

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a trade-
mark claim, the designations have been printed with initial capital letters or in all capitals.

The .NET logo is either a registered trademark or a trademark of Microsoft Corporation in the United
States and/or other countries and is used under license from Microsoft.

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales, which may include electronic versions and/or custom covers and content particular to
your business, training goals, marketing focus, and branding interests. For more information, please
contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Michaelis, Mark.
 Essential C# 3.0 : for .NET Framework 3.5 / Mark Michaelis.
 p. cm.
 Includes index.
 ISBN 978-0-321-53392-0 (pbk. : alk. paper) 1. C# (Computer program language)
2. Microsoft .NET Framework. I. Title.

 QA76.73.C154M5235 2008
 006.7’882—dc22

2008023595

Copyright © 2009 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright,
and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671 3447

ISBN-13: 978-0-321-53392-0
ISBN-10: 0-321-53392-5
Text printed in the United States on recycled paper at Courier in Stoughton, Massachusetts.
First printing, August 2008

xxvii

Foreword

S THE COMMUNITY PROGRAM MANAGER for the C# team, I work to
stay attuned to the needs of our community. Again and again I hear

the same message: “There is so much information coming out of Microsoft
that I can’t keep up. I need access to materials that explain the technology,
and I need them presented in a way that I can understand.” Mark Michaelis
is a one-man solution to every C# developer’s search for knowledge about
Microsoft’s most recent technologies.

I first met Mark at a breakfast held in Redmond, Washington, on a clear,
sunny morning in the summer of 2006. It was an early breakfast, and I like
to sleep in late. But I was told Mark was an active community member, and
so I woke up early to meet him. I’m glad I did. The distinct impression he
made on me that morning has remained unchanged.

Mark is a tall, athletic man originally from South Africa, who speaks in
a clear, firm, steady voice with a slight accent that most Americans would
probably find unidentifiable. He competes in Ironman triathlons, and has
the lean, active look that one associates with that sport. Cheerful and opti-
mistic, he nevertheless has a businesslike air about him; one has the sense
that he is always trying to find the best way to fit too many activities into a
limited time frame.

Mark makes frequent trips to the Microsoft campus to participate in
reviews of upcoming technology or to consult on a team’s plans for the
future. Flying in from his home in Spokane, Washington, Mark has clearly

A

Forewordxxviii

defined agendas. He knows why he is on the campus, gives his all to the
work, and looks forward to heading back home to his family in Spokane.
Sometimes he finds time to fit in a quick meeting with me, and I always
enjoy them. He is cheerful, energetic, and nearly always has something
provocative to say about some new technology or program being devel-
oped by Microsoft.

This brief portrait of Mark tells you a good deal about what you can
expect from this book. It is a focused book with a clear agenda written in a
cheerful, no-nonsense manner. Mark works hard to discover the core parts
of the language that need to be explained and then he writes about them in
the same way that he speaks: with a lucid, muscular prose that is easy to
understand and totally devoid of condescension. Mark knows what his
audience needs to hear and he enjoys teaching.

Mark knows not only the C# language, but also the English language. He
knows how to craft a sentence, how to divide his thoughts into paragraphs
and subsections, and how to introduce and summarize a topic. He consis-
tently finds clear, easy-to-understand ways to explain complex subjects.

I read the first edition of Mark’s book cover to cover in just a few eve-
nings of concentrated reading. Like the current volume, it is a delight to
read. Mark selects his topics with care and explains them in the simplest
possible terms. He knows what needs to be included and what can be left
out. If he wants to explore an advanced topic, he clearly sets it apart from
the rest of the text. He never shows off by first parading his intellect at the
expense of our desire to understand.

A centrally important part of this new edition of the book is its coverage
of language integrated query (LINQ). For many developers, the declara-
tive style of programming used by LINQ will be a new technology that
requires developing new habits and new ways of thinking.

C# 3.0 contains several new features that enable LINQ. One of the main
goals of this new edition of the book is to lay out these features in detail.
Explaining LINQ and the technologies that enable it is no easy task, and
Mark has rallied all his formidable skills as a writer and teacher to lay out
this technology for the reader in terms that are clear and easy to understand.

All the key technologies that you need to know if you want to under-
stand LINQ are carefully explained in this text. These include:

Foreword xxix

• Partial methods

• Automatic properties

• Object initializers

• Collection initializers

• Anonymous types

• Implicit local variables (var)

• Lambdas

• Extension methods

• Expression trees

• IEnumerable<T> and IQueryable<T>

• LINQ query operators

• Query expressions

The march to an understanding of LINQ begins with Mark’s explana-
tions of important C# 2.0 technologies such as generics and delegates. He
then walks you step by step through the transition from delegates to lamb-
das. He explains why lambdas are part of C# 3.0 and the key role they play
in LINQ. He also explains extension methods and the role they play in the
implementation of the LINQ query operators.

His coverage of C# 3.0 features culminates in his detailed explanation of
query expressions. He covers the key features of query expressions such as
projections, filtering, ordering, grouping, and other concepts that are cen-
tral to an understanding of LINQ. He winds up his chapter on query
expressions by explaining how they can be converted to the LINQ query
method syntax that is actually executed by the compiler. By the time you
are done reading about query expressions, you will have all the knowl-
edge you need to understand LINQ and to begin using this important tech-
nology in your own programs.

If you want to be a C# developer, or if you want to enhance your C# pro-
gramming skills, there is no more useful tool than a well-crafted book on the
subject. You are holding such a book in your hands. A text like this can first
teach you how the language works, and then live on as a reference that you
use when you need to quickly find answers. For developers who are looking
for ways to stay current on Microsoft’s technologies, this book can serve as a

Forewordxxx

guide through a fascinating and rapidly changing landscape. It represents
the very best and latest thoughts on what is fast becoming the most
advanced and most important contemporary programming language.

—Charlie Calvert,
Community Program Manager, Visual C#, Microsoft
April 2008

xxxi

Preface

HROUGHOUT THE HISTORY of software engineering, the methodol-
ogy used to write computer programs has undergone several para-

digm shifts, each building on the foundation of the former by increasing
code organization and decreasing complexity. This book takes you
through these same paradigm shifts.

The beginning chapters take you through sequential programming
structure in which statements are written in the order in which they are
executed. The problem with this model is that complexity increases expo-
nentially as the requirements increase. To reduce this complexity, code
blocks are moved into methods, creating a structured programming
model. This allows you to call the same code block from multiple locations
within a program, without duplicating code. Even with this construct,
however, programs quickly become unwieldy and require further abstrac-
tion. Object-oriented programming, discussed in Chapter 5, was the
response. In subsequent chapters, you will learn about additional method-
ologies, such as interface-based programming, LINQ (and the transforma-
tion it makes to collection APIs), and, eventually, rudimentary forms of
declarative programming (in Chapter 17) via attributes.

This book has three main functions.

• It provides comprehensive coverage of the C# language, going
beyond a tutorial and offering a foundation upon which you can
begin effective software development projects.

T

Prefacexxxii

• For readers already familiar with C#, this book provides insight into
some of the more complex programming paradigms and provides in-
depth coverage of the features introduced in the latest version of the
language, C# 3.0 with .NET 3.5.

• It serves as a timeless reference, even after you gain proficiency with
the language.

The key to successfully learning C# is to start coding as soon as possible.
Don’t wait until you are an “expert” in theory; start writing software immedi-
ately. As a believer in iterative development, I hope this book enables even a
novice programmer to begin writing basic C# code by the end of Chapter 2.

A number of topics are not covered in this book. You won’t find cover-
age of topics such as ASP.NET, ADO.NET, smart client development, dis-
tributed programming, and so on. Although these topics are relevant to
the .NET framework, to do them justice requires books of their own. Fortu-
nately, Addison-Wesley’s .NET Development Series provides a wealth of
writing on these topics. Reading this book will prepare you to focus on and
develop expertise in any of these areas. It focuses on C# and the types
within the Base Class Library.

Target Audience for This Book
My challenge with this book was how to keep advanced developers awake
while not abandoning beginners by using words such as assembly, link,
chain, thread, and fusion, as though the topic was more appropriate for
blacksmiths than for programmers. This book’s primary audience is expe-
rienced developers looking to add another language to their quiver. How-
ever, I have carefully assembled this book to provide significant value to
developers at all levels.

• Beginners: If you are new to programming, this book serves as a
resource to help transition you from an entry-level programmer to a
C# developer, comfortable with any C# programming task that’s
thrown your way. This book not only teaches you syntax, but also
trains you in good programming practices that will serve you
throughout your programming career.

Preface xxxiii

• Structured programmers: Just as it’s best to learn a foreign language
through immersion, learning a computer language is most effective
when you begin using it before you know all the intricacies. In this
vein, this book begins with a tutorial that will be comfortable for
those familiar with structured programming, and by the end of Chap-
ter 4, developers in this category should feel at home writing basic
control flow programs. However, the key to excellence for C# devel-
opers is not memorizing syntax. To transition from simple programs
to enterprise development, the C# developer must think natively in
terms of objects and their relationships. To this end, Chapter 5’s
Beginner Topics introduce classes and object-oriented development.
The role of historically structured programming languages such as C,
COBOL, and FORTRAN is still significant but shrinking, so it
behooves software engineers to become familiar with object-oriented
development. C# is an ideal language for making this transition
because it was designed with object-oriented development as one of
its core tenets.

• Object-based and object-oriented developers: C++ and Java programmers,
and many experienced Visual Basic programmers, fall into this cate-
gory. Many of you are already completely comfortable with semico-
lons and curly braces. A brief glance at the code in Chapter 1 reveals
that at its core, C# is similar to the C and C++ style languages that you
already know.

• C# professionals: For those already versed in C#, this book provides a
convenient reference for less frequently encountered syntax. Further-
more, it provides answers to language details and subtleties seldom
addressed. Most important, it presents the guidelines and patterns
for programming robust and maintainable code. This book also aids
in the task of teaching C# to others. With the emergence of C# 3.0,
some of the most prominent enhancements are
– Implicitly typed variables (see Chapter 2)
– Extension methods (see Chapter 5)
– Partial methods (see Chapter 5)
– Lambda expressions (see Chapter 12)
– Expression trees (see Chapter 12)

Prefacexxxiv

– Anonymous types (see Chapter 14)
– Standard query operators (see Chapter 14)
– Query expressions (see Chapter 15)

• These topics are covered in detail for those who are not already famil-
iar with them. Also pertinent to advanced C# development is the sub-
ject of pointers, in Chapter 21. Even experienced C# developers often
do not understand this topic well.

Features of This Book
Essential C# 3.0 is a language book that adheres to the core C# Language 3.0
Specification. To help you understand the various C# constructs, it pro-
vides numerous examples demonstrating each feature. Accompanying
each concept are guidelines and best practices, ensuring that code com-
piles, avoids likely pitfalls, and achieves maximum maintainability.

To improve readability, code is specially formatted and chapters are
outlined using mind maps.

Code Samples
The code snippets in most of this text can run on any implementation of
the Common Language Infrastructure (CLI), including the Mono, Rotor,
and Microsoft .NET platforms. Platform- or vendor-specific libraries are
seldom used, except when communicating important concepts relevant
only to those platforms (appropriately handling the single-threaded user
interface of Windows, for example). Any code that specifically requires C#
3.0 compliance is called out in the Appendix C, C# 3.0 Topics.

Here is a sample code listing.

Listing 1.17: Commenting Your Code

class CommentSamples
{
static void Main()

 {

 string firstName; // Variable for storing the first name
 string lastName; // Variable for storing the last name

 System.Console.WriteLine("Hey you!");

Single-Line Comment

Preface xxxv

 System.Console.Write /* No new line */ (
 "Enter your first name: ");
 firstName = System.Console.ReadLine();

 System.Console.Write /* No new line */ (
 "Enter your last name: ");
 lastName = System.Console.ReadLine();

 /* Display a greeting to the console
 using composite formatting. */
 System.Console.WriteLine("Your full name is {0} {1}.",
 firstName, lastName);
 // This is the end
 // of the program listing
 }
}

The formatting is as follows.

• Comments are shown in italics.

 /* Display a greeting to the console
 using composite formatting. */

• Keywords are shown in bold.

static void Main()

• Highlighted code calls out specific code snippets that may have
changed from an earlier listing, or demonstrates the concept
described in the text.

Highlighting can appear on an entire line or on just a few characters
within a line.

 System.Console.WriteLine(

• Incomplete listings contain an ellipsis to denote irrelevant code that
has been omitted.

 // ...

 System.Console.Write /* No new line */ (

 "Your full name is {0} {1}.",

Delimited Comment Inside Statement

Delimited Comment

Prefacexxxvi

• Console output is the output from a particular listing that appears fol-
lowing the listing.

User input for the program appears in italics.

Although it might have been convenient to provide full code samples
that you could copy into your own programs, doing so would distract you
from learning a particular topic. Therefore, you need to modify the code
samples before you can incorporate them into your programs. The core
omission is error checking, such as exception handling. Also, code samples
do not explicitly include using System statements. You need to assume the
statement throughout all samples.

You can find sample code at http://mark.michaelis.net/EssentialCSharp.

Helpful Notes
Depending on your level of experience, special code blocks and margin
notations will help you navigate through the text.

• Beginner Topics provide definitions or explanations targeted specifi-
cally toward entry-level programmers.

• Advanced Topics enable experienced developers to focus on the
material that is most relevant to them.

• Callout notes highlight key principles in callout boxes so that readers
easily recognize their significance.

• Language Contrast sidebars identify key differences between C# and
its predecessors to aid those familiar with other languages.

OUTPUT 1.4:

>HeyYou.exe

Hey you!

