

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this
book, and the publisher was aware of a trademark claim, the designations have
been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book but
make no expressed or implied warranty of any kind and assume no responsibility
for errors or omissions. No liability is assumed for incidental or consequential
damages in connection with or arising out of the use of the information or
programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for
bulk purchases or special sales, which may include electronic versions and/or
custom covers and content particular to your business, training goals, marketing
focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data:

Gronback, Richard C.
Eclipse modeling project : a domain-specific language (DSL) toolkit / Richard C.

Gronback.
p. cm.

ISBN 0-321-53407-7 (pbk. : alk. paper) 1. Computer software—Development.
2. Eclipse (Electronic resource) 3. Programming languages (Electronic computers)
I. Title.

QA76.76.D47G785 2009
005.1—dc22

2008050813

Copyright © 2009 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is
protected by copyright, and permission must be obtained from the publisher prior
to any prohibited reproduction, storage in a retrieval system, or transmission in
any form or by any means, electronic, mechanical, photocopying, recording, or
likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671 3447

ISBN-13: 978-0-321-53407-1
ISBN-10: 0-321-53407-7
Text printed in the United States on recycled paper at Courier in Stoughton,
Massachusetts.
First printing March 2009

Associate Publisher
Mark Taub

Acquisitions Editor
Greg Doench

Managing Editor
Kristy Hart

Project Editor
Jovana San Nicolas-Shirley

Copy Editor
Krista Hansing Editorial
Services, Inc.

Indexer
Erika Millen

Technical Reviewer
Simon Archer

David Orme
Daniel Holt

Publishing Coordinator
Michelle Housley

Cover Designer
Sandra Schroeder

Compositor
Nonie Ratcliff

xix

Foreword

Just like a pearl, the Eclipse Modeling Project has grown organically as layers
around a central core. From the humble beginnings of the Eclipse Modeling
Framework (EMF) (initially part of the Eclipse Tools Project) along with the
Graphical Modeling Framework (GMF) and the Generative Modeling Tools
(GMT) (both initially part of the Eclipse Technology Project), the Modeling
Project coalesced to become one of Eclipse’s most exciting and diverse projects.
The depth and breadth of its technology is vast and even its rate of growth con-
tinues to increase. The Eclipse Modeling Project has truly become a Swiss Army
knife for state-of-the-art model-driven software development.

The sheer volume of useful modeling technologies that the Eclipse Modeling
Project includes makes mastering a significant portion of it a daunting task. Even
determining which specific available technologies are useful for solving any par-
ticular problem is a challenge exacerbated by the fact that, as a rule, the docu-
mentation tends to lag far behind the development work. As such, this book fills
a fundamentally important need in the modeling community: a coherent vision
of how all this powerful technology can be best exploited to build domain spe-
cific languages (DSLs). In other words, the focus of this book is on pragmatic
applications illustrated by way of concrete examples rather than on abstract
modeling concepts and theories. This pragmatic focus reflects that of the
Modeling Project overall—that is, a focus on building powerful frameworks that
real programmers use every day. I’m sure this influential book—with its inter-
esting examples and its excellent reference material—will become a key part of
every toolsmith’s technical arsenal.

EMF provides a sound basis for abstract syntax development and even
includes a crude but effective XML-based concrete syntax. But, that is only the
start of the journey, and the second edition of the Eclipse Modeling Framework
book covers this basic material well. This book effectively picks up where EMF
leaves off with an in-depth exploration of alternative forms of concrete syntax,
particularly graphical syntax, model-to-model transformation (such as Query

View Transformation Operational Mapping Language), and model-to-text trans-
formation (such as Xpand). It rounds out the DSL picture with a holistic view of
everything it takes to build a complete model-based product line.

It has been my great pleasure and honor to work closely with Richard C.
Gronback as the Modeling Project coleader for the past few years. He has a keen
mind and a sharp wit. This book reflects it well. I’ve learned a great deal from
him, and I’m sure readers of this book will as well.

—Ed Merks, Ph.D.
President, Macro Modeling

xx Foreword

xxi

Preface

About This Book

This book covers a relatively new collection of technologies that focus on devel-
oping domain-specific languages (DSLs) using the Eclipse Modeling Project,
offering a first look at a range of Eclipse projects that have not yet been covered
in detail within this context. Although the core of these technologies has been
available for several years in the Eclipse Modeling Framework (EMF), diagram
definition and model transformation are emerging technologies at Eclipse. These
are complemented by upcoming textual syntax development frameworks, which
likely will be covered in detail in subsequent editions of this book.

This book delivers a pragmatic introduction to developing a product line
using a collection of DSLs. A model-based, largely generative approach is
designed to accommodate future adjustments to the source models, templates,
and model transformation definitions, to provide customized solutions within
the context of the product line. To illustrate this approach, this book presents a
set of sample projects used to define a requirements product line.

Audience

This book targets developers and architects who want to learn about developing
DSLs using Eclipse Modeling Project technologies. It assumes a basic under-
standing of the Java programming language, Eclipse plug-in development, and
familiarity with EMF. This book’s target audience are those interested in learn-
ing about the Eclipse Graphical Modeling Framework (GMF), Model-to-Model
Transformation (M2M) Query/View/Transformation Operational Mapping
Language (QVT OML), and Model-to-Text Transformation (M2T) Xpand proj-
ect components.

The book is divided into introductory, hands on, and reference sections.
Readers who want an overview of the Eclipse Modeling Project and development
of DSLs in the context of an Eclipse-based product line should read Part I,
“Introduction.” Readers who want to follow along in a tutorial fashion to learn

how to use the projects listed earlier should read Part II, “Developing Domain-
Specific Languages.” Readers also can reference the sample project solutions in
this section to get an overview of the techniques. Part III, “Reference,” serves as
a resource for readers who want a deeper understanding of Graphical Editing
Framework (GEF), GMF, Xpand, and QVT OML while they are completing Part
II or developing their own DSL-based projects.

Readers who want to experience the benefits of a commercial version of the
technologies presented here can download the Borland Together product. There
they will find enhanced domain modeling, refactoring, diagram development,
transformation authoring and debugging, workflow, and generation capabilities
in a well-integrated DSL Toolkit.

Sample Code

The Modeling Amalgamation Project (Amalgam) at Eclipse holds the sample
code from this book and is available as sample projects in the DSL Toolkit down-
load. This package also includes all the prerequisites required for developing the
sample applications.

Visit the Amalgam project Web site for more information on obtaining the
DSL Toolkit: www.eclipse.org/modeling/amalgam.

Feedback

The examples in this book are maintained within the Modeling Amalgamation
Project at Eclipse. Feedback on their content—and, therefore, this book’s
content—is welcome on the project newsgroup, http://news.eclipse.modeling.
amalgam. Alternatively, feel free to contact the author directly at richard.
gronback@gmail.com.

xxii Preface

www.eclipse.org/modeling/amalgam
http://news.eclipse.modeling.amalgam
http://news.eclipse.modeling.amalgam

CHAPTER 3

Developing a DSL Abstract
Syntax

In this chapter, we walk through the development of a domain-specific language (DSL)
using the Eclipse Modeling Framework (EMF) and supporting components. Specifically,
we develop the DSL’s abstract syntax using the Ecore metamodel. But first we cover some
basics on what to consider when creating a DSL and the different implementation strate-
gies you might want to employ when using EMF. Next, we provide an overview of EMF,
leaving detailed information to the book [38] dedicated to this purpose. We cover some
additional components of EMF and Model Development Tools (MDT) that enable you to
further refine DSLs, and we develop a series of domain models for use in the sample
projects.

DISCLAIMER

The domain models developed as samples are constructed to illustrate
certain features of the associated tooling and, as such, should not neces-
sarily be considered “best practices” in some cases.

3.1 DSL Considerations

Many considerations are involved in creating a DSL. Does a model already exist
that is close enough? If so, can an existing model be extended, or is it fixed? Does
the model need to be based on a standard? Does the DSL lend itself to graphical
display and editing? Does the DSL require a textual syntax and editor? Will a

29

product line be built on the DSL, and perhaps others? Is the Ecore metamodel
expressive enough to suit your needs for a DSL? How can you model dynamic
behavior?

BEST PRACTICE

Leverage existing models, when appropriate. XML Schema Definition (XSD)
and EMF are very popular technologies, and EMF can import just about any
XSD, so search for existing domain models before you reinvent the wheel.
Also consider publishing your domain model if you think that others might
find it useful, if only as part of your application’s API to aid in integration.

A key consideration is the amount of flexibility you need or will tolerate in
the DSL. As you can see in the examples, sometimes a change in the domain
model makes your transformation definitions much easier to write. Also, frame-
works such as GMF have certain limitations—or, rather, were designed with par-
ticular use cases in mind. Your particular style of modeling might not lend itself
well to graphical representation, but a few changes might allow mapping to dia-
gram elements much easier. For example, certain mappings in Query/View/
Transformation (QVT) and template expressions can be facilitated by adding
derived features or methods to the domain model. Complex queries using Object
Constraint Language (OCL) (and, therefore, useful ones in QVT and Xtend) can
be added to the domain model with code generated for their implementation at
runtime. Having a feature available in the model will greatly simplify transfor-
mations and templates that access them.

TIP

Don’t be afraid of modifying your domain model to make working with
templates, transformations, and diagram definitions easier. Unless you’re
using a model that cannot be altered, the Toolsmith will appreciate being
able to make certain design decisions in the domain model to suit the tool-
ing, instead of having to create workarounds or write custom code to use
the tooling with a domain model.

This is not to say that you should let the tooling influence your DSL to an
extent you are not comfortable with. The question is, how do you maintain a
satisfactory level of “purity” in your DSL when considering the additional

30 CHAPTER 3 • Developing a DSL Abstract Syntax

complexity associated with developing and maintaining the other Model-Driven
Software Development (MDSD) artifacts? In general, the more complex the
metamodel (DSL) is, the more complex the transformation definitions, templates,
and diagram definitions are.

A set of conventions and best practices for the definition of DSLs, transfor-
mations, and templates likely will arise, as it has for Java and other popular pro-
gramming languages. With conventions and best practices comes tooling to
support refactorings, static analysis, and cleanup. At this stage of the Modeling
project’s evolution, operations are still quite manual and even error prone. As an
open source project that forms the basis for commercial products, Eclipse even-
tually will see more advanced features pushed down into it, thereby improving
the Toolsmith experience.

3.2 Eclipse Modeling Framework

From the project description, EMF is “a modeling framework and code genera-
tion facility for building tools and other applications based on a structured data
model.” This pretty much sums it up, but there’s a lot to know about EMF. I
highly recommend that you first read, or at least have available, the book on
EMF [38] to better understand its use in the context of this book. Alternatively,
reading through the online documentation and tutorials on EMF should make its
use in this book easy to follow. In other words, the examples in this book only
scratch the surface of what is possible using EMF.

You can create models using EMF in many ways. You can use the provided
editor (a tree with properties view) or import a set of annotated Java classes. An
Ecore diagram is available from the EMFT project. If you have the XSD compo-
nent installed, you can import an XSD file. If you have the Unified Modeling
Language (UML) version 2 (UML2) component installed, you can import a
UML2 model. If you have Graphical Modeling Framework (GMF) installed, you
can use its example Ecore diagram editor. If you download and install Emfatic
[42], you can work in a textual syntax and synchronize with your Ecore model.
In the future, you will be able to design your own concrete textual syntax for
Ecore, or any model, using the Textual Modeling Framework (TMF) project.

Regardless of the method you choose for importing or working with your
domain model, you will find an .ecore file in your workspace—that is, unless
you take a purely programmatic approach. If you open this file in a text editor,
you will see that it is an XML Metadata Interchange (XMI) serialization of your
Ecore-based model. By default, EMF enables you to edit models in a basic (gen-
erated) tree editor with a Properties view. You can easily generate a similar edi-
tor for your own model.

Before getting into more detail, let’s take a look at the Ecore metamodel.

3.2 Eclipse Modeling Framework 31

3.2.1 Ecore Metamodel

The EMF book describes the Ecore metamodel in detail, but here you find a sim-
plified diagram for reference (Figure 3-1), along with some discussion of the
more relevant aspects used as we develop our DSL abstract syntax. It’s a fairly
simple model, which is part of its strength. In most cases, you can compensate
for the lack of features in Ecore by using some of the more advanced modeling
techniques, which are discussed in the EMF book. A longstanding topic of debate
among EMF users is the lack of an EAssociation class, but we don’t get into that
here.

32 CHAPTER 3 • Developing a DSL Abstract Syntax

Figure 3-1 Ecore model

Annotations

Sometimes it’s important to add information to a model element for documenta-
tion purposes, or to provide parameters to be considered during transformation
or generation. EAnnotations provide these for all model elements in EMF. An
EAnnotation has a Source field, which serves as a key, and a list of References.
An EAnnotation may have zero or more Details Entry children, which have Key
and Value properties. This simple capability of annotating models is quite flexi-
ble and turns out to be useful for many purposes, including XSD support.

Another particularly useful application of annotations is to declare OCL
constraints, method bodies, and derived feature implementation, as discussed in
Section 3.2.4, “Applying OCL.”

3.2.2 Runtime Features

The EMF runtime includes facilities for working with instances of your models.
No strict dependencies exist on the Eclipse platform for the runtime and gener-
ated model and edit code, so these bundles can be used outside of the Eclipse
workbench. As bundles, they can be deployed in any Equinox OSGi container,
even within a server environment.

The generated code for your model has a dependency on the underlying EMF
runtime components. A significant benefit is gained from the generated Appli-
cation Programming Interface (API) and model implementation working with
the provided runtime features. An efficient observer pattern implementation is
provided to alert listeners to model change events. A generated reflective API
provides an efficient means of working with models dynamically. In fact, EMF
can be used in a purely dynamic fashion, requiring neither an .ecore model nor
code generation. Finally, it’s possible to have static registration of a dynamic
package, but that’s an advanced use case left to the EMF documentation.

When working with model instances, changes can be recorded in a change
model that provides a reverse delta and allows for transaction support. A vali-
dation framework provides for invariant and constraint support with batch pro-
cessing. The Model Transaction and Validation Framework components provide
enhanced transaction and validation support, respectively.

For persistence of models, the EMF runtime provides a default XML seriali-
zation. The persistence layer is flexible, allowing for XMI, Universally Unique
Identifiers (UUIDs), and even a zip option. A resource set consists of one or more
resources, making it possible to persist objects in multiple files, including cross-
containment references. Proxy resolution and demand loading improve perform-
ance when working with large models across resources. Additionally, use of EMF
Technology (EMFT) components Teneo and CDO allow for the persistence of
models to a relational database.

3.2 Eclipse Modeling Framework 33

The generated editor for EMF models includes a multipage editor and prop-
erties view. Drag-and-drop support is provided, as is copy/paste support. A num-
ber of menu actions are available in the generated editor, including validation
invocation and dynamic instance model creation. Each generated editor comes
with a default creation wizard. Figure 3-2 shows an example of the editor,
including a context menu showing options to create new elements, cut, copy,
paste, delete, validate, and so on.

34 CHAPTER 3 • Developing a DSL Abstract Syntax

Figure 3-2 EMF-generated editor

3.2.3 Code Generation

From an *.ecore (Ecore) model, you need to produce a generator model and
supply additional information required for code generation. An EMF generator
model has a *.genmodel file extension and is essentially a decorator model for
a corresponding *.ecore model. This generator model is fed to Java Emitter
Templates (JETs) that are used to write Java and other files. JET is the Java Server
Pages (JSP)-like technology used by default when generating text from Ecore
models. This book does not cover it in detail, but a tutorial is available online
[51] if you want to know more.

