Foreword by Nikhil Kothari,
Software Architect, .NET Developer Platform. Microsoft

Advanced ASP.NET
AJAX Server Controls
For .NET Framework 3.5

Adam Calderon
Joel Rumerman




Many of the designations used by manufacturers and
sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this
book, and the publisher was aware of a trademark
claim, the designations have been printed with initial
capital letters or in all capitals.

The .NET logo is either a registered trademark or
trademark of Microsoft Corporation in the United
States and /or other countries and is used under license
from Microsoft.

The authors and publisher have taken care in the
preparation of this book, but make no expressed or
implied warranty of any kind and assume no respon-
sibility for errors or omissions. No liability is assumed
for incidental or consequential damages in connection
with or arising out of the use of the information or pro-
grams contained herein.

The publisher offers excellent discounts on this book
when ordered in quantity for bulk purchases or special
sales, which may include electronic versions and/or
custom covers and content particular to your business,
training goals, marketing focus, and branding inter-
ests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the web: www.informit.com/aw
Library of Congress Cataloging-in-Publication Data:

Calderon, Adam, 1964-

Advanced ASP.Net Ajax server controls for .Net 3.5

/ Adam Calderon, Joel Rumerman.
.cm.

ISBN 0-321-51444-0 (pbk. : alk. paper) 1. Internet
programming. 2. Active server pages. 3. Microsoft
.NET. 4. Ajax (Web site development technology) 5.
Web servers. 1. Rumerman, Joel, 1980- II. Title.

QA76.625.C34 2008
006.7"882—dc22
2008013462

Copyright © 2009 Pearson Education, Inc.

All rights reserved. Printed in the United States of
America. This publication is protected by copyright,
and permission must be obtained from the publisher
prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any
means, electronic, mechanical, photocopying, record-
ing, or likewise. For information regarding permis-
sions, write to:

Pearson Education, Inc.

Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116

Fax (617) 671 3447

ISBN-13: 978-0-321-51444-8

ISBN-10: 0-321-51444-0

Text printed in the United States on recycled paper at
RR Donnelly in Crawfordsville, Indiana.

First printing: July 2008

This Book Is Safari Enabled

The Safari® Enabled icon on the cover of your favorite
technology book means the book is available through
Safari Bookshelf. When you buy this book, you get free
access to the online edition for 45 days.

Safari Bookshelf is an electronic reference library that
lets you easily search thousands of technical books,
find code samples, download chapters, and access
technical information whenever and wherever you
need it.

To gain 45-day Safari Enabled access to this book:
* Go to http:/ /www.informit.com/onlineedition.
¢ Complete the brief registration form.

¢ Enter the coupon code DWNQ-VHHL-H21A-
XGL8-34YC.

If you have difficulty registering on Safari Bookshelf
or accessing the online edition, please e-mail
customer-service@safaribooksonline.com.

Editor-in-Chief
Karen Gettman

Acquisitions Editor
Joan Murray

Development Editors
Sheri Cain

Chris Zahn
Managing Editor
Kristy Hart

Project Editor
Jovana San Nicolas-Shirley

Copy Editor
Keith Cline

Indexer
WordWise Publishing Services

Proofreader
Geneil Breeze

Publishing Coordinator
Olivia Basegio

Cover Designer

Chuti Prasertsith

Compositor
Bronkella Publishing


http://www.informit.com/onlineedition
www.informit.com/aw

Foreword

THE ASP.NET PLATFORM POWERS millions of websites around the
world today, and is perhaps one of the most productive platforms for web
development. During the nearly ten years of its development and use,
ASPNET has formed around itself a strong community and vibrant ecosys-
tem of developers.

The page framework and the associated server controls framework are
quintessential to the success of ASPNET and its developer experience, pro-
gramming model, and extensibility. Writing this Foreword brings back
memories of early ASP.NET days, and reminds me of the continued evolu-
tion of the framework as a platform alongside the Web.

In the late 1990s, the Web was very much a nascent application platform.
Browsers brought potential for new levels of reach, but offered few and
varying degrees of capabilities (remember HTML 3.2?), and concepts such
as “stateless programming model” presented an odd paradigm shift. Server
controls provided a set of familiar abstractions and created a component-
based rapid application development (RAD) programming experience for
the Web (a la Visual Basic) and allowed developers to feel at home as they
started to look to the Web to build the next generation of data-driven appli-
cations.

Flash forward a few years, and in 2006, the AJAX buzz created a
renewed interest in the Web as the application platform. Today, AJAX is
mainstream and, quite literally, everywhere. It enables building interactive
experiences that users have come to expect. Still, it brings new but similar



XXVI

Foreword

challenges: varying browser APIs and an unfamiliar script-based pro-
gramming model. Once again, ASP.NET (and in particular, server controls)
provided a mechanism for creating a productive development model for
incorporating AJAX-based techniques, and for encapsulating server and
client behaviors into a familiar and consistent component model.

ASP.NET provides an end-to-end AJAX story. Traditional server con-
trols create a simple server-centric AJAX programming model, but they are
just a part of the story. This new generation of server controls leverages an
AJAX script framework that independently enables a client-centric AJAX
programming model. The core framework is complemented by the AJAX
Control Toolkit, which offers both a compelling set of out-of-the-box com-
ponents and an open source project for further developing the ASPNET
AJAX stack. I am excited to see this end-to-end story uncovered and unfold
itself over the course of this book.

In this book, Adam and Joel focus on providing a beyond-the-basics drill
down of the inner workings and extensibility of the ASPNET AJAX frame-
work by covering the programming patterns established by the script
framework, the architecture, and the techniques to create AJAX-enabled
server controls. They also cover advanced but still relevant topics such as
localization and error handling. By providing a conceptual guide to under-
standing and extending the framework, this book is sure to serve any appli-
cation or component developer who is looking to unlock the true potential
of ASPNET AJAX.

—Nikhil Kothari
Software Architect
NET Developer Platform, Microsoft



Preface

Introduction

SERVER CONTROLS ARE AN INTEGRAL aspect of every ASPNET applica-
tion we build. They encapsulate browser appearance and server function-
ality in a reusable object. They can be used across multiple pages within a
single ASP.NET application and across multiple ASP.NET applications.
ASP.NET comes with a lot of prebuilt server controls. We have simple con-
trols such as the label, and we have complex controls such as the GridVview.
We can also create our own server controls to meet a need not met by one of
the existing controls by inheriting from the appropriate base class and over-
riding its methods as needed.

This model of using server controls to encapsulate browser appearance
and server functionality has served our needs well since the inception of
ASP.NET 1.0, but our server control needs are changing.

A new server control need that has recently surfaced is the ability to
incorporate AJAX functionality directly into the server control.

This need arose because our web applications need to be more respon-
sive and visually interactive than the traditional ASP.NET repaint-the-
entire-screen model and therefore the traditional server control supplies.
This requirement has emerged because users are using websites such as
Gmail, Live.com, Yahoo! Mail, and others that don’t repaint the screen
every time they click a button or need to receive fresh data. Rather, they rely

XXvii



XXV

Preface

on AJAX to fetch fresh data and then update or add to a portion of the
screen based on that data. Because these websites are heavily used and
users really enjoy their experience while using these websites, they expect
other websites to perform with the same elegance as their favored sites do.
When a website doesn’t perform with the same elegance, the user often
moves on to another website that does. Those popular applications have
raised the bar for what is an acceptably user-friendly website.

Because our users are demanding a website experience that essentially
uses AJAX and we build our ASP.NET websites using server controls, we
need a way of easily creating server controls that not only encapsulate
browser appearance and server functionality, but also include AJAX func-
tionality so that the server control itself is AJAX-enabled.

Taking a step back for a moment, unlike other technologies you might
have read books about, ASP.NET AJAX server controls don’t provide you
with anything that you couldn’t already do. We’ve always been able to
embed AJAX functionality into server controls... it was just a real pain.

There were a few different methods we could use to include the
JavaScript with our server control such as embedding it as a resource, but
we eventually ended up having to do the same three tasks. To make our
server control have some serious client capabilities, we always had to con-
catenate strings together to form JavaScript statements and functions, write
browser sniffing statements to make sure that the JavaScript was cross-
browser compatible, and add attributes or render out HTML that attached
the JavaScript functionality to the client versions of our server controls. It
wasn’t impossible, but it was error-prone, and there was always this min-
gling of server code and JavaScript that was hard to maintain and even
harder to read.

Furthermore, if you had multiple server controls that had client capa-
bilities, it was difficult (but not impossible) to ensure that the client func-
tions that each server control required didn’t overwrite each other when
rendered on the browser. Tracking down that problem was always a fun
hour or so.

The difficulty grew exponentially if we wanted to include a mechanism
for asynchronously communicating with the server when the user pressed



Preface [ |

a button embedded in the server control. Even with a helper communica-
tion library, there were always tricks to getting your control to communi-
cate properly with the server.

These hindrances were problematic enough to lead to some bad pro-
gramming habits and bad code and to scare programmers away from even
attempting to include AJAX functionality in their server controls.

These problems are what Microsoft ASPNET AJAX solves.

In this book, we teach you how to use ASPNET AJAX to create server
controls that encapsulate AJAX functionality. ASPNET AJAX provides both
server and client programming constructs that make adding AJAX capa-
bilities to our server controls easy. Not to sound cliché, but with ASPNET
AJAX reducing the complexity of adding AJAX capabilities to our server
controls, we can create server controls whose AJAX capabilities are limited
only by our creativity. If we want a listbox that self-updates with fresh data,
if we want a type-ahead textbox that dynamically populates from the
server, or if we want a button that submits an address for verification, we
can easily accomplish these things through ASP.NET AJAX.

The ASP.NET AJAX Components

As we go through the book we’ll be talking about the three parts of
ASPNET AJAX: the Microsoft AJAX Library, the ASPNET 2.0 AJAX Exten-
sions, and the ASPNET AJAX Control Toolkit. Here’s a quick rundown of
the different components.

Microsoft AJAX Library

The Microsoft AJAX Library is the JavaScript programming framework of
ASPNET AJAX. It provides all the client programming constructs you’ll
use to create new client objects and components. It's contained within
the MicrosoftAjax.js JavaScript file that’s embedded in the System.Web.
Extensions DLL.

XXIX



XXX

Preface

ASP.NET 2.0 AJAX Extensions

The ASP.NET 2.0 AJAX Extensions are server objects such as the Script
Manager, ScriptControl, and ScriptDescriptor, which provide a connec-
tion between the Microsoft AJAX Library and our server ASP.NET devel-
opment. These server objects provide an important distinction between
ASPNET AJAX and other AJAX frameworks because they provide a server
programming model for manipulating client code (and allow us to make
AJAX-enabled server controls!). Like the Microsoft AJAX Library, they are
included in the System.Web.Extensions DLL.

ASP.NET AJAX Control Toolkit

The ASPNET AJAX Control Toolkit is a shared source project that is built
on top of ASPNET AJAX. It’s an effort shared between Microsoft and the
ASPNET AJAX community with the goal of developing powerful and
reusable ASP.NET AJAX extenders and controls.

It’s not actually part of ASPNET AJAX, but because it provides so many
great server and extender controls, it’s invaluable to the ASPNET AJAX
community. Creating new extender controls through it is a topic we cover
fully.

Book Breakdown

The book is divided into four major parts. In the first part, we focus on the
basics of the Microsoft AJAX Library and JavaScript, the programming lan-
guage that powers it. We call this part “Client Code.” In the second part, we
focus on a creating distributable AJAX-enabled controls, and we call this
part “Controls.” In the third part, called “Communication,” we focus on the
different ways your client control can communicate with the server. Finally,
in the fourth part, we focus on the AJAX Control Toolkit, a slightly higher-
level model of creating AJAX-enabled server controls. This final part is
aptly named “AJAX Control Toolkit.”

Client Code
Chapter 1, “Programming with JavaScript,” focuses on JavaScript, the pro-
gramming language that powers the Microsoft AJAX Library. We spend a



Preface [ |

full chapter on JavaScript because so many developers (ourselves included)
have glossed over key details when working with the language; and
because you're going to be writing so much JavaScript to AJAX-enable your
server controls, a solid background is important.

In Chapter 2, “Microsoft AJAX Library Programming,” we continue
where we left off in Chapter 1 by taking a look at how the Microsoft AJAX
Library builds on JavaScript to provide a programming platform a .NET
developer will find familiar.

Controls

Starting in Chapter 3, “Components,” we begin our path to creating fully
encapsulated AJAX-enabled controls by learning how to use and derive
from three key client types: components, controls, and behaviors. We talk
theory and provide a couple of practical examples.

In Chapter 4, “Sys.Application,” we cover maybe the most important
portion of the Microsoft AJAX Library as we discuss Sys.Application and
how it acts like a client runtime with which we can interact.

In Chapter 5, “Adding Client Capabilities to Server Controls,” we bring
the server into the mix when we cover how to create server components
that automatically create corresponding components.

In Chapter 6, “ASPNET AJAX Localization,” we continue adding con-
trol capabilities with an in-depth examination of localization in ASP.NET
AJAX.

Finally, in Chapter 7, “Control Development in a Partial Postback Envi-
ronment,” we wrap up the “Controls” part with a look at the concerns sur-
rounding how the UpdatePanel affects control development.

Communication
With Chapter 8, “ASPNET AJAX Communication Architecture,” we start
looking at communication in ASPNET AJAX using Windows Communi-
cation Foundation (WCF) services, page methods, and the client web serv-
ice proxies.

In Chapter 9, “Application Services,” we cover the application services
and include a demonstration of how to build your own application
service.

XXXI



XXX

Preface

AJAX Control Toolkit

Beginning with Chapter 10, “ASPNET AJAX Control Toolkit Architecture,”
we start our look at the AJAX Control Toolkit. We cover the base classes that
are used by toolkit controls and the support and designer classes that pro-
vide additional features.

Finally, we conclude the book with Chapter 11, “Adding Client Capa-
bilities to Server Controls Using the ASP.NET AJAX Control Toolkit,” as we
attach client capabilities to server controls using the AJAX Control Toolkit.
This chapter includes how to build a new extender control and provide
design-time features for it.