Enter your first name: Inigo

Enter your last name: Montoya

http://mark.michaelis.net/EssentialCSharp

Preface xxxvii

Mind Maps
Each chapter’s introduction includes a mind map, which serves as an out-
line that provides an at-a-glance reference to each chapter’s content. Here
is an example (taken from Chapter 5).

The theme of each chapter appears in the mind map’s center. High-level
topics spread out from the core. Mind maps allow you to absorb the flow
from high-level to more detailed concepts easily, with less chance of
encountering very specific knowledge that you might not be looking for.

How This Book Is Organized
At a high level, software engineering is about managing complexity, and it is
toward this end that I have organized Essential C# 3.0. Chapters 1–4 introduce
structured programming, which enables you to start writing simple function-
ing code immediately. Chapters 5–9 present the object-oriented constructs of

Instance
Fields

Declaring an instance field
Accessing an instance field
Const and readonly modifiers

Constructors
& Finalizers

Declaring a constructor
Default constructors
Overloading constructors

Calling one constructor
using this Finalizers

Static

Static fields
Static methods

Static constructors
Static classes

Properties

Declaring a property
Naming conventions

Using properties
with validation

Read-only and
write-only properties
Access modifiers on

getters and setters
Properties as virtual fields

Properties and method
calls not allowed as ref

or out parameter values

Partial classes
Nested classes

Classes

2

3 Instance Methods

4

5
6

7

8

Access Modifiers

Special Classes

9 Extension Methods Defining and Instantiating a Class1

Prefacexxxviii

C#. Novice readers should focus on fully understanding this section before
they proceed to the more advanced topics found in the remainder of this
book. Chapters 11–13 introduce additional complexity-reducing constructs,
handling common patterns needed by virtually all modern programs. This
leads to dynamic programming with reflection and attributes, which is used
extensively for threading and interoperability, the chapters that follow next.

The book ends with a chapter on the Common Language Infrastructure,
which describes C# within the context of the development platform in
which it operates. This chapter appears at the end because it is not C#-spe-
cific and it departs from the syntax and programming style in the rest of
the book. However, this chapter is suitable for reading at any time, per-
haps most appropriately immediately following Chapter 1.

Here is a description of each chapter. (Asterisks indicate entirely new
chapters dedicated to C# 3.0 material. Bold chapter titles indicate chapters
that contain C# 3.0 material.)

• Chapter 1—Introducing C#: After presenting the C# HelloWorld pro-
gram, this chapter proceeds to dissect it. This should familiarize read-
ers with the look and feel of a C# program and provide details on how
to compile and debug their own programs. It also touches on the con-
text of a C# program’s execution and its intermediate language.

• Chapter 2—Data Types: Functioning programs manipulate data, and
this chapter introduces the primitive data types of C#. This includes
coverage of two type categories—value types and reference types—
along with conversion between types and support for arrays.

• Chapter 3—Operators and Control Flow: To take advantage of the
iterative capabilities in a computer, you need to know how to
include loops and conditional logic within your program. This
chapter also covers the C# operators, data conversion, and prepro-
cessor directives.

• Chapter 4—Methods and Parameters: This chapter investigates the
details of methods and their parameters. It includes passing by value,
passing by reference, and returning data via a parameter. In C#,
default parameters are not supported, and this chapter explains why
and how to provide the same functionality.

Preface xxxix

• Chapter 5—Classes: Given the basic building blocks of a class, this
chapter combines these constructs together to form fully functional
types. Classes form the core of object-oriented technology by defining
the template for an object.

• Chapter 6—Inheritance: Although inheritance is a programming fun-
damental to many developers, C# provides some unique constructs,
such as the new modifier. This chapter discusses the details of inheri-
tance syntax, including overriding.

• Chapter 7—Interfaces: This chapter demonstrates how interfaces are
used to define the “versionable” interaction contract between classes.
C# includes both explicit and implicit interface member implementa-
tion, enabling an additional encapsulation level not supported by
most other languages.

• Chapter 8—Value Types: Although not as prevalent as defining refer-
ence types, it is sometimes necessary to define value types that
behave in a fashion similar to the primitive types built into C#. This
chapter describes how to define structures, while exposing the idio-
syncrasies they may introduce.

• Chapter 9—Well-Formed Types: This chapter discusses more advanced
type definition. It explains how to implement operators, such as + and
casts, and describes how to encapsulate multiple classes into a single
library. In addition, the chapter demonstrates defining namespaces
and XML comments, and discusses how to design classes for garbage
collection.

• Chapter 10—Exception Handling: This chapter expands on the exception-
handling introduction from Chapter 4 and describes how exceptions
follow a hierarchy that enables creating custom exceptions. It also
includes some best practices on exception handling.

• Chapter 11—Generics: Generics is perhaps the core feature missing
from C# 1.0. This chapter fully covers this new feature.

• *Chapter 12—Delegates and Lambda Expressions: Delegates begin to
clearly distinguish C# from its predecessors by defining patterns for
handling events within code. This virtually eliminates the need for
writing routines that poll. Lambda expressions are the key concept

Prefacexl

that make C# 3.0’s LINQ possible. This chapter explains how lambda
expressions build on the delegate construct by providing a more ele-
gant and succinct syntax. This chapter forms the foundation for the
new collection API discussed in Chapter 14.

• Chapter 13—Events: Encapsulated delegates, known as events, are a
core construct of the Common Language Runtime. Anonymous
methods, another C# 2.0 feature, are also presented here.

• *Chapter 14—Collection Interfaces with Standard Query Operators:
The simple and yet elegantly powerful changes introduced in C# 3.0
begin to shine in this chapter as we take a look at the extension meth-
ods of the new Enumerable class. This class makes available an
entirely new collection API known as the standard query operators
and discussed in detail here.

• *Chapter 15—Query Expressions: Using standard query operators
alone results in some long statements that are hard to decipher. How-
ever, query expressions provide an alternate syntax that matches
closely with SQL, as described in this chapter.

• Chapter 16—Building Custom Collections: In building custom APIs
that work against business objects, it is frequently necessary to create
custom collections. This chapter details how to do this and, in the pro-
cess, introduces contextual keywords that make custom collection
building easier.

• Chapter 17—Reflection and Attributes: Object-oriented programming
formed the basis for a paradigm shift in program structure in the late
1980s. In a similar way, attributes facilitate declarative programming
and embedded metadata, ushering in a new paradigm. This chapter
looks at attributes and discusses how to retrieve them via reflection. It
also covers file input and output via the serialization framework
within the Base Class Library.

• Chapter 18—Multithreading: Most modern programs require the use of
threads to execute long-running tasks while ensuring active response to
simultaneous events. As programs become more sophisticated, they
must take additional precautions to protect data in these advanced envi-
ronments. Programming multithreaded applications is complex. This
chapter discusses how to work with threads and provides best practices
to avoid the problems that plague multithreaded applications.

Preface xli

• Chapter 19—Multithreading Patterns: Building on the preceding chap-
ter, this one demonstrates some of the built-in threading pattern sup-
port that can simplify the explicit control of multithreaded code.

• Chapter 20—Platform Interoperability and Unsafe Code: Given that C# is
a relatively young language, far more code is written in other lan-
guages than in C#. To take advantage of this preexisting code, C# sup-
ports interoperability—the calling of unmanaged code—through
P/Invoke. In addition, C# provides for the use of pointers and direct
memory manipulation. Although code with pointers requires special
privileges to run, it provides the power to interoperate fully with
traditional C-based application programming interfaces.

• Chapter 21—The Common Language Infrastructure: Fundamentally, C#
is the syntax that was designed as the most effective programming
language on top of the underlying Common Language Infrastructure.
This chapter delves into how C# programs relate to the underlying
runtime and its specifications.

• Appendix A—Downloading and Installing the C# Compiler and the CLI
Platform: This appendix provides instructions for setting up a C# com-
piler and the platform on which to run the code, Microsoft .NET or
Mono.

• Appendix B—Full Source Code Listing: In several cases, a full source
code listing within a chapter would have been too long. To make
these listings still available to the reader, this appendix includes full
listing from Chapters 3, 11, 12, 14, and 17.

• Appendix C—C# 3.0 Topics: This appendix provides a quick reference
for any C# 3.0 content. It is specifically designed to help C# 2.0 pro-
grammers to quickly get up to speed on the 3.0 features.

I hope you find this book to be a great resource in establishing your C#
expertise and that you continue to reference it for the more obscure areas
of C# and its inner workings.

—Mark Michaelis
http://mark.michaelis.net

http://mark.michaelis.net

445

12

Delegates and Lambda
Expressions

REVIOUS CHAPTERS DISCUSSED extensively how to create classes
using many of the built-in C# language facilities for object-oriented

development. The objects instantiated from classes encapsulate data and
operations on data. As you create more and more classes, you see common
patterns in the relationships between these classes.

One such pattern is to pass an object that describes a method that the
receiver can invoke. The use of methods as a data type and their support for
publish-subscribe patterns is the focus of this chapter. Both C# 2.0 and C# 3.0
introduced additional syntax for programming in this area. Although C#
3.0 supports the previous syntax completely, in many cases C# 3.0 will
deprecate the use of the older-style syntax. However, I have placed the earlier

P

23

4

5 1

Delegates and
Lambda Expressions

Introducing
Delegates

Why Delegates
Delegate as Data Types
Delegate Internals
Instantiating Delegates

Anonymous Methods Statement Lambdas

Expression
Lambdas

Expression Trees

Chapter 12: Delegates and Lambda Expressions446

syntax into Advanced Topic blocks, which you can largely ignore unless you
require support for an earlier compiler.

Introducing Delegates
Veteran C and C++ programmers have long used method pointers as a
means to pass executable steps as parameters to another method. C#
achieves the same functionality using a delegate, which encapsulates meth-
ods as objects, enabling an indirect method call bound at runtime. Consider
an example of where this is useful.

Defining the Scenario
Although not necessarily efficient, perhaps one of the simplest sort rou-
tines is a bubble sort. Listing 12.1 shows the BubbleSort() method.

Listing 12.1: BubbleSort() Method

static class SimpleSort1
{
public static void BubbleSort(int[] items)

 {
 int i;
 int j;
 int temp;

 if(items==null)
 {
 return;
 }

 for (i = items.Length - 1; i >= 0; i--)
 {
 for (j = 1; j <= i; j++)
 {
 if (items[j - 1] > items[j])
 {
 temp = items[j - 1];
 items[j - 1] = items[j];
 items[j] = temp;
 }
 }
 }
 }
// ...

}

 Introducing Delegates 447

This method will sort an array of integers in ascending order. However, if
you wanted to support the option to sort the integers in descending order,
you would have essentially two options. You could duplicate the code and
replace the greater-than operator with a less-than operator. Alternatively,
you could pass in an additional parameter indicating how to perform the
sort, as shown in Listing 12.2.

Listing 12.2: BubbleSort() Method, Ascending or Descending

class SimpleSort2
{
public enum SortType

 {
 Ascending,
 Descending
 }

 {
 int i;
 int j;
 int temp;

 if(items==null)
 {
 return;
 }

 for (i = items.Length - 1; i >= 0; i--)
 {
 for (j = 1; j <= i; j++)
 {
 switch (sortOrder)
 {

 {
 temp = items[j - 1];
 items[j - 1] = items[j];
 items[j] = temp;
 }

 break;

 {
 temp = items[j - 1];

public static void BubbleSort(int[] items, SortType sortOrder)

 case SortType.Ascending :
 if (items[j - 1] > items[j])

 case SortType.Descending :
 if (items[j - 1] < items[j])

Chapter 12: Delegates and Lambda Expressions448

 items[j - 1] = items[j];
 items[j] = temp;
 }

 break;
 }
 }
 }
 }
// ...

}

However, this handles only two of the possible sort orders. If you wanted
to sort them alphabetically, randomize the collection, or order them via
some other criterion, it would not take long before the number of Bubble-
Sort() methods and corresponding SortType values would become cum-
bersome.

Delegate Data Types
To increase the flexibility (and reduce code duplication), you can pass in
the comparison method as a parameter to the BubbleSort() method.
Moreover, in order to pass a method as a parameter, there needs to be a
data type that can represent that method—in other words, a delegate.
Listing 12.3 includes a modification to the BubbleSort() method that
takes a delegate parameter. In this case, the delegate data type is
ComparisonHandler.

Listing 12.3: BubbleSort() Method with Delegate Parameter

class DelegateSample
{
// ...

 {
 int i;
 int j;
 int temp;

 if(items==null)
 {
 return;
 }

public static void BubbleSort(
 int[] items, ComparisonHandler comparisonMethod)

 Introducing Delegates 449

 if(comparisonMethod == null)
 {
 throw new ArgumentNullException("comparisonMethod");
 }

 for (i = items.Length - 1; i >= 0; i--)
 {
 for (j = 1; j <= i; j++)
 {

 {
 temp = items[j - 1];
 items[j - 1] = items[j];
 items[j] = temp;
 }
 }
 }
 }
// ...

}

ComparisonHandler is a data type that represents a method for compar-
ing two integers. Within the BubbleSort() method you then use the
instance of the ComparisonHandler, called comparisonMethod, inside the
conditional expression. Since comparisonMethod represents a method,
the syntax to invoke the method is identical to calling the method
directly. In this case, comparisonMethod takes two integer parameters
and returns a Boolean value that indicates whether the first integer is
greater than the second one.

Perhaps more noteworthy than the particular algorithm, the Compari-
sonHandler delegate is strongly typed to return a bool and to accept only
two integer parameters. Just as with any other method, the call to a delegate
is strongly typed, and if the data types do not match up, then the C# com-
piler reports an error. Let us consider how the delegate works internally.

