
vs. map, 756
subscripting, 756
set(), 590-591
<set>, 744, 1095
Set algorithms, 1118-1119
setbase() manipulator, 1130
set_difference(), 1119

INDEX

setfill() manipulator, 1130
set_intersection(), 1119
setiosflags() manipulator, 1130
setprecision() manipulator, 382-383,
1130
set_symmetric_difference(), 1119
set_union(), 1119
setw() manipulator, 1130
Shallow copies, 619
Shape example, 485-486
abstract classes, 487-488
access control, 488-491
attaching to Window, 533-534
as base class, 441, 487-488
clone(), 496
copying objects, 494-496
draw(), 491-494
draw_lines(), 491-494
fill color, 492
implementation inheritance, 504-505
interface inheritance, 504-505
line visibility, 492
move(), 494
mutability, 494-496
number_of_points(), 445
object layout, 497-499
object-oriented programming, 504-
505
point(), 445
slicing shapes, 495
virtual function calls, 493, 498-
499
Shift operators, 1051
Shipping, computer use, 26-28
short, 917, 1062
Shorthand notation, regular expres-
sions, 1135
showbase, manipulator, 379, 1129
showpoint, manipulator, 1129
showpos, manipulator, 1129
Shuffle algorithm, 1115-1116
Signed and unsigned integers, 922
926
signed type, 1062
Simple_window, 418-420, 439
Simplicity ideal, 92-94

INDEX

Simula language, 798-800
sin(), sine, 879, 1137
Singly-linked lists, 598, 698
sinh(), hyperbolic sine, 879, 1137
Size
bit strings, 916-917
containers, 1110-1111
getting, sizeof(), 576-577
of numbers, 854-858
vectors, getting, 118-119
size()
container capacity, 1111
number of elements, 118, 815
string length, 815, 1132
vectors, 118, 121
sizeof(), 576-577, 1057
object size, 1050
value size, 856
size_type, 704, 1108
skipws, 1129
slice(), 865-866, 869
Slicing
matrices, 865-866, 869
objects, 495
Smallest integer, finding, 879
smatch, 834
Soft real-time, 893
Software, 19, 1175
See also Programming; Programs.
affordability, 34
correctness, 34
ideals, 34-37
maintainability, 34
reliability, 34
troubleshooting. See Debugging.
useful design, 34
uses for, 19-32
“Software engineering principles first”
approach to programming, 10
Software layers, GUIs, 544-545
sort(), 728, 762-763, 1117
sort_heap(), 1120
Sorting
algorithms for, 1117-1118
in G, gsort(), 1149
sort(), 728, 762-763, 1117

1225

Source code
definition, 48, 1175
entering, 1154
Source files, 48, 1175
adding to projects, 1154
space, 842, 1134
Space exploration, computer use, 32-33
Special characters, 1043-1044
regular expressions, 1133-1134
Specialization, 658-659, 1084-1085
Specifications
definition, 1175
source of errors, 134
Speed of light, 96
sprintf(), 1141
sqrt(), square root, 879, 1137
Square of abs(), norm, 881
srand(), 878, 1149
<sstream>, 1096
stable_partition(), 1118
stable_sort(), 1117
<stack>, 1096
stack container adaptor, 1106
Stack of activation records, 284
Stack storage, 577
Stacks
container operations, 1110
embedded systems, 902, 903-904,
897-898
growth, 284-287
unwinding, 1088
Stages of programming, 35
Standard
conformance, 801, 935, 1039
ISO, 1039, 1175
manipulators. Se¢ Manipulators.
mathematical functions, 879-880
Standard library
See also G standard library; STL
(Standard Template Library).
algorithms. See Algorithms.
complex. See complex.
containers. See Containers.
C-style 1/O. See printf() family.
C-style strings. See C-style strings.
date and time, 1147-1149

