

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trade-
marks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the
designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for inciden-
tal or consequential damages in connection with or arising out of the use of the information or programs con-
tained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special
sales, which may include electronic versions and/or custom covers and content particular to your business,
training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data:

Professional Excel development : the definitive guide to developing applications using Microsoft Excel, VBA,
and .NET / Rob Bovey ... [et al.]. — 2nd ed.

p. cm.

Rev. ed. of: Professional Excel development : the definitive guide to developing applications using Microsoft
Excel and VBA / Stephen Bullen, Rob Bovey, John Green. 2005.

ISBN 978-0-321-50879-9 (pbk. : alk. paper) 1. Microsoft Excel (Computer file) 2. Microsoft Visual Basic
for applications. I. Bovey, Rob. II. Bullen, Stephen. Professional Excel development.

HF5548.4.M523B85 2009

005.54—dc22

2009005855

Copyright © 2009 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or like-
wise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671-3447

ISBN-13: 978-0-321-50879-9
ISBN-10: 0-321-50879-3
Text printed in the United States on recycled paper at Edwards Brothers in Ann Arbor, Michigan.
First printing May 2009

165

C H A P T E R 7

USING CLASS MODULES TO CREATE
OBJECTS

Class modules are used to create objects. There are many reasons for you
as a developer to create your own objects, including the following:

■ To encapsulate VBA and Windows API code to make it trans-
portable and easy to use and reuse, as shown in Chapter 12,
“Understanding and Using Windows API Calls”

■ To trap events
■ To raise events
■ To create your own objects and object models

In this chapter, we assume you are already familiar with writing VBA code
to manipulate the objects in Excel and are familiar with the Excel object
model that defines the relationships among those objects. We also assume
you are familiar with object properties, methods, and events. If you have
written code in the ThisWorkbook module, any of the modules behind
worksheets or charts, or the module associated with a UserForm, you have
already worked with class modules. One of the key features of these mod-
ules, like all class modules, is the ability to trap and respond to events.

The goal of this chapter is to show you how to create your own objects.
We begin by explaining how to create a single custom object and then show
how you can create a collection containing multiple instances of the object.
We continue with a demonstration of how to trap and raise events within
your classes.

166 Chapter 7 Using Class Modules to Create Objects

Creating Objects

Say we want to develop code to analyze a single cell in a worksheet and cat-
egorize the entry in that cell as one of the following:

■ Empty
■ Containing a label
■ Containing a constant numeric value
■ Containing a formula

This can be readily accomplished by creating a new object with the appropri-
ate properties and methods. Our new object will be a Cell object. It will have
an Analyze method that determines the cell type and sets the CellType prop-
erty to a numeric value that can be used in our code. We will also have a
DescriptiveCellType property so we can display the cell type as text.

Listing 7-1 shows the CCell class module code. This class module is used
to create a custom Cell object representing the specified cell, analyze the con-
tents of the cell, and return the type of the cell as a user-friendly text string.

Listing 7-1 The CCell Class Module

Option Explicit

Public Enum anlCellType

anlCellTypeEmpty

anlCellTypeLabel

anlCellTypeConstant

anlCellTypeFormula

End Enum

Private muCellType As anlCellType

Private mrngCell As Excel.Range

Property Set Cell(ByRef rngCell As Excel.Range)

Set mrngCell = rngCell

End Property

Property Get Cell() As Excel.Range

Set Cell = mrngCell

End Property

Property Get CellType() As anlCellType

Creating Objects 167

CellType = muCellType

End Property

Property Get DescriptiveCellType() As String

Select Case muCellType

Case anlCellTypeEmpty

DescriptiveCellType = “Empty”

Case anlCellTypeFormula

DescriptiveCellType = “Formula”

Case anlCellTypeConstant

DescriptiveCellType = “Constant”

Case anlCellTypeLabel

DescriptiveCellType = “Label”

End Select

End Property

Public Sub Analyze()

If IsEmpty(mrngCell) Then

muCellType = anlCellTypeEmpty

ElseIf mrngCell.HasFormula Then

muCellType = anlCellTypeFormula

ElseIf IsNumeric(mrngCell.Formula) Then

muCellType = anlCellTypeConstant

Else

muCellType = anlCellTypeLabel

End If

End Sub

The CCell class module contains a public enumeration with four members,
each of which represents a cell type. By default, the enumeration members
are assigned values from zero to three. The enumeration member names
help make our code more readable and easier to maintain. The enumera-
tion member values are translated into user-friendly text by the
DescriptiveCellType property.

NOTE The VBA IsNumeric function used in Listing 7-1 considers a label entry
such as 123 to be numeric. IsNumeric also considers a number entered into a
cell formatted as Text to be a number. As both these cell types can be referenced
as numeric values in formulas, this has been taken to be the correct result. If you
prefer to consider these cells as label entries you can use
WorksheetFunction.IsNumber instead of IsNumeric.

7.
U

SIN
G

CLASS
M

O
DULES

TO
CREATEO

BJECTS

168 Chapter 7 Using Class Modules to Create Objects

Listing 7-2 shows the AnalyzeActiveCell procedure. This procedure is
contained in the standard module MEntryPoints.

Listing 7-2 The AnalyzeActiveCell Procedure

Public Sub AnalyzeActiveCell()

Dim clsCell As CCell

‘ Create new instance of Cell object

Set clsCell = New CCell

‘ Determine cell type and display it

Set clsCell.Cell = Application.ActiveCell

clsCell.Analyze

MsgBox clsCell.DescriptiveCellType

End Sub

If you select a cell on a worksheet and run the AnalyzeActiveCell proce-
dure it creates a new instance of the CCell class that it stores in the clsCell
object variable. The procedure then assigns the active cell to the Cell prop-
erty of this Cell object, executes its Analyze method, and displays the result
of its DescriptiveCellType property. This code is contained in the
Analysis1.xls workbook in the \Concepts\Ch07 – Using Class Modules to
Create Objects folder on the CD that accompanies this book.

Class Module Structure
A class module can be thought of as a template for an object. It defines
the methods and properties of the object. Any public subroutines or func-
tions in the class module become methods of the object, and any public
variables or property procedures become properties of the object. You can
use the class module to create as many instances of the object as you
require.

Property Procedures
Rather than rely on public variables to define properties it is better prac-
tice to use property procedures. These give you more control over how
properties are assigned values and how they return values. Property

Creating Objects 169

procedures allow you to validate the data passed to the object and to per-
form related actions where appropriate. They also enable you to make
properties read-only or write-only if you want.

The CCell class uses two private module-level variables to store its
properties internally. muCellType holds the cell type in the form of an
anlCellType enumeration member value. mrngCell holds a reference to
the single-cell Range that an object created from the CCell class will
represent.

Property procedures control the interface between these variables and
the outside world. Property procedures come in three forms:

■ Property Let—Used to assign a simple value to a property
■ Property Set—Used to assign an object reference to a property
■ Property Get—Used to return the simple value or object refer-

ence held by a property to the outside world

The property name presented to the outside world is the same as the name
of the property procedure. The CCell class uses Property Set Cell to
allow you to assign a Range reference to the Cell property of the Cell
object. The property procedure stores the reference in the mrngCell vari-
able. This procedure could have a validation check to ensure that only sin-
gle-cell ranges can be specified. There is a corresponding Property Get
Cell procedure that allows this property to be read.

The CCell class uses two Property Get procedures to return the cell
type as an enumeration member value or as descriptive text. These prop-
erties are read-only because they have no corresponding Property Let

procedures.

Methods
The CCell class has one method defined by the Analyze subroutine. It
determines the type of data in the cell referred to by the mrngCell vari-
able and assigns the corresponding enumeration member to the
muCellType variable. Because it is a subroutine, the Analyze method does-
n’t return a value to the outside world. If a method is created as a function
it can return a value. The Analyze method could be converted to a func-
tion that returned the text value associated with the cell type as shown in
Listing 7-3.

7.
U

SIN
G

CLASS
M

O
DULES

TO
CREATEO

BJECTS

170 Chapter 7 Using Class Modules to Create Objects

Listing 7-3 The Analyze Method of the Cell Object

Public Function Analyze() As String

If IsEmpty(mrngCell) Then

muCellType = anlCellTypeEmpty

ElseIf mrngCell.HasFormula Then

muCellType = anlCellTypeFormula

ElseIf IsNumeric(mrngCell.Formula) Then

muCellType = anlCellTypeConstant

Else

muCellType = anlCellTypeLabel

End If

Analyze = Me.DescriptiveCellType

End Function

You could then analyze the cell and display the return value with the fol-
lowing single line of code instead of the original two lines:

MsgBox clsCell.Analyze()

Creating a Collection

Now that we have a Cell object we want to create many instances of the
object so we can analyze a worksheet or ranges of cells within a worksheet.
The easiest way to manage these new objects is to store them in a collec-
tion. VBA provides a Collection object that you can use to store objects and
data. The Collection object has four methods:

■ Add
■ Count
■ Item
■ Remove

There is no restriction on the type of data that can be stored within a
Collection object, and items with different data types can be stored in the
same Collection object. In our case, we want to be consistent and store just
Cell objects in our collection.

Creating a Collection 171

To create a new Collection, the first step is to add a new standard mod-
ule to contain global variables. This module will be called MGlobals. Next,
add the following variable declaration to the MGlobals module to declare
a global Collection object variable to hold the collection, as follows:

Public gcolCells As Collection

Now add the CreateCellsCollection procedure shown in Listing 7-4 to the
MEntryPoints module. The modified code is contained in the Analysis2.xls
workbook in the \Concepts\Ch07 – Using Class Modules to Create Objects
folder on the CD that accompanies this book.

Listing 7-4 Creating a Collection of Cell Objects

Public Sub CreateCellsCollection()

Dim clsCell As CCell

Dim rngCell As Range

‘ Create new Cells collection

Set gcolCells = New Collection

‘ Create Cell objects for each cell in Selection

For Each rngCell In Application.Selection

Set clsCell = New CCell

Set clsCell.Cell = rngCell

clsCell.Analyze

‘Add the Cell to the collection

gcolCells.Add Item:=clsCell, Key:=rngCell.Address

Next rngCell

‘ Display the number of Cell objects stored

MsgBox “Number of cells stored: “ & CStr(gcolCells.Count)

End Sub

We declare gcolCells as a public object variable so that it persists for as
long as the workbook is open and is visible to all procedures in the VBA
project. The CreateCellsCollection procedure creates a new instance of
the collection and loops through the currently selected cells, creating a
new instance of the Cell object for each cell and adding it to the collection.
The address of each cell, in A1 reference style, is used as a key to
uniquely identify it and to provide a way of accessing the Cell object later.

7.
U

SIN
G

CLASS
M

O
DULES

TO
CREATEO

BJECTS

172 Chapter 7 Using Class Modules to Create Objects

We can loop through the objects in the collection using a For...Each
loop or we can access individual Cell objects by their position in the col-
lection or by using the key value. Because the Item method is the default
method for the collection, we can use code like the following to access a
specific Cell object:

Set clsCell = gcolCells(3)

Set clsCell = gcolCells(“A3”)

Creating a Collection Object
The collection we have established is easy to use, but it lacks some features
we would like to have. As it stands, there is no control over the type of
objects that can be added to the collection. We would also like to add a
method to the collection that enables us to highlight cells of the same type
and another method to remove the highlights.

We first add two new methods to the CCell class module. The
Highlight method adds color to the Cell object according to the CellType.
The UnHighlight method removes the color. The new code is shown in
Listing 7-5.

Note that we are applying the principle of encapsulation. All the code
that relates to the Cell object is contained in the CCell class module, not
in any other module. Doing this ensures that the code can be easily found
and maintained and means that it can be easily transported from one proj-
ect to another.

Listing 7-5 New Code for the CCell Class Module

Public Sub Highlight()

Cell.Interior.ColorIndex = Choose(muCellType + 1, 5, 6, 7, 8)

End Sub

Public Sub UnHighlight()

Cell.Interior.ColorIndex = xlNone

End Sub

We can now create a new class module named CCells to contain the Cells
collection, as shown in Listing 7-6. The complete code is contained in the
Analysis3.xls workbook in the \Concepts\Ch07 – Using Class Modules to
Create Objects folder on the CD that accompanies this book.

Creating a Collection 173

Listing 7-6 The CCells ClassModule

Option Explicit

Private mcolCells As Collection

Property Get Count() As Long

Count = mcolCells.Count

End Property

Property Get Item(ByVal vID As Variant) As CCell

Set Item = mcolCells(vID)

End Property

Private Sub Class_Initialize()

Set mcolCells = New Collection

End Sub

Public Sub Add(ByRef rngCell As Range)

Dim clsCell As CCell

Set clsCell = New CCell

Set clsCell.Cell = rngCell

clsCell.Analyze

mcolCells.Add Item:=clsCell, Key:=rngCell.Address

End Sub

Public Sub Highlight(ByVal uCellType As anlCellType)

Dim clsCell As CCell

For Each clsCell In mcolCells

If clsCell.CellType = uCellType Then

clsCell.Highlight

End If

Next clsCell

End Sub

Public Sub UnHighlight(ByVal uCellType As anlCellType)

Dim clsCell As CCell

For Each clsCell In mcolCells

If clsCell.CellType = uCellType Then

clsCell.UnHighlight

End If

Next clsCell

End Sub

7.
U

SIN
G

CLASS
M

O
DULES

TO
CREATEO

BJECTS

174 Chapter 7 Using Class Modules to Create Objects

The mcolCells Collection object variable is declared as a private, mod-
ule-level variable and is instantiated in the Initialize procedure of the class
module. Since the Collection object is now hidden from the outside world,
we need to write our own Add method for it. We also have created Item
and Count property procedures to emulate the corresponding properties
of the collection. The input argument for the Item property is declared as
a Variant data type because it can be either a numeric index or the string
key that identifies the collection member.

The Highlight method loops through each member of the collection.
If the CellType property of the Cell object is the same as the type speci-
fied by the uCellType argument, we execute the Cell object’s Highlight
method. The UnHighlight method loops through the collection and exe-
cutes the UnHighlight method of all Cell objects whose type is the same as
the type specified by the uCellType argument.

We modified the public Collection variable declaration in MGlobals to
refer to our new custom collection class as shown here:

Public gclsCells As CCells

We also modified the CreateCellsCollection procedure in the
MEntryPoints module to instantiate and populate our custom collection,
as shown in Listing 7-7.

Listing 7-7 MEntryPoints Code to Create a Cells Object Collection

Public Sub CreateCellsCollection()

Dim clsCell As CCell

Dim lIndex As Long

Dim lCount As Long

Dim rngCell As Range

Set gclsCells = New CCells

For Each rngCell In Application.ActiveSheet.UsedRange

gclsCells.Add rngCell

Next rngCell

‘ Count the number of formula cells in the collection.

For lIndex = 1 To gclsCells.Count

If gclsCells.Item(lIndex).CellType = anlCellTypeFormula Then

lCount = lCount + 1

End If

Creating a Collection 175

Next lIndex

MsgBox “Number of Formulas = “ & CStr(lCount)

End Sub

We declare gclsCells as a public object variable to contain our custom Cells
collection object. The CreateCellsCollection procedure instantiates
gclsCells and uses a For...Each loop to add all the cells in the active work-
sheet’s used range to the collection. After loading the collection, the proce-
dure counts the number of cells that contain formulas and displays the result.

The MEntryPoints module contains a ShowFormulas procedure that
can be executed to highlight and unhighlight the formula cells in the work-
sheet. Several additional variations are provided for other cell types.

This code illustrates two shortcomings of our custom collection class.
You can’t process the members of the collection in a For...Each loop. You
must use an index and the Item property instead. Also, our collection has no
default property, so you can’t shortcut the Item property using the standard
collection syntax gclsCells(1) to access a member of the collection. You must
specify the Item property explicitly in your code. We explain how to solve
these problems using Visual Basic 6 or just a text editor in the next section.

Addressing Class Collection Shortcomings
It is possible to make your custom collection class behave like a built-in col-
lection. It requires nothing more than a text editor to make the adjustments,
but first we’ll explain how to do it by setting procedure attributes using
Visual Basic 6 (VB6) to better illustrate the nature of the changes required.

Using Visual Basic 6
In VB6, unlike Visual Basic for Applications used in Excel, you can speci-
fy a property to be the default property of the class. If you declare the Item
property to be the default property, you can omit .Item when referencing
a member of the collection and use a shortcut such as gclsCells(1) instead.

If you have VB6 installed you can export the code module CCells to a
file and open that file in VB6. Place your cursor anywhere within the Item
property procedure and select Tools > Procedure Attributes from the menu
to display the Procedure Attributes dialog. Next, click the Advanced >> but-
ton and under the Advanced options select (Default) from the Procedure ID
combo box. This makes the Item property the default property for the class.

When you save your changes and import this file back into your Excel
VBA project, the attribute will be recognized even though there is no way

7.
U

SIN
G

CLASS
M

O
DULES

TO
CREATEO

BJECTS

176 Chapter 7 Using Class Modules to Create Objects

to set attribute options within the Excel Visual Basic Editor. VB6 also
allows you to set up the special procedure shown in Listing 7-8.

Listing 7-8 Code to Allow the Collection to Be Referenced in a For...Each Loop

Public Function NewEnum() As IUnknown

Set NewEnum = mcolCells.[_NewEnum]

End Function

This procedure must be given an attribute value of 4, which you enter
directly into the Procedure ID combo box in the Procedure Attributes dia-
log. Giving the NewEnum procedure this attribute value enables a
For...Each loop to process the members of the collection. Once you have
made this addition to your class module in VB6 and saved your changes,
you can load the module back into your Excel VBA project, and once again
the changes will be recognized.

Using a Text Editor
Even without VB6 you can easily create these procedures and their attrib-
utes using a text editor such as NotePad. Export the CCells class module
to a file and open it using the text editor. Modify your code to look like the
example shown in Listing 7-9.

Listing 7-9 Viewing the Code in a Text Editor

Property Get Item(ByVal vID As Variant) As CCell

Attribute Item.VB_UserMemId = 0

Set Item = mcolCells(vID)

End Property

Public Function NewEnum() As IUnknown

Attribute NewEnum.VB_UserMemId = -4

Set NewEnum = mcolCells.[_NewEnum]

End Function

When the modified class module is imported back into your project the
Attribute lines will not be visible, but the procedures will work as expect-
ed. You can now refer to a member of the collection as gclsCells(1) and use
your custom collection class in a For...Each loop as shown in Listing 7-10.

Trapping Events 177

Listing 7-10 Referencing the Cells Collection in a For...Each Loop

For Each clsCell In gclsCells

If clsCell.CellType = anlCellTypeFormula Then

lCount = lCount + 1

End If

Next clsCell

Trapping Events

A powerful capability built into class modules is the ability to respond to
events. We want to extend our Analysis application so that when you dou-
ble-click a cell that has been analyzed it will change color to indicate the cell
type. When you right-click the cell the color will be removed. We also want
to ensure that cells are reanalyzed when they are changed so that our cor-
responding Cell objects are kept up-to-date. The code shown in this section
is contained in the Analysis4.xls workbook in the \Concepts\Ch07 – Using
Class Modules to Create Objects folder on the CD that accompanies this
book. To trap the events associated with an object you need to do two things:

■ Declare a WithEvents variable of the correct object type in a class
module.

■ Assign an object reference to the variable.

For the purpose of this example we confine ourselves to trapping events
associated with a single Worksheet object. You could easily substitute this
with a Workbook object if you wanted the code to apply to all the work-
sheets in a workbook. We need to create a WithEvents object variable in
the CCells class module that references the worksheet containing the Cell
objects. This WithEvents variable declaration is made at the module level
within the CCells class and looks like the following:

Private WithEvents mwksWorkSheet As Excel.Worksheet

As soon as you add this variable declaration to the CCells class module you
can select the WithEvents variable name from the drop-down menu at the
top left of the module and use the drop-down menu at the top right of the
module to see the events that can be trapped, as shown in Figure 7-1.

7.
U

SIN
G

CLASS
M

O
DULES

TO
CREATEO

BJECTS

178 Chapter 7 Using Class Modules to Create Objects

Event names listed in bold are currently being trapped within the class, as
we see in a moment.

Selecting an event from the drop-down creates a shell for the event pro-
cedure in the module. You need to add the procedures shown in Listing 7-
11 to the CCells class module. They include a new property named
Worksheet that refers to the Worksheet object containing the Cell objects
held by the collection, as well as the code for the BeforeDoubleClick,
BeforeRightClick, and Change events.

Listing 7-11 Additions to the CCells Class Module

Property Set Worksheet(wks As Excel.Worksheet)

Set mwksWorkSheet = wks

End Property

Private Sub mwksWorkSheet_BeforeDoubleClick(_

ByVal Target As Range, Cancel As Boolean)

If Not Application.Intersect(Target, _

mwksWorkSheet.UsedRange) Is Nothing Then

Highlight mcolCells(Target.Address).CellType

Cancel = True

End If

End Sub

FIGURE 7-1 The Worksheet event procedures available in CCells

Trapping Events 179

7.
U

SIN
G

CLASS
M

O
DULES

TO
CREATEO

BJECTS

Private Sub mwksWorkSheet_BeforeRightClick(_

ByVal Target As Range, Cancel As Boolean)

If Not Application.Intersect(Target, _

mwksWorkSheet.UsedRange) Is Nothing Then

UnHighlight mcolCells(Target.Address).CellType

Cancel = True

End If

End Sub

Private Sub mwksWorkSheet_Change(ByVal Target As Range)

Dim rngCell As Range

If Not Application.Intersect(Target, _

mwksWorkSheet.UsedRange) Is Nothing Then

For Each rngCell In Target.Cells

mcolCells(rngCell.Address).Analyze

Next rngCell

End If

End Sub

The CreateCellsCollection procedure in the MEntryPoints module needs
to be changed as shown in Listing 7-12. The new code assigns a reference
to the active worksheet to the Worksheet property of the Cells object so
the worksheet’s events can be trapped.

Listing 7-12 The Updated CreateCellsCollection Procedure in the MEntryPoints Module

Public Sub CreateCellsCollection()

Dim clsCell As CCell

Dim rngCell As Range

Set gclsCells = New CCells

Set gclsCells.Worksheet = ActiveSheet

For Each rngCell In ActiveSheet.UsedRange

gclsCells.Add rngCell

Next rngCell

End Sub

You can now execute the CreateCellsCollection procedure in the
MEntryPoints module to create a new collection with all the links in place
to trap the BeforeDoubleClick and BeforeRightClick events for the cells

in the worksheet. Double-clicking a cell changes the cell’s background to a
color that depends on the cell’s type. Right-clicking a cell removes the
background color.

Raising Events

Another powerful capability of class modules is the ability to raise events.
You can define your own events and trigger them in your code. Other class
modules can trap those events and respond to them. To illustrate this we
change the way our Cells collection tells the Cell objects it contains to exe-
cute their Highlight and UnHighlight methods. The Cells collection rais-
es an event that will be trapped by the Cell objects. The code shown in
this section is contained in the Analysis5.xls workbook in the
\Concepts\Ch07 – Using Class Modules to Create Objects folder on the
CD that accompanies this book. To raise an event in a class module you
need two things.

■ An Event declaration at the top of the class module
■ A line of code that uses RaiseEvent to cause the event to take place

The code changes shown in Listing 7-13 should be made in the CCells
class module.

Listing 7-13 Changes to the CCells Class Module to Raise an Event

Option Explicit

Public Enum anlCellType

anlCellTypeEmpty

anlCellTypeLabel

anlCellTypeConstant

anlCellTypeFormula

End Enum

Private mcolCells As Collection

Private WithEvents mwksWorkSheet As Excel.Worksheet

Event ChangeColor(uCellType As anlCellType, bColorOn As Boolean)

Public Sub Add(ByRef rngCell As Range)

Dim clsCell As CCell

180 Chapter 7 Using Class Modules to Create Objects

Raising Events 181

7.
U

SIN
G

CLASS
M

O
DULES

TO
CREATEO

BJECTS

Set clsCell = New CCell

Set clsCell.Cell = rngCell

Set clsCell.Parent = Me

clsCell.Analyze

mcolCells.Add Item:=clsCell, Key:=rngCell.Address

End Sub

Private Sub mwksWorkSheet_BeforeDoubleClick(_

ByVal Target As Range, Cancel As Boolean)

If Not Application.Intersect(Target, _

mwksWorkSheet.UsedRange) Is Nothing Then

RaiseEvent ChangeColor(_

mcolCells(Target.Address).CellType, True)

Cancel = True

End If

End Sub

Private Sub mwksWorkSheet_BeforeRightClick(_

ByVal Target As Range, Cancel As Boolean)

If Not Application.Intersect(Target, _

mwksWorkSheet.UsedRange) Is Nothing Then

RaiseEvent ChangeColor(_

mcolCells(Target.Address).CellType, False)

Cancel = True

End If

End Sub

Note that we moved the anlCellType Enum declaration into the parent col-
lection class module. Now that we have created an explicit parent-child rela-
tionship between the CCells and CCell classes, any public types used by
both classes must reside in the parent class module or circular dependencies
between the classes that cannot be handled by VBA will be created.

In the declarations section of the CCells module, we declare an event
named ChangeColor that has two arguments. The first argument defines
the cell type to be changed, and the second argument is a Boolean value to
indicate whether we are turning color on or off. The BeforeDoubleClick
and BeforeRightClick event procedures have been changed to raise the
new event and pass the cell type of the target cell and the on or off value.
The Add method has been updated to set a new Parent property of the
Cell object. This property holds a reference to the Cells object. The name
reflects the relationship between the Cells object as the parent object and
the Cell object as the child object.

Trapping the event raised by the Cells object in another class module
is carried out in exactly the same way we trapped other events. We create
a WithEvents object variable and set it to reference an instance of the class
that defines and raises the event. The changes shown in Listing 7-14
should be made to the CCell class module.

Listing 7-14 Changes to the CCell Class Module to Trap the ChangeColor Event

Option Explicit

Private muCellType As anlCellType

Private mrngCell As Excel.Range

Private WithEvents mclsParent As CCells

Property Set Parent(ByRef clsCells As CCells)

Set mclsParent = clsCells

End Property

Private Sub mclsParent_ChangeColor(uCellType As anlCellType, _

bColorOn As Boolean)

If Me.CellType = uCellType Then

If bColorOn Then

Highlight

Else

UnHighlight

End If

End If

End Sub

A new module-level object variable mclsParent is declared WithEvents as
an instance of the CCells class. A reference to a Cells object is assigned to
mclsParent in the Parent Property Set procedure. When the Cells object
raises the ChangeColor event, all the Cell objects will trap it. The Cell
objects take action in response to the event if they are of the correct cell
type.

A Family Relationship Problem
Unfortunately, we introduced a problem in our application. Running the
CreateCellsCollection procedure multiple times creates a memory leak.
Normally when you overwrite an object in VBA, VBA cleans up the old

182 Chapter 7 Using Class Modules to Create Objects

Raising Events 183

7.
U

SIN
G

CLASS
M

O
DULES

TO
CREATEO

BJECTS

version of the object and reclaims the memory that was used to hold it. You
can also set an object equal to Nothing to reclaim the memory used by it.
It is good practice to do this explicitly when you no longer need an object,
rather than relying on VBA to do it.

Set gclsCells = Nothing

When you create two objects that store references to each other, the sys-
tem will no longer reclaim the memory they used when they are set to new
versions or when they are set to Nothing. When analyzing the worksheet
in Analysis5.xls with 574 cells in the used range, there is a loss of about
250KB of RAM each time CreateCellsCollection is executed during an
Excel session.

NOTE If you are running Windows NT, 2000, XP, or Vista you can check the
amount of RAM currently used by Excel by pressing Ctrl+Shift+Esc to display the
Processes window in Task Manager and examining the memory usage column
for the row where the Image Name column is EXCEL.EXE.

One way to avoid this problem is to make sure you remove the cross-
references from the linked objects before the objects are removed. You can
do this by adding a method such as the Terminate method shown in Listing
7-15 to the problem classes, in our case the CCell class.

Listing 7-15 The Terminate Method in the CCell Class Module

Public Sub Terminate()

Set mclsParent = Nothing

End Sub

The code in Listing 7-16 is added to the CCells class module. It calls the
Terminate method of each Cell class contained in the collection to destroy
the cross-reference between the classes.

Listing 7-16 The Terminate Method in the CCells Class Module

Public Sub Terminate()

Dim clsCell As CCell

For Each clsCell In mcolCells

clsCell.Terminate

Set clsCell = Nothing

Next clsCell

Set mcolCells = Nothing

End Sub

The code in Listing 7-17 is added to the CreateCellsCollection procedure
in the MEntryPoints module.

Listing 7-17 The CreateCellsCollection Procedure in the MEntryPoints Module

Public Sub CreateCellsCollection()

Dim clsCell As CCell

Dim rngCell As Range

‘ Remove any existing instance of the Cells collection

If Not gclsCells Is Nothing Then

gclsCells.Terminate

Set gclsCells = Nothing

End If

Set gclsCells = New CCells

Set gclsCells.Worksheet = ActiveSheet

For Each rngCell In ActiveSheet.UsedRange

gclsCells.Add rngCell

Next rngCell

End Sub

If CreateCellsCollection finds an existing instance of gclsCells it executes
the object’s Terminate method before setting the object to Nothing. The
gclsCells Terminate method iterates through all the objects in the collec-
tion and executes their Terminate methods.

In a more complex object model with more levels you could have
objects in the middle of the structure that contain both child and parent
references. The Terminate method in these objects would need to run the
Terminate method of each of its children and then set its own Parent prop-
erty to Nothing.

184 Chapter 7 Using Class Modules to Create Objects

Raising Events 185

7.
U

SIN
G

CLASS
M

O
DULES

TO
CREATEO

BJECTS

Creating a Trigger Class
Instead of raising the ChangeColor event in the CCells class module we
can set up a new class module to trigger this event. Creating a trigger class
gives us the opportunity to introduce a more efficient way to highlight our
Cell objects. We can create four instances of the trigger class, one for each
cell type, and assign the appropriate instance to each Cell object. That
means each Cell object is only sent a message that is meant for it, rather
than hearing all messages sent to all Cell objects.

The trigger class also enables us to eliminate the Parent/Child rela-
tionship between our CCells and CCell classes, thus removing the require-
ment to manage cross-references. Note that it is not always possible or
desirable to do this. The code shown in this section is contained in the
Analysis6.xls workbook in the \Concepts\Ch07 – Using Class Modules to
Create Objects folder on the CD that accompanies this book.

Listing 7-18 shows the code in a new CTypeTrigger class module. The
code declares the ChangeColor event, which now only needs one argu-
ment to specify whether color is turned on or off. The class has Highlight
and UnHighlight methods to raise the event.

Listing 7-18 The CTypeTrigger Class Module

Option Explicit

Public Event ChangeColor(bColorOn As Boolean)

Public Sub Highlight()

RaiseEvent ChangeColor(True)

End Sub

Public Sub UnHighlight()

RaiseEvent ChangeColor(False)

End Sub

Listing 7-19 contains the changes to the CCell class module to trap the
ChangeColor event raised in CTypeTrigger. Depending on the value of
bColorOn, the event procedure runs the Highlight or UnHighlight
methods.

Listing 7-19 Changes to the CCell Class Module to Trap the ChangeColor Event of
CTypeTrigger

Option Explicit

Private muCellType As anlCellType

Private mrngCell As Excel.Range

Private WithEvents mclsTypeTrigger As CTypeTrigger

Property Set TypeTrigger(clsTrigger As CTypeTrigger)

Set mclsTypeTrigger = clsTrigger

End Property

Private Sub mclsTypeTrigger_ChangeColor(bColorOn As Boolean)

If bColorOn Then

Highlight

Else

UnHighlight

End If

End Sub

Listing 7-20 contains the changes to the CCells module. An array variable
maclsTriggers is declared to hold the instances of CTypeTrigger. The
Initialize event redimensions maclsTriggers to match the number of cell
types and the For...Each loop assigns instances of CTypeTrigger to the
array elements. The Add method assigns the correct element of
maclsTriggers to each Cell object according to its cell type. The result is
that each Cell object listens only for messages that apply to its own cell
type.

