
A L A N S H A L L O W AY
G U Y B E A V E R
J A M E S R . T R O T T

Ach i e v i ng En t e r p r i s e Ag i l i t y

LEAN-AGILE
SOFTWARE

DEVELOPMENT

Lean-Agile Series

S
H

A
L

L
O

W
A

Y
B

E
A

V
E

R
T

R
O

T
T

LEA
N

-A
G

ILE
SO

FTW
A

RE D
EV

ELO
PM

EN
T

SOFTWARE ENG INEER ING/AG ILE

ISBN-13:
ISBN-10:

978-0-321-53289-3
0-321-53289-9

9 7 8 0 3 2 1 5 3 2 8 9 3

5 3 9 9 9

$39.99 U.S./$47.99 CANADA

i n f o r m i t . c o m / n e t o b j e c t i v e s
n e t o b j e c t i v e s . c o m

Cover design by Chuti Prasertsith
Cover photo by John Wang /Getty Images

 Text printed on recycled paper

LEAN-AGILE SOFTWARE DEVELOPMENT
Agile techniques have demonstrated immense potential for developing more effective, higher-quality software. However,

scaling these techniques to the enterprise presents many challenges. The solution is to integrate the principles and practices

of Lean Software Development with Agile’s ideology and methods. By doing so, software organizations leverage Lean’s

powerful capabilities for “optimizing the whole” and managing complex enterprise projects.

A combined “Lean-Agile” approach can dramatically improve both developer productivity and the software’s business value.

In this book, three expert Lean software consultants draw from their unparalleled experience to gather all the insights,

knowledge, and new skills you need to succeed with Lean-Agile development.

Lean-Agile Software Development shows how to extend Scrum processes with an Enterprise view based on Lean principles.

The authors present crucial technical insight into emergent design, and demonstrate how to apply it to make iterative

development more effective. They also identify several common development “anti-patterns” that can work against your

goals, and they offer actionable, proven alternatives.

Lean-Agile Software Development shows how to

	 •	 Transition to Lean Software Development quickly and successfully

	 •	 Manage the initiation of product enhancements

	 •	 Help project managers work together to manage product portfolios more effectively

	 •	 Manage dependencies across the software development organization and with its partners and colleagues

	 •	 Integrate development and QA roles to improve quality and eliminate waste

	 •	 Determine best practices for different software development teams

The book’s companion Web site, www.netobjectives.com/lasd, provides updates, links to related materials, and support
for discussions of the book’s content.

About the Authors

Alan Shalloway, founder and CEO of Net Objectives, is a renowned thought leader, trainer, and coach in Lean Software

Development, Kanban, and Agile design patterns. Guy Beaver, VP of Enterprise Engagements and senior consultant/coach

with Net Objectives, has an extensive track record of success in Lean-Agile implementations in large, midsize, and start-up

organizations. James Trott, senior consultant for Net Objectives, has used object- and pattern-based analysis techniques

throughout twenty years in knowledge management and knowledge engineering. Shalloway and Trott coauthored Design

Patterns Explained (Addison-Wesley, 2001).

Illustrations by Andrea Chartier Bain

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a trade-
mark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales, which may include electronic versions and/or custom covers and content particular to
your business, training goals, marketing focus, and branding interests. For more information, please
contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/netobjectives

Library of Congress Cataloging-in-Publication Data

Shalloway, Alan.
 Lean-agile software development : achieving enterprise agility / Alan Shalloway, Guy Beaver, James
R. Trott.
 p. cm.
 Includes bibliographical references and index.
 ISBN 0-321-53289-9 (pbk. : alk. paper) 1. Agile software development. I. Beaver, Guy. II. Trott,
James. III. Title.
 QA76.76.D47S47 2009
 005.1—dc22
 2009032621

Copyright © 2010 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright,
and permission must be obtained from the publisher prior to any prohibited reproduction, storage in
a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-321-53289-3
ISBN-10: 0-321-53289-9

Text printed in the United States on recycled paper at Courier in Stoughton, Massachusetts.
First printing, October 2009

xvii

If you are like me, you will just skim this foreword for the series and
move on, figuring there is nothing of substance here. That would be a

mistake. Unless you have read this foreword in another book in the series,
please take a moment with me at the outset of this book (if you’ve already
read a foreword from another book, please skip a couple of pages to This
Book’s Role in the Series).

I want you to consider with me a tale that most people know but don’t
often think about. That tale illustrates what is ailing this industry. And it
sets the context for why we wrote the Net Objectives Product Development
Series and this particular book.

I have been doing software development since 1970. To me, it is just
as fresh today as it was four decades ago. It is a never-ending source of
fascination to me to contemplate how to do something better, and it is a
never-ending source of humility to confront how limited my abilities
truly are. I love it.

Throughout my career, I have also been interested in other industries,
especially engineering and construction. Now, engineering and construc-
tion have suffered some spectacular failures: the Leaning Tower of Pisa,
the Tacoma Narrows Bridge, the Hubble telescope. In its infancy, engi-
neers knew little about the forces at work around them. Mostly, engineers
tried to improve practices and to learn what they could from failures. It
took a long time—centuries—before they acquired a solid understanding
about how to do things.

No one would build a bridge today without taking into account long-
established bridge-building practices (factoring in stress, compression, and
the like) but software developers get away with writing code based on
“what they like” every day, with little or no complaint from their peers.
Why do we work this way?

Series Foreword
The Net Objectives Product

Development Series
Alan Shalloway, CEO, Net Objectives

xviii Series Foreword • The Net Objectives Product Development Series

But this is only part of the story. Ironically, much of the rest is related
to why we call this the “Net Objectives Product Development Series.” The
Net Objectives part is pretty obvious. All of the books in this series were
written either by Net Objectives staff or by those whose views are consis-
tent with ours. Why Product Development? Because when building soft-
ware, it is always important to remember that software development is
really product development.

By itself, software has little inherent value. Its value comes when it
enables delivery of products and services. Therefore, it is more useful to
think of software development as part of product development—the set
of activities we use to discover and create products that meet the needs
of customers while advancing the strategic goals of the company.

Mary and Tom Poppendieck, in their excellent book, Implementing Lean
Software Development: From Concept to Cash (2006), note:

It is the product, the activity, the process in which software is
embedded that is the real product under development. The
software development is just a subset of the overall product
development process. So in a very real sense, we can call soft-
ware development a subset of product development. And thus,
if we want to understand lean software development, we
would do well to discover what constitutes excellent product
development.

In other words, software in itself isn’t important. It is the value that it
contributes—to the business, to the consumer, to the user—that is impor-
tant. When developing software, we must always remember to look to
what value is being added by our work. At some level, we all know this.
But so often organizational “silos” work against us, keeping us from
working together, from focusing on efforts that create value.

The best—and perhaps only—way to achieve effective product devel-
opment across an organization is a well-thought-out combination of Lean
principles to guide the enterprise, Agile practices to manage teams, and
technical skills (test-driven development, design patterns). That is the
motivation for the Net Objectives Product Development Series.

Too long, this industry has suffered from a seemingly endless swing of
the pendulum from no process to too much process and then back to no
process: from heavyweight methods focused on enterprise control to dis-
ciplined teams focused on the project at hand. The time has come for
management and individuals to work together to maximize the produc-

 This Book’s Role in the Series xix

tion of business value across the enterprise. We believe Lean principles
can guide us in this.

Lean principles tell us to look at the systems in which we work and
then relentlessly improve them in order to increase our speed and quality
(which will drive down our cost). This requires

1. Business to select the areas of software development that will
return the greatest value

2. Teams to own their systems and continuously improve them

3. Management to train and support their teams to do this

4. An appreciation for what constitutes quality work

It may seem that we are very far from achieving this in the software-
development industry, but the potential is definitely there. Lean princi-
ples help with the first three and the understanding of technical
programming and design has matured far enough to help us with the
fourth.

As we improve our existing analysis and coding approaches with the
discipline, mindset, skills, and focus on value that Lean, Agile, patterns,
and test-driven development teach us, we will help elevate software
development from being merely a craft into a true profession. We have
the knowledge required to do this; what we need is a new attitude.

The Net Objectives Product Development Series aims to develop this
attitude. Our goal is to help unite management and individuals in work
efforts that “optimize the whole”:

• The whole organization Integrating enterprise, team, and indi-
viduals to work best together.

• The whole product Not just its development, but also its main-
tenance and integration.

• The whole of time Not just now, but in the future. We want
sustainable ROI from our effort.

This Book’s Role in the Series

While Scott Bain’s Emergent Design: The Evolutionary Nature of the Software
Profession dealt with how to raise the bar in technical practices, this book
is about how to raise the bar in product and project management. Both

xx Series Foreword • The Net Objectives Product Development Series

books, as I suspect all books in the series will be, are based on the belief
that there are laws (rules) that must be followed to be effective and effi-
cient.

As Agile has matured, we’re finding it useful to go beyond the mere
mandate of building in stages and having teams solve their own problems.
While both are sage advice, more is needed as our products become more
complex. Management needs to become more intimately involved in
solving the problems teams face. And although the development teams
are the ones who actually deliver the value, they are not empowered to
solve the organizational and cultural problems that get in their way.

We believe that Lean thinking provides a new way for management
and teams to work together. We further believe that the next generation
of Agile methods will be those that promote this cooperative effort instead
of being neutral at best and negative at worst. This book is therefore about
raising software development closer to a professional level throughout
the organization.

The End of an Era, the Beginning of a New Era

I believe the software industry is at a crisis point. The industry is con-
tinually expanding and becoming a more important part of our everyday
lives. But software development groups are facing dire problems. Decaying
code is becoming more problematic. An overloaded workforce seems to
have no end in sight. Although Agile methods have brought great
improvements to many teams, more is needed. By creating a true soft-
ware profession, combined with the guidance of Lean principles and
incorporating Agile practices, we believe we can help uncover the
answers.

I hope you find this book series to be a worthy guide.

xxi

Preface

This book was born from need and from knowledge. The need is to
expand the knowledge base of software development in both the

management and process worlds so as to create a new base. Integrating
Agile has transformed the software-development process in less than a
decade. Although its mandate applies to all of software development, its
focus typically has been on the teams directly involved in the develop-
ment of software and on the projects they work on. As Agile has begun
to transcend the early-adopter phase and move on to the early-majority
phase, there are new challenges to address as Agile is applied to quite
different situations.

• Larger organizations are attempting to adopt Agile for the first time.

• Organizations that are already using Agile are expanding the scale
of their adoption.

• Organizations that are somewhat dysfunctional are starting to adopt
Agile.

Extending Agile to these new situations creates the need for a better
understanding of what Agile is and a broader set of tools to apply Agile.
These two issues are surprisingly tightly related. Many Agile early adopt-
ers have learned from any number of excellent books that present a set
of practices, mostly oriented around the team. Unfortunately, few of these
books explain why Agile works. Rather, they are filled with excellent
practices that embody Agile’s fundamental belief systems while providing
a set of practices that work at the team level in many situations.

xxii Preface

The wider adoption of Agility demands more. There is now a need for
a greater scope of knowledge as well as an explanation of why the prac-
tices work. While almost all Agile methods sprang up independently of
Lean thinking, Lean thinking provides insight into why Agile works. This
is why most of Agile’s methods are compatible with Lean. True knowl-
edge is realized when one can apply principles and practices together to
form solid understanding. We use the term “Lean-Agile” for the approach
described in this book because it represents our contention that for Agile
to work most effectively, it must be applied within the context of Lean.