What Is Not Covered?

You might find it strange to see a note that talks about what we’re not cov-
ering. We're including it for two reasons.

First, this book covers a pretty narrow topic when compared to
ASP.NET AJAX at large. Because of this, we don’t have the normal intro-
ductory chapter where we walk you through the basics or history of
ASP.NET AJAX. Instead, we're making the assumption, good or bad, that
you've got some ASPNET AJAX knowledge under your belt. If you don't,
don’t worry; getting your ASP.NET AJAX knowledge to the point where
you feel comfortable doesn’t take long, and this book will pick up right
where that basic knowledge leaves off. For this type of information, the
Microsoft ASPNET AJAX website located at http://asp.net/ajax is an
excellent source.

Second, we’re leaving out a familiar ASPNET AJAX subject, and we
wanted a chance to tell you and defend our decision before we got too far.
This is something that we’ve repeatedly debated between the two of us and
asked many colleagues for their opinion and was a decision that we didn’t
come to easily.

There are no chapters in which we cover how to use the UpdatePanel
server control.

Okay, you haven't closed the book? Good. Let us explain how and why
we came to this decision.


http://asp.net/ajax

Preface [ |

Simply put, the UpdatePanel is a server control. It comes with ASPNET
AJAX and provides a quick and dirty way to refresh a portion of a page
such that the page goes through its normal lifecycle, but doesn’t refresh the
entire page when the page processing is done. Using it, we don’t have to
alter the way we’ve been programming web pages since ASP.NET 1.0 came
out. This is a good thing and was a “quick win” for Microsoft. It allowed
ASP.NET AJAX to be adopted quickly by ASP.NET developers and pro-
vided a unique advantage against other AJAX frameworks.

However, the UpdatePanel is just a server control and it’s developed in
such a way that it doesn’t have a whole lot of comparative properties with
the type of ASPNET AJAX server control development we’re covering.

We're not saying it’s not an important server control and that it has no
place in the AJAX world. Rather, it is an extremely valuable tool whose
complexity and correct usage is worthy of a small book; just not this one.

Finally, although we do not cover how to use the UpdatePanel, we do
cover how to create server controls so that they work correctly in an
UpdatePanel, or more specifically a partial-postback, environment. We
expect that you want your new server controls to work in any ASP.NET
environment, and a partial-postback environment is no exception. The par-
tial-postback environment, however, requires us to use some different
methods, the new ScriptManager.RegisterXXX methods being the most
common, and take some care in how we create our server controls. So,
we’ve dedicated Chapter 7 to this topic.

Why Just Server Controls?

Writing a book on just server controls allows us to delve deeply into a nar-
row topic that is extremely important to web application developers. The
ASPNET AJAX books currently available all generally focus on the tech-
nology as a whole. Because they cover a broad range of topics, giving a taste
of everything, they have trouble really getting into how certain parts of
ASP.NET AJAX work and tend to give shallow coverage of topics that we
think are key to creating server controls. It’s been our experience that devel-
opers tend to move past the content of the more general books fairly

XXXI1



XXXIV

Preface

quickly because nonbasic situations arise almost immediately when work-
ing on a real-life web application.

Target Audience

This book is primarily targeted at the experienced ASP.NET developer who
has developed custom web server controls. We expect that you're reading
this book to enhance your already proficient ASP.NET development skill
set with new ASPNET AJAX skills. The applications you develop demand
elegance and professionalism and easy maintenance and scalability, so you
tend to use server controls to your advantage wherever possible.

Besides your experience with ASP.NET, we expect that you're familiar
with JavaScript and the basics of ASP.NET AJAX. Therefore, we don’t cover
how to set up a new ASP.NET AJAX-enabled web application, and
although we do cover JavaScript, we start our coverage at a level where we
assume some existing knowledge.

Our goal is to provide you with the tools you need to build reusable
ASP.NET AJAX server controls or AJAX Control Toolkit extender controls.
Our feeling is that reasonably knowledgeable ASPNET developers will be
able to learn the skills necessary to create new ASPNET AJAX server con-
trols through this book and then add that skill to their ASP.NET develop-
ment tool bag.

Prerequisites

This book requires ASP.NET 3.5 AJAX and Visual Studio 2008. We heavily
cover features included in ASPNET 3.5 AJAX not included in ASPNET 2.0
AJAX and C#’s and Visual Studio 2008’s new capabilities such as automatic
properties and JavaScript IntelliSense.

Source Code

The source code for the book’s examples can be found on the book’s web-
site: www.informit.com/title/9780321514448.


www.informit.com/title/9780321514448

s 11

Adding Client Capabilities to
Server Controls Using the
ASP.NET AJAX Control Toolkit

I N THE PRECEDING CHAPTER, we covered the architecture of the AJAX

Control Toolkit, describing at a high level what it has to offer and the
attributes, classes, and interfaces that make it all happen. The enhanced
functionality you get in the toolkit, from attribute-based programming to
rich animations, provides a compelling alternative to coding against the
ASPNET 2.0 AJAX Extensions and the Microsoft AJAX Library directly. In
this chapter, we delve into the details of the toolkit a little further as we
develop as series of extender controls that demonstrate the rich features the
toolkit provides.

Adding Client-Side Behavior Using the
ExtenderControlBase

The ASPNET AJAX Control Toolkit provides many features to assist in the
development of extender controls, such as the automatic creation of
$create statements, the use of attributes to decorate extender control prop-
erties that should be included in the $create statement creation, built-in

513



514

Chapter 112: Adding Client Capabilities to Server Controls
Using the ASP.NET AJAX Control Toolkit
designer support, and many more. In this section, we revisit the Image
Rotator extender we created in Chapter 5, “Adding Client Capabilities to
Server Controls,” and re-create it using the ASPNET AJAX Control Toolkit.
This approach enables us to compare the alternatives as we build the new
extender.
The process of building an extender control using the ASP.NET AJAX
Control Toolkit consists of four main steps.
1. Create the template classes.
2. Provide implementation for the inherited extender control class.

3. Provide implementation for the Sys.UI.BehaviorBase-based
JavaScript class.

4. Attach the extender control to an existing server control.

Visual Studio 2008 Extender Control Library Template

The ASP.NET AJAX Control Toolkit comes with full support for Visual
Studio 2008 in the form of a project template that is geared toward creating
an extender control library project. The template, shown in Figure 11.1, cre-
ates a library project structure (see Figure 11.2) that contains an extender
control class, a designer class, and a JavaScript behavior class. In this sec-
tion, we look at the ImageRotatorExtender.cs, ImageRotatorDesigner.cs,
and ImageRotatorBehavior.js files that the template generated for us as we
begin to discuss creating a new and improved ImageRotator extender.

"= NOTE Additional Template

The toolkit also comes with a template that generates the same files
that can be used when you need to add additional extenders to an
existing project, which can be found when you select Add New Item
from a project.




Adding Client-Side Behavior Using the ExtenderControlBase

New Project
Project types: Templates: .NET Framework 3.5 'lm
a Visual C# Visual Studic installed templates
Windows (@ windows Forms Application A Class Library
Web (B ASP.NET 3.5 Extensions Web Application (B ASP.NET Web Application
K g:f:;m 9, ASP.NET Web Service Application [ WPF Application
Reporting P25 WPF Browser Application ™ Console Application
Test (A ASP.NET MVC Web Application and Test & Excel 2007 Workbook
WCF [ Outlook 2007 Add-in FBWCF Service Application
Workflow [a‘u‘r' Word 2007 Document a\ﬂﬁndnws Forms Control Library
& Database Projects (B ASP.NET MVC Web Application
© Other Languages My Templates
; mmif:‘;: {2 ASP.NET AJAX Control Project (#Search Online Templates...
b Test Projects

Create new ASP.NET AJAX Control Extenders and Behaviors

Mame:
Location:

Solution Name:

ImageRotator
C:\Users\adame\Documents\Visual Studio 2008\Projects -
[ || Elcreste iectoryforsouton

[7] Add to Source Control

FiIGURE 11.1 Extender control project template

Solution Explorer - ImageRotator ~ax

2| EA

Solution 'ImageRotator' (1 project)
- ImageRotator
|=a] References
£3 bin
""" 3] ImageRotatorBehavior.js
“““ 4] ImageRotatorDesigner.cs
b ] ImageRotatorExtender.cs

FIGURE 11.2 Extender control project template structure

m 515




516

Chapter 11: Adding Client Capabilities to Server Controls
Using the ASP.NET AJAX Control Toolkit
The ImageRotatorExtender class shown in Listing 11.1 serves as the basis

for our ImageRotator extender control. The class inherits from Extender
ControlBase and provides a template that contains most of the required
entries for us, such as the web resource registration of our associated behav-
ior class, class attributes that associate the designer for the extender,
the client script to be downloaded, and the target type for the extender. The
template also creates a default property, demonstrating the use of the
ExtenderControlProperty and DefaultValue attributes and the use of
the GetPropertyValue method inside the property setter and getter.

"= NOTE GetPropertyValue Method Version

The version of the GetPropertyVvalue method used by the template is
an outdated one. When building out the class, we will change the
implementation to use the GetPropertyVvalue<T> version instead.

LisTING 11.1 ImageRotatorExtender Class

[assembly: System.Web.UI.WebResource(
"ImageRotator.ImageRotatorBehavior.js", "text/javascript")]
namespace ImageRotator
{
[Designer(typeof(ImageRotatorDesigner))]
[ClientScriptResource("ImageRotator.ImageRotatorBehavior",
"ImageRotator.ImageRotatorBehavior.js")]
[TargetControlType(typeof(Control))]
public class ImageRotatorExtender : ExtenderControlBase
{
[ExtenderControlProperty]
[DefaultValue("")]
public string MyProperty
{
get

{
return GetPropertyValue("MyProperty", "");

set

SetPropertyValue("MyProperty", value);
}
}
}
}




Adding Client-Side Behavior Using the ExtenderControlBase m 517

The ImageRotatorDesigner class shown in Listing 11.2 will be the
designer class for our ImageRotator extender control. The designer class
provides default designer functionality for our extender control during
design time. We associate the designer with our ImageRotatorExtender
class by using the Designer attribute, which is automatically added when
we use the template. The ExtenderControlBaseDesigner<T> class that the
ImageRotatorDesigner class inherits from makes it possible for the prop-
erties of our extender control to show up in the Properties window while
the design-time focus is on the image control we are extending. This default
behavior provides a more efficient way of working with extenders and the
controls they are extending.

LisTING 11.2 ImageRotatorDesigner Class

namespace ImageRotator
{
class ImageRotatorDesigner : AjaxControlToolkit.Design.
ExtenderControlBaseDesigner<ImageRotatorExtender>
{
b
}

The ImageRotatorBehavior class shown in Listing 11.3 will be the client-
side behavior class for our ImageRotator extender control. The class con-
sists of the same structure we used in Chapter 5, but now inherits from the
AjaxControlToolkit.BehaviorBase class, which provides added function-
ality for working with client state and interacting with the asynchronous
request events of the Sys.WebForms.PageRequestManager.

LisTING 11.3 ImageRotatorBehavior Class

/// <reference name="MicrosoftAjaxTimer.debug.js" />

/// <reference name="MicrosoftAjaxWebForms.debug.js" />

/// <reference name="AjaxControlToolkit.ExtenderBase.BaseScripts.js"
assembly="AjaxControlToolkit" />

Type.registerNamespace('ImageRotator');

ImageRotator.ImageRotatorBehavior = function(element) {
ImageRotator.ImageRotatorBehavior.initializeBase(this, [element]);



518

Chapter 112: Adding Client Capabilities to Server Controls
Using the ASP.NET AJAX Control Toolkit

LisTING 11.3 continued

// TODO : (Step 1) Add your property variables here
this._myPropertyValue = null;

}

ImageRotator.ImageRotatorBehavior.prototype = {
initialize : function() {
ImageRotator.ImageRotatorBehavior.callBaseMethod(this, 'initialize');
// TODO: Add your initialization code here

}J

dispose : function() {
// TODO: Add your cleanup code here
ImageRotator.ImageRotatorBehavior.callBaseMethod(this, 'dispose');

I

// TODO: (Step 2) Add your property accessors here

get_MyProperty : function() {
return this._myPropertyValue;

}J

set_MyProperty : function(value) {
this._myPropertyValue = value;

¥

¥

ImageRotator.ImageRotatorBehavior.registerClass(
'ImageRotator.ImageRotatorBehavior', AjaxControlToolkit.BehaviorBase);

Inheriting from the ExtenderControlBase Class

The ASP.NET AJAX Control Toolkit comes with its own version of the
System.Web.UI.ExtenderControl class, which provides additional func-
tionality that supports the development pattern the toolkit is designed to
work with. The AjaxControlToolkit.ExtenderControlBase class provides
the inheritor support for serialization of property values, support for work-
ing with the toolkit-based attributes, seamless integration with control-
based view state, support for working with client state, and the ability to
specify an alternate script path for debugging and working with themes.
The ImageRotatorExtender class in Listing 11.4 shows a much different-
looking class than we saw in Chapter 5. The class no longer requires over-
rides for the GetScriptDescriptors and GetScriptReferences methods,
it has class-level attributes, it has property-level attributes, and the property
setters and getters are referencing their values through a method. So, let’s



Adding Client-Side Behavior Using the ExtenderControlBase m 519

go over these changes and see how we develop an extender control build-
ing on the structure the template provided for us.

The setting of the assembly-based WebResource attribute in our extender
class is a pattern that all the extenders and script controls in the toolkit fol-
low. This pattern helps centralize all the pieces for the component in one
location instead of having to add an entry to the assembly when a new con-
trol is added to the toolkit. The attributes applied to the class that we cover
in this section are the Designer, ClientScriptResource, RequiredScript,
and TargetControlType attributes. The Designer attribute is used to spec-
ify the class that will provide design-time services to our extender. The
ClientScriptResource attribute is used to include the client-side scripts for
our extender and consists of the resource type and the full resource name
and should refer to an embedded resource. The RequiredScriptResource
attribute brings in the timer script file that is associated with the Timer
Script class that we will use in our behavior class. Finally, the Target
ControlType attribute is used to limit the types of controls our extender can
be associated with.