You can customize the existing generation output using custom templates.
Furthermore, you can extract constraint, pre-/post-condition, and body imple-
mentations from OCL annotations for use in generation and invocation at run-
time. This is not a native EMF capability, but you can add it using the MDT OCL
component. You will use this technique in the context of the sample projects.

When regenerating code, the JMerge component is used to prevent overwrit-
ing user modifications. Generated Java code is annotated with @generated
javadoc style tags to identify it and distinguish it from user code. Removing the
tag or adding NOT after the tag ensures that JMerge will not overwrite the mod-
ified code. Typically, using @generated NOT is preferred because it allows the
Toolsmith to identify code that was generated and modified, as opposed to newly
added code. Note that not all code benefits from merging. Specifically,
plugin.xml and MANIFEST.MF files need to be deleted before an update can
occur.

3.2.4 Applying OCL

Many opportunities arise for using OCL in EMF models. Class constraints,
method bodies, and derived feature implementations can all be provided using
MDT OCL and EMF dynamic templates. The approach of using OCL and cus-
tom templates in this book comes from an Eclipse Corner article [44] and has
been modified only slightly to conform to a similar approach taken to leverage
OCL added to models in QVT, as discussed in Section 6.5.6, “Leveraging OCL
in EMF Models.” The templates are generic and can easily be added to any proj-
ect that needs to provide OCL-based implementations in its generated model
code. It is also worth noting that GMF uses OCL extensively in its models,
employing an EMF Validator to maintain the integrity of its models.

To add an OCL expression to a model element, we begin by adding a nor-
mal EAnnotation. For the Source property, enter http://www.eclipse.org/
2007/OCL. This URI allows our custom templates and QVT engine to recognize
this annotation as OCL, where it can expect to find Details Entry children of
type constraint, derive, or body. Note that the original article [44] used
http://www.eclipse.org/ocl/examples/OCL as the URI.

Depending on the context, add the appropriate Key (EMF constraint key,
derive, or body) to a child Details Entry of the EAnnotation and specify
the OCL in the Value property. For invariant constraints, the OCL annotations
complement the normal EMF constraint annotations by providing implementa-
tion for the validation framework to enforce constraints.

TIP

To test your OCL, it’s helpful to use the Interactive OCL Console with a
dynamic instance of your model, as discussed in Section 1.5.4, “Object
Constraint Language.” Be sure to select the proper model element for the
expression, as well as the proper metalevel in the console.

3.2 Eclipse Modeling Framework 35

http://www.eclipse.org/2007/OCL
http://www.eclipse.org/2007/OCL
http://www.eclipse.org/ocl/examples/OCL

To invoke the provided OCL at runtime, you must use custom JET templates
for your domain model. The generated code retrieves the OCL statement from
the model element and invokes it, evaluating the result. An alternative to this is
to generate a Java implementation of the OCL during generation and avoid
invoking the OCL interpreter at runtime.

The referenced article covers the details of the custom templates, so they are
not covered here. Also, the templates are included in the book’s sample projects
and are touched upon during the development of the sample projects. For now,
we take a look at just the derived feature implementation, both before and after
using the OCL with a custom template approach. First, consider the default gen-
erated code for a derived reference—in this case, the rootTopics reference from
the MapImpl class in our mindmap example.

/**
* <!-- begin-user-doc -->
* <!-- end-user-doc -->
* @generated
*/
public EList<Topic> getRootTopics() {
// TODO: implement this method to return the 'Root Topics'
// reference list
// Ensure that you remove @generated or mark it @generated NOT
// The list is expected to implement
// org.eclipse.emf.ecore.util.InternalEList and
// org.eclipse.emf.ecore.EStructuralFeature.Setting
// so it's likely that an appropriate subclass of
// org.eclipse.emf.ecore.util.EcoreEList should be used.

throw new UnsupportedOperationException();
}

Let’s add the following OCL statement to the derived feature using the pre-
vious convention. Here we see the annotation within the mindmap.ecore model
in its native XMI serialization. Note that this OCL statement could be simplified
by using the parent eOpposite relationship on our Topic’s subtopics reference,
which was added to facilitate the diagram definition of Section 4.3.5, “Subtopic
Figure.”

<eStructuralFeatures xsi:type="ecore:EReference"
name="rootTopics" upperBound="-1" eType="#//Topic" volatile="true"
transient="true" derived="true">
<eAnnotations source="http://www.eclipse.org/2007/OCL">
<details key="derive"
value="let topics : Set(mindmap::Topic) = self.elements->

select(oclIsKindOf(mindmap::Topic))->
collect(oclAsType(mindmap::Topic))->asSet() in

36 CHAPTER 3 • Developing a DSL Abstract Syntax

topics->symmetricDifference(topics.subtopics->
asSet())"/>

</eAnnotations>
</eStructuralFeatures>

Before regeneration, we need to make some changes in the genmodel. To
allow the OCL plug-in to be added to our generated manifest dependencies, we
need to add OCL_ECORE=org.eclipse.ocl.ecore to the Model Plug-in
Variables property of the genmodel root. Also, we need to set the Dynamic
Templates property to true and enter the templates path (such as /org.
eclipse.dsl.mindmap/templates/domain) to the Template Directory
property. After we generate, we can see the following implementation in our
MapImpl class.

private static OCLExpression<EClassifier> rootTopicsDeriveOCL;

private static final String OCL_ANNOTATION_SOURCE =
"http://www.eclipse.org/2007/OCL";

/**
* <!-- begin-user-doc -->
* <!-- end-user-doc -->
* @generated
*/
public EList<Topic> getRootTopics() {
EStructuralFeature eFeature =
MindmapPackage.Literals.MAP__ROOT_TOPICS;

if (rootTopicsDeriveOCL == null) {
Helper helper = OCL_ENV.createOCLHelper();
helper.setAttributeContext(MindmapPackage.Literals.MAP, eFeature);

EAnnotation ocl = eFeature.getEAnnotation(OCL_ANNOTATION_SOURCE);
String derive = (String) ocl.getDetails().get("derive");

try {
rootTopicsDeriveOCL = helper.createQuery(derive);

} catch (ParserException e) {
throw new UnsupportedOperationException(e.getLocalizedMessage());

}
}

Query<EClassifier, ?, ?> query =
OCL_ENV.createQuery(rootTopicsDeriveOCL);

@SuppressWarnings("unchecked")
Collection<Topic> result = (Collection<Topic>) query.evaluate(this);

return new EcoreEList.UnmodifiableEList<Topic>(this, eFeature,
result.size(), result.toArray());

}

3.2 Eclipse Modeling Framework 37

The generated code checks to see if the OCLExpression for this derivation
has been created already; if not, it initializes it by retrieving the statement from
the EAnnotation and its detail with key derive. Then the expression is evalu-
ated and the list of Topic elements is returned.

As mentioned in the article, some improvements could be made to this
approach, but it illustrates the usefulness of adding OCL statements to your EMF
models. It’s not hard to imagine how a significant portion of an application could
be generated from a model adorned with OCL for invariant constraints, method
bodies, and derived features. In GMF, we can see how OCL is used to augment
the diagram-mapping model to provide for constraints, feature initialization,
audit definition, and model metric definition.

BEST PRACTICE

Adding constraints and validation is essential in model-driven software
development. Although you can place validation code within QVT, Xpand
templates, and so on, it’s most useful to ensure that your model instance is
well formed when created, or before moving to a model transformation.

3.2.5 Dynamic Instances

A powerful feature of EMF, and one that is useful to a Toolsmith developing a
new DSL, is the capability to create dynamic instances of a model. The reflective
framework of EMF is leveraged to allow instantiation of a model element with-
out generating code beforehand. This can be done from within the default Ecore
editor by selecting an element and choosing the Create Dynamic Instance
context menu item. The instance is stored in an XMI file within the development
workspace, so the generation or launch of plug-ins is not required to test a model
or, more importantly, to test Xpand templates and QVT transformations under
development. This is one important distinction when comparing JET to Xpand.
Dynamic instances are used in the context of our sample projects.

BEST PRACTICE

Use dynamic instance models for development as much as possible. Xpand
templates, QVT transformations, and the OCL console can all work with
dynamic instance models and avoid making Toolsmiths generate code and

38 CHAPTER 3 • Developing a DSL Abstract Syntax

invoke a runtime instance to test their work. GMF diagrams still require
code generation to develop effectively, although generated diagrams are
capable of working with dynamic instances.

Figure 3-3 is an example of a dynamic instance model for our mindmap
domain model, along with the Properties view. It’s similar in functionality to the
generated EMF editor, although it requires the metamodel to be loaded and
reflected upon, as you can see from the loaded mindmap.ecore resource file.

3.3 Developing the Mindmap Domain Model 39

Figure 3-3 Mindmap dynamic instance model

TIP

You can view any Ecore model using the Sample Reflective Ecore
Model Editor, so there’s little need to generate the EMF .editor plug-in.
This applies to XMI dynamic instances, such as GMF-based diagrams files
where both the domain and notation models are persisted in a single file.
Simply right-click the file and select Open With → Other → Internal
Editors → Sample Reflective Ecore Model Editor.

3.3 Developing the Mindmap Domain Model

We develop a simple mindmap DSL and use it throughout the book to provide
an example of how to use components of the Modeling project as a DSL Toolkit.
This model forms the base of our fictitious Requirements Elicitation Project
(REP).

This is the beginning of those sections in the book that you can follow in a
tutorial fashion. Solution projects are available to save time, although you should
be able to begin from scratch and produce these solutions on your own. It’s up
to you to follow along or simply review the solutions as we proceed.

Figure 3-4 is a diagram of the basic mindmap DSL we create in this section.
Not much explanation should be required here because you can easily see that a
Map class serves as the container for Topics and Relationships, which both
extend from MapElement. The following sections provide details on setting up
a DSL project and creating this model, along with the other DSL artifacts asso-
ciated with the project.

40 CHAPTER 3 • Developing a DSL Abstract Syntax

Figure 3-4 Mindmap domain model

3.3.1 Project Setup

Before getting started defining our mindmap domain model, we need a new proj-
ect. Although EMF and GMF provide their own project wizards, we use the DSL
Project Wizard provided by the Amalgam project to hold our DSL artifacts. You
can create an equivalent project by starting with a plug-in project and adding the
required dependencies, natures, and builders. The DSL project is also a plug-in
project, as we’ll eventually want to deploy the project to facilitate revisioning and
extension. Furthermore, Xpand and workflow files currently need to be located
in source paths to be developed, so we need a Java project anyway. In the future,
this should not be required.

For our mindmap project, switch to the DSL perspective and use File → New
→ DSL Project to create a new project named org.eclipse.dsl.mindmap.
The wizard creates a set of folders: /model, /diagrams, /templates,
/transformations, and /workflows. Not all of these folders are required for
each DSL project, but we use them for our mindmap. The wizard also adds
natures and builders for QVT and Xpand/Model Workflow Engine (MWE).

3.3.2 Creating the Mindmap Domain Model

As mentioned earlier, creating an Ecore model involves many starting points. If
we had an existing XML Schema for our domain, we could import it and EMF
would take care of serializing documents conforming to the schema. If we used
the UML2 project and associated the UML2 Tools class diagram to model our
domain, we could import it to create an EMF model. We begin using “classic”
EMF to create our mindmap DSL from scratch.

Typically, we’d begin with File → New → Other → Eclipse Modeling
Framework → Ecore Model (Ctrl+3 → Ecore Model). However, the DSL Toolkit
from Amalgam provides some wizard redefinitions to facilitate DSL development
and defines capability definitions to hide the original UI contributions from var-
ious Modeling projects. To create our model, we select the /model folder and
use the File → New → Domain Model (Ctrl+3 → Domain Model) wizard, which
is really just the GMF Ecore diagram wizard. Name the model and diagram files
mindmap.ecore and mindmap.ecore_diagram, respectively. Optionally, you
can use the Ecore Tools component, available from the EMFT project. It pro-
vides some capabilities beyond those that the GMF example editor provides.

Before we begin to model the domain, we need to set some defaults in our
mindmap Ecore model. First, right-click on the blank diagram surface and select
Show Properties View. This shows the properties for the root package in our new
Ecore model. Each Ecore model has a single root package, under which we can
create a number of additional subpackages. In our case, we set the properties
accordingly: name and Ns Prefix should be set to mindmap; Ns URI should be
set to http://www.eclipse.org/2008/mindmap.

Using Figure 3-4, model the mindmap domain using the palette and
Properties view. It’s a straightforward model to implement, with only a couple
noteworthy items: First, the MapElement class is abstract; second, the
rootTopics relationship is derived, transient, and volatile. We implement this
derived reference using OCL in Section 3.3.5, “Adding OCL.”

The diagram surface has many features to explore, as discussed in Section
10.1, “Overview.” You should note a few things, however, when using the Ecore
diagram to create the mindmap domain model:

3.3 Developing the Mindmap Domain Model 41

http://www.eclipse.org/2008/mindmap

Aggregation links create a reference with the Containment property set
to true, in contrast with Association links, which are noncontainment
references.

Setting the upper bound property of a link to –1 creates a many relation-
ship and causes the link to be displayed with the familiar 0..* notation.

References with eOpposites are shown in Figure 3-4 as a single connec-
tion, whereas the Ecore diagram shows two separate links.

3.3.3 Creating the Mindmap Generator Model

With our mindmap.ecore model complete, we can validate it and create a gen-
erator model. To validate it, open the model in the Sample Ecore Model Editor
and right-click on the root package. Select Validate and confirm that no errors
exist. If there are errors, correct them and continue. We look into adding valida-
tion for our mindmap model later, which leverages a similar validation frame-
work provided for all Ecore models.

To create mindmap.genmodel, right-click the mindmap.ecore file in
Explorer view and select New → Other → Domain-Specific Language → Domain
Generator Model (Ctrl+3 → Domain Gen). Note that the original EMF wizard
is found in New → Other → Eclipse Modeling Framework → EMF Model
(Ctrl+3 → EMF Model). We started by selecting our mindmap.ecore model,
so the wizard defaults to the same folder and provides the name we want. It also
recognizes that we are importing an Ecore model, but we have to load it our-
selves, curiously. We have only one root package, so we can finish the wizard and
take a look at the generator model properties.

EMF generator models include several properties to consider. For our
mindmap, we need to change only a couple from their default settings. In the
root, change the Compliance Level from 1.4 to 5.0 (if it’s not already set to
5.0) and change the Model Directory to be /org.eclipse.mindmap/src.
(Note that this changes the edit, editor, and tests properties as well.) We need to
manually change the Model Plug-in ID property to org.eclipse.mindmap,
however. In the properties for the Mindmap root package, we need to set the
Base Package property to org.eclipse to match our new plug-in namespace.

This gets us started, so we can move on to code generation. Later, we return
to our mindmap model and add constraints, validation, and other enhancements.

42 CHAPTER 3 • Developing a DSL Abstract Syntax

3.3.4 Generate and Run

The last thing to do is generate our mindmap plug-ins and code. Technically, we
don’t need to generate code at this time because we plan to leverage dynamic
instances as long as we can in the development of our DSLs. However, for those
new to EMF, it’s worthwhile to continue with generation at this point to see how
things work. This is accomplished by right-clicking the root of the mindmap.
genmodel in the editor tree and selecting Generate All. This generates our model
code, edit code, editor code, and test skeletons, each in their own plug-in proj-
ects. We don’t need the generated editor code because a diagram provides our
primary means of working with mindmap instance models. For now, we can con-
tinue by running the generated editor to verify our model and configuration.