This book fills the need both to understand why Agility works as well
as to expand its base of principles and practices in order to apply it to the
enterprise. It builds on the work of others, most particularly, those of
David Anderson, Kent Beck, Jane Cleland-Huang, Alistair Cockburn, Jim
Coplien, Ward Cunningham, W. Edwards Deming, Mark Denne, Ron
Jeffries, Daniel Jones, Michael Kennedy, Corey Ladas, David Mann, Bob
Martin, Rick Mugridge, Taichi Ohno, Mary Poppendieck, Tom
Poppendieck, Don Reinertsen, Peter Scholtes, Ken Schwaber, Jeff
Sutherland, James Womack, Alan Ward, and so many others. This blend
of Lean, Agile, XP, Scrum, and other disciplines creates the synergistic
blend essential to providing answers, both deep and broad, that the enter-
prise requires.

I want to give particular thanks to a few people who have helped us
personally in our endeavors.

• Mary and Tom Poppendieck for helping me get my start in Lean
training. Both have been invaluable to my personal development
with their combination of suggestions for improvement tailored by
respect and compassion.

• Don Reinertsen for his kindness and encouragement, not to men-
tion the amazing amount of knowledge that his books have con-
veyed to the community.

• David Anderson for his outspokenness and out-of-the box thinking.
He’s been an inspiration to go further in my thinking than I have
typically dared.

• Ward Cunningham. I know few people smarter than Ward, bal-
anced with such an unassuming nature. His wisdom and manner
have been invaluable.

• Our own Alan Chedalawada, who may not have contributed to the
writing in this book, but whose ideas formed the basis for much of

 Preface xxiii

what we are presenting here that is new. Many of these ideas he
first manifested in the real world.

• Our own Amir Kolsky and Ken Pugh for insights into the role of
acceptance test-driven development.

While it may seem odd for one author to acknowledge another, I must
acknowledge Jim Trott—both a close associate and one of my dearest
friends. Without his encouragement, hard work, and efforts on keeping
me focused, this book may not have happened.

Alan Shalloway
CEO, Net Objectives
Achieving Enterprise and Team Agility

xxix

One of the goals of this book is to give you a better perspective on
Lean and Agile and how to use them in software development. This

requires an understanding of the roots of Agility, the software develop-
ment “pendulum,” and the importance of paradigms and practices and of
being pragmatic. Lean offers a way forward.

This book takes the reader beyond Agile’s standard practices by teach-
ing how to incorporate Lean thinking into software development.
Although Agile, as it is usually practiced, is effective at the team level, it
gives little guidance on how it fits at the enterprise level. This is somewhat
for historical reasons, as you will see. Lean-Agile is an approach to Agile
software development using Lean principles and practices for guidance.

You can think of Agile in one of two ways: as a set of values and beliefs
that leave it to the practitioners to decide how to apply them or as a set
of practices that are suggested to manifest good results. Practitioners typ-
ically use a combination of both, believing the mandate of the Agile
Manifesto and then using either Scrum1 or eXtreme Programming2 (or
some of each) as the basis for their methods. The challenge with this
approach is two-fold—one resulting from the roots of Agility and the
other from the lack of a theoretical foundation for the Agile practices
themselves—as we will discuss later.

1. Scrum is a popular Agile process created by Jeff Sutherland and Ken Schwaber. It is com-
monly used at the team level and is characterized by self-organizing, cross-functional teams
doing iterative development in what are called sprints.

2. eXtreme Programming is an iterative development process for teams centered around several
engineering practices. The most common of these is test-driven development, paired pro-
gramming, and continuous integration.

Introduction

“We can’t solve problems by using the same kind of thinking we used when we
created them.” —Albert Einstein

xxx Introduction

How This Book Will Help You

This book aims to change how you look at software development. Doing
so will enable you to solve seemingly intransigent problems with much
less effort than you might have thought possible. One of our guiding
principles is that we need to drive from business value: Deliver the value
(software) that will provide the greatest return to the business by provid-
ing the greatest value to the business’s customers. For an IT development
group, this could mean either internal or external customers.

Together, we will explore what software development actually is and
how it must be managed. We will investigate ways to help our customers
through the process of selecting what work to accomplish through devel-
opment, deployment, and, ultimately, ongoing support and enhancement.

We will drive from principles throughout the book and provide a good
many that you can apply in Lean Software Development. This book will
not give you all the answers; instead, it will help direct your thinking so
you can create answers that will work for you in your company, in your
situation, for your customers, and with your products.

The Roots of Agility

The development of the Agile Manifesto (Beck et al. 2001) was a break-
through event for the software industry. The manifesto, shown in Figure
I.1, and its Twelve Principles, shown in Figure I.2, describe the essential
ideology that underpins Agile software development.

The Software Development Pendulum

The Manifesto is a strong statement. It is consistent with the intentions of
most people in the software development industry. But it says that we
must develop in a way that is different from the ways we have often tried
in the past. It stands in opposition to the myth that the way to create qual-
ity, sustainable software is to conceive large plans and then use command-
and-control management3 to realize them. When it was written, the Agile
Manifesto presented a great opportunity for exploring new, better ways of

3. Apologies to military experts who properly use this term to mean vision at the top with
implementation at the bottom. We’re using this term in the way most people interpret it—
top-level people telling lower-level people how to get their job done.

 Introduction xxxi

Principles behind the Agile Manifesto
We follow these principles:

 • Our highest priority is to satisfy the customer through early and continuous delivery
of valuable software.

 • Welcome changing requirements, even late in development. Agile processes harness
change for the customer’s competitive advantage.

 • Deliver working software frequently, from a couple of weeks to a couple of months,
with a preference to the shorter timescale.

 • Business people and developers must work together daily throughout the project.

 • Build projects around motivated individuals. Give them the environment and support
they need, and trust them to get the job done.

 • The most efficient and effective method of conveying information to and within a
development team is face-to-face conversation.

 • Working software is the primary measure of progress.

 • Agile processes promote sustainable development. The sponsors, developers, and
users should be able to maintain a constant pace indefinitely.

 • Continuous attention to technical excellence and good design enhances Agility.

 • Simplicity—the art of maximizing the amount of work not done—is essential.

 • The best architectures, requirements, and designs emerge from self-organizing
teams.

 • At regular intervals, the team reflects on how to become more effective, then tunes
and adjusts its behavior accordingly.

Manifesto for Agile Software Development4

We are uncovering better ways of developing software by doing it and helping others
do it. Through this work we have come to value:

 Individuals and interactions over processes and tools
 Working software over comprehensive documentation
 Customer collaboration over contract negotiation
 Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left more.

Figure I.1 Manifesto for Agile Software Development

4. Copyright © 2001 Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward
Cunningham, Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries,
Jon Kern, Brian Marick, Robert C. Martin, Steve Mellor, Ken Schwaber, Jeff Sutherland,
and Dave Thomas; this declaration may be freely copied in any form, but only in its
entirety through this notice.

Figure I.2 Twelve Principles behind the Agile Manifesto

xxxii Introduction

developing software. Unfortunately, it also left a huge hole. It did not
attempt to describe how to achieve the promise.

This lack of instructions is not a shortcoming of the Agile Manifesto.
The Manifesto’s purpose was to create a vision for a better way to develop
software. It is instructive to look at the Manifesto in its historical context.
During the decades preceding the Manifesto, the principles of and
approaches to software management swung like a pendulum, between
free-form and command-and-control, from little process to too much
process. Each was responding to the challenges of the other.

In the 1960s, several large system failures demonstrated the need for
both better engineering methods and better processes. Certainly, software
development during this time was not an ad-hoc affair, but the industry
was new and there was little experience with large-scale systems. In the
1970s, the idea of software as “engineering” surfaced. We began to use
structured analysis and design, top-down programming, and structured
programming (goto statements were considered bad form). Notably, the
Waterfall model emerged. The industry was growing up, and standard
practices for design, programming, and management arose. By the 1980s,
PCs and fourth-generation languages enabled small projects to flourish.
Small teams produced much more software than large teams did.
Prototyping was popular. Speed was king. If you were the first, you were
the best.

But quality often suffered. Speed to entry was so important that a
product’s sustainability was often ignored. This led to different kinds of
failures. Since it was easy for anyone to enter the market, the competitive
edge of getting in first was lost if the product lacked quality. Failures in
this era triggered an upsurge in rigorous process. The sense was that if we
can’t do it ad hoc, then we’d better control it.

Tick tock. Tick tock. The pendulum continued to swing. Maybe even
faster.

The 1990s brought us the Capability Maturity Model (CMM). Y2K
dominated the last few years of the decade, emphasizing the need for
planning ahead. But the ’90s also brought us the Internet, which again
enabled small teams to have great impact. The dot-com boom brought
rapid software development. Again, a proliferation of small teams found
initial success but subsequently had difficulty maintaining the software
that they had developed.

Now, the twenty-first century has given rise to Agility—small teams
working with customers to develop software quickly. There have been
many successes and there have been many failures.

 Introduction xxxiii

And the pendulum continues to swing. What can we do to stop it? Or
can we at least find a balance?

The Agile Manifesto was an attempt to find such balance. Let’s respect
our teams. Let’s respect our customers. Let’s work with the business.
Process can be good, but process that doesn’t help a team get its job done
is not.

Unfortunately, the world is messy and the promise of the Manifesto
has not been entirely realized. The Manifesto itself showed the potential,
but it did not provide a means to stop the pendulum. In fact, it has been
used to justify letting teams rule. We have mostly lost the enterprise view,
because that view seems to lead right back down the path of command-
and-control management. If the choice is between that and using teams
with Agility, then abandoning command-and-control seems reasonable.

It is not either-or. There is a way to balance command-and-control
with the need for effective teams. Lean provides the way. To see why, we
must first examine the beliefs, principles, and paradigms on which we
build our thinking.

Principles and Paradigms

A principle is a comprehensive and fundamental law, doctrine, or assump-
tion. Principles may exist at the level of the individual, may be held by a
community, or may even apply universally. For example, individual prin-
ciples may relate to one’s integrity or one’s way of living. A communal
set of principles might include moral or religious beliefs or a set of beliefs
that the community accepts as the true way to be living. Universal prin-
ciples are those that apply everywhere—beyond the effect of the beliefs
of any set of individuals. Perhaps we should actually call these laws of the
universe. Principles are often stated in the form of guidance since there
is often a corresponding principle (law) that should be followed. For
example, one of the best known Lean principles is “eliminate waste.”
That’s not a law as much as it is something you should do, as a rule.

A paradigm is a combination of assumptions, values, beliefs, and prac-
tices that define how to view reality, how to look at a situation. It is a
worldview that characterizes what is true. Paradigms tend to last a long
time (consider how long people believed the earth was the center of the
universe). Paradigms are shared by a particular community or group of
people. In the software world, Waterfall, Scrum, and Lean-Agile each have
their own paradigms, or way of looking at how to best build software.

xxxiv Introduction

Since a paradigm defines what is real and true for someone, changing
one’s paradigm is quite difficult. It requires the individuals and their com-
munity to grapple with the underlying assumptions, values, and beliefs
and assess whether the paradigm actually squares with what is indeed
“real” or whether some shift is required.