The RotationInterval and Imagelist properties of our class have also
changed with the use of attributes and the reliance on the GetProperty
Value<T> and SetPropertyValue<T> methods to access our property data.
The ExtenderControlProperty attribute is used to indicate that the prop-
erty should be added to the ScriptComponentDescriptor as a property and
later included in the $create statement that creates the behavior class on
the client. The ClientPropertyName attribute is used to change the name
of the property that is used when the property is added to the Script
ComponentDescriptor from the default value of the property name to the
name provided to the attribute. The DefaultVvalue attribute, which comes
from the System.CompnentModel namespace, is used to indicate to design-
ers and code generators the default value of the property. The Extender
ControlBase class provides the GetPropertyValue<T> and GetProperty
Value<T> generic methods that get and set the property value directly from
the control view state. By using these methods in our property setters and
getters, a consumer of our extender can work with it in the designer, declar-
atively in the HTML editor, or in code and be assured that during a post-
back the values will be available.



520

Chapter 11: Adding Client Capabilities to Server Controls
Using the ASP.NET AJAX Control Toolkit

LIsTING 11.4 ImageRotatorExtender Class

[assembly:System.Web.UI.WebResource("ImageRotator.ImageRotatorBehavior.js",
"text/javascript")]
namespace ImageRotator
{
[ParseChildren(true, "ImagelList")]
[Designer(typeof(ImageRotatorDesigner))]
[ClientScriptResource("ImageRotator.ImageRotatorBehavior”,
"ImageRotator.ImageRotatorBehavior.js")]
[RequiredScript(typeof(TimerScript))]
[TargetControlType(typeof(Image))]
public class ImageRotatorExtender : ExtenderControlBase
{
[ExtenderControlProperty]
[ClientPropertyName("rotationInterval™)]
[DefaultValue(3), DisplayName("RotationInterval(seconds))")]
[DesignerSerializationVisibility(
DesignerSerializationVisibility.Visible)]
public int RotationInterval
{
get { return GetPropertyValue<int>("RotationInterval”, 3); }
set { SetPropertyValue<int>("RotationInterval", value); }

}

private ImageUrlList _imagelist;
[ExtenderControlProperty]
[ClientPropertyName("imageList")]
[DesignerSerializationVisibility(
DesignerSerializationVisibility.Content)]
[PersistenceMode(PersistenceMode.InnerDefaultProperty)]
public ImageUrlList ImagelList
{
get
{
if (_imagelList == null)
{
_imagelist = GetPropertyValue<ImageUrlList>(
"ImagelList", null);
if (_imageList == null)
{
_imagelist = new ImageUrlList();
SetPropertyValue<ImageUrlList>(
"ImagelList", _imagelist);

}

return _imagelist;

}




Adding Client-Side Behavior Using the ExtenderControlBase m 521

Creating the AjaxControlToolkit.BehaviorBase Class

The ASPNET AJAX Control Toolkit comes with its own version of the
Sys.UI.Behavior class, which provides additional functionality and sup-
ports the development pattern the toolkit is designed to work with. The
AjaxControlToolkit.BehaviorBase class provides inheritor support for
working with client state and interacting with the asynchronous request
events of the Sys.WebForms.PageRequestManager. The support for working
with client state is provided by the get_ClientState and set_ClientState
methods that can be used to work with the string-based hidden field asso-
ciated with your extender. The class also provides two methods tied to the
beginRequest and endRequest events of the PageRequestManager, which
can be overridden to provide specific functionality in your behavior in sit-
uations where an UpdatePanel is being used.

The ImageRotatorBehavior class shown in Listing 11.5 inherits from the
BehaviorBase class and provides the client-side behavior for our extender
control. The structure of this class is exactly the same as in Chapter 5, with
the rotationInterval property used to set the interval at which the images
will be swapped out and the imagelList property containing an array of the
images. The one change to the class is in the use of the Sys.Timer class,
which is part of the ASPNET AJAX Control Toolkit. This class, which is
contained in the Compat/Timer folder, wraps the window. setInterval call,
providing a cleaner interface for this timer-specific functionality. The
Sys.Timer class is just one of many that come with the toolkit that provide
added functionality to the existing Microsoft AJAX Library. If you look in
the Compat and Common folders in the toolkit library project, you will find
classes for working with dates, drag and drop, and threading, just to name
a few.

LisTING 11.5 ImageRotator Behavior Class

Type.registerNamespace('ImageRotator');

ImageRotator.ImageRotatorBehavior = function(element) {
ImageRotator.ImageRotatorBehavior.initializeBase(this, [element]);

this._imageIndex = 0;
this._imagelList = new Array();
this._rotationInterval = null;
this._timer = null;



Chapter 11: Adding Client Capabilities to Server Controls
Using the ASP.NET AJAX Control Toolkit

LisTING 11.5 continued

}

ImageRotator.ImageRotatorBehavior.prototype = {
initialize : function() {
ImageRotator.ImageRotatorBehavior.callBaseMethod(this,
‘initialize');

var element = this.get_element();

if(this._imagelist)
{
this._imagelist =
Sys.Serialization.JavaScriptSerializer.deserialize(
this._imagelist);
this._imagelList[this._imagelList.length] = element.src;

}

if(this._rotationInterval == null)
this._rotationInterval = 3;

if(this._timer == null)
this._timer = new Sys.Timer();

this._timer.set_interval(this._rotationInterval * 1000);

this._timer.add_tick(Function.createDelegate(this,
this._rotateImage));

this._timer.set_enabled(true);

}J

dispose : function() {
ImageRotator.ImageRotatorBehavior.callBaseMethod(this, 'dispose');
if (this._timer)
{
this._timer.dispose();
this._timer = null;

}

this._imagelList = null;

}J

get_rotationInterval: function(){
return this._rotationInterval;

s

set_rotationInterval: function(value){
this._rotationInterval = value;

}J

get_imagelList: function(){
return this._imagelist;

1



Adding Client-Side Behavior Using the ExtenderControlBase m 523

set_imagelList: function(value){
this._imagelList = value;
}J
_rotateImage: function(){
var element = this.get_element();
if(element)
{
element.src = this._imagelList[this._imageIndex++];
if(this._imageIndex > this._imagelList.length - 1)
this._imageIndex = 0;
}
}
}

ImageRotator.ImageRotatorBehavior.registerClass(
'ImageRotator.ImageRotatorBehavior', AjaxControlToolkit.BehaviorBase);

Attaching the Extender to a Control

You can attach the ImageRotator extender to an image control by using the
new Extender Control Wizard (see Figure 11.3) that comes with Visual
Studio 2008 and thus provide the same design-time experience we saw in
Chapter 5. The wizard is available from the smart tag of the image control
by selecting the Add Extender option, which opens the wizard. The wiz-
ard enables the user to select an extender control from a list and associate
it with a control. In our case, we would select the ImageRotator extender
to associate it with the image control. After we do that, we add values to the
RotationInterval property and ImagelList property using the Properties
window of the image control.

Final Thoughts

If we compare our experience of creating extender controls using the
ASPNET AJAX Control Toolkit to using the classes provided by the
ASP.NET 2.0 AJAX Extensions, we can see that our development experi-
ence is much simpler. The use of attributes to register our properties to be
included in the $create statements and to register our associated script files
dramatically reduces the complexity of our code compared to implement-
ing logic in the GetScriptDescriptors and GetScriptReferences methods.
This convenience alone makes it worth using the toolkit, but if we tack on
the added design-time features, support for working with client state, and
the numerous added JavaScript files such as the Sys.Timer class, the



524

Chapter 11: Adding Client Capabilities to Server Controls
Using the ASP.NET AJAX Control Toolkit
reasons to switch get greater. The use of the toolkit can be compared to the
use of the ActiveX Template Library (ATL) that was used to create ActiveX
controls in C++. The template provided a ton of base classes and Visual
Studio templates that made creating them a lot easier.

Extender Wizard m

=]
\,&/ Choose an Extender

Choose the functionality to add to Imagel:

FoY

=

ImageRctato
r

Description:

Select an extender from the box above. Descriptive text for the selected extender will appear here.

Specify an ID for the extender:

Cancel i

FiGUre 11.3 Extender Control Wizard

Adding Design-Time Support to Your Extender Control

The introduction of the Extender Wizard in Visual Studio 2008 has
enhanced the design-time experience with regard to working with extender
controls, and this section explains how to add design-time features of your
own to give your controls that professional feel that users have become
accustomed to.



Adding Design-Time Support to Your Extender Control m 525

Default Design-Time Experience

The ImageRotatorDesigner class shown in Listing 11.2 provides everything
we need to get a basic design-time experience for our extender control. The
ExenderControlBaseDesigner<T> that it inherits from makes it possible for
the properties of our extender control to show up in the Properties window
while the design-time focus is on the image control we are extending. Fig-
ure 11.4 shows the RotationInterval and Imagelist properties that appear
in the Properties window while the image control has focus in the designer.
This default feature addresses one issue, which is being able to work with
the ImageRotator properties in an integrated way, but still does not address
the issue of data entry for the properties themselves and how that experi-
ence can be enhanced.

Properties v+ I X
BannerImage System.Web.ULWebControlsImage -

N EIEAlE
(ID) Bannerlmage -~

AccessKey E
AlternateText
BackColor

B Bannerlmage_ImageRotatorExtender

m

(Expressions)
BehaviorlD Bannerlmage_ImageRotatort
Enabled True | )
Imagelist ["images/2.jpg"."images/3.
Rotationlnterval(seconds)) 3
ScriptPath
SkinID

BorderColor

BorderStyle NotSet

BorderWidth -

Bannerlmage_ImageRotatorExtender

FIGURE 11.4 Extender properties on the image control



526

Chapter 112: Adding Client Capabilities to Server Controls
Using the ASP.NET AJAX Control Toolkit
Adding Designers and Editors to Properties
In this section, we look at how to extend the design-time behavior of our
ImageRotator ImageList property. The ImageList property that we
worked with in Chapter 5 was rudimentary and prone to errors as a user
entered in the values. In this version of the extender, we want to extend the
functionality to support design-time editing and HTML source editing.
The road to these modifications requires a few steps as we add the
functionality:
1. Add attributes to the class.
2. Add attributes to the property.
3. Add editors to assist in assigning values.

4. Create a type converter to support serialization.

Add Attributes to the Class

Most users expect when adding multiple entries to a control to be able to
add them in the body of the HTML element. This is the experience we
have when adding web service references or script references to the Script
Manager and one we want to have in our control.

The ParseChildren attribute enables us to add multiple entries inside
our ImageRotator HTML tag and treat those entries as a single property
assignment. By setting the ChildrenAsProperties property to true and the
DefaultProperty to ImagelList, as in Listing 11.6, we are effectively telling
the designer that we want to have all the items contained in the body of our
ImageRotator tag parsed and assigned to the ImageList property. The
HTML fragment in Listing 11.7 shows what this looks like when the HTML
editor is opened and the ImageRotator tag has entries.

LisTING 11.6 ParseChildren Attribute Assignment

[ParseChildren(true, "ImageList")]

public class ImageRotatorExtender : ExtenderControlBase

{
X




Adding Design-Time Support to Your Extender Control m 527

LISTING 11.7 ImagelList Assignment in HTML

<asp:Image ID="BannerImage" runat="server" ImageUrl="~/images/1.jpg" />
<cc2:ImageRotatorExtender ID="BannerImage_ImageRotatorExtender"
runat="server" Enabled="True" TargetControlID="BannerImage">
<cc2:ImageUrl Url="~/images/2.jpg" />
<cc2:ImageUrl Url="~/images/3.jpg" />
<cc2:ImageUrl Url="~/images/4.jpg" />
</cc2:ImageRotatorExtender>

"= NOTE ASP.NET Server Control Designer References

The addition of designer features to your extenders requires
some knowledge of how designers work. MSDN has some great
information about this at http://msdn2.microsoft.com/en-us/
library/aa719973%28VS.71%29.aspx that covers adding design-time
support to ASP.NET server controls.

Add Attributes to the Property

To fully implement the ability to add nested image entries to our Image
Rotator extender, we need to add a couple of attributes, as shown in List-
ing 11.8, to our ImageList property, which provides hooks for the designer
to integrate with our property and properly assign the image values.

The DesignerSerializationvisibility attribute is added to the prop-
erty to ensure that the designer will serialize the contents of the property
during design time. The setting of DesignerSerializationvisibility.
Content instructs the designer to generate code for the contents of the tag
and not the tag itself.

The PersistenceMode attribute is the other piece to this puzzle and is
responsible for adding the <ImageUrl .. /> entries inside our ImageRotator
tag as we add values to the property in the Properties window. The setting of
PersistenceMode.InnerProperty specifies that the property is persisted as
a nested tag inside the ImageRotator, as shown in Listing 11.7.


http://msdn2.microsoft.com/en-us/library/aa719973%28VS.71%29.aspx
http://msdn2.microsoft.com/en-us/library/aa719973%28VS.71%29.aspx

Chapter 112: Adding Client Capabilities to Server Controls
Using the ASP.NET AJAX Control Toolkit

LisTING 11.8 Designer-Specific Attributes for the ImageRotatorExtender Class

[ParseChildren(true, "ImageList")]

public class ImageRotatorExtender : ExtenderControlBase

{

[DesignerSerializationVisibility(

DesignerSerializationVisibility.Content)]
[PersistenceMode(PersistenceMode.InnerDefaultProperty)]
public ImageUrlList ImagelList

{

}
}

Add Editors to Assist in Assigning Values

The use of editors in your extenders can greatly enhance the user experi-
ence during design time and in some cases can lead to more accurate entry
of data. Recall from Chapter 5 that we entered images to the ImageList
property by adding URL entries and separating them using commas. This
rudimentary approach would not be expected by a consumer of a profes-
sional control. In this version of the ImageRotator, we want to enhance the
data entry of the images by providing an editor that can be used to add
image URL entries and have those entries placed into the body of our
ImageRotator HTML tag. If we go back to the ScriptManager control, this
is the experience it provides when adding web service or script references
while in the Properties window.