To run our plug-ins and test the functionality of our editor, we need to be in
the Plug-in Development Environment perspective to gain access to the appro-
priate Run option. Select Run → Open Run Dialog (Ctrl+3 → Run C) and cre-
ate a new Eclipse Application run configuration named requirements in a
directory named runtime-requirements. Figure 3-5 is an image of this dia-
log. Figure 3-6 shows the Arguments page with some arguments for launching
on Mac OS X. We use this launch configuration throughout our development of
the sample projects, hence the general requirements name.

TIP

If you get tired of adding arguments to your launch configurations each
time you create one, navigate in the Preferences dialog to Plug-In
Development → Target Platform → Launching Arguments and
enter them in the field provided.These values will be copied into any new
launch configuration you create.

Run this configuration to launch a new instance of Eclipse with the new
plug-ins installed. We could trim the plug-in list to launch only those plug-ins we
need for our application. This makes launching faster and keeps us aware of our
underlying plug-in dependencies. In Chapter 8, “DSL Packaging and
Deployment,” we fine-tune our launch settings before creating our product con-
figuration.

3.3 Developing the Mindmap Domain Model 43

In the runtime workbench, create a new project and follow New → Example
EMF Model Creation Wizards → Mindmap Model, giving it whatever name you
want and selecting Map as the Model Object. The default EMF-generated editor
appears upon finish, ready for you to create new Topic and Relationship
instances within the map.

You again need to open the Properties view to set model element properties
and establish subtopics and relationship links. Notice that validation is available
for our model instances and enforces the basic structural features defined in our
model. For example, we declared 1 for the upper and lower bounds on
source and target references of our Relationship class. Creating a new
Relationship instance in our model and invoking the Validate menu option
brings up a dialog that points out that these required features were not set. As
we enhance our model further, EMF and the Validation Framework will provide
additional validation, as used by GMF for diagram validation.

44 CHAPTER 3 • Developing a DSL Abstract Syntax

Figure 3-5 Requirements launch configuration

Figure 3-6 Requirements launch configuration arguments

3.3.5 Adding OCL

As you should recall, we added a derived, transient, volatile rootTopics refer-
ence in our Map class. Section 3.2.4, “Applying OCL,” described the basics of
adding OCL and using dynamic templates to generate implementations for
invariant constraints, method bodies, and derived features. The example in that
section covered the rootTopics implementation using OCL and used a set of
dynamic templates that we use in this context as well. At this time, rename the
default templates folder to be a templates-domain source folder in the mindmap
project, and copy the templates provided in the solution into this folder. We’ll
have additional templates later for deployment, so we can separate them into dif-
ferent root folders. Each DSL project that uses OCL to refine its domain model

3.3 Developing the Mindmap Domain Model 45

will reuse this set of templates. Then return to Section 3.2.4 and configure the
mindmap.ecore model to use OCL to implement the rootTopics feature.

We can leverage OCL in our model in additional places to provide an imple-
mentation and avoid having to modify our generated code. Let’s begin by adding
a method that returns the full set of subtopics for a given Topic.

Finding All Subtopics

Currently, our model has a subtopics reference on each Topic, along with a
method, allSubtopics(), that is intended to return a list of all of a Topic’s
subtopics—that is, its subtopics, all of their subtopics, and so on. All methods
declared in an Ecore model require an implementation to be provided, so we turn
to OCL, where the implementation of this method is trivial, thanks to the non-
standard closure iterator in MDT OCL:

self->closure(subtopics)

We need to add an EAnnotation to the method in our model with Source
equal to http://www.eclipse.org/2007/OCL. A child Details Entry is
added to the annotation with the previous expression as its Value property and
with a Key value of body. When we regenerate our model code, we can see that
our implementation is provided:

/**
* The parsed OCL expression for the body of the
* '{@link #allSubtopics All Subtopics}' operation.
* <!-- begin-user-doc -->
* <!-- end-user-doc -->
* @see #allSubtopics
* @generated
*/
private static OCLExpression<EClassifier> allSubtopicsBodyOCL;

private static final String OCL_ANNOTATION_SOURCE =
"http://www.eclipse.org/2007/OCL";

/**
* <!-- begin-user-doc -->
* <!-- end-user-doc -->
* @generated
*/
public EList<Topic> allSubtopics() {
if (allSubtopicsBodyOCL == null) {
EOperation eOperation =
MindmapPackage.Literals.TOPIC.getEOperations().get(0);

OCL.Helper helper = OCL_ENV.createOCLHelper();

46 CHAPTER 3 • Developing a DSL Abstract Syntax

http://www.eclipse.org/2007/OCL

helper.setOperationContext(MindmapPackage.Literals.TOPIC,
eOperation);

EAnnotation ocl = eOperation.getEAnnotation(OCL_ANNOTATION_SOURCE);
String body = ocl.getDetails().get("body");

try {
allSubtopicsBodyOCL = helper.createQuery(body);

} catch (ParserException e) {
throw new UnsupportedOperationException(e.getLocalizedMessage());

}
}

Query<EClassifier, ?, ?> query =
OCL_ENV.createQuery(allSubtopicsBodyOCL);

@SuppressWarnings("unchecked")
Collection<Topic> result = (Collection<Topic>) query.evaluate(this);

return new BasicEList.UnmodifiableEList<Topic>(result.size(),
result.toArray());

}

Again, here we see the boilerplate OCL code that configures an
OCLExpression if it’s the first invocation, and then it invokes the expression
obtained from the annotation. We leave the mindmap model at this point and
move on to develop the second domain model in our product line.

3.4 Developing the Requirements Domain Model

In a similar fashion to our mindmap model, we create a new org.eclipse.
dsl.requirements DSL project here to hold our requirements model. This
forms the base of our fictitious Requirements Management Project (RMP). We
create the new requirements.ecore model using the Domain Model Wizard
and GMF Ecore diagram, and we complete it to match the diagram and descrip-
tion of Figure 3-7.

Basically, a model contains a collection of RequirementGroups, which con-
tain a number of children groups and Requirements. Requirements have
child references and contain Version and optional Comment elements. A number
of enumerations for Priority, State, Type, and Resolution are also in the
model. A Requirement can also have a number of dependent requirements,
which become the basis for our dependency diagram. Note that the author attrib-
utes are simple strings. We could create a Team model and reference these ele-
ments to assign to our requirements and comments. We also could have a
separate Discussion model to use here and in our mindmap, as a topic might have
an associated discussion thread. Many possibilities exist, but for the purposes of
our sample application, we keep it simple.

3.4 Developing the Requirements Domain Model 47

Figure 3-7 Requirements domain model

3.4.1 Requirements Generator Model

We create a requirements.genmodel in the usual manner, using the new
Domain Generator Model (Ctrl+3 → Domain Gen) wizard and selecting our
requirements.ecore model as the input. We’ll make some adjustments to this
genmodel and to the generated Edit code because we intend to use the generated
EMF editor as part of our solution.

For the display string of a requirement in the editor selection tree, we want
to have it be id (major.minor.service):title, where major, minor, and
service are from the contained Version element. We’ll be using the Properties
view to edit the details of the requirement, so we’ll have plenty of horizontal
space to use in the editor, allowing even longer requirement titles to fit. Another
option is to navigate using the Project Explorer view, but this is narrow and does
not allow for much information display. Furthermore, we’ll have a second tab in
the editor to display a requirements dependency diagram, which will also require
a bit of editor space. To accomplish the task, we’ll select the requirement element
in the genmodel and change its Edit Label Feature to be our id:EString
attribute. Unfortunately, we cannot set two attributes to display for the label, as
we can for GMF diagrams. This means we have to modify the generated code.

48 CHAPTER 3 • Developing a DSL Abstract Syntax

Before generation, we need to check the other properties and make changes
accordingly. As with the mindmap and other models, we want to generate our
model, edit, and editor code to their own projects, so we can change the Model
Plug-in ID and Model Directory properties to be org.eclipse.require-
ments.model. We generate the three plug-ins and open the org.eclipse.
requirements.provider.RequirementItemProvider class from our Edit
plug-in. Modify the getText() method as seen next. Note that if we wanted to
preserve the generated method to allow the label feature of the generator model
to have an effect, we could use the getTextGen() method approach, as described
in the EMF documentation.

/**
* This returns the label text for the adapted class.
* Modified to show id (major.minor.service) : title
*
* @generated NOT
*/
@Override
public String getText(Object object) {
StringBuilder sb = new StringBuilder();
sb.append(((Requirement)object).getId());
sb.append(" (");
Version version = ((Requirement)object).getVersion();
if (version != null) {
sb.append(((Requirement)object).getVersion().getMajor());
sb.append(".");
sb.append(((Requirement)object).getVersion().getMinor());
sb.append(".");
sb.append(((Requirement)object).getVersion().getService());

} else {
sb.append("0.0.0");

}
sb.append(") : ");
sb.append(((Requirement)object).getTitle());
String label = sb.toString();
return label == null || label.length() == 0 ?
getString("_UI_Requirement_type") : label;

}

We’ve eliminated the redundant Requirement prefix from our label because
we’re using a custom icon to distinguish Requirements from Requirement
Groups, Comments, and so on. For our RequirementGroup element, we can
similarly modify the getText() method to display only the name attribute; we
can modify the Comment element to display created, author, and subject.

3.4 Developing the Requirements Domain Model 49

3.5 Developing the Scenario Domain Model

Because we’re basing the notation for our Scenario diagram on the Business
Process Modeling Notation (BPMN) standard, we could simply use its descrip-
tion of the underlying domain model and semantics to develop our DSL. A bet-
ter approach would have been to find an XSD for BPMN and simply import it
into EMF. Unfortunately, no such schema is published with the specification—
even worse, a new specification from the OMG, the Business Process Definition
Metamodel (BPDM), is slated to provide a domain model for BPMN2. Also
unfortunate is that this specification has no serialized format that we can use and
is overly complicated for our Scenario DSL. This leaves us to create our own sce-
nario model.

In a new org.eclipse.dsl.scenario project, we can create our sce-
nario.ecore model as the base of our fictitious Requirements Scenario Project
(RSP) project. Figure 3-8 is the model to create using our Ecore diagram.

50 CHAPTER 3 • Developing a DSL Abstract Syntax

Figure 3-8 Scenario domain model

Elements of a scenario model are maintained in the Process class, which
itself extends Element. A Connection maintains target and source references
for Elements that are connected in Sequence or Message flows. An
Association also connects elements. Elements come in a variety of types,
including Tasks, Events, DataObjects, and Gateways. These elements all
map in a straightforward manner to notation elements because the model is

inherently graphical in nature. The model is actually similar to the description
provided in the BPMN specification, although it is a subset.

3.6 Developing the Business Domain Model

Plenty of options exist for developing the domain model that will form the base
of our fictitious Business Domain Modeling (BDM) project. We want something
less complicated than the Unified Modeling Language (UML) model for struc-
tural class modeling, but something expressive enough to generate code either
directly or through an intermediate model. Also, the model should constrain the
user to the supported methodology and domain of business models. For the pur-
poses of this book, the four archetypes described for business domain modeling
in Java Modeling in Color with UML [46] seem like a good option. Figure 3-9 is
a partial image of the Domain-Neutral Component (DNC) model, created with
the editor we develop in Section 4.6, “Developing the Color Modeling
Diagram.” Of course, a black-and-white rendering of a color modeling diagram
in the printed form of this book is not very compelling.

3.6 Developing the Business Domain Model 51

«role»

PartyRole

«moment–interval»

MomentInterval

«description»

PartyDescription

«mi–detail»

MIDetail

«party»

Party

0..1

0..1

0..1 0..–1

Figure 3-9 Color archetypes

Basically, a set of archetypes is used to model moment-interval, role, party,
place, thing, and description elements and their relationships. The relationships
and several described patterns of interaction are provided in the book, which we
want to facilitate in our modeling environment. First, however, we need an
underlying model (a DSL).

This DSL is strongly rooted in a general object-oriented DSL, so we begin
with just that. Figure 3-10 is an oocore.ecore model that we extend to add our

archetypes and other DNC elements. Why begin with a general object-oriented
DSL? Well, we might decide to use this model as the basis for another DSL in the
future. Why not simply extend Ecore itself, you might ask? Well, it contains ele-
ments that we really don’t need or want, leaving us with all those E-prefixed ele-
ments and their properties. Besides, it’s straightforward to develop our own
object-oriented DSL. We can use the Java EMF Model (JEM) as a transforma-
tion target, giving us a chance to see what a model that extends Ecore is like.

Adventurous types can create a new org.eclipse.dsl.oocore DSL proj-
ect and create the oocore.ecore model, as we have done previously. Complete
the model using Figure 3-10 as a reference. Otherwise, simply copy the
oocore.ecore domain model from the solutions into your project. Finally, cre-
ate a new org.eclipse.dsl.dnc DSL project to hold our dnc.ecore model
that will extend our core model.

52 CHAPTER 3 • Developing a DSL Abstract Syntax

Figure 3-10 Object-oriented core domain model

With our base model complete, we can create our dnc.ecore model. To ref-
erence our oocore.ecore model in our newly created dnc.ecore model, we
need to use the EMF Load Resource context menu in the default EMF editor.
Fortunately, the dialog that appears now contains options to Browse Registered
Packages, Browse File System, and Browse Workspace. At one time, you needed
to enter platform:/ URIs into the field to load a registered package. In our
case, the oocore.ecore model is easily found in our workspace.

In creating our DNC model (Figure 3-11), several options exist, as always.
You’ve seen that using an enumeration to define the type is one solution, as was
used in the Mindmap domain model’s Relationship class and Type enum.
This approach has some drawbacks, including the loss of polymorphic behavior
in our templates and transformation scripts. To illustrate the differences, let’s go
ahead and create an Archetype abstract class that extends our oocore::Class
class. Each of our archetypes will extend the Archetype class. We also add an
Association class that extends oocore::Reference and add a property to
signify aggregation. Although it is not a true Association class in the UML
sense, it aids us in developing our diagram and hiding some complexities of the
underlying model to the Practitioner. As we develop the diagram and other DSL
artifacts, we’ll revisit this model and refine it as necessary, potentially pulling up
some functionality into the domain model to aid in our color modeling and
model transformations.

3.6 Developing the Business Domain Model 53

Figure 3-11 Domain-neutral component domain model

3.7 Summary

This chapter explored the capabilities of EMF as the means of describing our
DSL abstract syntax. Although we leave the details of EMF to its own book, we
covered enough to get started developing our sample projects. The benefits of
leveraging a common underlying metamodel and generation capabilities should
become clear as we continue to develop the DSL projects.

At this point, we have starter domain models for our fictitious ERP, plus a
reference to a fifth oocore DSL. We now move on to describing how to create
graphical concrete syntax for those we want to provide diagrams for, under-
standing that we will most likely revisit and enhance the EMF models we created
in this chapter.