The paradigms we hold constrain what we consider possible and shape
what we do. Unexamined paradigms can therefore be very limiting.

A Pragmatic Approach

Software development professionals are pragmatists (pragmatism is part
of our worldview). We favor what works over what is represented as
theoretically “correct.” It is not that theory is bad, but theory must be
grounded in real work if we are going to embrace it.

With that in mind, we would like to suggest taking a pragmatic
approach to evaluating the essential paradigms we, as software develop-
ers, hold. That approach is to use the scientific method in whatever we
do: Propose a hypothesis and then run an experiment to validate or inval-
idate it. If the experiment supports the hypothesis, then we have some
evidence that the hypothesis is correct. If it doesn’t, then the hypothesis
is incorrect and must be modified.

We suggest that in the software development world, our processes
must be consistent with our hypotheses about the best way to practice
software development. If we get good results, we have evidence that our
process (that is, our hypothesis) is good. If we get poor results, our process
needs updating.

Critique the Process, Work Together

Let’s be clear: This is all about critiquing the process, not the people
involved. How many teams have run into problems because they are fol-
lowing a poor process and yet management, being overly committed to the
process, blames the people? Assuming the process is right, they believe “if
only the people had done it right, it wouldn’t have been such a disaster.”

Or how many projects have failed because teams decide to follow their
own approaches regardless of the larger needs of the business? They
assume management is just getting in the way—bureaucrats who must
be worked around.

 Introduction xxxv

It seems that the tendency is for management to over-focus on process
while teams underestimate its value. One side sees management as crucial
to making the process work; the other wants to be protected from man-
agement’s command-and-control mentality so that they can just get their
work done. And so they go back and forth, not working in concert.

What we need is a new attitude about process and how to manage
process. Processes must be designed to assist the team in achieving man-
agement’s goals. Processes help the team get its job done: They represent
accountability among team members about how they will work. The
team is the steward of its processes—creating, sustaining, and improving
them so that the team can improve constantly. Processes are dynamic:
They are the team’s baseline for change.

Lean Provides the Way Forward

Is this possible? Yes! Lean provides the principles we need to do this. And
we will not follow these principles blindly. Blind faith doesn’t work.
Instead, we will use Lean as a guide and use our own experience to refine
our own process.

If you have been building software for a few years, we invite you to
use the hypothesis-and-test approach yourself: Run “backward-looking
experiments,”5 that look back over your own past experiences to validate
or invalidate the process we are developing. This is a lot more pragmatic
and a lot less painful than trying new processes on future projects. You
will be able to verify relatively quickly whether the process works.

As we do this, we will be building a pragmatic “theory” about why and
how software development works. We recognize the truth in Jan L.A. van
de Snepscheut’s or Yogi Berra’s comment “in theory, theory and practice
are the same, but in practice, they are different.” We also believe Kurt
Lewin’s notion that sometimes “there is nothing more practical than a
good theory.” In other words, do not follow theory when it does not match
practice. But when you are not sure what to do, an understanding of why
your practices work may give you guidance in unfamiliar situations.

5. A backward-looking experiment is a term Alan Shalloway coined to mean looking into your
past to validate or invalidate an hypothesis made in the present. For example, if someone
says “coding conventions help” he is actually postulating that coding conventions result in
better code. You can actually look into your past to see when that was true (adding evidence
to the hypothesis) or when it was false (disproving the hypothesis). If you disprove the
hypothesis, you can modify it with a condition to see if there is a set of circumstances that
would make it true. This enables us to learn about and test our understanding by taking
advantage of our past experience.

xxxvi Introduction

This pragmatic approach embraces the principles (or laws) that we
have discovered work in all situations. For example, the principle that
overloading an individual with work, that is, giving her many tasks to do
at the same time, degrades her performance.

Principles lead to many practices. However, practices must change
depending upon the context, or situation, in which they are used. Relying
totally on principles may not work unless the principles are proven. Relying
totally on practices will work only if you are in situations you’ve been in
before. Effectiveness requires a proper blend of proven principles with prac-
tices appropriate for the situation in which they are being used.

Evaluating Paradigms

As we begin this approach, let’s look at some of the core beliefs upon
which the Waterfall model and the Agile framework are based. These are
described in Figures I.3 and I.4. Are these universal principles? Or are
they unexamined paradigms—rules that just must be followed?

We believe that the core beliefs of Agile are more helpful than the core
beliefs of Waterfall. Agile’s beliefs are helpful, but they are not enough. To
follow them effectively, more is required. That is where Lean comes in.

The Core Beliefs of Waterfall
 • You can know everything required to build a software product properly at the start of

the project.
 • Customers can accurately tell you what they want at the start of the project.
 • You don’t need to get feedback from the customer until the end of the project.
 • Managers, developers, and customers can gauge the status of a project by looking at

completed milestones as reflected in documentation. That is, given proper documen-
tation, it is not necessary to deliver complete, tested software until the very end of
the project.

 • You can effectively have separate groups do analysis, design, code, and test. That is,
there is little loss of information in the handoff between these groups.

 • Handoffs between people in different roles can be done efficiently by writing down
what was done in each step.

 • You can test at the end of a project and achieve the required quality.
 • Management can demand that certain work be done at a certain time and should

expect it to happen.
 • Giving people many projects to work on simultaneously is a good approach to achiev-

ing 100% productivity because then everyone is always busy.

Figure I.3 Core beliefs of Waterfall

 Introduction xxxvii

Figure I.4 Core beliefs of Agile

We Do Not Know It All

Although software development is not exactly like other types of product
development, we can still learn a lot from how other industries approach
product development. In particular, Lean gives us a lot of information,
based on decades of experience, that can be particularly useful to Agile
teams. In fact, Scrum, one of the more popular Agile methods, is based
on Lean principles. Unfortunately, an understanding of Lean is not wide-
spread in the software community. It is unfortunate because teams lose
out on the potential guidance that Lean offers. Moreover, without a
grounding in Lean, software developers often lack the basis for explaining
to management why certain practices would be useful. Lean provides a
new set of beliefs, shown in Figure I.5. The question still remains: Even
if these beliefs are true, how do we manifest good practices that are con-
sistent with them?

Of course, merely believing something doesn’t make it so. It is worth
looking at the beliefs presented here and then deciding which ones rep-
resent actual principles. We suggest using backward-looking experiments
for this.

The Core Beliefs of Agile
 • You cannot know everything required to build a software product at the start of the

project.

 • Customers cannot accurately tell you what they want at the start of the project;
instead, they will gain clarity as the project proceeds.

 • You want feedback from the customer as often as possible and you want to give
developers feedback on how they are doing as soon as possible.

 • Working code is the most accurate way of seeing the progress of the development
effort.

 • Groups working together minimizes delays as well as the loss of information between
people.

 • Moving test to the front of the development cycle improves the conversation
between developers and customers and testers and, thus, improves the quality of
the code.

 • While management can set expectations for what work is done, management must
not demand how that work is done.

 • Working on one project at a time improves the productivity of a team.

xxxviii Introduction

Figure I.5 Core beliefs of Lean

Lean Provides More than Beliefs

Fortunately, Lean provides more than a paradigm and a belief system. It
provides a set of principles in its own right as well as many practices based
on them. While these practices cannot usually be taken straight from
Lean (since practices must change depending upon the context in which
they are used), Lean principles and practices can be readily adapted to
software development. By learning these principles and practices, one can
manifest the intention of the Agile Manifesto—developing software effec-
tively. And we can do it at both levels—enterprise and team.

We will see that Lean provides a paradigm of management in which
managers are not encouraged to command and control teams and devel-
opers are not required to insist they are craftsmen who cannot and should
not be managed. Rather, Lean provides a paradigm under which manag-
ers and developers can work together toward a common goal—providing
the best return on software development efforts. Lean provides such a
paradigm through its focus on the process by which the team works—but
a process that must be the best one for the team to get its job done.

The Core Beliefs of Lean
 • Most errors are due to the system within which people work rather than to the indi-

viduals themselves.

 • People doing the work are the best ones to understand how to improve the system.

 • Ad hoc is not an acceptable process.

 • Looking at when things are done in a process is a more useful guide than trying to
make sure every step of the way is as efficient as possible.

 • Our measure for success must be related to the amount of time between when ideas
come in and when they are manifested as value to our customers.

 • Management must work with the team to improve the way it works to improve its
own efficiency.

 • Teams are most efficient when the amount of work is limited to their capacity.

 • Team eficiency improves by minimizing the amount of work in progress at any one
time.

 • When evaluating actions, we must optimize the whole, not merely improve individual
steps in the process.

 • There are principles in software development that must be followed in order to
reduce waste.

 Introduction xxxix

Process is no longer something imposed on the team, but rather some-
thing owned by the team to make its work more productive as well as
more enjoyable.

Lean combines this management paradigm with concepts, tools, and
practices that give both sides a way to work together and improve visibil-
ity to management, direction from management, and team productivity.

Going beyond Lean

Of course, Lean is not all there is from which to pull. But our experience
is that it is consistent with other useful paradigms, beliefs, and principles
that come from other disciplines. For example, we learn from the build-
ing-architecture discipline and the software-design-patterns community
that we should develop products by starting with the big picture. That is,
don’t try to create a product by building it from small pieces. Keep the big
picture in mind. This, unfortunately, is a lesson many Agile practitioners
and consultants have long ignored (probably due to Agile’s heritage,
which sprang up on smaller projects).

In this book, we incorporate what may be non-Lean practices but they
are otherwise consistent with a central principle of Lean: “Optimize the
whole.” In particular, we’ll see this in these areas:

• An enterprise focus instead of a team focus both for product-port-
folio management and for team coordination, thereby providing a
working alternative to Scrum-of-Scrums.

• A product focus instead of a project focus (where projects are
enhancements to products).

• Managing requirement elicitation from the big picture instead of
starting with stories and combining them into epics and themes.

• Driving release planning from business value instead of trying to
manage the effective release of a collection of stories.

Summary

This introduction explored the roots of Agility, starting with the Agile
Manifesto, its principles, and its historical context in the swing between
management command-and-control and development teams wanting to
apply their local knowledge to get work done. What is needed is a proper

xl Introduction

understanding of process as both/and: both as a tool for management and
a responsibility of the team to steward what it knows.

Getting to this better understanding involves examining core para-
digms, principles, and practices that everyone in software development
holds. Lean-Agile offers a thinking practice to help form a better way of
understanding. It is based on the solid foundation of Lean thinking and
is entirely consistent with Agile practices.

Try This

These exercises are best done as a conversation with someone in your
organization. After each exercise, ask each other if there are any actions
either of you can take to improve your situation.

• Look at the beliefs of Waterfall listed in Figure I.3. Which of these
are true?

• Look at the beliefs of Agile listed in Figure I.4. Which of these are
true?

• Look at the beliefs of Lean thinking listed in Figure I.5. Which of
these are true?