The ImageList property in this version of the ImageRotator uses two
editors to provide a rich design-time experience when adding ImageUrl
entries. The first editor is a Collection editor, shown in Figure 11.5, and is
designed to assist in adding, editing, and removing values that are based on
a Collection. The editor is automatically associated with our ImageList
property because the type of the property is a Collection. The second edi-
tor we will use is the ImageUrlEditor, shown in Figure 11.6, which the
ImageUrl entry uses to assist the user in entering a URL. This editor is asso-
ciated with the Url property of the ImageUrl class, as shown in Listing 11.9,
by adding the Editor attribute to the property. We use the Editor attribute



Adding Design-Time Support to Your Extender Control m 529

to configure which editor to use when adding values to the property in the
designer. In our case, we are using the ImageUrlEditor to provide the user
with a clean way to find an image located in a web application and assign
the value to the ImageUrl property. The use of the associated UrlProperty
attribute provides a filter that identifies specific file types that can be used
to filter against the ImageUrl property.

e L e

Members: ImageRotatorImageUrl properties:
1] ImageRotator.ImageUrl I E 21 | =
1| ImageRotator.ImageUr B Image
2| ImageRotator.ImageUrl B Url ARGl
|
Add ||  Remove
' ok || cancel

FiGURE 11.5 Image URL Collection Editor

LisTING 11.9 ImageUrl Class

[Serializable]
public class ImageUrl
{
[DefaultValue(""),Bindable(true),
Editor("System.Web.UI.Design.ImageUrlEditor,
System.Design, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b@3f5f7f11d50a3a", typeof(UITypeEditor)),
UrlProperty]
public string Url { get; set; }
}




Chapter 11: Adding Client Capabilities to Server Controls
Using the ASP.NET AJAX Control Toolkit

T — ] g

Project folders: Contents of folder:
Ea ImageRotatorWeb l&l1.jpg
(-3 App_Data E7]2.jpg|
-3 images gﬂ_B‘jpg
[#-=4 Properties kil 4.jpg

@zl References |28l freeDigitalPhotoslogo.gif

Files of type: Image Files(".gif:*.jpg;" jpeg;".bmp;*.wmf;*.png) hd |

FIGURE 11.6 Image URL Editor

Create a Type Converter to Support Serialization

The use of complex types presents a few challenges in the ASPNET AJAX
Control Toolkit during the script generation process. The problem arises in
how the ASP.NET AJAX Control Toolkit serializes your extender control
properties as it creates the $create statement. By default, the toolkit tries
to get the default string representation of the value your property repre-
sents. In most cases, this is an easy task because most simple types convert
to a string relatively easily. If you are using complex types, however, this
can present a problem because the default ConvertToString() representa-
tion of a complex object is its type name. To resolve this issue, you must cre-
ate a type converter and associate it with the complex type. When the
ASPNET AJAX Control Toolkit encounters a type during script generation,
it looks to see whether the type has a converter. If it does, it uses the con-
verter to convert the data instead of using the default ConvertToString()
method. In this section, we walk through creating a System.Component
Model.TypeConverter that will be used to convert our ImageUrlList type



Adding Design-Time Support to Your Extender Control m 531

into a JavaScript Object Notation (JSON) string that can be consumed on
the client.

The ImageListConverter, shown in Listing 11.10, is designed to convert
the ImageList to a JSON array of image URLs that are then passed back to
the client. The creation of this type converter now enables us to return a
data format that the client can use instead of a string that contains the type
name of the ImagelList. For the type converter to be used, we need to asso-
ciate it with the ImagelList type. We do this by adding the TypeConverter
attribute to the ImagelList class, as shown in Listing 11.11, and assigning the
type of the ImageList to it. Now when the toolkit performs a Convert
ToString on the Imagelist, the JSON string representation of the Image
List will be returned.

" NOTE Use of the DataContract)sonSerializer

In more complex situations, you might use the DataContract
JsonSerializer that we discussed in Chapter 8, “ASPNET AJAX
Communication Architecture,” which replaces theSystem.Web.UI.
JavaScriptSerializer class as the new JSON serializer to convert your
data to JSON format.

LisTING 11.10 ImageListConverter Type Converter Class

public class ImageListConverter : TypeConverter
{
public override object ConvertTo(ITypeDescriptorContext context,
System.Globalization.CultureInfo culture, object value,
Type destinationType)
{
Collection<ImageUrl> imagelList = value as Collection<ImageUrl>;
if (imageList != null && destinationType == typeof(string))
{
StringBuilder builder = new StringBuilder();
builder.Append("[");
bool first = true;
foreach (ImageUrl imageUrl in imagelist)
{
if(first)
{
first = false;

}

else



532 Chapter 112: Adding Client Capabilities to Server Controls
Using the ASP.NET AJAX Control Toolkit

LisTiNG 11.10 continued

{
builder.Append(",");

}

builder.Append("\"");
builder.Append(imageUrl.Url.Replace("~/", ""));
builder.Append("\"");
}
builder.Append("]1");
return builder.ToString();
}
return base.ConvertTo(context, culture, value, destinationType);
¥
}

LisTING 11.11 ImageUrlList Collection Class

[Serializable]
[TypeConverter(typeof(ImageListConverter))]
public class ImageUrlList : Collection<ImageUrl>

{
X

Adding Animations to Your Extender Control

The ASPNET AJAX Control Toolkit comes with a rich animation frame-
work that provides support for creating cool visual effects on your pages.
The animation framework consists of a set of JavaScript and .NET classes
that enable you to build up animations of all types, including animations
that run sequentially or in parallel, animations that fade the opacity of a
control in and out, and animations that transition from one color to the
next. The framework provides support for building these animations using
the JavaScript API directly or using a declarative approach that consists of
adding markup in the HTML editor. The following sections examine how
to add animation functionality to extender controls.



Adding Animations to Your Extender Control m 533

Animations Using the JavaScript API

The ImageRotator extender we created earlier provided little in the area of
effects as the images switched and resulted in very fast transition from one
image to the next, which wouldn’t catch a viewer’s attention. In this sec-
tion, we create a new version of the ImageRotator, called the Animated
ImageRotator, that fades in the image as it switches from one image to the
next and provides this feature in addition to the existing functionality of the
ImageRotator. As we cover how to add this new animation functionality,
we gloss over the topics we have already covered, focusing only on imple-
menting the animation pieces.

To add this functionality to the AnimatedImageRotator, we need to reg-
ister the animation scripts with the AnimatedImageRotatorExtender class
and add logic to the behavior class to call the animation when the image
changes.

Registering the Animation Scripts

To register the script files so that they are downloaded to the browser, we
need to add the RequiredScript attribute to the AnimatedImageRotator
Extender class, as shown in Listing 11.12. We use the RequiredScript
attribute in this case to ensure that the animation.js, timer.js, and common.js
script files associated with the AnimationScripts type are included with
the scripts brought down to the browser for our control. This style of
adding scripts associated with a type is a common practice in the toolkit
and is clean way to include dependent scripts associated with a type.

LisTING 11.12 AnimatedimageRotator Extender Class

[RequiredScript(typeof(AnimationScripts))]

public class AnimatedImageRotatorExtender : ExtenderControlBase

{
}




534

Chapter 112: Adding Client Capabilities to Server Controls
Using the ASP.NET AJAX Control Toolkit
Calling Animation APIs
The ASPNET AJAX Control Toolkit contains a JavaScript API that you can
use to provide animation support on the client. In the case of our Animated
ImageRotator extender, we will use the FadeAnimation, which is part of the
animation AP], to provide a fade-in effect when the images on our image
control change. The JavaScript code to implement this functionality will be
contained in our behavior class and will integrate with the existing features
of the ImageRotator.

The AnimatedImageRotator behavior class, shown in Listing 11.13, takes
the ImageRotator behavior and adds a fade animation when the image
changes, to fade the image into view. The constructor of the FadeAnimation
takes the target of the animation, the duration of the animation, the number
of steps per second, the effect, the minimum opacity, the maximum opacity,
and whether to adjust for layout in Internet Explorer. In our case, the
BannerImage image control will be the target of our animation, and the
duration of our animation will be hard coded to 20% of the time the image
is visible. To provide a clean animation, we will set the animation steps to
150, and combine that with a fade-in effect that will cause the image to tran-
sition in when the image changes. During this transition, we will start off
with an opacity of 0, which will give us a full view of the image back-
ground, and then through the 150 steps work our way to a full view of the
image with an opacity of 1. Table 11.1 lists some of the FadeAnimation prop-
erties and provides a little more information about what they do.

After we associate the animation to the element, starting, stopping, and
pausing the animation is just a method call away, making it simple to
manipulate the animation. In the AnimatedImageRotator, the load event of
the image is used to trigger the animation to play because it will be fired
each time our Sys.Timer calls the _rotateImage method. To do this, we
associated the _onLoadImage event handler with the onLoad event of the
image and called the play method on the animation inside the function.
Now each time the load event occurs, the animation plays, transitioning the
image into view. One of the side effects of working with an animation in a
situation like this is a potential race condition if the duration was set too
long. When working with transition-type animations like the FadAnimation,
pay close attention to how you are using it to ensure the animation will work
in all cases.



Adding Animations to Your Extender Control

LisTiNG 11.13 AnimatedimageRotator Behavior Class

m 535

AnimatedImageRotator.AnimatedImageRotatorBehavior = function(element) {
this._fadeAnimation = null;
this._timer = null;
this._onImageLoadHandler = null;

}

AnimatedImageRotator.AnimatedImageRotatorBehavior.prototype = {
initialize : function() {

if(this._fadeAnimation == null)
{
this._fadeAnimation =
new AjaxControlToolkit.Animation.FadeAnimation(
element, this._rotationInterval/20, 150,
AjaxControlToolkit.Animation.FadeEffect.FadeIn,
0, 1, true);
}
if (element)
{
this._onImagelLoadHandler = Function.createDelegate(this,
this._onImageload);
$addHandler(element, 'load', this._onImageLoadHandler);
}

¥
dispose : function() {

var element = this.get_element();
if (element) {
if (this._onImagelLoadHandler) {
$removeHandler(element, 'load',
this._onImagelLoadHandler);
this._onImageLoadHandler = null;
}
}

if (this._fadeAnimation)

{
this._fadeAnimation.dispose();
this._fadeAnimation = null;

}



536 - Chapter 11: Adding Client Capabilities to Server Controls
Using the ASP.NET AJAX Control Toolkit

LisTING 11.13 continued

1

_onImageLoad: function(){
if(this._fadeAnimation)
this._fadeAnimation.play();

3

TaBLE 11.1 Partial List of Fade Animation Class Properties

Property Description

target Target of the animation.

duration Length of the animation in seconds. The default is 1.

fps Number of steps per second. The default is 25.

effect Determine whether to fade the element in or fade the ele-
ment out. The possible values are AjaxControlToolkit.
Animation.FadeEffect.FadeIn and AjaxControlToolkit.
Animation.FadeEffect.FadeOut. The default value is
FadeOut.

minimumOpacity = Minimum opacity to use when fading in or out. Its value
can range from 0 to 1. The default value is .

maximumOpacity =~ Maximum opacity to use when fading in or out. Its value
can range from 0 to 1. The default value is 1.

forceLayoutInIE Whether we should force a layout to be created for Internet
Explorer by giving it a width and setting its background
color (the latter is required in case the user has ClearType
enabled). The default value is true.




Adding Animations to Your Extender Control "'m 537

Animations Using the Declarative Method

The declarative approach to animation in the toolkit provides a nice exten-
sibility path for consumers of your extender. In our previous example, we
hard coded all the animation functionality inside our extender, providing
little support for developer customization. In some cases, this might be all
that is needed. In other cases, however, you might need to provide a more
robust solution that provides a JavaScript-free way to customize anima-
tions. In this section, we replicate the same functionality we created in the
preceding section, but we provide a more extensible approach consumers
of our extender can use when they are configuring it in the designer. The
extender we create has just one feature: the capability to run a FadeIn ani-
mation when the onLoad event of an associated image control occurs. This
new extender will be used in addition to the ImageRotator extender we cre-
ated earlier, which had no animation functionality. This refined approach to
adding animation support builds on the principle that many extenders can
be placed on a single control to provide combined client-side capabilities.
To get started, let’s take a look at what the declarative syntax or our con-
trol will look like before we go into the implementation details. Just as in
the preceding section, as we cover how to add this new animation func-
tionality we gloss over the topics we have already covered, focusing only
on implementing the declarative animation pieces.

Overview of Declarative Syntax

To get started, let’s look at the HTML source we will be working toward
being able to work with in our ImageAnimation extender. The source in List-
ing 11.14 contains an ImageAnimationExtender tag that contains in its body
an Animations tag. As you might guess, the approach here is to add various
animations that are driven by events raised by the image control we are
extending. In our case, we are working with the OnLoad event and adding
a Sequence animation that will call a child Fade animation. A Sequence ani-
mation is designed to run all its child animations one at a time until all have
finished. So, what this source tells us is that our extender will have an ani-
mation that will be tied to the OnLoad event of the image control and will
run the child Fade animation whenever the OnLoad event occurs.