54 CHAPTER 3 • Developing a DSL Abstract Syntax

Index

Symbols
:= (assignment operator), 568
« » (guillemets), 606
+= (assignment operator), 568

A
absolute coordinates (Draw2d), 323-324
abstract syntax

definition of, 4
developing with EMF (Eclipse Modeling

Framework)
Model Compare, 11
Model Query, 11
Model Search, 11
Model Transaction, 10
Model Validation, 10
persistence alternatives, 11

AbstractCommand class, 463
AbstractEditPart (GEF), 325
AbstractProviderConfiguration class, 378
AbstractTransactionalCommand, 464
access keyword, 553
accessorCall() function, 219
ActionFilterProvider extension-point, 424-426
ActionFilterService, 423-426
actions. See also specific actions

selection actions, 342
subtopic actions, 90-93
for user interface plug-ins, 307-310

activate() method, 336
add() operation, 582

addChild() method, 334-335
addChildVisual() method, 335
addFields() method, 206
addFixedChild() method, 166
addNotationalListeners() method, 211, 546
addNotify() method, 335
addSuffixNumber() operation, 593
AdviceContent operations, 627
AdviceContent properties, 626
Aggregation Link Mapping (color modeling

diagram), 198-200
aliases. See shortcuts
Align Bottom toolbar element, 356
Align Center toolbar element, 355
Align Left toolbar element, 355
Align Middle toolbar element, 356
Align Right toolbar element, 355
Align Top toolbar element, 355
AlignmentAction, 349
All Compartments toolbar element, 356
allSubobjects() operation, 579
allSubobjectsOfKind() operation, 579
allSubobjectsOfType() operation, 579
Amalgam, 15
Amalgamation project, 20
anchors, 94-96, 323
annotations

annotation figure definition (color
modeling diagram), 188-189

Annotation Mapping (color modeling
diagram), 195

in Ecore metamodel, 33

675

676 Index

Ant, 649
Ant tasks, OML and, 243-244
Appearance properties (diagrams), 358-359
AppearancePreferencePage class, 206
AppearancePreferencePage.xpt template,

216-217
Apply Appearance Property toolbar

element, 355
archetype figure definition (color modeling

diagram), 182-184
AROUND statement (Xpand), 617-619
Arrange All toolbar element, 355
Arrange Selected toolbar element, 355
artifacts (DSL Toolkit)

abstract elements, 17
Practitioner, 18-19
Toolsmith artifacts, 17-18

artwork, adding to products, 304-305
asBoolean() operation, 591
asFloat() operation, 592
asInteger() operation, 592
asList() operation, 583
asOrderedTuple() operation, 578
aspects (Xpand), 647-648
assert expression, 576-577
assignment operator (:=), 568
assignment operator (+=), 568
asTransformation() operation, 582
ATL (Atlas Transformation Language), 231
AttributeParserProvider class, 221-224
audits

audits and metrics model, 532-533
for mindmap diagram, 97-103

Auto Size toolbar element, 356

B
Background Color property (figures), 508
BDM (Business Domain Modeling), 22
bending connections (GEF), 351-352
Boolean operations, 622
Border Layout, 513
Border property (figures), 508

borders
Border Layout, 513
Compound Border, 510
Custom Border, 510
Line Border, 510
Margin Border, 510

Both command (Diagram menu), 361
BPDM (Business Process Definition

Metamodel), 50, 665
BPEL, mapping with BPMN, 231
BPMN (Business Process Modeling

Notation), 50, 665
BPMN2, 14
mapping with BPEL, 231

Bring Forward command (Order menu), 361
Bring to Front command (Order menu), 361
business domain model, 51-53
Business Domain Modeling (BDM), 22
Business Process Modeling Notation. See BPMN

C
cached extensions (Xtend), 639
canExecute() method, 483
canonical containers, 547
Canvas, 505-506
Canvas Mapping, 520

mindmap diagram, 71
requirements diagram, 108

casting, 635
chain expression, 634-635
Checks language, 228
ChopboxAnchor (Draw2d), 323
class2columns() query, 600
classes. See specific classes
clipboardSupport extension-point, 457-458
clipping in Draw2d, 321
clone() operation, 579
Coad, Peter, 57
code generation

in EMF, 34-35
for mindmap domain model, 43-45

code modification, GMF customization
options, 65

collapsible compartments, 518
collect() operation, 564, 631-632

Index 677

collections, 630
operations, 623-624
properties, 623

collectselect imperative iterate expression, 567
color in graphical notations, 57
color modeling diagram, 22, 181-182

annotation figure definition, 188-189
archetype figure definition, 182-184
color preferences, 205-220

addNotationalListeners() method, 211
DiagramAppearancePreferencePage

class, 207-208
getPreferenceColor() method, 211
initializeDefaultPreferences()

method, 209
initPreferenceStoreListener()

method, 211
Messages class, 209
messages.properties file, 210
NodeEditPart.xpt template file, 212,

215-216
preference page templates, 216-220
PreferencePropertyChangeListener

class, 211, 214
setForegroundColor() method, 211
setForegroundColor() method,

overriding, 205
toPreferenceConstant() function, 213
updateArchetypeColor() method, 211

custom parsers, 220
AttributeParserProvider class, 221-224
OperationParserProvider class,

224-225
generalization link definition, 186-187
generation, 201
gradient figures, 201-205
mapping definition

Aggregation Link Mapping, 198-200
Annotation Mapping, 195
DNC Association Mapping, 195-197
DNC Canvas Mapping, 190
Generalization Mapping, 200-201
Moment-Interval Archetype Mapping,

191-192
Package Mapping, 194
Role Archetype Mapping, 193

package figure definition, 185-186
tooling definition, 189

CombinedTemplateCreationEntry, 344
combining layouts, 515
comma-separated values (CSV) files, generating,

281-282
command infrastructure (GMF runtime),

462-464
commands. See specific commands
comments

OML, 593
Xtend, 637

Compartments, 518
compliance, specification compliance, 668
COMPONENT_ROLE key, 343
Compound Border, 510
concrete syntax development, 4, 12

GMF (Graphical Modeling Framework).
See GMF runtime; GMF Tooling

TMF (Textual Modeling Framework), 12
configuration properties (transformations), 555
configureGraphicalViewer() method, 327
connection bend interactions (GEF), 351-352
connection creation interactions (GEF), 349-350
connection edit interactions (GEF), 350-351
connection EditParts, 330-331
Connection figures, creating for scenario

diagram, 155-158
connection handles (diagrams), 364-365
connection navigation, 657-658
ConnectionBendpointTracker, 352
ConnectionCreationTool (GEF), 349
ConnectionEndpointEditPolicy, 351
ConnectionRouter (Draw2d), 322
Connections, 517

bending, 351-352
creating, 349-350, 479-484
in Draw2d, 322-323
editing, 350-351

constraints, node constraints, 526
ContainerEditPolicy, 348
containers, canonical, 547
Contains Shortcuts To property (Gen

Diagram), 536
context menus, 363-364

678 Index

contributing to GMF (Graphical Modeling
Framework), 546

contributionItemProvider extension-point,
409-418

ContributionItemService
contributionItemProvider extension-point,

409-418
overview, 408

coordinate systems in Draw2d, 323-324
copy() operation, 582
Copyright Text property (Gen Editor

Generator), 534
Core language (QVT), 231, 549
Core properties (diagrams), 358
create expression, 635
createDecorators() method, 498
createDefaultEditPolicies() method, 385, 474
createEditPart() method, 334
createEditPolicies() method, 333-335, 385, 481
createEmptyDocument() method, 126
createEmptyModel() operation, 582
createFigure() method, 328
createGraphicEditPart() method, 382
createMainFigure() method, 114
createNodePlate() method, 516
createPages() method, 129-130
createPartControl() method, 139
creation interactions (GEF)

CreateRequests
consuming, 345
producing, 344

creation sequence, 345-347
Creation Wizard, 137-138
Creation Wizard Category ID property (Gen

Diagram), 538
CSV (comma-separated values) files, generating,

281-282
Custom Behavior element, 539
Custom Border, 510
custom EditPolicy, 493-497
custom figures, 89-90
custom layout, 82-84
custom parsers (color modeling diagram), 220

AttributeParserProvider class, 221-224
OperationParserProvider class, 224-225

Custom Property Tab (requirements
diagram), 140

custom style, 490-493
customization options (GMF)

code modification, 65
decorators, 66, 497-500
dynamic templates, 65-66
extension-points, 65
model extensions, 66

D
dashboard view (GMF), 66-67
Data Object figure, creating for scenario

diagram, 158-159
Data Object Mapping (scenario diagram), 165
database persistence, 177-181
dataType2columns() query, 600
dataType2primaryKeyColumns() mapping,

603-604
deactivate() method, 336-337
deactivating EditParts, 336-337
declaring extension-points, 373-375
decorateView() method, 488
DecorationService

decoratorProvider extension-point,
392-396

overview, 392
decoratorProvider extension-point, 392-396
decorators, custom, 66, 497-500
deepclone() operation, 580
Default Size (diagram elements), 516
DEFINE statement (Xpand), 607-608
definition operations, 627
definition properties, 627
DelegatingLayout (Draw2d), 323
delete interactions (GEF), 342-343
DeleteAction, 342
dependencies (GEF), 318
deploying DSLs, 303

artwork, 304-305
generation models, 310-311
requirements.product, 312
source deployment, 312-313
user interface plug-ins, 305-310

Index 679

designing graphical notations, 56-57
developing DSLs, 6
development workflow (DSL Toolkit), 18-20
DI (Diagram Interchange), 664
diagram editor, 467-468

cycling between diagram editor and
palette, 653-654

Diagram File Extension property (Gen Editor
Generator), 534

Diagram Interchange (DI), 664
Diagram Label, 517
Diagram menu commands, 361
DiagramAppearancePreferencePage class,

207-208
DiagramDecoratorProvider, 396
diagramEventBrokerProvider extension-point,

441-443
DiagramEventBrokerService extension-point,

441-443
DiagramRootEditPart (GEF), 326
diagrams. See also specific diagrams

adding EditParts to, 334-336
connection handles, 364-365
constructing from scratch

compared to generated diagrams,
485-486

connections, 479-484
diagram editor, 467-468
domain model, 468-469
EditPart definition, 473-475
New Diagram Wizard, 475-476
palette definition, 470-471
properties view, configuring, 476-479
view definition, 471-473

context menus, 363-364
diagram elements

Compartment, 518
Connection, 517
Diagram Label, 517
Node, 516-517
overview, 516

Diagram menu, 361
extending

custom decorator, 497-500
custom EditPolicy, 493-497
custom style, 490-493

scenario diagram custom view and
edit providers, 486-489

figures
changing appearance based on prefer-

ence changes, 546
changing dynamically, 546
changing properties of, 547
making nonresizable, 547
viewing elements on diagrams, 547

including in multipage editors, 548
navigation, 655
Order menu, 361
Outline view, 366
Palette view, 360
partitioning, 171, 522

Requirements diagram partition,
172-177

subprocess partitions, 171-172
pop-up bars, 365
preferences, 367-368
properties

Appearance properties, 358-359
Core properties, 358
Rulers & Grid properties, 356-358

toolbar elements, 354-356
View menu, 361-363

dialogs. See specific dialogs
disjunction in mapping operations, 562
disjuncts keyword, 562
DNC Association Mapping (color modeling

diagram), 195-197
DNC Canvas Mapping (color modeling

diagram), 190
documentProviders extension-point, 453-455
doExecuteWithResult() method, 483
Domain File Extension property (Gen Editor

Generator), 535
Domain Gen Model property (Gen Editor

Generator), 535
domain models, 108, 468-469. See

also metamodels
best practices, 30
business domain models, 264-276
business DSL, 51-53
creating DSLs, 29-31
dynamic instance models, 262

680 Index

dynamic instances, 38-39
Ecore models, 39
importing, 31
mindmap DSL, 39-40

code generation, 43-45
creating, 41-42
generator model, creating, 42
OCL, adding, 45-47
project setup, 40-41
running, 43-45
transformation to requirements

domain model, 244-251
transformation to XHTML, 251-258

OCL in, 35-38
requirements DSL, 47-49
scenario DSL, 50-51
synchronizing, 59, 76

doRun() method, 495
downloading DSL Toolkit, 20
DragDropListenerProvider extension-point,

436-438
DragDropListenerService, 436-438
DragTracker, 341
Draw2d, 318

connections and routing, 322-323
coordinate systems, 323-324
figures, 318-319
interaction sequence, 320
layout, 322
LightweightSystem, 318-319
painting, 320-321
text, 319
UpdateManager, 318

DSL Instances
Java DSL Instances, 24-25
mindmap and requirements DSL

Instances, 23-24
scenario DSL Instances, 24-25

DSL Project Wizard, 40
DSL Toolkit

abstract elements, 17
BDM (Business Domain Modeling), 22
development workflow, 18-20
downloading, 20
Java DSL Instances, 24-25

mindmap and requirements DSL
Instances, 23-24

Practitioner, 18-19
Practitioner’s view of sample projects, 25
REP (Requirements Elicitation Project), 21
RMP (Requirements Management

Project), 21
RSP (Requirement Scenario Project), 22
scenario DSL Instances, 24-25
Toolsmith artifacts, 17-18

DSLs
business DSL, 51-53
creating, 29-31
definition of, 5
developing, 6
graphical notation. See graphical notation
mindmap DSL, 39-40

code generation, 43-45
creating, 41-42
generator model, creating, 42
OCL, adding, 45-47
project setup, 40-41
running, 43-45
transformation to requirements

domain model, 244-251
transformation to XHTML, 251-258

object-oriented, 51
packaging and deployment, 303

artwork, 304-305
generation models, 310-311
requirements.product, 312
source deployment, 312-313
user interface plug-ins, 305-310

requirements DSL, 47-49
scenario DSL, 50-51
textual syntaxes

overview, 227-228
TCS (Textual Concrete Syntax), 229
Xtext, 228-229

dynamic instance models, 38-39, 262
dynamic templates, 65-66
Dynamic Templates property (Gen Editor

Generator), 535

Index 681

E
EAnnotations, 33
Eclipse Packaging Project (EPP), 20
Eclipse Requirements Project (ERP)

BDM (Business Domain Modeling), 22
REP (Requirements Elicitation Project), 21
RMP (Requirements Management

Project), 21
RSP (Requirement Scenario Project), 22

Ecore metamodel, 32-33, 39
edit providers, 486-489
Edit Source Folder dialog, 298
editing. See GEF (Graphical Editing Framework)
Editing Domain ID property (Gen

Diagram), 538
EditingDomain, sharing, 123-126
EditorProvider extension-point, 427-428
editors, QVT OML editor, 240
EditorService, 427-428
EditPartFactory, 326-327, 372
editpartProvider extension-point, 382-385
EditParts (GEF), 325-326

AbstractEditPart, 325
adding to diagram, 334-336
connection EditParts, 330-331
creating, 326-329
deactivating, 336-337
definition, 473-475
DiagramRootEditPart, 326
EditPartFactory, 326-327, 372
GraphicalEditParts, 325
lifecycle, 334-337
ScalableFreeformRootEditPart, 326
TreeEditParts, 325

EditPartService, 382-385
EditPolicies, 333-334, 493-497
editpolicyProvider extension-point, 386-387
EditPolicyService, 385-387
element creation (GMF runtime), 459-461
element operations (OML)

allSubobjects(), 579
allSubobjectsOfKind(), 579
allSubobjectsOfType(), 579
clone(), 579

deepclone(), 580
_globalId(), 578
_localId(), 578
markedAs(), 580
markValue(), 580
metaClassName(), 578
stereotypedBy(), 580
stereotypedStrictlyBy(), 580
subobjects(), 578
subobjectsOfKind(), 579
subobjectsOfType(), 579

elements. See specific elements
ElementSelectionProvider extension-point,

429-430
ElementSelectionService, 428-430
elementTypeBindings extension-point, 449-451
elementTypes extension-point, 443-449
Ellipse, 509
EMF (Eclipse Modeling Framework)

code generation, 34-35
domain models, importing, 31
dynamic instances, 38-39
Ecore metamodel, 32-33
editor, integrating with

requirements diagram
refactoring editor, 127-130
sharing editing domain, 123-126
sharing file extension, 122-123