117

“If anything is certain, it is that change is certain. The world we are planning for
today will not exist in this form tomorrow.” —Philip Crosby

“In preparing for battle I have always found that plans are useless, but planning
is indispensable.” —Dwight D. Eisenhower

IN THIS CHAPTER
A major reason enterprises transition to Lean-Agile software devel-
opment is the need to plan releases predictably and accurately.
Release planning is the process of transforming a product vision into
a product backlog. The release plan is the visible and estimated prod-
uct backlog itself, overlaid with the measured velocity of the deliv-
ery organization. It provides visual controls and a road map with
predictable release points.

Lean-Agile says the release plan must be driven by the needs of the
business. We prioritize to maximize value to the business. We some-
times call this approach “business-driven software development.”

To understand how to do this, we must understand some funda-
mental concepts about process. Therefore, the chapter begins with
a conversation about the issues that underlie process—predictability,
level of definition, and requirements for feedback.

Takeaways
Key insights to take away from this chapter include

• Release planning is a continual activity of the Lean-Agile
enterprise. It is the transformation of the product vision or
business case into a prioritized and estimated list of features.

CHAPTER 7

Lean-Agile Release Planning

118 Chapter 7 • Lean-Agile Release Planning

• Once a feature list is created, its completion plan is deter-
mined by the velocity of the teams involved. Effective release
planning requires a delivery organization that is skilled in
predictable estimation, a skill readily gained by leveraging
short-cycle iterations in order to get rapid feedback.

• Effective release planning emphasizes rapid return by focus-
ing on discovering and manifesting minimum marketable
features.

Issues that Affect Planning

One of the most frequent questions we get is, “How can you predict what
is going to happen if you are working with an Agile process?” We believe
that this question comes from a misunderstanding of some key issues that
underlie process.1

Evaluating Processes

We think of processes as having the following:

• A degree of process definition; that is, to what extent the process
has been defined

• A degree of predictability, or the randomness of its output

• A degree of feedback, or the amount of feedback that the process uses

Degree of Process Definition

Let’s first clean up the terminology: We can view the output of a process
as deterministic or nondeterministic (stochastic). In a deterministic pro-
cess, the outputs are 100 percent determined by the inputs; in a stochas-
tic one, the output is a random variable—it has different values that occur
with different probabilities.

1. Special thanks to Don Reinertsen for an e-mail laying out many of these ideas. Used with
permission; any inaccuracies should be considered ours.

 Issues that Affect Planning 119

Fully determined systems do not exist, except in academia and thought
experiments. Virtually all real-world manufacturing and development
systems have stochastic outputs. That is, they are partially determined.

It is useful to distinguish between a process that is fully determined
versus one in which its output is fully determined. Although many people
tend to assume that a defined process produces a deterministic output, this
is not always true—a precisely defined process can still produce a random
output. For example, the process for obtaining and summing the results
of fair coin flips may be precisely defined; its output is a random variable.

Well-defined systems can produce outputs that range on a continuum
from deterministic to purely stochastic. Just as we can structure a finan-
cial portfolio to change the variance in its future value—by ranging from
all cash to all equity—we can make design choices that affect the amount
of variance in a system’s output.

Degree of Predictability

Thinking of system output as a random variable may be more useful than
labeling it as either unpredictable or predictable. We could think of it as
completely unpredictable, macroscopically predictable, or microscopically
predictable. It is unclear if anything falls into the first category—even a
random number generator will produce uniformly distributed random
numbers. It is the zones of what we would call “macroscopic” and “micro-
scopic” predictability that is most interesting.

We can make this distinction using the coin-tossing analogy. When we
toss a fair coin 1,000 times, we cannot predict whether the outcome of
the next coin toss will be a head or tail—we would call these individual
outcomes “microscopically unpredictable.” There may be other micro-
scopic outcomes that are fully determined since we have a fully defined
process. For example, we could define this process such that there is a
zero percent chance that the coin will land on its edge and remain upright.
(If the coin lands on its edge, then re-toss the coin.)

Even when the outcome of an individual trial is “microscopically
unpredictable,” it is still a random variable. As such, it may have “mac-
roscopic” or bulk properties that are highly predictable. For example, we
can forecast the mean number of heads and its variance with great preci-
sion. Thus, just because the output of a process is stochastic, and described
by a random variable, does not mean that it is “unpredictable.” This is
important because the derived random variables describing the “bulk
properties” of a system are typically the most practical way to control a

120 Chapter 7 • Lean-Agile Release Planning

stochastic process. That is, even though a process may be unpredictable
on its own, it can still be controlled with feedback.

Degree of Feedback

The degree of feedback needed is another variable we should add to our
duo of degree of predictability and degree of process-definition. In the
software-development world, feedback is probably essential; in other
areas it may not be. But for us, feedback is likely the most cost-effective
way to achieve our goal—but deciding how and when to use it is really
an economic issue.

It is important not to confuse process definition with the level of deter-
minism or the amount of feedback required to keep things on track. The
key to this section is to understand that although we may not be able to
predict microscopically the result of each story, we should be able to pre-
dict macroscopically the timing and the cost of the business capabilities
encompassed in our features.

Transparent and Continuous Planning

Lean-Agile release planning is a continuous activity that the entire orga-
nization can observe. This makes it possible for anyone to contribute to
discussions about the value of items in the plan and the effort required
to produce them. Release plans enable delivery in small, end-to-end
slices. This enables validation in a regular, predictable rhythm that is
defined by the iteration length. As we described in chapter 4, Lean
Portfolio Management, we want the product portfolio to serve as the
transparent focal point for the business to sequence releases of minimal
marketable features.

In all but the simplest cases, a feature requires several iterations before
it is ready to be released to the customer. Reasons for this include

• The feature is too big to finish in one iteration.

• Multiple features may need to be released together in one package.

• The customer can only “consume,” or put to use, features at a cer-
tain pace or at a certain time of year.

• Marketing, training, support, and packaging for an otherwise com-
pleted feature will not be ready after a single iteration.

 Transparent and Continuous Planning 121

Release planning must account for all of these when developing the
release schedule.

We think of release planning as continuously decomposing a product
vision while focusing on those features of greater priority (value) to the
business. This decomposition uses just-in-time methods to prevent wasted
effort on lower-priority or unneeded features. That is, we expand on fea-
tures just as much as we need to according to our expectations of when
we will build them (this order is determined by the value they provide to
the customer). This plan enables the team to look ahead responsibly so
that large-effort activities can be broken down in small enough segments
(right-sized work) and balanced against higher priority items that come
up. A good release plan provides a clear visual control and obviates the
need to look too far ahead and work too far in advance on future, larger
features. The continuous activity model is shown in Figure 7.1.

Release planning starts with a vision provided by the product champion,
who can make decisions regarding value priority for both the customer and
the business. We typically look to the organization that creates project char-
ters to find ideal candidates for this role. The vision should be reviewed and
understood by the delivery team and should be revisited as market condi-
tions change priorities. The vision should be visible (for example, with post-
ers on walls) and re-reviewed as part of every iteration’s planning session.

Target dates are determined by looking at the estimates in relation to
the team’s velocity. For example, if a team can deliver 40 story points in

What we have to
provide the business

Business Capability

Feature

Story

Task

What is the minimum
required to realize value?

People, Process,
Technology

Regulatory compliance,

Maximize business ROI
Manage e ort by team capacity

When we need to provide it

actor
actor

Minimum Marketable
Business Capability

Minimum Marketable
Feature

High Low

MMF MMFMMF

MMF MMF

Release Plan

knowledge
increases

sc
en

ar
io

knowledge
increases

Figure 7 .1 The continuous activities involved in release planning

122 Chapter 7 • Lean-Agile Release Planning

a two-week iteration and we have 200 story points to achieve, we can
fairly estimate that it will take five two-week iterations to complete the
work at hand. Short cycle times (one to four weeks) enable quick feed-
back on both the rate of completion and how well we are meeting our
customers’ needs. During each iteration, teams must focus on coding only
the most important feature at any one time. This provides a clear picture
of business value (features) juxtaposed against system constraints (tech-
nical stories) and enables high-value decisions regarding minimum
releasable features.

A project charter should make a business case for new capabilities or
capability enhancements. We look to these capabilities to find business
features, or “features.” It is important to realize that features derive from
the vision and capabilities; they do not appear by aggregating lower-level
requirements into larger chunks, which is sometimes suggested in the
literature as the creation of “epics.” Trading business value against effort
in search of minimum marketable features leads to decomposing capa-
bilities to form features and stories.

To perform Lean-Agile release planning effectively, the development
organization must visually establish (and continuously improve) its abil-
ity to determine velocity (story points per iteration), as described in chap-
ter 4, Lean Portfolio Management. The visible velocity is a powerful
measure of enterprise capacity (see Figure 4.13 on page 69). This approach
requires that the delivery organization be skilled in the art of three-level
story point estimation (feature, story, task). Here is another opportunity
to emphasize the importance of short cycle time (two-week iterations):
The organization is able to recalibrate the quantity associated with story
points, as well as get feedback and institutional learning regarding how
complex the capabilities, stories, and tasks are.

These multiple levels of continuous decomposition enable an organiza-
tion to provide estimates required for creating a visible release plan predict-
ably and fearlessly. This is especially worth noting when estimates are
required at the feature level, when the least amount of information is
known. Experienced Agile teams are confident in providing estimates
because the precision required for large features is low, and they know that
they are required to commit only when features have been broken down
at least two more levels (stories and tasks), and then only commit to two-
week iterations with known tasks (which should be about four hours in
size). In a transition to Lean-Agile, allow three to four iterations for this skill
to mature well enough to produce reliable release plans. Table 7.1 shows
the various levels of requirements, their sources, and estimation units.

 Transparent and Continuous Planning 123

Table 7.1 Various Levels of Top-Down Requirements Utilized in the Lean-Agile Approach

Requirement
Level

Description Source Units

Feature Business solution, capability or
enhancement that ultimately
provides value to the business
and/or its customers

Business/customer
value, charter
document, business
case

Story Points

User Story Describes interaction of users
with the system

Feature Story Points

Story Any requirement that is not a user
story (e.g., technical enabling,
analysis, reminder to have
conversation)

Development team,
analysis work, large
story decomposition

Story Points

Task Fundamental unit of work that
must be completed to make
progress on a story

Development team
(during iteration
planning)

Hours

The rate at which teams complete features can be measured in average
story points completed per iteration. This provides a velocity of produc-
tion. After a few iterations this should converge to a somewhat steady
rate. If it doesn’t, the teams need to investigate why it hasn’t yet hap-
pened. Once a reasonable velocity is established, it can be used to estimate
delivery dates of the releases. Prior to this, release planning will need to
rely on comparing current work to the amount of time it took to perform
similar work in the past.

In practice, it is never possible to focus on only one feature at a time.
Some features may require longer lead times due to dependencies and
waiting to complete system-enabling work. WIP should be constrained by
an overall focus on the delivery of features (as opposed to the completion
of tasks). The constraint is naturally held to because the visual control
would quickly expose a feature that is too large. The mature organization
continuously challenges the need for large features to find the minimum
scope required to deliver maximum return. Metaphorically, this means
that sometimes the business value requires only a “bicycle,” while the
development organization is creating a “motorcycle.” In organizations that

124 Chapter 7 • Lean-Agile Release Planning

exhibit enterprise Agility, visible release plans serve as catalysts for com-
munication, where business value and technical constraints are continu-
ously decomposed and visible along with multiple options based on effort
and value. The end result is an organization that incrementally demon-
strates and evaluates the value of the release, one feature at a time. A
business develops true Agility when it can make real-time verification that
what it has built meets the minimum scope required for the feature to
deliver its intended value. This is achieved by continuously fighting the
waste that comes from building too much. The resulting increase in speed
of delivery now enables the organization to meet the demands of rapidly
changing markets, customer needs, and business opportunities.