Chapter 112: Adding Client Capabilities to Server Controls
Using the ASP.NET AJAX Control Toolkit

LisTING 11.14 AnimationlmageExtender Declarative Syntax

<asp:Image ID="BannerImage" runat="server" ImageUrl="~/images/1.jpg" />
<cc3:ImageAnimationExtender ID="Banner_ImageAnimationExtender"
runat="server" Enabled="True" TargetControlID="BannerImage">
<Animations>
<OnLoad>
<Sequence>
<FadeIn AnimationTarget="BannerImage" Duration=".3"/>
</Sequence>
</OnLoad>
</Animations>
</cc3:ImageAnimationExtender>
<cc2:ImageRotatorExtender ID="Imagel_ImageRotatorExtender”
runat="server" Enabled="True" TargetControlID="Banner">
<cc2:ImageUrl Url="~/images/2.jpg" />
<cc2:ImageUrl Url="~/images/3.jpg" />
<cc2:ImageUrl Url="~/images/4.jpg" />
</cc2:ImageRotatorExtender>

Providing Declarative Support in Your Extender Class
The AnimationExtenderControlBase class provides most of the function-
ality we need to parse the Animation tag and all its contents. This class pro-
vides internal methods that convert the XML representation of the
animation into JSON format, which our behavior will then use to run the
animation, and also provides the Animation property that we see in List-
ing 11.15. The following sections cover the steps needed to ensure the exten-
der will work correctly.

1. Add attributes to the class.

2. Create a property for the event.

3. Add attributes to the property.

Add Attributes to the Class

This type of extender has a couple of added class attribute entries of inter-
est to us. The first is the inclusion of the RequiredScript attribute for the
AnimationExtender type. The AnimationExtender class provides a lot of
the client-side functionality we will be using in our extender control, and by
using this type in our RequiredScripts attribute, we are guaranteed that



Adding Animations to Your Extender Control "m 539

the scripts will be present on the client for us to use. The second attribute
is the System.Web.UI.Design.ToolboxItem attribute, which enables our
control to show up in the toolbox of Visual Studio. It might seem strange
that we have to add this because all our other extenders didn’t. If we look
at the attributes on the AnimationExtenderControlBase class, however, the
support for viewing in the toolbox has been turned off. Therefore, we must
reset this value on our control so that it will show up in the toolbox.

Create a Property for the Event

The pattern when creating extenders of this type is to add a property for
each event you want to interact with. In our case, we are working with the
OnLoad event, so we create a property named OnLoad (to make it easy to
understand what the event is). If we were to choose other events, we would
name them based on the DOM event they represent. The property accessor
for these events must use the GetAnimation and SetAnimation methods to
ensure proper data conversion into JSON as the data is stored and retrieved
out of the extender’s view state.

Add Attributes to the Event Property

The event property must have the Browsable, DefaultValue, Extender
ControlProperty, and DesignerSerializationVisibility attributes
applied to it. The Browsable attribute stops the property from showing up in
the Properties window and therefore excludes the property from being
assigned in the Properties window. This is needed because no editor is asso-
ciated with this property, and we don’t want users to try to add anything into
the Properties window that would corrupt the values. The Designer
SerializationVisibility attribute with a value of DesignerSerialization
Visibility.Hidden is used to indicate that the property value should not be
persisted by the designer because the Animation property will take care of
that for us. The DefaultValue attribute indicates to the designer that the
default value will be null, and the ExtenderControlProperty attribute is
used to register the property with the ScriptComponentDescriptor.



540 Chapter 112: Adding Client Capabilities to Server Controls
Using the ASP.NET AJAX Control Toolkit

LisTING 11.15 ImageAnimationExtender Class

[Designer(typeof(ImageAnimationDesigner))]
[ClientScriptResource("ImageAnimation.ImageAnimationBehavior"”,
"ImageAnimation.ImageAnimationBehavior.js")]
[RequiredScript(typeof(AnimationExtender))]
[ToolboxItem("System.Web.UI.Design.WebControlToolboxItem, System.Design,
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b@3f5f7f11d50a3a")]
[TargetControlType(typeof(Image))]
public class ImageAnimationExtender : AnimationExtenderControlBase

{

private Animation _onlLoad;

[DefaultValue(null)]

[Browsable(false)]

[ExtenderControlProperty]

[DesignerSerializationVisibility/(

DesignerSerializationVisibility.Hidden)]

public new Animation OnLoad

{
get { return GetAnimation(ref _onLoad, "OnLoad"); }
set { SetAnimation(ref _onLoad, "OnLoad", value); }

¥

}

Adding Declarative Support to Your Behavior Class
The ImageAnimationBehavior class, shown Listing 11.16, provides all the
client-side functionality for our extender with support from the animation
script files associated with the AutomationExtender class. These associated
scripts provide support for converting the JSON representation of the
FadeIn animation that was captured on the server to an actual animation,
support for associating the animation with the high-level OnLoad event, and
support for playing the animation when the OnLoad event occurs.
You need to complete a few steps for each event you plan to work with:
1. Add variables to the class.
2. Create functions.

3. Add handlers.

Add Variables to the Class
Each event that your behavior will work with needs a variable that refer-
ences the GenericAnimationBehavior for the event and a delegate that will



Adding Animations to Your Extender Control m 541

be called for the event that will be processed. In the ImageAnimation
Behavior class, we use the _onLoad variable to store a reference to the
GenericAnimationBehavior class and the onlLoadHandler variable to store
a reference to the delegate that will handle the onLoad event. The guidelines
established so far in the toolkit use a naming convention that includes the
event name in all the variable names.

Create Functions

The behavior needs a series of functions for each event you will work with.
The get_OnLoad and set_OnLoad functions in our case take care of working
with the JSON-based data for the FadeIn animation and utilize the func-
tionality provided by the GenericAnimationBehavior class to store and
retrieve that data. The get_OnLoadBehavior function returns a reference to
the GenericAnimationBehavior instance that was created for our FadeIn
animation, providing the ability to work with the behavior that directly
exposes the play, stop, and quit methods common to all animations.

Add Handlers

Handlers must be added for each event the behavior will process and
should correspond to the events exposed on the extender control. In our
case, we are working with the onLoad event, so we need to create the
_onLoadHandler delegate and associate it with the onLoad event of the
image using the $addHandler shortcut. The opposite of this must happen in
the dispose of our behavior, when we use the $removeHandler shortcut to
ensure proper memory cleanup.

LisTING 11.16 ImageAnimationBehavior Class

Type.registerNamespace('ImageAnimation');

ImageAnimation.ImageAnimationBehavior = function(element) {
ImageAnimation.ImageAnimationBehavior.initializeBase(this, [element]);
this._onLoad = null;
this._onLoadHandler = null;

}

ImageAnimation.ImageAnimationBehavior.prototype = {
initialize : function() {

ImageAnimation.ImageAnimationBehavior.callBaseMethod(this,
initialize');
var element = this.get_element();



Chapter 11: Adding Client Capabilities to Server Controls

2
>4 Using the ASP.NET AJAX Control Toolkit

LisTiNG 11.16 continued

if (element)

{
this._onLoadHandler = Function.createDelegate(this,
this.OnLoad);
$addHandler(element, 'load', this._onLoadHandler);
}
}J

dispose : function() {
ImageAnimation.ImageAnimationBehavior.callBaseMethod(this,
‘dispose');

var element = this.get_element();
if (element) {
if (this._onLoadHandler) {
$removeHandler(element, 'load', this._onLoadHandler);
this._onLoadHandler = null;
}
}

this._onLoad = null;

})
get_OnLoad : function() {
return this._onLoad ? this._onLoad.get_json() : null;
}J
set_OnLoad : function(value) {
if (!this._onLoad) {
this._onLoad = new
AjaxControlToolkit.Animation.GenericAnimationBehavior(
this.get_element());
this._onlLoad.initialize();
}
this._onlLoad.set_json(value);
this.raisePropertyChanged('OnLoad");
})
get_OnLoadBehavior : function() {
return this._onlLoad;
s
OnLoad : function() {
if (this._onLoad) {
this._onlLoad.play();
}
¥
}

ImageAnimation.ImageAnimationBehavior.registerClass(
'ImageAnimation.ImageAnimationBehavior',
AjaxControlToolkit.BehaviorBase);




Summary ®m 543

Final Thoughts

The HTML source for our sample, shown Listing 11.14, contains a Fade ani-
mation that targets the BannerImage control and runs for a duration of
.3 seconds. We could have chosen almost any type of animation as long as
it occurred when the OnLoad event fired on the BannerImage image control.
This flexibility provides a JavaScript-free way to set up animations of any
type when a pattern such as this is used. In fact, this is exactly how the
Animation extender works; and if it weren’t for the way it handles the
OnLoad event, we would have used it in our example.

SUMMARY

The AJAX Control Toolkit comes with quite a bit of functionality that you
can use to create truly interactive extenders that require much less coding
than if you were to use the ASP.NET 2.0 AJAX Extensions directly. As you
learned in this chapter, the toolkit provides a much richer environment for
creating extender controls than using the ASPNET 2.0 AJAX Extensions
alone. In addition, the toolkit includes myriad controls you can either use
or build on, making the toolkit a compelling alternative.



Index

Symbols
_ (underscore), 64
_component object, adding
components to, 177
_dolnitialize method, 189
_format method, 301
_onBlur method, 302
_onFocus method, 302
_validateParams function, 557
__culturelnfo variable, 292
$create statements, 243
$find method, 180

A

abstract data types, 40-45
Accept-Language headers, 262
accessing

base class methods, 80

enumerations, 73

folders, 440

private members, 81

properties, 47

raw events, 112

roles, 440
AcquireRequestState event, 566
actions, animations, 508-509
ActiveX Template Library (ATL), 524
add_init method, 195, 364

Add User screen, 437
AddAttributesToRender method, 343
addComponent method, 177
AddComponentProperty
method, 211
AddElementProperty method, 211
adding
animations to extender controls,
532-543
attributes, 538
AutoComplete page methods, 498
behavior, ExtenderControl class,
220-233
client-side behavior,
ExtenderControlBase, 513-523
client-side functionality, 247-254
components, 177-178
controls, 246
custom events, 90
design-time support to extender
controls, 524-532
designers to properties, 526-532
editors to properties, 526-532
error publishing feature, 133
filters, 308-310
functionality, ScriptControl class,
233-246
handlers, 130, 541



578

Index

multiple handlers, 91
properties
Expando, 75
instances, 40
references, 526
script resources, 215
users, 437
variables, 540
addresses, URIs, 380
AddScriptProperty method, 212
administration
components, 123
roles, 439-441
Web Site Administration Tool,
431-432, 437
AJAX-enabled WCF services, 382
AjaxControlExtender.vsi file, 484
AjaxControlToolkit.BehaviorBase
class, creating, 521-522
alerts
error messages, 302
timeouts, 32
Allow element, 429
amounts
filters, defining, 308
localization, 267
AnimatedImageRotator class, 534
AnimatedImageRotatorExtender
class, 533
Animation class, 485, 503
AnimationExtenderControlBase
class, 511, 539
animations
extender controls, adding to, 532-543
support for, 483
Toolkit (ASPNET AJAX Control),
501-503
client architecture, 503-508
server architecture, 509-512
anonymous functions, generating, 34

APIs (application programming
interfaces), 375
JavaScript, 533-536
membership login, 436
roles, 443
ApplicationManager, 559
applications
ASP.NET 2.0, 425-433. See also
ASP.NET 2.0
ASP.NET AJAX application
services, 448
authentication, 448-452
profiles, 456-459
roles, 453-454
HTTP
handlers, 560-565
modules, 565-568
lifecycles, 394-395, 559-560
localization, 255-256
determining what needs to be
localized, 257-261
displayed values, 267-276
running under particular cultures,
261-266
services, 460-466, 469-478
Sys.Application class. See
Sys.Application class
web, xxvii, 398-400
Web Site Administration Tool,
431-432, 437
applying
authentication services, 450
event parameters, 145-148
getBaseType, 84
inheritsFrom types, 83
instanceOfType, 84
interfaces, 86-88
intervals, 38
IScriptControl interfaces, 247-254
KnownType attributes, 392



load events, 200
pageload method, 201
profile services, 457
property parameters, 140-145
references parameters, 149-150
role services, 454
scripts, 219
type parameters, 136-139
WebResource attribute, 216
architecture
ASP.NET 2.0 AJAX Extensions, 374
page methods, 386-387
serialization, 388-394
server framework components,
394-400
web services, 375-386
ASP.NET AJAX Control Toolkit, 481
animations, 501-512
client-based, 499-501
composition of, 483-486
overview of, 482-483
server-based, 486-487, 491-499
Microsoft AJAX Library
communication architecture, 401
serialization, 415-416
service proxies, 401-415
WebRequest class, 417-424
new communication paradigm,
372-373
script-based, 208
behavior and control, 208-218
resources, 214-219
arguments
dynamic, 22
explicit, 22
implicit, 21
JavaScript, 16-25
undefined, 22
arrays
associative, comparing objects, 10
extending, 55-59

Index m 579
ASP.NET
application lifecycles, 394-395
services, registering, 385
ASP.NET 2.0
AJAX Extensions, xxx, 374
page methods, 386-387
serialization, 388-394
server framework components,
394-400
web services, 375-386
membership, role, and user profile
services, 425-436
Provider Model, 429-431
ASP.NET AJAX, 448
authentication, 448-452
localization in, 277-280
profiles, 456-459
roles, 453-454
ASP.NET AJAX Control Toolkit, xxx
architecture, 481
animations, 501-512
client-based, 499-501
composition of, 483-486
overview of, 482-483
server-based, 486-499
extender controls, creating, 220
AspNetCompatabilityRequirements
attribute, 382
assemblies, 476-477
assigning
null, 12
properties, 243
references, 149
associative arrays, 10
ATL (ActiveX Template Library), 524
attaching
event handlers, 107
extenders to controls, 231-233, 523
Sys.ULDomEvent, 110



580

Index

attributes
adding, 538

AspNetCompatabilityRequirements,

382
ClientCssResource, 491
code with, 488
code without, 487
DataContract, 379
development, simplification of, 482
ExtenderControlEvent, 489
ExtenderControlProperty, 489
JavaScript, 4-6
primitive data types, 6
objects, 9-15
KnownType, 392, 412-413
OperationContract, 407
param element, 553
ParseChildren, 526
RequiredProperty, 489
ScriptResource, 305
server-based architecture, 486-491
UrlProperty, 241
WebResource, 216
AuthenticateRequest event, 566
authentication
forms, 426-429
services, 448-452
authorization element, configuring,
428-429
AuthorizeRequest event, 566
AutoComplete page method,
adding, 498
AutoCompleteDesigner class, 499
automatic disposal
of behaviors and controls, 329-337
of components, 337-339, 351-355
AutomationExtender class, 540

B
backslash (\), 8
backspace character, 8
base class methods
accessing, 80
calling, 82
ErrorHandler components, 132-133
overriding, 81
redefining, 48
server-based architecture, 491-494
beginCreateComponents
method, 189
BeginRequest event, 566
beginUpdate method, 129
BehaviorBase class, 500, 521
behaviors, 159-161, 380
client-side, 513-523
components, 122-124
creating, 162-167
defining, 161-162
ExtenderControl class, adding,
220-233
partial postbacks, 324-328
automatic disposal, 329-339
manual disposal, 340-355
script-based architecture, 208-218
UpdatePanel, 318-324
bindings, 380
blocks, finally, 28
booleans, 6, 52
bubbleSort method, 68
defining, 70
testing, 71
bubbling, event, 154
bugs, parseLocale method, 284-285
built-in types, extending, 52
arrays, 55-59
booleans, 52
dates and numbers, 53
strings, 54-55



C

C# base class methods, calling, 82
caching scripts, 306
call stacks, 190
callbacks, 115-116
callee property, 24
caller property, 24
calling
animation scripts, 534-536
base class methods, 82
canceling timeouts, 30
capabilities
localization, 280-281
script globalization, 281-291
capitalization, constructors, 63
carriage return characters, 8
categories of JavaScript, 4
central locations, managing
components, 176
characters, special, 8
checkAmounts function, 310
checking function parameters, 555
classes
AjaxControlToolkit.BehaviorBase,
521-522
AnimatedlmageRotator, 534

AnimatedImageRotatorExtender, 533

Animation, 503
AnimationExtenderControlBase,
511, 539
attributes, adding, 538
AutoCompleteDesigner, 499
AutomationExtender, 540
BehaviorBase, 500, 521
ControlBase, 501
designer, 495, 498-499
ErrorEventArgs Client, 571
ErrorHandler Client, 569-575
ExtenderControl, 220-233

Index m 581

ExtenderControlBase, 492-494
attaching extenders to controls, 523
creating AjaxControlToolkit.