Delegate Internals
C# defines all delegates, including ComparisonHandler, as derived indi-
rectly from System.Delegate, as shown in Figure 12.1.1

 if (comparisonMethod(items[j - 1], items[j]))

1. The C# standard doesn’t specify the delegate implementation’s class hierarchy.
.NET’s implementation, however, does derive indirectly from System.Delegate.

Chapter 12: Delegates and Lambda Expressions450

The first property is of type System.Reflection.MethodInfo, which I
cover in Chapter 17. MethodInfo describes the signature of a particular
method, including its name, parameters, and return type. In addition to
MethodInfo, a delegate also needs the instance of the object containing the
method to invoke. This is the purpose of the second property, Target. In
the case of a static method, Target corresponds to the type itself. The pur-
pose of the MulticastDelegate class is the topic of the next chapter.

Defining a Delegate Type
You saw how to define a method that uses a delegate, and you learned
how to invoke a call to the delegate simply by treating the delegate vari-
able as a method. However, you have yet to learn how to declare a delegate
data type. For example, you have not learned how to define Comparison-
Handler such that it requires two integer parameters and returns a bool.

Although all delegate data types derive indirectly from System.Dele-
gate, the C# compiler does not allow you to define a class that derives
directly or indirectly (via System.MulticastDelegate) from System.Dele-
gate. Listing 12.4, therefore, is not valid.

Figure 12.1: Delegate Types Object Model

 Introducing Delegates 451

Listing 12.4: System.Delegate Cannot Explicitly Be a Base Class

// ERROR: 'ComparisonHandler' cannot
// inherit from special class 'System.Delegate'
public class ComparisonHandler: System.Delegate
{
// ...

}

In its place, C# uses the delegate keyword. This keyword causes the com-
piler to generate a class similar to the one shown in Listing 12.4. Listing
12.5 shows the syntax for declaring a delegate data type.

Listing 12.5: Declaring a Delegate Data Type

public delegate bool ComparisonHandler (
int first, int second);

In other words, the delegate keyword is shorthand for declaring a refer-
ence type derived ultimately from System.Delegate. In fact, if the delegate
declaration appeared within another class, then the delegate type, Compar-
isonHandler, would be a nested type (see Listing 12.6).

Listing 12.6: Declaring a Nested Delegate Data Type

class DelegateSample
{
public delegate bool ComparisonHandler (

 int first, int second);
}

In this case, the data type would be DelegateSample.ComparisonHandler
because it is defined as a nested type within DelegateSample.

Instantiating a Delegate
In this final step of implementing the BubbleSort() method with a dele-
gate, you will learn how to call the method and pass a delegate
instance—specifically, an instance of type ComparisonHandler. To instan-
tiate a delegate, you need a method that corresponds to the signature of
the delegate type itself. In the case of ComparisonHandler, that method
takes two integers and returns a bool. The name of the method is not sig-
nificant. Listing 12.7 shows the code for a greater-than method.

Chapter 12: Delegates and Lambda Expressions452

Listing 12.7: Declaring a ComparisonHandler-Compatible Method

public delegate bool ComparisonHandler (
int first, int second);

class DelegateSample
{

public static void BubbleSort(
 int[] items, ComparisonHandler comparisonMethod)
 {
 // ...
 }

// ...
}

With this method defined, you can call BubbleSort() and pass the dele-
gate instance that contains this method. Beginning with C# 2.0, you simply
specify the name of the delegate method (see Listing 12.8).

Listing 12.8: Passing a Delegate Instance as a Parameter in C# 2.0

public delegate bool ComparisonHandler (
int first, int second);

class DelegateSample
{
public static void BubbleSort(

 int[] items, ComparisonHandler comparisonMethod)
 {
 // ...
 }

 {
 return first > second;
 }

static void Main()
 {
 int[] items = new int[100];

public static bool GreaterThan(int first, int second)
 {
 return first > second;
 }

public static bool GreaterThan(int first, int second)

 Introducing Delegates 453

 Random random = new Random();
 for (int i = 0; i < items.Length; i++)
 {
 items[i] = random.Next(int.MinValue, int.MaxValue);
 }

 for (int i = 0; i < items.Length; i++)
 {
 Console.WriteLine(items[i]);
 }
 }

}

Note that the ComparisonHandler delegate is a reference type, but you do
not necessarily use new to instantiate it. The facility to pass the name
rather than explicit instantiation is delegate inference, a new syntax
beginning with C# 2.0. With this syntax, the compiler uses the method
name to look up the method signature and verify that it matches the
method’s parameter type.

A D V A N C E D T O P I C

Delegate Instantiation in C# 1.0
Earlier versions of the compiler require instantiation of the delegate dem-
onstrated in Listing 12.9.

Listing 12.9: Passing a Delegate Instance as a Parameter Prior to C# 2.0

public delegate bool ComparisonHandler (
int first, int second);

class DelegateSample
{
public static void BubbleSort(

 int[] items, ComparisonHandler comparisonMethod)
 {
 // ...
 }

 BubbleSort(items, GreaterThan);

public static bool GreaterThan(int first, int second)

Chapter 12: Delegates and Lambda Expressions454

 {
 return first > second;
 }

static void Main(string[] args)
 {

 int i;
 int[] items = new int[5];

 for (i=0; i<items.Length; i++)
 {
 Console.Write("Enter an integer:");
 items[i] = int.Parse(Console.ReadLine());
 }

 for (i = 0; i < items.Length; i++)
 {
 Console.WriteLine(items[i]);
 }
 }

// ...
}

Note that C# 2.0 and above support both syntaxes, but unless you are
writing backward-compatible code, the 2.0 syntax is preferable. Therefore,
throughout the remainder of the book, I will show only the C# 2.0 and
above syntax. (This will cause some of the remaining code not to compile
on version 1.0 compilers without modification to use explicit delegate
instantiation.)

The approach of passing the delegate to specify the sort order is sig-
nificantly more flexible than the approach listed at the beginning of this
chapter. With the delegate approach, you can change the sort order to
be alphabetical simply by adding an alternative delegate to convert
integers to strings as part of the comparison. Listing 12.10 shows a full
listing that demonstrates alphabetical sorting, and Output 12.1 shows
the results.

 BubbleSort(items,
 new ComparisonHandler(GreaterThan));

 Introducing Delegates 455

Listing 12.10: Using a Different ComparisonHandler-Compatible Method

using System;
class DelegateSample
{

public delegate bool ComparisonHandler(int first, int second);

public static void BubbleSort(
 int[] items, ComparisonHandler comparisonMethod)
 {
 int i;
 int j;
 int temp;

 for (i = items.Length - 1; i >= 0; i--)
 {
 for (j = 1; j <= i; j++)
 {
 if (comparisonMethod(items[j - 1], items[j]))
 {
 temp = items[j - 1];
 items[j - 1] = items[j];
 items[j] = temp;
 }
 }
 }
 }

public static bool GreaterThan(int first, int second)
 {
 return first > second;
 }

static void Main(string[] args)
 {

 int i;
 int[] items = new int[5];

 for (i=0; i<items.Length; i++)
 {

public static bool AlphabeticalGreaterThan(
 int first, int second)
 {
 int comparison;
 comparison = (first.ToString().CompareTo(
 second.ToString()));

 return comparison > 0;
 }

Chapter 12: Delegates and Lambda Expressions456

 Console.Write("Enter an integer: ");
 items[i] = int.Parse(Console.ReadLine());
 }

 for (i = 0; i < items.Length; i++)
 {
 Console.WriteLine(items[i]);
 }
 }
}

The alphabetic order is different from the numeric order. Note how simple
it was to add this additional sort mechanism, however, compared to the
process used at the beginning of the chapter.

The only changes to create the alphabetical sort order were the addition
of the AlphabeticalGreaterThan method and then passing that method
into the call to BubbleSort().

Anonymous Methods
C# 2.0 and above include a feature known as anonymous methods. These
are delegate instances with no actual method declaration. Instead, they are
defined inline in the code, as shown in Listing 12.11.

Listing 12.11: Passing an Anonymous Method

class DelegateSample
{

// ...

 BubbleSort(items, AlphabeticalGreaterThan);

OUTPUT 12.1:

Enter an integer: 1

Enter an integer: 12

Enter an integer: 13

Enter an integer: 5

Enter an integer: 4

1

12

13

4

5

 Anonymous Methods 457

static void Main(string[] args)
 {

 int i;
 int[] items = new int[5];

 for (i=0; i<items.Length; i++)
 {
 Console.Write("Enter an integer:");
 items[i] = int.Parse(Console.ReadLine());
 }

 for (i = 0; i < items.Length; i++)
 {
 Console.WriteLine(items[i]);
 }
 }
}

In Listing 12.11, you change the call to BubbleSort() to use an anonymous
method that sorts items in descending order. Notice that no LessThan()
method is specified. Instead, the delegate keyword is placed directly
inline with the code. In this context, the delegate keyword serves as a
means of specifying a type of “delegate literal,” similar to how quotes
specify a string literal.

You can even call the BubbleSort() method directly, without declaring
the comparisonMethod variable (see Listing 12.12).

Listing 12.12: Using an Anonymous Method without Declaring a Variable

class DelegateSample
{

// ...

static void Main(string[] args)
 {

 ComparisonHandler comparisonMethod;

 comparisonMethod =
 delegate(int first, int second)
 {
 return first < second;
 };

 BubbleSort(items, comparisonMethod);

Chapter 12: Delegates and Lambda Expressions458

 int i;
 int[] items = new int[5];

 for (i=0; i<items.Length; i++)
 {
 Console.Write("Enter an integer:");
 items[i] = int.Parse(Console.ReadLine());
 }

 for (i = 0; i < items.Length; i++)
 {
 Console.WriteLine(items[i]);
 }
 }
}

Note that in all cases, the parameter types and the return type must be
compatible with the ComparisonHandler data type, the delegate type of the
second parameter of BubbleSort().

In summary, C# 2.0 included a new feature, anonymous methods, that
provided a means to declare a method with no name and convert it into a
delegate.

A D V A N C E D T O P I C

Parameterless Anonymous Methods
Compatibility of the method signature with the delegate data type does
not exclude the possibility of no parameter list. Unlike with lambda
expressions, statement lambdas, and expression lambdas (see the next sec-
tion), anonymous methods are allowed to omit the parameter list (dele-
gate { return Console.ReadLine() != ""}, for example). This is atypical,
but it does allow the same anonymous method to appear in multiple sce-
narios even though the delegate type may vary. Note, however, that
although the parameter list may be omitted, the return type will still need
to be compatible with that of the delegate (unless an exception is thrown).

 BubbleSort(items,
 delegate(int first, int second)
 {
 return first < second;
 }
);

 System-Defined Delegates: Func<> 459

System-Defined Delegates: Func<>
In .NET 3.5 (C# 3.0), there exists a series of generic delegates with the name
“Func.” The signatures for these delegates are shown in Listing 12.13.

Listing 12.13: Func Delegate Declarations

public delegate TResult Func<TResult>();
public delegate TResult Func<T, TResult>(T arg)
public delegate TResult Func<T1, T2, TResult>(T1 arg1, T2 arg2)
public delegate TResult Func<T1, T2, T3, TResult>(
 T1 arg1, T2 arg2, T3 arg3)
public delegate TResult Func<T1, T2, T3, T4, TResult>(
 T1 arg1, T2 arg2, T3 arg3, T4 arg4)

Since these delegate definitions are generic, it is possible to use them instead
of defining a custom delegate. For example, rather than declaring the
ComparisonHandler delegate type, code could simply declare Comparison-
Handler delegates using Func<int, int, bool>. The last type parameter of
Func is always the return type of the delegate. The earlier type parameters cor-
respond in sequence to the type of delegate parameters. In the case of Compar-
isonHandler, the return is bool (the last type parameter of the Func
declaration) and the type arguments int and int correspond with the first and
second parameters of ComparisonHandler. In many cases, the inclusion of
Func delegates into the .NET 3.5 Framework eliminates the necessity to define
delegates with four or fewer parameters that return a value. (You should use
System.Action for delegates that have no return and that take no parameters.)

However, you should still declare delegate types when a specific dele-
gate type would simplify coding with the delegate. For example, continu-
ing to use the ComparisonHandler provides a more explicit indication of
what the delegate is used for, whereas Func<int, int, bool> provides
nothing more than an understanding of the method signature.

Evaluation about whether to declare a delegate is still meaningful and
includes considerations such as whether the name of the delegate identi-
fier is sufficient for indicating intent, whether the delegate type name
would clarify its use, and whether the use of a .NET 3.5 type will limit the
use of the assembly to .NET 3.5 clients unnecessarily.

Note that even though you can use a Func generic delegate in place of
an explicitly defined delegate, the types are not compatible. You cannot

Chapter 12: Delegates and Lambda Expressions460

assign any expression of one delegate type to a variable of another dele-
gate type. For example, you cannot assign a ComparisonHandler variable
to a Func<int, int, bool> variable or pass them interchangeably as
parameters.

Lambda Expressions
Introduced in C# 3.0, lambda expressions are a more succinct syntax of
anonymous functions than anonymous methods, where anonymous func-
tions is a general term that includes both lambda expressions and anony-
mous methods. Lambda expressions are themselves broken into two
types: statement lambdas and expression lambdas. Figure 12.2 shows the
hierarchical relationship between the terms.

Statement Lambdas
With statement lambdas, C# 3.0 provides a reduced syntax for anonymous
methods, a syntax that does not include the delegate keyword and adds
the lambda operator, =>. Listing 12.14 shows equivalent functionality to
Listing 12.12, except that Listing 12.14 uses a statement lambda rather than
an anonymous method.