Depending on the release structure of the organization, dedicated release
iterations may be required to actually deploy the product to the enterprise
production environment. It is an acceptable practice to have a so-called
“release iteration” for this activity. It is important that this iteration is con-
strained to the minimum amount of time required by the release organiza-
tion, and it should be used only to perform activities required for sign-off
and compliance of the release acceptance organization (no new scope).

Releases and Elevations

In an ideal world we could release straight to the customers after every
iteration. Unfortunately, for many reasons this is often impractical. For
example, if you are on a team that builds embedded software, you may
need to create an internal release for the integration team (a team that
tests your software, and possibly others’ as well) on a hardware platform.
Or you may build code that another team will use, so you’ll need to
release it internally to the other team. There are also times you’ll need to
release code to selected customers to get feedback—possibly as an alpha
test, but maybe just to play with.

We have coined the term “elevation” for all of these “releases” that are
not quite real. We don’t use “internal release,” as elevations sometimes
go to customers, but they are not the real releases.

Example: Release Planning Session

This section describes a typical release planning session. Such sessions
often follow a sequence like this:

1. Identify features.

2. Prioritize features.

 Example: Release Planning Session 125

3. Split features using the minimum-marketable-feature perspective.

4. Estimate the value of the features.

5. Estimate the cost of the features.

6. Elaborate further by writing stories for features, repeating until you
have reasonable clarity on what the features are and their high-
level values.

7. Create a specific release plan by date or by scope.

8. Plan elevations.

How long does a release-planning session take? Small projects (three
months or less) can often be done in a day. Larger projects will take a
few days.

During the session, the team has to remember constantly that it is
being driven by two forces:

• Add value for the customer. The focus is not on building software;
it is to increase the value of the software product we create to those
who will use it. The software is a means to an end, but it is not the
value itself.

• Get to market quickly. Develop plans around minimum market-
able features (MMF). View features from the MMF perspective:
What is required to develop and release them?

Using Tools in Release Planning

We want tools to support the Lean-Agile process. The early stages
of release planning, though, are best supported with lower-tech,
higher-touch tools: everyone present in the room, using stickies or
index cards on the wall.

This creates the best environment for the nonlinear, multi-
dimensional thought processes release planning requires.

Once the release plan has been created, it is good to move the
data into an Agile planning tool.

In the following sections, we examine each of the steps in a bit more
detail.

126 Chapter 7 • Lean-Agile Release Planning

1. Identify Features

Begin by writing features on stickies or index cards. Briefly describe each
feature (usually just a few words), as shown in Figure 7.2. At this point,
the team is just trying to establish a high-level scope of the system.

2. Prioritize Features, Left to Right

Once the features are identified, the team does an initial prioritization:
Place the most important features on the left and the least important on
the right, as shown in Figure 7.3. This only represents a first cut; the team
is not committed to this order. It will certainly change as they work
through the steps.

Even this initial prioritization should prompt some interesting conver-
sations. The conversations should focus on sharing knowledge and help-
ing everyone learn more about the features. Don’t get hung up on
whether the prioritizations are absolutely correct. Focus on learning as
much as possible and consider all decisions tentative.

3. Split Features Using the MMF Perspective

Once the initial set of features is described, it is often easy enough to split
up some into what could be called minimum marketable features and
then further split into one or more enhancements to those MMFs.

For example, suppose Feature F in Figure 7.3 must be supported on
five different platforms: Linux, Windows, Solaris, HP, and AIX. Talking
with the customer, the team discovers that only Linux and Windows need
to be supported at first. Feature F can be broken into two parts: the core
MMF for Linux and Windows and an extension MMF for the others. Call
these F1 and F2, respectively. Other features can likewise be decomposed,
as shown in Figure 7.4.

4. Estimate the Value of Features

Since the product champion is driving from business value, the first thing
to do is estimate the relative value of each feature. We can do this using
the Team Estimation Game.2 The value of each story is assigned business-
value “points” (shown as “BV” in Figure 7.5). However, do not reorder

2. Appendix A, Team Estimation Game, contains a description of the Team Estimation game,
which we prefer over “Planning Poker.”

 Example: Release Planning Session 127

the features based just on these points. Features may have to be devel-
oped in a particular order or you may need to get a sense of the cost
required for each business value.

You may find that you have difficulties quantifying features by points
this way. In this case, just identify the general sequence in which the
features need to be built. We have found that many organizations cannot
initially set values to the core, required features. In some sense, this
doesn’t matter: They will all need to be built before release anyway. If
that is the case, don’t worry about it. You should find that, after the
release of the core MMFs, you can set relative values for the remaining
features.

Remember: Business or customer value is independent of cost. First,
determine business or customer value and only then ask the team to
estimate the cost. Then, you can calculate ROI.

Feature
C

Feature
E1

Feature
A

Feature
F1

Feature
D

Feature
B

Feature
F2

Feature
E2

Figure 7 .4 Splitting features up into an MMF and its extension

Feature
C 100 BV

Feature
E1 100 BV

Feature
A 200 BV

Feature
F1 200 BV

Feature
D 100 BV

Feature
B 100 BV

Feature
F2 40 BV

Feature
E2 40 BV

Figure 7.5 Assigning business value to the features

Feature
C

Feature
E

Feature
A

Feature
F

Feature
D

Feature
B

Figur e 7.3 Initial features, prioritized, left to right

Feature
A

Feature
B

Feature
C

Feature
D

Feature
E

Feature
F

Fig ure 7.2 Initial features

128 Chapter 7 • Lean-Agile Release Planning

5. Estimate the Cost of Features

You can use the Team Estimation Game to estimate the cost of the fea-
tures that are represented in “story points” (shown as “SP” in Figure 7.6).

Once you have the cost for each feature, the product team may decide
to reprioritize them. In effect, you now have the capability to evaluate
Return (business value) on Investment (cost), which enables new insight
into selecting what brings the highest return to the business for the effort
spent by the delivery team. A significant value of this technique is that it
clearly de-couples business value prioritization from technical effort,
which is an opportunity to drive from business value first. We find that
most business organizations have lost the ability to prioritize based on
business value alone because they are so used to batching up large
requirement sets with faraway dates that they see no need to sequence
features since “they are all important.”

6. Elaborate Features

You might be surprised at how well this approach works at a high level.
It works by comparing one item against another—something teams are
reasonably good at. Going further requires more accuracy. This requires
a more detailed understanding of the features.

Start by writing stories for each of the features, beginning with the
higher-priority features, the ones you will be working on sooner. This is
called “elaboration.”

After elaborating a few features and increasing your understanding of
what is required to build them, you may need to re-estimate both busi-
ness value and cost. (Notice that this technique has a built-in feedback
loop that continuously calibrates the accuracy of the feature estimates.
The elaborated stories for each feature are individually estimated and
then summed to compare with the feature.) Continue this process until
you have a set of features comprised of the core and extension MMFs,
along with a number of elaborated stories, and you are confident in the
relative estimates of the features. This is shown in Figure 7.7.

Feature
C 100 BV

40 SP

Feature
E1 100 BV

40 SP

Feature
A 200 BV

100 SP

Feature
F1 200 BV

200 SP

Feature
D 100 BV

100 SP

Feature
B 100 BV

40 SP

Feature
F2 40 BV

13 SP

Feature
E2 40 BV

20 SP

Figure 7.6 Assign ing cost in story points to features

 Example: Release Planning Session 129

7. Create the Release Plan

Now the team is ready to plan releases. There are two approaches to this:
planning by date and planning by scope. Which to use depends on your
needs, which are often mandated by governmental regulations or market
conditions.

Planning by Date

There are times when a project must come in by a certain date:
Government regulations require certain features by a certain time, soft-
ware is required for a conference, or our industry requires major releases
at a certain time of year. If this is the case, then the release plan entails
setting the date and ensuring the right amount of functionality can be
achieved within the allotted time.

For example, suppose you have four months to finish product develop-
ment and every feature except B, F2, and E2 is required by that date. The
release plan is shown in Figure 7.8.

Add up the estimated number of story points for these features. That
determines how many points must be completed in each iteration. In this
example, there are 480 story points. There are 17 weeks available.
Suppose Iteration 0 requires a week at the beginning and there are two
weeks at the end for alpha testing. That means 480 points over 14 weeks
for development, or 34 story points per two-week iteration.

Total Points/Number of Weeks Available for Development = Required Team Velocity

Feature
C 100 BV

40 SP

Feature
E1 100 BV

40 SP

Feature
A 200 BV

100 SP

Feature
F1 200 BV

200 SP

Feature
D 100 BV

100 SP

Feature
B 100 BV

40 SP

Feature
F2 40 BV

13 SP

Feature
E2 40 BV

20 SP

Story Story Story Story Story

Story

Story

Story

Story

Story

Story

Story

Story Story

Figure 7.7 Result o f feature and story elaboration

130 Chapter 7 • Lean-Agile Release Planning

If the team can handle that level (velocity), that is great. If not, you
have to focus on what is truly minimal for each of the identified features.
What can be cut out? What must be left in? At the beginning, you cannot
know for sure, which is why the focus must be on starting work on only
the features, or aspects of features, that are truly essential. Iterative devel-
opment will enable you to discover the core functionality need.

Agile Estimation Isn’t Exact, but It Is Better

In our classes, we are often asked how we can get precise estimates
with Agile methods. This question seems to imply that the asker is
somehow getting these desired accurate estimates with his or her
non-Agile method. We don’t claim that using Agile methods will
improve accuracy over non-Agile estimating at the very beginning.
It will, however, create clarity at a faster pace. But when it comes
to the claim that we must be accurate, we are reminded of the fol-
lowing joke: Two campers are awakened in the middle of the night
by the sounds of a bear snuffling at their tent entrance. One calmly
starts putting on his shoes. The other exclaims, “Are you crazy? You
can’t outrun a bear!” The other responds, “I don’t have to outrun
the bear, I only have to outrun you!”

This type of estimation does not necessarily give you better accuracy
than traditional methods. But it does show you where you need to look
to make your decisions. Very often it becomes clear that the true MMFs

Feature
C 100 BV

40 SP

Feature
E1 100 BV

40 SP

Feature
A 200 BV

100 SP

Feature
F1 200 BV

200 SP

Feature
D 100 BV

100 SP

Feature
B 100 BV

40 SP

Feature
F2 40 BV

13 SP

Feature
E2 40 BV

20 SP

Story Story Story Story Story

Story

Story

Story

Story

Story

Story

Story

Story Story

Figure 7.8 Planning b y date

 Example: Release Planning Session 131

can be built in time, whereas you are uncertain about features you would
just like to have. Sometimes, it becomes clear you are in trouble. If you
are somewhere in the middle, then at least you have an idea about which
features you need to investigate further.