BehaviorBase class, 521-522
inheriting from, 518-520
ExtenderControlBaseDesigner(T},
497-499, 517

GenericAnimationBehavior, 541

Image URL, 530

JavaScript, 483

Microsoft AJAX Library, 60-67

MyHandlerFactory, 563

NET, 483

ProfileBase, 445

prototype serialization, 416

proxy services, 473-477

registering, 79

ScriptBehaviorDescriptor, 213

ScriptComponentDescriptor,

210-213, 488-489

ScriptControl, 233-246

ScriptControlBase, 495

ScriptControlDescriptor, 208, 214

ScriptControls, 491-494

ScriptManager, 218-219

ScriptReference, 216

SearchCriteria, 381

Servicel, 377

ServiceReference, 385

SimpleWCFService, 473

StackTrace Client, 572-573

Sys.Application, 169. See also

Sys.Application class

Sys.Component, 125, 129
creating components, 134-151
defining new components, 129-134

Sys.EventArgs, 93

Sys.Net.WebProxy, 449, 456

Sys.Net.WebRequestManager, 422

Sys.Net. XMLHttpExecutor, 422



582

Index

Sys.Services.AuthenticationService,
449
Sys.Services.ProfileService, 456
Sys.Services.RoleService, 453
Sys.UlLBehavior, 122, 208-218
creating, 229-230
methods, 159
template, 225
Sys.ULControl, 122, 152, 208-218
SysCulturelnfo, 290-293
TextBoxInfo, 244-246
Transactions, 260-261
UserProfile, 445
WCFHandler, 465
WebControl, 234
WebRequest, 417-424
WebServiceError, 403
WebServiceProxy, 415
clearing intervals, 38, 336
clickEventHandler method, 114-116
client-based architecture, 499
BehaviorBase class, 500
ControlBase class, 501
client-side behavior
adding, 513-523
ExtenderControl class, 220-233
functionality
ExtenderControl class, 233-246
IScriptControl interface, 247-254
client-side JavaScript. See CSJS
ClientCssResource attribute, 491
ClientPropertyName attribute, 489
clients
application lifecycles, 559-560
components. See components
controls, HoverCard, 343
ErrorHandler code, 569-575
libraries, IntelliSense, 549
login, 451
Sys.Application class, 169
creating, 170-172

initialization routines, 185-198
load events, 198-203
managing components, 177-185
method information, 172-175
type information, 172
unload routines, 203-206
closures, 45
code
delayed code execution, 30-38
Errorhandler client, 569-575
with/without attributes, 487-488
comments, XML, 551-554
Common folder, 485
communication
architecture, 372. See also architecture
WCE, 375-386
CommunicationSupport
namespace, 466
comparing null and undefined
values, 18
complex data and serialization, 391
components, xxix
adding, 177-178
ASP.NET 2.0 AJAX Extensions, xxx
ASPNET AJAX Control Toolkit, xxx
behaviors, 122-124, 159-161
creating, 162-167
defining, 161-162
controls, 122-124, 151-154
creating, 157-159
defining, 155-157
creating, 189-191, 193-198
defining, 178
definition of, 121-122
deleting, 183-184
ErrorHandler, 129-134, 351-355
Microsoft AJAX Library, xxix
partial postbacks, 324-328
automatic disposal, 329-339
manual disposal, 340-355
retrieving, 184-185



searching, 179-183
server frameworks, 394-400
Sys.Application class, 169
creating, 170-172
initialization routines, 185-198
load events, 198-203
managing, 177-185
method information, 172-175
type information, 172
unload routines, 203-206
Sys.Component class, 125, 129
creating, 134-151
defining new components, 129-134
composite controls, 247-254
concatenation, strings, 9
configuring
AjaxControlToolkit.BehaviorBase
class, 521-522
ASP.NET
application services, 449
web applications, 398-400
authorization element, 428-429
behaviors, 159-167
components, 134-151, 189-198
skeletons, 129-130
composite controls, 250
controls, 157-159
creating script controls, 237-246
current cultures, 262-266
data contracts, 383-384
dataContractSerializer element, 393
error types, 58
Forms authentication, 427
functions, 5
handlers, 541
HTTP handlers, 477
ImageRotator extenders, 514-517
inheritance, 79-84
instances with parameters, 42
internal controls, 250
namespaces, 61

Index m 583
objects, 9
profiles, 447
services, 456-459
references, 196-198
roles
accessing, 440
services, 453
ScriptManager control, 218-219
services
contracts, 381-383
registering, 384-385
Sys.Application, 170-172
Sys.Ul.Behavior class, 229-230
type converters, 530-532
web applications, 398-400
consoles, Sys.Debug, 98
constructors
capitalization, 63
DataContractJsonSerializer, 390
parameters, 41, 63
properties, 15
ScriptControlDescriptor class, 214
ScriptReference class, 217
Sys.Application, 170-171
containers
animations, 504-505
naming, 249
contracts
data, creating, 383-384
services, creating, 381-383
types of, 376
data, 378-379
service, 376-378
ControlBase class, 501
controls, 151-154
adding, 246
components, 122-124
composite, adding functionality,
247-254
creating, 157-159
CurrencyTextBox.cs, 297



584 Index

defining, 155-157 D
ExtenderControl class, 220-233 data contracts, 378-379, 383-384
ExtenderControlBase, 513-523 .

data format strings, 289

extenders d
i i 532-543 ata types
animations, abstract, 40-45

attaching, 231-233 .
. - primitive, 6
design-time support, 524-532 biects. 14
GridView transactions, 259 Wrapper objects,
’ DataContractJsonSerializer, 389, 416

mtel;.a; 250 constructors, 390

creating, methods, 391

renc}lgerm}%, 254135 DataContractSerializer element, 393
membership, dates
partial postbacks, 324-328 extending, 53

automatic disposal, 329-339
manual disposal, 340-355
ScriptManagerProxy, 218-219

JavaScript, 279-280
localization, 267
script globalization, 286-287

script§ debugging
architecture, 208-218
. messages, 325
creating, 237-246

_validateParams function, 556

servers, Xxxvii, xxxiii . . .
, ’ declarative animations, 509-512,

ErrorHandler, 571-572

537-543
HoverCard, 341-351 .
. declaring
SimpleComponent, 327
namespaces, 61-62
state, 493
page methods, 387
TextBoxInfo, 240 ..
. public interfaces, 65-66
UpdatePanel behavior, 318-324 strine variables. 8
WebControl class, 234 & g

types, 62-65
default design-time, extender
controls, 525
default resource files, 271
default ScriptManager control

conversion, implicit, 14
converters, creating type, 530-532
CS]JS (client-side JavaScript), 4
Culture Selector drop-down, 271
cultures. See also localization

) behavior, 218
Invariant, 286 .
. default values, private members, 41
resource files, 273-276 . .
defining

CurrencyTextBox, 295-312 —
t cult fiouri 262-266 amounts, filtering, 308
current cultures, configuring, 262- behaviors, 161-162

carry m‘et.hods, 36 bubblesSort method, 70
customizing components, 129-134, 178

apphc}zlatlon serv1ces,t460—478 constructors with parameters, 63
asynchronous executors, controls, 155-157

creating, 417 .

C enumerations, 73
events, adding, 90 error types, 58
Sys.EventArgs class, 93 ypes,

Filter.Res objects, 312



formattable objects, 289
initializeBaseType function, 46
interfaces, 68
private members, 300
properties, 300
protocol-based methods, 43
pubic members, 42
TestType, 83
types, 40-41, 63
delayed code execution, 30-38
delegates, 113, 147
deleting
components, 183-184
multiple handlers, 91
Sys.ULDomEvent, 110
Deny element, 429
descriptors
event names in, 212
property names used in, 210
deserialize method, 416
design, adding extender controls,
524-532
designer classes
server-based architecture
Toolkit (ASPNET AJAX Control),
495-499
designers
properties, adding to, 526-532
references, 527
development
simplification of, 482
UpdatePanel, behavior, 318-324
dictionaries, passing in, 116
disabling error publishing
features, 133

displayed values, localizing, 267-276

dispose method, 130, 300

dispose scripts, 337-339

div tags, wrapping HoverCards
in, 346

Index

DOM (Document Object Model)
behaviors, 159-161
creating, 162-167
defining, 161-162
controls, 151-154
creating, 157-159
defining, 155-157
elements, 9, 557
modifying, 192
double quote (“), 8
downloading Ajax Control
Toolkits, 484
DragPanelExtender, 347
duplicate functionality, 495
duration property, 536
dynamic arguments, 22
dynamically typed languages, 4-5

ECMAScript standard, 4
Edit User screen, 437
editing users, 438
editorAdded event, 93
editorAddedHandler method, 92
editors
ImageURL, 242
properties, adding to, 526-532
effect property, 536
effects of partial postbacks, 324-328
automatic disposal, 329-339
manual disposal, 340-355
elements. See also controls
Allow, 429
authorization, configuring, 428-429
Deny, 429
DOM, 9, 557
Forms authentication, 427
param attributes, 553
embedding JavaScript files, 215
EnableScriptLocalization
property, 293

m 585



586

Index

enabling

CurrencyTextBox.Res, 307

script globalization, 281
EndRequest event, 567
endUpdate method, 129
English

error messages, 294

formatting, 278
enumerations

items, accessing, 73

Microsoft AJAX Library, extending,

72-78

equality, 16
Error objects, 27
Error.create statement, 59
ErrorDataService Web service, 574
ErrorEventArgs Client Class, 571
ErrorHandle component, 351-355
ErrorHandler client code, 569-575
ErrorHandler component, 129-134
errors

handlers, adding, 130

invalidationOperation, 70

JavaScript, 25-29

Microsoft AJAX Library error types,

57-59

nonPositive, 59

notImplemented, 68

popStackFrame, 59

publishing, 27, 133

throwing, 27, 59-60
evaluations, typeof, 20-21
events

Animation class, 504

bubbling, 154

customizing, 90

editors, 93

errors, 28

handlers
adding, 130
attaching, 107
predefining, 147
wrapping in delegates, 147
HttpApplication, 566
init, 190
load, Sys.Application, 198-203
names, descriptors, 212
normalizing, 108, 111
OnLoad, 537
Parameters, applying, 145-148
raising, 91
raw, accessing, 112
Sys.Application, 364-367
UpdatePanel, 318
exceptions, unhandled, 28-29
executing
base class methods, 48
initializebase method, 64
initializeBaseType method, 47
structures, 502
timeouts, 37
Expando properties, 12, 75
explicit anonymous functions, 31-32
explicit arguments, 22
Extender Control Wizard,
231-233, 523
ExtenderBase folder, 485
ExtenderControl class, 220-233, 322
ExtenderControlBase class, 492-494,
513-523
ExtenderControlBaseDesigner{T}
class, 497-499, 517
ExtenderControlEvent attribute, 489
ExtenderControlProperty
attribute, 489



extenders
base classes for, 491-494
controls
animations, 532-543
attaching, 231-233
design-time support, 524-532
ImageRotator, 227, 332-337
TextBoxWaterMark, 497
extending
ASP.NET 2.0 AJAX Extensions, xxx
built-in types, 52
arrays, 5559
booleans, 52
dates and numbers, 53
strings, 54-55
Function objects, 65
Microsoft AJAX Library
classes, 60-67
enumerations, 72-78
inheritance, 78-87
interfaces, 67-72

F
factory, HTTP handlers, 562-565
FadeAnimation properties, 534
Fielding, Roy, 373
files
AjaxControlExtender.vsi, 484
default resource, 271
JavaScript
embedding, 215
loading, 355-363
machine.config, 429
scripts, 476-477
web.config, 429
Filter.es-MX.js script tag, 315
Filter.js file, 310
Filter.Res object, 312
filtering
amounts, defining, 308
Transactions page, 294