Standard library (continued)
function objects. See Function ob-
jects.
I/O streams. See Input; Input/output;
Output.
iterators. See Iterators.
mathematical functions. See Mathe-
matical functions (standard).
numerical algorithms. See Algo-
rithms (numerical); Numerics.
string. See string.
time, 982-983, 1147-1149
valarray. See valarray.
Standard library header files, 1095-
1097
algorithms, 1095-1096
C standard libraries, 1097
containers, 1095-1096
I/O streams, 1096
iterators, 1095-1096
numerics, 1096
string manipulation, 1096
utility and language support, 1097
Standard library I/O streams, 1124—
1125. See also I/O streams.
Standard library string manipulation
character classification, 1131
containers. See vector; map; set;
unordered_map.
input/output. See I/O streams.
regular expressions. Se¢ regex.
string manipulation. See string.
Stanford University, 791
Starting programs, 1039-1040. See¢ also
main().
State, 90, 1175
I/O stream, 1127
of objects, 301
source of errors, 134
testing, 961
valid state, 309
validity checking, 309
Statement scope, 265, 1046
Statements, 47
grammar, 1059-1061
named sequence of. See Functions.

INDEX

terminator ; (semicolon), 50, 99
Static storage, 577, 1047
class members, lifetime, 1048
embedded systems, 897-898, 905
static, 1047
static const, 321. See also const.
static const int members, 1075
static local variables, order of ini-
tialization, 290
std namespace, 291-292, 1098
stderr, 1144
<stdexcept>, 1097
stdin, 1016, 1144. See also stdio.
stdio, standard C I/O, 1016, 1144-
1145
EOF macro, 1019-1020
errno, error indicator, 880
fclose(), 1019-1020
FILE, 1019-1020
fopen(), 1019-1020
getchar(), 1019, 1044
gets(), 1018, 1144-1145
mput, 1017-1019
output, 1016-1017
printf(), 1016-1017, 1141-1144
scanf(), 1018, 1144
stderr, cerr equivalent, 1144
stdin, cin equivalent, 1016, 1144
stdout, cout equivalent, 1016, 1144
std_lib_facilities.h header file, 1153—
1154
stdout, 1016, 1144. See also stdio.
Stepanov, Alexander, 694, 696, 805-
806
Stepping through code, 160
Stereotypes of programmers, 21-22
STL (Standard Template Library),
690, 1110-1124
See also G standard library; Stan-
dard library.
algorithms. See STL algorithms.
containers. See STL containers.
function objects. See STL function
objects.
history of, 805-806
ideals, 690-694

INDEX

iterators. See STL iterators.
namespace, std, 1098

STL algorithms, 1112-1121

See Algorithms (STL).

alternatives to, 1150

built-in arrays, 718-719

computation vs. data, 691-693

heap, 1119-1120

max(), 1120-1121

min(), 1120-1121

modifying sequence, 1114-1116

mutating sequence, 1114-1116

nonmodifying sequence, 1113-
1114

permutations, 1120

searching, 1117-1118

set, 1118-1119

shuffle, 1115-1116

sorting, 1117-1118

utility, 1116-1117

value comparisons, 1120-1121

STL containers, 720-721, 1105-1112

almost, 721-722, 1106

assignments, 1108-1109

associative, 1105, 1111-1112

capacity, 1110-1111

comparing, 1111

constructors, 1108-1109

container adaptors, 1106

copying, 1111

destructors, 1108-1109

element access, 1109

information sources about, 720-
721

iterator categories for, 722-723,
1104-1105, 1109

list operations, 1110

member types, 1108

operations overview, 1107

queue operations, 1110

sequence, 1105

size, 1110-1111

stack operations, 1110

swapping, 1111

STL function objects, 1122-1123

adaptors, 1123

arithmetic operations, 1123
inserters, 1121-1122

predicates, 738-738, 1122-1123

STL iterators, 1100-1105
basic operations, 695
categories, 1103-1105
definition, 694, 1100-1101
description, 695-696
empty lists, 702
example, 708-711
operations, 1102-1103
vs. pointers, 1101

sequence of elements, 1101-1102

Storage class, 1047-1048
automatic storage, 1047
free store (heap), 1047
static storage, 1047

Storing data. See Containers.

str(), string extractor, 390-391

strcat(), 1012-1013, 1146

strchr(), 1014, 1146

stremp(), 1012-1013, 1146

strepy(), 1012-1013, 1015, 1146

Stream
buffers, 1125
iterators, 758-761
modes, 1126
states, 349
types, 1126

streambuf, 402, 1125

<streambuf>, 1096

<string>, 1096, 1128

String literal, 62, 1044

string, 66, 815, 1175
See also Text.