Listing 7-20 Changes to the CCells Class Module to Assign References to CTypeTrigger to
Cell Objects

Option Explicit

Public Enum anlCellType

anlCellTypeEmpty

anlCellTypeLabel

anlCellTypeConstant

anlCellTypeFormula

End Enum

Private mcolCells As Collection

186 Chapter 7 Using Class Modules to Create Objects

Raising Events 187

7.
U

SIN
G

CLASS
M

O
DULES

TO
CREATEO

BJECTS

Private WithEvents mwksWorkSheet As Excel.Worksheet

Private maclsTriggers() As CTypeTrigger

Private Sub Class_Initialize()

Dim uCellType As anlCellType

Set mcolCells = New Collection

‘ Initialise the array of cell type triggers,

‘ one element for each of our cell types.

ReDim maclsTriggers(anlCellTypeEmpty To anlCellTypeFormula)

For uCellType = anlCellTypeEmpty To anlCellTypeFormula

Set maclsTriggers(uCellType) = New CTypeTrigger

Next uCellType

End Sub

Public Sub Add(ByRef rngCell As Range)

Dim clsCell As CCell

Set clsCell = New CCell

Set clsCell.Cell = rngCell

clsCell.Analyze

Set clsCell.TypeTrigger = maclsTriggers(clsCell.CellType)

mcolCells.Add Item:=clsCell, Key:=rngCell.Address

End Sub

Public Sub Highlight(ByVal uCellType As anlCellType)

maclsTriggers(uCellType).Highlight

End Sub

Public Sub UnHighlight(ByVal uCellType As anlCellType)

maclsTriggers(uCellType).UnHighlight

End Sub

Private Sub mwksWorkSheet_BeforeDoubleClick(_

ByVal Target As Range, Cancel As Boolean)

If Not Application.Intersect(Target, _

mwksWorkSheet.UsedRange) Is Nothing Then

Highlight mcolCells(Target.Address).CellType

Cancel = True

End If

End Sub

Private Sub mwksWorkSheet_BeforeRightClick(_

ByVal Target As Range, Cancel As Boolean)

If Not Application.Intersect(Target, _

mwksWorkSheet.UsedRange) Is Nothing Then

UnHighlight mcolCells(Target.Address).CellType

Cancel = True

End If

End Sub

Private Sub mwksWorkSheet_Change(ByVal Target As Range)

Dim rngCell As Range

Dim clsCell As CCell

If Not Application.Intersect(Target, _

mwksWorkSheet.UsedRange) Is Nothing Then

For Each rngCell In Target.Cells

Set clsCell = mcolCells(rngCell.Address)

clsCell.Analyze

Set clsCell.TypeTrigger = _

maclsTriggers(clsCell.CellType)

Next rngCell

End If

End Sub

Practical Example

We illustrate the use of class modules in our PETRAS example applica-
tions by providing both the Time Sheet and Reporting applications with
Excel application-level event handlers.

PETRAS Time Sheet
The addition of an application-level event handling class to our PETRAS
time sheet application will make two significant changes. First, it will allow
us to convert the time entry workbook into an Excel template. This will
simplify creation of new time entry workbooks for new purposes as well as
allow multiple time entry workbooks to be open at the same time. Second,
the event handler will automatically detect whether a time entry workbook
is active and enable or disable our toolbar buttons accordingly. Table 7-1
summarizes the changes made to the PETRAS time sheet application for
this chapter.

188 Chapter 7 Using Class Modules to Create Objects

Practical Example 189

7.
U

SIN
G

CLASS
M

O
DULES

TO
CREATEO

BJECTS

The Template
When a template workbook is added using VBA, a new, unsaved copy of
the template workbook is opened. To create a template workbook from a
normal workbook, choose File > Save As from the Excel menu and select
the Template entry from the Save as type drop-down. As soon as you select
the Template option Excel unhelpfully modifies the directory where you
are saving your workbook to the Office Templates directory, so don’t for-
get to change this to the location where you are storing your application
files.

Once we begin using a template workbook, the user has complete con-
trol over the workbook filename. We can determine whether a given work-
book belongs to us by checking for the unique named constant
“setIsTimeSheet” that we added to our template workbook for this purpose.

A template workbook combined with an application-level event han-
dler allows us to support multiple instances of the time entry workbook
being open simultaneously. This might be needed, for example, if there is
a requirement to have a separate time sheet for each client or project.

Moving to a template user interface workbook also requires that we
give the user a way to create new time sheet workbooks, since it is no
longer a simple matter of opening and reusing the same fixed time sheet
workbook over and over. In Figure 7-2, note the new toolbar button
labeled New Time Sheet. This button allows the user to create new
instances of our template.

Table 7-1 Changes to PETRAS Time Sheet Application for Chapter 7

Module Procedure Change

PetrasTemplate.xlt Changes the normal workbook into a template
workbook

CAppEventHandler Adds an application-level event handling class
to the add-in

MEntryPoints NewTimeSheet New procedure to create time sheets from the
template workbook

MopenClose Auto_Open Removes time sheet initialization logic and
delegates it to the event handling class

MsystemCode Moves all time entry workbook management
code into the event handling class

As shown in Listing 7-21, the code run by this new button is simple.

Listing 7-21 The NewTimeSheet Procedure

Public Sub NewTimeSheet()

Application.ScreenUpdating = False

InitGlobals

Application.Workbooks.Add gsAppDir & gsFILE_TIME_ENTRY

Application.ScreenUpdating = True

End Sub

We turn off screen updating and call InitGlobals to ensure that our global
variables are properly initialized. We then simply add a new workbook
based on the template workbook and turn screen updating back on. Rather
than opening PetrasTemplate.xlt, a new copy of PetrasTemplate.xlt, called
PetrasTemplate1 is created. Each time the user clicks the New Time Sheet
button she gets a completely new, independent copy of PetrasTemplate.xlt.

The act of creating a new copy of the template triggers the NewWorkbook
event in our event handing class. This event performs all the necessary actions
to initialize the template. This event procedure is shown in the next section.

The Application-Level Event Handler
Within our application-level event handling class we encapsulate many of
the tasks previously accomplished by procedures in standard modules. For
example, the MakeWorksheetSettings procedure and the
bIsTimeEntryBookActive function that we encountered in Chapter 5,
“Function, General, and Application-Specific Add-ins,” are now both pri-
vate procedures of the class.

We describe the layout of the class module and then explain what the
pieces do, rather than showing all the code here. You can examine the code
yourself in the PetrasAddin.xla workbook of the sample application for this
chapter on the CD and are strongly encouraged to do so.

190 Chapter 7 Using Class Modules to Create Objects

FIGURE 7-2 The PETRAS toolbar with the New Time Sheet button

Practical Example 191

7.
U

SIN
G

CLASS
M

O
DULES

TO
CREATEO

BJECTS

Module-Level Variables

Private WithEvents mxlApp As Excel.Application

Class Event Procedures

Class_Initialize
Class_Terminate
mxlApp_NewWorkbook
mxlApp_WorkbookOpen
mxlApp_WindowActivate
mxlApp_WindowDeactivate

Class Method Procedures

SetInitialStatus

Class Private Procedures

EnableDisableToolbar
MakeWorksheetSettings
bIsTimeEntryBookActive
bIsTimeEntryWorkbook

Because the variable that holds a reference to the instance of the
CAppEventHandler class that we use in our application is a public vari-
able, we use the InitGlobals procedure to manage it. The code required to
do this is shown in two locations.

In the declarations section of the MGlobals module:

Public gclsEventHandler As CAppEventHandler

In the InitGlobals procedure:

’ Instantiate the Application event handler

If gclsEventHandler Is Nothing Then

Set gclsEventHandler = New CAppEventHandler

End If

The InitGlobals code checks to see whether the public
gclsEventHandler variable is initialized and initializes it if it isn’t.

InitGlobals is called at the beginning of every non-trivial entry point pro-
cedure in our application, so if anything causes our class variable to lose
state, it will be instantiated again as soon as the next entry point procedure
is called. This is a good safety mechanism.

When the public gclsEventHandler variable is initialized, it causes the
Class_Initialize event procedure to execute. Inside this event procedure
we initialize the event handling mechanism by setting the class module-
level WithEvents variable to refer to the current instance of the Excel
Application, as follows:

Set mxlApp = Excel.Application

Similarly, when our application is exiting and we destroy our
gclsEventHandler variable, it causes the Class_Terminate event procedure
to execute. Within this event procedure we destroy the class reference to
the Excel Application object by setting the mxlApp variable to Nothing.

All the rest of the class event procedures, which are those belonging to
the mxlApp WithEvents variable, serve the same purpose. They “watch”
the Excel environment and enable or disable our toolbar buttons as appro-
priate when conditions change.

Disabling toolbar buttons when they can’t be used is a much better
user interface technique than displaying an error message when the user
clicks one under the wrong circumstances. You don’t want to punish users
(that is, display an error message in response to an action) when they can’t
be expected to know they’ve done something wrong. Note that we always
leave the New Time Sheet and Exit PETRAS toolbar buttons enabled. Users
should always be able to create a new time sheet or exit the application.

In addition to enabling and disabling the toolbar buttons, the
mxlApp_NewWorkbook and mxlApp_WorkbookOpen event procedures
detect when a time entry workbook is being created or opened for the first
time, respectively. At this point they run the private
MakeWorksheetSettings procedure to initialize that time entry workbook.
All the mxlApp event procedures are shown in Listing 7-22. As you can
see, the individual procedures are simple, but the cumulative effect is
powerful.

Listing 7-22 The mxlApp Event Procedures

Private Sub mxlApp_NewWorkbook(ByVal Wb As Workbook)

If bIsTimeEntryWorkbook(Wb) Then

EnableDisableToolbar True

MakeWorksheetSettings Wb

192 Chapter 7 Using Class Modules to Create Objects

Practical Example 193

7.
U

SIN
G

CLASS
M

O
DULES

TO
CREATEO

BJECTS

Else

EnableDisableToolbar False

End If

End Sub

Private Sub mxlApp_WorkbookOpen(ByVal Wb As Excel.Workbook)

If bIsTimeEntryWorkbook(Wb) Then

EnableDisableToolbar True

MakeWorksheetSettings Wb

Else

EnableDisableToolbar False

End If

End Sub

Private Sub mxlApp_WindowActivate(ByVal Wb As Workbook, _

ByVal Wn As Window)

‘ When a window is activated, check to see if it belongs

‘ to one of our workbooks. Enable all our toolbar controls

‘ if it does.

EnableDisableToolbar bIsTimeEntryBookActive()

End Sub

Private Sub mxlApp_WindowDeactivate(ByVal Wb As Workbook, _

ByVal Wn As Window)

‘ When a window is deactivated, disable our toolbar

‘ controls by default. They will be re-enables by the

‘ WindowActivate event procedure if required.

EnableDisableToolbar False

End Sub

The full power of having an event handling class in your application is dif-
ficult to convey on paper. We urge you to experiment with the sample
application for this chapter to see for yourself how it works in a live setting.
Double-click the PetrasAddin.xla file to open Excel and see how the appli-
cation toolbar behaves. Create new time sheet workbooks, open non-time
sheet workbooks, and switch back and forth between them. The state of
the toolbar will follow your every action.

It is also educational to see exactly how much preparation the applica-
tion does when you create a new instance of the time sheet workbook.
Without the PetrasAddin.xla running, open the PetrasTemplate.xlt work-
book and compare how it looks and behaves in its raw state with the way it
looks and behaves as an instance of the time sheet within the running
application.

PETRAS Reporting
By adding a class module to handle application-level events to the
PETRAS Reporting application, we can allow the user to have multiple
consolidation workbooks open at the same time and switch between them
using the new Window menu, as shown in Figure 7-3.

194 Chapter 7 Using Class Modules to Create Objects

Table 7-2 summarizes the changes made to the PETRAS time sheet
application for this chapter. Rather than repeat much of the previous few
pages, we suggest you review the PetrasReporting.xla workbook to see
exactly how the multiple-document interface has been implemented.

FIGURE 7-3 The PETRAS Reporting menu bar with the new Window menu

Table 7-2 Changes to PETRAS Reporting Application for Chapter 7

Module Procedure Change

CAppEventHandler Adds an application-level event handling
class to the application to manage
multiple consolidation workbooks.

MCommandBars SetUpMenus Adds code to create the Window menu.

MSystemCode Adds procedures to add, remove, and
place a tick mark against an item in the
Window menu.

MEntryPoints MenuWindowSelect New procedure to handle selecting an
item within the Window menu. All
Window menu items call this routine.

Summary 195

7.
U

SIN
G

CLASS
M

O
DULES

TO
CREATEO

BJECTS

Summary

You use class modules to create objects and their associated methods,
properties, and events. You can collect child objects in a parent object so
that you can create a hierarchy of objects to form an object model. You can
use class modules to trap the events raised by other objects including the
Excel application. You can also define and raise your own events in a class
module.

When you set up cross-references between parent and child objects so
that each is aware of the other you create a structure that is not simple to
remove from memory when it is no longer useful. You need to add extra
code to remove these cross-references.

Class modules are a powerful addition to a developer’s toolkit. The
objects created lead to code that is easier to write, develop, maintain, and
share than traditional code. Objects are easy to use because they encapsu-
late complex code in a form that is accessible. All you need to know to use
an object are its methods, properties, and events. Objects can be shared
because the class modules that define them are encapsulated (self-con-
tained) and therefore transportable from one project to another. All you
need to do is copy the class module to make the object available in anoth-
er project.

As a developer you can easily add new methods, properties, and events
to an object without changing the existing interface. Your objects can
evolve without harming older systems that use them. Most developers find
class modules addictive. The more you use them, the more you like them
and the more uses you find for them. They are used extensively through-
out the rest of this book.

817

C H A P T E R 24

EXCEL AND VB.NET

In 2002, Microsoft released the first version of its development suite
Visual Studio.NET (VS.NET) together with the .NET Framework.
Since then, Microsoft has released new versions of the Framework and
development suite in quick succession. Microsoft has strongly indicated
that .NET is the flagship development platform now and for the foresee-
able future.

Visual Basic.NET (VB.NET) is part of VS.NET, and despite its sim-
ilarity in the name with Classic VB (VB6), the two have little in common.
VB.NET is the successor to Classic VB and as such it provides the ability
to create more technically modern solutions, a large group of new and
updated controls, and a new advanced IDE. Moving from Classic VB to
VB.NET is a non-trivial process, primarily because VB.NET is based on a
new and completely different technology platform.

Excel developers also face the situation where applications created
with the new .NET technology need to communicate with applications
based on the older COM technology, for example, VB.NET applications
communicating with Excel. Because Excel is a COM-based application it
cannot communicate directly with code written in .NET.All .NET code
that communicates with Excel must cross the .NET ➜ COM boundary.
This is important to keep in mind because it is a challenge to manage and
can have significant performance implications.

In the first part of this chapter, VB.NET is introduced along with the
.NET Framework. The second part of this chapter focuses on how we can
automate Excel with VB.NET. Finally we cover ADO.NET, which is used
to connect to and retrieve data from various data sources. ADO.NET is the
successor to classic ADO on the .NET platform.

To provide a better understanding of VB.NET, we develop a practical
solution, the PETRAS Report Tool.NET. This solution is a fully func-
tional Windows Forms based reporting tool. It retrieves data from the
PETRAS SQL Server database and uses Excel templates to present the
reports.

818 Chapter 24 Excel and VB.NET

VB.NET, ADO.NET, and the .NET Framework are book-length top-
ics in their own right; what we examine here and in the two following chap-
ters merely scratches the surface. At the end of this chapter you find some
recommended books and online resources that provide additional detail on
these subjects.

.NET Framework Fundamentals

The .NET Framework is the core of .NET. Before we can develop or run
any .NET-based solutions, the Framework must be installed and available.
The Framework provides the foundation for all .NET software develop-
ment. The .NET Framework is also responsible for interoperability
between .NET solutions and COM servers and components. This topic is
covered later in the chapter. For the purposes of our discussion, we can
think of the .NET Framework architecture as consisting of two major
parts:

■ A huge collection of base class libraries and interfaces—This
collection contains all the class libraries and interfaces required for
.NET solutions. Namespaces are used to organize these class
libraries and interfaces into a hierarchical structure. The namespaces
are usually organized by function, and each namespace usually has
several child namespaces. Namespaces make it easy to access and use
different classes and simplify object references. We discuss name-
spaces in more detail when presenting VB.NET later in this chapter.

■ Common Language Runtime (CLR)—This is the engine of the
.NET Framework, and it is responsible for all .NET base services. It
controls and monitors all activities of .NET applications, including
memory management, thread management, structured exception
handling (SEH), garbage collection, and security. It also provides
a common data type system (CTS) that defines all .NET data types.

The rapid evolution of the .NET Framework is reflected in the large num-
ber of versions available. Different Framework versions can coexist on one
computer, and multiple versions of the Framework can be run side-by-side
simultaneously on the same computer. However, an application can only use
one version of the .NET Framework at any one time. The Framework ver-
sion that becomes active is determined by which version is required by the
.NET-based program that is loaded first. A general recommendation is to
only have one version of the Framework installed on a target computer.

Visual Basic.NET 819

Because there are several different Framework versions in common
use and we may not be able to control the version available on the com-
puters we target, we need to apply the same strategy to the .NET
Framework as we do when targeting multiple Excel versions: Develop
against the lowest Framework version we plan to target. Of course there
will also be situations that dictate the Framework version we need to tar-
get, such as corporate clients who have standardized on a specific version.

As of this writing, the two most common Framework versions are 2.0
and 3.0. Both versions can be used on Windows XP, and version 3.0 is
included with Windows Vista and Windows Server 2008. Visual Studio
2008 (VS 2008) includes both of these Framework versions as well as ver-
sion 3.5. By providing all current Framework versions, VS 2008 makes it
easy to select the most appropriate version to use when building our solu-
tions. Versions 3.0 and 3.5 of the .NET Framework are backward compat-
ible in a similar manner as the latest versions of the Excel object libraries.

The .NET Framework can run on all versions of Windows from Windows
98 forward, but to develop .NET-based solutions we need to have Windows
2000 or later. If we plan to target Windows XP or earlier we need to make
sure the desired version of the .NET Framework is installed on the target
computer, because these Windows versions do not include the Framework
preinstalled. All versions of the Framework are available for download from
the Microsoft Web site and can be redistributed easily. To avoid confusion,
we only use version 2.0 of the .NET Framework in this chapter and the next.

NOTE The standard version 3.5 .NET Framework distribution is around
197MB in size. Microsoft provided a lighter edition of about 25MB in size that
can be installed on the target computers instead. To find out more about this edi-
tion, search for the phrase “.NET Framework Client Profile Deployment Guide”
at www.microsoft.com.

Visual Basic.NET

With VS.NET we can create Web applications, server applications, data-
base applications, console applications, Windows desktop applications,
setup and deployment projects, and much more. VS.NET ships with the
following programming languages: Visual C#, VB.NET, and Visual C++.

VB.NET is distributed in all VS.NET packages as well as in a stand-
alone version. However, not all capabilities are present in all distributions.

24.
EXCEL

AN
D

VB.NET

www.microsoft.com

For a full comparison among the versions, see http://msdn.microsoft.com/
en-us/vs2008/products/cc149003.aspx. If you just want to try out VB.NET
you can download the free Express Edition from Microsoft’s Web site.
VS.NET Professional is required if you plan to develop managed COM
add-ins and VSTO solutions. It is also required to follow the discussions
here and in the next two chapters.

VB.NET was the first version of VB that broke backward compatibili-
ty badly enough that you could not even open a project created in an ear-
lier version of VB. If you have non-trivial Classic VB projects that you
would like to transfer to VB.NET, the best choice is to create them from
scratch in VB.NET. Microsoft has some tools to ease the transition, but for
larger VB projects they cannot do all the work. On the other hand, you may
also consider keeping your Classic VB solutions for as long as it is still pos-
sible to run them on the Windows versions your solution targets. VB.NET
is the first BASIC language version that fully supports object oriented pro-
gramming (OOP). It means that with VB.NET we can fully utilize encap-
sulation, inheritance, and polymorphism.

Code that targets the .NET runtime is described as managed code
while code that cannot be hosted by the .NET runtime is described as
unmanaged code. Assemblies are the binary units (*.DLL or *.EXE)
that contain the managed code. Since it is common that one .NET assem-
bly contains only one binary unit, it is safe to refer to .NET-based DLL
files as assemblies.

You need to select the version of VB.NET that fits your requirements best.
Table 24-1 shows the capabilities related to Excel development and the
distributions in which they are available.

Table 24-1 Available Tools in Different Versions of VS.NET

VB.NET
Express

VS.NET
Standard

VS.NET
Professional

Automate Excel ✓ ✓ ✓

Shared Add-in Template (To create
managed COM add-ins with.)

✓ ✓

Office templates ✓

Visual Studio Tools for Office System
(VSTO)

✓

820 Chapter 24 Excel and VB.NET

http://msdn.microsoft.com/en-us/vs2008/products/cc149003.aspx
http://msdn.microsoft.com/en-us/vs2008/products/cc149003.aspx

Visual Basic.NET 821

24.
EXCEL

AN
D

VB.NET

The Visual Studio IDE
The Visual Studio IDE (VS IDE) is shared by all .NET programming
languages. The VS IDE is a complex development environment, even for
developers who are very familiar with the Classic VB IDE. Figure 24-1
shows the VS IDE with a simple VB.NET Windows Forms project open.

When you first run VS.NET, you are prompted to select a development
category for VS.NET to use in customizing the environment. If your pre-
vious experience is with Classic VB or VBA, you will probably want to allow
VB.NET to be your first choice of programming language. In this case,
choose the Visual Basic Development Settings. The VS IDE is also
highly customizable by the user, but before beginning to customize it you
should learn the basics using the default configuration.

FIGURE 24-1 The Visual Studio .NET IDE

General Configuration of the VS IDE
After launching the VS IDE, you should change some general configura-
tion settings for the development environment. Start by selecting Tools >
Options... from the menu. This displays the Options dialog shown in
Figure 24-2.

The Options dialog organizes its settings in a tree view on the left side. The
VB Defaults section under Projects and Solutions contains four of the more
important settings for VB.NET development. We recommend that you set
them exactly as shown in Figure 24-2. A detailed description of each
setting follows:

■ Option Explicit—Determines whether VB.NET requires us to
declare all variables before using them.

■ Option Strict—Turning on this setting disallows late binding (to
improve performance), implicit data type conversion, and provides
strong typing (strict use of type rules with no exceptions).

■ Option Compare—Specifies the default method used for string
comparisons. It can either be Binary (case-sensitive) or Text (case-
insensitive). The default value is Binary, which provides the same
text comparison behavior as Classic VB. See Chapter 3, “Excel and
VBA Development Best Practices,” for more information.

■ Option Infer—When this setting is turned on it allows us to omit
the data type when declaring a variable and instead let VB.NET

FIGURE 24-2 The general Options dialog

822 Chapter 24 Excel and VB.NET

Visual Basic.NET 823

24.
EXCEL

AN
D

VB.NET

identify (“infer”) the data type. Listing 24-1 shows a simple example.
The right-hand value tells the compiler the data type is an Integer.
Declaring a variable and giving it a value at the same time in this
manner is fully supported in VB.NET.

Listing 24-1 Omitting the Data Type When Declaring a Variable

Dim iCountRows = 225

When working with VB.NET solutions (a solution can contain one or
more projects), these settings can be overridden at the code module level.
This means, for example, that if we really need to use late binding in one
code module we can modify the Option Strict setting at the top of that
code module. Listing 24-2 shows how to turn off the Option Strict setting
and also change comparisons to Text.

Listing 24-2 Changing Settings at the Code Module Level

Option Compare Text

Option Strict Off

Adding line numbers to your code can make many development tasks eas-
ier, the debugging process in particular. To activate this option, expand the
Text Editor section in the Options dialog and select the Basic section below
it. Check the option Line numbers and then close the dialog.

Next we make screentips and keyboard shortcuts available in the IDE.
Choose Tools > Customize... from the menu. This displays the Customize
dialog shown in Figure 24-3. Check the two options Show ScreenTips on
toolbars and Show shortcut keys in ScreenTips and then close the dialog.

The final setting is to make various docked windows in the IDE hide
themselves when they are not being used. This provides us with a workspace
that is not cluttered with open windows not relevant to the current context.

1. Click on the window you want to hide so it gets the focus.
2. On the Window menu click on the option Auto Hide or click on the

pushpin icon on the title bar for the window.
3. Repeat these steps for every window that you want to auto hide.

When an auto-hidden window loses focus, it automatically slides back to its
tab on the edge of the IDE.

FIGURE 24-3 The Customize dialog

Creating a VB.NET Solution
We create a new VB.NET project by selecting the File > New Project...
from the menu. This displays the New Project dialog shown in
Figure 24-4.

FIGURE 24-4 The New Project dialog

824 Chapter 24 Excel and VB.NET

Visual Basic.NET 825

24.
EXCEL

AN
D

VB.NET

Since we are creating a Windows based-solution, select Windows in
the Project types section and then select the Windows Forms Application
template. We also select the version of .NET Framework to target using
the combo box in the upper-right corner. Next, enter the name “First
Application” in the Name box. By default, the solution name is the same as
the name entered in the Name box, as shown in Figure 24-4. The solution
name is also used to name the main folder of the project. Finally, click the
OK button to create the solution.

The Solution Explorer window provides the workspace for working
with files and projects inside VB.NET solutions. Figure 24-5 shows the
workspace for our solution. A single Windows Form has been added to the
solution and we have right-clicked on the form to display the shortcut
menu containing the various actions available to perform on that object.

Windows Forms are the basic building block of many solutions. They pro-
vide us with a graphical user interface to which we can add controls.
Windows Forms and all other Windows controls are contained in the
System.Windows.Forms namespace. Windows Forms are in many ways
identical to their counterpart Forms in Classic VB but are more modern
and offer more properties to work with.VB.NET provides a large number
of Windows controls for various purposes. However, use the new controls
with good judgment. They exist to create a friendly user interface, not con-
fuse the user.

FIGURE 24-5 The Solution Explorer window

Although VB.NET is designed to use Windows Forms controls, we can
still use ActiveX controls. Therefore, if we own expensive third-party
ActiveX controls, we can still use them in VB.NET. To add a control to a
Windows Form, click the control’s icon in the Toolbox and then drag and
drop over the area on the form where you want the control to be placed.
For our solution we add a label control, combo box, and two buttons to the
Windows Form and resize the form itself. Figure 24-6 shows how the final
Windows Form looks.

Before we add code to the Windows Form, we set the tab order for the
controls. Select View > Tab Order from the menu. The tab order for each
control is now displayed visually on the form. Clicking on a control’s tab
number increases the number. Change the tab order so that it matches the
order shown in Figure 24-7. To exit the tab order view, select View > Tab
Order from the menu again.

As a final step, we add code to the solution. Select View > Code from the
menu. This opens the class module for the Windows Form. The first event
we use is the Load event of the Windows Form. This is created by first
selecting (Form1 Events) from the combo box in the upper-left corner of
the module and then selecting Load from the combo box in the upper-right
corner of the module. Listing 24-3 shows the code in the Load event.

FIGURE 24-6 The Windows Form

FIGURE 24-7 The tab order for the form

826 Chapter 24 Excel and VB.NET

Visual Basic.NET 827

24.
EXCEL

AN
D

VB.NET

Listing 24-3 The Code for the Load Event of the Windows Form

Private Sub Form1_Load(ByVal sender As Object, _

ByVal e As System.EventArgs) _

Handles Me.Load

‘Create and populate the array with names.

Dim sArrNames() As String = {“Rob Bovey”, _

“Stephen Bullen”, _

“John Green”, _

“Dennis Wallentin”}

With Me

‘The caption of the Form.

.Text = “First Application”

‘The captions of the label and button controls.

.Label1.Text = “Select the name:”

.Button1.Text = “&Show value”

.Button2.Text = “&Close”

‘Populate the combobox control with the list

‘of names.

With .ComboBox1

.DataSource = sArrNames

.SelectedIndex = -1

End With

End With

End Sub

In this code, we create a string array, set values for various control proper-
ties, and then add the array as a data source for the combo box control. We
use a single dimension array to populate the combo box with the list of
names. It is a perfectly accepted practice to declare and initialize an array
at the same time in VB.NET, as shown in Listing 24-3. When using this
approach we do not need to specify the size of the array because this is
inferred from the number of items within the scope of the curly brackets.

The next step is to get the selected value from the combo box and dis-
play it in a message box. Before doing that we need to import the name-
space System.Windows.Forms into the code module, which gives us a short-
cut to the .NET MessageBox class. Importing namespaces saves keystrokes
each time we refer to objects that are part of the imported namespaces. It
also makes our code easier to read and maintain by making it less verbose.

The Imports statements tell the compiler which namespaces the code
uses. Usually we first set a reference to a namespace and then we import
it to one or more code modules. Here we only do the latter because the
System namespace is referenced by default in all new VB.NET solutions.
This is because Visual Studio automatically adds a reference to the System
namespace when a new VB.NET project is created. At the top of the
Form’s class module we add the Imports statement shown in Listing 24-4.

Listing 24-4 The Imports Statement

’To use the messagebox object.

Imports System.Windows.Forms

The namespace Microsoft.VisualBasic also belongs to the namespaces
that are referenced by default in all new VB.NET solutions. This name-
space is also globally imported, which means we do not need to import it
into individual code modules to use it. From a practical standpoint this
means we can use the well-known MsgBox function instead of its .NET vari-
ant. However, in Listing 24-5 we use .NET MessageBox class in the Click
event for Button1, which displays the selected name in a message box.

Listing 24-5 Show Selected Name

Private Sub Button1_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles Button1.Click

‘Make sure that a name has been selected.

If Me.ComboBox1.SelectedIndex <> -1 Then

‘Show the selected value.

MessageBox.Show(_

text:=Me.ComboBox1.SelectedValue.ToString(), _

caption:=”First Application”)

End If

End Sub

The final piece of the puzzle is to add a command to close (unload) the
Windows Form in the Button2 Click event. Listing 24-6 shows the
required code.

828 Chapter 24 Excel and VB.NET

Visual Basic.NET 829

24.
EXCEL

AN
D

VB.NET

Listing 24-6 Unload the Windows Form

Private Sub Button2_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles Button2.Click

Me.Close()

End Sub

To begin testing the application, we just have to press the F5 key. Figure
24-8 shows the First Application in action after we select a value in the
combo box and then click the Show value button.

Whenever we execute the application in the debugger, the VS IDE creates
a number of new files, including an executable file for our application.
These files are located in the ..\First Application\bin\Debug folder. A work-
ing example of this solution can be found on the companion CD in the
\Concepts\Ch24 - Excel & VB.NET\First Application folder. If you just
want to run the application without opening it in Visual Studio, the First
Application executable file can be found in the \Concepts\Ch24 - Excel &
VB.NET\First Application\First Application\bin\Debug folder on the CD.

Structured Exception Handling
When an unexpected condition occurs in managed code, the CLR creates
a special object called an exception. The exception object contains prop-
erties and methods that give detailed information about the unexpected
condition. Because we deal with exceptions rather than errors in .NET
development, we use the expression exception handling rather than error
handling.

FIGURE 24-8 Our first application in action

Exception handling covers the techniques used to detect exceptions
and take appropriate actions after they are detected. Structured excep-
tion handling (SEH), is the term used to describe how we implement
exception handling in managed code. Although it is possible to use the
Classic VB error handling approach in VB.NET, we strongly encourage the
use of SEH because it gives us much better options for dealing with excep-
tions. SEH consists of the following building blocks:

■ Try—We place the code we want to execute in this block. This code
may create one or more exceptions.

■ Catch—In this block we place the code that handles the excep-
tions. It is possible to place several Catch blocks within the same
structure to handle different types of exceptions. Catch blocks are
optional.

■ Finally—Code placed in this block always is executed, which
makes this block a perfect place for code to clean up and release ref-
erences to objects like COM objects and ADO.NET objects. This
block is also optional.

■ End Try—Ends the SEH structure.