Planning by Scope

Another approach is to plan by scope. This works much like planning by
date; however, this time you begin with those MMFs that are required.
Calculate the number of story points in the MMFs, divide by the team’s
velocity (the ability to complete stories in an iteration) and the result is
the time required to do the work.

Total Points/Team Velocity = Number of Weeks Required for Development

If the result is too long, reassess to see what features or elements can
be dropped to make it shorter.

Proper Planning Avoids Risk

Both of these approaches help teams focus and avoid risk. They help
teams:

• Work on the most important features

• Avoid starting less-important features until the more important
ones are finished

• Minimize WIP

These are crucial. Consider a time when you were working on a project
only to discover you were going to have to cut scope. The predicament is
that at this point, you have:

• Already completed some less-important features—which you
started because at the beginning of the project you were confident
it was all going to happen; and

• Started some features you would like to cut but doing so now would
cause you to lose work you’ve already done—you’d have wasted
time and added complexity for no value (almost certainly the code
that’s in there for these features will stay in there).

132 Chapter 7 • Lean-Agile Release Planning

Planning-by-date and planning-by-scope methods help ensure that the
team works on the most important features known at the time and that
other features are not started until the important ones are finished.

A Case Study

COMPANY PROFILE: Large software product company

CHALLENGES: Tightly coupled, complex product enhancements being built at the same time.
Not clear of the exact scope of features.

INSIGHT: During a planning session where all related features were put on a wall and all
interested parties were present, one of our consultants asked the question—“how many
people here are 100% certain that all of these features will be built in the time frame we
have?” To no one’s surprise, no one raised their hand. Then the consultant asked—“which
of these features must be done by the deadline or you don’t have a product?” There was
actually fairly consistent agreement on this question. These were the features selected for
the first release.

Lean suggests doing the essential things first in the fastest time possible by building quality
in. By de-scoping early, we focus on the Pareto Rule of 20% of the work providing 80% of
the value. By time-boxing our development, we minimize the affect of Parkinson’s Law that
“work expands so as to fill the time allotted for its completion.”

8. Plan the Elevations

There may be another degree of complexity to consider when there is
more than one team involved in the software development or there is a
subset of the software that can be tested but cannot yet be released.

The first case can be made more difficult if there is hardware on which
to test as well. In these cases, an internal release is necessary to test the
system—either its technical integrity through integration testing or its
quality to customers through external system testing using alpha or beta
testers. We call these pseudo/external releases “elevations.” We are mov-
ing the software farther down the value stream, but not all the way to
the customer. We will consider two different types of elevations.

Elevations for Integration Testing

Very often a team will build software must interact with software that
other teams are building. You cannot be sure exactly how it will function
until the other teams use it. Or teams are creating multiple products that

 Example: Release Planning Session 133

must be used on a hardware platform. Until the software is actually on
the hardware, you cannot know for sure how it will function.

One type of elevation planning is to look at the milestones the software
must reach prior to true release. In a situation like this it could be

• Software passes a team’s functional test.

• Software passes several teams’ functional test.

• Software works on a specified hardware platform.

• Software has been alpha-tested by a set of customers.

This example would require three elevations prior to the final release:

1. Move the software to the other teams that will use it.

2. Load and test the software on the hardware platform using internal
testers.

3. Enable external users to try out the software.

These elevations are shown graphically in Figure 7.9.

Figure 7.9 Elevations a cross teams and testing platforms

134 Chapter 7 • Lean-Agile Release Planning

Elevations to Different Platforms

A different elevation pattern exists when the software you are writing
must work on different operating systems. For example, suppose you are
writing software for Windows, Linux, and mobile platforms. Figure 7.10
illustrates that elevation plan.

Elevation Summary

There are no set rules for elevations. The ideal case is continuous integra-
tion across all development. But when different platforms, operating sys-
tems, hardware, customer bases, and so on are present, that is not always
possible. Elevation planning, however, enables you to investigate the best
way to get feedback about a larger, working part of the system. Acceptance
Test-Driven Development with an emphasis on design patterns and refac-
toring enables the organization to benefit holistically from emergent
design techniques. For example, skilled organizations that mock to test
and refactor to design patterns can do more in-place and continuous inte-
gration than would be required to incorporate Lean-Agile in complex-
release organizations that deliver across different platforms. Chapter 9, The
Role of Quality Assurance in Lean-Agile Software Development, covers
this in more detail.

Figure 7.10 Elevations to different operating systems

 A Few Notes 135

A Few Notes

We end this chapter with a few more release-planning thoughts on esti-
mation and risk—and Pareto versus Parkinson.

On Estimation and Risk

Many people think that there is risk attached to missing your estimate.
At worst it might be embarrassing; however, the real risk is in missing
your delivery dates. It is not important to be able to predict at the level of
the story; what is important is predicting at the release level.

Risk also plays a role in prioritizing features. Usually, we prioritize by
the business value each feature represents—possibly offset by the cost of
creating it. However, sometimes prioritization is affected by the potential
cost of delay. For example, let’s say we have Feature A and Feature B.
Feature A may be twice as important as Feature B, but we need Feature
B for a conference coming up in three months. We may actually do
Feature B first to ensure its completion before the conference if delaying
Feature A is not too costly.

Pareto versus Parkinson

We have heard Lean software development likened to following Pareto’s
Law: 80 percent of the value comes from 20 percent of the work. In other
words, find that 20 percent of features that will provide your customers
with 80 percent of their value; then, find the next features that will pro-
vide the greatest value to your customers.

The problem with this is that if there is no time-boxing—no end-date—
Parkinson’s Law may apply: “Work expands so as to fill its time for com-
pletion.” Parkinson’s Law is particularly dangerous when multiple
product managers are competing for a team’s resources. Manager A is
focusing the team on one thing and Manager B is concerned about when
she will have the team’s availability. You can counteract the effect of
Parkinson’s Law, by having the team follow Pareto’s Law in the shortest
amount of time they can. In other words, have the team always focus on
building the smallest things as quickly as they can, end to end, while
ensuring quality.

Add the most value possible in the least amount of time possible with
the right level of quality.

136 Chapter 7 • Lean-Agile Release Planning

Summary

An organization that maintains visible release plans that are driven by
continuous validation of velocity have a powerfully competitive weapon—
key tactical and strategic moves can be analyzed continuously for maxi-
mum value. Enterprise Agility is achieved when the delivery organization
is actively engaged in the release planning activity, through estimation
and the discovery of options based on effort.

Try This

These exercises are best done as a conversation with someone in your
organization. After each exercise, ask each other if there are any actions
either of you can take to improve your situation.

Consider a few typical past projects.

• Most successful Waterfall projects require de-scoping in order to
reach target dates. If this was the case for any of your past projects,
when did de-scoping occur?

• What would have happened if de-scoping would have occurred
before the development team started implementation?

• How does release planning (with visible velocity) aid in the discov-
ery of right-sized, high-value work?

Recommended Reading

The following works offer helpful insights into the topics of this chapter.

Denne and Cleland-Huang. 2003. Software by Numbers: Low-Risk, High-
Return Development. Upper Saddle River, NJ: Prentice Hall.

Reinertsen. 1997. Managing the Design Factory. New York: Free Press.

249

A

Acceptance Test-Driven Develop-
ment (ATDD), 134, 166

Acceptance testing
Agile process, 171
ATDD, 134, 166
Scrum, 91, 94
specifications, 165
up-front creation, 14, 36

Agile Developer: A Guide to Better Pro-
gramming and Design (Shallo-
way and Bain), 203

Agile manifesto, xxx–xxxii
Agile process, 25–26, 169–170

benefits overview, 26
business value added in, 26–31
continuous process improve-

ment, 179
core beliefs, xxxvii
customer needs clarification in,

31–34
IT organizations, 178–179
knowledge-based product devel-

opment and project man-
agement, 34–37

methods, 79
model, 237–243

new learning in, 78–79
obstacles, 170–171
principles and professionalism,

81–82
process, 79–81
product-centered development,

38, 174–177
starting, 173–174
team efficiency improvements,

38–39
transition guidelines, 172–173
“Where” question, 170

Agile/Scrum ellipse, 43
Air bubbles in cumulative flow

 diagrams, 99
Alexander, Christopher, 41, 82
Ambiguity in communication, 161
Anderson, David J.

Kanban list, 228
Kanban: Successful Change

Management for Technology
Organizations, 229

Andres, Cynthia, 91
Anti-patterns in Scrum, 95–96
Architecture

in Iteration 0, 113–114

Index

Architecture, continued
Product Coordination Team guide-

lines, 201
in Scrum, 85
software. See Software design and

development
As-is value stream maps, 18–19
ATDD (Acceptance Test-Driven

Development), 134, 166
Attitudes in Lean-Agile model,

240–241
Authority guidelines for Product

Coordination Teams, 201
Automated acceptance testing

Agile process, 171
Scrum, 91
specifications, 165

Autonomation, 215

B

Backlogs
clear line of sight for, 148
Iteration 0, 113
with visual controls, 141–146

Backward-looking experiments, xxxv
Bain, Scott L.

Agile Developer: A Guide to Better
Programming and Design, 203

Emergent Design: The Evolutionary
Nature of Professional Software
Development, 38, 91, 203

Balanced management, 184–185
Batch times in Lean, 220
Batching project analysis, 57–58
BDUF (big design up front), 207
Beaver, Guy, xxx, 137
Beck, Kent, 91
Beedle, Mike, 188
Berra, Yogi, xxxv
Bias issues in Scrum-of-Scrums, 195
Big design up front (BDUF), 207
Blame, 8–9

Bockman, Steve, 233
Bohr, Niels, 203
Books on Lean, 228–229
Bridges, William, 229
Bugs, preventing vs. finding, 158–160
Build phase

components, 31–32
visual controls for, 146–148

Building in quality, 158, 240
Burn-down charts, 152
Burn-up charts, 149–150, 152
Business role in Lean, 7
Business value

Agile for, 26–31
Product Coordination Team for, 200
in release planning, 127

C

Capability Maturity Model (CMM), xxxii
Case studies

building components, 31–32
financial services, 49
process control, 105
Product Coordination Teams, 199
release planning, 132
Scrum vs. Kanban, 101–103

CFDs (cumulative flow diagrams), 99
Change, design for, 206–207
Charts, burn-down and burn-up, 149–

150, 152
Chickens and pigs story, 87
Churchill, Winston, 161
Clear line of sight, visual controls for,

148–150
Cleland-Huang, Jane, 28, 31, 229
Clobberation, 197
CMM (Capability Maturity Model),

xxxii
Co-location of teams, 171
Cockburn, Alastair, 138
Code issues

Agile process, 171

250 Index

 Index 251

safely changeable, 206–207
in team coordination, 197–198

Cofer, C. Morgan, 25
Coin-tossing analogy, 119
Collaboration

in product companies, 176–177
Scrum-of-Scrums, 194

Collison, Chris, 229
Colored dots for dependencies, 150
Command-and-control management,

xxx
Commitment, deferring

Lean-Agile model, 10–12, 240
with visual controls, 146

Communication
ambiguity in, 161
as goal, 9
in quality assurance, 162–163
Scrum-of-Scrums, 194

Completely unpredictable variables,
119

Complexity
iterative development for, 12
minimizing, 10–14
relative, 233

Components
building, 31–32
managing, 197

Conceptual framework, details for, 207
Connections in complexity, 233
Continuous learning and improvement