+ concatenation, 68-69, 815, 1132

+= append, 815

< lexicographical comparison, 815

<< output, 815

= assign, 815

== equal, 815

>> input, 815

[1 subscripting, 815
almost container, 1106
append(), 815
basic_string, 816

1227

string (continued)
C++ to G-style conversion, 815
c_str(), C++ to C-style conversion,

345, 815
erase(), removing characters, 815
exceptions, 1099
find(), 815
from_string(), 817-818
getline(), 815
input terminator (whitespace), 65
Insert(), adding characters, 815
length(), number of characters, 815
lexical_cast example, 819
literals, debugging, 159
operations, 815, 1132
operators, 66-67, 68
palindromes, example, 637-638
pattern matching. See Regular ex-
pressions.

properties, 712-713
size, 78
size(), number of characters, 815
standard library, 816
string to value conversion, 817-818
stringstream, 816-818
subscripting [], 815
to_string() example, 816-818
values to string conversion, 816
vs. vector, 715
whitespace, 818-819

stringstream, 390-391, 816-818, 1126

strlen(), 1012, 1146

strncat(), 1012-1013, 1146

strncmp(), 1012-1013, 1146

strncpy(), 1012-1013, 1146

Strong guarantee, 677

Stroustrup, Bjarne
advisor, 785
biography, 14-15
Bell Labs colleagues, 801-804, 989
education on invariants, 793
inventor of C++, 804-806
Kristen Nygaard, 799

strpbrk(), 1146

strrchr(), 1146

strstr(), 1146

INDEX

strtod(), 1146
strtol(), 1146
strtoul(), 1146
struct, 303-304. See also Data structures.
struct tag namespace, 1002-1003
Structure
of data. See Data structures.
of programs, 213-214
Structured files, 361-370
Style, definition, 1176
Sub-patterns, 831, 834
Subclasses, 496, 1116. See also Derived
classes.
Subdividing programs, 175-176
Subscripting, 116-117
() Fortran style, 863
[1 G Style, 669, 863
arrays, 628, 863
at(), checked subscripting, 669,
1109
Matrix example, 863-865, 869
pointers, 1064
string, 815, 1132
vector, 579-580, 592-593, 625—
626
Substrings, 827
Subtract and assign —=, 67, 1053, 1103
Subtraction - (minus)
complex, 881, 1138
definition, 1051
integers, 1064
iterators, 1104
pointers, 1064
Subtype, definition, 1176
Summing values. See accumulate().
Superclasses, 496, 1176. See also Base
classes.
swap(), 279, 1111, 1116
Swapping
columns, 870
containers, 1111
ranges, 1116
rows, 870, 876
swap_ranges(), 1116
switch-statements
break, case termination, 104-107

INDEX

case labels, 104-107
most common error, 107
vs. string-based selection, 105
Symbol tables, 246
Symbolic constants
See also Enumerations.
cleaning up, 231-233
defining, with static const, 321
Symbolic names, tokens, 232
Symbolic representations, reading,
368-370
Syntax analyzers, 188
Syntax checking, 48-50
Syntax errors
examples, 48-50
overview, 135-136
reporting, 135-136
Syntax macros, 1023-1024
system(), 1149
System, definition, 1176
System tests, 969-973

T

\t tab character, 108, 1043
tan(), tangent, 879, 1137
tanh(), hyperbolic tangent, 879, 1137
TEA (Tiny Encryption Algorithm),
785, 930-935
Technical University of Copenhagen,
793
Telecommunications, 28-29
Temperature data, example, 119-121
template, 1003
Template, 656, 1083, 1176
arguments, 1083-1084
class, 658-661. See also Class tem-
plate.
compiling, 661
containers, 661-662
error diagnostics, 661
function, 659-665. See also Func-
tion template.
generic programming, 659-661
inheritance, 661-662
instantiation, 658-659, 1084-1085