Listing 24-7 shows the skeleton structure of SEH in code. When we enter a
Try statement in a code module, the VS IDE automatically adds the Catch

block and End Try statement. The Finally block must be typed manually.

Listing 24-7 The Building Blocks of SEH

Private Function iDiscount(ByVal iPrice As Integer) As Integer

Try

‘Do the calculation here.

Catch ex As Exception

‘In case of any unexpected scenarios take

‘some action here, like a message to the user.

End Try

End Function

Most of the namespaces in the .NET Framework class library include
their own specific exception classes, which make it possible to catch

830 Chapter 24 Excel and VB.NET

Visual Basic.NET 831

24.
EXCEL

AN
D

VB.NET

them in separate Catch blocks. All built-in exception classes extend the
built-in System.Exception class. Catch blocks are executed (or tested
for execution) in the order in which they are coded. .NET works its way
through the Catch blocks trying to find a matching exception type.
Therefore the preferred approach is to implement the Catch blocks with
more specific exception types first, followed by the Catch blocks with the
more generic exception types. Listing 24-8 shows an example using two
Catch blocks.

Listing 24-8 Using Several Catch Blocks and the Finally Block

Try

frmSaveFile = New SaveFileDialog

With frmSaveFile

.Filter = “XML File|*.xml”

.Title = “Save report to XML file”

.FileName = sFileName

End With

dtTable.WriteXml(fileName:=sFileName)

dtTable.WriteXmlSchema(_

fileName:=Strings.Left(sFileName, _

Len(sFileName) - 4) & “.xsd”)

Catch XMLexc As Xml.XmlException

MessageBox.Show(text:=sMESSAGENOTSAVEDXML, _

caption:=swsCaption, _

buttons:=MessageBoxButtons.OK, _

icon:=MessageBoxIcon.Stop)

Catch COMExc As COMException

MessageBox.Show(text:= _

sERROR_MESSAGE & _

sERROR_MESSAGE_EXCEL, _

caption:=swsCaption, _

buttons:=MessageBoxButtons.OK, _

icon:=MessageBoxIcon.Stop)

Catch Generalexc As Exception

MessageBox.Show(text:=sMESSAGENOTSAVEDGENERAL, _

caption:=swsCaption, _

buttons:=MessageBoxButtons.OK, _

icon:=MessageBoxIcon.Stop)

Finally

frmSaveFile.Dispose()

frmSaveFile = Nothing

End Try

The first Catch block handles any XmlException exceptions. The second
block catches COM exceptions that might occur when working with COM
servers like Excel. The final Catch block is generic and handles all other
exceptions. The example also shows how we can use the Finally block to
release an object. Listing 24-8 also shows how to use custom error mes-
sages to respond to each exception type.

During development we need to see the underlying technical details
for all exceptions. In Listing 24-9 the previously customized end user mes-
sages have been replaced with the exception object and its method
ToString in each Catch block. The ToString method gives a textual sum-
mary of the exception. You can also use the GetBaseException method to
return the first exception in the chain.

Listing 24-9 Displaying Exception Descriptions

Catch XMLexc As Xml.XmlException

MessageBox.Show(XMLexc.ToString())

Catch COMExc As COMException

MessageBox.Show(COMExc.ToString())

MessageBox.Show(COMExc.ErrorCode.ToString())

Catch Generalexc As Exception

MessageBox.Show(Generalexc.ToString())

When VB.NET receives an exception from a COM server like Excel, it
checks the COM exception code and tries to map that code to one of the

832 Chapter 24 Excel and VB.NET

Visual Basic.NET 833

24.
EXCEL

AN
D

VB.NET

.NET exceptions classes. If this fails, which is the most common outcome,
VB.NET throws a large and mostly unhelpful HRESULT message like the
one shown in Figure 24-9.

The line of code that generates this message is the first MessageBox.Show
line under the COM exception block in Listing 24-9. COM exceptions are
wrapped into generic COMException objects when .NET does not have a
matching exception class for the HRESULT error generated by a COM
component.

In SEH, it is possible to exit a Try block with the Exit Try statement.
This statement can be placed either in the Try block or in any Catch block.
Any code in a Finally block is still executed after the Exit Try statement.

Another option is to use nested Try structures. A nested SEH can be
added either to the Try block or to a Catch block. When using nested
exception handlers the InnerException property of the exception object
becomes very important. It helps us determine the cause of the nested
exception and allows us to obtain the chain of exceptions that led to that
exception.

We can use the Throw statement to communicate exceptions to the call-
ing code. Throw is usually used within a Catch block only if the exception is
to be bubbled up the call stack. A Throw statement causes code execution to
be intentionally interrupted. The Throw statement also allows us to create
our own exceptions, but this topic is beyond the scope of this chapter.

Modules and Methods, Scope and Visibility
When we make a declaration at the module level (module here stands for
module, class, or structure), the access level we choose determines the
scope of the thing being declared. In VB.NET we can use the keywords
Public and Private, which have the same scopes as in Classic VB, but
VB.NET also provides the following additional keywords to specify mod-
ule scope and visibility:

FIGURE 24-9 The COM exception message

■ Friend—A data member or method (function or subroutine)
declared with the Friend modifier can be accessed from any part of
the program containing the declaration. This is not a new keyword,
as it is also available in Classic VB. However, if we do not explicitly
include a scope in our declaration, then the default scope is Friend
in VB.NET, while in Classic VB the default scope is Public.

■ Protected—Data members or methods declared with Protected
scope are only accessible from the module itself or from derived
classes.

■ Protected Friend—This scope is equivalent to the union of
Protected and Friend access. A data member or method declared as
Protected Friend is accessible from anywhere in the program in
which the declaration occurs, or from any derived class containing
the declaration.

Declare Variables and Assign Values
In VB.NET, we declare local variables using the keyword Dim, module-
level variables using the keyword Private, solution-level variables using
the keyword Friend, and public variables using the keyword Public. All
.NET programming languages provide the option to declare variables and
assign values to them at the same time.

The first two lines in Listing 24-10 show how we can declare variables
and initialize them with values using one line of code. The third line creates
three String variables without assigning any values to them. Since they don’t
have assigned values, these String objects are marked as unused local vari-
ables by the VS IDE. This is a result of the Option Strict setting being on.
Good coding practice in .NET says that we should always assign known val-
ues to variables, even if they initially will not have any “real” values. Lines 4
through 6 show how we can achieve this in practice.

Listing 24-10 Declare Variables and Assign Values to Them

1 Dim sTitle As String = “PETRAS Report Tool”

2 Dim iPrice As Integer = 100

3 Dim sAddress, sCity, sCountry As String

4 Dim sName = String.Empty

5 Dim bReportStatus = Nothing

6 Dim iNumberOfRecords As Integer = Nothing

7 Dim iNumberOfColumns As Integer = dtTable.Columns.Count - 5

8 Dim iNumberOfRows As Integer = dtTable.Rows.Count - 1

9 Dim obDataArr(iNumberOfRows, iNumberOfColumns) As Object

834 Chapter 24 Excel and VB.NET

Visual Basic.NET 835

24.
EXCEL

AN
D

VB.NET

Lines 7 and 8 in Listing 24-10 contain two variables that hold the number
of columns and rows of a DataTable (an ADO.NET object covered later
in this chapter). These two variables are then used as parameters to dimen-
sion the array of data type Object in line 9. The data type Object is the
VB.NET counterpart to the data type Variant in Classic VB. An Object
array behaves in roughly the same manner as a Variant array.

VB.NET also offers the ability to declare variables anywhere in the
code. Listing 24-11 shows an example where we have declared a variable
within a Try block in conjunction with a For...Next loop.

Listing 24-11 Block Scope Variable Declaration

Try

For iCountRows As Integer = 0 To 9

‘Do the iteration.

Next iCountRows

Catch ex As Exception

MessageBox.Show(ex.ToString())

End Try

Block scope can also be achieved by declaring variables within
With...End With blocks, For...Next blocks, and Do...Loop blocks. In
Listing 24-12 we show a variable that is declared in a Do...Loop.

Listing 24-12 Block Scope within a Do...Loop

’Declaration of a variable with

‘a block scope of Do...Loop.

Do

Dim iMonth As Integer = 1

‘Other code goes here...

Loop

However, declaring variables using this method may cause unexpected
problems. This is because the scope of variables declared in this manner is
limited to the block in which they are declared. This means we cannot

access these variables or use them outside that block. Code that uses this
method can also be more difficult to debug and maintain. In general we
should avoid this approach. Good coding practice suggests that all variables
used within a method should be declared at the beginning of that method.

Creating New Instances of Objects
We can create new instances of objects in VB.NET using the same tech-
niques as in Classic VB. The only difference is that we do not use the Set
keyword in VB.NET. Listing 24-13 shows two methods of creating objects
in VB.NET. The Nothing keyword is a way of telling the system that the
variable does not currently have any value but still may use memory.

Listing 24-13 Declare and Instantiate Objects

’The classic approach.

Dim frmSaveDialog As SaveFileDialog = Nothing

frmSaveDialog = New SaveFileDialog

‘.NET approach.

Dim frmSaveDialog As New SaveFileDialog

The .NET approach is singled out in the second example in Listing 24-13,
which shows that we declare and set the variable to a new instance of the
SaveFileDialog class with one line of code. Although the .NET approach
may look attractive, we still recommend using the classic approach. This is
also outlined as the best practice in Chapter 3.

Using the .NET approach can cause unwanted exceptions because of
the block scoping of variables. For example, if we create a new instance of
the SaveFileDialog component and we want to trap any exceptions that
may occur (or we want to throw an exception), block scoping of the vari-
able itself causes an exception. This is demonstrated in Listing 24-14,
where we have declared and instantiated the frmSaveDialog object vari-
able in the Try block. However, because the scope of this variable is limit-
ed to the Try block, the VS.IDE displays a compile error for the two lines
of code inside the Finally block.

Listing 24-14 Using the .NET Approach

Sub Show_Save_Dialog()

Try

836 Chapter 24 Excel and VB.NET

Visual Basic.NET 837

24.
EXCEL

AN
D

VB.NET

Dim frmSaveDialog As New SaveFileDialog

frmSaveDialog.ShowDialog()

Catch ex As Exception

Finally

frmSaveDialog.Dispose()

frmSaveDialog = Nothing

End Try

End Sub

To correct this problem, we modify the code to use the classic approach as
shown in Listing 24-15. The frmSaveDialog variable can now be seen
throughout the Try block, and it traps any exceptions that may occur.

Listing 24-15 Using the Classic Approach

Sub Show_Save_Dialog()

Dim frmSaveDialog As SaveFileDialog = Nothing

Try

frmSaveDialog = New SaveFileDialog

frmSaveDialog.ShowDialog()

Catch ex As Exception

MessageBox.Show(ex.ToString())

Finally

frmSaveDialog.Dispose()

frmSaveDialog = Nothing

End Try

End Sub

Using ByVal or ByRef
Unlike Classic VB, procedure arguments in VB.NET are passed ByVal by
default not ByRef. If we do not explicitly specify procedure arguments as
either ByVal or ByRef, the VB.NET default is ByVal. However, good practice
states that we should always explicitly specify the keyword we want to use.

Using Wizards in VB.NET
Compared to the wizards in Classic VB, the wizards in VB.NET have been sig-
nificantly improved. New wizards have also been added to the VS IDE. The
advantage of using a wizard is that we get the desired result in a fast and reli-
able way without needing to have a deep understanding of the process. The
wizard takes care of the details. The disadvantage of using a wizard is that the
wizard works in “black box” mode, which means we do not have much control
over the process. Developing real-world applications requires you to be in
control and to understand your solutions inside and out. You can explore the
wizards in the VS IDE, but for any non-trivial solution you should avoid them.

Data Types in VB.NET
Compared with Classic VB, some data types are new in VB.NET. Table 24-
2 shows most of the VB.NET data types but not all of them.

Table 24-2 Data Types in VB.NET

Data
Type

Size Values

Boolean 2 bytes True or False.

Short 2 bytes -32,768 to 32,768.

Integer 4 bytes -2,147,483,648 to 2,147,483,648.

Long 8 bytes -9,223,372,036,854,775,808 to 9,223,372,036,854,775,808.

Decimal 16 bytes It provides the greatest number of significant digits for a
number.

Double 8 bytes It provides the largest and smallest possible magnitudes for a
number.

838 Chapter 24 Excel and VB.NET

Visual Basic.NET 839

24.
EXCEL

AN
D

VB.NET

As we can see in Table 24-2, the data type Short includes the interval
-32,768 to 32,768, and the Integer data type now covers a much greater
interval than it does in Classic VB. The Currency data type is no longer
available in VB.NET. It has been replaced by the new Decimal data type,
which can handle more digits on both sides of the decimal point. The Byte
data type from Classic VB has no counterpart in VB.NET. The data type
Object is the universal data type in VB.NET, taking the place of the
Variant data type in Classic VB.

String Manipulation
As previously mentioned, whenever a new .NET solution is created the
namespace Microsoft.VisualBasic is included by default. This provides
access to the .NET versions of the well-known string functions in Classic
VB. The .NET Framework also provides us with a System.String class to
manipulate strings. However, using the old functions has no negative
impact on solution performance, so using the old familiar functions is com-
pletely acceptable.

Using Arrays in VB.NET
The .NET Framework provides us with powerful new options for creating
and using arrays and collections in VB.NET. There are two basic kinds of
VB.NET arrays. Arrays that we declare as array variables of a specific data
type by using parentheses after the variable name are normal arrays. We
can also use the Array class, which provides us with a new array data type
that offers methods for managing items in arrays as well manipulating
arrays. Arrays in VB.NET inherit from the Array class in the System
namespace, so methods of the Array class can also be used with normal
arrays.

In this section, we discuss normal arrays along with some methods of
the Array class. In VB.NET, all arrays are zero-based. This is important to
keep in mind, especially when working with Excel objects or Classic VB

Table 24-2 Data Types in VB.NET

Data
Type

Size Values

String Variable A string can hold 0 to 2 billion Unicode characters.

Date 8 bytes January 1, 0001 0:0:00 to December 31,9999 11:59:59.

Object 4 bytes Point to any type of data.

code that may have 1-based arrays. We already showed one way to use an
array in Listing 24-3, where we used an array to populate a combo box con-
trol. In Listing 24-16 we use the same approach to populate a list box con-
trol and then add the selected items to an array.

Listing 24-16 Populate an Array with Selected Items from a List Box

Private Sub Button1_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles Button1.Click

‘Make sure that at least one item is selected.

If Me.ListBox1.SelectedIndex <> -1 Then

‘Grab the number of selected items.

Dim iCountSelectedItems As Integer = _

Me.ListBox1.SelectedItems.Count - 1

‘Declare and dimension the one-dimensional array.

Dim sArrSelectedItems(iCountSelectedItems) As String

‘Populate the array.

For iCountSelectedItems = 0 To iCountSelectedItems

sArrSelectedItems(iCountSelectedItems) = _

Me.ListBox1.SelectedItems(iCountSelectedItems).ToString()

Next iCountSelectedItems

‘Show the number of items in the array.

MessageBox.Show(CStr(sArrSelectedItems.GetLength(0)))

‘Show the lower bound of the array.

MessageBox.Show(CStr(sArrSelectedItems.GetLowerBound(0)))

‘Show the upper bound of the array.

MessageBox.Show(CStr(sArrSelectedItems.GetUpperBound(0)))

‘Iterate through the array and display each value.

For iCountSelectedItems = sArrSelectedItems.GetLowerBound(0) _

To sArrSelectedItems.GetUpperBound(0)

MessageBox.Show(text:= _

sArrSelectedItems(iCountSelectedItems).ToString())

Next iCountSelectedItems

End If

End Sub

840 Chapter 24 Excel and VB.NET

Visual Basic.NET 841

24.
EXCEL

AN
D

VB.NET

When working with arrays we should always specify which dimension
we are targeting. Since we are working with a one-dimensional array in this
example, the dimension we are targeting is zero.

One of the more resource-intensive processes in VB development is
redimensioning arrays, so we should always look for ways to reduce or
eliminate this process. Listing 24-16 shows how VB.NET allows us to do
this easily. We first retrieve the number of selected list items and then
declare and dimension the array all at once. Note that in Listing 24-16 we
use the GetLowerBound and GetUpperBound methods to return the
lower bound and upper bound index values for the array. Both these meth-
ods are part of the Array class. In some scenarios we may not know the
bounds for an array initially, but we can get the necessary information later.
Listing 24-17 shows how we can initialize an array after declaring it.

Listing 24-17 Declare an Array and Initialize It Later

Dim iNumberOfHouses() As Integer

...

...

iNumberOfHouses = New Integer() {10, 15, 20}

Listing 24-16 shows one way to iterate an array, but we could actually enu-
merate it as shown in Listing 24-18.

Listing 24-18 Enumerating an Array

Dim iNumberOfHouses() As Integer = {10, 15, 20}

Dim iItem As Integer

For Each iItem In iNumberOfHouses

Debug.WriteLine(iItem)

Next iItem

The Array class also provides methods that allow us to manipulate the
items in different ways. Among the more common actions we might want
to perform on an array are reversing the order of items in the array, sort-
ing the array, removing items from the array, returning specific array items,
and copying items from one array to another. Listing 24-19 shows how to
perform these operations using methods of the Array class.

Listing 24-19 Methods of the Array Object

Dim sArrProjects() As String = _

{“Upgrade”,”Investment”, “Maintenance”}

Array.Reverse(sArrProjects)

Array.Sort(sArrProjects)

Array.Clear(sArrProjects, 0, 1)

Dim sItem As String = sArrProjects.GetValue(1).ToString()

Dim sArrProjectsCopy(sArrProjects.GetLength(0)) As String

Array.Copy(sArrProjects, sArrProjectsCopy, _

sArrProjects.GetLength(0))

The first example shows how to reverse the order of the items in an array.
The second example sorts the array in ascending order. The third example
shows how to delete the first item from an array. Note that deleting an item
from an array in this manner does not resize the array or move any of the
other items into new positions in the array.

To get a specific item value from an array you use the GetValue
method, as shown in the fourth example. And as the final example shows,
we can even copy one array to another using the Copy method. The last
argument of this method allows us to specify the number of items to be
copied. This can be a good alternative to the redimension approach when
resizing an array. In this example we copy all items from the first array into
the second array.

Next we demonstrate how to search for a value in an array using the
BinarySearch method. This method is useful when you want to deter-
mine whether a specific value exists in an array. To use this method the
items in the array must be sorted. The result of executing the BinarySearch
method is an integer that represents the index number of the value you are
searching for within the array. If the result is -1 the value you are search-
ing for does not exist. If the value you are searching for exists more than
once within the array, the index number of the last occurrence is returned.

Listing 24-20 shows how to use the BinarySearch method to locate the
index number of an item in an array. There are also several other methods
of the array object that allow us to find specific items and work with them
in various ways.

842 Chapter 24 Excel and VB.NET

Visual Basic.NET 843

24.
EXCEL

AN
D

VB.NET

Listing 24-20 The BinarySearch Method

Dim sArrProjects() As String = _

{“Upgrade”, “Investment”, “Maintenance”}

Dim sSearchedValue As String = “Investment”

Array.Sort(sArrProjects)

Dim iSearchedIndex As Integer = _

Array.BinarySearch(sArrProjects, sSearchedValue)

MessageBox.Show(CStr(iSearchedIndex))

A good alternative to the normal array is the ArrayList class, which is part
of the System.Collection namespace. By using this class we can dynami-
cally increase a list, hold several different data types in one list, manipulate
the elements in a list, and manipulate ranges of elements in one operation.
The ArrayList is something of a hybrid between the Array and Collection
objects. In Listing 24-21 we demonstrate the use of an ArrayList object.

Listing 24-21 Working with the ArrayList Object

Dim Arrlst As New ArrayList(7)

Dim oArrlstObject As Object = Nothing

Debug.Print(Arrlst.Capacity.ToString())

With Arrlst

.Add(“Dennis”)

.Add(True)

.Add(12)

End With

Debug.Print(Arrlst(1).GetType.ToString())

Dim sNames() As String = {“Rob Bovey”, _

“Stephen Bullen”, _

“John Green”, _

“Dennis Wallentin”}

Arrlst.AddRange(sNames)

Arrlst.RemoveRange(0, 3)

Arrlst.TrimToSize()

Debug.Print(Arrlst.Capacity.ToString())

For Each oArrlstObject In Arrlst

Debug.Print(oArrlstObject.ToString())

Next oArrlstObject

Me.CheckedListBox1.DataSource = Arrlst

We first create a new ArrayList object and dimension it to hold seven
items. Expanding an ArrayList is a resource-intensive process, so we want
to try and create it with the capacity to hold as many items as we will need.
The first debug print command gives us the current capacity of the
ArrayList. We then populate the ArrayList object with items that represent
different data types, in this case a string value, a boolean value, and an inte-
ger value. To verify that the ArrayList actually holds different data types we
print the data type of the second item to the Immediate window using the
GetType method.

Next we add a range of values to the ArrayList using the AddRange
method. Our ArrayList already has the capacity to hold these new items,
but if an ArrayList does not have sufficient capacity to hold the number of
items being added it automatically expands itself. The RemoveRange
method enables us to remove several items at once, so next we use this
method to remove the first three items we added to it. At this stage the
ArrayList object still has a capacity of seven items, but since we no longer
need them all we resize it by using the TrimToSize method. Using the
debug print command to check the capacity of the ArrayList after resizing
it should show a capacity of four items. Just to check which values the
ArrayList now holds we iterate over all its items using a For...Each loop.
Finally, the collection of items in the ArrayList is added to a
CheckedBoxList control.

In addition to the ArrayList, the .NET Framework provides addition-
al data structures like Stack and Queue. The Stack class is a data structure
that allows adding and removing objects from one position only. This posi-
tion is referred to as the “Top” of the stack. The last object placed on the
stack is the first one to be removed. This is a Last In First Out (LIFO)
data access method. The Queue class is a data structure that allows us to

844 Chapter 24 Excel and VB.NET

Debugging 845

24.
EXCEL

AN
D

VB.NET

add objects to the back and remove objects from the front. This is a First
in First Out (FIFO) data access method.

Debugging

The most important task in development is to debug non-trivial solutions.
The VS IDE offers a large number of tools to assist you in this task.
Depending on the complexity of the solution, debugging can be quite dif-
ficult and time consuming. One of the best features of the VS IDE is that
we can interact with it during debugging sessions.

Selecting the Debug menu reveals the available tools and options. As
we can see, most of the commands and windows are familiar from Classic
VB. During the debugging process, and while in break mode, additional
tools become available as shown in Figure 24-10. Although a detailed walk-
through is beyond the scope of this chapter, we focus on the most impor-
tant new and updated debugging tools that the VS IDE provides. See the
Chapter 16, “VBA Debugging,” for a more detailed discussion of the
debugging process.

Set Keyboard Shortcuts
Before we start to explore the many tools for debugging, we customize our
keyboard shortcuts. Select Tools > Options... from the menu to display the

FIGURE 24-10 Debugging tools available in break mode

Options dialog. In the Options dialog tree view, select the Keyboard sec-
tion under Environment, as shown in Figure 24-11.

This section allows us to set the mapping scheme for keyboard shortcuts.
Changing the mapping scheme to Visual Basic 6.0 provides access to all
the well-known VB6 keyboard shortcuts in the VS IDE. This change is
global, meaning it will be applied for all VB.NET solutions in the VS IDE.
The keyboard shortcuts mentioned in the rest of this chapter assume this
setting has been made in your environment.

Enable Unmanaged Code Debugging
If we do a lot of interoperability development, that is, calls to COM
objects, the option Enable unmanaged code debugging gives us the possi-
bility to debug the native code. Select Project > [Solution Name]
Properties... from the menu to display the Properties window; then select
the Debug tab and check this option.

The Exception Assistant
Whenever a runtime exception is thrown, the Exception Assistant high-
lights the line of code that caused the exception and displays a dialog with
suggestions on how to solve the problem. Figure 24-12 shows the
Exception Assistant in action.

The Exception Assistant attempts to provide context-sensitive help
related to the exception, and it allows the developer to perform certain

FIGURE 24-11 Keyboard shortcuts

846 Chapter 24 Excel and VB.NET

Debugging 847

24.
EXCEL

AN
D

VB.NET

FIGURE 24-12 The Exception Assistant

actions, such as viewing details of the exception and copying exception
information to the Clipboard. For COM exceptions, however, the infor-
mation provided by the Exception Assistant is of limited value.

We can provide troubleshooting tips for our own exception types by
creating an XML file containing the information in the correct
ExceptionAssistantContent directory under C:\Program Files\Microsoft
Visual Studio 9.0\Common7\IDE\ExceptionAssistantContent.

The Object Browser (F2)
The Object Browser is one of the most valuable development resources.
The VS IDE ships with a modern Object Browser that can be customized
by selecting the Object Browser Settings icon on its toolbar, as shown in
Figure 24-13. We can also add components to the Custom Component Set
Browsing scope by selecting the Edit Custom Component Set button
directly to the right of the Browse drop-down in the Object Browser tool-
bar.

FIGURE 24-13 The Object Browser

The Browse drop-down is used to limit the scope of items displayed in
the Object Browser. One of the selections available is to browse My
Solution, as shown in Figure 24-13. This option allows us to browse the
objects in our solution as well as any outside namespaces the solution ref-
erences.

The Error List Window (Ctrl+W Ctrl+E)
The Error List window shows errors, warnings and other messages that
result from attempting to compile the active project. It detects most com-
mon syntax and deployment errors. Figure 24-14 shows an example Error
List window displaying some errors. Double-clicking on an item in the list
takes you to the module and line of code it refers to.

The keyboard shortcut to display the Error List window requires two steps,
Ctrl+W followed by Ctrl+E. It may feel a bit odd to use two instructions
to access a feature, but this reflects how many features the VS IDE
contains.

The Command Window (Ctrl+Alt+A) and Immediate
Window (Ctrl+G)
The Command window and Immediate window overlap each other to
some degree, but they actually have two different tasks to accomplish. The
Command window allows you to execute VS IDE commands instead of
going through the menus and toolbars. It can also execute commands to
open other windows.

Suppose we have started a debugging session and we are running in
break mode. If we enter the command shown in Listing 24-22 into the
Command window the variable bExport will be added to the Watch window.

FIGURE 24-14 The Error List window

848 Chapter 24 Excel and VB.NET

Debugging 849

24.
EXCEL

AN
D

VB.NET

Listing 24-22 Add a Watch Using the Command Window

>Debug.AddWatch bExport

If we want to see all the command aliases, or command shortcuts, defined
by the VS IDE, we can run the command >Alias in the Command window
to produce a list.

The Immediate window in the VS IDE behaves much like its counter-
part in Classic VB. We can assign variables, run procedures, and invoke
methods in standard VB.NET syntax in the Immediate window.

The Output Window (Ctrl+Alt+O)
The Output window displays compilation results and the text output from
several tools such as Debug and Trace. The Show output from: drop-down
in the toolbar allows you to show the output from either the debug or the
build process. It is also possible to save the output to a text file by clicking
anywhere inside the Output window and then using the keyboard shortcut
Ctrl+S.

Break Points (Ctrl+Alt+B)
To insert a new break point, use the keyboard shortcut Ctrl+B. Compared
with its older sibling in Classic VB, the break points feature has been
improved significantly in VS.NET. First, VS.NET provides a Breakpoints
window that displays the location and settings for all break points in the
solution, as shown in Figure 24-15.

Second, we can set conditions for a break point by right-clicking on that
break point and selecting Condition... from the shortcut menu. In Figure
24-15 we set a condition for the first break point. When the break point is
reached, this condition is evaluated to determine whether it is true or false.

FIGURE 24-15 The Breakpoints window

If the condition is true the break point is triggered; otherwise, the break
point is skipped.

Third, we can add a hit count for a break point by right-clicking on
that break point and selecting Hit Count... from the shortcut menu. This
provides us with an additional parameter to control whether code execu-
tion should stop at break points. Figure 24-16 shows us defining a hit count
for our first break point in the Breakpoint Hit Count dialog.

The Call Stack (Ctrl+L)
The Call Stack window displays the method calls that are currently on the
stack. It is a useful debugging tool because it allows you to see the specif-
ic execution path that led to the current position in your code.

The Quick Watch and Watch Windows
Once our code is in break mode we have access to the Quick Watch and
Watch windows. The Watch window, accessed by selecting the Debug >
Windows > Watch menu while in break mode, provides four different
Watch tabs. It is easy to add watches. You can drag and drop an object or
expression onto the Watch window or select the object or expression in the
code editor, right-click on it, and choose Add Watch from the shortcut
menu. To delete a watch, select it in the Watch window, right-click on it,
and choose Delete Watch from the shortcut menu. You can add as many dif-
ferent watches as you want. To access one of the Watch windows during a
debugging session, press Ctrl+Alt+W followed by a digit between 1 and 4.

Quick Watch works the same way as the Watch window except that it
can only handle one watch variable at the time.

Exceptions (Ctrl+Alt+E)
The Exceptions dialog is an advanced debugging tool that allows us to
specify what types of exceptions we want VS.NET to throw during debugging.

FIGURE 24-16 Defining a break point hit count

850 Chapter 24 Excel and VB.NET

Debugging 851

24.
EXCEL

AN
D

VB.NET

The debugger stops whenever the selected type of exception occurs.
Figure 24-17 shows this dialog.

The Thrown option causes the debugger to break unconditionally when
the specified exception type occurs. If we check the Thrown option for the
Common Language Runtime Exceptions, we ensure that when a
Common Language Runtime exception is thrown it breaks into the debug-
ger, overriding any custom SEH we may have defined. The User-unhandled
option causes the debugger to stop for the specified exception type only if
no error handler is active when the exception occurs.

We can also configure specific exception types below the top-level
namespaces by clicking on the plus sign (+) to the left of a namespace.
This expands the namespace node to show all exceptions within the name-
space that can be configured.

Conditional Compilation Constants
Chapter 16 introduced the concept of conditional compilation constants,
so in this section we only cover conditional compilation topics that are spe-
cific to the .NET platform.

VB.NET provides several predefined conditional compilation con-
stants, including the Boolean constant DEBUG. When DEBUG is set to
true we have a debug build, and when it is set to false we have a release
build. When compiling a release build we do not need to manually remove
any debugging information. VS.NET handles this automatically when the
DEBUG constant is set to false. Debugging information is also ignored
when running a release build in the VS IDE. To compile a release build we

FIGURE 24-17 The Exceptions dialog

need to use the Configuration Manager. Verify that the Configuration
Manager is available in the following manner:

1. Select the Tools > Options... menu from the VS IDE.
2. Select Projects and Solutions from the tree view in the Options

dialog.
3. Check the Show advanced build configurations check box.
4. Click the OK button to close the Options dialog.

We can then access the Configuration Manager by selecting Build >
Configuration Manager... from the VS IDE menu, as shown in Figure 24-
18. By changing the configuration we can switch between debug and the
release builds. We can also use the Configuration Manager to specify
which platform to target.

We can execute code conditionally based on the value of the DEBUG con-
stant as shown in Listing 24-23.

Listing 24-23 Using DEBUG in Code

#If DEBUG then

‘Do some evaluation.

#End If

FIGURE 24-18 The Configuration Manager

852 Chapter 24 Excel and VB.NET

Useful Development Tools 853

24.
EXCEL

AN
D

VB.NET

Using Assertions
The Debug.Assert method is used exactly the same way in the VS IDE as it
is in Classic VB. Chapter 16 already covered the use of this method, so we
do not discuss it further here.

Useful Development Tools

The VS IDE ships with a large number of useful development tools.
Although it is beyond the scope of this chapter to discuss them all, we
cover some of the most important tools in this section.

Code Region
The Code Region feature allows us to expand and collapse different sec-
tions, or regions, in our code modules. We can use this feature to create
logical groups of methods that expand and collapse together. We can then
collapse all regions in a code module that are unrelated to the one we are
working with.

To create a region, we enter #Region followed by the name of the region
in double quotes on a blank line above where the region should start. We
then move to the next blank line below the code we want included in the
region and enter #End Region (or select it from the IntelliSense list when
we are prompted). Listing 24-24 shows an example of a code region.