Index m 587
finally blocks, 28
findComponent method, 179
first-class objects, 5
folders
accessing, 440
Animation, 485
Common, 485
ExtenderBase, 485
for...in loops, 11
forceLayoutInIE property, 536
forEach method, 56-57
form feed characters, 8
format method, 55
formatting
English, 278
numbers, 279
objects, defining, 289
strings, 288
forms, authentication, 426-429
forward references, configuring, 197
fps property, 536
frameworks, server components,
394-400
French
culture Transaction page, 276
error messages, 295
local resource file, 275
Function.createDelegate method, 114
Function object, 5
extending, 65
types, declaring, 62-65
functionality
ASP.NET 2.0 Provider Model,
429-431
duplicate, 495
ScriptControl class, adding, 233-246
WebControl class, 234
functions
anonymous, generating, 34
arguments, 16-25
checkAmounts, 310



588

Index

creating, 5, 541
get_OnLoadBehavior, 541
objects, 11

onComplete, 419

private, 555

scope, inducing, 36
SetSecurityMessage, 442
troubleshooting, 33
_validateParams, 557

G

Generate Local Resources tool, 268
generating

anonymous functions, 34

HTML, 241
GenericAnimationBehavior

class, 541

getBaseType, 84
getBounds, 104
getComponents method, 184-185
getInterfaces type, 87
getLocation, 104
GetPropertyValue method, 516
GetScript method, 213
GetScriptDescriptors method, 488
GetTransactions method, 260-261
get_ prefix, 66
get_OnLoadBehavior function, 541
get_text method, 244
globalization, scripts, 281-293
globally handling errors, 29
GridView control transactions, 259

handlers
adding, 541
errors, 130
events
predefining, 147
wrapping in delegates, 147
HTTP, 396-398, 477, 560-565

headers, Accept-Language, 262
HeaderText property, 271
hexadecimal sequences
(2 hex digits), 8
hierarchies
CompositeControl class, 248
ExtenderControl class, 222
horizontal tabs, 8
Hovercard server controls, 341-351
HTML (Hypertext Markup
Language) generation, 241
HTTP (Hypertext Transfer Protocol)
handlers, 396-398, 477, 560-565
modules, 398, 565-568
REST, 372-373
HttpApplication events, 566

IHttpHandlerFactory interface, 563
IHttpModule interface, 565
IIS (Internet Information Service),
registering, 385
Image URL Collection Editor, 529
Image URL Editor, 530
ImageRotator extender, 227
creating, 514-517
troubleshooting, 332-337
ImageURL Editor, 242
implementing
interfaces, 78-87
services, 381
implementsInterface type, 86
implicit arguments, 21
implicit conversion, 14
inferences, 549
inheritance, 46-49
components. See components
ExtenderControlBase class, 518-520
ExtenderControl class, 226-229
initializing, 64
interfaces, 68



Microsoft AJAX Library, 78-87
properties, accessing, 47
ScriptControl class, 240-243
types, 226
init events, 190, 364-367
initialize method, 129-130, 300
initializeBase method, 64
initializeBaseType function, 46
initializeBaseType method, 47
InitializeCulture method,
265-266, 283
initializing
components, 339
inheritance, 64
messages, 327
routines, 185-191, 195-198
Sys.Application, 136
InlineScript property, 385
installing Ajax Control Toolkits, 484
instances
objects, creating, 9
parameters, creating, 42
properties, adding, 40
System.Globalization.Culturelnfo,
262
IntelliSense, 547
client libraries, 549
references, 548-549
troubleshooting, 550
interfaces
APIs, 375
membership login, 436
roles, 443
IHttpHandlerFactory, 563
IHttpModule, 565
implementing, 78-87
IScriptControl, 247-254
IServicel, 377
Microsoft AJAX Library, 67-72
public, declaring, 65-66
REST, 372-373

Index m 589
service contracts, 377
Sys.Component class, 125, 129

creating components, 134-151
defining new components, 129-134
Sys.Icontainer class, 177
internals
controls
creating, 250
rendering, 251
GetScript method, 213
Sys.Application, 170
Internet Explorer, Operation Aborted
error, 192

interpreting JavaScript, 5

intervals
clearing, 336
delayed code execution, 30-38

invalidationOperation error, 70

InvalidNumberMessage resource

file, 304

Invariant culture, 286

IscriptControl interface, 247-254

IServicel interface, 377

isImplementedBy type, 87

isNaN method, 311

isIntanceOfType, 84

IsReusable property, 561

isUserInRole method, 455

items, accessing enumerations, 73

J

JavaScript
APIs, 533-536
arguments, 16-20
attributes, 4-6
classes, 483
delayed code execution, 30-38
error handling, 25-29
files, embedding, 215
functions, arguments, 21, 24-25



590

Index

localization, 277
dates, 279-280
numbers, 278-279
object-oriented programming, 39-49
objects, 9-15
overview of, 4
primitive data types, 6
statements and files, loading, 355-363
types, extending built-in, 52-59
JavaScript Object Notation.
See JSON
JavaScriptSerialize, 389
JSON (JavaScript Object Notation),
12-14, 531
parameters, 470
serialization, 388-394

K-L
keywords, yield, 225
KnownType attribute, 392, 412-413

labels, transactions, 259
languages, 4-6. See also JavaScript
libraries. See also Microsoft
AJAX Library
ATL (ActiveX Template Library), 524
clients, IntelliSense, 549
Extender Control template, 514-517
parameterArray, 558
references, IntelliSense, 548-549
templates, extender controls, 223-225
lifecycles, applications, 394-395,
559-560
line numbers, 29
load events, Sys.Application class,
198-203
loadHandler method, 367
loading JavaScript statements and
files, 355-363
local resources, 268-276
localeFormat method, 55

localization
ASP.NET AJAX, 277-288
determining what needs to be
localized, 257-261
displayed values, 267-276
JavaScript, 277
dates, 279-280
numbers, 278-279
overview of, 255-256
running under particular cultures,
261-266
scripts, 293-315
static file models, 315
Localization.Transaction type, 260
logins
clients, 451
membership APls, 436
Lookup method, 402
loops, for...in, 11

machine.config file, 429
maintenance
Profile Maintenance page, 457
profiles, 447
scope, Microsoft AJAX Library,
112-116
make parameter, 22
Manage User screen, 437
management
application lifecycles, 559-560
components, 123, 177-185
roles, 439-441
users, 438
Web Site Administration Tool,
431-432, 437
manual disposal, 340-355
master pages, 218
maximumOpacity property, 536
mechanisms, try-catch-finally, 25-27



members
internal, Sys.Application, 170
private
accessing, 81
default values, 41
defining, 300
public, defining, 42
Sys.Component class, 126
Types, defining, 41
membership, ASP.NET 2.0, 425-437
merging .NET ScriptComponent-
Descriptor classes, 210-213
messages
debugging, 325
ErrorHandle components, 354
error alerts, 302
initialization, 327
meta:resourcekey tags, 272-273
metadata services, 469
methods
$find, 180
add_init, 195, 364
AddAttributesToRender, 343
addComponent, 177
AddComponentProperty, 211
AddElementProperty, 211
AddScriptproperty, 212
Animation class, 504
arrays, extending, 55-59
base class
accessing, 80
calling, 82
ErrorHandler components, 132-133
executing, 48
overriding, 81
beginCreateComponents, 189
beginUpdate, 129
bubbleSort, 68
defining, 70
testing, 71
clickEventHandler, 114-115

Index

curry, 36
declarative, animations using,
537-543

deserialize, 416
dispose, 130, 300
dolnitialize, 189
editorAddedHandler, 92
endUpdate, 129
findComponent, 179
forEach, 56-57
format, 55, 301
Function.createDelegate, 114
get_text, 244
getComponents, 184-185
GetPropertyValue, 516
GetScript, 213
GetScriptDescriptors, 488
GetTransactions, 260-261
initialize, 129-130, 300
initializeBase, 64
initializeBaseType, 47
InitializeCulture, 265-266, 283
isNaN, 311
isUserInRole, 455
loadHandler, 367
localeFormat, 55
Lookup, 402
Membership class, 434
notifyScriptLoaded, 216
_onBlur, 302
onBubbleEvent, 154
_onFocus, 302
pageload, 201
pages, 386-387
parameters

validating, 555-558

zero, 31
parse, 52, 75-78
parseLocale, 284-285
ProcessRequest, 467, 561
raiseBubbleEvent, 154

m 591



592

Index

recursive anonymous, 24

registerClass, 86

registerDisposableObject, 204-205

registerEnum, 74

registerInterface, 68

registration, ScriptManager, 355-361

removeComponent, 183-184

Render, 236

RenderContents, 240

rotatelmage, 230

ScriptComponentDescriptor class,
211, 488-489

serialize, 416

set_parent, 153

shortcuts, 104

string.format, 288

strings, extending, 54-55

Sys.Application, 172-175

Sys.Application.notifyScriptLoaded( ),
362-363

Sys.Component class, 127

Sys.Component.create, 135

Sys.Debug, 96

Sys.EventHandlerList, 89

Sys.Services.AuthenticationService
class, 449

Sys.Services.ProfileService class, 456

Sys.Services.RoleService class, 453

Sys.StringBuilder, 95

Sys.Ul.Behavior class, 159

Sys.ULControl class, 152

Sys.UL.DomElement, 101

Sys.UL.DomEvent, 109

toLocaleString, 279

toString, 77

unregisterDisposableObject, 205

WebRequest class, 417

WebServiceProxy class, 415

window.clearTimeout, 30

window.pageLoad, 203

XML comments, 551-554

Microsoft AJAX Library, xxix
architecture, 401
serialization, 415-416
service proxies, 401-415
WebRequest class, 417-424
programming, 51-52, 60
classes, 60-67
enumerations, 72-78
extending built-in types, 52-59
inheritance, 78-87
interfaces, 67-72
scope, 112-116
types, 88
Sys.Debug, 96-101
Sys.EventHandlerList, 88-94
Sys.StringBuilder, 94-95
Sys.UL.DomElement, 101-106
Sys.ULDomEvent, 107-111
minimumOpacit property, 536
models
ASP.NET 2.0 Provider Model,
429-431
equality, 16
Prototype, 60
classes, 60-67
enmuerations, 72-78
inheritance, 78-87
interfaces, 67-72
Web Application Project Model, 445
modifying
DOM, 192
enumerations, 72
multiple handlers, 91
namespaces, 407
prototypes, 44
types, 412
modules
HTTO, 565-568
HTTP, 398
ScriptModule, 398



Mozilla Foundation
implementation, 4

multiple handlers, modifying, 91

multiple interfaces, implementing,
85-87

MyHandler.axd path, 562

MyHandlerFactory class, 563

names
events, 212
properties, 210
namespaces
CommunicationSupport, 466
declaring, 61-62
modifying, 407
System.Runtime.Serialization, 389
naming
containers, 249
operations, 408
properties, 489
NET
classes, 483
merging, 210-213
Netscape, 4
new communication paradigm,
372-373
new components, defining, 129,
132-134
new line characters, 8
nonPositive error, 59
nonstandard error properties, 26
normalizing
event, 111
events, 108
notation
JSON, 12-14
parameters, 470
serialization, 388-394
Object Literal Notation, 11
notifyScriptLoaded method, 216

Index

notImplemented error, 68
null, 18

assigning, 12
Number.parseLocaleFixed, 299
NumberOnlyTextBox type, 164
numbers, 7

extending, 53

JavaScript, localization, 278-279

line, 29

script globalization, 282

0
Object Literal Notation, 11
object-oriented JavaScript
programming, 39-49

objects

components. See components

Error, 27

first-class, 5

formatting, defining, 289

Function

declaring types, 62-65
extending, 65

functions, 11

inheritance, 46-49

instances, creating, 9

JavaScript, 9-15

JSON serialization, 388-394

properties, 10

prototypes, modifying, 44

serializing, 416

Type, 61

wrappers, 53

XMLHTTP, 423
octal sequences (3 digits), 8
onBubbleEvent method, 154
OnClientClick, 310
onComplete function, 419
OnLoad event, 537
onSuccess callback function, 403
operation aborted errors, 191

m 593



594

Index

OperationContract attribute, 407

operations, naming, 408

operators, equality, 16

output, HoverCard server controls,
343-351

overriding base class methods, 81

P

pageload method, 201
pages
controls, adding, 246
methods, 386-387
script references, 397
Parallel animations, 502
param element attributes, 553
parameterArray, 558
parameters
$create method, 136
constructors, 41, 63
events, applying, 145-148
instances, creating, 42
JSON, 470
make, 22
methods
validating, 555-558
zero, 31
properties, 140-145
references, applying, 149-150
types, applying, 136-139
parent properties, controls, 153
parentNode pointer, 153
parse method, 52, 75-78
ParseChildren attribute, 526
parseLocale method, 284-285
partial page rendering, 318
partial postbacks, 195, 318-324
effects of, 324-328
automatic disposal, 329-339
manual disposal, 340-355
viewing, 322
passing in dictionaries, 116

paths
MyHandler.axd, 562
ScriptResource.axd, 306
patterns
JSON serialization, 388-394
REST, 372-373
placement of references, 548
pointers, parentNode, 153
popStackFrame error, 59
post back, definition of, 372
PostAcquireRequestStat event, 566
PostAuthenticateRequest event, 566
PostAuthorizeRequest event, 566
postbacks
partial, 195
viewing, 322
PostMapRequestHandler event, 566
PostReleaseRequestState event, 567
PostRequestHandlerExecute
event, 566
PostResolveRequestCache event, 566
PostUpdateRequestCache event, 567
predefining
event handlers, 147
functions, 31
prefixes, 148
properties, 66
PreRequestHandlerExecute
event, 566
preventing automatic disposal of
components, 351-355
primitive data types, 6, 14
privacy, 63
private functions, 555
private members
accessing, 81
default values and, 41
defining, 300
ProcessData IntelliSense, 550
processing method results, 471-473
ProcessRequest method, 561