Listing 12.14: Passing a Delegate with a Statement Lambda

class DelegateSample
{

Figure 12.2: Anonymous Function Terminology

Anonymous
Function

Lambda
Expression

Anonymous
Method

Expression
Lambda

Expression
Tree

 Lambda Expressions 461

// ...

static void Main(string[] args)
 {

 int i;
 int[] items = new int[5];

 for (i=0; i<items.Length; i++)
 {
 Console.Write("Enter an integer:");
 items[i] = int.Parse(Console.ReadLine());
 }

 for (i = 0; i < items.Length; i++)
 {
 Console.WriteLine(items[i]);
 }
 }
}

When reading code that includes a lambda operator, you would replace
the lambda operator with the words “go/goes to.” For example, you
would read n => { return n.ToString();} as “n goes to return n dot
ToString.” In Listing 12.15, you would read the second BubbleSort()
parameter as “integers first and second go to returning the result of
first less than second.”

As readers will observe, the syntax in Listing 12.14 is virtually identical
to that in Listing 12.12, apart from the changes already outlined. However,
statement lambdas allow for an additional shortcut via type parameter
inference. Rather than explicitly declaring the data type of the parameters,
statement lambdas can omit parameter types as long as the compiler can
infer the types. In Listing 12.15, the delegate data type is bool Comparison-
Handler(int first, int second), so the compiler verifies that the return
type is a bool and infers that the input parameters are both integers (int).

 BubbleSort(items,
 (int first, int second) =>
 {
 return first < second;
 }
);

Chapter 12: Delegates and Lambda Expressions462

Listing 12.15: Omitting Parameter Types from Statement Lambdas

// ...

// ...

In general, statement lambdas do not need parameter types as long as
the compiler can infer the types or can implicitly convert them to the requi-
site expected types. In cases where inference is not possible, the data type
is required, although even when it is not required, you can specify the data
type explicitly to increase readability; once the statement lambda includes
one type, all types are required.

In general, C# requires a lambda expression to have parentheses
around the parameter list regardless of whether the data type is speci-
fied. Even parameterless statement lambdas, representing delegates that
have no input parameters, are coded using empty parentheses (see List-
ing 12.16).

Listing 12.16: Parameterless Statement Lambdas

using System;
// ...

 Func<string> getUserInput =

 {
 string input;
 do
 {
 input = Console.ReadLine();
 }
 while(input.Trim().Length==0);
 return input;
 };
// ...

The exception to the parenthesis rule is that if the compiler can infer the
data type and there is only a single input parameter, the statement lambda
does not require parentheses (see Listing 12.17).

 BubbleSort(items,
 (first, second) =>
 {
 return first < second;
 }
);

 () =>

 Lambda Expressions 463

Listing 12.17: Statement Lambdas with a Single Input Parameter

using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;
// ...

 IEnumerable<Process> processes = Process.GetProcesses().Where(
 process => { return process.WorkingSet64 > 1000000000; });
// ...

(In Listing 12.17, Where() returns a query for processes that have a physical
memory utilization greater than 1GB.)

Note that back on Listing 12.16, the body of the statement lambda
includes multiple statements inside the statement block (via curly braces).
Although there can be any number of statements in a statement lambda,
typically a statement lambda uses only two or three statements in its state-
ment block. In contrast, the body of an expression lambda does not even
make up a full statement since there is no statement block.

Expression Lambdas
Unlike a statement lambda, which includes a statement block and, there-
fore, zero or more statements, an expression lambda has only an expres-
sion, with no statement block. Listing 12.18 is the same as Listing 12.14,
except that it uses an expression lambda rather than a statement lambda.

Listing 12.18: Passing a Delegate with a Statement Lambda

class DelegateSample
{

// ...

static void Main(string[] args)
 {

 int i;
 int[] items = new int[5];

 for (i=0; i<items.Length; i++)
 {
 Console.Write("Enter an integer:");
 items[i] = int.Parse(Console.ReadLine());
 }

Chapter 12: Delegates and Lambda Expressions464

 for (i = 0; i < items.Length; i++)
 {
 Console.WriteLine(items[i]);
 }
 }
}

The difference between a statement and an expression lambda is that
the statement lambda has a statement block on the right side of the lambda
operator, whereas the expression lambda has only an expression (no
return statement or curly braces, for example).

Generally, you would read a lambda operator in an expression lambda
in the same way you would a statement lambda: “go/goes to.” In addition,
“becomes” is sometimes clearer. In cases such as the BubbleSort() call,
where the expression lambda specified is a predicate (returns a Boolean), it
is frequently clearer to replace the lambda operator with “such that.” This
changes the pronunciation of the statement lambda in Listing 12.18 to read
“first and second such that first is less than second.” One of the most com-
mon places for a predicate to appear is in the call to System.Linq.Enumera-
ble()’s Where() function. In cases such as this, neither “such that” nor
“goes to” is needed. We would read names.Where(name => name.Con-

tains(" ")) as “names where names dot Contains a space,” for example.
One pronunciation difference between the lambda operator in statement
lambdas and in expression lambdas is that “such that” terminology
applies more to expression lambdas than to statements lambda since the
latter tend to be more complex.

The anonymous function does not have any intrinsic type associated
with it, although implicit conversion is possible for any delegate type as
long as the parameters and return type are compatible. In other words,
an anonymous method is no more a ComparisonHandler type than
another delegate type such as LessThanHandler. As a result, you cannot
use the typeof() operator (see Chapter 17) on an anonymous method,
and calling GetType() is possible only after assigning or casting the
anonymous method to a delegate variable.

Table 12.1 contains additional lambda expression characteristics.

 BubbleSort(items, (first, second) => first < second;);

4
6

5

TABLE 12.1: Lambda Expression Notes and Examples

Statement Example

Lambda expressions themselves do not have type. In fact, there is
no concept of a lambda expression in the CLR. Therefore, there are
no members to call directly from a lambda expression. The . opera-
tor on a lambda expression will not compile, eliminating even the
option of calls to object methods.

// ERROR: Operator '.' cannot be applied to
// operand of type 'lambda expression'
Type type = ((int x) => x).ToString();;

Given that a lambda expression does not have an intrinsic type, it
cannot appear on the right of an is operator.

// ERROR: The first operand of an 'is' or 'as'
// operator may not be a lambda expression or
// anonymous method
bool boolean = ((int x) => x) is Func<int, int>;

Although there is no type on the lambda expression on its own, once
assigned or cast, the lambda expression takes on a type. Therefore,
it is common for developers to informally refer to the type of the
lambda expression concerning type compatibility, for example.

// ERROR: Lambda expression is not compatible with
// Func<int, bool> type.
Func<int, bool> expression = ((int x) => x);

A lambda expression cannot be assigned to an implicitly typed local
variable since the compiler does not know what type to make the
variable given that lambda expressions do not have type.

// ERROR: Cannot assign lambda expression to an
// implicitly typed local variable
var thing = (x => x);

Continues

4
6

6

C# does not allow jump statements (break, goto, continue) inside
anonymous functions if the target is outside the lambda expression.
Similarly, you cannot target a jump statement from outside the
lambda expression (or anonymous methods) into the lambda
expression.

// ERROR: Control cannot leave the body of an
// anonymous method or lambda expression
string[] args;
Func<string> expression;
switch(args[0])
{
case "/File":

 expression = () =>
 {
 if (!File.Exists(args[1]))
 {
 break;
 }
 // ...
 return args[1];
 };
 // ...
}

Variables introduced within a lambda expression are visible only
within the scope of the lambda expression body.

// ERROR: The name 'first' does not
// exist in the current context
Func<int, int, bool> expression =
 (first, second) => first > second;
 first++;

TABLE 12.1: Lambda Expression Notes and Examples (Continued)

Statement Example

4
6

7

The compiler’s flow analysis is unable to detect initialization of local
variables in lambda expressions.

int number;
Func<string, bool> expression =
 text => int.TryParse(text, out number);
if (expression("1"))
{
 // ERROR: Use of unassigned local variable
 System.Console.Write(number);
}

int number;
Func<int, bool> isFortyTwo =
 x => 42 == (number = x);
if (isFortyTwo(42))
{
 // ERROR: Use of unassigned local variable
 System.Console.Write(number);
}

TABLE 12.1: Lambda Expression Notes and Examples (Continued)

Statement Example

Chapter 12: Delegates and Lambda Expressions468

A D V A N C E D T O P I C

Lambda Expression and Anonymous Method Internals
Lambda expressions (and anonymous methods) are not an intrinsic con-
struct within the CLR. Rather, the C# compiler generates the implementa-
tion at compile time. Lambda expressions provide a language construct for
an inline-declared delegate pattern. The C# compiler, therefore, generates
the implementation code for this pattern so that the compiler automati-
cally writes the code instead of the developer writing it manually. Given
the earlier listings, therefore, the C# compiler generates CIL code that is
similar to the C# code shown in Listing 12.19.

Listing 12.19: C# Equivalent of CIL Generated by the Compiler for Lambda Expressions

class DelegateSample
{

// ...

static void Main(string[] args)
 {

 int i;
 int[] items = new int[5];

 for (i=0; i<items.Length; i++)
 {
 Console.Write("Enter an integer:");
 items[i] = int.Parse(Console.ReadLine());
 }

 for (i = 0; i < items.Length; i++)
 {
 Console.WriteLine(items[i]);
 }

 }

}

 BubbleSort(items,
 DelegateSample.__AnonymousMethod_00000000);

private static bool __AnonymousMethod_00000000(
 int first, int second)
 {
 return first < second;
 }

 Lambda Expressions 469

Outer Variables
Local variables (including parameters) declared outside an anonymous
function (such as a lambda expression), but captured (accessed) within the
lambda expression, are outer variables of that anonymous function. this is
also an outer variable.Outer variables captured by anonymous functions
live on until after the anonymous function’s delegate is destroyed. In Listing
12.20, it is relatively trivial to use an outer variable to count how many times
swap is called by BubbleSort(). Output 12.2 shows the results of this listing.

Listing 12.20: Using an Outer Variable in a Lambda Expression

class DelegateSample
{

// ...

static void Main(string[] args)
 {

 int i;
 int[] items = new int[5];

 for (i=0; i<items.Length; i++)
 {
 Console.Write("Enter an integer:");
 items[i] = int.Parse(Console.ReadLine());
 }

 for (i = 0; i < items.Length; i++)
 {
 Console.WriteLine(items[i]);
 }

 }
}

 int swapCount=0;

 BubbleSort(items,
 (int first, int second) =>
 {
 bool swap = first < second;
 if(swap)
 {
 swapCount++;
 }
 return swap;
 }
);

 Console.WriteLine("Items were swapped {0} times.",
 swapCount);

Chapter 12: Delegates and Lambda Expressions470

swapCount appears outside the lambda expression and is incremented
inside it. After calling the BubbleSort() method, swapCount is printed out
to the console.

As this code demonstrates, the C# compiler takes care of generating CIL
code that shares swapCount between the anonymous method and the call
site, even though there is no parameter to pass swapCount within the anon-
ymous delegate, nor within the BubbleSort() method. Given the sharing
of the variable, it will not be garbage-collected until after the delegate that
references it goes out of scope.

A D V A N C E D T O P I C

Outer Variable Internals
The CIL code generated by the C# compiler for outer variables is more
complex than the code for a simple anonymous method, because the outer
variable must be captured in a thread-safe manner. Listing 12.21 shows the
C# equivalent of the CIL code used to implement outer variables.

Listing 12.21: C# Equivalent of CIL Code Generated by Compiler for Outer Variables

class DelegateSample
{

// ...

OUTPUT 12.2:

Enter an integer:5

Enter an integer:1

Enter an integer:4

Enter an integer:2

Enter an integer:3

5

4

3

2

1

Items were swapped 4 times.

private sealed class __LocalsDisplayClass_00000001
 {
 public int swapCount;
 public bool __AnonymousMethod_00000000(
 int first, int second)

 Lambda Expressions 471

 ...

static void Main(string[] args)
 {

 int i;

 int[] items = new int[5];

 for (i=0; i<items.Length; i++)
 {
 Console.Write("Enter an integer:");
 items[i] = int.Parse(Console.ReadLine());
 }

 for (i = 0; i < items.Length; i++)
 {
 Console.WriteLine(items[i]);
 }

 }
}

Notice that the captured local variable is never “passed” anywhere and
is never “copied” anywhere. Rather, the captured local variable (swap-
count) is a single variable whose lifetime we have extended by implement-
ing it as an instance field rather than as a local. All references to the local
variable are rewritten to be references to the field.

Expression Trees
Lambda expressions provide a succinct syntax for defining a method inline
within your code. The compiler converts the code so that it is executable and

 {
 bool swap = first < second;

 if (swap)
 {
 swapCount++;
 }

 return swap;
 }
 }

 LocalsDisplayClass_00000001 locals =
 new __LocalsDisplayClass_00000001();
 locals.swapCount=0;

 BubbleSort(items, locals.__AnonymousMethod_00000000);

 Console.WriteLine("Items were swapped {0} times.",
 locals.swapCount);

Chapter 12: Delegates and Lambda Expressions472

callable later, potentially passing the delegate to another method. One fea-
ture for which it does not offer intrinsic support, however, is a representa-
tion of the expression as data—data that may be traversed and even
serialized.

Consider the lambda expression in the following code:

persons.Where(person => person.Name.ToUpper() == "INIGO MONTOYA");

Assuming that persons is an array of Persons, the compiler compiles the
lambda expression to a Func<string, bool> delegate type and then
passes the delegate instance to the Where() method. Code and execution
like this work very well. (The Where() method is an IEnumerable exten-
sion method from the class System.Linq.Enumerable, but this is irrele-
vant within this section.)