Listing 24-24 A Code Region

#Region “Export data to Excel”

‘Many lines of code here

#End Region

The Code Snippets Manager (Ctrl+K Ctrl+B)
Code snippets are small, reusable pieces of code. They are stored in a
snippet library and managed using the Code Snippets Manager. The VS
IDE includes a large number of code snippets already written and stored
in the Code Snippets Manager. Code snippets are particularly easy to use
because they are exposed as part of the VS IDE IntelliSense feature. Code
snippets are stored in text files in XML format. This makes it easy to use
them on other computers as well as to share them with other developers.

You can insert a code snippet into your code module in the following man-
ner:

1. Place the cursor at the position where you want to insert the code
snippet.

2. Right-click and select Insert Snippet... from the shortcut menu.
3. Select the desired category.
4. Select the desired code snippet.

Figure 24-19 shows the Insert Snippet command in action.

Instead of using the menu to insert code snippets, we can use code short-
cuts. First we need to find out which code shortcuts are available in the
Code Snippets Manager. The Code Snippets Manager can be accessed
from the Tools > Code Snippets Manager... menu. Next we type the short-
cut text, for instance ForEach, in the code editor and press the Tab key to
execute it. Listing 24-25 first shows the shortcut text and then the result
after we press the Tab key.

Listing 24-25 Using a Shortcut to Insert a Code Snippet

’The shortcut.

ForEach

‘The result.

For Each Item As String In CollectionObject

Next Item

As we can see in Listing 24-25, we need to fix the code snippet before it
can be properly used. On first consideration it may seem like too much

FIGURE 24-19 Inserting a code snippet

854 Chapter 24 Excel and VB.NET

Automating Excel 855

24.
EXCEL

AN
D

VB.NET

effort to remember all the shortcuts as well as correct the code that is actu-
ally inserted into the code editor. However, the code snippets are com-
pletely customizable, so it is worth your effort to spend some time and
make the changes required to suit your needs.

The built-in Code Snippets tool is rather primitive and doesn’t provide
a very user-friendly interface. If you find yourself working extensively with
code snippets the free Snippet Editor may be a better tool. As of this
writing, it is available at www.codeplex.com/SnippetEditor.

Insert File as Text
Insert File as Text is not a standalone tool but rather a built-in function
of the VS IDE. It can be used to import code from plain text files. To dis-
play the Insert File dialog select Edit > Insert File as Text... from the menu.
The default file extension is *.vb so we need to change the file extension to
*.txt before we can select a text file. The code in the selected text file is
imported into the active code module at the current cursor position. Using
text files to manage complete and reusable class modules, standard mod-
ules, and methods requires only a simple text editor, making it a portable,
light-weight solution.

Task List (Ctrl+Alt+K)
The Task List is a simple but handy tool for managing the To-Do list for
a solution. Using the only button on its toolbar we can create different
tasks and set flags indicating their priority. By right-clicking on the list we
can also sort, copy, and delete tasks.

Automating Excel

At the most fundamental level, automating Excel from .NET solutions
does not differ from automating Excel from Classic VB. What must be
taken into consideration is that the .NET Framework cannot communicate
directly with Excel because of differences between .NET technology and
the COM technology Excel is built on. It is necessary to create a bridge
between these two technologies for us to be able to automate Excel from
the .NET platform. The bridge between .NET and COM is mostly pro-
vided by features contained in two .NET Framework namespaces:
System.Runtime.InteropServices and System.EnterpriseServices.

www.codeplex.com/SnippetEditor

However, there are additional components required to allow interoper-
ability that we need to discuss further.

Primary Interop Assembly (PIA)
When we set a reference to a COM type library in a .NET solution, the VS
IDE automatically creates a default Interop Assembly (IA). The auto-
generated IA is a .NET-based assembly that acts as a wrapper for the COM
type library. The IA provides us with basic access to the COM type library,
and it contains type definitions (as metadata) of types implemented by
COM. A Primary Interop Assembly (PIA) is a prebuilt, vendor-supplied
assembly. The difference between an IA and a PIA is more or less seman-
tic.

Microsoft has released PIAs for all Excel versions beginning with Excel
2002 as part of the Microsoft Office PIAs. The PIAs have strong names
and are digitally signed by Microsoft. The use of strong names makes it
possible to install PIAs in the Global Assembly Cache (GAC). The GAC
is a machinewide .NET assembly cache for the CLR. Assemblies that
should have only one version on the system should be installed in the
GAC.

One important point to understand is that only one version of the
PIAs can be used on a system, although multiple versions can be
installed side by side in the GAC. In addition, PIAs are registered in the
Windows registry. If multiple versions of the PIAs are installed, only the
latest version is registered, and the entries for any previous version are
overwritten.

When we set a reference to Excel in a .NET solution the VS IDE
reads the registry and adds a reference to the PIA instead of generating
a new IA. This guarantees that we always use the PIAs if they are avail-
able. As a practical matter, when we are automating Excel from .NET we
are always developing against the PIA and not the Excel COM type
library.

The PIAs are optimized for Excel and you should always use the offi-
cial Microsoft versions. The PIAs are also Excel version-specific. This
means you cannot automate Excel 2002 using the PIA for Excel 2003.
Therefore, you must be sure the correct version of the PIA is installed on
your development computer. Whether or not the PIA is already installed
on a computer depends on the following:

■ For Excel 2002 on Windows XP or Windows Vista you need to man-
ually download and install the redistributable PIA package from the

856 Chapter 24 Excel and VB.NET

Automating Excel 857

24.
EXCEL

AN
D

VB.NET

Microsoft Web site. If you run Windows XP, then the .NET
Framework must be installed prior to installing the PIA package.

■ For Excel 2003 or Excel 2007 on Windows XP, if Microsoft Office
has been installed before the .NET Framework, then you must
install the PIA package manually. You can either download the
redistributable PIA package from the Microsoft Web site or install
it from the Office CD.

■ For Excel 2003 or Excel 2007 on Windows Vista you do not need to
take any action at all. Because version 3.0 of the .NET Framework
is shipped with Windows Vista, the PIAs are automatically installed
when Office is installed.

Since no official PIA exists for Excel 2000, we must compile our own IA
using the TlbImp.exe tool that is shipped as part of the .NET Framework
SDK. It takes the Excel9.olb file as its input and generates a .NET assem-
bly as its output. When automating Excel from .NET you should always
develop against the earliest versions of the PIA and Excel that you plan to
target and the earliest version of the .NET Framework you intend to use.

You need to be aware of the code execution overhead for all kinds of
.NET solutions, especially when it comes to interaction between .NET and
COM. Compared with Classic VB, .NET solutions require more compo-
nents and therefore require more overhead to run. These components
include

■ The COM interop layer (PIA)
■ The CLR
■ The .NET Framework

As we see in the next section, there are additional aspects we need to con-
sider to maintain acceptable performance for .NET solutions that auto-
mate Excel. If high performance is critical to your solution you may even
consider using Classic VB if it is available and is an acceptable development
platform.

Using Excel Objects in .NET Solutions
Create a Windows Forms solution and name it “Automate Excel.” Add a
button to the form and name it “Automate Excel.” Next, add a reference
to the Excel 2003 PIA or later. Choose Project > Add Reference... from the
VS IDE menu to display the Add Reference dialog. Select the COM tab

and scroll down to locate the Microsoft Excel 11.0 Object Library as shown
in Figure 24-20. The reference is added when you close the dialog by click-
ing the OK button.

Choose Project > Automate Excel Properties... from the VS IDE menu.
Select the References tab, and you see that three new Excel-related refer-
ences have been added: the Excel Object Library, the Office Object
Library, and the VBA Extensibility Object Library. Figure 24-21 shows the
current list of references in the solution.

The System references are added by default. These give us access to
the most commonly used .NET Framework class libraries. The imported
namespaces are automatically included in all new .NET solutions. These
are globally available in a solution. Open the Windows Form class module.
When working with namespaces like Excel it is a good development prac-
tice to create a namespace alias for it at the top of the code module.
We also add another Imports statement that is required as shown in Listing
24-26.

Listing 24-26 Namespace Alias and Imports Statements

’Namespace alias for Excel.

Imports Excel = Microsoft.Office.Interop.Excel

‘To release COM objects and catch COM errors.

Imports System.Runtime.InteropServices

FIGURE 24-20 Adding a reference to the Excel Object Library

858 Chapter 24 Excel and VB.NET

Automating Excel 859

24.
EXCEL

AN
D

VB.NET

FIGURE 24-21 References in the automate Excel solution

Declaring and instantiating some Excel COM objects, like Workbook and
Range objects, requires that we cast the object reference to the precise
type using the CType function. This is because the Option Strict setting
prevents us from using code that might fail at runtime due to type conver-
sion errors. The VS IDE actually helps us with this task by visually mark-
ing the objects that need to be cast.

Next, add a Click event handler for the button. Listing 24-27 shows the
code required to get the Excel automation started. Put this code in the but-
ton’s Click event. As you can see, we implemented an SEH but intention-
ally left out any exception handling code. At this stage we also did not add
the code required to release any of the Excel objects we used.

Listing 24-27 Declare and Instantiate Excel Objects

Dim xlApp As Excel.Application = Nothing

Dim xlWkbNew As Excel.Workbook = Nothing

Dim xlWksMain As Excel.Worksheet = Nothing

Dim xlRngData As Excel.Range = Nothing

Dim sData() As String = {“Hello”, “World”, “!”}

Try

‘Instantiate a new Excel session.

xlApp = New Excel.Application

‘Add a new workbook.

xlWkbNew = xlApp.Workbooks.Add

‘Reference the first worksheet in the workbook.

xlWksMain = CType(xlWkbNew.Worksheets(Index:=1), _

Excel.Worksheet)

‘Reference the range to which we will write some

data to.

xlRngData = CType(xlWksMain.Range(“A1:C1”), _

Excel.Range)

‘Write the data to the range.

xlRngData.Value = sData

‘Save the workbook.

xlWkbNew.SaveAs(Filename:=”c:\Test\New.xls”)

‘Make Excel visible for the user.

With xlApp

.UserControl = True

.Visible = True

End With

Catch COMex As COMException

Catch ex As Exception

End Try

As shown in Listing 24-27, we must explicitly use the Value property of the
Excel Range object in VB.NET. This is because VB.NET does not recog-
nize default properties.

Whenever Excel objects are instantiated at runtime the CLR creates
so called Runtime Callable Wrapper (RCW) for each underlying
COM object in the memory. It is the group of RCWs that constitute the

860 Chapter 24 Excel and VB.NET

Automating Excel 861

24.
EXCEL

AN
D

VB.NET

runtime proxies, or bridges, between a .NET solution and the COM type
libraries it references. This is important to keep in mind because the
more Excel COM objects we use, the more memory our solution con-
sumes at runtime. It is a good development practice to clean up the RCW
reference counts so we don’t end up with a large number orphaned
RCWs.

Let’s take a closer look at the code in Listing 24-27. Initially it looks like
we are only using four objects: the Application object, the Workbook
object, the Worksheet object, and the Range object. But we indirectly ref-
erence the Workbooks collection, the Worksheets collection, and the
Range collection, so we actually use seven objects. The objects used indi-
rectly are out of our control but must be managed anyway.

On the .NET platform the Garbage Collector (GC), is responsi-
ble for all memory management. The GC uses a managed memory
scheme that periodically traces live references. When the trace is com-
plete, all unreachable objects are released, and the GC reclaims the
memory they previously used. The GC operates in a nondeterministic
manner, so we never know exactly when it will perform its memory
management tasks.

For pure .NET solutions this is not a problem, but it becomes an issue
when trying to release COM objects properly. When releasing Excel
objects we must be sure to release all the objects we have used. Otherwise,
we may end up in a situation where Excel remains in memory and contin-
ues to consume resources even after our application has ended.

The first step in a practical solution is to explicitly call the GC from our
.NET code. Calling the GC is a time-consuming process, but one that may
be necessary when automating Excel because it is the only way to release
all the Excel COM objects referenced indirectly. Each RCW has a
finalizer that is responsible for releasing its COM object from memory.
This finalizer needs to be called twice to fully remove the COM object
from memory. Therefore, if we call the GC twice it releases our three indi-
rectly referenced Excel objects.

The second step in a practical solution is to call the
Marshal.FinalReleaseComObject method for every Excel COM object.
Note that Excel objects must be released in the reverse order in which
they were created, with the Excel Application object released last. Listing
24-28 shows the code in our solution used to release all the Excel COM
objects. This should normally be performed when we are closing the
application.

Listing 24-28 Releasing Excel COM Objects with a Function

‘In the calling sub procedure.

‘...

Finally

‘Calling the Garbage Collector twice.

GC.Collect()

GC.WaitForPendingFinalizers()

GC.Collect()

GC.WaitForPendingFinalizers()

‘Releasing the Excel objects.

ReleaseCOMObject(xlRngData)

ReleaseCOMObject(xlWksMain)

ReleaseCOMObject(xlWkbNew)

ReleaseCOMObject(xlApp)

End Try

End Sub

Private Sub ReleaseCOMObject(ByVal oxlObject As Object)

Try

Marshal.ReleaseComObject(oxlObject)

oxlObject = Nothing

Catch ex As Exception

oxlObject = Nothing

End Try

End Sub

Note how we use the custom ReleaseCOMObject function to release the
Excel objects and set them to Nothing. This example also shows why the
Finally block is so useful; it ensures that the code required to clean up our
Excel objects will always run.

The Automate Excel example can be found on the companion CD in
\Concepts\Ch24 - Excel & VB.NET\Automate Excel folder. If you just want
to run the example, the Automate Excel executable file can be found in the
\Concepts\Ch24 - Excel & VB.NET\Excel Automate\Excel Automate\bin\
Debug folder on the CD.

862 Chapter 24 Excel and VB.NET

Resources in .NET Solutions 863

24.
EXCEL

AN
D

VB.NET

Using Late Binding
Whenever possible, we should use early binding and declare all variables
as specific types. The reasons for this are simple:

■ Our .NET solutions run faster because it is not necessary to perform
type conversion on any variables.

■ The compiler can detect and display exceptions and therefore pre-
vent runtime exceptions.

■ We get IntelliSense support and dynamic help during the develop-
ment process.

Unfortunately, it is common for developers to have the latest version of an
application such as Microsoft Office while end users have earlier versions.
However, given access to desktop virtualization software such as WMware
(commercial software) and Microsoft Virtual PC (free tool) it is now
much easier for developers to use the same versions of software as the end
users they develop for. This makes it possible for developers to use early
binding in their applications.

Resources in .NET Solutions

On the .NET platform we can add images, icons, strings, and text files as
resources to our solutions. To add resources we select the Resources tab
from the .NET solution Properties window and click the Add Resource
button on its toolbar. All resources associated with a solution become part
of the EXE or DLL file upon compilation of the solution.

NOTE VS 2008 ships with a large group of images and icons. These are con-
tained in the file VS2008ImageLibrary.zip that is located in the folder \Program
Files\Microsoft Visual Studio 9.0\Common7\VS2008ImageLibrary\1033.

To work with resources in code, we use My.Resources together with
the name of the resource file. Listing 24-29 shows how we use an icon
resource in code.

Listing 24-29 Associate an Icon Resource File to a Windows Form

Me.Icon = My.Resources.PetrasIcon

In this example, the Me keyword refers to a Windows Form, and
PetrasIcon refers to an icon resource file. The My keyword refers to the
My namespace that the .NET Framework makes available for all VB.NET
solutions. This namespace exposes seven objects that allow us to work with
various resources and features. Table 24-3 lists the My namespace objects
along with the purpose of each.

Retrieving Data with ADO.NET

Despite the similarity in the name, ADO.NET is something totally differ-
ent from classic ADO on the unmanaged platform. For instance, it does
not include a Recordset object, and the Excel CopyFromRecordset method
is not supported. This is covered in more detail in Chapter 25, “Writing
Managed COM Add-ins with VB.NET.” Another major difference is that
ADO.NET has strong support for XML data representation. VS 2008 ships
with version 3.5 of the ADO.NET class library.

Table 24-3 Objects in the My Namespace

Object Purpose

My.Application Provides information about the application such as path, assembly
information, and environment variables.

My.Computer Provides features for manipulating computer components such as
audio, the clock, the keyboard, the file system, and so on.

My.Forms Provides access to all Windows Forms in the solution.

My.Resources Provides access to resources used by the solution.

My.Settings Allows reading and storing application configuration settings.

My.User Provides access to information about the current user, including
whether or not the user belongs to a special user group.

My.WebServices Provides features for creating and accessing a single instance of each
XML Web service referenced by the solution.

864 Chapter 24 Excel and VB.NET

Retrieving Data with ADO.NET 865

24.
EXCEL

AN
D

VB.NET

ADO.NET is one of the default namespaces included in all Windows
Forms based solutions, so to use it we just need to add Imports statements
to the top of code modules from which ADO.NET will be called. However,
to complicate things ADO.NET can be used in two different ways:
connected mode and disconnected mode.

Before we can examine these two different approaches we need to first
discuss .NET Data Providers. Data providers are used to connect to data-
bases, execute commands, and provide us with the results. Each database, like
SQL Server, Oracle, MySQL, and so on requires its own unique data provider.
Some data providers are available by default in the .NET Framework, includ-
ing SQL Server, Oracle, and OLE DB. Other data providers can be obtained
from specific database vendors. For Microsoft Access and other databases
that support ODBC, the OLE DB Data Provider can be used.

Connected mode means that we work with an open connection to the
database. In this mode we explicitly use command objects and the
DataReader object. A DataReader object retrieves a read-only, forward-
only stream of data from a database. It can also handle multiple result sets.
To do this, the connection must be open during the whole data retrieval
process. Connected mode provides a performance advantage if we need to
work with database records one at a time because the DataReader object
retrieves and stores them in memory. However, the drawback is that con-
nected mode creates more network traffic and requires having an active
connection open during the whole database operation.

In Listing 24-30, we use a SQL Server database and therefore we
import the namespace System.Data.SqlClient, which gives us access to
the .NET Data Provider for SQL Server. We also use the ADO.NET class
library and therefore we import the namespace System.Data.

Listing 24-30 Using a DataReader Object

’At the top of the code module.

Imports System.Data

Imports System.Data.SqlClient

Friend Function Retrieve_Data_With_DataReader() As ArrayList

‘SQL query in use.

Const sSqlQuery As String = _

“SELECT CompanyName AS Company “ & _

“FROM Customers “ & _

“ORDER BY CompanyName;”

‘Connection string in use.

Const sConnection As String = _

“Data Source=PED\SQLEXPRESS;” & _

“Initial Catalog=Northwind;” & _

“Integrated Security=True”

‘Declare and initialize the connection.

Dim sqlCon As New SqlConnection(connectionString:= _

sConnection)

‘Declare and initialize the command.

Dim sqlCmd As New SqlCommand(cmdText:=sSqlQuery, _

connection:=sqlCon)

‘Define the command type.

sqlCmd.CommandType = CommandType.Text

‘Explicitly open the connection.

sqlCon.Open()

‘Populate the DataReader with data and

‘explicit close the connection.

Dim sqlDataReader As SqlDataReader = _

sqlCmd.ExecuteReader(behavior:= _

CommandBehavior.CloseConnection)

‘Variable for keeping track of number of rows in the

‘DataReader.

Dim iRecordCounter As Integer = Nothing

‘Get the number of columns in the DataReader.

Dim iColumnsCount As Integer = sqlDataReader.FieldCount

‘Declare and instantiate the ArrayList.

Dim DataArrLst As New ArrayList

‘Check to see that it has at least one

‘record included.

If sqlDataReader.HasRows Then

‘Iterate through the collection of records.

While sqlDataReader.Read

For iRecordCounter = 0 To iColumnsCount - 1

866 Chapter 24 Excel and VB.NET

Retrieving Data with ADO.NET 867

24.
EXCEL

AN
D

VB.NET

‘Add data to the ArrayList’s variable.

DataArrLst.Add(sqlDataReader.Item _

(iRecordCounter).ToString())

Next iRecordCounter

End While

End If

‘Clean up by disposing objects, closing and

‘releasing variables.

sqlCmd.Dispose()

sqlCmd = Nothing

sqlDataReader.Close()

sqlDataReader = Nothing

sqlCon.Close()

sqlCon.Dispose()

sqlCon = Nothing

‘Send the list to the calling method.

Return DataArrLst

End Function

We first create a SqlConnection object and then a SqlCommand object.
Next we explicitly open the connection, create the DataReader object, and
iterate through the collection of records in the DataReader object by using
its Read method. Within the loop we populate an ArrayList object with the
data from the DataReader object. Finally, we close and clean up the objects
we’ve used and return the data in the ArrayList to the calling method. The
Northwind database used in this example can be found on the companion
CD in \Applications\Ch24 - Excel & VB.NET \Northwind.

When working in disconnected mode we make use of the
DataAdapter, DataSet, and DataTable objects, which are supported by all
.NET Data Providers. A DataAdapter acquires the data from the database
and populates the DataTable(s) in a DataSet. The DataAdapter object
includes commands to automatically connect to and disconnect from the
database. It also includes commands to select, insert, update, and delete
data. The DataAdapter object runs these commands automatically. The
DataSet is an in-memory representation of the data, and like the
DataReader object it can handle multiple SQL queries at the same time.

The advantages of using disconnected mode are that it creates less net-
work traffic because it acquires the data in one go, and it does not require
an open connection to the database once the data has been retrieved. It
also allows us to first update the retrieved data and then return the updat-
ed data to the database.

Listing 24-31 shows a complete function, including SEH, which first
creates the Connection object together with the DataAdapter object. It
then creates and initializes a new DataSet. Next it initializes the
DataAdapter object, which automatically establishes a connection, retrieves
the data, and closes the connection. The DataSet is filled with the retrieved
data and finally the function returns the first DataTable in the DataSet.

Listing 24-31 Using DataAdapter and DataSet Objects

’On top of the code module.

Imports System.Data

Imports System.Data.SqlClient

Friend Function Retrieve_Data_With_DataAdapter() As DataTable

‘SQL query in use.

Const sSqlQuery As String = _

“SELECT CompanyName AS Company “ & _

“FROM Customers “ & _

“ORDER BY CompanyName;”

‘Connection string in use.

Const sConnection As String = _

“Data Source=PED\SQLEXPRESS;” & _

“Initial Catalog=Northwind;” & _

“Integrated Security=True”

‘Declare the connection variable.

Dim SqlCon As SqlConnection = Nothing

‘Declare the DataAdapter variable.

Dim SqlAdp As SqlDataAdapter = Nothing

‘Declare and initialize a new empty DataSet.

Dim SqlDataSet As New DataSet

Try

‘Initialize the connection.

SqlCon = New SqlConnection(connectionString:= _

868 Chapter 24 Excel and VB.NET

Retrieving Data with ADO.NET 869

24.
EXCEL

AN
D

VB.NET

sConnection)

‘Initialize the DataAdapter.

SqlAdp = New SqlDataAdapter(selectCommandText:= _

sSqlQuery, _

selectConnection:= _

SqlCon)

‘Fill the DataSet.

SqlAdp.Fill(dataSet:=SqlDataSet, srcTable:=”PED”)

‘Return the datatable.

Return SqlDataSet.Tables(0)

Catch Sqlex As SqlException

‘Exception handling for the communication with

‘the SQL Server Database.

‘Tell it to the calling method.

Return Nothing

Finally

‘Releases all resources the variable has consumed from

‘the memory.

SqlDataSet.Dispose()

‘Release the reference the variable holds and

‘prepare it to be collected by the Garbage Collector

‘(GC) when it comes around.

SqlDataSet = Nothing

SqlCon.Dispose()

SqlCon = Nothing

SqlAdp.Dispose()

SqlAdp = Nothing

End Try

End Function

The function returns a DataTable object from the ADO.NET class, but we
do not need to cast it into a DataTable object from the DataSet class before
returning it. The exception handler catches any exceptions that occur in

the SQL Server Data Provider. In the Finally block we dispose all object
variables and set them to nothing. A working example of this solution can
be found on the companion CD in \Concepts\Ch24 - Excel &
VB.NET\Northwind folder.

ADO.NET may be a new technology for developers who are working
with the .NET platform for the first time. But for Microsoft, the latest tech-
nology is .NET Language Integrated Query (LINQ), which is part of
the .NET Framework 3.5 and was released with VS 2008. LINQ is a set of
.NET technologies that provide built-in language querying functionality
similar to SQL for accessing data from any data source. Instead of using
string expressions that represent SQL queries, we can use a rich SQL-like
syntax directly in our VB.NET code to query databases, collections of
objects, XML documents, and more.

The future will tell us more about how well LINQ will succeed.
Developers who are coming from classic ADO are more likely to first adopt
ADO.NET and later perhaps also begin to use LINQ.

Further Reading

When it comes to the .NET Framework, VB.NET, and ADO.NET we
have only scratched the surface. These technologies are all book-length
topics in their own right. The following books are sources that we have
found to be useful for a general introduction to VB.NET and to
ADO.NET.

Programming Microsoft Visual Basic .NET Version
2003
Authored by Francesco Balena
ISBN# 0735620598—Microsoft Press
Unfortunately, this book has not been updated since VB.NET 2003 was
released. However, it provides an excellent introduction to the .NET
Framework and to VB.NET, as well as to other related technologies such
as ADO.NET. It explicitly targets Classic VB developers who are moving
to the .NET platform.

Visual Basic 2008 Programmer’s Reference
Authored by Rod Stephens
ISBN# 0470182628—Wrox

870 Chapter 24 Excel and VB.NET

Q&A Forums 871

24.
EXCEL

AN
D

VB.NET

This book offers a light introduction to VB.NET that explicitly targets
beginning to intermediate level developers. This is a practical book about
the .NET Framework, VS IDE, and VB.NET, written well in plain
English. The only thing that may be annoying is that some screen shots are
oversized. Hopefully this will be corrected in later editions of the book.

Additional Development Tools

The authors have no financial interest in these tools and are not connect-
ed to their vendors. The recommendations are based on our own daily use
of these tools as .NET developers.

MZ-Tools
MZ-Tools 6.0 is an add-in to the VS IDE. It works with all current versions
of VS.NET except for the Express edition. It adds many tools and func-
tions to the VS IDE that are designed to simplify development work and
increase productivity. For more information see www.mztools.com.

VSNETCodePrint
VSNETCodePrint 2008 is an add-in to the VS IDE that helps developers
document their solutions. With this tool we can print, preview, and export
a complete solution, selected projects, project items, classes, modules, and
procedures in several file formats. It can save you a significant amount of
time when you need to document solutions and inspect code. For more
information see www.starprint2000.com.

It should be noted that MZ-Tools provides features to generate docu-
mentation using either HTML or XML file formats that overlap the fea-
tures in VSNETCodePrint to some degree but are less advanced.

Q&A Forums

There are many general public VB.NET Q&A forums, but the Microsoft
MSDN section for VB.NET is one of the best at http://forums.msdn.
microsoft.com/en-US/tag/visualbasic/forums/. The VB.NET section at
Xtreme VB Talk is also good, and it includes a subforum for .NET Office
automation at www.xtremevbtalk.com/forumdisplay.php?f=97.

www.mztools.com
www.starprint2000.com
www.xtremevbtalk.com/forumdisplay.php?f=97
http://forums.msdn.microsoft.com/en-US/tag/visualbasic/forums/
http://forums.msdn.microsoft.com/en-US/tag/visualbasic/forums/

Practical Example—PETRAS Report Tool .NET

PETRAS Report Tool .NET is a practical case study that demonstrates a
more complex VB.NET application than is possible to cover in a single
chapter. In Chapter 25, the tool is converted into a managed COM add-in
for Excel. The tool is a standalone, fully functional reporting solution. It
retrieves data from a SQL Server database (created in Chapter 19,
“Programming with Access and SQL Server”) based on the user selection
in the main Windows Form. It then populates predefined Excel report
templates with the data. It can export reports either to Excel or to XML
files. The solution can be found on the companion CD in
\Applications\Ch24 - Excel & VB.NET\PETRAS Report Tool.NET. Please
read the Read Me First.txt file located in the \Applications\Ch24 - Excel &
VB.NET\ folder. You will find it helpful to open this solution in the VB IDE
so that you can reference it while reading this section.

When the tool starts up, it first tries to establish a connection to the
database. A custom Windows Form is displayed while the tool is trying to
connect. If the connection attempt is successful, the main Windows Form
shown in Figure 24-22 is displayed. If the connection attempt fails, an
error message is displayed.

Use the following steps to create a report in the main form:

FIGURE 24-22 PETRAS Report Tool .NET user interface

872 Chapter 24 Excel and VB.NET

Practical Example—PETRAS Report Tool .NET 873

24.
EXCEL

AN
D

VB.NET

1. Select a Client.
2. Select a Project.
3. Select the reporting time period by entering a Start date and an

End date.
4. Uncheck or keep the fields Activities and Consultants.
5. Click on the Create Report button to preview the report in the

DataGrid.
6. Click the appropriate button to export to an Excel report or to an

XML file.
7. If export to Excel is selected, Excel is launched and a copy of one

of the four predefined report templates is created.
8. If export to XML is selected, a Save File dialog is displayed so you can

specify a filename and location where the XML file should be saved.
9. If the export is successful, the selections you made become the

new default values for all controls on the Windows Form. It is pos-
sible to clear these settings by selecting the Clear Settings button.

10. To close the Windows Form, click the Close button.

The .NET Solution
Although we only use one main Windows Form, our .NET solution
includes some additional modules and files. Table 24-4 shows a summary
of what the solution contains.

Table 24-4 Contents for the PETRAS Report Tool.NET Solution

Module Name Type and Function

app.config XML configuration file containing the connection string

frmConnecting.vb Windows Form displayed while connecting to the database

frmMain.vb Windows Form that is the main form for the solution

MCommonFunctions.vb Standard module containing general functions for the tool

MDataReports.vb Standard module containing all database functions

MExportExcel.vb Standard module containing all the functions required to
export data to Excel

MExportXML.vb Standard module containing all the functions required to
export data to XML files

As you can see in Table 24-4, the solution does not include any class mod-
ules. Creating well-designed class modules is covered in Chapter 25. In
addition to the components shown in Table 24-4, the solution uses four dif-
ferent Excel report templates. Depending on the user selections, one of
them is used to create the requested report:

■ PETRAS Report Activities.xlt—Used when only the Activities
control is checked

■ PETRAS Report Activities Consultants.xlt—Used when both
the Activities and Consultants controls are checked

■ PETRAS Report Consultants.xlt—Used when only the
Consultants control is checked

■ PETRAS Report Summary.xlt—Used when neither the Activities
nor the Consultants controls are unchecked

If we click the Show All Files button in the Solution Explorer toolbar, it dis-
plays an expanded tree view. If we then expand the References item in the
tree view we can see all references for the solution, as shown in Figure 24-
23. Most hidden files are system files that we rarely need to work with, but
it’s a good exercise to explore all the files included in the solution.

In any non-trivial real-world application where we initially load a
Windows Form, we usually need to ensure that certain conditions are met
before loading it. In VB.NET we can use the same approach as with
Classic VB. We create a Main subroutine in a standard code module that is
used as the startup subroutine.

But in VB.NET, we need to change some additional settings in the
solution before this will work correctly. After creating the new Windows
Forms application, open the solution Properties window, and select the
Application tab. Figure 24-24 shows the original startup settings for the
PETRAS Report Tool.NET solution.

We add a standard code module to the solution that we name
MStartup.vb. We add the Main subroutine and its code to this module, as
shown in Listing 24-32.

Table 24-4 Contents for the PETRAS Report Tool.NET Solution

Module Name Type and Function

MSolutions Enumerations
Variables.vb

Standard module containing all the enumerations used in
the solution

MStartUp.vb Standard module containing the Main procedure for the
solution

874 Chapter 24 Excel and VB.NET

Practical Example—PETRAS Report Tool .NET 875

24.
EXCEL

AN
D

VB.NET

FIGURE 24-23 The tree view in Solution Explorer

FIGURE 24-24 Default settings for the solution

Listing 24-32 Code for the Main Subroutine

Sub Main()

‘Enable Windows XP’s style.

Application.EnableVisualStyles()

‘Declare and instantiate the Windows Form.