Model Compare, 11
Model Query, 11
Model Search, 11
Model Transaction, 10
Model Validation, 10
OCL in, 35-38
overview, 10
persistence alternatives, 11
runtime features, 33-34

EMOF (Essential MOF), 663
End Events, 152
endsWith() operation, 587
entry operations (mapping operations), 559-560
enumerationAttributes2columns() query, 602
EPP (Eclipse Packaging Project), 20
equalsIgnoreCase() operation, 589

682 Index

ERP (Eclipse Requirements Project)
BDM (Business Domain Modeling), 22
REP (Requirements Elicitation Project), 21
RMP (Requirements Management

Project), 21
RSP (Requirement Scenario Project), 22

ERROR statement (Xpand), 616
escape sequences, 594
Essential MOF (EMOF), 663
Event figures, creating for scenario diagram,

152-154
Event Mapping (scenario diagram), 164
execute() method, 378
executing transformations

assert expression, 576-577
log expression, 576
trace model, 575
transform() operation, 577
transformation composition, 577

execution semantics (mapping operations),
558-559

ExecutionStrategy, 376
exists() operation, 633
expand element, 646
EXPAND statement (Xpand), 608-612
exporting figures, 62
expression language (Xpand)

casting, 635
chain expression, 634-635
collect() operation, 631-632
collections, 630
create expression, 635
exists() operation, 633
forAll() operation, 632
let expression, 635
literals, 628-630
reject() operation, 631
select() operation, 630
sortBy() operation, 633
switch expression, 634
ternary expression, 634
typeSelect() operation, 631

expressions. See specific expressions
extending diagrams

custom decorator, 497-00500
custom EditPolicy, 493-497

custom style, 490-493
scenario diagram custom view and edit

providers, 486-489
extends keyword, 553
extensibility mechanisms (GMF), 372-373. See

also extension-points
Extensible Markup Language (XML), 664
extension keyword, 636
EXTENSION statement (Xpand), 613-614
extension-points

ActionFilterProvider, 424-426
clipboardSupport, 457-458
contributionItemProvider, 409-418
declaring, 373-375
decoratorProvider, 392-396
diagramEventBrokerProvider, 441-443
documentProviders, 453-455
DragDropListenerProvider, 436-438
EditorProvider, 427-428
editpartProvider, 382-385
editpolicyProvider, 386-387
ElementSelectionProvider, 429-430
elementTypeBindings, 449-451
elementTypes, 443-449
GlobalActionHandlerProvider, 420-423
GMF customization options, 65
IconProvider, 397-399
layoutProvider, 406-408
logListeners, 452-453
MarkerNavigationProvider, 400-401
modelingAssistantProvider, 404-406
overview, 373-375
paletteProvider, 388-392
ParserProvider, 402-403
Pathmaps, 459
perspectiveExtensions, 306
perspectives, 306
preferencePages, 306
propertiesConfiguration, 453
PropertiesProvider, 431-433
PropertyModifier, 434-435
renderedImageFactory, 456-457
TransferAdapterProvider extension-point,

439-441
viewProvider, 379-382

ExtensionMap element, 643

Index 683

extensions (Xtend)
cached extensions, 639
extension invocation, 637-638
Java extensions, 639
private extensions, 639

Externalizer.xpt template, 216-218
extractor (TCS), 229

F
factories, 7-8
feature initialization, 527-528
feature properties, 625
Figure Gallery, 61, 504

Border Layout, 513
Compound Border, 510
Custom Border, 510
custom figures, 89-90
Ellipse, 509
figure properties, 507-508
Flow Layout, 511-512
Grid Layout, 513-515
Label, 510
Line Border, 510
Margin Border, 510
overview, 506-507
Polygon, 509
Polyline, 509
Polyline Connection, 509
Rectangle, 509
Rounded Rectangle, 509
Stack Layout, 512
subtopic figures, 84-89
TemplatePoint, 509
XY Layout, 512

figure plug-ins, 62
FigureDescriptor, 503
FigureRef, 504
figures, 318-319

Border Layout, 513
changing appearance based on preference

changes, 546
changing dynamically, 546
changing properties of, 547

in color modeling diagram
annotation figure definition, 188-189
archetype figure definition, 182, 184
generalization link definition, 186-187
package figure definition, 185-186

Compound Border, 510
Custom Border, 510
Ellipse, 509
exporting, 62
Flow Layout, 511-512
Grid Layout, 513-515
Label, 510
Line Border, 510
making nonresizable, 547
Margin Border, 510
Polygon, 509
Polyline, 509
Polyline Connection, 509
properties

common properties, 507-508
Flow Layout figure properties, 511
shape figure properties, 508

Rectangle, 509
Rounded Rectangle, 509
in scenario diagram, 145-146

Connection figures, 155-158
Data Object figure, 158-159
Event figures, 152-154
Gateway figure, 149-152
Subprocess figure, 147-149
Task figure, 146-147

Stack Layout, 512
TemplatePoint, 509
viewing elements on diagrams, 547
XY Layout, 512

FigureUtilities class, 501
FILE statement (Xpand), 612
Fill property (shape figures), 508
fillGradient() method, 202
fillShape() method, 202
filters in graphical notations, 57-58
find() operation, 589
findFeature() method, 474
FIRST service execution strategy, 377
firstElementOnly element, 644
firstToUpper() operation, 586

684 Index

fixed anchor locations, 94-96
Flow Layout, 511-512
Font property (figures), 508
Fontoura, Marcus, 56
forAll() operation, 632
Force Single Line property (Flow Layout

figure), 511
forEach loop expression, 565
FOREACH statement (Xpand), 612-613
Foreground Color property (figures), 508
format() operation, 584
forOne loop expression, 565
FORWARD service execution strategy, 377
Frankel, David, 4

G
Gateway figure, creating for scenario diagram,

149-152
Gateway Mapping (scenario diagram), 163-164
GEF (Graphical Editing Framework)

Commands, 332
connection interactions

connection bend interactions, 351-352
connection creation interactions,

349-350
connection edit interactions, 350-351

creation interactions
connection creation interactions,

349-350
consuming CreateRequests, 345
creation sequence, 345-347
producing CreateRequests, 344

delete interactions, 342-343
dependencies, 318
editing support

Commands, 332
EditPolicies, 333-334
Requests, 331-332

EditParts, 325-326
AbstractEditPart, 325
adding to diagrams, 334-336
connection EditParts, 330-331
creating, 326-329
deactivating, 336-337

DiagramRootEditPart, 326
EditPartFactory, 326-327
GraphicalEditParts, 325
lifecycle, 334-337
ScalableFreeformRootEditPart, 326
TreeEditParts, 325

EditPolicies, 333-334
graphical view

ScrollingGraphicalViewer, 326
setting up, 327-328

Model-View-Controller (MVC)
architecture, 324-325

moving and resizing interactions, 347-349
overview, 317
palette, 337
Requests, 331-332
selection interactions

keyboard selection, 342
overview, 338-340
selection actions, 342
selection handles, 340-341
selection requests, 342
selection targeting and feedback, 341
Selection Tool, 339
selection with DragTracker, 341

tools, 337
Gen Application element, 543
Gen Diagram

Contains Shortcuts To property, 536
Creation Wizard Category ID property,

538
Editing Domain ID property, 538
Icon Path ID property, 538
Shortcuts Provided For property, 536
Synchronized property, 537
Units property, 537
Updater element, 542
Validation Decorators property, 537
Validation Enabled property, 537
Visual ID property, 538
Without Domain property, 538

Gen Editor Generator
Copyright Text property, 534
Diagram File Extension property, 534
Domain File Extension property, 535
Domain Gen Model property, 535

Index 685

Dynamic Templates property, 535
Model ID property, 535
Package Name Prefix property, 535
Same File for Diagram and Model

property, 535-536
Template Directory property, 535

Gen Editor View element, 540-541
Gen Link, 539
Gen Navigator element, 541-542
Gen Plugin element, 540
generalization link definition (color modeling

diagram), 186-187
Generalization Mapping (color modeling

diagram), 200-201
generalizations2columns() query, 600
Generate as Eclipse Editor property (Gen Editor

View), 541
Generate Domain Model Navigator property

(Gen Navigator), 541
generating

color modeling diagram, 201
CSV files, 281-282
HTML with templates (M2T project),

297-301
Java files

with DNC model with templates,
291-297

with Java model and dedicated
template, 283-291

requirements diagram, 113
scenario diagram

border item adjustment, 166-167
figures plug-in generation, 168-171
GMF generator model, 166
intermediate event outline, 167-168

generation models, 310-311
Generative Modeling Technologies (GMT), 15
generator model, 64

Custom Behavior, 539
Gen Application, 543
Gen Diagram

Contains Shortcuts To property, 536
Creation Wizard Category ID

property, 538
Editing Domain ID property, 538
Icon Path property, 538

Shortcuts Provided For property, 536
Synchronized property, 537
Units property, 537
Validation Decorators property, 537
Visual ID property, 538
Without Domain property, 538

Gen Diagram Updater, 542
Gen Editor Generator

Copyright Text property, 534
Diagram File Extension property, 534
Domain File Extension property, 535
Domain Gen Model property, 535
Dynamic Templates property, 535
Model ID property, 535
Package Name Prefix property, 535
Same File for Diagram and Model

property, 535-536
Template Directory property, 535

Gen Editor View, 540-541
Gen Link, 539
Gen Navigator, 541-542
Gen Plugin, 540
mindmap diagram example, 74-76
mindmap generator model, 42
Open Diagram Behavior, 539
overview, 533-534
Property Sheet, 542-543
requirements generator model, 48-49

getActionBarContributor() method, 136
getCommand() method, 332
getContributorId() method, 134
getDecoratorTargetNode() method, 498-500
getDragSourceListener() method, 435
getDropTargetListener() method, 435
getModelChildren() method, 326
getModelSourceConnections() method, 330
getModelTargetConnections() method, 330
getNodeEditPartClass() method, 475, 488
getNotationView() method, 382
getParseCommand() method, 224
getParser() method, 224
getPreferenceColor() method, 211
getPropertySheetPage() method, 134
getReferencedElementEClass() method, 475
getSemanticCommand() method, 482
getSemanticEClass() method, 472

686 Index

getSourceConnectionAnchor() method, 330
getStrCounter() operation, 592
getTargetConnectionAnchor() method, 330
getTargetEditPart() method, 332
GlobalActionHandlerProvider extension-point,

420-423
GlobalActionHandlerService, 419-423
_globalId() operation, 578
GMF (Graphical Modeling Framework)

runtime, 12, 55, 59. See also GMF Tooling
advantages of, 545
canonical containers, 547
color modeling diagram, 181-182

annotation figure definition, 188-189
archetype figure definition, 182-184
color preferences, 205-220
custom parsers, 220-225
generalization link definition, 186-187
generation, 201
gradient figures, 201-205
mapping definition, 190-201
package figure definition, 185-186
tooling definition, 189

command infrastructure, 462-464
contributing to, 546
customization options

code modification, 65
decorator models, 66
dynamic templates, 65-66
extension-points, 65
model extensions, 66

dashboard view, 66-67
diagram creation

compared to generated diagrams,
485-486

connections, 479-484
diagram editor, 467-468
domain model, 468-469
EditPart definition, 473-475
New Diagram Wizard, 475-476
palette definition, 470-471
properties view, configuring, 476-479
view definition, 471-473

diagram extension
custom decorator, 497-500
custom EditPolicy, 493-497

custom style, 490-493
scenario diagram custom view and

edit providers, 486-489
diagram structure

connection handles, 364-365
context menus, 363-364
Diagram menu, 361
Order menu, 361
Outline view, 366
Palette view, 360
pop-up bars, 365
preferences, 367-368
properties, 356-359
toolbar elements, 354-356
View menu, 361-363

editor, integrating with
requirements diagram
refactoring editor, 127-130
sharing editing domain, 123-126
sharing file extension, 122-123

element creation, 459-461
extension-points

ActionFilterProvider, 424-426
clipboardSupport, 457-458
contributionItemProvider, 409-418
declaring, 373-375
decoratorProvider, 392, 394-396
diagramEventBrokerProvider, 441-443
documentProviders, 453-455
DragDropListenerProvider, 436-438
EditorProvider, 427-428
editpartProvider, 382-385
editpolicyProvider, 386-387
ElementSelectionProvider, 429-430
elementTypeBindings, 449-451
elementTypes, 443-447, 449
GlobalActionHandlerProvider,

420-423
IconProvider, 397-399
layoutProvider, 406-408
logListeners, 452-453
MarkerNavigationProvider, 400-401
modelingAssistantProvider, 404-406
overview, 373-375
paletteProvider, 388-392
ParserProvider, 402-403

Index 687

Pathmaps, 459
propertiesConfiguration, 453
PropertiesProvider, 431-433
PropertyModifier, 434-435
renderedImageFactory, 456-457
TransferAdapterProvider, 439, 441
viewProvider, 379-382

extensibility mechanisms, 372-373
figures

changing appearance based on
preference changes, 546

changing dynamically, 546
changing properties of, 547
making nonresizable, 547
viewing elements on diagrams, 547

key bindings
connection navigation, 657-658
cycling between diagram editor and

palette, 653-654
diagram navigation, 655
palette item navigation, 654
Properties View navigation, 658-659
shape navigation, 655-656

mindmap diagram improvements
audits and metrics, 97-103
custom figures, 89-90
custom layout, 82-84
fixed anchor locations, 94-96
graphical definition model, 76-79
mapping definition model, 80-81
preferences settings, 97
subtopic actions, 90-93
subtopic figures, 84-89
tooling definition model, 79
topic figure layout, 81-82

nodes, sticking to border of parent, 548
notation model, 369-372
online resources, 545
overview, 353-354
prerequisites, 546
requirements diagram

Creation Wizard, 137-138
diagram definition, 104-107
domain model, 108
EMF and GMF editor integration,

122-130

generation, 113
mapping definition, 107-113
menus and toolbar, 135-137
navigator extension, 139
Outline view, 139-140
properties, 140-145
Properties view, 134-135
selection handling, 130-134
tooling definition, 107
ToolTips, 114-121

runtime component, 60-61
scenario diagram

Data Object Mapping, 165
database persistence, 177-181
diagram partitioning, 171-177
Event Mapping, 164
figures plug-in generation, 168-171
Gateway Mapping, 163-164
generation, 166-168
graphical definition, 145-159
Link Mapping, 165
mapping definition, 161
Task Mapping, 161-163
tooling definition, 159-161

services
ActionFilterService, 423-426
ContributionItemService, 408-418
DecorationService, 392, 394-396
DiagramEventBrokerService, 441-443
DragDropListenerService, 435-438
EditorService, 427-428
EditPartService, 382-385
EditPolicyService, 385-387
ElementSelectionService, 428-430
GlobalActionHandlerService,

419-423
IconService, 396-399
LayoutService, 406-408
MarkerNavigationService, 399-401
ModelingAssistantService, 403-406
overview, 375-376
PaletteService, 387-392
ParserService, 401-403
PropertiesModifierService, 433-435
PropertiesService, 430-433
Service class, 376

688 Index

service execution strategies, 376-377
TransferAdapterService, 438-441
ViewService, 378-382

templates, modifying output of, 547
tooling component, 61-62

FAQs, 547-548
generator model, 64, 74-76
graphical definition model, 61-63,

68-69, 76-79
mapping model, 63-64, 70-74, 80-81
tooling definition model, 63, 69, 79

Xpand, 548
GMF (Graphical Modeling Framework) Tooling.

