
SECTION #2

Custom Activities

be greater than zero. If it is defined dynamically through activity databinding, we cannot validate
the value because it will be only determined at runtime.

Step 4
Here I will show you how to build a simple composite activity. To keep the focus on how custom
activities behave, I will use code only, and not the designer. In this step, the Traffic Light activity is
unchanged. The Controller composite activity class, which inherits from CompositeActivity, is
called by the CreateWorkflow method of the WorkflowRuntime class to start the workflow. This
activity models the controlling of a traffic intersection with two lights. One is red, while the other
is green. The activity has a public property, Iterations, which controls the number of times the
controller loops through the light cycle. Its value is set by the workflow host.

There are three methods of interest in the Controller activity: the constructor, the Execute method,
and the delegate ChildClosed.

The constructor creates and initializes the values for the two traffic lights under control - the inter-
section of Main and Fifth. The two traffic lights have different timings. More traffic is on Fifth
than Main so that light remains green longer. In addition, the two activities are added to the
collection of activities associated with the Controller composite activity.

public Controller()
{

Name = “Controller”;

mainStreet = new TrafficLightActivity();
fifthAvenue = new TrafficLightActivity();

28 Building Applications with Windows Workflow Foundation
by Michael Stiefel

© 2008 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

SECTION #2

Custom Activities

mainStreet.Name = “MainStreet”;
mainStreet.Time = 1200;

fifthAvenue.Name = “FifthAvenue”;
fifthAvenue.Time = 2000;

CanModifyActivities = true;
Activities.Add(mainStreet);
Activities.Add(fifthAvenue);
CanModifyActivities = false;

}

As before, the activity execution occurs in the Execute method. Each traffic light in the
EnabledActivites collection is executed once for each iteration. The EnabledActivites collection is
used instead of the Activities collection to which we added the activities in the constructor. As will
be explained later, activites such as fault handlers are in the Activities collection, but not the
EnabledActivites collection because they are not executed in the normal activity flow.

protected override ActivityExecutionStatus
Execute(ActivityExecutionContext context)

{
if (EnabledActivities.Count == 0)

return ActivityExecutionStatus.Closed;

maximum = iterations * EnabledActivities.Count;

for (int i = 0; i < iterations; i++)
{

29 Building Applications with Windows Workflow Foundation
by Michael Stiefel

© 2008 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

SECTION #2

Custom Activities

foreach (TrafficLightActivity child in EnabledActivities)
{

ActivityExecutionContextManager manager =
context.ExecutionContextManager;

ActivityExecutionContext childContext =
manager.CreateExecutionContext(child);

childContext.Activity.Closed += new EventHandler<
ActivityExecutionStatusChangedEventArgs>(ChildClosed);

childContext.ExecuteActivity(childContext.Activity);
}

}
return ActivityExecutionStatus.Executing;

}

An ActivityExecutionContext (AEC) class instance is passed into the Execute method. The AEC
instance can be used to schedule activities and access workflow services. It represents the state of
the workflow, and the tree of workflow activities at the moment it is created. This context is analo-
gous to the concept of scope in a programming language. The Execute method of the activity at
the root of the workflow (in this case the Controller activity) gets a context instance that is create
by the workflow runtime. The lifecycle of this default execution context corresponds to the lifecycle
of the workflow because its root is the initial activity executed when the CreateWorkflow method is
invoked.

In looping situations, such as the one here, each iteration has to be independent of each other.
Think of a dependency property that is bound to a value that can change. You must use the value
for the current iteration. In such cases, as we saw with the while activity in the previous step, the

30 Building Applications with Windows Workflow Foundation
by Michael Stiefel

© 2008 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

SECTION #2

Custom Activities

activity that controls the iteration must create an execution context for each iteration. The
ExecutionContextManager class allows you to do this.

Using the execution context passed into the Execute method, an instance of the
ExecutionContextManager class is created. This class is used to create an AEC instance for the
child activity that is about to be executed. The controller activity then subscribes to the closed
event for each of its child activities, and then schedules them for execution. Notice that they are
all scheduled before any one of them executes (as discussed in the Part 3 shortcut).

Why subscribe to the close event? The controller cannot enter into the closed state until all its
child activities have completed. So it must subscribe to these events and close when the last child
close event occurs. Hence the Execute method returns ActivityExecutionStatus.Executing instead of
ActivityExecutionStatus.Closed.

The ChildClosed delegate is called when the a Traffic Light activity closes. In this method, the child
execution context is completed. When all the child Traffic Light activities have been closed the
controller activity can close itself. Since the ChildClosed delegate has no return value, the
CloseActivity method is used by the controller activity to enter the closed state.

void ChildClosed(object sender,
ActivityExecutionStatusChangedEventArgs e)

{
e.Activity.Closed -= ChildClosed;

ActivityExecutionContext context =
sender as ActivityExecutionContext;

ActivityExecutionContextManager manager =
context.ExecutionContextManager;

31 Building Applications with Windows Workflow Foundation
by Michael Stiefel

© 2008 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

SECTION #2

Custom Activities

ActivityExecutionContext childContext =
manager.GetExecutionContext(e.Activity);

manager.CompleteExecutionContext(childContext, false);

count++;
if (count == maximum)

context.CloseActivity();

}

Figure 81 shows the results of running Step 4.

32 Building Applications with Windows Workflow Foundation
by Michael Stiefel

© 2008 Pearson Education. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

FIGURE 81
Running Step 4

Step 5
I have already discussed in the previous shortcut the scheduling of fault handlers. Now I will
examine the details of how activities handle faults.