Dim frm As New frmMain

‘Set the position of the main Windows Form.

frm.StartPosition = FormStartPosition.CenterScreen

‘Show the main Windows Form.

Application.Run(mainForm:=frm)

‘Releases all resources the variable has consumed from

‘the memory.

frm.Dispose()

‘Release the reference the variable holds and prepare it

‘to be collected by the Garbage Collector when it

‘comes around.

frm = Nothing

End Sub

Now we return to the Application tab of the solution Properties window,
where we uncheck the option Enable application framework and change
the Startup object to the Main subroutine as shown in Figure 24-25.

Unchecking the Enable application framework option implicitly removes
the option to use Windows XP styles. Therefore, we need enable this
option manually in the startup code, which is done in the first line of our
Main procedure in Listing 24-32.

The Main subroutine is also a good place to put code to position the
Windows Form before it is loaded. The Main subroutine is also an accept-
able place to put code for connecting to a database, but in the PETRAS
Report Tool.NET we use a different approach that is covered soon. When
the user closes the main Windows Form we dispose its class and set the
variable to nothing.

Windows Forms Extender Providers
The .NET Framework provides so-called extender providers to
Windows Forms. These components can only be used with visual controls.

FIGURE 24-25 Modified startup settings

876 Chapter 24 Excel and VB.NET

Practical Example—PETRAS Report Tool .NET 877

24.
EXCEL

AN
D

VB.NET

By adding them to our Windows Forms we get additional properties to
work with. Extender providers are added to a Windows Form in exactly the
same way as regular controls. However, the extender providers appear in
the form’s Component Tray rather than on the surface of the form itself.

Figure 24-26 shows the Component Tray for the main form of the
PETRAS Report Tool.NET. The components used are the
ErrorProvider, HelpProvider, and ToolTip components, for the main
Windows Form, the BackgroundWorker component, which we cover
later, and the SaveFileDialog component that was introduced earlier in the
chapter.

The first extender provider in use is the ErrorProvider, which provides us
with the option to set validation errors. It can be used with one or more
controls on the Windows Form as each of them have the Validating event.

When a control’s input is not valid the ErrorProvider places an error
icon next to the control and displays an error message when the user hov-
ers the mouse over the icon. Listing 24-33 shows how this is implemented
in the PETRAS Report Tool.NET solution. As the code shows, we can cre-
ate a single event that hooks the Validating events of all the targeted
controls on the form.

Listing 24-33 The Validating Event Subroutine for Several Controls

Private Sub Client_Project_Validating(ByVal sender As Object, _

ByVal e As System.ComponentModel.CancelEventArgs) _

Handles cboClients.Validating, _

cboProjects.Validating

Const sMESSAGECLIENTERROR As String = _

“You need to select a client.”

Const sMESSAGEPROJECTERROR As String = _

“You need to select a project.”

Dim Ctrl As Control = CType(sender, Control)

If Ctrl.Text = ““ Then

FIGURE 24-26 Extender providers in the PETRAS Report Tool.NET

Select Case Ctrl.Name

Case “cboClients”

Me.ErrorProvider1.SetError(control:=Ctrl, _

value:=sMESSAGECLIENTERROR)

Case Else

Me.ErrorProvider1.SetError(control:=Ctrl, _

value:=sMESSAGEPROJECTERROR)

End Select

Else

Me.ErrorProvider1.SetError(control:=Ctrl, value:=””)

End If

End Sub

If one of the controls being validated has the focus when the user clicks the
Clear Settings button, the validation handling code is executed. To prevent
this we must add one line of code to the load event of the main Windows
Form. This is shown in Listing 24-34.

Listing 24-34 Code to Prevent Validation when the Clear Settings Button Is Clicked

Me.cmdClearSettings.CausesValidation = False

We can prevent the entry of bad data into a control by writing handlers
for the key press event as well.

Looking more closely at the code in Listing 24-33 may raise the ques-
tion of why we do not use a control array as we would in Classic VB. This is
because VB.NET does not currently support control arrays, and it does not
appear as if this feature will be implemented in any future version. The
solution shown is the closest workaround in VB.NET. The second extender
provider, HelpProvider, is used to associate a help file (either a .chm or .htm
file) with our application. Whenever our application is running and has
focus, the HelpProvider associates the F1 button with our application’s help

878 Chapter 24 Excel and VB.NET

Practical Example—PETRAS Report Tool .NET 879

24.
EXCEL

AN
D

VB.NET

file. For the PETRAS Report Tool.NET we use a simple form-based help
system, meaning that we associate the help file with our main Windows
Form. It is much easier to set this up using Windows Form properties man-
ually at design time than to do it at runtime with code. The design-time
property settings required to create a form-based help system are the fol-
lowing:

■ Set the HelpKeyword property on HelpProvider1 to the value
About.htm.

■ Set the HelpNavigator property on HelpProvider1 to the value Topic.

One property of the HelpProvider that should be set in code is the
HelpNameSpace property. Doing this provides us with a more flexible
solution because we can change the location of the help file dynamically.
Listing 24-35 shows the code in the main Windows Form load event
required to set the HelpNameSpace property.

Listing 24-35 Setting the Path and Name to the Help File

’The help file in use.

Const sHELPNAMESPACE As String = “PETRAS_Report_Tool.chm”

‘Setting the helpfile to the HelpProvider component.

Me.HelpProvider1.HelpNamespace = swsPath + sHELPNAMESPACE

The swsPath is a global enumeration member that holds the path to the
application EXE file for the PETRAS Report Tool.NET.

The third extender provider is the ToolTip component. It provides us
with the option to add a Tooltip to each control in a Windows Form.
Whenever the user hovers over a control with the mouse the control’s
Tooltip is displayed.

Threading
With .NET we can leverage multithreading to create more powerful solu-
tions. It is beyond the scope of this chapter to cover multithreading in detail,
but we demonstrate a simple example. The .NET Framework includes an
extender provider, BackgroundWorker, which allows us to run code on a
separate, dedicated thread, meaning we can run our project in multithread-
ing mode. This extender provider is normally used for time-consuming
operations, but as this case shows, we can use it for other tasks as well.

In the PETRAS Report Tool.NET, we use the BackgroundWorker
component to run the code that connects to the database. By using two of
its events, BackgroundWorker1_DoWork and BackgroundWorker1_

RunWorkerCompleted, we attempt to connect to the database in the back-
ground and be notified about the outcome. Listing 24-36 shows the code
for the load event of the main Windows Form followed by the code for the
two events of the BackgroundWorker component.

Listing 24-36 Code in Use for the BackgroundWorker

Private Sub Form1_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles MyBase.Load

‘...

‘Settings for the BackgroundWorker component.

With Me.BackgroundWorker1

‘Makes it possible to cancel the operation.

.WorkerSupportsCancellation = True

‘Start the background execution.

.RunWorkerAsync()

End With

‘Change the cursor while waiting to BackgroundWorker

‘component has been finished.

Me.Cursor = Cursors.WaitCursor

End Sub

Private Sub BackgroundWorker1_DoWork(ByVal sender As Object, _

ByVal e As System.ComponentModel.DoWorkEventArgs) _

Handles BackgroundWorker1.DoWork

‘Instantiate a new instance of the connecting

‘Windows Form.

mfrmConnecting = New frmConnecting

‘Position the Windows Form and display it.

With mfrmConnecting

.StartPosition = FormStartPosition.CenterScreen

.Show()

End With

880 Chapter 24 Excel and VB.NET

Practical Example—PETRAS Report Tool .NET 881

24.
EXCEL

AN
D

VB.NET

‘Can we connect to the database?

If MDataReports.bConnect_Database() = False Then

‘OK, we cannot establish a connection to the

‘database so we cancel the background operation.

Me.BackgroundWorker1.CancelAsync()

‘Let us tell it for the other backgroundWorker

‘event - the RunWorkerCompleted.

mbIsConnected = False

Else

‘Let us tell it for the other backgroundWorker

‘event - the RunWorkerCompleted.

mbIsConnected = True

End If

‘Close the connecting Windows Form.

mfrmConnecting.Close()

‘Releases all resources the variable has consumed

‘from the memory.

mfrmConnecting.Dispose()

‘Release the reference the variable holds and prepare

‘it to be collected by the Garbage Collector (GC) when

‘it next time comes around.

mfrmConnecting = Nothing

End Sub

Private Sub BackgroundWorker1_RunWorkerCompleted _

(ByVal sender As Object, _

ByVal e As System.ComponentModel. _

RunWorkerCompletedEventArgs) _

Handles BackgroundWorker1.RunWorkerCompleted

‘If we have managed to connect to the database then we can continue.

If mbIsConnected Then

‘...

End If

‘Restore the cursor.

Me.Cursor = Cursors.Default

End Sub

On its surface, the use of the BackgroundWorker component may look
attractive. However, multithreaded application development is complex
and easy to get wrong, so it should only be used in situations where it is
absolutely necessary to run code outside the main process.

Retrieving the Data
A database connection string can be created using several different meth-
ods. For the PETRAS Report Tool.NET we create a solutionwide connec-
tion string using an application setting. This is accomplished in the Settings
tab of the solution Properties windows, as shown in Figure 24-27.

We first create a name for the setting and then select the type (Connection
string). The scope is now automatically set to Application. After placing the

FIGURE 24-27 A solutionwide connection string

882 Chapter 24 Excel and VB.NET

Practical Example—PETRAS Report Tool .NET 883

24.
EXCEL

AN
D

VB.NET

cursor in the Value field a button appears on the right side. Clicking this
button displays a very useful built-in wizard for creating connection strings.

If we look in the Solution Explorer window, we notice that a new
app.config XML file has been created and added to the solution. The
app.config file will not be compiled into the executable file when we devel-
op standalone applications like the PETRAS Report Tool.NET. Instead, it
is a separate XML file that is installed alongside the PETRAS Report
Tool.NET executable. This allows us to easily update the connection string
by simply opening and editing the XML file. When we compile the solu-
tion the VS IDE creates an XML file based on the solution name, PETRAS
Report Tool .NET.exe.xml, for example, instead of using the name
app.config.

When creating a DLL, the app.config file is compiled into the DLL,
which makes it more difficult to update the connection string. This is
addressed in Chapter 25. Listing 24-37 shows how to read the connection
string setting from within our application code.

Listing 24-37 Reading the Application Setting for the Connection String

’Read the connection string into a module variable.

Private ReadOnly msConnection As String = _

My.Settings.SQLConnection.ToString()

Next we use it to initialize a new SqlConnection object, as shown in Listing
24-38.

Listing 24-38 Function to Create New SqlConnection

Friend Function sqlCreate_Connection() As SqlConnection

Return New SqlConnection(connectionString:=msConnection)

End Function

All functions that retrieve data using disconnected mode expect the
DataSet object to contain one DataTable at the time. We use a module-
level DataTable variable to populate the DataGridView control. If the
user decides to either create an Excel report or export the data to an XML
file, the same DataTable is used as an argument to one of the export
functions.

Exporting Data
The MExportExcel.vb module contains all the functions required to
export data to Excel using one of the four predefined Excel templates
described earlier. The main export function, shown in Listing 24-39, takes
several arguments. Since the query has already been executed we can get
the results as a DataTable from the DataGridView control on the main
Windows Form. The other arguments provide information about the
options specified by the user when the data was retrieved from the data-
base.

Listing 24-39 The Main Export to Excel Function

Friend Function bExport_Excel(_

ByVal dtTable As DataTable, _

ByVal sClient As String, _

ByVal sProject As String, _

ByVal sStartDate As String, _

ByVal sEndDate As String) As Boolean

Because the PETRAS Report Tool.NET is a standalone application not
related to Excel, we first need to determine whether Excel exists and if so,
determine which version of Excel is available. To accomplish this we exam-
ine the value of a critical Excel-related registry entry and use it to deter-
mine the current Excel version.

The lowest version of Excel that we can support is version 2002,
meaning the tool cannot be used if version 2000 is installed. The function
uses an enumeration of Excel versions, which is defined in the MSolutions

Enumerations Variables.vb code module. To provide access to the
.NET Framework functions that allow us to read the Windows registry, we
import the namespace Microsoft.Win32. We also use regular expressions
to complete this task, so the namespace System.Text.

RegularExpressions also is imported into the code module. Listing 24-
40 shows the code for the function.

Listing 24-40 Determine Which Version of Excel Is Available

’At the top of the module.

‘To read the Windows Registry subkey.

Imports Microsoft.Win32

‘To use regular expressions.

Imports System.Text.RegularExpressions

884 Chapter 24 Excel and VB.NET

Practical Example—PETRAS Report Tool .NET 885

24.
EXCEL

AN
D

VB.NET

Friend Function shCheck_Excel_Version_Installed() As Short

Const sERROR_MESSAGE As String = _

“An unexpected error has occurred “ + _

“when trying to read the registry.”

‘The subkey we are interested in is located in the

‘HKEY_CLASSES_ROOT Class.

‘The subkey’s value looks like the following:

‘Excel.Application.10

Const sXL_SUBKEY As String = “\Excel.Application\CurVer”

Dim rkVersionkey As RegistryKey = Nothing

Dim sVersion As String = String.Empty

Dim sXLVersion As String = String.Empty

‘The regular expression which is interpreted as:

‘Look for integer values in the interval 8-9

‘in the end of the retrieved subkey’s string value.

Dim sRegExpr As String = “[8-9]$”

Dim shStatus As Short = Nothing

Try

‘Open the subkey.

rkVersionkey = Registry.ClassesRoot.OpenSubKey _

(name:=sXL_SUBKEY, writable:=False)

‘If we cannot open the subkey then Excel is not available.

If rkVersionkey Is Nothing Then

shStatus = xlVersion.NoVersion

End If

‘Excel is installed and we can retrieve the wanted

‘information.

sXLVersion = CStr(rkVersionkey.GetValue(name:=sVersion))

‘Compare the retrieved value with our defined regular

‘expression.

If Regex.IsMatch(input:=sXLVersion, pattern:=sRegExpr) Then

‘Excel 97 or Excel 2000 is installed.

shStatus = xlVersion.WrongVersion

Else

‘Excel 2002 or later is available.

shStatus = xlVersion.RightVersion

End If

Catch Generalexc As Exception

‘Show the customized message.

MessageBox.Show(text:=sERROR_MESSAGE, _

caption:=swsCaption, _

buttons:=MessageBoxButtons.OK, _

icon:=MessageBoxIcon.Stop)

‘Things didn’t worked out as we expected so we set the

‘return variable to nothing.

shStatus = Nothing

Finally

If rkVersionkey IsNot Nothing Then

‘We need to close the opened subkey.

rkVersionkey.Close()

‘Release the reference the variable holds and prepare it

‘to be collected by the Garbage Collector (GC) when it

‘comes around.

rkVersionkey = Nothing

End If

End Try

‘Inform the calling procedure about the outcome.

Return shStatus

End Function

The module MExportExcel.vb also contains a function to verify that the
Excel templates exist in the same folder as the executable file.

The function that exports data to an XML file also creates the Schema
file for it. Listing 24-41 shows the two lines of code required to generate

886 Chapter 24 Excel and VB.NET

Summary 887

24.
EXCEL

AN
D

VB.NET

these files. We actually use the methods of the DataTable object to gener-
ate the XML files. This is because ADO.NET uses XML as its underlying
data representation scheme. Both of these XML files can be opened and
studied in more detail.

Listing 24-41 Creating XML and Schema Files

...

‘Write the data to the XML file.

dtTable.WriteXml(fileName:=sFileName)

‘Create the Schema file for the XML file.

dtTable.WriteXmlSchema(fileName:=Strings.Left(_

sFileName, Len(sFileName) - 4) & “.xsd”)

...

Summary

In this chapter, we provided a brief introduction to the .NET Framework,
VB.NET, data access using ADO.NET, and Excel automation from
VB.NET. Compared to Classic VB, the .NET Framework is a completely
new and different platform. It is also a modern, advanced development
platform with a great set of tools for creating user-friendly solutions. To
fully utilize the .NET platform you must be prepared to invest significant
time exploring and learning it. As we all know, there are no real shortcuts
to learning new technology. Only hard work can accomplish the task. But
the reward, in addition to the new knowledge itself, is that we can leverage
all the knowledge from this chapter in the two chapters that follow.

INDEX

1107

Symbols
character prefix (conditional

compilation constants),
512

(:) colon character in Immediate
window, 520

. (dot operator), performance
and, 571

= (equal sign) in criteria
ranges, 677

<, > (greater than/less than
symbols) in criteria
ranges, 677

\ (integer division operator), 570
? (question mark character) in

Immediate window, 519
3D effects, simulating, 84

A
accelerator keys. See also key-

board shortcuts
creating, 205
for UserForm controls, 386

Access 2002 Desktop Developer’s
Handbook (Litwin, Getz,
Gunderloy), 739

Access 2002 Developer’s
Handbook Set (Litwin,
Getz, Gunderloy), 647

Access databases
adding data (time sheet exam-

ple application), 652-656
advantages of, 620
connecting to, 620-622

time sheet example applica-
tion, 648-649

deleting data, 629-630
inserting data, 625-626
modifying data, 626-629

Northwind sample database,
installing, 615

retrieving data, 622-625
time sheet example applica-

tion, 650-652
upsizing to SQL Server,

642-646
Access object library, 726-729

Application object, 726
DAO.Database object, 726
DoCmd object, 727
example application, 727-729

access restrictions, checking net-
work group membership,
1095-1096

accessing Application object
from automation add-ins,
800-802

action panes, 999
Activate event, error

handling, 489
activating error handlers, 468
active, error handlers as, 468
Active Directory Service

Interfaces object library,
1095

ActiveConnection property
(ADO Command object),
605, 628

ActiveDocument (Word),
referencing, 712

ActiveSheet property,
performance and, 573

ActiveX, 710
ActiveX controls

adding to Windows Forms, 826
advantages of, 100
forms (VB6) support for, 760

ActiveX Data Objects. See ADO

ActiveX DLLs, 742
advantages of using, 758-774

ClipBoard object, 773
code protection, 758
forms (VB6) versus

UserForms, 759-762,
764-769

object oriented program-
ming support, 769-772

Printer object, 773
resource files, 773
Screen object, 774

COM add-ins. See COM
add-ins

compiling, 744, 750
form display example, 751-758
in-process communication, 774
loading icons with resource

file, 802-807
one-way communication

example, 744-747
projects, creating, 742-744
referencing, 745-746
registering, 744
setting references, 747
two-way communication

example, 747-751
adAsyncExecute

(ExecuteOptionEnum
constant value), 603

adCmdStoredProc
(CommandTypeEnum
constant value), 603

adCmdTable
(CommandTypeEnum
constant value), 603

adCmdTableDirect
(CommandTypeEnum
constant value), 603

adCmdText
(CommandTypeEnum
constant value), 603, 626

Add-in Designer, 785-786
Advanced tab, 790
General tab, 788-790
registry key management,

788-790
registry keys, 1102

Add-in Express for Microsoft
Office and .NET, 962-963

Add-in Manager
managed automation add-ins,

selecting, 938-940
registry keys, 1100
XLLs and, 1042-1043

add-ins
application-specific, 18-19,

118-125
time sheet example

application, 125-137
automation and, 782
COM add-ins. See COM

add-ins
function library add-ins,

110-117. See also UDFs
general purpose, 16-18,

117-118
installation location, selecting,

1099-1100
installation requirements,

1100-1102
managed COM add-ins

blogs for information, 962
development tools, 962-963
shimming, 952-961
time sheet example applica-

tion, 963-972
managed VSTO add-ins, 979
requirements for, 783
shared tabs for, 279-284
starting, 784
VSTO add-ins, 985

creating, 985-995
custom task panes (CTPs),

998-1006
Ribbon Visual Designer,

995-998
running, 993-995

VSTO automation add-ins,
1006

1108 Index

workbook events and, 784
as workbooks, 17

Add-Ins tab, 279
adding

database data, 596-597
to Access databases,

625-626, 652-656
methods to class modules

(VB6), 744
VB.NET classes to

solutions, 941
AddinInstance object events,

792-794
Initialize, 792
OnAddInsUpdate, 794
OnBeginShutdown, 794
OnConnection, 792-793
OnDisconnection, 794
OnStartupComplete, 793
Terminate, 794

AddinSpy, 963
AddRange method (VB.NET

arrays), 844
adExecuteNoRecords

(ExecuteOptionEnum
constant value), 603, 626

adLockBatchOptimistic
(LockTypeEnum constant
value), 611

adLockOptimistic
(LockTypeEnum constant
value), 611

adLockPessimistic
(LockTypeEnum constant
value), 611

adLockReadOnly
(LockTypeEnum constant
value), 611

ADO (ActiveX Data Objects),
598

Command object, 605-607
ActiveConnection property,

605, 628
CommandText property,

605
CommandType property,

605, 628
CreateParameter method,

605-606, 628

Execute method,
606-607, 628

Parameters collection, 607,
628, 637

Connection object, 600-604
Close method, 601
ConnectionString property,

600-601, 622
ConnectionTimeout

property, 601
destroying, 649
enabling connection

pooling, 632-633
Errors collection, 604, 634
events, 604
Execute method,

602-604, 626
initializing, 618, 648
Open method, 602
State property, 601
stored procedures and, 636

connection pooling, 632-633
data access technologies,

explained, 598-599
exporting data, 948-952
object model for, 599
Recordset object, 607-612

BOF property, 607
Close method, 609
CursorLocation

property, 608
disconnected

recordsets, 640
EOF property, 607, 624
events, 612
Fields collection, 612
Filter property, 608
Move methods, 609-610
multiple recordsets, 639
NextRecordset method, 610
Open method, 610-612, 624
Sort property, 608

in VBA projects, referencing
Microsoft ActiveX Data
Objects 2.X Library, 618

ADO 2.6 Programmer’s
Reference (Sussman), 613

ADO.NET, 864-870
connected mode, 865-867
data providers, 865

disconnected mode, 865-870
resources for information,

870-871
Adobe Systems RoboHelp, 1085
adOpenDynamic

(CursorTypeEnum
constant value), 611

adOpenForwardOnly
(CursorTypeEnum
constant value), 611

adOpenKeyset
(CursorTypeEnum
constant value), 611

adOpenStatic (CursorTypeEnum
constant value), 611

adParamInput
(ParameterDirectionEnum
constant value), 606

adParamInputOutput
(ParameterDirectionEnum
constant value), 606

adParamOutput
(ParameterDirectionEnum
constant value), 606

adParamReturnValue
(ParameterDirectionEnum
constant value), 606

adStateClosed
(ObjectStateEnum
constant value), 601

adStateConnecting
(ObjectStateEnum
constant value), 601

adStateExecuting
(ObjectStateEnum
constant value), 601

adStateOpen (ObjectStateEnum
constant value), 601

Advanced Filters, 673-678
database functions in, 679

Advanced tab (Add-in Designer),
790

Alias clause (API calls), 342-343
aliases

namespace aliases, 858
for XML namespaces, 253

alignment of code, 51
All Users profile (Windows XP),

329

Index 1109

Alt key, checking state of,
350-351

analysis in dictator
applications, 156

Analyze method (Cell object),
169-170

AnalyzeActiveCell
procedure, 168

AND operations in criteria
ranges, 676

ANSI versus Unicode in API
calls, 342-343

API. See Windows API
API calls, 331

Alias clause, 342-343
buffers, filling, 360
constants, finding value of,

333-334
declarations, finding, 333
Declare statement, 331-332
documentation, finding, 332
encapsulating, 335-337
file system-related

functions, 355
deleting files to Recycle Bin,

360-361
folders, browsing for,

361-371
special folders, locating,

357-360
UNC paths, changing to,

356-357
user ID, finding, 355-356

handles, 334-335
keyboard-related

functions, 349
key presses, testing for,

352-355
key states, checking, 350-

351, 371-373
passing strings to, 356
screen-related functions, 337

pixel size, determining, 338-
340

screen resolution, reading,
337-338

window-related functions, 340
messages, sending, 346-348
related windows, finding,

343-346

window classes, 341
window icons, changing,

348-349
window styles, changing, 349
windows, finding, 342-343

app.config XML file, 883
AppDomain, 953
application architectures

application-specific add-ins,
18-19

best practices, 40-42
logical tiers, separating,

41-42, 616-617
codeless applications, 14-15
compared, 24-25
dictator applications, 20-23

debugging, 22
requirements of, 21-22

general purpose add-ins, 16-18
selecting, 13, 24-25
self-automated workbooks,

15-16
technical implementations

of, 23
application communication

in-process, 774
out-of-process, 774

application contexts, 244-247
application control. See control-

ling applications
application development

platform, Excel as, 4-7
Application Domain, 953
application instances. See

instances (of applications)
application list (Add-in

Designer), 789
application manifest, 992, 1017
Application object (Access object

model), 726
Application object (Excel

object model)
accessing

from automation add-ins,
800-802

in VSTO add-ins, 986-987
in VSTO workbooks, 1010

Calculation property, 571
Cursor property, 520
EnableCancelKey property, 22

EnableEvents property, 528
IgnoreOtherApplications

property, 21
IgnoreRemoteRequests

property, 149
MacroOptions method, 112
retrieving reference to, 930
Run function, 109
ScreenUpdating property, 571
ShowWindowsInTaskBar

property, 21
Version property, 142
Volatile method, 117

Application object (Office
applications), 726

Application object (Outlook
object model), 736

Application object (PowerPoint
object model), 732

Application object (Word object
model), 729

application properties, setting to
default values, 130

application versions (Add-in
Designer), 789

application-centric project tem-
plates, 977-979

application-level event handling
(time sheet example
application), 190-193

application-specific add-ins,
18-19, 118-125

dynamically modifying
worksheet UI, 124-125

table-driven approach to
worksheet UI settings
management, 118-124

time sheet example applica-
tion, 125-137

application-specific class
modules, 714

applications
closing (time sheet example

application), 135-137
dictator applications, 141

processing and analysis
in, 156

reports and charts, 157
startup and shutdown

processes, 142-151

1110 Index

structure of, 141-142
time sheet example applica-

tion, 157-163
user interface customiza-

tions, 151-156
distributing, 1104

updates, 1104-1105
opening and initializing (time

sheet example applica-
tion), 125-127

organization (time sheet exam-
ple application), 138

packaging, 1099
add-in installation require-

ments, 1100-1102
installation location,

selecting, 1099-1100
installation with Windows

Installer, 1104
manual installation, 1103
Setup.xls workbook

installation, 1103
template installation

requirements, 1100
separating from data with

XML, 254-256
stages of, 107-110

development/maintenance
stage, 107-108

runtime stage, 109
shutdown stage, 110
startup stage, 108-109

AppointmentItem object
(Outlook object
model), 736

architectures. See application
architectures

arguments
declaring, 62-63
limiting number of, 45
validating, 63

argument_help1…20 entry (XLL
function table), 1039

argument_text entry (XLL
function table), 1038

arrangement of data. See data
structures

array bounds, avoiding hard
coding, 57

Array class (VB.NET), 839-845

array formulas, 680-683
in defined names, 696-698

array sorting example (code
reuse), 435-437

array sorting example (custom
interfaces), 440-443

array specifiers in naming
conventions, 29

ArrayList class (VB.NET),
843-845

arrays
control arrays, 761-769, 878
index arrays, 566-567
looping, 57
redimensioning, 841
searching, binary searches,

563-565
sorting

combining with binary
searches, 565

QuickSort procedure,
560-563

Variant, 55
performance and, 572-573

VB.NET, 835, 839-845
watching, 529-531
XLOPER data type and,

1048-1049
artificial keys, 592-594
As New syntax, 55
As Object declarations, 569
ASCII values, changing, 779
asking questions (creative think-

ing), 556
assemblies, 820. See also DLLs

code-behind assemblies,
979-980

referencing in VSTO add-ins,
991-992

Assembly Information dialog, 902
Assembly Registration tool, 900
assembly version numbers, 902
AssemblyInfo.vb file, 902
_AssemblyLocation custom

document property, 980
_AssemblyName custom

document property, 980
assertions, 540-541
assigning values. See initializing

associating
icons with controls, 213-215,

228-237, 796, 802-807,
863-864

macros with shapes, 88
asynchronous database

connections, 602
atomic values, defined, 581
attributes (XML), 252
Authenticode certificates, 953,

960-961
auto-completion of variable

names, 31
auto-expanding charts, 692-694
auto-generated references for

managed COM add-ins,
897-899

auto-instantiation, 379, 770
AutoDual type (ClassInterface

attribute), 930
automatic calculation,

disabling, 571
automation, 709-710, 775-783

add-ins and, 782
front loaders, 782-783,

808-815
managed automation add-ins

creating, 928-933
limitations of, 933-940

.NET Framework and,
855-863

early binding/late
binding, 863

Excel object usage,
857-862

PIA (Primary Interop
Assembly), 856-857

Roman numeral conversion
example, 775-782

VSTO automation add-ins,
1006

XLLs and, 1061
automation add-ins, 799-802

accessing Application object,
800-802

calling, 800
creating, 799-800
installation requirements, 1102

automation clients, 710

Index 1111

Automation Server, 929
automation servers, 710
availability of applications, deter-

mining, 722
axes

creating complex, 701-702
multiple axes, 690

axis scales, calculating, 706-708

B
Backdrop application

context, 244
backgrounds

preparing for user interface,
151-153

transparent backgrounds for
icons, setting, 214-215

BackgroundWorker component,
877-880

backing up project versions, 66
backward compatibility, 319.