See also GMF runtime
generator model

Custom Behavior, 539
Gen Application, 543
Gen Diagram, 536-538
Gen Diagram Updater, 542
Gen Editor Generator, 534-536
Gen Editor View, 540-541
Gen Link, 539
Gen Navigator, 541-542
Gen Plugin, 540
Open Diagram Behavior, 539
overview, 533-534
Property Sheet, 542-543

graphical definition model
Canvas, 505-506
diagram elements, 516-518
Figure Gallery. See Figure Gallery
figures, 504
overview, 503

mapping model
audits and metrics, 532-533
Canvas Mapping, 520
feature initialization, 527-528
Link Mapping, 529-532
Node Mapping, 522-526
overview, 519-520
side-affixed nodes (pins and

ports), 528-529
Top Node Reference, 521-522

tooling definition model, 518-519
GMT (Generative Modeling Technologies), 15

gotoMarker() method, 399
Grab Excess Horizontal Space property (Grid

Layout figure), 514
Grab Excess Vertical Space property (Grid

Layout figure), 514
Gradient (diagram elements), 516
gradient figures, 201-205
graphical concrete syntax, 4
graphical definition model, 61-63

Canvas, 505-506
diagram elements

Compartment, 518
Connection, 517
Diagram Label, 517
Node, 516-517
overview, 516

Figure Gallery, 504
Border Layout, 513
Compound Border, 510
Custom Border, 510
Ellipse, 509
figure properties, 507-508
Flow Layout, 511-512
Grid Layout, 513-515
Label, 510
Line Border, 510
Margin Border, 510
overview, 506-507
Polygon, 509
Polyline, 509
Polyline Connection, 509
Rectangle, 509
Rounded Rectangle, 509
Stack Layout, 512
TemplatePoint, 509
XY Layout, 512

figures, 504
mindmap diagram example, 68-69, 76-79
overview, 503
of scenario diagram, 145-146

Connection figure, 155-158
Data Object figure, 158-159
Event figures, 152-154
Gateway figure, 149-152
Subprocess figure, 147-149
Task figure, 146-147

Index 689

Graphical Editing Framework. See GEF
Graphical Modeling Framework. See GMF

runtime; GMF Tooling
graphical notations. See also GMF (Graphical

Modeling Framework)
design recommendations, 56-57
filters/layers, 57-58
layout, 58
links in, 58
selecting, 55
shortcuts in, 59
synchronization with domain models, 59

graphical view (GEF)
ScrollingGraphicalViewer, 326
setting up, 327-328

GraphicalEditParts (GEF), 325
GraphicalNodeEditPolicy, 350-351
GraphicalViewerKeyHandler, 342
gratuitous graphics, avoiding, 56
Grid Layout, 513-515
Group Icon property (Gen Navigator Child

Reference), 542
Group Name property (Gen Navigator Child

Reference), 542
guillemets (« »), 606

H
handleActivate() method, 131
handleContentOutlineSelection() method,

132-133
handleNotificationEvent() method, 547
hasPersistentClasses() query, 599
Height command (Diagram menu), 361
helper operations (OML), 562-563
Hide Connector Labels toolbar element, 356
Hide If Empty property (Gen Navigator Child

Reference), 542
Horizontal Alignment property (Grid Layout

figure), 514
Horizontal Indent property (Grid Layout

figure), 514
Horizontal Span property (Grid Layout

figure), 514

HTML, generating with templates (M2T
project), 297-301

HUNT (Human-Usable Textual Notation), 665

I
Icon Path property

Gen Diagram, 538
Gen Editor View, 540

IconProvider extension-point, 397-399
IconService, 396-399
ID property

Gen Editor View, 541
Gen Plugin, 540

IDiagramWorkbenchPart interface, 137
IDragDropListenerProvider interface, 435
IF statement (Xpand), 614-615
IGlobalActionHandler interface, 419
IGlobalActionHandlerContext interface, 419
IGraphicEditPart interface, 382
IIconProvider interface, 396
IMM (Information Management

Metamodel), 14
imperative iterate expressions (OML), 566-567
imperative operations (OML), 565-566

forEach loop expression, 565
forOne loop expression, 565
switch expression, 566
while loop expression, 565-566

import keyword, 606, 636
importing

domain models, 31
XSD, 252-253

in-place transformations, 553
incrStrCounter() operation, 593
indexOf() operation, 586
Information Management Metamodel

(IMM), 14
inheritance in mapping operations, 560-561
inherits keyword, 560-561
initArchetypeDefaults() method, 209, 219
initializeDataStore() method, 179
initializeDefaultPreferences() method, 209
initializeEditingDomain() method, 123
initPreferenceStoreListener() method, 211

690 Index

injector (TCS), 229
inline graphics, 57
insertAt() operation, 583
Insets property (figures), 508
installEditPolicy() method, 335
instance models, 4
instances, 4
integer operations, 621-622
interactions (GEF)

connection bend interactions, 351-352
connection creation interactions, 349-350
connection edit interactions, 350-351
creation interactions, 344

consuming CreateRequests, 345
creation sequence, 345-347
producing CreateRequests, 344

delete interactions, 342-343
moving and resizing interactions, 347-349
overview, 338
selection interactions

keyboard selection, 342
overview, 338-340
selection actions, 342
selection handles, 340-341
selection requests, 342
selection targeting and feedback, 341
Selection Tool, 339
selection with DragTracker, 341

interfaces
IDiagramWorkbenchPart, 137
IDragDropListenerProvider, 435
IGlobalActionHandler, 419
IGlobalActionHandlerContext, 419
IGraphicEditPart, 382
IIconProvider, 396
IOperation, 378
IParser, 401
IPropertiesProvider, 430
IProvider, 376
ISemanticParser, 224

intermediate elements, 554
Intermediate Events, 152
inv prefix, 573
invoking

extensions, 637-638
Java, 648
mappings, 570-571

IOperation interface, 378
IParser interface, 401
IPropertiesProvider interface, 430
IProvider interface, 376
ISemanticParser interface, 224
isPrimitive() query, 601
isQuoted() operation, 590
iterator properties, 627

J
Java

business domain model transformations
to, 264-276

DSL Instances, 24-25
extensions (Xtend), 639
files, generating

with DNC model with templates,
291-297

with Java model and dedicated
template, 283-291

JEM (Java EMF Model), 265
JETs (Java Emitter Templates), 34, 665
invocation, 648

Java Modeling in Color with UML (Coad, et al),
22, 57

JavaBeautifier, 296
JEM (Java EMF Model), 265
jemUtil.ext file, 283-286
JETs (Java Emitter Templates), 34, 665
joinfields() operation, 583

K
key bindings (GMF)

connection navigation, 657-658
cycling between diagram editor and

palette, 653-654
diagram navigation, 655
palette item navigation, 654
Properties View navigation, 658-659
shape navigation, 655-656

keyboard selection (GEF), 342
keyboard shortcuts, adding to elements, 90-93
keywords. See specific keywords

Index 691

L
Label Offset (diagram elements), 516
labels, 510

Diagram Label, 517
Label Offset (diagram elements), 516

Lanza, Michele, 57
LAST service execution strategy, 377
lastToUpper() operation, 586
late operator, 574-575
launch configurations

arguments, 43
in OML, 240-242

layers in graphical notations, 57-58
LayoutEditPolicy, 345
layoutProvider extension-point, 406-408
layouts

Border Layout, 513
combining, 515
custom layout, 82-84
with Draw2d, 322
Flow Layout, 511-512
of graphical notations, 58
Grid Layout, 513-515
Stack Layout, 512
of topic figures, 81-82
XY Layout, 512

LayoutService, 406-408
LET statement, 615-616, 635
libraries. See Stdlib
lifecycle of EditParts, 334-337
LightweightSystem (Draw2d), 318-319
Line Border, 510
Line Kind property (shape figures), 508
Line Width property (shape figures), 508
Link Mapping, 529-532
Link Mapping (scenario diagram), 165
links in graphical notations, 58
lists, 624
lite runtime (GMF), 60-61
Literal Strings, 594
literals (Xpand), 628-630
Load Resource dialog, 188
_localId() operation, 578
Location property (figures), 508
log expression, 576
logListeners extension-point, 452-453

loops
forEach loop expression, 565
forOne loop expression, 565
while loop expression, 565-566

M
M2M (Model-to-Model Transformation), 12-13
M2T (Model-to-Text Transformation) project

CSV files, generating, 281-282
HTML, generating, 297-301
Java files, generating with DNC model

with templates, 291-297
dncUtil.ext file, 295
Entity bean template, 291-294
workflow file, 296

Java files, generating with Java model and
dedicated template, 283-291
Address type output, 287-288
jemUtil.ext file, 283-286
Person class, 289-290
Phone class, 290-291
workflow, 286-287

overview, 277
Xpand, 278-281
Xtend, 278-281

main keyword, 559
Major Alignment property (Flow Layout

figure), 511
Major Spacing property (Flow Layout

figure), 511
map keyword, 570
mapping definition

Aggregation Link Mapping, 198-200
Annotation Mapping, 195
DNC Association Mapping, 195-197
DNC Canvas Mapping, 190
Generalization Mapping, 200-201
Moment-Interval Archetype Mapping,

191-192
Package Mapping, 194
requirements diagram mapping

definition, 107-113
Canvas mapping, 108
Requirement link mappings, 112

692 Index

Requirement node mapping, 111-112
RequirementGroup link mapping, 110
RequirementGroup node mapping,

109-110
Requirements Dependency link

mappings, 113
Role Archetype Mapping, 193
of scenario diagram

Data Object Mapping, 165
Event Mapping, 164
Gateway Mapping, 163-164
Link Mapping, 165
Task Mapping, 161-163

mapping model, 63-64
audits and metrics, 532-533
Canvas Mapping, 520
feature initialization, 527-528
Link Mapping, 529-532
mindmap diagram example, 70-74, 80-81
Node Mapping, 522-524

containment, 524
node constraints, 526
phantom nodes, 524-526
references, 524

overview, 519-520
side-affixed nodes (pins and ports),

528-529
Top Node Reference, 521-522

mapping operations (OML). See
also transformations

BPMN and BPEL, 231
disjunction, 562
entry operations, 559-560
execution semantics, 558-559
inheritance, 560-561
invoking mappings, 570-571
mapping body, 558
merger, 561
return statement, 559
syntax, 556-558

Margin Border, 510
Marinescu, Radu, 57
markedAs() operation, 580
MarkerNavigationProvider extension-point,

400-401
MarkerNavigationService, 399-401

markValue() operation, 580
Match Minor Size property (Flow Layout

figure), 511
match() operation, 589
matchBoolean() operation, 590
matchFloat() operation, 591
matchIdentifier() operation, 591
matchInteger() operation, 591
MatchSizeAction, 349
Maximum Size property (figures), 508
MDA (Model-Driven Architecture)

implemented standards
Business Process Modeling

Notation, 665
Diagram Interchange, 664
Extensible Markup Language, 664
Human-Usable Textual Notation, 665
Meta-Object Facility, 662-663
MOF Models to Text Transformation

Language, 664
Object Constraint Language, 663
overview, 662
Query/View/Transformation, 664
Software Process Engineering

Metamodel, 666
Unified Modeling Language, 663

overview, 661-662
working relationship

implementations influencing
specifications, 668

membership, 666-667
open and transparent nature, 668-669
specification compliance, 668
specification delivery, 667-668

MDSD (Model-Driven Software Development)
metamodels, 3-4
overview, 7

MDTs. See Model Development Tools
menuAboutToShow() method, 136
menus

adding to elements, 90-93
requirements diagram, 135-137

merges keyword, 561
merging

in mapping operations, 561
models, 237

Index 693

Messages class, 209
messages.properties file, 210
Meta-Object Facility (MOF), 662-663
metaClassName() operation, 578
metaModel element, 646
Metamodel Explorer view, 240-241
metamodels, 3-4, 32-33. See also domain models
methods. See specific methods
metrics for mindmap diagram, 97-103
migration of models, 233-237
mindmap and requirements DSL Instances,

23-24
mindmap domain model, 39-40

code generation, 43-45
creating, 41-42
generator model for, 74-76
generator model, creating, 42
graphical definition model for, 68-69,

76-79
improvements to

audits and metrics, 97-103
custom figures, 89-90
custom layout, 82-84
fixed anchor locations, 94-96
graphical definition model, 76-79
mapping definition model, 80-81
preferences settings, 97
subtopic actions, 90-93
subtopic figures, 84-89
tooling definition model, 79
topic figure layout, 81-82

mapping model for, 70-74, 80-81
OCL, adding, 45-47
project setup, 40-41
running, 43-45
tooling definition model for, 69, 79
transformations

to requirements domain model,
244-251

to XHTML, 251-258
mindmap2csv.mwe file, 282
mindmap2csv.xpt template, 281
mindmap2requirements transformation,

308-309
Minimum Size property (figures), 508

Minor Alignment property (Flow Layout
figure), 511

Minor Spacing property (Flow Layout
figure), 511

Model Compare (EMF), 11
Model Development Tools (MDT), 662

BPMN2, 14
IMM (Information Management

Metamodel), 14
OCL (Object Constraint Language), 14
UML2, 13
UML2 Tools, 14
XSD (XML Schema), 13

Model Driven Architecture: Applying MDA to
Enterprise Computing (Frankel), 4

Model-Driven Architecture. See MDA
Model-Driven Software Development.

See MDSD
model extensions, 66
Model ID property (Gen Editor Generator), 535
model merge, 237
model migration, 233-237
model operations (OML)

add(), 582
asList(), 583
asTransformation(), 582
copy(), 582
createEmptyModel(), 582
insertAt(), 583
joinfields(), 583
objects(), 581
objectsOfType(), 581
prepend(), 582
removeElement(), 581
rootObjects(), 581

Model Query (EMF), 11
model refactoring, 232-233
Model Search (EMF), 11
Model Transaction (EMF), 10
model transformations. See transformations
Model Validation (EMF), 10
Model-to-Model Transformation (M2M), 12-13
Model-to-Text Transformation project. See

M2T project
Model-View-Controller (MVC) architecture,

324-325

694 Index

model2RDBModel() mapping, 598
Modeling Amalgamation Project, 15
modeling, overview of, 3-5
modelingAssistantProvider extension-point,

404-406
ModelingAssistantService, 403-406
models. See specific models
modelSlot element, 644
modeltype declaration, 550-553
MOF (Meta-Object Facility), 662-663
MOF2Text, 664
Moment-Interval Archetype Mapping (color

modeling diagram), 191-192
monitor size for graphical notations, 56
moving and resizing interactions (GEF), 347-349
MultiPageSelectionProvider, 130-131
MVC (Model-View-Controller) architecture,

324-325

N
Name Compartment Onl toolbar element, 356
Name property (figures), 508
navigation

connection navigation, 657-658
diagram navigation, 655
palette item navigation, 654
Properties View navigation, 658-659
shape navigation, 655-656

Navigator Child Reference property (Gen
Navigator), 541-542

navigator extension (requirements diagram), 139
New Diagram Wizard, 475-476
NodeEditPart.xpt template file, 212, 215-216
Nodes, 516-517

node constraints, 526
Node Mapping, 86, 522-524

containment, 524
node constraints, 526
phantom nodes, 524-526
references, 524

sticking to border of parent, 548
nonresizable figures, creating, 547
NonResizeableEditPolicy, 547
normalizeSpace() operation, 588

notation model, 369-372
notations. See graphical notations
null in transformation declarations, 556
number type operations (OML), 583

O
Object Constraint Language (OCL), 14, 663
object keyword, 568
object operations (OML), 578
object-oriented DSLs, 51
Object-Oriented Metrics in Practice (Lanza and

Marinescu), 57
objects. See also specific objects

creating, 568-570
operations, 620
populating, 568-570

objects() operation, 581
objectsOfType() operation, 581
Oblique Style Routing toolbar element, 355
OCL (Object Constraint Language), 14, 663

adding to mindmap domain model, 45-47
in EMF, 35-38
OML and, 243
testing, 35

OMG
MDA (Model-Driven Architecture).