What if persons was not a Person array, but rather a collection of Per-
son objects sitting on a remote computer, or perhaps in a database? Rather
than returning all items in the persons collection, it would be preferable to
send data describing the expression over the network and have the filter-
ing occur remotely so that only the resultant selection returns over the net-
work. In scenarios such as this, the data about the expression is needed, not
the compiled CIL. The remote computer then compiles or interprets the
expression data.

Interpreting is motivation for adding expression trees to the language.
Lambda expressions that represent data about expressions rather than
compiled code are expression trees. Since the expression tree represents
data rather than compiled code, it is possible to convert the data to an alter-
native format—to convert it from the expression data to SQL code (SQL is
the language generally used to query data from databases) that executes
on a database, for example. The expression tree received by Where() may
be converted into a SQL query that is passed to a database, for example
(see Listing 12.22).

Listing 12.22: Converting an Expression Tree to a SQL where Clause

 persons.Where(person => person.Name.ToUpper() == "INIGO MONTOYA");

 select * from Person where upper(Name) = 'INIGO MONTOYA';

 Lambda Expressions 473

Recognizing the original Where() call parameter as data, you can see
that it is made up of the following:

• The call to the Person property, Name

• A call to a string method called ToUpper()

• A constant value, “INIGO MONTOYA”

• An equality operator, ==

The Where() method takes this data and converts it to the SQL where
clause by iterating over the data and building a SQL query string. How-
ever, SQL is just one example of what an expression tree may convert to.

Both a lambda expression for delegates and a lambda expression for an
expression tree are compiled, and in both cases, the syntax of the expres-
sion is verified at compile time with full semantic analysis. The difference,
however, is that a lambda expression is compiled into a delegate in CIL,
whereas an expression tree is compiled into a data structure of type Sys-
tem.Linq.Expressions.Expression. As a result, when a lambda expres-
sion is an expression lambda, it may execute—it is CIL instructions for
what the runtime should do. However, if the lambda expression is an
expression tree, it is not a set of CIL instructions, but rather a data struc-
ture. Although an expression tree includes a method that will compile it
into a delegate constructor call, it is more likely that the expression tree
(data) will be converted into a different format or set of instructions.

System.Linq.Enumerable versus System.Linq.Queryable

Let us consider an example that highlights the difference between a delegate
and an expression tree. System.Linq.Enumerable and System.Linq.Query-
able are very similar. They each provide virtually identical extension meth-
ods to the collection interfaces they extend (IEnumerable and IQueryable,
respectively). Consider, for example, the Where() method from Listing 12.22.
Given a collection that supports IEnumerable, a call to Where() could be as
follows:

 persons.Where(person => person.Name.ToUpper() ==
 "INIGO MONTOYA");

Chapter 12: Delegates and Lambda Expressions474

Conceptually, the Enumerable extension method signature is defined
on IEnumerable<TSource> as follows:

 public IEnumerable<TSource> Where<TSource>(
 Func<TSource, bool> predicate);

However, the equivalent Queryable extension on the IQuery-

able<TSource> method call is identical, even though the conceptual
Where() method signature (shown) is not:

 public IQueryable<TSource> Where<TSource>(
 Expression<Func<TSource, bool>> predicate);

The calling code for the argument is identical because the lambda
expression itself does not have type until it is assigned/cast.

Enumerable’s Where() implementation takes the lambda expression
and converts it to a delegate that the Where() method’s implementation
calls. In contrast, when calling Queryable’s Where(), the lambda expres-
sion is converted to an expression tree so that the compiler converts the
lambda expression into data. The object implementing IQueryable

receives the expression data and manipulates it. As suggested before, the
expression tree received by Where() may be converted into a SQL query
that is passed to a database.

Examining an Expression Tree

Capitalizing on the fact that lambda expressions don’t have intrinsic type,
assigning a lambda expression to a System.Linq.Expressions.Expres-
sion<TDelegate> creates an expression tree rather than a delegate.

In Listing 12.23, we create an expression tree for the Func<int, int,
bool>. (Recall that Func<int, int, bool> is functionally equivalent to the
ComparisonHandler delegate.) Notice that just the simple act of writing an
expression to the console, Console.WriteLine(expression) where expres-
sion is of type Expression<TDelegate>, will result in a call to expression’s
ToString() method). However, this doesn’t cause the expression to be
evaluated or even to write out the fully qualified name of Func<int, int,
bool> (as would happen if we used a delegate instance). Rather, displaying
the expression writes out the data (in this case, the expression code) corre-
sponding to the value of the expression tree.

 Lambda Expressions 475

Listing 12.23: Examining an Expression Tree

using System;
using System.Linq.Expressions;

class Program
{
 static void Main()
 {
 Expression<Func<int, int, bool>> expression;
 expression = (x, y) => x > y;
 Console.WriteLine("-------------{0}-------------",
 expression);
 PrintNode(expression.Body, 0);
 Console.WriteLine();
 Console.WriteLine();
 expression = (x, y) => x * y > x + y;
 Console.WriteLine("-------------{0}-------------",
 expression);
 PrintNode(expression.Body, 0);
 Console.WriteLine();
 Console.WriteLine();
 }
 public static void PrintNode(Expression expression,
 int indent)
 {
 if (expression is BinaryExpression)
 PrintNode(expression as BinaryExpression, indent);
 else
 PrintSingle(expression, indent);
 }
 private static void PrintNode(BinaryExpression expression,
 int indent)
 {
 PrintNode(expression.Left, indent + 1);
 PrintSingle(expression, indent);
 PrintNode(expression.Right, indent + 1);
 }
 private static void PrintSingle(
 Expression expression, int indent)
 {
 Console.WriteLine("{0," + indent * 5 + "}{1}",
 "", NodeToString(expression));
 }
 private static string NodeToString(Expression expression)
 {
 switch (expression.NodeType)
 {
 case ExpressionType.Multiply:
 return "*";

Chapter 12: Delegates and Lambda Expressions476

 case ExpressionType.Add:
 return "+";
 case ExpressionType.Divide:
 return "/";
 case ExpressionType.Subtract:
 return "-";
 case ExpressionType.GreaterThan:
 return ">";
 case ExpressionType.LessThan:
 return "<";
 default:
 return expression.ToString() +
 " (" + expression.NodeType.ToString() + ")";
 }
 }
}

In Output 12.3, we see that the Console.WriteLine() statements within
Main() print out the body of the expression trees as text.

The output of the expression as text is due to conversion from the
underlying data of an expression tree—conversion similar to the Print-
Node() and NodeTypeToString() functions, only more comprehensive.
The important point to note is that an expression tree is a collection of data,
and by iterating over the data, it is possible to convert the data to another
format. In the PrintNode() method, Listing 12.23 converts the data to a
horizontal text interpretation of the data. However, the interpretation
could be virtually anything.

OUTPUT 12.3:

------------- (x, y) => x > y -------------

 x (Parameter)

>

 y (Parameter)

------------- (x, y) => (x * y) > (x + y) -------------

 x (Parameter)

 *

 y (Parameter)

>

 x (Parameter)

 +

 y (Parameter)

 Summary 477

Using recursion, the PrintNode() function demonstrates that an
expression tree is a tree of zero or more expression trees. The contained
expression trees are stored in an Expression’s Body property. In addition,
the expression tree includes an ExpressionType property called NodeType
where ExpressionType is an enum for each different type of expression.
There are numerous types of expressions: BinaryExpression, Condition-
alExpression, LambdaExpression (the root of an expression tree), Method-
CallExpression, ParameterExpression, and ConstantExpression are
examples. Each type derives from System.Linq.Expressions.Expression.

Generally, you can use statement lambdas interchangeably with
expression lambdas. However, you cannot convert statement lambdas into
expression trees. You can express expression trees only by using expres-
sion lambda syntax.

SUMMARY

This chapter began with a discussion of delegates and their use as refer-
ences to methods or callbacks. It introduced a powerful concept for pass-
ing a set of instructions to call in a different location, rather than
immediately, when the instructions are coded.

Following on the heels of a brief look at the C# 2.0 concept of anony-
mous methods, the chapter introduced the C# 3.0 concept of lambda
expressions, a syntax that supersedes (although doesn’t eliminate) the C#
2.0 anonymous method syntax. Regardless of the syntax, these constructs
allow programmers to assign a set of instructions to a variable directly,
without defining an explicit method that contains the instructions. This
provides significant flexibility for programming instructions dynamically
within the method—a powerful concept that greatly simplifies the pro-
gramming of collections through an API known as LINQ, for language
integrated query.

Finally, the chapter ended with the concept of expression trees, and
how they compile into data that represents a lambda expression, rather
than the delegate implementation itself. This is a key feature that enables
such libraries as LINQ to SQL and LINQ to XML, libraries that interpret
the expression tree and use it within contexts other than CIL.

Chapter 12: Delegates and Lambda Expressions478

The term lambda expression encompasses both statement lambda and
expression lambda. In other words, statement lambdas and expression lamb-
das are both types of lambda expressions.

One thing the chapter mentioned but did not elaborate on was multicast
delegates. The next chapter investigates multicast delegates in detail and
explains how they enable the publish-subscribe pattern with events.

807

Index

; (semicolons), statements without, 10
!= (inequality) operator, 110
! (logical negation) operator, 112–113
(hash) symbol, 136
% (remainder) operator, 85
&& (AND) operator, 111–112
() (cast) operator, 364–365
* (multiplication) operator, 85
+ (addition) operator, 85
++ (increment) operators, 94–98
+= operator, 93
+ (plus) operator, 84–85
- - (decrement) operators, 94–98
- (minus) operator, 84–85
// (division) operator, 85
/// (three-forward-slash delimiter), 375
< (less than) operator, 110
<= (less than or equal to) operator, 110
== (equality) operator, 110
> (greater than) operator, 110
>= (greater than or equal to) operator, 110
? (conditional) operator, 113–114
@ character, 45
\n (newline) character, 44, 48
^ (Exclusive OR) operator, 112
_ (underscore), 15
|| (OR) operator, 111
~ (bitwise complement) operator, 119

A
Abort() method, 664–665
abstract classes, inheritance, 284–290

access
arrays, 71
code, 24
instance fields, 204–205
metadata, 619–621
referent types, 746–747
security, 758. See also security
static fields, 241

access modifiers, 213–215
classes, 369
CLI (Common Language Infrastructure),

758
getter and setter methods, 224–225
member types, 369–370
private, 267–268
protected, 268–269

acronyms, C#, 768–769
adding items to Dictionary<T> classes, 588
addition (+) operator, 85
addresses, 738–747
aliases, namespaces, 163–164, 372–373
allocating on stacks, 744
AllowMultiple parameter, 641
ambiguity, avoiding, 207
AND (&&) operator, 111–112
anonymous methods, 456–458

lambda expressions, 468
anonymous types, 54, 237–239, 508–510

generating, 514
with query expressions, 560, 564
selecting, 570

APIs (Application Programming Interfaces)
wrappers, 736–737

Index

Index808

applications
compiling, 3–4
domains, CLI, 760–761
running, 3–4

applying
arrays, 70–76
background worker patterns, 714–719
binary operators, 85
FlagsAttribute, 642
strings, 53
variables, 12–15
weak references, 380

arbitrary state, passing, 711–713
ArgumentException, 390
ArgumentNullException, 390
ArgumentOutOfRangeException, 390
arguments, passing command-line, 164
arithmetic binary operators, 85–87

characters, using with, 88–89
arrays, 65

access, 71
anonymous types, 516
applying, 70–76
assigning, 66–70
declaring, 65–66
foreach loops with, 517–518
initializing, 69, 71
instance methods, 75–76
instantiating, 66–70
jagged, 70
length, retrieving, 72
methods, 73–75
parameters, 172–174
redimensioning, 75
runtime, defining at, 68
strings as, 76–78
troubleshooting, 78–80

as operator, 293–294
assemblies

attributes, 631–632
CLI (Common Language Infrastructure),

761–763
referencing, 365–370
reflection, 618. See also reflection
targets, modifying, 366–367

assigning
arrays, 66–70
pointers, 742–744
static fields, 241

variables, 14–15
assignment operators, 14, 93–94

binary operators, combining, 361
bitwise, 118–119

associating
data, with classes and objects, 242
XML comments, 374

associativity, operators, 87
asynchronous results patterns, 700–714
atomicity, 659, 700
attributes, 617, 629–655

assemblies, 631–632
customizing, 633
FlagsAttribute, 641–647
initializing, 634–639
MethodImpAttribute, 691
predefined, 643–644
searching, 633–634
serialization, 647–655
StructLayoutAttribute, 728–729
System.AttributeUsageAttribute,

639–640
System.Collections.Hashtable, 639
System.ConditionalAttribute, 644–646
System.NonSerializable, 647
System.ObsoleteAttribute, 646–647
System.SerializableAttribute,

647, 654–655
ThreadStaticAttribute, 689–691

AttributeUsageAttribute, 643
automation, implementing properties, 219–220
AutoResetEvent, 687–689
avoiding

ambiguity, 207
deadlocks, 684, 700
exception handling, 191
locking, 680, 685
overhead, 567
unboxing, 335

B
background worker patterns, 714–719
base classes

constraints, 428
overriding, 272–284
refactoring into, 262

Base Class Library. See BCL
base members, 282–283
BCL (Base Class Library), 24, 33, 766

Index 809

benefits of generics, 414–415
best practices, synchronization, 684–691
binary operators, 85–87, 359–361

assignment operators, combining, 361
BinaryTree<T> class, 423
bits, 114–115
bitwise complement (~) operator, 119
bitwise operators, 114–119
blocks

catch, 183
checked, 60, 401
code (/), 105–107
finally, 185
general catch, 392–394
generics, 188–189
try, 183
unchecked, 61, 402

Boolean expressions, 108–114
Boolean types, 40–41

numbers to, converting, 62
bool type, 40–41
boxing, 329–335
break statements, 131–133
yield, 612