See also cross-version
applications

of application instances, 722
maintaining, 62
object libraries, 713-715
VB.NET, 820

BDC (Business Data
Catalog), 976

Before setting (command bar
definition table), 215, 221

BeforeUpdate events, 388
Begin Group setting (command

bar definition table), 215
best practices

application architecture, 40-42
logical tiers, separating, 41-

42, 616-617
change control, 65-67
for circular references, 685
code comments, 45-49

internal comments, 47-49
module-level comments, 46
procedure-level comments,

46-47
updating, 49

code readability, 50-52
command bar design, 198-199

controlling applications,
711-714

application-specific class
modules, 714

development for earliest
supported version, 713

property/method calls,
712-713

variable declarations,
711-712

deleting toolbars, 127
naming conventions, 27-29,

31-40
defined names, 39
embedded objects, 38
Excel UI elements, 37-39
exceptions to, 39-40
modules, classes,

UserForms, 36
procedures, 35-36
sample of, 28-34
shapes, 37-38
Visual Basic Projects, 37
worksheets, chart sheets, 37

for On Error Resume Next
statement, 471

for procedural programming,
43-45

arguments, limiting, 45
business logic isolation, 44
duplicate code, eliminating,

44
encapsulation, 44
functional decomposition,

43
modules, organizing code

in, 43
size limits on procedures, 44

Ribbon UI design, 278-289
Add-Ins tab, 279
control custom image

management, 284-286
global callback handlers,

286-287
invalidation, 287-289
keytips, 284
shared tabs, 279-284
work processes support,

278-279

UserForms design, 375-384
business logic, separating

from, 376-379
classes versus default

instances, 379-381
properties and methods,

exposing, 382-384
simplicity, 375-376

VBA programming, 52-65
defensive coding, 62-65
module directives, 52-53
variables and constants,

54-61
wizard dialog design, 407-408

BI (Business Intelligence), 976
binary file format, ZIP archives

versus, 274
binary searches, 563-565
BinarySearch method, VB.NET

arrays, 842
binding. See data binding
bit masks, 351
bitmaps, 804. See also icons

adding to resource files,
804-806

creating for icons, 228-230
loading from resource files,

806-807
blank lines in code, 50-51
block scope (VB.NET), 835-836
blogs

managed COM add-in
information, 962

VSTO information, 1026
BOF property (ADO Recordset

object), 607
Bookmark object (Word object

model), 729
bookmarks, populating, 729
Bookmarks.dot, 723
Boolean variables, redundant

comparisons of, 571
bootstrapper packages, 904
borders, 84

time sheet example
application, 104

Break in Class Module
setting, 508

1112 Index

break mode
error trapping settings,

507-508
run mode versus, 507

Break on All Errors setting, 507
debug mode versus, 509

Break on Unhandled Errors
setting, 508

break points, setting/removing,
512-513

Break When Value Changes
setting (Watch Type
options), 528

Break When Value Is True
setting (Watch Type
options), 527-528

breaking the rules (creative
thinking), 554-555

Breakpoints window, 849-850
breaks in axes scales,

creating, 702
browsing for folders, 361-369

time sheet example
application, 369-371

buffers, 356
filling, 360

Business Data Catalog
(BDC), 976

Business Intelligence (BI), 976
business logic

isolating, 44
separating from UserForms

design, 376-379
business logic tier

data access tier, relationship
with, 616

defined, 41
business systems, 976
ByRef

arguments, 62
ByVal versus (performance

optimization), 554
passing strings, 569
in VB.NET, 838

byte-counted strings, 1036, 1047
ByVal

arguments, 62
ByRef versus (performance

optimization), 554
passing strings, 569
in VB.NET, 838

C
C API

functions in XLLs, 1052-1053
object oriented C++ wrapper

for, 1063
XLLs. See XLLs

C strings, 1047
C++ keywords, XLOPER data

type and, 1061
C-strings, 1036
calculated fields, 670-672
calculated items, 670-672
Calculation property (Application

object module), 571
calculations. See data processing
call stack, 465-468, 475, 485-488,

496-499, 521
Call Stack window, 521-522, 850
callback functions in XLLs,

1040-1044
xlAddInManagerInfo,

1042-1043
xlAutoAdd, 1044
xlAutoClose, 1041-1042
xlAutoFree, 1044
xlAutoOpen, 1040-1041
xlAutoRegister, 1043
xlAutoRemove, 1044

callback handlers, 286-287
for control custom image

management, 285
for shared tabs, 281-283

callback procedures for light
weight UI design, 307

callbacks, 363-368
calling default object

properties, 63
canceling program execution,

484-485, 491-495
capacity constraints, reasons for

using databases, 578
Caps Lock key, checking state of,

350-351
captions, adding to toolbar

buttons, 224
CAS (Code Access Security),

1017
cascading lists for data validation,

90-92
case studies. See time sheet

example application

casting
interfaces, 447
object references, 859

Catch statement (structured
exception handling), 830

catching errors, 480
category entry (XLL function

table), 1038
category numbers for UDFs, 113
CCell class module, 166-167

methods, 169-170
adding, 172

property procedures, 169
CCells class module, 173

WithEvents object variable,
declaring, 177

CControlEvents class module,
238-240

cell comments
as help text, 86-87
time sheet example

application, 104
cells

changing with UDFs, 116
data input cells, clearing all,

124-125, 134
positioning UserForms,

400-402
ranges of, reading/writing,

572-573
central error handler, 481-488

in error handling demo
program, 494-496

time sheet example applica-
tion, 496-506

Certificate Authority, 1097
change control, 65-67
change documentation with code

comments, 66
chart items, determining

positional information,
704-706

chart sheets
naming conventions, 37
referencing, 65

chart types, combining, 687-690
charts

axis scales, calculating,
706-708

chart types, combining,
687-690

Index 1113

complex axes, creating,
701-702

coordinate systems, converting
among, 702-704

defined names in
auto-expanding charts,

692-694
plotting functions, 696-698
scrolling/zooming in time

series, 694
SERIES function, 691-692
setting up links, 691-692
transforming coordinate

systems, 694-696
in dictator applications, 157
displaying on UserForms,

397-398
multiple axes in, 690
positional information,

determining, 704-706
in PowerPoint, 733
step charts, creating, 699-701

CheckedBoxList controls, 844
checksum formulas, sum of digits

calculation in, 682
.chm files, 1086
circular references, 683-686
class modules (VBA), 443. See

also interfaces; objects
application-specific class

modules, 714
Break in Class Module

setting, 508
data access tier, creating for,

617-620
encapsulation, 172
events

application-level event
handling, 190-193

raising, 180-188
trapping, 177-182

Implements keyword, 438-440
interfaces. See interfaces
naming conventions, 36
object creation with, 166-168
organizing code in, 43
polymorphism, 443-448
purpose of, 165
size limits of, 43
structure of, 168-170

Terminate method, 182-184
trigger classes, creating,

185-188
class modules (VB6), adding

methods, 744
class names for Office applica-

tions in CreateObject
function, 718

Class View window
(VS IDE), 945

classes
default instances versus,

379-381
error handling in, 488-489
naming conventions, 36
VB.NET, 940-947

adding to solutions, 941
creating well-designed,

941-945
properties, 946-947

watching, 529-531
window classes, 341

Classes list (Object Browser), 534
Classic ADO. See ADO
Classic VB. See VB6
ClassInterface attribute, 930
clauses (SQL)

in DELETE statements, 598
in INSERT statements,

596-597
in SELECT statements,

595-596
in UPDATE statements, 597

Clear method (Err object), 466
clearing

data input cells, 124-125
time sheet example

application, 134
Err object, 467
Recent documents list,

292-293
ClickOnce, 975
ClickOnce application cache,

1025
ClickOnce deployment model,

982, 1016-1025
client version of .NET

Framework, 819
client-server databases, 579
ClipBoard object (VB6), 773

close button, disabling in
UserForms, 396

Close method (ADO Connection
object), 601

Close method (ADO Recordset
object), 609

CloseCurrentDatabase method
(Access Application
object), 726

closing
application instances, 718-719

time sheet example applica-
tion, 135-137

PowerPoint instances, 721
Windows Forms, 828
XLLs, 1041-1042

CLR (Common Language
Runtime), 818

cmDeleteTime object (Web
Services time sheet exam-
ple application), 1075

cmInsertTime object (Web
Services time sheet exam-
ple application), 1075

code, stepping through. See step-
ping through code

Code Access Security (CAS),
1017

code comments, 45-49
documenting changes with, 66
internal comments, 47-49
module-level comments, 46
procedure-level comments,

46-47
updating, 49

code execution in Immediate
window, 519-520

code listings. See listings
code protection in VB6, 758
code readability, best practices,

50-52
Code Region, 853
code reuse, 435-437. See also

custom interfaces
code security. See security
code shortcuts, 854
code snippets, 853-855
Code Snippets Manager, 853-855
code templates, 108

1114 Index

code-behind assemblies, 979-980
codeless applications, 14-15
CodeNames

naming conventions, 37
referencing sheets by, 65

Collection object
iterating, 570
methods, 170
mixed object types, 443

collections
creating, 170-177, 771-772
default properties and mem-

ber processing, solving
problems of, 175-177,
771-772

colon character(:) in Immediate
window, 520

column headers, worksheet UI
setting, 120

column-relative named
ranges, 73

columns
hidden columns, worksheet UI

setting, 119
program columns

defined, 70-71
time sheet example

application, 102
COM (Component Object

Model), 710
COM add-ins, 889

installation requirements, 1102
loading/unloading, 989-990
managed COM add-ins, 820

blogs for information, 962
development tools, 962-963
shimming, 952-961
time sheet example applica-

tion, 963-972
registering/unregistering

manually, 940
VB6, 783-787

Add-in Designer, 788-790
AddinInstance object

events, 792-794
advantages of using,

798-799
automation add-ins, 799-802
checking for installation,

788

command bar architecture,
795-796

command bar event hooks,
795

converting Excel add-ins
to, 797

custom toolbar faces, 796
enabling/disabling, 787
Hello World example,

783-787
installing for multiple users,

791-792
as multi-application, 798
registering, 790
security, 798
separate threading, 798-799

XLLs and, 1061
COM communications, VB.NET

and, 817. See also
automation, .NET
Framework and

COM exceptions, 832
COM Shim Wizard, 889,

954-961
combination charts, creating,

687-690
ComboBox control, 425

default behavior, 426
as drop-down pane, 427-429
as file name box, 426-427
sizing in Ribbon UI, 295-296
as text box, 426

command bar definition table,
200-219

Before setting, 215, 221
Begin Group setting, 215
Command Bar Name setting,

204, 221
Control Caption setting,

204-205, 221-225
Control ID setting, 210,

224-226
Control Style setting,

212-213, 224
Control Type setting, 211
custom menu with submenus

example, 220-223
custom right-click command

bar example, 226-228
custom toolbar example,

223-226

Face ID setting, 213-215, 222-
228, 236-237

IsEnabled setting, 209
IsMenubar setting, 206
IsTemporary setting, 209
ListRange setting, 218
Lists setting, 218
Mask setting, 228
OnAction setting, 209
Parameter setting, 217
Picture setting, 228
Position setting, 205-206, 226
Protection setting, 207-209
Shortcut Text setting, 216
State setting, 217-218, 222
Tag setting, 216-217, 233-235
Tooltip setting, 216
Visible setting, 206, 223
Width setting, 206-207

Command Bar Name setting
(command bar definition
table), 204, 221

command bars. See also controls;
menus; toolbars

for COM add-ins
architecture for, 795-796
custom toolbar faces, 796

combining with Ribbon UI,
304

heavy weight design,
307-319

light weight design, 304-307
creating in managed COM

add-ins, 909-918
deleting, 208-209
design best practices, 198-199
docking positions, specifying,

205
error handled command bar

builder, 219
extracting logic to loader

add-ins, 308-312
icon design, 198
right-click menus,

removing, 294
separator bars in, 198
table-driven command bars,

199-219
associating icons with con-

trols, 228-232, 796

Index 1115

command bar definition
table, 200-219

custom menu with
submenus example,
220-223

custom right-click command
bar example, 226-228

custom toolbar example,
223-226

event hooks, 232-241, 795
table-driven command bar

builder, 199-200
time sheet example applica-

tion, 241-247
Command object (ADO),

605-607
ActiveConnection property,

605, 628
CommandText property, 605
CommandType property,

605, 628
CreateParameter method,

605-606, 628
Execute method, 606-607, 628
Parameters collection, 607,

628, 637
Command window, 848
CommandBars object

model, 909
CommandLineSafe DWORD

value, 905
CommandText property (ADO

Command object), 605
CommandType property

(ADO Command object),
605, 628

CommandTypeEnum constant
values, list of, 603

comments
cell comments

as help text, 86-87
time sheet example applica-

tion, 104
code comments, 45-49

documenting changes
with, 66

internal comments, 47-49
module-level comments, 46
procedure-level comments,

46-47
updating, 49

common data type system
(CTS), 818

Common Language Runtime
(CLR), 818

Common Language Runtime
Exceptions, 851

communication
with DLLs. See ActiveX DLLs
in-process, 774
out-of-process, 774

compile-time errors, 465
compiling

ActiveX DLLs, 744, 750
help project files, 1090
release builds, 852

complex chart axes, creating,
701-702

complex error handling system,
476-488

central error handler, 481-488
time sheet example applica-

tion, 496-506
entry point procedures in, 477
procedure error handlers,

477-480
trivial procedures, 480-481

Component Object Model
(COM), 710

Component One’s Doc-to-Help,
1085

Component Tray, 877
conditional compilation con-

stants, 511-512, 851-852
conditional formatting, 92-98

dynamic tables, creating, 93-96
error conditions, highlighting,

96-98
time sheet example

application, 105
Configuration Manager, 852
configuration settings (Visual

Studio IDE), 822-823
configuring environment during

startup process, 148-151
Connect class, creating GUID,

935-937
ConnectComplete event, 604
connected mode (ADO.NET),

865-867

Connection class
creating managed COM

add-ins, 893-897
modifying for Ribbon user

interface, 921
connection failures, error

handling with Resume
statements, 473

Connection object (ADO),
600-604

Close method, 601
ConnectionString property,

600-601, 622
ConnectionTimeout

property, 601
destroying (time sheet exam-

ple application), 649
enabling connection pooling,

632-633
Errors collection, 604, 634
events, 604
Execute method, 602-604, 626
initializing, 618

time sheet example applica-
tion, 648

Open method, 602
State property, 601
stored procedures and, 636

connection pooling, 632-633
connection strings (time sheet

example application),
882-883

connections. See also Connection
object (ADO)

to Access databases, 620-622
time sheet example applica-

tion, 648-649
to SQL Server databases,

630-631
connection pooling, 632-633
error handling, 633-635

to Web Services, 1068-1071
ConnectionString property

(ADO Connection
object), 600-601, 622

ConnectionTimeout property
(ADO Connection
object), 601

1116 Index

conPETRASDbConnection
object (Web Services
time sheet example
application), 1075

consistency checking in
Lists, 664

consolidating data, 672-673
constants

in API calls, finding value of,
333-334

best practices, 54-61
in central error handler,

483-485
conditional compilation con-

stants, 511-512, 851-852
defined constants in command

bar definition table, 201
Excel4 function return values,

1051
named constants, 72-73
naming conventions

example, 33
purpose of, 57-58
viewing value of, 58
in XLOPER data type, 1046
for XLOPER data type error

values, 1048
constructors in VB.NET,

941-943
ContactItem object (Outlook

object model), 736
ContainerControl object, 1008
Content Type items (in Open

XML), 275
Context options (Watch window),

526-527
contexts, application, 244-247
control arrays, 761-769, 878
Control Caption setting

(command bar definition
table), 204-205, 221-225

Control ID setting (command
bar definition table), 210,
224-226

control structures, code
comments in, 48-49

Control Style setting (command
bar definition table),
212-213, 224

Control Type setting (command
bar definition table), 211

controlling applications
automation, 709-710
best practices, 711-714

application-specific class
modules, 714

development for earliest
supported version, 713

property/method calls,
712-713

variable declarations,
711-712

early binding versus late
binding, 714-716

instances, 717-722
application availability,

determining, 722
closing, 718-719
creating, 717-718
multiversion support, 722
referring to existing,

720-721
performance issues, 723-725
referencing object libraries,

710-711
controls. See also command bars;

custom task panes (CTPs)
accelerator keys, creating, 205
ActiveX

adding to Windows
Forms, 826

forms (VB6) support
for, 760

associating icons with,
213-215, 228-237, 796,
802-807, 863-864

captions, adding, 224
ComboBox, 425

default behavior, 426
as drop-down pane, 427-429
as file name box, 426-427
as text box, 426

copying, 762
custom image management,

284-286
differentiating, 216-217
disabling in Ribbon UI, 292
drag-and-drop operations, 431
event hooks for, 232-241, 795

Paste Special toolbar exam-
ple, 235-241

Tag property and, 233-235

Frame
creating wizard dialogs, 409
as custom drop-down

panel, 429
host controls, 1006-1008

ListObject, 1013-1016
NamedRange, 1011-1012

IDs, determining, 210
keyboard shortcuts, 216
label controls, simulating split-

ter bars with, 405-406
locking versus disabling on

UserForms, 398-399
MultiPage

creating wizard dialogs,
409-411

Windows Common Controls
and, 430

naming conventions, 38
pasting, 762
tab order, setting, 826
in UserForms

accelerator keys, 386
data binding, 386
data validation, 388-392
event handling, 386-388
exposing properties and

methods of, 382-384
layering, 385
naming, 384
positioning, 385
tab order, 386

when to use, 98-100
Windows Common Controls,

430-431
Windows Forms controls,

1008
converting

between pixels and points,
338-340

coordinate systems, 694-696,
702-704

Excel add-ins to COM
add-ins, 797

hexadecimal format to
VBA, 334

ranges to Lists, 664
coordinate systems, converting

among, 694-696, 702-704

Index 1117

copy functionality, handling,
154-156

Copy Local property
(auto-generated
references), 897-898

Copy to range (advanced
filters), 674

CopyFromRecordset method
(Range object), 624

copying
controls, 762
filtered data, 674
to/from arrays (VB.NET), 842

count parameter (Excel4
function), 1051

COUNTA function, 693-694
COUNTIF function, 680
counting visible workbooks

(time sheet example
application), 136

CPerfMon.cls file, 547
crash handling, 148
CreateCellsCollection

procedure, 171
instantiating collections, 174
Terminate method, 184
trapping events, 179

CreateItem method (Outlook
Application object), 736

CreateObject function, 717-718
CreateParameter method

(ADO Command object),
605-606, 628

creative thinking for improving
performance, 551-556

asking questions, 556
breaking the rules, 554-555
data, knowledge of, 555-556
jigsaw puzzle example,

551-552, 554
“think outside the box”

example, 552-554
tools, knowledge of, 556

criteria ranges (advanced filters),
674-678

database functions in, 679
cross-process calls, performance

issues, 723-725

cross-version applications, 303
combining command bars and

Ribbon UI, 304
heavy weight design,

307-319
light weight design, 304-307

file system access in, 320-326
installing, 330
macro-free files and, 319-320
Public profile, 329
standard user accounts,

328-329
User Account Control (UAC),

326-328
CTPs (custom task panes),

998-1006
Ctrl key, checking state of,

350-351
Ctrl+Alt+A keyboard shortcut

(Command window), 848
Ctrl+Alt+B keyboard shortcut

(Breakpoints window),
849-850

Ctrl+Alt+E keyboard shortcut
(Exceptions dialog),
850-851

Ctrl+Alt+K keyboard shortcut
(Task List), 855

Ctrl+Alt+O keyboard shortcut
(Output window), 849

Ctrl+Alt+W keyboard shortcut
(Watch window), 850

Ctrl+F8 keyboard shortcut (Step
to Cursor command),
516, 543

Ctrl+F9 keyboard shortcut (Set
Next Statement com-
mand), 516-517, 543

Ctrl+G keyboard shortcut
(Immediate window),
517, 542, 849

Ctrl+L keyboard shortcut (Call
Stack window), 521,
543, 850

Ctrl+Shift+F2 keyboard
shortcut (return to last
position), 543

Ctrl+Shift+F8 keyboard shortcut
(Step Out command),
515, 543

Ctrl+Shift+F9 keyboard
shortcut (clearing break
points), 542

Ctrl+W Ctrl+E keyboard
shortcut (Error List
window), 848

CTS (common data type
system), 818

CType function, 859
CTypeTrigger class module,

185-188
CurrentDb property (Access

Application object), 726
Cursor property (Application

object module), 520
CursorLocation property (ADO

Recordset object), 608
cursors

changing to hourglass, 546
defined, 608

CursorTypeEnum constant
values, list of, 611

Custom Actions Editor, 908
custom document properties,

161-163
adding (time sheet example

application), 137
custom errors, raising, 474, 484
custom icon images in Ribbon

user interface, 925-927
custom interfaces, 434

defining, 437-438
Implements keyword, 438-440
IntelliSense and, 448-460
plug-in architecture of,

460-461
robustness of, 448
sorting arrays example,

440-443
time sheet example

application, 462
custom task panes (CTPs),

998-1006
Custom UI Editor, creating

templates, 299
custom wizards. See dynamic

UserForms; wizard
dialogs

custom worksheet functions.
See XLLs

1118 Index

customized toolbars, storing and
restoring, 147

customizing user interface for
dictator applications, 151-
156. See also modifying

CustomUI Editor, 276
customUI folder (Ribbon UI),

277
customUI XML part, 290-291
cut functionality, handling,

154-156
CVErr values, 933

D
daActivities object (Web Services

time sheet example
application), 1075

daClients object (Web Services
time sheet example
application), 1075

daConsultants object (Web
Services time sheet exam-
ple application), 1075

DAO.Database object (Access
object model), 726

daProjects object (Web Services
time sheet example
application), 1075

data
exporting with ADO, 948-952
knowledge of (creative think-

ing), 555-556
pre-processing for perform-

ance optimization, 557
separating from applications

with XML, 254-256
volume of, effect on

performance, 558-560
XML data files

from financial model
example, 268

importing/exporting,
255-256, 262-263

data access and storage tier
defined, 41
physical design, 617-620
reasons for using, 616-617

data access technologies
ADO. See ADO
defined, 599
explained, 598

data area for dynamic lists, 77
data arrangement. See data

structures
data binding controls in

UserForms, 386
data consolidation, 672-673
data coordinates, converting

among mouse and
drawing object coordi-
nates, 702

data entry cells, handling cut,
copy, paste functionality,
154-156

data entry forms, worksheets as,
4-5

data handling features. See data
structures

data input cells, clearing all,
124-125

time sheet example applica-
tion, 134

data manipulation. See data
processing

data point markers, images
as, 702

data processing, 667
Advanced Filters, 673-678

database functions in, 679
array formulas, 680-683
circular references, 683-686
data consolidation, 672-673
database functions, 678-679
on formulas, 667
PivotCaches, 668
PivotTables, 668-672

data providers, .NET, 865
data retrieval

with ADO.NET, 864-870
time sheet example

application, 882-883
data stores, worksheets as, 5
data structures, 661-662

Lists, 664
QueryTables, 664-667
structured ranges, 662-663

formulas in, 667
unstructured ranges, 662

data types
explicit versus implicit

conversions, 568
matching, 568

naming conventions, 29-30
Variant, 54-55
VB.NET, 838-839
in XLLs, 1037
XLOPER, 1044-1050

arrays and, 1048-1049
C++ keywords and, 1061
constants defined in, 1046
error values, 1048
memory management,

1049-1054
numeric data in, 1047
string data in, 1047
xlCoerce function,

1052-1053
xlFree function, 1052
xlGetName function, 1053

data validation, 63, 88-92. See
also validation

cascading lists for, 90-92
for controls in UserForms,

388-392
time sheet example applica-

tion, 104
unique entries, enforcing, 89

data validation lists, 590
Data Warehouses, 977
DataAdapter object, 867-870

mapping schema fields to,
1075

database connections. See
Connection object (ADO)

database functions, 678-679
databases. See also external data

Access databases
adding data, 625-626,

652-656
advantages of, 620
connecting to, 620-622,

648-649
deleting data, 629-630
inserting data, 625-626
modifying data, 626-629
retrieving data, 622-625,

650-652
upsizing to SQL Server,

642-646
adding data to, 596-597
client-server databases, 579
deleting data from, 597-598

Index 1119

duplicate rows in, 580
file-based databases, 579
modifying data in, 597
normalization, 579-587

exceptions to, 586-587
first normal form, 580-581
second normal form,

582-583
third normal form, 584-586

Northwind sample database,
615-616

primary keys, natural versus
artificial, 592-594

processing data from. See data
processing

reasons for using, 578
referential integrity, 587-592
relational databases, 578-579
relationships, 587-592

many-to-many, 590-591
one-to-many, 589-590
one-to-one, 588-589

resources for information,
613-614, 647-648

retrieving data from, 595-596
SQL. See SQL
SQL Server databases

advantages of, 630
connecting to, 630-631
connection pooling, 632-633
default instances versus

named instances, 642
disconnected recordsets,

640-642
error handling connections,

633-635
multiple recordsets, 638-640
parameter refreshing,

637-638
security types, 631
stored prcedures, 635-637

worksheets versus, 577-578
DataEntry application

context, 244
DataReader object, 865-867
DataSet object, 867-870

creating from schemas, 1075
DataTable object, 835, 867-870
dates in criteria ranges, 677

DAVERAGE function, 679
DCOM (Distributed Component

Object Model), 710
debug builds, 851
DEBUG conditional compilation

constant, 851
debug mode, 508-512

conditional compilation
constants, 511-512

Stop statement, 510-511
supporting, 149-151
user-defined debug mode,

509-510
Debug toolbar, displaying, 514
Debug.Assert method, 540-541
Debug.ini, 157, 369
Debug.Print statement, 518
debugging. See also error

handling
assertions, 540-541
break mode, error trapping

settings, 507-508
break points, setting/removing,

512-513
Call Stack window, 521-522
debug mode, 508-512

conditional compilation con-
stants, 511-512

Stop statement, 510-511
user-defined debug mode,

509-510
dictator applications, 22
frequency of, 65
Immediate window, 517-520

code execution in, 519-520
Debug.Print statement, 518
variable evaluation in, 519

keyboard shortcuts, list of,
542-543

Locals window, 532-533
message box debugging, 517
Object Browser, 533-537
properties (VB.NET), 947
with Resume statements, 473
run mode versus break

mode, 507
Set Next Statement command,

516-517

stepping through code,
513-516

Step Into command,
514-515

Step Out command, 515
Step Over command, 515
Step to Cursor command,

516
test harnesses, building,

537-540
VB.NET solutions, 845-853

Breakpoints window,
849-850

Call Stack window, 850
Command window, 848
conditional compilation con-

stants, 851-852
Error List window, 848
Exception Assistant,

846-847
Exceptions dialog, 850-851
Immediate window, 849
keyboard shortcuts,

setting, 845
Object Browser, 847-848
Output window, 849
unmanaged code, enabling

debugging, 846
Watch/Quick Watch

windows, 850
Watch window, 522-532

Context options, 526-527
editing watches, 525-529
modifying lvalue expres-

sions, 524-525
Quick Watch window,

531-532
setting watches, 522-524
Watch Type options,

527-529
watching arrays, UDTs,

classes, 529-531
XLLs, 1060-1061

Decimal data type
(VB.NET), 839

declarations
for API calls, finding, 333
defined, 6

1120 Index

declarative programming
language, worksheet
functions as, 6-7

Declarative Referential Integrity
(DRI), 644

Declare statement for API calls,
331-332

declaring
arguments, 62-63
object variables, 55
variables

with conditional compilation
constants, 511

including object libraries in,
711-712

VB.NET, 834-836
WithEvents object

variable, 177
default instances

classes versus, 379-381
SQL Server name, 642

default interfaces, 434
default object properties,

calling, 63
default properties for collections,

175-177, 771-772
default values, setting application

properties to, 130
defensive coding, 62-65
defined constants in command

bar definition table, 201
defined names, 71-78

in advanced filters, 675
in charts

auto-expanding charts,
692-694

plotting functions, 696-698
scrolling/zooming in time

series, 694
SERIES function, 691-692
setting up links, 691-692
transforming coordinate

systems, 694-696
for linking PivotTables to

QueryTables, 671
named constants, 72-73
named formulas, 76-77
named ranges, 73-75
naming conventions, 39
scope of, 77-78

time sheet example applica-
tion, 102-103

defining custom interfaces,
437-438

DELETE FROM clause
(SQL DELETE
statement), 598

DELETE statement (SQL),
597-598

for Access databases, 629-630
deleting

command bars, 208-209
database data, 597-598

from Access databases,
629-630

files to Recycle Bin, 360-361
toolbars, 127

dependencies, detected
dependency files, 900

dependency checks, 142-143
deployment manifest, 992, 1017

signing, 1022
deployment models for VSTO,

1016
ClickOnce, 1016-1025

derived data
defined, 585
normalization and, 587

described format, XML as, 250
Description property (Err

object), 466
descriptions

for COM add-ins, 789
for function library add-ins,

creating, 115-116
design

command bar best practices,
198-199

cross-version applications
heavy weight design,

307-319
light weight design, 304-307

data access tier, 617-620
icon design for command

bars, 198
Ribbon UI best practices,

278-289
UI design. See UI design

UserForms best practices,
375-384

wizard dialog best practices,
407-408

design-time versions of ActiveX
controls, 760

desktop environment require-
ments, when to use
VSTO, 984

destroying ADO Connection
object (time sheet exam-
ple application), 649

destructors in VB.NET, 941-943
Details window (Object

Browser), 535
detected dependency files, 900
developers. See Excel developers
development tools, 108

managed COM add-ins,
890-891, 962-963

VS IDE, 871
Code Region, 853
Code Snippets Manager,

853-855
Insert File as Text, 855
MZ-Tools, 871
Task List, 855
VSNETCodePrint, 871
XML Editor, 920

VSTO, 1026
development/maintenance stage

(applications), 107-108
device contexts, 338
dialog boxes. See UserForms;

wizard dialogs
dictator applications, 20-23, 141

debugging, 22
processing and analysis in, 156
reports and charts, 157
requirements of, 21-22
Ribbon UI, creating, 291-294
startup and shutdown

processes, 142-151
structure of, 141-142
time sheet example applica-

tion, 157-163
user interface customizations,

151-156
Dictionary object, 320

performance advantages
of, 570

Index 1121

differentiating controls, 216-217
digital certificates, installing,

1018
Digital Signature Wizard, 961
digital signatures, 953, 960-961,

1097-1098
Dim keyword (VB.NET), 834
Direction argument (ADO

CreateParameter
method), 628

disabling
automatic calculation, 571
close button in

UserForms, 396
COM add-ins, 787
controls

in Ribbon UI, 292
on UserForms, 398-399

drag-and-drop functionality,
154-156

On Error Resume Next
statement, 509

screen refresh, 571
toolbar buttons, 192
Toolbar List command

bar, 208
disconnected mode (ADO.NET),

865-870
disconnected recordsets, 640-642
discoverable format,

XML as, 250
display names for COM

add-ins, 788
displaying

Debug toolbar, 514
forms (VB6), 751-758
help topic files from VBA,

1092-1094
line numbers in XML

Editor, 921
message boxes, ActiveX DLL

example, 744-747
Windows Forms, 971-972

Dispose method (destructors),
943

Distributed Component Object
Model (DCOM), 710

distributing applications, 1104
updates, 1104-1105

DistributionListItem object
(Outlook object
model), 736

DLLMain function in XLLs,
1039-1040

DLLs. See also assemblies; XLLs
ActiveX DLLs, 742

advantages of using,
758-774

COM add-ins. See COM
add-ins

compiling, 744, 750
form display example,

751-758
in-process communication,

774
loading icons with resource

file, 802-807
one-way communication

example, 744-747
projects, creating, 742-744
referencing, 745-746
registering, 744
setting references, 747
two-way communication

example, 747-751
LastDLLError property (Err

object), 466
in PerfMon utility, 547
resource DLLs, 790

Doc-to-Help, 1085
docking

command bars, 205
toolbars, 198

DoCmd object (Access object
model), 727

Document Libraries, 976
Document object (Word object

model), 729
document-centric project

templates, 979-981
document-centric solutions,

when to use VSTO, 984
documentation for API calls,

finding, 332
documenting changes with code

comments, 66
documents (VSTO), 979
Documents collection (Word

object model), 729
Documents folder (Windows

Vista), 328
dot operator (.), performance

and, 571

Double data type, performance
and, 573

drag-and-drop functionality
between controls, 431
disabling, 154-156

drawing object coordinates
converting among data and

mouse coordinates, 702
locating chart items within,

704-706
drawing objects, naming conven-

tions, 38
DRI (Declarative Referential

Integrity), 644
drop-down pane, ComboBox

control as, 427-429
DropButtonClick event, 426
drop-down controls, adding to

toolbars, 225
DSOFile.dll, 162
dummy XY series, creating,

701-702
duplicate code, eliminating, 44
duplicate rows in databases, 580
dynamic lists

defined, 76
elements of, 77

dynamic tables, creating with
conditional formatting,
93-96

dynamic UserForms, 411
event handling, 416-419
scroll regions in, 415
subset UserForms as, 411
table-driven dynamic wizards,

411-415
dynamically modifying

worksheet UI, 124-125

E
early binding, 569

late binding versus, 59-61,
714-717

in managed COM add-ins, 898
in .NET Framework, 863

editing. See modifying
elements (XML), 251

root element, 252
embedded objects, naming

conventions, 38

1122 Index

EnableCancelKey property
(Application object), 22

EnableEvents property
(Application object), 528

enabling
circular references, 684
COM add-ins, 787
connection pooling, 632
error handlers, 468
keyboard shortcuts, 823
screentips, 823
unmanaged code

debugging, 846
encapsulation, 172

of API calls, 335-337
defined, 44
IntelliSense and, 448-460
of UserForms, 382-384

encrypting passwords, 783
end of file (EOF), 624
End Try statement (structured

exception handling), 830
Enterprise Resource Planning

(ERP) systems, 977
entry point procedures

in complex error handling
system, 477

for light weight UI design, 305
in heavy weight UI design,

311, 315
simple error handling in,

475-476
enumeration constants, mapping

help topic IDs to, 1092
enumeration members, CCell

class module, 167
enumerations, 32

assigning values to, 34
naming conventions

example, 34
UserForms and, 383

EnumWindows API call, 363
environment modifications

during startup process,
148-151

EOF property (ADO Recordset
object), 607, 624

equal sign (=) in criteria
ranges, 677

ERP (Enterprise Resource
Planning) systems, 977

Err object, 466-467
clearing, 467
raising custom errors, 474

error bars, creating step charts
with, 699-701

error conditions, highlighting
with conditional
formatting, 96-98

error handled command bar
builder, 219

error handlers
activating, 468
central error handler, 481-488

time sheet example
application, 496-506

defined, 467-468
enabling, 468
procedure error handlers,

477-480
scope, 468-469

error handling. See also debug-
ging; exception handling

catching errors, 480
in classes and UserForms,

488-489
closing application instances,

718-719
complex error handling

system, 476-488
central error handler,

481-488, 496-506
entry point procedures

in, 477
procedure error handlers,

477-480
trivial procedures, 480-481

custom errors, raising,
474, 484

demo program, 490-496
Err object, 466-467

clearing, 467
error handlers

activating, 468
defined, 467-468
enabling, 468
scope, 468-469

importance of, 465

On Error statements, 469-472
On Error GoTo

<Label>, 470
On Error GoTo 0, 472
On Error Resume Next,

470-472
Resume statements, 472-474

debugging with, 473
Resume <Label>, 474
Resume Next, 473

simple error handling, 475-476
single exit point principle, 475
SQL Server database

connections, 633-635
trapping errors, 480
unhandled errors versus

handled errors, 465
Error List window, 848
error log file, 485

in error handling demo
program, 495-496

error numbers, availability
of, 474

error trapping settings, 507-508
error values in XLOPER data

type, 1048
ErrorExit label, 475
ErrorProvider component, 877
errors, ignoring (time sheet

example application), 136
Errors collection (ADO

Connection object),
604, 634

ETC (Evil Type Coercion), 55
EVALUATE function, 698
evaluating variables/expressions

in Immediate window,
519

event handling
for controls in UserForms,

386-388
for dynamic UserForms,

416-419
event hooks for controls,

232-241, 795
Paste Special toolbar example,

235-241
Tag property and, 233-235

event model for XML Maps,
266-267

Index 1123

event procedures, error handling
in, 488-489

events
AddinInstance object, 792-794

Initialize event, 792
OnAddInsUpdate event, 794
OnBeginShutdown event, 794
OnConnection event,

792-793
OnDisconnection event, 794
OnStartupComplete

event, 793
Terminate event, 794

ADO Connection object, 604
ADO Recordset object, 612
application-level event han-

dling (time sheet example
application), 190-193

raising, 180-188
trapping, 177-182, 492
workbook events, add-ins

and, 784
evidence in VSTO security

model, 1017
Evil Type Coercion (ETC), 55
examples. See time sheet

example application
Excel

as application development
platform, 4-7

multiple instances of, 781
supported versions, 9-10

Excel 2007 SDK, 1030, 1062
Excel = Microsoft.Office.Interop.