Agile process, 172
importance, 179
Toyota example, 215

Continuous release planning, 120–124
Controls, visual. See Visual controls
Coordination of teams, 193. See also

Product Coordination Team (PCT)
challenges, 195–198
Scrum-of-Scrums approach, 194–195

Core beliefs
Agile model, xxxvii
Lean model, xxxvii–xxxviii

Waterfall model, xxxvi
Core functionality, 33
Costs in release strategies, 31, 128
Covey, Stephen, 73
Creating a Lean Culture: Tools to Sustain

Lean Conversions (Mann), 229
Critical Path (Fuller), 172
Critiquing processes, xxxiv–xxxv
Crosby, Philip, 117
Cross-functional teams, 222–223
Cross-training, 185
Crossing the Chasm (Moore), 140
Crystal development system, 49
Culture

in Agile transition, 173
changing, 183

Cumulative flow diagrams (CFDs), 99
Customer needs and satisfaction, 3

Agile benefits for, 27
clarifying, 31–34
discovering, 13
in release planning, 125, 127
Toyota example, 215

Customer organizations, 54–55
Customers

defined, 55
participation by, 164

Cycle times
in Lean, 67–68
in Little’s law, 217
in release planning, 122

D

Daily meetings in Scrum, 153, 188
Dates in release planning, 129–131, 135
Dean, Jimmy, 211
Death marches, 35
Decomposition in release planning,

122, 124
Defer commitment

Lean-Agile model, 10–12, 240
with visual controls, 146

252 Index

Define phase, visual controls for, 146–148
Degree of feedback, 120
Degree of predictability, 119–120
Degree of process definition, 118–119
Delays

batching project analysis for, 57–58
focus on, 15–16
releases for, 58
removing, 13

Delegation, 184
Delivery

costs, 31
dates, 135
early and often, 13, 240
incremental, 60
roles, 7

Deming, W. Edwards
on defects, 159
and Lean principles, 8, 238
on management, 181
and Toyota, 214–216

Denne, Mark, 28, 31, 229
Dependencies

between teams, 197
visual controls for, 150–153

Design, software. See Software design
and development

Design patterns, 44
Design Patterns: Elements of Reusable

Object-Oriented Software (Gamma,
Helms, Johnson, and Vlissides),
81–82

Design Patterns Explained: A New Perspec-
tive on Object-Oriented Design (Shal-
loway and Trott), 203, 207

Deterministic processes, 118–119
Dijkstra, E. W., 1
Discover phase, visual controls for,

146–148
Documentation

for quality assurance, 165
in Scrum, 85

Drucker, Peter F., 53, 73, 181

E

Early delivery, 13, 240
Early learning, 37
Einstein, Albert, xxix, 237
Eisenhower, Dwight D., 117
Elaborating features, 128–129
Elevations in release planning, 124,

132–134
Embedded software in product compa-

nies, 177
Emergent Design, 11–12
Emergent Design: The Evolutionary Nature

of Professional Software Development
(Bain), 38, 91, 203

Emerson, Ralph Waldo, 109
End of development cycle, quality

assurance at, 160–161
Enterprise Agility

getting to, 42–44
real value in, 44–50

Enterprises, defined, 6, 54
Environment

in Iteration 0, 112–113
management role, 183

Errors, system, 8–9
Estimates

in Agile methods, 130
in release planning, 134

Evaluating
processes, 118–120
visual controls, 153

Executable specifications, 165
Existing systems, incremental delivery

in, 60
eXtreme Programming (XP), xxix, 11

principles, 80
vs. Scrum, Kanban, and Lean,

103–104
Extreme Programming Explained (Beck

and Andres), 91

 Index 253

F

Failing fast, 37
Fast-flexible-flow goal, 14–16, 223–227
Fault, assigning, 8–9
Fear

non-Agile projects, 35
planning without, 36–37

Feathers, Michael, 91, 205
Feature-driven development, 49
Features

burn-up charts, 149–150
complexity, 233
MMFs. See Minimum marketable

features
in release planning, 122–129

Feedback
in continuous planning, 122
degree of, 120
early, 37
JIT, as basis for, 17
Kanban, 96–97
late, 34–35
Lean portfolio management, 58–59,

61
levels, 43
for risk reduction, 27, 33
Scrum, 83, 89–90

Financial model for software, 27–31
Financial services case study, 49
FIT (Framework for Integrated Test),

165
FIT For Developing Software (Mugridge),

162
Five Whys technique, 19–20, 187
Flow in software development, 2–3,

14–16, 223–227
Focus

Lean, 219
product, 45
time, 15–16

Ford, Henry, 9
Foundational thinking of Lean, 238–242
Framework, Scrum as, 83–84

Framework for Integrated Test (FIT),
165

Fuller, R. Buckminster, 172
Fully determined systems, 119

G

Gamma, Erich, 81–82
Generalists on Scrum teams, 88
Goals in Agile process, 170
Growth, environment for, 183
Guidelines

Lean-Agile model, 239–240
transition, 172–173

H

Harmon, Kent, 228
Heintz, John, 100
Helms, Richard, 81–82
Higher-priority features in Lean

 portfolio management, 67
“How will I know I’ve done that?”

question, 161, 163–165
Human nature issues in Scrum-of-

Scrums, 194–195

I

Identification step
release planning, 126
value, 44–45

Impediment Lists, 153
Implementing Lean Software Development:

From Concept to Cash (Poppendieck
and Poppendieck), 228–229

Improvements
continuous learning and improve-

ment, 172, 179, 215
from quality assurance, 161–163
team efficiency for, 38–39
testing for, 36

254 Index

Incremental delivery in existing
 systems, 60

Information radiators, 138–139
Inspect-and-adapt in Scrum, 88–89
Installation costs in release strategies,

31
Integration

Agile process, 171
technical, 57
testing, elevations for, 132–134

Interruptions
minimizing, 63
in Scrum, 86
value added by, 139

Inventories, project portfolios for,
56–57

Investment periods in development
projects, 28

Isolation of management, 190
IT organizations in Agile process,

178–179
Iteration 0, 109–100

checklist, 113–114
preparing for, 110–113

Iteration backlogs
clear line of sight for, 148
Iteration 0, 114
visual controls, 142–146

Iterative development
complexity and rework, 12
Product Coordination Team in,

200–201
Scrum vs. Lean, 93
vs. Waterfall projects, 34–35

J

Japanese systems, 8, 214–216
Johnson, Ralph, 81–82
Jones, Daniel T.

on fast-flexible-flow goal, 15, 223

Lean Thinking: Banish Waste and
Create Wealth in Your
Corporation, 228–229

Just-In-Time (JIT) Design, 8, 207
benefits, 16–18
Lean Science, 217
release planning, 121
Toyota example, 215
with visual controls, 146

K

Kaizens, 184
Kanban boards, 98
Kanban Dev list, 228
Kanban software engineering, 49

advantages, 100–101
introduction, 96–97
in product companies, 174–175
vs. Scrum, 101–104
teams, 98–99
vs. XP and Lean, 103–104

Kanban: Successful Change Management
for Technology Organizations
(Anderson), 229

Kennedy, Michael
Product Development for the Lean

Enterprise: Why Toyota’s System Is
Four Times More Productive and
How You Can Implement It, 228

Ready, Set, Dominate: Implement
Toyota’s Set-based Learning for
Developing Products and Nobody
Can Catch You, 228

Knowledge
creating, 12–13, 33, 185–186
Lean-Agile software development

model, 240–241
stewardship, 218–219
in team coordination, 198

Knowledge-based product develop-
ment, 34–37

 Index 255

L

Ladas, Corey, 229
Laws in Lean-Agile model, 239
Leader’s Handbook: Making Things Happen,

Getting Things Done (Scholtes), 229
Lean-Agile list, 228
Lean Development list, 228
Lean Enterprise Institute, 89
Lean portfolio management, 53

approach, 63–67
benefits, 61–63
overview, 58–61
planning cycles, 67–68
portfolio characteristics, 56–58
progress estimation and tracking,

68–69
project selection, 54–56

Lean software development
and Agile, 22
batch times, 220
benefits, xxxviii–xxxix
bodies of knowledge, 216–217
complexity and rework, 10–14
core beliefs, xxxvii–xxxviii
cross-functional teams, 222–223
defined, 5–6
fast-flexible-flow goal, 14–16, 223–227
fewer projects in, 219–220
JIT benefits, 16–18
knowledge stewardship, 218–219
learning about, 227
management, 218
methods, 79
minimum releasable features, 221
model, 237–243
new learning in, 78–79
organizational levels, 6–7
practicing, 226–227
principles and professionalism, 81–82
principles overview, 7–10
priorities and work-in-process,

221–222

process, 79–81
productivity and quality, 222
project focus, 219
root cause, 220–221
science, 217–218
vs. Scrum, Kanban, and XP, 103–104
Toyota example, 214–216
user groups, 228
value stream mapping, 18–22
visual controls in, 138–139

Lean Thinking: Banish Waste and Create
Wealth in Your Corporation
(Womack and Jones), 228–229

Lean thinking in Scrum, 92–94
Learning methods, 77–78

approaches, 103–105
continuous learning and improve-

ment, 172, 179, 215
defining, 79
Kanban. See Kanban software

engineering
learning early, 37
new ways, 78–79
principles and practices, 81–82
processes, 79–81
Scrum. See Scrum method

Learning to Fly: Practical Lessons from one
of the World’s Leading Knowledge
Companies (Collison and Parcell),
229

Levels, organizational, 6–7
Lewin, Kurt, xxxv
Line of sight

in Lean portfolio management, 62–63
visual controls for, 148–150

Little’s law, 217
Local perspective in Scrum-of-Scrums,

194–195
Look ahead stories, 151
Loopbacks in value stream mapping,

18–19
Lower risk, Agile benefits for, 27

256 Index

M

Macroscopically predictable variables,
119

Management, 7, 181–182
balanced approach, 184–185
environment, 183
importance, 187–188
improving, 190–191
Kanban, 98–99
knowledge creation, 185–186
Lean, 218
overview, 48–49, 182–183
root cause determination, 186–187
in Scrum, 86
Scrum vs. Lean, 93
in software design, 208
for success, 189–190

Managing the Design Factory
 (Reinertsen), 229, 243

Managing to Learn: Using the A3 Manage-
ment Process to Solve Problems, Gain
Agreement, Mentor, and Lead
(Shook), 229

Managing Transitions: Making the Most of
Change (Bridges), 229

Mann, David, 229
Mapping, value stream, 18–22
Market position, Agile benefits for, 27
Maximizing business value, Product

Coordination Team for, 200
Meetings in Scrum methods, 153, 188,

194
Members for Product Coordination

Team, 199–200
Mentoring frameworks, Product Coor-

dination Team for, 202
Methods, defining, 79
Metrics in Agile transition, 173
Micromanagement, 79, 190–191
Microscopically predictable variables,

119–120
Minimum marketable features (MMFs)

defined, 31

in IT organizations, 179
in Lean, 219
in product companies, 175
in release planning, 125–127,