See MDA
working relationship

implementations influencing
specifications, 668

membership, 666-667
open and transparent nature, 668-669
specification compliance, 668
specification delivery, 667-668

OML (Operational Mapping Language)
Ant tasks and, 243-244
comments, 593
described, 238
element operations, 580
helper operations, 562-563
imperative iterate expressions, 566-567
imperative operations, 565-566

forEach loop expression, 565
forOne loop expression, 565

Index 695

switch expression, 566
while loop expression, 565-566

launch configurations, 240-242
libraries, 556
mapping invocation, 570-571
mapping operations

disjunction, 562
entry operations, 559-560
execution semantics, 558-559
inheritance, 560-561
mapping body, 558
merger, 561
return statement, 559
syntax, 556-558

Metamodel Explorer view, 240-241
model operations, 580
object creation and population, 568-570
OCL statements and, 243
OCL synonyms, 596
operations and iterators

collect() operation, 564
select() operation, 563

overview, 550
QVT OML editor, 240
QVT Operational Project wizard, 238-239
resolution operators

inv prefix, 573
late, 574-575
resolve, 571-572
resolveIn, 573
resolveone, 573
resolveoneIn, 573

shorthand, 594-595
Std library

add() operation, 582
addSuffixNumber() operation, 593
allSubobjects() operation, 579
allSubobjectsOfKind() operation, 579
allSubobjectsOfType() operation, 579
asBoolean() operation, 591
asFloat() operation, 592
asInteger() operation, 592
asList() operation, 583
asOrderedTuple() operation, 578
asTransformation() operation, 582
clone() operation, 579

copy() operation, 582
createEmptyModel() operation, 582
deepclone() operation, 580
endsWith() operation, 587
equalsIgnoreCase() operation, 589
find() operation, 589
firstToUpper() operation, 586
format() operation, 584
getStrCounter() operation, 592
_globalId() operation, 578
incrStrCounter() operation, 593
indexOf() operation, 586
insertAt() operation, 583
isQuoted() operation, 590
joinfields() operation, 583
lastToUpper() operation, 586
_localId() operation, 578
markedAs() operation, 580
markValue() operation, 580
match() operation, 589
matchBoolean() operation, 590
matchFloat() operation, 591
matchIdentifier() operation, 591
matchInteger() operation, 591
metaClassName() operation, 578
normalizeSpace() operation, 588
objects() operation, 581
objectsOfType() operation, 581
prepend() operation, 582
quotify() operation, 590
range() operation, 583
removeElement() operation, 581
replace() operation, 588
repr() operation, 578
restartAllStrCounter() operation, 593
rfind() operation, 589
rootObjects() operation, 581
size() operation, 584
startStrCounter() operation, 592
startsWith() operation, 587
stereotypedBy() operation, 580
stereotypedStrictlyBy() operation, 580
subobjects() operation, 578
subobjectsOfKind() operation, 579
subobjectsOfType() operation, 579
substringAfter() operation, 585

696 Index

substringBefore() operation, 584
toLower() operation, 585
toString() operation, 583
toUpper() operation, 585
trim() operation, 587
unquotify() operation, 590

strings, 594
trace model, 242-243
transformation declarations

access keyword, 553
configuration properties, 555
extends keyword, 553
in-place transformations, 553
intermediate elements, 554
modeltype declaration, 550-553
null, 556
predefined variables, 555
renaming elements, 555

transformation execution
assert expression, 576-577
log expression, 576
trace model, 575
transform() operation, 577
transformation composition, 577

UML to RDB Transformation Project,
596-603
associationAttributes2columns()

mapping, 604
class2columns() query, 600
dataType2columns() query, 600
dataType2primaryKeyColumns()

mapping, 603
enumerationAttributes2columns()

query, 602
generalizations2columns() query, 600
hasPersistentClasses() query, 599
isPrimitive() query, 601
model2RDBModel() mapping, 598
package2schema() query, 599
package2schemas() mapping, 598
persistentClass2table() query, 599
primitiveAttributes2columns()

query, 601
relationshipAttribute2foreignKey()

mapping, 603

relationshipAttributes2columns()
query, 602

transformation declaration, 597
open and transparent nature, 668-669
Open Diagram Behavior element, 539
Operational Mapping Language. See OML
OperationParserProvider class, 224-225
operations (OML). See specific operations
operators

inv prefix, 573
late, 574-575
resolve, 571-572
resolveIn, 573
resolveone, 573
resolveoneIn, 573

Order menu commands, 361
org.eclipse.gmf.runtime.draw2d.render

plug-ins, 501
org.eclipse.gmf.runtime.gef.ui plug-in, 502
outlet element, 646
Outline property (shape figures), 508
Outline view (diagrams), 139-140, 366
outlineShape() method, 167
overwriting user code modifications,

avoiding, 35

P
package figure definition (color modeling

diagram), 185-186
Package Mapping (color modeling

diagram), 194
Package Name Prefix property (Gen Editor

Generator), 535
Package Selection dialog, 116
package2schema() query, 599
package2schemas() query, 598
packaging DSLs, 303

artwork, 304-305
generation models, 310-311
requirements.product, 312
source deployment, 312-313
user interface plug-ins, 305

actions, 307-310
preferences, 306-307
wizard and perspective, 305-306

Index 697

paint() method, 320
paintBorder() method, 321
paintChildren() method, 321
paintClientArea() method, 320
paintFigure() method, 320
painting with Draw2d, 320-321
palette

cycling between diagram editor and
palette, 653-654

definition, 470-471
GEF (Graphical Editing Framework)

palette, 337
palette item navigation, 654
Palette view (diagrams), 360

paletteProvider extension-point, 388-392
PaletteService, 387-392
ParserProvider extension-point, 402-403
ParserService, 401-403
partitioning. See diagram partitioning
PasteTemplateAction, 345
Pathmaps extension-point, 459
performFinish() method, 137-138
performRequest() method, 333
persistence

database persistence, 177-181
persistence alternatives (EMF), 11

persistentClass2table() query, 599
Person class, 289-290
perspectiveExtensions extension-point, 306
perspectives extension-point, 306
phantom nodes, 524-526
Phone class, 290-291
platformUri element, 642
Plug-in Project wizard, 305-306
plug-ins, developing

actions, 307-310
preferences, 306-307
wizard and perspective, 305-306

policies. See specific policies
Polygon, 509
Polyline, 509
Polyline Connection, 322, 509
polymorphism, Xpand support for, 610-612
pop-up bars (diagrams), 365
populating objects, 568-570

postprocessor element, 646-647
Practitioner (DSL Toolkit), 18-19
predefined variables, 555
preference page templates (color modeling

diagram), 216-220
PreferenceInitializer.xpt template, 219
preferencePages extension-point, 306
PreferencePropertyChangeListener class,

211, 214
preferences

diagrams, 367-368
mindmap diagram improvements, 97
user interface plug-ins, 306-307

Preferred Size property (figures), 508
prepend() operation, 582
primitiveAttributes2columns() query, 601
Printing Enabled property (Gen Plugin), 540
private extensions (Xtend), 639
product line engineering, 7-8
project interaction, 15-16
project setup, mindmap DSL, 40-41
properties

of diagrams
Appearance properties, 358-359
Core properties, 358
Rulers & Grid properties, 356-358

of figures
common properties, 507-508
Flow Layout figure properties, 511
shape figure properties, 508

of Gen Diagram
Contains Shortcuts To property, 536
Creation Wizard Category ID

property, 538
Editing Domain ID property, 538
Icon Path property, 538
Shortcuts Provided For property, 536
Synchronized property, 537
Units property, 537
Validation Decorators property, 537
Validation Enabled property, 537
Visual ID property, 538
Without Domain property, 538

of Gen Editor Generator
Copyright Text, 534
Diagram File Extension, 534

698 Index

Domain File Extension, 535
Domain Gen Model, 535
Dynamic Templates, 535
Model ID, 535
Package Name Prefix, 535
Same File for Diagram and Model,

535-536
Template Directory, 535

of Gen Editor View
Generate as Eclipse Editor, 541
Icon Path, 540
ID, 541

of Gen Navigator
Generate Domain Model

Navigator, 541
Navigator Child Reference, 541-542

of Gen Plugin
ID, 540
Printing Enabled, 540
Provider, 540
Required Plugin Identifiers, 540
Version, 540

of requirements diagram, 140-145
Custom Property Tab, 140
Property tab, 144
RequirementDescriptionProperty

Section class, 142-143
of workflow configuration files, 641
transformation configuration

properties, 555
Properties View, 134-135, 476-479, 658-659
propertiesConfiguration extension-point, 453
PropertiesModifierService, 433-435
PropertiesProvider extension-point, 431-433
PropertiesService, 430-433
property operations, 626
Property Sheet element, 542-543
Property tab (requirements diagram), 144
PropertyModifier extension-point, 434-435
PROTECT statement (Xpand), 615
Provider property (Gen Plugin), 540
ProviderPriority, 376
provides() method, 224, 376, 498

Q
Query/View/Transformation. See QVT
quotify() operation, 590
QVT (Query/View/Transformation), 664.

See also transformations
Core language, 549
OML (Operational Mapping Language).

See OML
Operational Project wizard, 238-239
Relations language, 549

QVTO scripts, 307

R
range() operation, 583
RDBMS, UML to RDB Transformation Project,

596-603
associationAttributes2columns()

mapping, 604
class2columns() query, 600
dataType2columns() query, 600
dataType2primaryKeyColumns()

mapping, 603
enumerationAttributes2columns()

query, 602
generalizations2columns() query, 600
hasPersistentClasses() query, 599
isPrimitive() query, 601
model2RDBModel() mapping, 598
package2schema() query, 599
package2schemas() mapping, 598
persistentClass2table() query, 599
primitiveAttributes2columns() query, 601
relationshipAttribute2foreignKey()

mapping, 603
relationshipAttributes2columns()

query, 602
transformation declaration, 597

Reader (Xpand), 644
real operations, 622
Rectangle, 509
Rectilinear Style Routing toolbar element, 355
recursion (Xtend), 638-639
refactoring editors, 127-130
refactoring models, 232-233

Index 699

Reference Type property (Gen Navigator Child
Reference), 542

refines keyword, 554
refresh() method, 335, 500
refreshChildren() method, 335
refreshVisuals() method, 329-331, 335
RegisterEcoreFile element, 643
RegisterGeneratedEPackage element, 642-643
reject() operation, 631
Relations language (QVT), 231, 549
relationship link mapping (mindmap diagram),

73-74, 77-80
relationshipAttribute2foreignKey()

mapping, 603
relationshipAttributes2columns() query, 602
relative coordinates (Draw2d), 323-324
REM statement (Xpand), 616
removeChild() method, 335-336
removeElement() operation, 581
renaming elements, 555
*.render.awt plug-ins, 501
renderedImageFactory extension-point, 456-457
REP (Requirements Elicitation Project), 21
replace() operation, 588
repr() operation, 578
Requests (GEF), 331-332

CreateRequests
consuming, 345
producing, 344

selection requests, 342
Required Plugin Identifiers property (Gen

Plugin), 540
Requirement link mappings (requirements

diagram), 112
Requirement node mapping (requirements

diagram), 111-112
Requirement Scenario Project (RSP), 22
RequirementDescriptionPropertySection class,

142-143
RequirementGroup link mapping (requirements

diagram), 110
RequirementGroup node mapping (requirements

diagram), 109-110
Requirements Dependency link mappings

(requirements diagram), 113

requirements diagram
Creation Wizard, 137-138
diagram definition, 104-107
domain model, 108
EMF and GMF editor integration

refactoring editor, 127-130
sharing editing domain, 123-126
sharing file extension, 122-123

generation, 113
mapping definition, 107-113

Canvas mapping, 108
Requirement link mappings, 112
Requirement node mapping, 111-112
RequirementGroup link mapping,

110
RequirementGroup node mapping,

109-110
Requirements Dependency link

mappings, 113
menus and toolbar, 135-137
navigator extension, 139
Outline view, 139-140
partition, 172-177
properties, 140-145

Custom Property Tab, 140
Property tab, 144
RequirementDescriptionProperty

Section class, 142-143
Properties view, 134-135
selection handling, 130-134
tooling definition, 107
ToolTips, 114-121

requirements domain model, 47-48
generator model, creating, 48-49
transformations from mindmap domain

model, 244-251
Requirements Elicitation Project (REP), 21
Requirements Management Project (RMP), 21
requirements.product, configuring, 312
RequirementsEditorPart class, 127-128
RequirementsGeneralPreferencePage class, 307
ResizableEditPolicy, 348
resizing interactions (GEF), 347-349
resolution operators (OML)

inv prefix, 573
late, 574-575

700 Index

resolve, 571-572
resolveIn, 573
resolveone, 573
resolveoneIn, 573

resolve operator, 571-572
resolveIn operator, 573
resolveone operator, 573
resolveoneIn operator, 573
resolveSemanticElement() method, 382
resources, GMF (Graphical Modeling

Framework) resources, 545
restartAllStrCounter() operation, 593
result keyword, 569
return statement, 559
revalidate() method, 322
REVERSE service execution strategy, 377
rfind() operation, 589
RMP (Requirements Management Project), 21
Role Archetype Mapping (color modeling

diagram), 193
roles of EditPolicies, 333
rootObjects() method, 560, 581
Rounded Rectangle, 509
routing in Draw2d, 322-323
RSP (Requirement Scenario Project), 22
Rulers & Grid properties (diagrams), 356-358
run() method, 309-310, 648
running mindmap domain model, 43-45
runtime, EMF, 33-34
runtime, GMF. See GMF runtime

S
Same File for Diagram and Model property

(Gen Editor Generator), 535-536
Sample Reflective Ecore Model Editor, 39
ScalableFreeformRootEditPart (GEF), 326
scenario diagram, 145

custom view, 486-489
Data Object Mapping, 165
database persistence, 177-181
diagram partitioning

Requirements diagram partition,
172-177

subprocess partitions, 171-172

Event Mapping, 164
Gateway Mapping, 163-164
generation

border item adjustment, 166-167
figures plug-in generation, 168-171
GMF generator model, 166
intermediate event outline, 167-168

graphical definition, 145-146
Connection figures, 155-158
Data Object figure, 158-159
Event figures, 152-154
Gateway figure, 149-152
Subprocess figure, 147-149
Task figure, 146-147