Excel namespace, 992
Excel developers

categories of, 2-4
defined, 3

Excel Function Wizard, register-
ing UDFs with, 112-114

Excel object library,
referencing, 776

Excel object model, 7. See also
objects

Excel security, 1094-1095
Excel Services, 976
Excel versions

maintaining backward
compatibility with, 62

targeting for managed COM
add-ins, 909

Excel4 function, 1050-1051
Excel9.olb file, 857
exception handling, 829-833. See

also error handling
exceptions

COM exceptions, 832
defined, 829
nested exceptions, 833

Exceptions dialog, 850-851
Exchange Server, 976
exclamation point character (!),

volatile functions, 1038
excluding dependency files, 900
EXE applications (VB6),

775-783
front loaders, 782-783,

808-815
out-of-process communication,

774
Roman numeral conversion

example, 775-782
Execute method (ADO

Command object),
606-607, 628

Execute method (ADO
Connection object),
602-604, 626

ExecuteComplete event, 604
ExecuteOptionEnum constant

values, list of, 603
execution point

changing, 516-517
defined, 514-515

exit points, single exit point
principle, 475

explicit data type
conversions, 568

exporting
data

with ADO, 948-952
time sheet example

application, 884-887
XML data files, 256, 262-263

Express Edition (SQL Server),
630

expressions
evaluating in Immediate

window, 519
lvalue expressions, modifying,

524-525

watching
in arrays, UDTs, classes,

529-531
editing watches, 525-529
setting watches, 522-524

extender providers for Windows
Forms, 876-879

Extensibility namespace, 893
external data, importing into

QueryTables, 664-667
external data retrieval, perform-

ance and, 557
ExtractIcon API call, 348
extracting command bars logic to

loader add-ins, 308-312

F
F2 keyboard shortcut (Object

Browser), 533, 543, 847
F5 keyboard shortcut (run code),

514, 542
F8 keyboard shortcut (Step Into

command), 514-515, 542
F9 keyboard shortcut (setting

break points), 513, 542
Face ID setting (command bar

definition table), 213-215,
222-228, 236-237

FetchComplete event, 612
FetchProgress event, 612
Fields (in .NET Framework),

941
FIFO (First In First Out) data

access method, 845
file formats, selecting, 275
file name box, ComboBox con-

trol as, 426-427
file system access in cross-version

applications, 320-326
File System Editor, 908
file system-related API calls, 355

deleting files to Recycle Bin,
360-361

folders, browsing for, 361-369
time sheet example applica-

tion, 369-371
special folders, locating,

357-360
UNC paths, changing to, 356-

357

1124 Index

user ID, finding, 355-356
File Types Editor, 908
file-based databases, 579
filename extensions, MIME

types and, 1021
files, deleting to Recycle Bin,

360-361
FileSystemObject (FSO)

object, 320
methods, 321

FillDocument.dot, 723
filter pane, ComboBox control

as, 427-429
Filter property (ADO Recordset

object), 608
filters, Advanced Filters, 673-678

database functions in, 679
Finalize method (destructors),

943
finalizers, 861
Finally statement (structured

exception handling), 830
Financial Applications Using

Excel Add-in
Development in C/C++
(Dalton), 1062

financial model example,
256-257

preventing results import, 269
XML data file from, 268
XML Maps, 259-267
XSD file, 263-265

creating, 257-259
FindWindow API call, 342
FindWindowEx API call, 343
First in First Out (FIFO) data

access method, 845
first normal form, 580-581
floating-point arithmetic, integer

arithmetic versus, 570
folders

browsing for, 361-369
time sheet example applica-

tion, 369-371
special folders, locating, 357-

360
Folders property (Outlook

MAPIFolder object), 736
For…Each loops

iterating collections, 570
referencing collections, 176

foreign keys
defined, 581
explained, 587-588

form-based help system (time
sheet example applica-
tion), 879

form-based user interfaces,
worksheet-based user
interfaces versus, 154-156

formatting
conditional formatting, 92-98

dynamic tables, creating,
93-94, 96

error conditions,
highlighting, 96-98

time sheet example applica-
tion, 105

with styles, 78-83
tables, 85-86

forms (VB6). See also
UserForms; Windows
Forms

displaying, 751-758
as modeless, 756
Ruby Forms, 759
as top-level windows, 756
UserForms versus, 759-769

ActiveX control
support, 760

control arrays, 761-769
Forms controls, advantages

of, 100
forms packages, 759
Forms toolbar controls,

advantages of, 100
formula columns in QueryTables,

670-672
formulas

assigning to shapes, 88
data processing on, 667
named formulas, 76-77
in structured ranges, 667

forums for VB.NET information,
871

forward compatibility
application instances, 722
object libraries, 713-715

Frame control
creating wizard dialogs, 409
as custom drop-down

panel, 429
in UserForms, 385

Framework. See .NET
Framework

Friend keyword (VB.NET), 834
FROM clause (SQL SELECT

statement), 595
Access database example, 623

front loaders, 782-783, 808-815
FSO (FileSystemObject)

object, 320
methods, 321

fully qualified object variable
names, 56

fully qualifying property/method
calls, 712-713

fully relative named ranges, 73
function categories for managed

automation add-ins, 934
function library add-ins, 110-117.

See also UDFs
names and descriptions,

creating, 115-116
function return value system

(error handling), 499
function tables in XLLs,

1035-1039
functional decomposition, 43
functions

code comments in, 46
as declarative programming

language, 6-7
naming conventions, 35-36
plotting in charts, 696-698
XLL-based. See XLLs

function_help entry (XLL
function table), 1038

function_text entry (XLL
function table), 1038

G
GAC (Global Assembly

Cache), 856
garbage collection (GC), 818,

861, 943
gbDEBUG_MODE constant

(central error handler),
484, 509-510

Index 1125

GDI+ (Graphics Device
Interface), 286

general purpose add-ins, 16-18,
117-118

General tab (Add-in Designer),
788-790

Get blocks (VB.NET properties),
946-947

GET.CHART.ITEM XLM
function, 704-706

GetCurrentProcessID API
call, 343

GetCustomUI function
(IRibbonExtensibility
interface), 922

GetDC API call, 339
GetDefaultFolder() property

(Outlook NameSpace
object), 736

GetDesktopWindow API
call, 343

GetDeviceCaps API call,
338-339

GetDirectory API call, 368
getEnabled callback

for Ribbon UI, 314-316
troubleshooting, 288

GetKeyState API call, 350-351
GetLowerBound method

(VB.NET arrays), 841
GetNamespace property

(Outlook Application
object), 736

GetObject function, 720-721
GetOpenFilename API call, 361
GetSaveAsFilename API

call, 361
GetSetting property

(ThisWorkbook
object), 17

GetStaticData function (Web
Services time sheet exam-
ple application), 1073

GetSystemMetrics API call
calling, 335
constants, finding value of, 333
declaration, 332
encapsulating, 336
screen resolution, reading, 337

GetTempPath API call, 358-360

GetType function, hiding,
934-935

GetType method (VB.NET
arrays), 844

GetUpperBound method
(VB.NET arrays), 841

GetUserName API call,
355-360

GetValue method (VB.NET
arrays), 842

GetWindowLong API call, 349
GetWindowThreadProcessID

API call, 343
glHANDLED_ERROR

constant (central error
handler), 484

Global Assembly Cache
(GAC), 856

global callback handlers, 286-287
for shared tabs, 281-283

global format, XML as, 250
GlobalMultiUse instancing type,

770-771
glUSER_CANCEL

constant (central error
handler), 484

graphics
background graphics, prepar-

ing for user interface,
151-153

displaying on UserForms,
397-398

Graphics Device Interface
(GDI+), 286

greater than/less than symbols
(<, >) in criteria ranges,
677

gridlines, simulating, 84
GROUP BY clause (SQL

SELECT statement), 596
GUID, 714

for Connection class, creating,
935-937

managed COM add-ins
registry keys, 899

H
handled errors, 465
handles, 334-335

window handles, 340

handling events. See event
handling

HAVING clause (SQL SELECT
statement), 596

headers, worksheet UI
setting, 120

heavy weight cross-version UI
design, 307-319

help files, 1085-1086. See also
HTML Help Workshop

creating, steps for, 1086
explained, 1086
form-based help system (time

sheet example applica-
tion), 879

help project files
compiling, 1090
creating, 1086
setting initial options,

1087-1088
Index, creating, 1088-1091
Table of Contents, creating,

1088-1091
topic files

creating list of, 1089-1090
displaying from VBA,

1092-1094
ID numbers for, 1090-1092
introductory file, creating,

1088
“No Help Available” file,

creating, 1088
writing content for, 1091

help project files, 1086. See also
help files

compiling, 1090
creating, 1086
setting initial options,

1087-1088
help system, Object Browser

and, 533
help text, cell comments as,

86-87
HelpContext property (Err

object), 466
HelpFile property (Err

object), 466
HelpNameSpace property

(HelpProvider compo-
nent), 879

1126 Index

HelpProvider component, 877
help_topic entry (XLL function

table), 1038
hexadecimal format, converting

to VBA, 334
hidden columns, worksheet UI

setting, 119. See also
program columns

hidden rows, worksheet UI
setting, 119. See also
program rows

hiding. See also visibility
GetType function, 934-935
Ribbon UI, 294-295
UserForms, 381
windows, 823

hierarchical format, XML as, 250
high-order bits, 351
Highlight method (Cell

object), 174
highlighting error conditions

with conditional format-
ting, 96-98

hit counts, defined, 850
HKEY_CLASSES_ROOT\

CLSID\ registry key, 899
HKEY_CURRENT_USER\

Software\Microsoft\Office
\10.0\Excel\Add-in
Manager, 1102

HKEY_CURRENT_USER\
Software\Microsoft\Office
\10.0\Excel\Options, 1102

HKEY_CURRENT_USER\
Software\Microsoft\Office
\11.0\Excel\Add-in
Manager, 788, 1100

HKEY_CURRENT_USER\
Software\Microsoft\Office
\11.0\Excel\Options, 788,
1101

HKEY_CURRENT_USER\
Software\Microsoft\Office
\Excel\Addins, 900, 992,
1102

HKEY_CURRENT_USER\
Software\Microsoft\Office
\Excel\AddIns\FirstAddin.
Connect, 905

HKEY_LOCAL_MACHINE\
SOFTWARE\Microsoft\
Office\Excel\Addins, 1102

hooking events for controls,
232-241, 795

Paste Special toolbar example,
235-241

Tag property and, 233, 235
host applications, 710
host controls, 1006-1008

ListObject, 1013-1016
NamedRange, 1011-1012

host items, 1006-1008
hourglass, changing cursor

to, 546
HTML Help Workshop,

installing, 1086. See also
help files

HtmlHelp API function, 1092
hWnd (window handle), 340

I
IA (Interop Assembly), 856
icon design for command

bars, 198
icons. See also bitmaps;

resources
adding to toolbar buttons, 225
associating with controls,

213-215, 228-232, 236-
237, 796, 802-807, 863-
864

control custom image manage-
ment, 284-286

creating bitmaps for, 228-230
custom icons images in

Ribbon user interface,
925-927

transparent backgrounds,
setting, 214-215

window icons, changing,
348-349

ICustomTaskPaneConsumer
interface, 999

ID/Tag property combination,
hooking events into, 234

identifiers, defined, 31
identifying workbooks with cus-

tom document properties,
161-163

IDisposable interface, 943
IDs

for controls, determining, 210
hooking events into, 234

IDTExtensibility2 interface,
890-891

event procedures, 893
If…ElseIf…End statement, per-

formance and, 571
IFERROR function, 111

example (XLLs), 1057-1060
IgnoreOtherApplications proper-

ty (Application object), 21
IgnoreRemoteRequests property

(Application object), 149
ignoring errors (time sheet exam-

ple application), 136
IIf() function, performance

and, 571
ImageCombo control, 430
ImageList control, 430
images, as data point markers,

702. See also icons
Immediate window, 210,

517-520, 849
code execution in, 519-520
Debug.Print statement, 518
variable evaluation in, 519

Implements keyword, 438-440
implicit data type

conversions, 568
importing

code from text files, 855
external data into

QueryTables, 664-667
namespaces, 827-828
PerfMon results, 550
XML data files, 255, 262-263
XML results, preventing, 269
XSD, 255

Imports statement, 858
VB.NET solutions, 828

in-place activation, 980
in-process communication, 774
inclusion lists, 1017
indentation of code, 51
index arrays, 566-567
Index file (in help files), creating,

1088-1091
indexes, unique, 594

Index 1127

INDIRECT() function, 683
infinite loops, 473-474, 510

avoiding, 64-65
initial load behavior of COM

add-ins, 789-790
Initialize event

AddinInstance object, 792
error handling, 489-492

initializing, 174
ADO Connection object (time

sheet example applica-
tion), 648

applications (time sheet exam-
ple application), 125-127

Connection object (ADO), 618
object variables, 55
user interface workbooks (time

sheet example applica-
tion), 128-130

variables (VB.NET), 834-836
INNER JOIN statement (SQL),

595
InnerException property (nested

exceptions), 833
InprocServer32 key, 899
Insert File as Text, 855
INSERT INTO clause (SQL

INSERT statement), 596
INSERT statement (SQL),

596-597
for Access databases, 625-626

time sheet example
application, 652-656

inserting code snippets, 854
installation

COM add-ins for multiple
users, 791-792

cross-version applications, 330
digital certificates, 1018
distributing application

updates, 1104-1105
distributing applications, 1104
file locations, selecting,

1099-1100
HTML Help Workshop, 1086
manual installation, 1103
Northwind sample

database, 615
PerfMon utility DLLs, 547

requirements
for add-ins, 1100-1102
for templates, 1100

Setup.xls workbook
installation, 1103

VSTO project templates, 982
VSTO solutions, 1025
Web Services Toolkit, 1069
with Windows Installer, 1104

installed applications,
determining, 722

installers. See setup projects
instances (of applications),

717-722
application availability,

determining, 722
closing, 718-719
creating, 717-718
of Excel, starting multiple, 781
multiversion support, 722
of Outlook, starting, 813
referring to existing, 720-721
of Word, starting, 813

instances (of classes)
creating (VB.NET), 836-837
types of (ActiveX DLLs),

769-771
instantiation, 174

auto-instantiation, 379
Int32 values, 933
integer arithmetic, floating-point

arithmetic versus, 570
Integer data type (VB.NET,) 839
integer division operator (\), 570
intellectual property. See security
IntelliSense, 448-460

early bound object variables
and, 60

interfaces. See also class
modules; objects

casting, 447
custom interfaces, 434

defining, 437-438
Implements keyword,

438-440
IntelliSense and, 448-454,

456-460
plug-in architecture of,

460-461
robustness of, 448

sorting arrays example,
440-443

time sheet example
application, 462

default interfaces, 434
defined, 433-434
polymorphism, 443-448

intermediate tables, 591
internal comments, 47-49
Internet security zone, VSTO

security and, 1019-1022
Interop Assembly (IA), 856
Interop Excel Application object,

1010
accessing in VSTO add-ins,

986-987
interoperability. See automation
introductory help file, creating,

1088
invalidation, 287-289

in heavy weight UI design, 316
IPicture objects, 286
IRibbonExtensibility interface,

909, 922
IRibbonUI object, 314-316
IsAddin property (ThisWorkbook

object), 17, 115
IsEnabled setting (command bar

definition table), 209
IsMenubar setting (command

bar definition table), 206
IsNumber function, 167
IsNumeric function, 167
isolation, 889

business logic, 44
managed COM add-ins,

952-953
IStartup interface, 982-985
IsTemporary setting (command

bar definition table), 209
Items collection (Outlook object

model), 736
iterating Collection object, 570

J
jigsaw puzzle example (creative

thinking), 551-554
joins

Access database example, 623
defined, 595

1128 Index

JournalItem object (Outlook
object model), 736

jump to instructions, 714

K
K data type arguments in XLLs,

1039
key columns, defined, 580
key presses, testing for,

352-355
key states, checking with API

calls, 350-351
time sheet example

application, 371-373
KeyAscii argument (KeyPress

event), 779
keyboard navigation mode, 284
keyboard shortcuts. See also

accelerator keys
break points

clearing, 542
setting, 513, 542

Breakpoints window, 849-850
Call Stack window, 521,

543, 850
Command window, 848
controls, 216
debugging

list of, 542-543
setting, 845

enabling, 823
Error List window, 848
Exceptions dialog, 850-851
Immediate window, 517,

542, 849
Object Browser, 533, 543, 847
Output window, 849
procedure definition, 543
Quick Watch window, 531, 543
return to last position, 543
run code, 514, 542
Set Next Statement command,

516-517, 543
Step Into command,

514-515, 542
Step Out command, 515, 543
Step Over command, 515, 542
Step to Cursor command,

516, 543
Task List, 855
Watch window, 850

keyboard-related API calls, 349
key presses, testing for,

352-355
key states, checking, 350-351

time sheet example
application, 371-373

KeyDown events, 387
KeyPress event, 387, 778-779
keytips, 284
keywords, adding to HTML files,

1091
kill switches, 685
knowledge of data (creative

thinking), 555-556
knowledge of tools (creative

thinking), 556

L
label controls, simulating splitter

bars with, 405-406
Last In First Out (LIFO) data

access method, 844
LastDLLError property (Err

object), 466
late binding

early binding versus, 59-61,
714-717

in front loaders, 812
in .NET Framework, 863

Launch Condition Editor, 905
launch conditions, creating, 904
layering controls in

UserForms, 385
LEN() function, 682
length of strings, checking, 569
length prefixes for strings, 1043
Lewis, Keith, 1063
library procedures, 770
LIFO (Last In First Out) data

access method, 844
light weight cross-version UI

design, 304-307
limiting criteria ranges, 677
line continuation of code, 51-52
line numbers

adding to code, 823
displaying in XML Editor, 921

linking charts to defined names,
691-692

LINQ (.NET Language
Integrated Query), 870

list formula for dynamic lists, 77
list of topic files (in help files),

creating, 1089-1090
list ranges (advanced filters), 674
listings

accessing Excel Application
object from ThisAddin
module, 987

Accessing the Excel
Application object from
class module, 987

add what using Command
window, 849

adding custom icons to
CommandBarButtons,
231-232

adding index keywords to
HTML file, 1091

additions to CCells class mod-
ule for event trapping,
178-179

AddMoreRows procedure,
133-134

advanced filtering with
VBA, 675

alignment and indentation of
code, 51

Analyze method of Cell
object, 170

AnalyzeActiveCell
procedure, 168

AppFunction code, using
Excel Application within
automation addins,
801-802

ArrayList object, working with,
843-844

assigning event-handler classes
to controls created at
runtime, 417-418

associating icon resource file
to Windows Form, 864

auto-generated attributes in
the Connect class, 899

BackgroundWorker code
usage, 880-882

base connection string syntax
for SQL Server, 630

bCauseAnError function,
492-493

Index 1129

BILLABLE_HOUR type
structure, 653

BILLABLE_HOURS UDT,
code using, 529

binary search algorithm,
563-565

BinarySearch method, 843
bInsertTimeEntry function,

653-654
blank lines in code, 50
block scope variable

declaration, 835
block scope within

Do…Loop, 835
browsing for folder using

Office FileDialog, 362
bubble sort for CAuthor class,

436-437
buffer usage, ignoring buffer

length variable, 356
building blocks of SEH, 830
building XML to submit to

Web Service, 1081-1083
bWordAvailable and

bOutlookAvailable
functions, 811-812

calculating reasonable chart
axes scales, 706-708

callback for button in Ribbon
class module, 997

callback for getImage
attribute, 286

callback function for custom
icons images, 927

callback handler in first add-in,
281-282

callback handler in second
add-in, 283

callbacks for interaction with
Windows file picker
dialog, 364-368

callbacks for sheet navigation,
297-298

callbacks to invalidate
buttons, 289

CAuthor class, 436
CAuthor class implementing

IContactDetails interface,
444-445

CCell class module, 166-167

CCell class module with new
methods added, 172

CCells class module, 173
CControlEvents class module,

239-240
CDataAccess class, 617-618
CDataAccess class usage, 619
CDialogHandler

ShowVB6Form method,
768

central control routine to
handle navigation
between forms, 424-425

central error handler, 482-483
central error handler imple-

menting re-throw system,
502-504

Change event of
NamedRange1 control,
1011

changes to CCell class module
to trap ChangeColor
event, 182

changes to CCell class module
to trap ChangeColor
event of CTypeTrigger,
186

changes to CCells class
module to assign refer-
ences to CTypeTrigger to
cell objects, 186-188

changes to CCells class
module to raise events,
180-181

changing settings at code
module level, 823

changing to UNC path, 357
changing width of Name

drop-down list, 347-348
checking for installed

applications, 722
checking for, starting, and

closing Outlook, with
error handling, 720-721

checking network group mem-
bership, 1095-1096

checking object’s interfaces,
447-448

CHelloWorld code module
updated to support forms,
754-755

class to handle TextBox’s
events, 416-419

classic approach, 837
ClassInterface attribute, 930
clear data entry area

feature, 124
clearing Most Recently Used

file list, 293
closing CTPs, 1003
cmdConvert_Click event

procedure, 779-780
cmdOK_Click event

procedure, 753, 811
code region, 853
combining sort and binary

search, 565
common callback handler, 287
compare two arrays, 558-559
complete updated

CHelloWorld code
module, 749

complex error handler, 479
conditionally disabling On

Error Resume Next, 509
configuring the Excel

environment for dictator
applications, 149-151

connecting to SQL Server with
integrated security and
support for connection
pooling, 632

connection string for
Access 2003, 621

connection string for
Access 2007, 621

connection string for SQL
Server with integrated
security, 631

connection string for SQL
Server with standard
security, 631

constructor with arguments,
944

control array demo form
specific code, 765-767

control structures, bad
example, 48

control structures, good
example, 49

controlling Word, 711

1130 Index

converting from mouse
coordinates to data and
drawing object coordi-
nates, 703-704

copying input flows list to
export copy, 266-267

copying worksheets, 320
CProgressBar class imple-

menting IProgressBar
interface, 456-459

create new instance and
dispose of instance of
class, 944

CreateCellsCollection proce-
dure in MEntryPoints
module with Terminate
method, 184

creating and deleting custom
menu, 967-970

creating collection of cell
objects, 171

creating ListObject host con-
trol and populating with
data, 1013-1015

creating new instance of Word,
717-718

creating new SqlConnection,
883

creating structured
ranges from ADO
recordsets, 663

creating the Report Options
panels (table-driven
dynamic wizards),
413-415

creating toolbar, 913-914
creating XML and schema

files, 887
CTP Load event, 1001-1002
CTP, making available

when add-in is loaded,
999-1000

CTypeTrigger class
module, 185

custom cleanup code, 995
custom UDF interface

IPEDFunctions, 936
custom worksheet functions,

1035
DataAdapter and DataSet

object usage, 868-869

DataReader object usage,
865-867

DEBUG, using in code, 852
Debug.Assert example, 540
declare and instantiate

objects, 836
declare variables and assign

values to them, 834
declaring and instantiating

Excel objects, 859-860
declaring arrays and initializ-

ing later, 841
declaring objects with correct

object library, 712
default properties, 63
deleting Access data, 629-630
deleting files to Recycle Bin,

360-361
deleting toolbar, 915
destroying the Connection

object, 649
determine which version

of Excel is available,
884-886

disabling controls by locking
them, 399

disconnected recordsets, creat-
ing and using, 641-642

DisplayDLLForm procedure,
757

displaying charts on
UserForms, 398

displaying exception
descriptions, 832

displaying help file from
message box, 1092

displaying help file with
HtmlHelp API function,
1093

displaying Windows Form in
Excel, 971-972

distinguishing controls using
Tag setting, 216

DllMain function, 1040
DSOFile.dll checking for

custom document
properties, 162

dual variable declarations
using conditional compi-
lation constants, 511

early binding example, 59
early versus late binding,

715-716
encapsulating

GetSystemMetrics API
function and related con-
stants, 336

entire function wrapped in On
Error Resume Next, 471

entry point handling in new
application structure, 312

EntryPoint subroutine, 493-
494

enumerating arrays, 841
enumeration for help topic

IDs, 1092
error handling connection

attempts, 633-634
error handling demo

UserForm, 490-491
example XML file, 251
example XSD file, 252
executing stored procedures as

method of Connection
object, 636-637

ExitApplication procedure,
135

exporting data to Excel
worksheet, 948-952

extracting multiple recordsets
from ADO Recordset
object, 639-640

Fields collection usage, 612
file search function, 324-326
finding Excel main window

handle, 344-345
finding size of pixels, 339
finding workbook window

handles, 345-346
Form_Load event

procedure, 777
forTimeDiff named

formula, 103
FP struct, 1039
FProgressBar form module

implementing
IProgressBar interface,
452-455

framework for well-designed
classes, 941-943

Index 1131

function table entry for
IFERROR function,
1059-1060

GeneralDemo procedure, 221
generated class to connect to

Maths Web Service,
1070-1071

generated code in Connection
class, 894

generic bubble-sort, 435
generic BubbleSort procedure

for classes that implement
ISortableObject, 441

generic sorting procedure
usage for collection of
CAuthors, 442

Get and Set blocks with
different scopes, 947

GET.CHART.ITEM usage to
locate a chart item’s
vertices, 705-706

GetStaticText function, 1076
handle the ellipsis in file name

combo, 426-427
HandleDropDown

procedure, 225
HandleRegistration function,

1055-1056
HandleTextBox procedure,

225
handling controls’ events,

387-388
handling cut, copy, and paste

for data entry worksheets,
155-156

“Hello World” add-in using
Auto_Open in standard
module, 784

“Hello World” add-in using
workbook events in
ThisWorkbook
module, 784

Hello World and Goodbye
World messages, 986

“Hello World” COM add-in,
786-787

hiding and unhiding Ribbon
UI, 294

hiding instead of unloading
UserForms, 381

hiding typeinfo in function
list, 935

hooking command bar control
Click event, 916-917

how many 1’s are in a binary
number?, 557

Icon property procedure, 806
IContactDetails interface

class, 444
IFERROR function,

1057-1059
IFERROR user-defined

function, 111, 800
implementing application

contexts, 245-246
implementing COM add-in

CommandBar architec-
ture, 795-796

Imports statement, 828, 930
Imports statements required

for CommandBar
handling, 909

include calls to start and stop
monitoring, 549

infinite loops, avoiding, 64
initializing the Connection

object, 648-649
inserting data into Access,

625-626
installing add-ins using object

model, 1103
instantiating event handler in

Auto_Open procedure,
238

internal comments, bad
example, 47

internal comments, good
example, 48

IPlugInForm interface
class, 461

IProgressBar interface allows
choice between form or
class, 459-460

IProgressBar interface
class, 451

ISortableObject interface
class, 438

Item property and NewEnum
method from CCells
collection, 771

key states, checking, 350-351

late binding example, 59
lCountVisibleWorkbooks pro-

cedure, 136
LightWeightUI.xla Auto_Open

procedure, 305
LightWeightUI.xla entry point

procedures, 306
line continuation of code, 51
Load event code for Windows

Form, 827
loading and unloading VSTO

and COM add-ins,
989-990

loading and unloading XLAs,
988-989

loading application data,
650-651

loading custom icons from
resource file into com-
mand bar button, 807

LoadPETRAS.xla Auto_Open
procedure, 310-311

LoadPETRAS.xlam
MEntryPoints module,
315-316

locating Windows special
folder, 358-360

looping arrays, 57
looping recordsets by rows,

624-625
main export to Excel

function, 884
main procedure (file system

access in cross-version
applications), 323-324

Main subroutine code,
875-876

MakeWorksheetSettings
procedure, 128-130

making UserForm resizable
using CFormResizer
class, 404

managing a custom drop-down
panel, 427-429

Maths Web Service, using
from VBA, 1072

MEntryPoints code to create
Cells object collection,
174-175

menu structure setup, 158-161

1132 Index

MenuFileClose routine,
checking for Shift+Close,
372

methods of Array object, 842
modifications to

OnConnection event pro-
cedure, 911

modifications to
OnDisconnection event
procedure, 912

modifications to support
Ribbon customization in
Connection class, 922-924

modifying UserForm’s window
styles, 392-396

module-level comment exam-
ple, 46

module-level Excel
Application object
variable and
OnConnection/
OnDisconnection events,
930-931

module-level variables in
Connection class, 910

mxlApp event procedures,
192-193

namespace alias and Imports
statements, 858

naming conventions for func-
tion names, 35

navigation code for wizard
dialogs, 410-411

.NET approach, 836-837
NewTimeSheet

procedure, 190
NextRecordset method, 610
object types, validating, 65
objects created from XSD,