BubbleSort() method, 446
bytes, 114–115

C
C#

acronyms, 768–769
generics, 406–411
Hello World, 2–4
keywords, 4–6
.NET versioning, 25–26
overview of, 1–2
preprocessor directives, 136–143
properties, 48–51
syntax fundamentals, 4–11

C++
array declarations, 66
buffer overflow bugs, 73
default parameters, 157
delete operators, 202
deterministic destruction, 386, 756
dispatch method calls, 277
global methods, 156
global variables, 239
header files, 159
implicit overriding, 274

multiple inheritance, 270
operator errors, 109
operator-only statements, 85
pointer declaration, 741
preprocessor directives, 137
pure virtual functions, 287
struct defines types with public

members, 327
switch statements, 130
templates, 427

callback notification, 710
calls

constructors, 230
dispatch method, 277
external functions, 734–736
methods, 148–150
recursion, 174–177
SelectMany() method, 547–548
sites, 166
stacks, 166
virtual methods, 275

case operators, 59
case sensitivity, 2
casting

between base and derived types, 264–265
between classes, 307
explicit, 58, 59
implicit, 59, 62
inside generic methods, 439–440
within inheritance chains, 265–266
type conversion without, 62–64

cast (()) operator, 364–365
catch blocks, 183

generic, 188–189
catching exceptions, 182, 185–186, 391–392
categories of types, 55–57, 322–329
centralizing initialization, 236–237
chains, casting with inheritance, 265–266
characters

@, 45
arithmetic binary operators, using with,

88–89
escape, 42
newline (n), 44, 48
types, 41
Unicode, 41–43

checking
blocks, 60
conversions, 59–62, 400–402
types, 757

Index810

CIL (Common Intermediate Language),
22–25, 764

generics, 440–441
ILDASM, 26–29
properties, 228
System.SerializableAttribute and,

654–655
classes, 195–199

abstract, inheritance, 284–290
access modifiers, 213–215, 369
base

constraints, 428
overriding, 272–284
refactoring into, 262

BinaryTree<T>, 423
CommandLineInfo, 621–626
CommentSamples, 376
constructors, 229–239
defining, 199–202
derivation, 262–272
Dictionary<T>, 588–592
encapsulation, 250–252
exceptions, inheritance, 186–188
extension methods, 249–250
generics, 411–413

defining, 413–414
hierarchies, 198
inner, 254
instances

fields, 204–205
methods, 205–206

instantiating, 199–202
interfaces

casting between, 307
comparing, 317–318
IEnumerable<T>, 517–523

libraries, 366
LinkedList<T>, 597
List<T>, 583–586
multiple iterators, creating single, 614–615
nested, 252–254
partial, 254–259
primary collection, 583–597
properties, 215–229
Queue<T>, 595–596
sealed, 272
SortedDictionary<T>, 592
SortedList<T>, 592
Stack, 406, 409
Stack<T>, 594–595

static keyword, 239–249
structs, comparing, 611
System.Collections.Genric.Stack<T>, 414
System.Threading.Interlocked, 681–682
System.Threading.Mutex, 685–686
this keyword, 206–213

clauses
from, 556
groupby, 556
orderby, 565
select, 556

cleanup
following iteration, 521
resources, 381–388

CLI (Common Language Infrastructure), 23,
749–750

access modifiers, 758
application domains, 760–761
assemblies, 761–763
compilation to machine code, 752–754
defining, 750–751
garbage collection, 755–757
implementing, 751–752
manifests, 761–763
modules, 761–763
performance, 759–760
runtime, 755–760

Close() method, 210, 382
CLS (Common Language Specification),

24, 765–766
CLU language, 602
code

access, security, 24, 758
ambiguity, avoiding, 207
arrays, troubleshooting, 78–80
blocks (/), 105–107
comments, 19–20
events, 498–500
excluding, 138
including, 138
listings, 775–799
machine, compiling CLI to, 752–754
management, 23
observer patterns with multicast delegates,

480–494
unsafe, 738–740
whitespace, formatting with, 11

collection initializers, 514–517
collections

classes, 583–597

Index 811

empty, returning, 601
IEnumerable<T> interface, 517–523
index operators, 597–601
initializers, 232–233
interfaces, 578–583
iterators, 601–616
lists, 583
modifying, 522–523

COLORREF struct, 728
combining assignment with binary opera-

tors, 361
command-line arguments, passing, 164
CommandLineHandler. TryParse()

method, 630
CommandLineInfo class, 621–626
CommanLineInfo class, 621
comments, 19–22

types, 21
XML, 373–377

CommentSamples class, 376
common errors, arrays, 78–80
Common Intermediate Language. See CIL
Common Language Infrastructure. See CLI
Common Language Specification. See CLS
Common Mistake column, 78
common namespaces, methods, 150–152
Common Type System. See CTS
COM objects, 721
comparison operators, 358–359
compatibility of types, 422

between enums, 339
compilers, 373 n1

JIT (just-in-time), 753
Mono, 3 n3

compile time, string concatenation at, 45
compiling

applications, 3–4
CLI to machine code, 752–754
query expressions, 572–573

completion, notification at thread, 708–710
components, 753
composite formatting, 18
compression, interfaces, 296
concatenation, strings, 45
conditional logical operators, 361–362
conditional (?) operator, 113–114
connecting publishers and subscribers,

483–484
consoles

executable assemblies, 366

input/output, 15–19
constant expressions, 98
const keyword, 98

declaring, 251
constraints, 423–435

constructors, 430–431
delegates, 433
inheritance, 431
interfaces, 425–427
limitations, 431–435
multiple, 429–430
operators, 432
specifying, 438–439

constructors, 229–239
anonymous types, 237–239
attributes, initializing, 634–639
collection initializers, 232–233
constraints, 430–431
declaring, 229–231
default, 231–232
defining, 229, 418–419
finalizers, 233
inheritance, 283–284
initialization, centralizing, 236–237
object initializers, 232
overloading, 234
private, declaring, 248
static keyword, 245
this keyword, calling, 235–236

constructs, programming, 374
contextual keywords, 605 n1
continue statements, 133–135
control flow statements, 83, 119–130
controlling threads, 660–665
conventions

code, events, 498–500
filenames, 4
naming properties, 220–221

conversions
Boolean types, 62
checked, 59–62, 400–402
custom, defining, 266–267
between data types, 58–65
between enums and strings, 339–340
numbers, 192
operators, 363, 365
types without casting, 62–64
unchecked, 59–62, 400–402

CopyTo() method, 583
Corrected Code column, 78

Index812

Count property, 582
C pointer declaration, 741
CTS (Common Type System), 24, 764–765
customizing

attributes, 633
conversions, defining, 266–267
events, 504–505
exceptions, defining, 397–402
serialization, 649–651

D
DatabaseException, 400
data persistence, 210
data retrieval from files, 211
data types, 12–13, 31–32

conversions between, 58–65
delegates, 448–449
fundamental, 40–51
fundamental numeric types, 31–40
parameters, 726–727

deadlocks, 659–660
avoiding, 684, 700

decimal types, 34
declaring

aliases, 163
anonymous methods, 457
arrays, 65–66, 69
BinaryTree<T> class, 423
const fields, 251
constructors, 229–231
events, 497–498
external functions, 725
instance fields, 203
interfaces, constraints, 425
Main() methods, 8–9
methods, 155–157
null values, 409
parameters, 157
pointers, 740–742
private constructors, 248
properties, 217–218
readonly modifiers, 251
static constructors, 245
static fields, 240
types from unmanaged structs, 728
variables, 13

Decrement() method, 673
decrement (- -) operators, 94–98
default constructors, 231–232

default operator, 328
default parameters, 157
default values, specifying, 419–420
deferred execution, 530–534

with query expressions, 561–564
defining

abstract classes, 285
cast operators, 364
classes, 199–202

generics, 413–414
CLI (Common Language Infrastructure),

750–751
constructors, 229, 418–419
custom conversions, 266–267
custom exceptions, 397–402
delegate types, 450–451
enums, 336, 337
finalizers, 381–382, 418–419
generic methods, 436
index operators, 597
inheritance, 261–262
interfaces, 297
iterators, 602
namespaces, 370–373
nested classed, 252–254
objects, 200–202
partial classes, 255–256
properties, 217, 225
publishers, 482–483
read-only properties, 223–224
serializable exceptions, 399–400
Stack class, 409
static methods, 243
struct, 324–326
subscriber methods, 480–482

delegates, 446–456
constraints, 433
data types, 448–449
events, 500–501
Func<>, 459–460
instantiating, 451–456
internals, 449–450
invoking, 484–485
multicast, 480–494

errors, 491–493
internals, 490–491

operators, 486–488
types, defining, 450–451

delete operators, 202
deleting whitespace, 11

Index 813

delimiters
statements, 9
three-forward-slash (///), 375

dereferencing pointers, 744–746
derivation

inheritance, 262–272
interfaces, 308, 316
System.Object, 291–292

deterministic destruction, 386, 756
deterministic finalization, 382–385
diagramming interfaces, 314–315
Dictionary<T> class, 588–592
dimensions, sizing, 76
directives
extern alias, 373
preprocessor, 136–143
System, 161
using, 160–164

directories, 175
DirectoryCountLines() method, 176
DirectoryInfoExtension.Copy() method,

244
dispatch method calls, 277
Dispose() method, 383
distinct members, 571–572
division (//) operator, 85
documentation, XML, 376–377
documents, saving, 647
domain applications, CLI (Common Language

Infrastructure), 760–761
do/while loops, 119–122
DoWork() method, 662

E
Eject() method, 265
empty catch block internals, 394
empty collections, returning, 601
encapsulation, 197, 250–252

CLI (Common Language Infrastructure), 758
events, 495–497
information hiding, 214
interfaces, 734
objects, grouping data with methods, 202
types, 368–369

EntityDictionary..., 435
enums, 335–344
equality, 352. See also Equals() method

implementing, 357–358
operators, 109–110

equality (==) operator, 110

Equals() method, overriding, 350–358
Error Description column, 78
errors

arrays, 78–80
handling with exceptions, 180–192
infinite recursion, 177
keywords, 4
multicast delegates, 491–493
preprocessor directives, 139–140
reporting, 189–191
trapping, 181–186
Win32, 729–731

escape characters, 42
events, 479–480, 495–505

code, 498–500
customizing, 504–505
declaring, 497–498
delegates, 500–501
encapsulation, 495–497
generics, 500–501
internals, 501–504
notification with multiple threads, 682–683
reset, 687–689

exceptions
avoiding, 191
background worker patterns, 718–719
catching, 182, 185–186, 391–392
classes, inheritance, 186–188
custom, defining, 397–402
error handling with, 180–192
general catch blocks, 392–394
multiple exception types, 389–391
program flow, 184
serializable, 399–400
threads, 670–672
throwing, 72, 181, 190, 390
types, 187
unhandled, 181

excluding code, 138
Exclusive OR (^) operator, 112
execution

deferred, 530–534
deferred execution with query expressions,

561–564
implicit, implementing, 573
management, 22–25
pseudocode, 674

explicit casts, 58, 59
explicit member implementation, 304–305
exponential notation, 37

Index814

expressions
Boolean, 108–114
constant, 98
lambda, 460–477
for loops, 124
queries, 555–573

compiling, 572–573
deferred execution with, 561–564
distinct members, 571–572
filtering, 564–565
grouping, 568–571
implementing implicit execution, 573
as method invocations, 573–574
projection, 558–560
sorting, 565–566

trees, 471–477
Extensible Markup Language. See XML
extensions

on interfaces, 311–312
IQueryable<T> interface, 551–552
methods, 249–250, 269

external functions
calls, 734–736
declaring, 725

extern alias directive, 373

F
factory interfaces, 434
fiber optics, 658
Fibonacci numbers, 120
Fibonacci series, 120
fields
const, declaring, 251
instances, 203, 240

accessing, 204–205
declaring, 203

static keyword, 240
virtual, properties as, 225–227

filenames, 4
returning, 175

files
data persistence, 210
data retrieval from, 211
headers, 159
XML documentation, 376–377

FileStream object, 210
filtering, 515

query expressions, 564–565
Select() method, 528–530
Where() method, 526–527

finalization
deterministic, 382–385
garbage collection and, 385–386
guidelines, 387–388

finalizers, 233, 381–382
defining, 418–419

finally block, 185
FindAll() method, 587–588
firing event notifications, 682–683
fixing data, 742–743
flags, enums as, 340–343
FlagsAttribute, 343–344, 641–647
floating-point types, 33–34

operator characteristics, 89
unexpected inequality, 89–92

flow
control statements, 98–105
programs, exception handling, 184

foreach loops, 125–127
with arrays, 517–518
with IEnumerable<T> interfaces, 518–522

for loops, 122–125
format items, 18
formatting

composite, 18
indenting, 11
multiple iterators, 614–615
numbers as hexadecimal, 38–39
round-trip, 39–40
System.Console.WroteLine() method, 18
whitespace, 11

forms, Windows Forms, 719–722
f-reachable queues, 386
from clause, 556
full outer joins, 537
Func<>, delegates, 459–460
functions. See also methods

external
calls, 734–736
declaring, 725

pointers, mapping to delegates, 737
pure virtual, 287

fundamental data types, 40–51
fundamental numeric types, 31–40

G
garbage collection, 24, 201, 377–380

CLI (Common Language Infrastructure),
755–757

and finalization, 385–386

Index 815

.NET, 378–379, 756–757
weak references, 379–380

general catch blocks, 392–394
generating

anonymous types, 514
XML documentation files, 376–377

generics, 405
benefits of, 414–415
catch blocks, 188–189
CIL, 440–441
classes, 411–413

defining, 413–414
constraints, 423–435
constructors, defining types, 418–419
C# without, 406–411
events, 500–501
instantiating, 441–442
interfaces, 416–417
internals, 440–444
Java, 443
methods, 436–440
structs, 416–417
types, 411–422

nesting, 421–422
reflection, 626–629

GetCurrentProcess() method, 725
GetCustomAttributes() method, 634
GetFiles() method, 707
GetFullName() method, 157–159
GetGenericArguments() method, 628
GetHashCode() method, overriding, 348–350
GetName() method, 206
getter methods, access modifiers, 224–225
GetType() method, 619–620
GetUserInput() method, 157–159
global methods, 156
global variables, 239
goto statements, 135–136
greater than (>) operator, 110
greater than or equal to (>=) operator, 110
groupby clause, 556
grouping

data with methods, 202
query expressions, 568–571

GroupJoin() method, 543–545
guest computers, 724

H
handling

errors. See errors

exceptions. See exceptions
hardcoding values, 35
hash (#) symbol, 136
headers

catch blocks, 183
files, 159

heaps, reference types, 323
hexidecimal notation, 38
hiding information, 214
hierarchies, classes, 198
hints for visual code editors, 142–143
hooking up background worker patterns, 717