1229

integer parameters, 662-664

member types, 1086

parameters, 656-659, 662-664

parametric polymorphism, 659-

661

specialization, 1084-1085

type parameters, 656-659

typename, 1086

weaknesses, 661
Template-style casts, 1006
Temporary objects, 280, 1048
Terminals, in grammars. See Tokens.
Termination

abort() a program, 1149

on exceptions, 140

exit() a program, 1149

input, 61-62, 177

normal program termination,

1039-1040

for string input, 65

zero, for C-style strings, 633
Terminator character, specifying, 360
Testing, 952-953, 1176

See also Debugging.

algorithms, 961-968

for bad input, 102-103

black box, 952-953

branching, 966-968

bug reports, retention period, 953

calculator example, 223-227

classes, 973-976

code coverage, 968

debugging, 979

dependencies, 962-963

designing for, 978-979

faulty assumptions, 976-978

files, after opening, 346

FLTK, 1160

inputs, 961

loops, 965-966

non-algorithms, 961-968

outputs, 961

performance, 979-983

pre- and post-conditions, 961-962

proofs, 952

RAII, 964-965

Testing (continued)
regression tests, 953
resource management, 964-965
resources, 962
stage of programming, 35
state, 961
system tests, 969-973
test cases, definition, 164
test harness, 957-959
timing, 981-983
white box, 952-953
Testing units
formal specification, 954-955
random sequences, 959-961
strategy for, 955-957
systematic testing, 954-955
test harness, 957-959
Text
character strings. See string; C-style
strings.
email example, 820-825, 828-830
extracting text from files, 820-825,
828-830
finding patterns, 828-830, 833-
836
in graphics. See Text.
implementation details, 826-828
input/output, GUIs, 550-551
maps. See map.
storage, 577
substrings, 827
vector example, 121-123
words frequency example, 745-
747
Text example, 427-429, 462-464
Text editor example, 708-711
Theta, 881
this pointer, 603-605, 654-655
Thompson, Ken, 801-803
Three-way comparison, 1012
Throwing exceptions, 145, 1086
I/O stream, 1127
re-throwing, 677
standard library, 1099-1100
throw, 145, 1053, 1086-1088
vector, 672—-673

INDEX

Time

date and time, 1147-1149

measuring, 981-983
Timekeeping, computer use, 26
time_t, 1147
Tiny Encryption Algorithm (TEA),

785, 930-935

tm, 1147
Token example, 181-184
Token_stream example, 204-212
tolower(), 394, 1131
Top-down approach, 10, 776-777
to_string() example, 816-818
toupper(), 394, 1131
"Tracing code execution, 160-161
Trade-off, definition, 1176
transform(), 1114
Transient errors, handling, 895-896
Translation units, 51, 137-138
Transparency, 447, 457
Tree structure, map container, 747-750
true, 1003, 1004
trunc mode, 385, 1126
Truncation, 82, 1176

C-style 1/0, 1143

exceptions, 151

floating-point numbers, 857
try-catch, 144-150, 668-669, 1003
Turbo Pascal language, 796
"Two-dimensional matrices, 868-870
Two’s complement, 922
Type conversion

casting, 594-595

const_cast, casting away const,

594-595

exceptions, 151

explicit, 594

m expressions, 98-99

function arguments, 281-282

implicit, 621-622

int to pointer, 576

operators, 1058-1059

pointers, 576, 594-595

reinterpret_cast, 594

safety, 79-83

static_cast, 594

INDEX

string to value, 817-818
truncation, 82
value to string, 816

Type conversion, implicit, 621-622
bool, 1055
compiler warnings, 1055-1056
floating-point and integral, 1055
integral promotion, 1054-1055
pointer and reference, 1055
preserving values, 1054-1055
promotions, 1054-1055
user-defined, 1056
usual arithmetic, 1056