130–131
Minimum releasable features, 221
Minnock, Ed, 228
Model of Lean-Agile software develop-

ment, 237
foundational thinking, 238–242
future developments, 242–243

Moore, Geoffrey, 140
Motivation

Scrum-of-Scrums, 194–195
teams, 37

Mugridge, Rick, 162
Multiple teams

requirements involving, 196–197
visual controls for, 146–148

N

New learning in Lean-Agile, 78–79
Nondeterministic processes, 118–119

O

Obstacles in Agile process, 170–171
Ohno, Taiichi, 215
Optimizing whole production process,

14, 239
Organization

inadequacies, 189
levels, 6–7
in Scrum vs. Lean, 93

Over-design, 204–206

P

Pain points in Agile transition, 173
Paradigms

description, xxxiii–xxxiv

 Index 257

evaluating, xxxvi
Parcell, Geoff, 229
Pareto rule

Lean portfolio management, 67
vs. Parkinson’s Law, 135
for value, 29

Parkinson’s Law, 135
Payback periods, 28
PDCA (Plan-Do-Check-Act) cycle, 81
Perfection, testing for, 36
Permanent members on Product Coor-

dination Teams, 199
Perspectives

Lean-Agile model, 238
quality assurance, 167
Scrum-of-Scrums, 194–195

Plan-Do-Check-Act (PDCA) cycle, 81
Planning cycles

Agile process, 171
Lean portfolio management, 67–68

Planning members on Product Coordi-
nation Team, 200

Plans and planning
without fear, 36–37
release. See Releases and release

planning
in Scrum, 85, 90
short horizons in, 35–36

Platforms, elevations in, 134
Poppendieck, Mary and Poppendieck,

Tom
Implementing Lean Software

Development: From Concept to
Cash, 228–229

Lean-Agile principles, 6, 239–240
Lean list, 228
on product focus, 45

Portfolio management. See Lean portfo-
lio management

Powell, Colin, 109
Pragmatism, xxxiv–xxxvi
Predictability, degree of, 119–120

Principles and practices, xxxiii–xxxiv,
79–82, 238–242

Principles of Product Development Flow:
Second Generation Lean Product
Development (Reinertsen), 229,
242

Priorities
Agile process requirements, 171
Lean, 221–222
Lean portfolio management, 67
in release planning, 126–127

Process control case study, 105
Process(es)

building quality into, 14
critiquing, xxxiv–xxxv
defined, 56
defining, 79–81
definition, degree of, 118–119
improvement, testing for, 36
in release planning, 118–120

Product backlogs
clear line of sight for, 148
Iteration 0, 113
with visual controls, 141–142

Product champions
defined, 55
in release planning, 121
Scrum, 88

Product Coordination Team (PCT)
case study, 199
guidelines, 200–201
membership, 199–200
for mentoring framework, 202
overview, 198–199

Product Development for the Lean Enter-
prise: Why Toyota’s System Is Four
Times More Productive and How You
Can Implement It (Kennedy), 228

Product direction in Scrum vs. Lean, 93
Product focus, 45
Product organizations

Agile for, 38, 174–177
defined, 54–55

258 Index

Product setup in Iteration 0, 110–111
Product vision, visual controls for,

140–141
Productivity in Lean, 222
Professionalism in Lean-Agile, 81–82
Profit margins, Agile benefits for, 27
Progress

estimating and tracking, 68–69
across teams, 196

Project charters in release planning,
122

Projects
Agile, 34–37
defined, 56
Lean, 219
selecting, 54–56

Pull management, 217

Q

Quality and quality assurance, 157
ATDD, 134, 166
building in, 14, 158, 240
documentation for, 165
at end of development cycle,

160–161
improvements from, 161–163
introduction, 158–160
Lean, 222
Lean-Agile model, 240
Lean portfolio management, 61
perspective, 167
testing in, 36, 163–165
Toyota example, 215

Quality control, 157
Quarterly planning in Lean portfolio

management, 68
Questions

Agile, 170–172
quality assurance, 163–165
Scrum, 94

Queues in Lean, 223

R

Random variables, 119
Ready, Set, Dominate: Implement Toyota’s

Set-based Learning for Developing
Products and Nobody Can Catch
You (Kennedy, Harmon, and
 Minnock), 228

Real options in Lean Science, 217
Real value in Enterprise Agility, 44–50
Redundancy, 161
Reinertsen, Donald

Managing the Design Factory, 229, 243
planning issues, 118
Principles of Product Development Flow:

Second Generation Lean Product
Development, 229, 242

on product failures, 2
Relative complexity, 233
Releases and release planning,

117–118
case study, 132
for delays, 58
elevations in, 124, 132–134
estimates and risk in, 134
in Lean portfolio management, 60
package strategies, 29–31
Pareto vs. Parkinson, 135
plan creation, 129–132
process evaluation, 118–120
product backlog with, 141–142
Scrum, 88
session overview, 124–129
tools, 125
transparent and continuous,

120–124
Remove delays principle, 13
Request for Proposals (RFPs), 27–28
Requirements and analysis, deferring

commitment to, 10–11
Resources

Agile process, 171
in Enterprise Agility, 45–48

Respect, 8

 Index 259

Lean principle, 8, 9–10
Lean-Agile model, 240

Responsible looks ahead, 111
Results in value stream mapping,

21–22
Return on investment, Agile benefits

for, 27
Revenue, Agile benefits for, 27
Rework

iterative development for, 12
minimizing, 10–14

RFPs (Request for Proposals), 27–28
Risk

Agile benefits for, 27
delays as, 15
in release planning, 131–132, 134
speculation, 33
Toyota example, 216
Waterfall model, 16–17

Rogers, Will, 77
Root causes

Agile process, 171
collaboration issues, 198
determining, 186–187
Lean, 220–221
testing for, 36
value stream mapping for, 18–20

Rotating Product Coordination Team
members, 199–200

S

Safely changeable code, 206–207
SBCE (Set-Based Concurrent Engineer-

ing), 216
Scholtes, Peter R., 229
Schwaber, Ken, xxix, 188
Science, Lean, 217–218
Scope, release planning by, 131
Scrum method, xxix, 44, 77–78

adoption, 80
anti-patterns, 95–96
Daily Stand-Up, 15

as framework, 83–84
incorrect beliefs, 85–89
information radiators in, 138
IT organizations, 178
vs. Kanban, 101–103
and Lean, 60, 92–94
learning, 81
limitations and problems, 89–91,

189–190
management role, 188
misunderstandings, 84–85
in product companies, 174–175
vs. XP, Kanban, and Lean, 103–104

Scrum# method, 92–94, 104
Scrum-of-Scrums method

challenges, 194–195
defined, 84
dependency issues, 197
meetings, 194
vs. Product Coordination Teams, 199
team coordination, 90–91, 194,

196–198
Scrumban: Essays on Kanban Systems for

Lean Software Development (Ladas),
229

Selecting projects, 54–56
Self-organizing teams in Scrum, 89
Set-Based Concurrent Engineering

(SBCE), 216
Shakespeare, William, 213
Shalloway, Alan

Agile Developer: A Guide to Better
Programming and Design, 203

on backward-looking experiments,
xxxv

on clobberation, 197
Design Patterns Explained: A New

Perspective on Object-Oriented
Design, 203, 207

on improvements, 137
Lean list, 228
management experience, 190

Shared code, 198

260 Index

Shared requirements in Scrum-of-
Scrums, 194

Shook, John
management roles, 89
Managing to Learn: Using the A3

Management Process to Solve
Problems, Gain Agreement,
Mentor, and Lead, 229

Short cycle times
Lean portfolio management, 67–68
release planning, 122

Short planning horizons, 35–36
Short queues in Lean, 223
Single-release strategy, 29–31
Software by Numbers: Low-Risk, High-

Return Development (Denne and
Cleland-Huang), 28, 229

Software design and development,
203–204

for change, 206–207
commitment deferral, 11–12
Enterprise Agility, 49–50
Kanban, 97
over-design and under-design,

204–206
overview, 1–2
roles, 207–208
teams and flow, 2–3

Specialization in Lean, 224–226
Specifications, executable, 165
Speculation, risk in, 33
Speed in Lean portfolio management,

61
Spikes, 147
Splitting features in release planning,

126–127
Sprints in Scrum, 89–90
Staged-release strategy, 29–31
Starting methods in Scrum vs. Lean, 93
Stochastic processes, 118–119
Stories

complexity, 233
for estimation, 69

in Iteration 0, 113
look ahead, 151
in release planning, 122–123,

126–129
Scrum, 88
Scrum vs. Lean, 93
Team Estimation Game, 233–235

Sub-optimization, 185
Sutherland, Jeff, xxix, 164
Swarming in Scrum, 94
System errors, 8–9

T

Target dates in release planning, 121
Tasks in release planning, 123
Taylor, Frederick, 184
Taylorism, 184
TDD (test-driven development), 44

overview, 166
principles, 81

Team Estimation Game, 126, 128,
233–235

Teams
Agile process, 171
coordinating. See Coordination of

teams
cross-functional, 222–223
efficiency, 38–39
Iteration 0, 111–112, 114
Kanban, 98–99
motivation, 37
in product companies, 174–176
Scrum, 86–92
software development, 2–3
visual controls for, 142–146

Technical debt, 112, 222
Technical dependencies, 197
Technical integration, 57
Test-driven development (TDD), 44

overview, 166
principles, 81

 Index 261

Testing
Agile process, 171
ATDD, 134, 166
executable specifications for, 165
Iteration 0, 114
for process and quality improve-

ment, 36
questions for, 163–165
Scrum, 91, 94
up-front creation, 14, 36

Theophrastus, 5
Throughput in Little’s law, 217
Time, focus on, 15–16
Time-boxing, 96–97
Timeless Way of Building, The

 (Alexander), 82
Top-down requirements in release

planning, 123
Toyoda, Sakichi, 19
Toyota, 5–6

Just-In-Time, 8
Lean example, 214–216
root cause analysis, 19

Toyota Production System (TPS),
215–216

Training, 185
Transition approach in Iteration 0, 112
Transition guidelines for Agile process,

172–173
Transition paths in product companies,

177
Transparent release planning, 120–124
Trim tabs, 172–173
Trott, James R., 203, 207
Tyranny of management, 187

U

Uncertainty, 33
Under-design, 204–206
Unpredictable random variables, 119
Up-front testing, 24, 36, 91

User groups for Lean, 228
Utilization theory in Lean, 217, 224

V

Value and value streams
Agile for, 26–31
considerations, 2
Enterprise Agility, 42, 44–50
Product Coordination Team for, 200
in release planning, 125–127
in Scrum, 89–90

Value stream mapping
in product companies, 177
purpose, 18
results, 21–22
root cause analysis, 18–21

van de Snepscheut, Jan L. A., xxxv
Variables, random, 119
Visible velocity in release planning, 122
Vision

in Iteration 0, 113
in release planning, 121

Visual controls, 137
clear line of sight for, 148–150
complaints about, 154
for dependency management,

150–153
evaluating, 153
and information radiators, 138–139
iteration backlogs, 142–146
Kanban boards, 98
Lean-Agile, 139
limitations, 145–146
for multiple teams, 146–148
overview, 139
product backlog with release plans,

141–142
product vision, 140–141

Vlissides, John, 81–82

	Foreword
	Preface
	Introduction
	Chapter 7: Lean-Agile Release Planning
	Index