I
ICollection<T> interface, 582–583
IComparable<T> interface, 580
IComparer<T> interface, 580
identifiers, 6
IDictionary<T> interface, 579–580
IDisposable interface, 383
IEnumerable<T> interface, 517–523

query expressions, 558
if statements, 102–103
ILDASM and CIL, 26–29
IList<T> interface, 579–580
immutable strings, 15, 49–50
implementing

CLI (Common Language Infrastructure),
751–752

equality, 357–358
Equals() method, 354
events, customizing, 504–505
GetHashCode() method, 349–350
implicit execution, 573
interfaces, 302–307, 416–417
multiple inheritance via interfaces, 313–315
properties, 219–220

implicit casts, 59, 62
implicit execution, implementing, 573
implicit local variables, 510–514
implicit member implementation, 305–306
implicit overriding, 274
implicit typed local variables, 53–55
including code, 138
increasing readability, 156
increment (++) operators, 94–98
indenting, 11
IndexerNameAttribute, 599
index operators, 597–601
inequality (!=) operator, 110

Index816

inferencing types, 437–438
infinite recursion errors, 177
information hiding, 214
inheritance, 197–199, 261

abstract classes, 284–290
base classes, overriding, 272–284
chains, casting with, 265–266
classes, exceptions, 186–188
constraints, 431
constructors, 283–284
defining, 261–262
derivation, 262–272
interfaces, 308–310

implementing multiple via, 313–315
multiple, 310–311
with value types, 328–329

is operator, 292–293
multiple, 270
as operator, 293–294
single, 269–272
System.Object, 290–292

Initialize() method, 221
initializers

collections, 232–233, 514–517
objects, 232

initializing
attributes, 634–639
centralizing, 236–237
static keyword, 246
three-dimensional arrays, 69
two-dimensional arrays, 71

inner classes, 254
inner joins, 540–543
input, consoles, 15–19
instances

arrays, 75–76
custom attributes, 636
fields, 203, 240

accessing, 204–205
declaring, 203

methods, 46, 205–206
ThreadStart methods, 663

instantiating
arrays, 66–70
classes, 199–202
delegates, 451–456
generics, 441–442

integers
enums, comparing, 335
strings, numbers, 181

types, 32–33
values, overflowing, 59, 400

interfaces, 295–297
classes

casting between, 307
comparing, 317–318

collections, 578–583
index operators, 597–601

compression, 296
constraints, 425–427
defining, 297
derivation, 316
diagramming, 314–315
encapsulation, 734
extension methods on, 311–312
factory, 434
generics, 416–417
ICollection<T>, 582–583
IComparable<T>, 580
IComparer<T>, 580
IDictionary<T>, 579–580
IDisposable, 383
IEnumerable<T>, 517–523

query expressions, 558
IList<T>, 579–580
implementing, 302–307
inheritance, 308–310

multiple, 310–311
with value types, 328–329

IQueryable<T>, 551–552
query expressions, 558

iterators, 603
multiple inheritance, implementing via,

313–315
polymorphism through, 297–302
versioning, 315–317
wrappers, 736–737

internals
anonymous methods, lambda expressions,

468
delegates, 449–450
empty catch block, 394
events, 501–504
generics, 440–444
multicast delegates, 490–491
outer variables, 470–471
properties, 227–229

interoperability, languages, 24
invoking

delegates, 484–485

Index 817

members, 621–626
platforms, 724–738
sequential invocation, 488–489

IQueryable<T> interface, 551–552
query expressions, 558

IsBackGround property, 664
is operator, 292–293
items, formatting, 18
iteration

clean up following, 521
Dictionary<T> class, 591
loops, 122

iterators, 601–616
defining, 602
examples of, 607–609
multiple, 614–615
overview of, 612–614
and state, 606–607
syntax, 603–604
values, yielding, 604–606

J
jagged arrays, 70

declaring, 72
Java, 4

array declarations, 66
exception specifiers, 392
generics, 443
implicit overriding, 274
inner classes, 254
virtual methods by default, 273
wildcards, 161

JIT (just-in-time) compilers, 753
jitting, 753
Join() method, 540–543, 663
join operations, 536–540
jump statements, 130–136
just-in-time (JIT) compilers, 753

K
keywords, 4–6
const, 98
contextual, 605 n1
filtering, 564
lock, synchronization, 677–679
new, 67
null, 51–52
static, 239–249. See also static keyword
string, 161 n1

this, 206–213
calling constructors, 235–236

void, 52–53

L
lambda expressions, 460–477
languages

CIL. See CIL
interoperability, 24
XML. See XML

length
arrays, retrieving, 72
strings, 48–49

less than (<) operator, 110
less than or equal to (<=) operator, 110
libraries, classes, 366
limitations of constraints, 431–435
line-based statements, 9
lines, specifying numbers, 141–142
LinkedList<T> class, 597
Liskov, Barbara, 601
listings, code, 775–799
lists, collections, 583
List<T> class, 583–586
literals, 44–46

values, 35, 68
local storage, threads, 689
local variables, 12

implicit, 510–514
implicitly typed, 53–55
multiple threads and, 675

locking, avoiding, 680, 685
lock keyword

synchronization, 677–679
value types in statements, 332–334

logical negation (!) operator, 112–113
logical operators, 111–112

overview of, 116–117
loops
for, 122–125
decrement operators, 94–97
do/while, 119–122
foreach, 125–127

with arrays, 517–518
with IEnumerable<T> interfaces,

518–522
while, 119–122
yield return statements, 609–611

lowercase, 9

Index818

M
machine code, compiling CLI to, 752–754
Main() method, 7

declaring, 8–9
parameters, 164–166

managing
code, 23
execution, 22–25
threads, 663–665

manifests, CLI (Common Language Infra-
structure), 761–763

ManualResetEvent, 687–689
many-to-many relationships, 537
matching variables, 167
math constants, 107
members, 202

abstract classes, defining, 286
base, 282–283
distinct, 571–572
invoking, 621–626
overloading, 274
overriding object, 347–358
referent types, accessing, 746–747
System.Object, 290–292
types, access modifiers, 369–370

messages, tunring off warnings, 140–141
metadata, 22, 24, 766–767

accessing, 619–621
reflection, 618. See also reflection

MethodImpAttribute, 691
methods, 147–148
Abort(), 664–665
anonymous, 456–458

lambda expressions, 468
arrays, 73–75
BubbleSort(), 446
calls, 148–150

recursion, 174–177
statements versus, 154

Close(), 210, 382
CommandLineHandler. TryParse(), 630
CopyTo(), 583
data, grouping with, 202
declaring, 155–157
Decrement(), 673
DirectoryCountLines(), 176
DirectoryInfoExtension.Copy(), 244
Dispose(), 383
DoWork(), 662

Eject(), 265
Equals()

overriding, 350–358
extensions, 249–250, 269

on interfaces, 311–312
external

calling, 734–736
declaring, 725

FindAll(), 587–588
generics, 436–440
GetCurrentProcess(), 725
GetCustomAttributes(), 634
GetFiles(), 707
GetFullName(), 157–159
GetGenericArguments(), 628
GetHashCode(), 348–350
GetName(), 206
getter, 224–225
GetType(), 619–620
GetUserInput(), 157–159
global, 156
GroupJoin(), 543–545
Initialize(), 221
instances, 46, 75–76, 205–206
Join(), 540–543, 663
Main(), 7

declaring, 8–9
parameters, 164–166

names, 153
namespaces, 150–152
OrderBy(), 534–536
overloading, 177–179
overview of, 7–8, 148
Parse(), 62
partial, 256–259
Pop(), 406
Push(), 406
refactoring into, 156
ReferenceEquals(), 351
returns, 153–154, 157–159, 493–494
Run(), 276
Select(), 528–530
SelectMany(), 547–548
SetName(), 206
setter, access modifiers, 224–225
static keyword, 243–244
Store(), 210
strings, 46–47
subscriber, defining, 480–482
System.Console.Read(), 17

Index 819

System.Console.ReadLine(), 16
System.Console.Write(), 17
System.Console.WroteLine(), 18
System.Text.StringBuilder, 51
ThenBy(), 534–536
Thread.Sleep(), 664
ToString(), overriding, 348
TryParse(), 64–65, 192
typeof(), 620–621
Undo(), 408
for unsafe code, 739–740
virtual, calling, 275
VirtualAllocEx(), 726
Where(), 526–527

Microsoft .NET, 771–772
minus (-) operator, 84–85
modifiers

access, 213–215
classes, 369
CLI (Common Language Infrastructure),

758
getter and setter methods, 224–225
private, 267–268
protected, 268–269
type members, 369–370

new, 278
nullable, 57–58
readonly, declaring, 251
sealed, 282
visual, 273
volatile, 680

modifying
assemblies, targets, 366–367
collections, 522–523
variables, values, 14

modules, 367
CLI (Common Language Infrastructure),

761–763
monitoring

synchronization, 675–677
threads, 700

Mono compilers, 3 n3, 772–773
multicast delegates, 480–494

errors, 491–493
internals, 490–491

multiple constraints, 429–430
multiple exception types, 389–391
multiple inheritance, 270, 310–311
multiple iterators, 614–615
multiple statements, 10

multiple threads
event notifications, 682–683
and local variables, 675

multiple type parameters, 420–421
multiplication (*) operator, 85
multithreading patterns, 699–700

asynchronous results patterns, 700–714
background worker patterns, 714–719
Windows Forms, 719–722

N
namespaces, 159

aliasing, 163–164, 372–373
defining, 370–373
methods, 150–152
nesting, 160, 371

naming
conventions, properties, 220–221
filenames, 4
indexers, 599
methods, 153
parameters, 641

caller variables, matching, 167
types, 152

parameters, 415
nesting

classes, 252–254
generic types, 421–422
if statements, 103–105
namespaces, 160, 371
using declaratives, 162

.NET, 771–772
garbage collection, 378–379, 756–757
versioning, 25–26

new keyword, 67
newline (n) character, 44, 48
new modifier, 278
new operator, value types, 327
non-numeric types, using binary operators

with, 87
notation

exponential, 37
hexidecimal, 38

notification
asynchronous results, 705
callback, 710
events with multiple threads, 682–683
thread completion, 708–710

NOT (!) operator, 112–113

Index820

nowarn: warn list option, 141
nullable modifiers, 57–58
nullable value types, 409–411
null keyword, 51–52
NullReferenceException, 390
null values

checking for, 485–486
declaring, 409
returning, 601

numbers
to Boolean type conversions, 62
converting, 192
Fibonacci, 120
formatting as hexadecimal, 38–39
lines, specifying, 141–142
strings versus integers, 181

O
object members, overriding, 347–358
object-oriented programming (OOP), 196–

199
objects

COM, 721
defining, 200–202
encapsulation, grouping data with

methods, 202
FileStream, 210
initializers, 232
resurrecting, 387
StreamWriter, 211
System.Object, 290–292

observer patterns, 480–494
one-to-many relationships, 537, 543–545
OOP (object-oriented programming), 196–

199
operators, 83
as, 293–294
assignment, 14, 93–94

binary operators, combining, 361
bitwise, 118–119

associativity, 87
binary, 85–87, 359–361
bitwise, 114–119
Boolean expressions, 108–114
cast, 59
comparison, 358–359
conditional logical, 361–362
constraints, 432
conversion, 363, 365
decrement, 94–98

default, 328
delegates, 486–488
delete, 202
equality, 109–110
increment, 94–98
index, 597–601
is, 292–293
lambda, 460
logical, 111–112, 116–117
new, value types, 327
order of precedence, 144
overloading, 358–365
overview of, 84–98
parenthesis, 92–93
relational, 109–110
shift, 115–116
standard query, 523–552
unary, 84–85, 362–363

options, nowarn: warn list, 141
orderby clause, 565
OrderBy() method, 534–536
order of precedence, operators, 87, 144
OR (||) operator, 111
outer joins, 545–546
outer variables, 469–470

internals, 470–471
output

CIL, 27–28
consoles, 15–19
parameters, 170–171

overflowing integer values, 59, 400
overhead, avoiding, 567
overloading

constructors, 234
members, 274
methods, 177–179
operators, 358–365
unary operators, 362

overriding
base classes, 272–284
Equals() method, 350–358
GetHashCode() method, 348–350
implicit, 274
members, object, 347–358
ToString() method, 348

P
parameterized types, 411
parameterless anonymous methods, 458
parameters, 147–148, 149, 153, 167–174