Type safety, 78-79
mplicit conversions, 80-83
narrowing conversions, 80-83
pointers, 580-583, 634-637
range error, 146-148, 580-582
safe conversions, 79-80
unsafe conversions, 80-83

typedef, 703

typeid, 1003, 1050, 1099

<typeinfo>, 1097

typename, 1003, 1086

Type, 60, 77, 1176
aliases, 703
built-in. See Built-in types.
checking, G++ and C, 998-999
generators, 658-659
graphics classes, 480-482
mismatch errors, 136-137
mixing in expressions, 98-99
naming. See Namespaces.
objects, 77-78
operations, 301
organizing. Se¢ Namespaces.
parameterized, 659-661. See also

Templates.
as parameters. See Templates.
pointers. See Pointer.
promotion, 98-99
representation of object, 304, 497-
499

safety, 78-79, 82
subtype, 1176
supertype, 1176

truncation, 82

user-defined. See UDTs.

uses for, 300

values, 77

variables. See Variables, types.

U

u/U suffix, 1041
\U, “not uppercase,” regex, 838, 1135
\u, “uppercase character,” regex, 837,
1135
UDT (User-defined type). See Class;
Enumeration.

Unary expressions, 1050-1051
“Uncaught exception” error, 151
Unchecked conversions, 905
“Undeclared identifier” error, 256
Undefined order of evaluation, 261
unget(), 349-352
ungetc(), 1145
Uninitialized variables, 322-325, 1176
uninitialized_copy(), 1116-1117
uninitialized_fill(), 1116-1117
union, 1082-1083
unique(), 1114
unique_copy(), 728, 757, 760-761, 1114
Unit tests

formal specification, 954-955

random sequences, 959-961

strategy for, 955-957

systematic testing, 954-955

test harness, 957-959
Unnamed objects, 459-461
<unordered_map>, 744, 1096
unordered_map, 744

See also map.

finding elements, 753-755

hash tables, 753

hash values, 753

hashing, 753

iterators, 1105
unordered_multimap, 744, 1105
unordered_multiset, 744, 1105
<unordered_set>, 744, 1096
unordered_set, 744, 1105

1231

1232

Unsafe conversions, 80-83
unsetf(), 380
Unsigned and signed, 922-926
unsigned type, 1062
Unspecified constructs, 1039
upper, character class, 842, 1134
upper_bound(), 764, 1112, 1117
Uppercase. See Case.
uppercase, 1129
U.S. Department of Defense, 796
U.S. Navy, 789-790
Use cases, 177, 1176
User-defined conversions, 1056
User-defined operators, 1054
User-defined types (UDTs), 300
See also Class; Enumeration.
exceptions, 1087
operator overloading, 1069-1070
operators, 1070
standard library types, 300
User interfaces
console input/output, 540
graphical. See GUL
web browser, 540-541
using declarations, 291-293
using directives, 291-293, 1089
Usual arithmetic conversions, 1056
Utilities, STL
function objects, 1122-1123
inserters, 1121-1122
make_pair(), 1124
pair, 1123-1124
<utility>, 1096, 1123-1124
Utility algorithms, 1116-1117
Utility and language support, header
files, 1097

\%

\v vertical tab, character literal, 1043
valarray, 1106, 1139

<valarray>, 1096

Valid programs, 1039

Valid state, 309

Validity checking, 309

constructors, 309

INDEX

enumerations, 315
invariants, 309
rules for, 309
Value semantics, 619
value_comp(), 1112
Values, 77-78, 1176
symbolic constants for. See Enu-
merations.
and variables, 62, 73-74, 242
value_type, 1108
Variables, 62-63, 116-117, 1061-1062
++ increment, 73-74
= assignment, 69-73
changing values, 73-74
composite assignment operators,
73-74
constructing, 287-288
declarations, 258, 260-261
going out of scope, 287
Incrementing ++, 73-74
initialization, 69-73
mnput, 60
naming, 74-77
type of, 66-67
uninitialized, class interfaces, 322-
325
value of, 73-74
<vector>, 1096
vector example, 570-573, 612-618,
646-656
-> access through pointer, 593
. (dot) access, 592-593
= assignment, 653
[1 subscripting, 625-626, 668-672
allocators, 666
at(), checked subscripting, 669
changing size, 646-656
copying, 613-618
destructor, 506-590
element type as parameter, 656-
659
erase() (removing elements), 715-
718
exceptions, 668-669, 678-680
explicit constructors, 621-622
inheritance, 661-662