Profile Maintenance page, 457
ProfileBase class, 445
profiles
ASP.NET 2.0, 425-433
services, 456-459
programming
APIs, 375
JavaScript
arguments, 16-20
attributes, 4-6
delayed code execution, 30-38
error handling, 25-29
function arguments, 21-25
object-oriented, 39-49
objects, 9-15
overview of, 4
primitive data types, 6
Microsoft AJAX Library, 51-52, 60
classes, 60-67
enumerations, 72-78
extending built-in types, 52-59
inheritance, 78-87
interfaces, 67-72
scope, 112-116
Sys.Debug type, 96-101
Sys.EventHandlerList type, 88-94
Sys.StringBuilder type, 94-95
Sys.UL.DomElement type, 101-106
Sys.UL.DomEvent type, 107-111
types, 88
properties
$create statements, assigning, 243
accessing, 47
Animation class, 503
callee, 24
caller, 24
ClientPropertyName, 489
constructor, 15
CurrentCulture/CurrentUICulture,
262
defining, 300

Index

designers, adding to, 526-532
editors, adding to, 526-532
EnableScriptLocalization, 293
Expando, 12, 75

extender controls, 525
ExtenderControlBase class, 492
HeaderText, 271

InlineScript, 385

instances, adding, 40
IsReusable, 561

localization, 271

Membership class, 433
naming, 210, 489
nonstandard error, 26
objects, 10

parameters, applying, 140-145
parent controls, 153

prefixes, 66

proxy class, 404

Roles class, 442
ScriptReference class, 217
ServiceReference, 385
standard error, 26
Sys.Culturelnfo class, 290

m 595

Sys.Net. XMLHttpExecutor class, 422

Sys.Services.AuthenticationService

class, 449

Sys.Services.ProfileService class, 456

Sys.Services.RoleService class, 453

undefined, 41

WebControl class, 236

WebRequest class, 417

WebServiceError class, 403

WebServiceProxy class, 415
properties property, 456

protocol-based methods, defining, 43

protocols, HTTP
handlers, 396-398
modules, 398
REST, 372-373



596

Index

Prototype Model, 60
classes, extending, 60-67
enumerations, extending, 72-78
inheritance, extending, 78-87
interfaces, extending, 67-72
prototypes, 44
serialization, 416
proxy classes, services, 401-415,
473-477
public interfaces, declaring, 65-66
public members, defining, 42
publishing errors, 27

Q-R
raiseBubbleEvent method, 154
raising events, 91
raw events, accessing, 112
reading JSON data, 390
reconstructing method calls, 469-471
recursive anonymous methods, 24
references

assigning, 149

configuring, 196-198

designers, 527

IntelliSense, 548-549

page scripts, 397

parameters, applying, 149-150

types, 548
regions, 255. See also localization
registerClass method, 86
registerDisposableObject method,

204-205

registerEnum method, 74
registerInterface method, 68
registration

animation scripts, 533

classes, 79

enumeration, 74

globalization script blocks, 291

HTTP Handler, 562-565

methods, ScriptManager, 355-361

product class, 409
ScriptManager control, 218-219
scripts, 220, 509
services, 384-385
types, 66-67
ReleaseRequestState event, 567
removeComponent method, 183-184
Render method, 236
RenderContents method, 240
rendering
internal controls, 251
partial page, 318
Representational State Transfer
(REST), 372-373
requests
HTTP
handlers, 560-565
modules, 565-568
timeouts, 405
RequiredProperty attribute, 489
RequiredScripts attribute, 538
requirements, registration, 67
ResolveRequestCache event, 566
resources
local, 268-276
REST, 372-373
scripts, 214-219
REST (Representational State
Transfer), 372-373
restricting access, using roles, 441
retrieving components, 184-185
roles
ASP.NET 2.0, 425-433
services, 453-454
RootNamespace.PathTo-
JavaScriptFile, 216
rotateImage method, 230
routines
Sys.Application, initializing, 185-198
unload, Sys.Application, 203-206



S

sample website, 485
scope
anonymous functions, 34
Microsoft AJAX Library, 112-116
troubleshooting, 35
variables, 16-18
script-generation architecture, 208
behavior and control, 208-218
resources, 214-219
ScriptBehaviorDescriptor class,
213, 389
ScriptComponentDescriptor class,
210-213, 389
methods, 488-489
ScriptControl class, 233-246, 322,
491-494
ScriptControlBase class, 495
ScriptControlDescriptor class, 208,
214, 389
ScriptHandlerFactory class, 396
ScriptManager class, 218-219
page methods, configuring, 387
registration methods, 355-361
services, registering, 384
ScriptManagerProxy control, 218-219
ScriptModule module, 398
ScriptReference class, 216
ScriptReference values, 490-491
ScriptResource attribute, 305
ScriptResource.axd paths, 306
ScriptResourceHandler, 307, 396
scripts
animation
calling, 534-536
registration, 533
caching, 306
controls, creating, 237-246
dispose, 337-339
files, 476-477
Filter.es-MX s, 315

Index m 597
globalization, 281-293
JSON, 12-14
localization, 293-315
page references, 397
registering, 509
SearchCriteria class, 381
searching components, 179-183
security, Forms authentication,
426-429
Sequence animations, 502
serialization
ASP.NET 2.0 AJAX Extensions,
388-394
DataContract]JsonSerializer, 531
Microsoft AJAX Library
communication architecture,
415-416
type converters, creating to support,
530-532
serialize method, 416
server-based architecture, Toolkit
(ASP.NET AJAX Control), 486
attributes, 486-491
base classes for extenders, 491-494
designer classes, 495-499
server-side JavaScript. See SSJS
servers
controls, xxvii, xxxiii
ErrorHandler, 571-572
HoverCard, 341-351
framework components, 394-400
Servicel class, 377
ServiceCommunication
assembly, 477
ServiceHandlerFactory HTTP
handler factory, 462
ServiceReference class
properties, 385
services
AJAX-enabled WCEF, 382
applications, customizing, 460-478



598

Index

ASPNET 2.0, 425-433
ASPNET AJAX application
services, 448
authentication, 448-452
profiles, 456-459
roles, 453-454
contracts, 376-378
creating, 381-383
implementing, 381
metadata, 469
proxies, 401-415
proxy classes, 473-477
registering, 384-385
web, 375-386
Web Site Administration Tool,
431-437
set_parent method, 153
SetSecurityMessage function, 442
setTimeout, 31
shortcuts, methods, 104
signatures, methods, 211
SimpleBehavior, 329
SimpleComponent control, 327
SimpleWCFService proxy class, 473
single quote (), 8
skeletons, creating, 129-130
Spanish
culture Transaction page, 276
error messages, 315
local resource file, 275
special characters, 8
special number values, 7
SSJS (server-side JavaScript), 4
stacks, call, 190
StackTrace Client class, 572-573
standard error properties, 26
standards, ECMAScript, 4
starting initialization routines, 186
state, 493

statements
$create, assigning properties, 243
Error.create, 59
JavaScript, loading, 355-363
try-catch, 26
static file models, 315
string.format method, 267, 288
strings, 8
concatenation, 9
data format, 289
extending, 54-55
JSON, 531
script globalization, 288-290
variables, declaring, 8
viewing, 268-276
structures
animations, 502-503
execution, 502
styles, WebControl class, 236
summary tag, 551
Sun Microsystem Java programming
language, 4
support
animations, 483
declarative methods, 538
extender controls, adding
design-time to, 524-532
IScriptControl interfaces, 252
type converters, creating, 530-532
syntax, declarative methods, 537
Sys.Application class, 169
components, managing, 177-185
creating, 170-172
events, 364-367
initialization routines, 136, 185-198
load events, 198-203
method information, 172-175
type information, 172
unload routines, 203-206



Sys.Application.dispose, 203-206
Sys.Application.notifyScriptLoaded()
method, 362-363
Sys.ApplicationLoadEventArgs
members, 199
Sys.Component class, 125, 129
components, 134-151
new components, defining, 129-134
Sys.Component.create method, 135
Sys.Culturelnfo class, 290-293
Sys.Debug type, 96-101
Sys.EventArgs class, 93
Sys.EventHandlerList type, 88-94
Sys.IContainer interface, 177
Sys.Net.WebProxy class, 449, 456
Sys.Net.WebRequestManager
class, 422
Sys.Net. XMLHttpExecutor class, 422
Sys.Serialization.JavaScript-
Serializer, 415
Sys.Services.AuthenticationService
class, 449
Sys.Services.ProfileService class, 456
Sys.Services.RoleService class, 453
Sys.StringBuilder type, 94-95
Sys.Ul.Behavior class, 208-218
creating, 229-230
method, 159
Sys.UlBehavior template class, 225
Sys.Ul.Control class, 122, 152,
208-218, 244-246
Sys.UL.DomElement type, 101-106
Sys.UL.DomEvent type, 107-111
System.ComponentModel.
EventHandlerList, 89
System.Globalization.CultureInfo
instance, 262
System.Runtime.Serialization
namespace, 389
System.ServiceModel.Activation.
HttpHandler, 397-398
System.Web.UIL. Design.ToolboxItem
attribute, 539

Index m 599

T

tags
div, wrapping HoverCards in, 346
Filter.es-MXjs, 315
meta:resourcekey, 272-273
summary, 551
target property, 536
templates
AJAX-enabled WCF service, 382
ATL, 524
Extender Control library, 514-517
libraries, extender controls, 223-225
testing
bubbleSort method, 68-71
error pages, 574-575
TestType, defining, 83
TextBoxInfo class, 244-246
TextBoxInfo control, 240
TextBoxWaterMark extender, 497
throwing errors, 27, 59-60
timeouts, 190
delayed code execution, 30-38
requests, 405
toLocaleString method, 279
Toolkit (ASPNET AJAX Control)
architecture, 481
animations, 501-512
client-based, 499-501
composition of, 483-486
overview of, 482-483
server-based, 486-499
Toolkit library project, 484-485
tools
ASP.NET AJAX Control Toolkit, xxx
Generate Local Resources, 268
Web Site Administration Tool,
431-440
toString method, 77
tracing Sys.Debug, 97-98
TransactionDataSource, 260



600

Index

transactions
GridView control, 259
labels, 259
localization, 257
Transactions.aspx file, 257-260,
271-273
Transactions class, 260-261, 294
transfers, REST, 372-373
troubleshooting
DOM, modifying, 192
functions, 33
ImageRotator extenders, 332-337
IntelliSense, 550
operation aborted errors, 191
page methods, 387
scope, 35
variables, 33
try-catch-finally mechanism, 25, 27
try-catch statements, 26
types
animations, 502-503
behaviors, 159-161
creating, 162-167
defining, 161-162
built-in
arrays, 55-59
booleans, 52
dates and numbers, 53
extending, 52
strings, 54-55
of contracts, 376
data, 378-379
service, 376-378
controls
creating, 157-159
defining, 155-157
converters, creating, 530-532
data, abstract, 40-45
declaring, 62-65
defining, 40, 63
EventArgs, creating custom, 93

getBaseType, 84
getInterfaces, 87
information
JSON, 392
Sys.Application, 172
inheritance, 226
inheritsFrom, 83
instanceOfType, 84
isimplementedBy, 87
of JavaScript, 4
KnownType attribute, 412-413
Localization.Transaction, 260
members, defining, 41
Microsoft AJAX Library, 88
Sys.Debug, 96-101
Sys.EventHandlerList, 88-94
Sys.StringBuilder, 94-95
Sys.UL.DomElement, 101-106
Sys.UL.DomEvent, 107-111
modifying, 412
NumberOnlyTextBox, 164
parameters, applying, 136-139
primitive data, 6, 14
references, 548
registration, 66-67
Type object, 61

undeclared variables, 18

undefined arguments, 18, 22

undefined properties, 41

underscore (), 64

unhandled exceptions, 28-29

Unicode sequence (4 hex digits), 8

Uniform Resource Identifiers.
See URIs

unload routines, Sys.Application
class, 203-206

unregisterDisposableObject
method, 205



UpdatePanel
behavior, 318-324
JavaScript statements and files,
loading, 355-363
partial postbacks
effects of, 324-328
automatic disposal, 329-339
manual disposal, 340-355
UpdateRequestCache event, 567
URIs (Uniform Resource
Identifiers), 380
UrlProperty attribute, 241
UserProfile class, 445
users
adding, 437
ASP.NET 2.0, 425-433
editing, 438
managing, 438

v

validating
method parameters, 555-558
parameterArray, 558

values
displayed, localizing, 267-276
private members, 41
ScriptReference, 490-491
special number, 7
undefined, 18

variables
adding, 540
arguments, 16-20
__culturelnfo, 292
strings, declaring, 8
troubleshooting, 33

view state, 493

viewing
error messages, 302
partial postbacks, 322
strings, 268-276

Index

Visual Studio
control library template, 237-240
Extender Control library template,
223-225,514-517

IntelliSense, 547
client libraries, 549
references, 548-549
troubleshooting, 550

resource files, 304

W

WCF (Windows Communication
Foundation), 375-386, 486
WCFHandler class, 465
Web Application Project Model, 445
web applications, xxvii
configuring, 398-400
web.config file, 429
Web Development Helper, 322
web services, 375-386
ErrorDataService, 574
Web Site Administration Tool,
431-432, 437
role management, 440
WebControl class, 234
WebRequest class, 417-424
WebResource attribute, 216
WebServiceError class
properties, 403
WebServiceProxy class
properties, 415
Website Administration Tool
Security tab, 432
websites
samples, 485
Toolkit, 486
window.pageLoad method, 203
Windows Communication
Foundation (WCF), 375-386, 486



602

Index

wizards, Extender Control Wizard,
231-233, 523
wrappers, objects, 14, 53
wrapping
event handlers in delegates, 147
HoverCards in div tags, 346
writing JSON data, 391

X-Z

XML (Extensible Markup Language)
comments, 551-554

XMLHTTP object, 423

yield keyword, 225

zero parameter methods, 31



	Foreword
	Preface
	11 Adding Client Capabilities to Server Controls Using the ASP.NET AJAX Control Toolkit
	Adding Client-Side Behavior Using the ExtenderControlBase
	Adding Design-Time Support to Your Extender Control
	Adding Animations to Your Extender Control

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K–L
	M
	N
	O
	P
	Q–R
	S
	T
	U
	V
	W
	X–Z