Index 821

AllowMultiple, 641
arrays, 172–174
data types, 726–727
declaring, 157
default, 157
Main() method, 164–166
multiple type, 420–421
naming, 641

matching caller variables, 167
types, 415

output, 170–171
predicates, 587–588
references, 168–170
threads, passing to, 665–668
types, 626–627
values, 167–168
variables, defining index operators, 600–

601
parenthesis operators, 92–93
Parse() method, 62
partial classes, 254–259
partial methods, 256–259
Pascal casing, 7
pass-by-reference, 493–494
passing

anonymous methods, 456
arbitrary state, 711–713
command-line arguments, 164
data to and from threads, 700
parameters to threads, 665–668
this keywords, 209
variables

out only, 170
parameter lists, 172
by reference, 169

patterns
iterator interfaces, 603
multithreading, 699–700

asynchronous results patterns, 700–714
background worker patterns, 714–719
Windows Forms, 719–722

observer, 480–494
performance, CLI (Common Language Infra-

structure), 759–760
persistence, 210
platforms

invoking, 724–738
portability, 24, 758–759

plus (+) operator, 84–85
pointers, 727–728, 738–747

assigning, 742–744

declaring, 740–742
dereferencing, 744–746
functions, mapping to delegates, 737

polymorphism, 199, 288–290
through interfaces, 297–302

pooling threads, 669–670, 700
Pop() method, 406
portability, platforms, 24, 758–759
precedence, operator order of, 87, 144
predefined attributes, 643–644
predefined types, 31
predicates, 464, 564

parameters, 587–588
preprocessor directives, 136–143
primary collection classes, 583–597
primitives, 31
Priority property, 664
private access modifiers, 214
private access modifiers, 267–268
private constructors, declaring, 248
program flow, exception handling, 184
programming

ambiguity, avoiding, 207
arrays, troubleshooting, 78–80
C#. See C#
code listings, 775–799
constructs, associating XML comments

with, 374
events, 498–500
Hello World, 2–4
observer patterns with multicast delegates,

480–494
OOP (object-oriented programming), 196–

199
syntax fundamentals, 4–11
unsafe code, 738–740

projection, query expressions, 558–560
properties, 215–229

C#, 48–51
CIL (Common Intermediate Language), 228
Count, 582
declaring, 217–218
defining, 217, 225
implementing, 219–220
internals, 227–229
IsBackGround, 664
Priority, 664
read-only, 223–224
ref or out parameter values, 227
static keyword, 246
ThreadState, 664

Index822

properties (Continued)
with validation, using with, 221–222
as virtual fields, 225–227
write-only, 223–224

protected access modifiers, 268–269
pseudocode execution, 674
publishers, defining, 482–483
pure virtual functions, 287
Push() method, 406

Q
qualifiers, namespace alias, 372–373
queries

expressions, 555–573
compiling, 572–573
deferred execution with, 561–564
distinct members, 571–572
filtering, 564–565
grouping, 568–571
implementing implicit execution, 573
as method invocations, 573–574
projection, 558–560
sorting, 565–566

standard query operators, 523–552
queues, f-reachable, 386
Queue<T> class, 595–596

R
race conditions, 659, 675
readability, increasing, 156
readonly modifiers, declaring, 251
read-only properties, 223–224
recursion, 174–177

infinite errors, 177
redimensioning arrays, 75
refactoring

into base classes, 262
into methods, 156

ReferenceEquals() method, 351
references

assemblies, 365–370
parameters, 168–170
pass-by-reference, 493–494
types, 56–57, 168, 323–326

instantiating generics, 442–444
variables, passing by, 169
weak, 379–380

referent types, 740

accessing, 746–747
reflection, 617, 618–629

generic types, 626–629
relational operators, 109–110
relationships, 537
remainder (%) operator, 85
removing whitespace, 11
reporting errors, 189–191
reserved words, 4–6
reset events, 687–689
resource cleanup, 381–388
results

asynchronous results patterns, 700–714
queries, 568. See also queries

resurrecting objects, 387
returns

empty collections, 601
methods, 157–159, 493–494
values, 149

return statements, 158
yield, 609–611

reversing strings, 77
round-trip formatting, 39–40
Run() method, 276
running

applications, 3–4
threads, 660–665

runtime
arrays, defining at, 68
CLI (Common Language Infrastructure),

755–760
virtual methods, calling, 275

S
SafeHandle, 731–732
safety, types, 24, 757
saving documents, 647
scope, 107–108, 153
sealed classes, 272
sealed modifier, 282
searching

attributes, 633–634
command-line options, 77

security
access, 758
code, 24

select clause, 556
selecting

anonymous types, 570

Index 823

lock objects, 679
SelectMany() method, 547–548
Select() method, 528–530
semicolons (;), statements without, 10
separate threads, running, 660–665
sequences, escape, 42
sequential invocation, 488–489
serialization

attributes, 647–655
customizing, 649–651
exceptions, 399–400
versioning, 651–654

series, Fibonacci, 120
SetName() method, 206
setter methods, access modifiers, 224–225
shift operators, 115–116
single inheritance, 269–272
sizing dimensions, 76
slicing, time, 658
SortedDictionary<T> class, 592
SortedList<T> class, 592
sorting, 534–536
IComparer<T> interface, 580
query expressions, 565–566

specializing types, 199
specifying

constraints, 438–439
default values, 419–420
line numbers, 141–142

SQL query expressions, 557
Stack class, 406

defining, 409
stacks, 323

allocating on, 744
Stack<T> class, 594–595
Stackint type, 442
standard query operators, 523–552
standards, Unicode, 41
starting threads, 662–663
state, 520

arbitrary, passing, 711–713
iterators and, 606–607
synchronization, 672

statements, 9
break, 131–133
continue, 133–135
control flow, 83. See also control flow

statements
delimiters, 9

goto, 135–136
if, 102–103
jump, 130–136
lock, value types in, 332–334
versus method calls, 154
multiple, 10
nested if, 103–105
return, 158
switch, 127–130, 158
throw, reporting errors, 189–191
using, 382–385
without semicolons (;), 10
yield, 615–616
yield break, 612
yield return, 609–611

static keyword, 239–249
constructors, 245
fields, 240
initialization, 246
methods, 243–244
properties, 246

static ThreadStart methods, 663
Store() method, 210
StreamWriter object, 211
string keyword, 161 n1
strings, 43

applying, 53
arrays as, 76–78
concatenation, 45
enums, converting, 339–340
immutable, 15, 49–50
integers, numbers, 181
length, 48–49
methods, 46–47
plus (+) operators, using with, 87–88
reversing, 77

struct
defining, 324–326
initialization, 326–327

StructLayoutAttribute, 728–729
structs

classes, comparing, 611
COLORREF, 728
constraints, 428–429
generics, 416–417

styles, avoiding ambiguity, 207
subscriber methods, defining, 480–482
subtypes, 199
switch statements, 127–130, 158

Index824

symbols, preprocessor, 139
synchronization

best practices, 684–691
lock keyword, 677–679
monitoring, 675–677
System.Threading.Interlocked class,

681–682
threads, 672–691
types, 685–691

syntax
fundamentals, 4–11
iterators, 603–604

System.AttributeUsageAttribute, 639–640
System.Collections.Genric.Stack<T>

class, 414
System.Collections.Hashtable, 639
System.ConditonalAttribute, 644–646
System.Console.ReadLine() method, 16
System.Console.Read() method, 17
System.Console.Write() method, 17
System.Console.WroteLine() method, 18
System directive, 161
System.Enum, 338. See also enums
System.Exception, 394. See also exceptions
System.NonSerializable, 647
System.Object, 290–292
System.ObsoleteAttribute, 646–647
System.SerializableAttribute, 647

and CIL, 654–655
System.Text.StringBuilder method, 51
System.Threading.Interlocked class, 681–

682
System.Threading.Mutex class, 685–686
System.Type, 619

T
targets, modifying assemblies, 366–367
templates, C++, 427
ThenBy() method, 534–536
this keyword, 206–213

constructors, calling, 235–236
threads

completion, notification of, 708–710
controlling, 660–665
local storage, 689
managing, 663–665
monitoring, 700
multiple, event notifications, 682–683
multithreading, 657. See also multithreading

overview of, 658–660
parameters, passing to, 665–668
pooling, 669–670, 700
running, 660–665
starting, 662–663
synchronization, 672–691
unhandled exceptions, 670–672

thread-safe incrementing and decrementing,
97–98

Thread.Sleep() method, 664
ThreadState property, 664
ThreadStaticAttribute, 689–691
three-dimensional arrays, initializing, 69
three-forward-slash delimiter (///), 375
throwing exceptions, 72, 181, 190, 390
throw statements, reporting errors, 189–191
timers, 691–697
time slicing, 658
ToString() method, overriding, 348
trapping errors, 181–186
trees, expressions, 471–477
troubleshooting

arrays, 78–80
buffer overflow bugs, 73
error handling with exceptions, 180–192
infinite recursion errors, 177
preprocessor directives, 139–140
unsafe code, 738–740
Win32 errors, 729–731

try blocks, 183
TryParse() method, 64–65, 192
turning off warning messages, 140–141
two-dimensional arrays

declaring, 66, 69
initializing, 71

typeof() method, 620–621
types

aliases, declaring, 163
anonymous, 54, 237–239, 508–510

generating, 514
with query expressions, 560, 564
selecting, 570

base and derived, casting between, 264–265
Boolean, 40–41
categories of, 55–57, 322–329
characters, 41
classes, 199
comments, 21
compatibility, 422

between enums, 339

Index 825

conversions without casting, 62–64
CTS (Common Type System), 24, 764–765
data, 12–13. See also data types
decimal, 34
definition, 6–7
delegates, 448–449

defining, 450–451
encapsulation, 368–369
exceptions, 187
floating-point, 33–34

operator characteristics, 89
unexpected inequality, 89–92

fundamental numeric, 31–40
generics, 411–422

nesting, 421–422
reflection, 626–629

inferencing, 437–438
integers, 32–33
members, access modifiers, 369–370
multiple exception, 389–391
multiple type parameters, 420–421
names, 152
non-numeric, using binary operators with, 87
parameterized, 411
parameters, 626–627

naming, 415
predefined, 31
references, 56–57, 168, 323–326

instantiating generics, 442–444
referent, 740

accessing, 746–747
safety, 24, 757
synchronization, 685–691
unmanaged, 740
unmanaged structs, declaring from, 728
values, 55–56, 168, 321, 322

boxing, 329–335
enums, 335–344
instantiating generics, 441–442
nullable, 409–411

well-formed, 347. See also well-formed
types

U
UML (Unified Modeling Language), 198
unary operators, 84–85, 362–363
unboxing, 329. See also boxing

avoiding, 335
uncertainty, 660

unchecked blocks, 61
unchecked conversions, 59–62, 400–402
underscore (_), 15
Undo() method, 408
undo operations, 406
unhandled exceptions, 181

threads, 670–672
Unicode, 41

characters, 41–43
Unified Modeling Language. See UML
unmanaged code, 23
unmanaged types, 740
unsafe code, 738–740
uppercase, 9
using directive, 160–164
using statement, 382–385

V
validation, using properties with, 221–222
values

default, specifying, 419–420
hardcoding, 35
integers, overflowing, 59, 400
iterators, yielding, 604–60
literals, 35, 68
null

declaring, 409
returning, 601

parameters, 167–168
return, 149
types, 55–56, 168, 321, 322

boxing, 329–335
enums, 335–344
instantiating generics, 441–442
nullable, 409–411

variables, modifying, 14
variables

applying, 12–15
assigning, 14–15
declaring, 13

anonymous methods, 457
global, 239
local, 12

implicit, 510–514
implicitly typed, 53–55
multiple threads and, 675

matching, 167
outer, 469–470

internals, 470–471

Index826

variables (Continued)
parameters, defining index operators,

 600–601
references, passing by, 169
values, modifying, 14

Venn diagrams, 537
verbatim string literals, 44
versioning

interfaces, 315–317
.NET, 25–26
serialization, 651–654

VES (Virtual Execution System), 23
VirtualAllocEx() method, 726
virtual computes, 724
Virtual Execution System. See VES
virtual fields, properties as, 225–227
virtual methods, calling, 275
Visual Basic

arrays, redimensioning, 75
default parameters, 157
global methods, 156
global variables, 239
instances, accessing, 208
line-based statements, 9

Visual Basic .NET, project scope, 161
visual code editors, hints for, 142–143
visual modifiers, 273
void keyword, 52–53
volatile modifier, 680

W
warnings

messages, turning off, 140–141
preprocessor directives, 139–140

weak references, garbage collection, 379–380
well-formed types

assemblies, referencing, 365–370
garbage collection, 377–380
namespaces, defining, 370–373
object members, overriding, 347–358
operators, overloading, 358–365
resource cleanup, 381–388
XML comments, 373–377

Where() method, 526–527
while loops, 119–122
whitespace, 10–11

deleting, 11
wildcards, Java, 161
Windows executable assemblies, 367
Windows Forms, 719–722
Win32 errors, 729–731
wrappers, APIs (Application Programming

Interfaces), 736–737
write-only properties, 223–224
writing

comments, 19–20
output to consoles, 17–19

X
XML (Extensible Markup Language), 22

comments, 20, 373–377
documentation, 376–377

Y
yield break statements, 612
yielding values from iterators, 604–605
yield return statements, 609–611
yield statements, 615–616

Z
zero-based arrays, 65

	Foreword
	Preface
	12 Delegates and Lambda Expressions
	Introducing Delegates
	Defining the Scenario
	Delegate Data Types
	Delegate Internals
	Defining a Delegate Type
	Instantiating a Delegate

	Anonymous Methods
	System-Defined Delegates: Func<>
	Lambda Expressions
	Statement Lambdas
	Expression Lambdas
	Outer Variables
	Expression Trees

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