INDEX

insert() (adding elements), 715-718
overloading on const, 626-627
push_back(), 6562-653, 667
representation, 650-651
reserve(), 651, 667, 679-680
resize(), 652, 668
subscripting, 579-580, 592-593,
625-626
vector, standard library, 1107-1111
< less than, 1111
= assignment, 1109
== equality, 1111
[1 subscripting, 1109
assign(), 1109
at(), checked subscripting, 1109
back(), reference to last element,
1109
begin(), iterator to first element,
1109
capacity(), 1111
const_iterator, 1108
constructors, 1108-1109
destructor, 1109
difference_type, 1108
end(), one beyond last element,
1109
erase(), removing elements, 1110
front(), reference to first element,
1109
insert(), adding elements, 1110
iterator, 1108
member functions, lists of, 1108-
1111
member types, list of, 1108
push_back(), add element at end,
1110
size(), number of elements, 1111
size_type, 1108
value_type, 1108
vector of references, simulating, 1166—
1167
Vector_ref example, 440, 1166-1167
virtual, 1003
Virtual destructors, 590. See also De-
structors.
Virtual function, 493, 498-499

declaring, 499-500
definition, 493, 1176
history of, 799
object layout, 497-499
overriding, 500-501
pure, 502-504
Shape example, 493, 498-499
vptr, 498-499
vtbl, 498
Visibility
See also Scope; Transparency.
menus, 560-561
of names, 264-269, 290-293
widgets, 549
Visual Studio
FLTK (Fast Light Toolkit), 1159~
1160
installing, 1152
running programs, 1153-1154
void, 113
function results, 113, 270, 272
pointer to, 593-595
putback(), 210
void*, 593-595, 1007-1008, 1062
vptr, virtual function pointer, 498-499
vtbl, virtual function table, 498

W

w, writing file mode, 842, 1134, 1140

w+, writing and reading file mode, 1140

\W, “not word character,” regex, 837,
1135

\w, “word character,” regex, 837, 1135

wait(), 547-548, 556-557

Wait loops, 547-548

wait_for_button() example, 547-548

Waiting for user action, 547-548, 556
557

wchar_t, 1003, 1004

‘Web browser, as user interface, 540-541

Wheeler, David, 108, 785, 930

while-statements, 108-109

White-box testing, 952-953

Whitespace

formatting, 393, 394-401

1233

Whitespace (continued)
identifying, 393
in input, 64
string, 818-819
ws, manipulator, 1130
Widget example, 548-549
Button, 418-420, 541-550
control inversion, 556-557
debugging, 563-564
hide(), 549
implementation, 1163-1164
In_box(), 550-551
line drawing example, 552-556
Menu, 551, 557-562
move(), 549
Out_box(), 550-551
put_on_top(), 1165
show(), 549
technical example, 1167-1170
text input/output, 550-551
visibility, 549
Wild cards, regular expressions, 1133
Wilkes, Maurice, 785
Window example, 416, 439
canvas, 416
creating, 418-420, 542-544
disappearing, 563
drawing area, 416
implementation, 1164-1166
line drawing example, 552-556

INDEX

put_on_top(), 1165

with “Next” button, 418-420
Window.h example, 417-418
Wirth, Niklaus, 794-795
Word frequency, example, 745
Words (of memory), 1176
write(), unformatted output, 1129
Writing files, 344

See also File 1/0O.

appending to, 385

binary 1/O, 387

example, 346-348

fstream type, 344-346

ofstream type, 345-346

ostream type, 343-348, 387
ws manipulator, 1130

X

xdigit, 842, 1134

\xhhh, hexadecimal character literal,
1043

xor, synonym for #, 1003, 1004

xor_eq, synonym for A=, 1003, 1004

y4

zero-terminated array, 1011. See also C-
style string.
ZIP code example, 844-849

	Preface
	0 — Notes to the Reader
	12 — A Display Model
	Index