Link Mapping, 165
mapping definition, 161
Task Mapping, 161-163
tooling definition, 159-161
transformations to test cases, 258-264

scenario domain model, 50-51
scenario DSL Instances, 24-25
ScenarioEditPartProvider class, 488
scripts, QVTO scripts, 307
ScrollingGraphicalViewer (GEF), 326
Select All Links toolbar element, 355
Select All Shapes toolbar element, 355
Select All toolbar element, 355
select() operation, 563, 630
SelectAllAction, 342
selecting graphical notations, 55
selection handling (requirements diagram),

130-134
selection interactions (GEF)

keyboard selection, 342
overview, 338-340
selection actions, 342
selection handles, 340-341
selection requests, 342
selection targeting and feedback, 341
Selection Tool, 339
selection with DragTracker, 341

Selection Tool (GEF), 339
selectionProvider attribute

(MultiPageSelectionProvider), 130-131
SelectionTreeEditorPart class, 128
Send Backward command (Order menu), 361

Index 701

Send to Back command (Order menu), 361
serialization syntax, 4
Service class, 376
services

ActionFilterService, 423-426
ContributionItemService, 408-418
DecorationService, 392-396
DiagramEventBrokerService, 441-443
DragDropListenerService, 435-438
EditorService, 427-428
EditPartService, 382-385
EditPolicyService, 385-387
ElementSelectionService, 428-430
GlobalActionHandlerService, 419-423
IconService, 396-399
LayoutService, 406-408
MarkerNavigationService, 399-401
ModelingAssistantService, 403-406
overview, 375-376
PaletteService, 387-392
ParserService, 401-403
PropertiesModifierService, 433-435
PropertiesService, 430-433
Service class, 376
service execution strategies, 376-377
TransferAdapterService, 438-441
ViewService, 378-382

setContents() method, 327, 334
setCurrentViewer() method, 131
setForegroundColor() method, 205, 211
setModel() method, 334
setParent() method, 334
setupContentPane() method, 517
shape figures

Ellipse, 509
Polygon, 509
Polyline, 509
Polyline Connection, 509
properties, 508
Rectangle, 509
Rounded Rectangle, 509
TemplatePoint, 509

shape navigation, 655-656
SharedImages class, 396
sharing EditingDomain, 123-126
shortcuts in graphical notations, 59

Shortcuts Provided For property (Gen
Diagram), 536

shorthand (QVT), 594-595
Show Connector Labels toolbar element, 356
side-affixed nodes (pins and ports), 528-529
simplicity in graphical notations, 56
Size property (figures), 508
size() operation, 584
software factories, 7-8
Software Process Engineering Metamodel

(SPEM), 666
software product lines, 7-8
sortBy() operation, 633
source, deploying, 312-313
specifications

compliance, 668
implementations influencing

specifications, 668
specification delivery, 667-668

SPEM (Software Process Engineering
Metamodel), 666

Stack Layout, 512
StandaloneSetup class

ExtensionMap element, 643
platformUri element, 642
RegisterEcoreFile element, 643
RegisterGeneratedEPackage element,

642-643
uriMap element, 642

Start Events, 152
startStrCounter() operation, 592
startsWith() operation, 587
startup() method, 378
statements. See specific statements
StaticProperty operations, 626
StdLib library, 556

add() operation, 582
addSuffixNumber() operation, 593
allSubobjects() operation, 579
allSubobjectsOfKind() operation, 579
allSubobjectsOfType() operation, 579
asBoolean() operation, 591
asFloat() operation, 592
asInteger() operation, 592
asList() operation, 583
asOrderedTuple() operation, 578

702 Index

asTransformation() operation, 582
clone() operation, 579
copy() operation, 582
createEmptyModel() operation, 582
deepclone() operation, 580
element operations, 580
endsWith() operation, 587
equalsIgnoreCase() operation, 589
find() operation, 589
firstToUpper() operation, 586
format() operation, 584
getStrCounter() operation, 592
_globalId() operation, 578
incrStrCounter() operation, 593
indexOf() operation, 586
insertAt() operation, 583
isQuoted() operation, 590
joinfields() operation, 583
lastToUpper() operation, 586
_localId() operation, 578
markedAs() operation, 580
markValue() operation, 580
match() operation, 589
matchBoolean() operation, 590
matchFloat() operation, 591
matchIdentifier() operation, 591
matchInteger() operation, 591
metaClassName() operation, 578
normalizeSpace() operation, 588
objects() operation, 581
objectsOfType() operation, 581
prepend() operation, 582
quotify() operation, 590
range() operation, 583
removeElement() operation, 581
replace() operation, 588
repr() operation, 578
restartAllStrCounter() operation, 593
rfind() operation, 589
rootObjects() operation, 581
size() operation, 584
startStrCounter() operation, 592
startsWith() operation, 587
stereotypedBy() operation, 580
stereotypedStrictlyBy() operation, 580
subobjects() operation, 578

subobjectsOfKind() operation, 579
subobjectsOfType() operation, 579
substringAfter() operation, 585
substringBefore() operation, 584
toLower() operation, 585
toString() operation, 583
toUpper() operation, 585
trim() operation, 587
unquotify() operation, 590

stereotypedBy() operation, 580
stereotypedStrictlyBy() operation, 580
StoreController class, 179
string operations (OML), 594, 620

addSuffixNumber(), 593
asBoolean(), 591
asFloat(), 592
asInteger(), 592
endsWith(), 587
equalsIgnoreCase(), 589
find(), 589
firstToUpper(), 586
format(), 584
getStrCounter(), 592
incrStrCounter(), 593
indexOf(), 586
isQuoted(), 590
lastToUpper(), 586
match(), 589
matchBoolean(), 590
matchFloat(), 591
matchIdentifier(), 591
matchInteger(), 591
normalizeSpace(), 588
quotify(), 590
replace(), 588
restartAllStrCounter(), 593
rfind(), 589
size(), 584
startStrCounter(), 592
startsWith(), 587
substringAfter(), 585
substringBefore(), 584
toLower(), 585
toUpper(), 585
trim(), 587
unquotify(), 590

Index 703

styles, custom, 490-493
subobjects() operation, 578
subobjectsOfKind() operation, 579
subobjectsOfType() operation, 579
Subprocess figure, creating for scenario

diagram, 147-149
subprocess partitions, 171-172
substringAfter() operation, 585
subtopic actions, mindmap diagram

improvements, 90-93
subtopic figures, mindmap diagram

improvements, 84-89
subtopic link mapping (mindmap diagram), 73
switch expression, 566, 634
Synchronized property (Gen Diagram), 537
synchronizing domain models, 59, 76
synonyms (OCL), 596

T
Task figure, creating for scenario diagram,

146-147
Task Mapping (scenario diagram), 161-163
TCS (Textual Concrete Syntax), 4, 229
Template Directory property (Gen Editor

Generator), 535
TemplatePoint, 509
templates

dynamic templates, 65-66
mindmap2csv.xpt, 281
modifying output of, 547

TemplateTransferDragSourceListener, 344
Teneo, 177-180
ternary expression, 634
Test and Performance Tools Project (TPTP),

258-264
test cases, transforming scenarios to, 258-264
testing OCL, 35
text

Draw2d support for, 319
with inline graphics, 57

Textual Concrete Syntax (TCS), 4, 229
Textual Generic Editor (TGE), 229
Textual Modeling Framework (TMF), 12, 665

textual syntaxes for DSLs
overview, 227-228
TCS (Textual Concrete Syntax), 4, 229
Xtext, 228-229

TGE (Textual Generic Editor), 229
Tiger project, 233
TMF (Textual Modeling Framework), 12, 665
toLower() operation, 585
toolbars

elements, 354-356
requirements diagram, 135-137

tooling component (GMF), 61-62
FAQs, 547-548
generator model, 64, 74-76
graphical definition model, 61-63,

68-69, 76-79
mapping model, 63-64, 70-74, 80-81
tooling definition model, 63, 69, 79

tooling definition, 63, 518-519
of color modeling diagram, 189
of mindmap diagram example, 69, 79
of scenario diagram, 159-161
of requirements diagram, 107

tools, GEF (Graphical Editing Framework)
tools, 337

Toolsmith artifacts (DSL Toolkit), 17-18
ToolTips, 114-121
Top Node Reference, 521-522
topic figure layout, 81-82
topic mapping (mindmap diagram), 72
TopicEditPart class., 475
toPreferenceConstant() function, 213-214
toRequirementsModel() method, 559
toStateful() method, 561
toString() operation, 583
toUpper() operation, 585
TPTP (Test and Performance Tools Project),

258-264
trace model, 242-243, 575
TransactionalEditingDomain, 123-130
TransferAdapterProvider extension-point,

439-441
TransferAdapterService, 438-441
transform() operation, 577

704 Index

transformations
business domain models to Java, 264-276
executing

assert expression, 576-577
log expression, 576
trace model, 575
transform() operation, 577
transformation composition, 577

implementation techniques, 231-232
M2M (Model-to-Model

Transformation), 12-13
M2T (Model-to-Text

Transformation) project
CSV fies, generating, 281-282
HTML, generating, 297-301
Java files, generating with DNC model

with templates, 291-297
Java files, generating with Java model

and dedicated template, 283-291
overview, 277
Xpand, 278-281
Xtend, 278-281

mindmap domain model
to requirements domain model,

244-251
to XHTML, 251-258

mindmap2requirements, 308-309
for model merge, 237
for model migration, 233-237
for model refactoring, 232-233
OML transformation declarations

access keyword, 553
configuration properties, 555
extends keyword, 553
in-place transformations, 553
intermediate elements, 554
modeltype declaration, 550-553
null, 556
predefined variables, 555
renaming elements, 555

scenario diagrams to test cases, 258-264
transformation composition, 577

transparent nature, 668-669
Tree Style Routing toolbar element, 355
TreeContainerEditPolicy, 345
TreeEditParts (GEF), 325

trim() operation, 587
Tufte, Edward, 56
types

API documentation
AdviceContent operations, 627
AdviceContent properties, 626
Boolean operations, 622
collection operations, 623-624
collection properties, 623
definition operations, 627
definition properties, 627
feature properties, 625
integer operations, 621-622
iterator properties, 627
list operations, 624
object operations, 620
object properties, 619
operation operations, 626
property operations, 626
real operations, 622
StaticProperty operations, 626
string operations, 620
string properties, 620
type operations, 625
type properties, 624

type inference (Xtend), 638
type operations, 625
type properties, 624

typeSelect() operation, 631

U
UML (Unified Modeling Language), 663

UML to RDB Transformation Project,
596-603
associationAttributes2columns()

mapping, 604
class2columns() query, 600
dataType2columns() query, 600
dataType2primaryKeyColumns()

mapping, 603
enumerationAttributes2columns()

query, 602
generalizations2columns() query, 600
hasPersistentClasses() query, 599

Index 705

isPrimitive() query, 601
model2RDBModel() mapping, 598
package2schema() query, 599
package2schemas() mapping, 598
persistentClass2table() query, 599
primitiveAttributes2columns()

query, 601
relationshipAttribute2foreignKey()

mapping, 603
relationshipAttributes2columns()

query, 602
transformation declaration, 597

UML2, 13
UML2 Tools, 14

The UML Profile for Framework Architectures
(Fontoura, et al), 56

umlPrimitive2rdbPrimitive() method, 568
UmlRdbUtil library, 556
UmlUtil library, 556
Unified Modeling Language (UML), 663
Units property (Gen Diagram), 537
unquotify() operation, 590
updateArchetypeColor() method, 211
UpdateManager (Draw2d), 318
updating model versions, 233-237
uri element, 644
uriMap element, 642
user code modifications, avoiding

overwriting, 35
user interaction sequence (Draw2d), 320
user interface plug-ins, developing

actions, 307-310
preferences, 306-307
wizard and perspective, 305-306

V
validate() method, 322
validation, 38
Validation Decorators property (Gen

Diagram), 537
Validation Enabled property (Gen

Diagram), 537
variables, predefined, 555
Version property (Gen Plugin), 540

versions of models, updating, 233-237
Vertical Alignment property (Grid Layout

figure), 514
Vertical property (Flow Layout figure), 511
Vertical Span property (Grid Layout figure), 514
View menu commands, 361-363
viewing Ecore models, 39
viewProvider extension-point, 379-382
views

definition, 471-473
scenario diagram custom view, 486-489

ViewService, 378-382
Visual Facets (diagram elements), 516
Visual ID property (Gen Diagram), 538

W
while loop expression, 565-566
Width command (Diagram menu), 361
Without Domain property (Gen Diagram), 538
wizards

Creation Wizard, 137-138
New Diagram Wizard, 475-476
Plug-in Project wizard, 305-306

workflow engine (Xpand), 641
Ant, 649
aspects, 647-648
EMF setup

ExtensionMap element, 643
platformUri element, 642
RegisterEcoreFile element, 643
RegisterGeneratedEPackage

element, 642-643
uriMap element, 642

Java invocation, 648
properties, 641
Reader, 644
Xpand component, 644-647

expand element, 646
metaModel element, 646
outlet element, 646
postprocessor element, 646-647

706 Index

X-Y-Z
xcollect imperative iterate expression, 566
XHTML, transforming mindmap domain

model to, 251-258
xmap keyword, 570
XML (Extensible Markup Language), 664
XML Schema (XSD), 13
XOR Fill property (shape figures), 509
XOR Outline property (shape figures), 509
Xpand, 665

AROUND statement, 617-619
DEFINE statement, 607-608
ERROR statement, 616
EXPAND statement, 608-612
expression language, 628

casting, 635
chain expression, 634-635
collect() operation, 631-632
collections, 630
create expression, 635
exists() operation, 633
forAll() operation, 632
let expression, 635
literals, 628-630
reject() operation, 631
select() operation, 630
sortBy() operation, 633
switch expression, 634
ternary expression, 634
typeSelect() operation, 631

EXTENSION statement, 613-614
FILE statement, 612
FOREACH statement, 612-613
in GMF (Graphical Modeling

Framework), 548
IF statement, 614-615
IMPORT statement, 606
LET statement, 615-616
M2T (Model-to-Text Transformation)

project, 278-281
overview, 605-606
polymorphism support, 610-612
PROTECT statement, 615
REM statement, 616
type system, 619-627

workflow engine
Ant, 649
aspects, 647-648
EMF setup, 642-643
Java invocation, 648
properties, 641
Reader, 644
Xpand component, 644-647

Xtend
cached extensions, 639
comments, 637
examples, 640-641
extension invocation, 637-638
extension keyword, 636
extensions, 637
import keyword, 636
Java extensions, 639
overview, 636
private extensions, 639
recursion, 638-639
type inference, 638

Xpand component, 644-647
expand element, 646
metaModel element, 646
outlet element, 646
postprocessor element, 646-647

XSD (XML Schema), 13, 252-253
Xtend

cached extensions, 639
comments, 637
examples, 640-641
extension invocation, 637-638
extension keyword, 636
extensions, 637
import keyword, 636
Java extensions, 639
M2T (Model-to-Text Transformation)

project, 278-281
overview, 636
private extensions, 639
recursion, 638-639
type inference, 638

Xtext, 228-229
XY Layout, 512

Zoom toolbar element, 356

	Foreword
	Preface
	Chapter 3 Developing a DSL Abstract Syntax
	3.1 DSL Considerations
	3.2 Eclipse Modeling Framework
	3.3 Developing the Mindmap Domain Model
	3.4 Developing the Requirements Domain Model
	3.5 Developing the Scenario Domain Model
	3.6 Developing the Business Domain Model
	3.7 Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X-Y-Z