usage of, 1076
omitting data type when

declaring variables, 823
onAction attribute added to

Button control, 998
OnConnection and

OnDisconnection events,
965-966

opening connection to Access
database, 622

OPER data type, 1049-1050

order of execution when using
re-throw system, 504-505

order of execution when using
the function return value
system, 499-501

PAGE.SETUP usage to set
page header, 574

Parameters.Refresh method
usage, 637-638

perils of leaving debug mode
active, 510

permanent assertion, 541
PETRAS add-in Auto_Open

procedure, 126-127
PETRAS add-in Auto_Open

procedure with error han-
dling, 497-498

PETRAS help file topic IDs,
1090

PETRAS help file topic list,
1089

PetrasAddin.xla
CAppEventHandler
WindowActivate event
procedure, 317

PetrasAddin.xla
InitializeApplication pro-
cedure, 311

populating arrays with selected
items from list box, 840

populating consultant list from
GetStaticData, 1080-1081

populating PowerPoint pres-
entation from Excel data,
733-735

populating Word document
entirely from Excel,
723-724

populating Word document
using code in Word,
724-725

populating Word template
from Excel data, 730-732

PostTimeEntriesToDatabase
procedure, 654-656

PostTimeEntriesToNetwork
procedure, 131-132

preparing background graphic
workbooks, 152-153

prevent importing results
XML, 269

preventing user from closing
UserForm, 396

preventing validation when
Clear Settings button is
clicked, 878

procedure to compare two
alternatives, 567-568

procedure with automatic
PerfMon calls added, 548

procedure with manual
PerfMon calls added, 548

procedure with simple error
handler, 467

procedure-level comment
example, 47

process both arrays within one
loop, 559-560

ProExcelDev Maths Web
Service, 1067

progress bar UserForm
usage, 422

ProgressBar class, 449-450
properties, using, 946
property procedure usage in

UserForms, 383-384
providing Excel with name-

space, 270-271
QuickSort procedure for one-

dimensional string arrays,
561-563

read-only property, 947
read-write property, 946
reading and writing variant

arrays, 572-573
reading screen resolution, 338
reading the application setting

for connection string, 883
reading user’s login ID,

355-356
recordset navigation, 609
referencing Cells collection in

For…Each loop, 177
referencing collections in

For…Each loops, 176
referring to ActiveDocument,

712-713
refreshing QueryTables when

opening workbooks,
666-667

register and unregister assem-
blies for use by COM,
938-939

Index 1133

registering UDFs with
Application.
MacroOptions, 113

releasing Excel COM objects
with a function, 862

removing right-click menu in
Excel 2007, 294

ResetAppProperties proce-
dure, 130

restoring Excel settings during
shutdown, 145-146

restoring Excel toolbars during
shutdown, 147-148

retrieving data from Access,
622-623

retrieving holiday dates from
Outlook Calendar,
737-739

revised XML markup for cus-
tom icons images, 926

Ribbon XML for PETRAS
time sheet application,
313-314

Ribbon XML for PNG
image, 285

Ribbon XML for sheet naviga-
tion, 297

Ribbon XML in first add-in for
shared tab, 280-281

Ribbon XML in second add-in
for shared tab, 282-283

Ribbon XML to disable Excel
Options and Exit Excel
commands, 292

Ribbon XML to hide New,
Open, and Save com-
mands, 292

Ribbon XML to invalidate
buttons, 288

Ribbon XML to size
comboBox controls, 296

RibbonX callback procedure,
307

RibbonX markup for demon-
stration application,
306-307

RibbonX sample customiza-
tion, 276

running Access report using
Excel data, 727-729

sample Debug.Print state-
ments, 518

scope of error handler,
468-469

SERIES function
examples, 691

setting path and name to help
file, 879

setting window icons, 348-349
several Catch blocks and

Finally block, 831-832
shortcuts, using to insert code

snippets, 854
show selected name, 828
ShowControlArraysForm pro-

cedure, 768
ShowDLLMessage

procedure, 746
ShowHelp procedure, using

from form’s Help button,
1094

showing pop-ups for list
boxes, 399

showing splash screen at start-
up, 420-421

showing UserForm next to
active cell, 401-402

ShowMessage method, 744
ShutdownApplication proce-

dure, 135-136
simple error handler

example, 476
simple stored procedure, 635
single callback handler for

several control objects,
286-287

sortable CAuthor class, 440
sorting and listing mixed class-

es that implement
ISortableObject and
IContactDetails, 446-447

SORTSEARCH_INDEX user-
defined type, usage of,
566-567

SpecifyConsolidationFolder
procedure, 370-371

SQL DELETE statement, 598
SQL INSERT statement, 596
SQL SELECT statement, 595
SQL UPDATE statement, 597

standard procedures to include
in all modeless forms,
423-424

starting and closing Word,
with error handling, 719

startup and shutdown events
for worksheet, 1011

startup events in VSTO work-
book solutions, 1010

StateDemo procedure, 222
stored procedure that returns

multiple recordsets, 638
StoreTimeSheet function,

1077-1078
storing Excel settings in the

Registry, 143-145
Sub Main procedure, 814
Sub Main stub procedure, 809
subroutine and function error

handlers, 477-479
Terminate method in CCell

class module, 183
Terminate method in CCells

class module, 183
test harness for

ReturnPathAndFilename
procedure, 538-539

testing for key press, 353-354
ThisAddin class for

HandleCTP example,
1004-1005

ToggleButton_Click event
code, 1005

trivial procedures don’t
require error
handlers, 481

turning labels into splitter
bars, 405-406

txtConvert_KeyPress event
procedure, 778

Type mismatch error, 434
unloading Windows

Forms, 829
updated ClassInterface

attribute, 937
updated CreateCellsCollection

procedure in
MEntryPoints module for
event trapping, 179

UpdateShipper parameter
query, 626

1134 Index

updating Access data, 627-628
updating defined names and

refreshing PivotCaches
when QueryTable is
refreshed, 671-672

user interface layer determines
response, 377

user interface support layer
determines response,
378-379

user-defined function in
automation add-in, 931-
933

UserForm controls, using
directly, 382

UserForm’s default instance,
380

UserForms as classes, 380
Using keyword to

automatically call
Dispose method, 945

validating controls, 389-392
Validating event subroutine for

several controls, 877-878
variables, interfaces, and

classes, 434
Variant arrays, 55
version checking, 142
viewing code in text

editors, 176
when to use On Error Resume

Next, 470-471
Workbook_SheetBeforeRight

Click event handler, 227
WriteDLLMessage

procedure, 750
WriteToTextFile and

ReadFromTextFile proce-
dures, 537-538

writing selected data to active
worksheet, 1002

writing settings to the user
interface worksheets,
122-123

xlAddInManagerInfo function,
1042-1043

xlAutoClose function, 1042
xlAutoOpen function, 1041
XLL function table, 1036-1037
XLOPER containing an array,

1048

XLOPER data type, 1045-
1046

XML data file from NPV
model, 268

XML data file produced from
model, 262

XML for Ribbon user inter-
face, 919-920

XML output from
GetStaticData function,
1074

XML passed to
StoreTimeSheet function,
1074-1075

XSD file for model, 264-265
XSD file for NPVModelData

element, 258
ListObject controls, 1013-1016
ListRange setting (command bar

definition table), 218
Lists, 255, 664

cascading lists for data
validation, 90-92

converting ranges to, 664
dynamic lists

defined, 76
elements of, 77

Lists setting (command bar
definition table), 218

ListView control, 430
load behavior of COM add-ins,

789-790
Load event (Windows

Forms), 826
loader add-ins

creating for Ribbon UI,
312-318

extracting command bars logic
to, 308-312

loading
bitmaps from resource files,

806-807
COM add-ins, 989-990
VSTO add-ins, 993-994
XLAs, 987-989

Local folder (Windows Vista),
329

localization with resource
DLLs, 790

LocalLow folder (Windows
Vista), 329

Locals window, 532-533
locating user interface work-

books (time sheet exam-
ple application), 137

locking controls on UserForms,
398-399

LockTypeEnum constant values,
list of, 611

logical tiers of application, sepa-
rating, 41-42, 616-617

Longre, Laurent, 1057-1062
looping recordsets, 624
loops

array bounds, avoiding hard
coding, 57

counters in Next
statements, 57

infinite, 473-474, 510
avoiding, 64-65

nested, effect on performance,
558-559

optimizing, 560
performance and, 557
running in Immediate

window, 520
low-order bits, 351
lvalue expressions, modifying,

524-525

M
macro security, 1097-1098
macro-free file format, 319-320
macro-optimization, 556-567

binary searches, 563-565
combining sorts and binary

searches, 565
order of execution, effect of,

558-560
pre-processing data, 557
QuickSort procedure, 560-563
SORTSEARCH_INDEX

UDT, 566-567
tightening loops, 560

macrofun.exe file, 698
macrofun.hlp file, 574
MacroOptions method

(Application object), 112
macros

associating with shapes, 88
XLM functions, 698
XML macros, hiding Ribbon

UI using, 294-295

Index 1135

macro_type entry (XLL function
table), 1038

MailItem object (Outlook object
model), 736

managed automation add-ins
creating, 928-933
limitations of, 933-940

managed code, 820
managed COM add-ins, 820, 889

blogs for information, 962
building user interface,

908-927
command bar handling,

909-918
Ribbon user interface

handling, 918-927
creating, 891-908

auto-generated references,
897-899

Connection class module,
893-897

project file, creating, 891
registry settings, 899-900
setup projects, 900-908

development tools, 962-963
selecting, 890-891

shimming, 952-961
COM Shim Wizard,

954-961
isolation, 952-953
security, 953-954

time sheet example applica-
tion, 963-972

VSTO add-ins versus, 984
VSTO project templates ver-

sus, 982
managed UDFs, 1006
managed VSTO add-ins, 979
ManagedXLL, 1063
Manifest registry entry, 992
manual installation, 1103
manually registering/unregister-

ing COM add-ins, 940
many-to-many relationships,

590-591
MAPI data store, 736
MAPIFolder object (Outlook

object model), 736

mapping
numeric IDs

to enumeration constants,
1092

to help topic files, 1090
schema fields to

DataAdapters, 1075
XSD files, 259-267

margin indicator bar, 513
Mask setting (command bar defi-

nition table), 228
masks, creating bitmaps for,

229-230
matching data types, 568
MCommandbars code module

(time sheet example
application), 158

member processing for collec-
tions, 175-177, 771-772

member variables, defined, 33
Members list (Object

Browser), 535
memory leaks, 335

avoiding, 182-184
memory management

in .NET Framework, 860-861
XLOPER data type,

1049-1054
MEntryPoints class module

instantiating collections, 174
Terminate method, 184
time sheet example applica-

tion, 138, 158
trapping events, 179

menu structure for time sheet
example application, 158

menus. See also command bars
adding to Worksheet Menu

Bar, 220-223
combining modeless

UserForms with, 423-425,
460-461

customizing in dictator
applications, 156

defining, 206
pop-up menus in UserForms,

399-400
sublevels, 198

message boxes
debugging, 517
displaying (ActiveX DLL

example), 744-747
title bar text, 747

messages, sending between win-
dows, 346-348

method calls, fully qualifying,
712-713

methods, 169-170
adding

to CCell class module, 172
to class modules (VB6), 744

of Collection object, 170
defined, 834

MGlobals class module
creating collections, 171
time sheet example applica-

tion, 138, 158
micro-optimization, 567-574

comparing alternatives for,
567-568

in Excel, 571-574
in VBA code, 568-571

Microsoft ActiveX Data
Objects 2.X Library,
referencing, 618

Microsoft Excel 11.0 Object
Library, 898

Microsoft HTML Help
Workshop. See HTML
Help Workshop

Microsoft Jet 4.0 OLE DB
Provider, 600, 620

Microsoft Office 12 Access
Database Engine OLE
DB Provider, 600, 621

Microsoft Office 2003 Web
Services Toolkit. See Web
Services Toolkit

Microsoft Office Compatibility
Pack for Word, Excel, and
PowerPoint 2007 File
Formats package, 275

Microsoft Office Soap Type
Library. See Soap type
library

Microsoft OLE DB Provider for
ODBC, 601

Microsoft OLE DB Provider for
SQL Server, 600, 630

1136 Index

Microsoft Outlook Programming
(Mosher), 739

Microsoft Scripting Runtime,
file system access with,
320-326

Microsoft Virtual PC, 863
Microsoft Visual Basic for

Applications Extensibility
5.3 object library, 899

Microsoft Visual Studio Tools for
the Office System Power
Tools, 1026

Microsoft VSTO portal, 1026
Microsoft XML, 290
Microsoft.Office.Tools name-

space, 999
Microsoft.Office.Tools.Common.

v9.0 assembly, 992
Microsoft.Office.Tools.Excel

namespace, 992, 1006
Microsoft.Office.Tools.Excel.

Controls namespace,
1008

Microsoft.Office.Tools.Excel.v9.0
assembly, 992

Microsoft.Office.Tools.v9.0
assembly, 992

Microsoft.VisualStudio.Tools.
Applications.Runtime
namespace, 1009

Microsoft.VisualStudio.Tools.
Applications.Runtime.
v9.0 assembly, 992

MID() function, 683
MIME types, 1021
modal UserForms, 419
mode-view-controller (MVC),

1009
modeless, forms (VB6) as, 756
modeless UserForms, 420

combining with menu items,
423-425, 460-461

as progress bars, 421-422
time sheet example applica-

tion, 431
as splash screens, 420-421

modifying
database data, 597

in Access databases,
626-629

styles, 82

toolbar, adding style drop-
down, 82-83

worksheet UI dynamically,
124-125

module directives, 52-53
module scope in VB.NET,

833-834
Module setting (Watch Context

options), 526-527
Module Variables entry (Locals

window), 533
module-level comments, 46
modules. See class modules
MOpenClose code module (time

sheet example applica-
tion), 138, 158

MOSS (Office SharePoint
Server), 976

Most Recently Used (MRU) file
list, 292-293

mouse, setting break points
with, 513

mouse coordinates, converting
among data and drawing
object coordinates, 702

MoveFirst method (ADO
Recordset object),
609-610

MoveLast method (ADO
Recordset object),
609-610

MoveNext method (ADO
Recordset object),
609-610

MovePrevious method (ADO
Recordset object),
609-610

MRU (Most Recently Used) file
list, 292-293

mscomctl.ocx file, 430
mscoree.dll, 896-899, 952
MSDN Library, 332

searching, 346
MSDN Web site, 739, 871
msFILE_ERROR_LOG con-

stant (central error
handler), 485

MSForms, 759
MSGraph object library, 733
msoBarBottom enumeration

member, 205

msoBarFloating enumeration
member, 205

msoBarLeft enumeration mem-
ber, 205

msoBarNoChangeDock enumer-
ation member, 207

msoBarNoChangeVisible enu-
meration member, 207

msoBarNoCustomize enumera-
tion member, 208

msoBarNoHorizontalDock enu-
meration member, 208

msoBarNoMove enumeration
member, 208

msoBarNoProtection enumera-
tion member, 208

msoBarNoResize enumeration
member, 208

msoBarNoVerticalDock enumer-
ation member, 208

msoBarPopup enumeration
member, 205

msoBarRight enumeration mem-
ber, 206

msoBarTop enumeration mem-
ber, 206

msoButtonAutomatic enumera-
tion member, 212

msoButtonCaption enumeration
member, 212

msoButtonDown enumeration
member, 217

msoButtonIcon enumeration
member, 212

msoButtonIconAndCaption enu-
meration member, 212

msoButtonIconAndCaptionBelow
enumeration member, 212

msoButtonIconAndWrapCaption
enumeration member,
212

msoButtonIconAndWrapCaption
Below enumeration mem-
ber, 212

msoButtonMixed enumeration
member, 217

msoButtonUp enumeration
member, 217

msoButtonWrapCaption enu-
meration member, 212

Index 1137

msoComboLabel enumeration
member, 213

msoComboNormal enumeration
member, 213

msoControlButton enumeration
member, 211

msoControlComboBox enumera-
tion member, 211

msoControlDropDown enumer-
ation member, 211

msoControlEdit enumeration
member, 211

msoControlPopup enumeration
member, 211

MSQuery, 665
msSILENT_ERROR

constant (central error
handler), 484

mssoap30.dll, 1068
MStandardCode code module

(time sheet example
application), 138, 158

MSystemCode code module
(time sheet example
application), 138, 158

multi-application COM
add-ins, 798

MultiPage control
creating wizard dialogs,

409-411
Windows Common Controls

and, 430
multiple axes (charts), 690
multiple document interface

(time sheet example
application), 194

multiple error handlers, as
active, 468

multiple instances of Excel, start-
ing, 781

multiple Office versions, VSTO
and, 983

multiple recordsets, 638-640
multiple users, installing COM

add-ins for, 791-792
multithreading (time sheet exam-

ple application), 879-882
MultiUse instancing type, 770
multiuser needs, reasons for

using databases, 578

MUtilities code module (time
sheet example applica-
tion), 138

MVC (mode-view-controller),
1009

MWorkspace code module (time
sheet example applica-
tion), 158

MZTools, 542, 871

N
N() function, 681
Name argument (ADO

CreateParameter
method), 628

named constants, 72-73
named formulas, 76-77
named instances, SQL Server

name, 642
named ranges, 73-75
NamedRange control, 1007-1012
names for function library add-

ins, creating, 115-116
namespace aliases, 858
NameSpace object (Outlook

object model), 736
namespaces, 818

importing, 827-828
for shared tabs, 280
in XML, 253, 270-271

naming controls in
UserForms, 384

naming conventions, 27-40
for defined names, 39
for embedded objects, 38
for Excel UI elements, 37-39
exceptions to, 39-40
fully qualified object variable

names, 56
for modules, classes,

UserForms, 36
for procedures, 35-36
sample of, 28-34
for shapes, 37-38
for UDFs, 112
for Visual Basic Projects, 37
for worksheets, chart

sheets, 37
native VSTO templates, 979

NativeWindow class, 971
natural keys, 592-594
nested exceptions, 833
nested loops, effect on perform-

ance, 558-559
.NET data providers, 865
.NET Framework, 817-819, 975.

See also ADO.NET;
VB.NET; VS.NET; VSTO

automation and, 855-863
early binding/late

binding, 863
Excel object usage, 857-862
PIA (Primary Interop

Assembly), 856-857
client version, 819
managed COM add-ins

development tools, 962-963
shimming, 952-961
time sheet example applica-

tion, 963-972
resources for information,

870-871
time sheet example applica-

tion, 872-887
versions of, 818-819

.NET Language Integrated
Query (LINQ), 870

network group membership,
checking, 1095-1096

network-related API calls. See
file system-related API
calls

New keyword, 717
newsgroups, 1062
Next statements, loop counters

in, 57
NextRecordset method (ADO

Recordset object), 610
“No Help Available” help file,

creating, 1088
non-basic code entry in Call

Stack window, 522
non-key columns

defined, 580
usage of, 585

normalization, 579-587
exceptions to, 586-587
first normal form, 580-581
second normal form, 582-583
third normal form, 584-586

1138 Index

Northwind sample database,
615-616

NoteItem object (Outlook object
model), 736

Nothing keyword (VB.NET), 836
null-terminated strings, 1036,

1047
Num Lock key, checking state of,

350-351
Number property (Err

object), 466
availability of error

numbers, 474
number sequences,

generating, 682
numbered lines

adding to code, 823
displaying in XML Editor, 921

numeric data in XLOPER data
type, 1047

numeric IDs, mapping
to enumeration constants,

1092
to help topic files, 1090

NUM_REGISTER_ARGS con-
stant (XLL function
table), 1036

O
Object Browser, 533-537,

847-848
Object data type (VB.NET),

835, 839
object libraries

Access object model, 726-729
Application object, 726
DAO.Database object, 726
DoCmd object, 727
example application,

727-729
Application object, 726
forward compatibility, 713-715
fully qualifying

property/method calls,
712-713

including in variable declara-
tions, 711-712

MSGraph object model, 733

Outlook object model,
736-739

Application object, 736
example application,

737-739
Items collection, 736
MAPIFolder object, 736
NameSpace object, 736

PowerPoint object model,
732-735

Application object, 732
charts in, 733
example application,

733-735
Presentation object, 732
Shape object, 732
Slide object, 732

referencing, 710-711
setting references in ActiveX

DLLs, 747
Word object model, 729-732

Application object, 729
Bookmark object, 729
Document object, 729
example application,

730-732
Range object, 729

Object Library box (Object
Browser), 534

Object Linking and Embedding
(OLE), 710

object models
ADO, 599
Excel, 7

referencing, 776
XML Maps, 266-267

object oriented C++ wrapper for
Excel C API, 1063

object references
casting, 859
removing, 182-184

object types, validating, 65
object variables

declaring and initializing, 55
early binding versus late bind-

ing, 59-61
fully qualified names, 56
performance advantages

of, 571

object-oriented programming.
See OOP

objects. See also class modules;
interfaces

code reuse and, 435-437
collections, creating, 170-177,

771-772
creating, 166-168

class modules as template
for, 168-170

reasons for, 165
default properties, calling, 63
events

application-level event han-
dling, 190-193

raising, 180-188
trapping, 177-182

initializing, 174
instances

creating, 836-837
VB.NET, 836-837

instantiating, 174
interfaces and, 433-434
in .NET solutions, 857-862

ObjectStateEnum constants,
values for, 601

ODBC, 599
Office 2003 PIAs, 904
Office 2007 Compatibility

Pack, 163
Office 2007 cross-version appli-

cations. See cross-version
applications

Office 2007 CustomUI
Editor, 276

Office = Microsoft.Office.Core
namespace, 992

Office Application Clients, 976
Office applications

class names for CreateObject
function, 718

controlling. See controlling
applications

object libraries. See object
libraries

registering, 710
resources for information, 739

Office button, 292
Office Developer Center, 739

Index 1139

Office Development with Visual
Studio blog, 1026

Office Fluent User Interface
Developer Portal, 301

Office Forms Service, 976
Office Open XML (OOXML),

273-277
Office PerformancePoint

Server, 976
Office product suite. See Office

Application clients
Office server-side programming,

981
Office Servers, 976
Office SharePoint Server, 976
Office System, 976-977
Office versions, running multiple

with VSTO, 983
OFFSET function, 693-696
OLE (Object Linking and

Embedding), 710
OLE DB, 599
OLE DB providers, specifying,

600-601
for Access databases, 620

OLE in-place activation, 980
On Error Goto <Label> state-

ment, 467-470
On Error GoTo 0 statement, 472
On Error Resume Next state-

ment, 470-472, 489
disabling, 509

On Error statements, 469-472
On Error GoTo <Label>, 470
On Error GoTo 0, 472
On Error Resume Next,

470-472
onAction attribute (Ribbon con-

trols), 304
onAction callback for Ribbon UI,

314, 316
OnAction setting (command bar

definition table), 209
OnAddInsUpdate event

(AddinInstance
object), 794

OnBeginShutdown event
(AddinInstance
object), 794

OnConnection event
(AddinInstance object),
792-793

OnConnection event procedure
IDTExtensibility2 interface,

893
managed COM add-ins, 910

OnDisconnection event
(AddinInstance
object), 794

OnDisconnection event
procedure

IDTExtensibility2 interface,
893

managed COM add-ins, 912
one-to-many relationships,

589-590
one-to-one relationships,

588-589
one-way communication example

(ActiveX DLLs), 744-747
onLoad callback for Ribbon UI,

314-316
OnStartupComplete event

(AddinInstance
object), 793

OOP (object-oriented
programming)

ActiveX DLL support for,
769-772

VB.NET support for, 820
VBA and, 5

OOXML (Office Open XML),
273-277

Open method (ADO Connection
object), 602

Open method (ADO Recordset
object), 610-612, 624

Open XML, 273-277, 1009
Open XML Package Editor, 1027
OpenCurrentDatabase method

(Access Application
object), 726

opening
applications (time sheet exam-

ple application), 125-127
user interface workbooks (time

sheet example applica-
tion), 128-130

OPENx entries (registry
keys), 788

OpenXMLDeveloper.org
site, 301

OPER data type, 1049-1050
operational requirements,

reasons for using
databases, 578

operations, defined, 6
operRes parameter (Excel4 func-

tion), 1050
optimization. See also perform-

ance
macro-optimization, 556-567

binary searches, 563-565
combining sorts and binary

searches, 565
order of execution, effect of,

558-560
pre-processing data, 557
QuickSort procedure,

560-563
SORTSEARCH_INDEX

UDT, 566-567
tightening loops, 560

micro-optimization, 567-574
comparing alternatives for,

567-568
in Excel, 571-574
in VBA code, 568-571

Option Base 1 statement, 53
Option Compare Binary, Option

Compare Text versus, 569
Option Compare setting

(VB.NET development
settings), 822

Option Compare Text statement,
53

Option Compare Binary
versus, 569

Option Explicit setting
(VB.NET development
settings), 822

Option Explicit statement, 52
Option Infer setting

(VB.NET development
settings), 822

Option Private Module directive,
52, 115

1140 Index

Option Strict setting
(VB.NET development
settings), 822

OR operations in criteria
ranges, 676

ORDER BY clause (SQL
SELECT statement), 596

order of 1 (procedure processing
time), 558

order of execution, effect on per-
formance, 558-560

order of N (procedure process-
ing time), 558

order of N2 (procedure process-
ing time), 558

organization of applications (time
sheet example applica-
tion), 138

organization of data. See data
structures

out-of-process communication,
774

Outlook
referring to instances of,

720-721
starting instances of, 813

Outlook object library, 736-739
Application object, 736
example application, 737-739
Items collection, 736
MAPIFolder object, 736
NameSpace object, 736

Output window, 849

P
packaging applications, 1099

add-in installation require-
ments, 1100-1102

installation location, selecting,
1099-1100

installation with Windows
Installer, 1104

manual installation, 1103
Setup.xls workbook installa-

tion, 1103
template installation require-

ments, 1100
PAGE.SETUP XLM

function, 574

PageSetup object, performance
and, 574

parameter refreshing (SQL
Server), 637-638

Parameter setting (command bar
definition table), 217

ParameterDirectionEnum con-
stant values, list of, 606

Parameters collection (ADO
Command object), 607,
628, 637

parameters for Excel4 function,
1050

parent windows, changing, 756
Part items (in Open XML), 275
Pascal strings, 1036, 1047
passing

data with user-defined
types, 620

strings to API calls, 356
passwords

Excel security, 1094-1095
securing, 783

paste functionality, handling,
154-156

Paste Special toolbar example,
235-241, 797

pasting controls, 762
Path property (auto-generated

references), 898
paths, changing to UNC paths,

356-357
PeekMessage API call, 352-354
PerfMon utility, 546-551
PerfMonitor.dll, 547
PerfMonOffice.dll, 547
PerfMonVB6.dll, 547
performance. See also optimiza-

tion
cross-process calls, 723-725
early bound object

variables, 60
improving by creative think-

ing, 551-556
asking questions, 556
breaking the rules, 554-555
data, knowledge of, 555-556
jigsaw puzzle example,

551-554

“think outside the box”
example, 552-554

tools, knowledge of, 556
macro-optimization, 556-567

binary searches, 563-565
combining sorts and binary

searches, 565
order of execution, effect of,

558-560
pre-processing data, 557
QuickSort procedure, 560-

563
SORTSEARCH_INDEX

UDT, 566-567
tightening loops, 560

micro-optimization, 567-574
comparing alternatives for,

567-568
in Excel, 571-574
in VBA code, 568-571

PerfMon utility, 546-551
target response times, 545
tricks for illusion of, 546

permanent assertions, 541
Personal Information Exchange

(.pfx) files, 955
PETRAS. See time sheet exam-

ple application
PETRAS Report Activities

Consultants.xlt, 874
PETRAS Report Activities.xlt,

874
PETRAS Report Consultants.xlt,

874
PETRAS Report Summary.xlt,

874
PETRAS Report Tool.NET

(time sheet example
application), 817,
872-887

converting to managed COM
add-in, 963-972

PETRAS.asmx, 1073
PetrasAddin.xla, 157, 369
PetrasConsolidation.xlt, 157, 369
PetrasIcon.ico, 369
PetrasReporting.xla, 157, 369
PetrasTemplate.xls, 157
PetrasTemplate.xlt, 369
.pfx files, 955

Index 1141

physical design of data access
tier, 617-620

PIA (Primary Interop Assembly),
856-857

Office 2003 PIAs, 904
Picture setting (command bar

definition table), 228
pictures. See graphics
PIDLs, 368
PivotCaches

calculated fields/items,
670-672

for multiple PivotTables, 668
PivotTables, 668-672
pixel size, determining, 338-340
pixels, converting to points,

338-340
Planatech XLL+, 1062
Platform SDK, 333
plotting functions in charts,

696-698
plug-in architecture of custom

interfaces, 460-461
.png files, 285, 925
points

converting to pixels, 338-340
defined, 338

polar coordinates, converting to
x,y coordinates, 694-696

polymorphism, 443-448
pop-up menus in UserForms,

399-400
PopulateWord.xls, 723
populating bookmarks, 729
Position setting (command bar

definition table),
205-206, 226

positional information for chart
items, determining,
704-706

positioning
controls in UserForms, 385
UserForms next to cells,

400-402
PostItem object (Outlook object

model), 736
power users, defined, 3
Powerful PowerPoint for Educators

(Marcovitz), 739
PowerPoint, starting/closing

instances of, 721

PowerPoint object library,
732-735

Application object, 732
charts in, 733
example application, 733-735
Presentation object, 732
Shape object, 732
Slide object, 732

pre-processing data for perform-
ance optimization, 557

precedence tree, defined, 6
prefixes

data types, 29-30
defined names, 39
drawing objects, 38
embedded objects, 38

preparing background graphics
for user interface,
151-153

prerequisites
comparing versions, 897
for setup projects, 902-904

presentation layer, worksheets as,
4-5

Presentation object (PowerPoint
object model), 732

Presentations collection,
721, 732

pressed keys, testing for,
352-355

preventing importing XML
results, 269

primary axes (charts), 690
Primary Interop Assembly (PIA),

856-857
Office 2003 PIAs, 904

primary keys
defined, 580
natural versus artificial,

592-594
Printer object (VB6), 773
Private instancing type, 769
Private keyword (VB.NET), 833
Pro SQL Server 2005 Database

Design and Optimization
(Davidson, Kline,
Windisch), 613

procedural programming best
practices, 43-45

arguments, limiting, 45
business logic isolation, 44

duplicate code, eliminating, 44
encapsulation, 44
functional decomposition, 43
modules, organizing code

in, 43
size limits on procedures, 44

procedure entry (XLL function
table), 1037

procedure error handlers,
477-480

Procedure setting (Watch
Context options), 527

procedure-level comments,
46-47

procedures. See also functions;
subroutines

adding PerfMon utility calls to,
548-549

arguments
declaring, 62-63
validating, 63

naming conventions, 35-36
order of execution, effect on

performance optimiza-
tion, 558-560

property procedures, 168-169
trivial procedures, 480-481
wrapping in On Error Resume

Next statement, 471
processing data. See data pro-

cessing
processing in dictator applica-

tions, 156
Professional ADO 2.5

Programming (Sussman
et al.), 613

professional Excel developers,
defined, 4

Professional Excel Development
Web site, 12

Professional Excel Timesheet
Reporting and Analysis
System. See time sheet
example application

Professional SQL Server 2005
Programming (Vieira), 648

ProgId
limitations of, 938
managed COM add-ins reg-

istry keys, 900

1142 Index

program columns
defined, 70-71
time sheet example applica-

tion, 102
program execution, canceling,

484-485, 491-495
program listings. See listings
program rows

defined, 70-71
time sheet example applica-

tion, 102
programming languages

declarative, worksheet func-
tions as, 6-7

in VS.NET, 819
Programming Microsoft Visual

Basic .NET Version 2003
(Balena), 870

progress bars, 421-422
custom interface example,

449-460
time sheet example applica-

tion, 431, 462
when to display, 546

project protection, Stop state-
ments and, 510-511

project templates (VSTO), 977,
979-983

application-centric, 979
document-centric, 979-981
installing and running, 982
managed COM add-ins

versus, 982
selecting, 981

projects. See also Visual Basic
Projects

ActiveX DLL projects, creat-
ing, 742, 744

managed COM add-ins, creat-
ing, 891

versions of, saving, 66
XLLs, creating, 1030-1034

PromptingLevel subkey, 1018
properties

default collections properties,
175-177, 771-772

default object properties, call-
ing, 63

testing before setting, 573
VB.NET classes, 946-947

property calls, fully qualifying,
712-713

Property Get procedures, 169
Property Let procedures, 169
property procedures, 168-169
Property Set procedures, 169
Protected Friend keyword

(VB.NET), 834
Protected keyword

(VB.NET), 834
protected projects, Stop state-

ment and, 510-511
protection (worksheet UI set-

ting), 119
Protection setting (command bar

definition table), 207-209
providers (OLE DB), 599

specifying, 600-601
for Access databases, 620

Public keyword (VB.NET), 833
Public profile (Windows

Vista), 329
public variables, 58-59
PublicNotCreatable instancing

type, 769
publishing

VSTO workbooks, 1022-1024
Web Services, 1068

pxlInput argument (xlCoerce
function), 1053

Q
Q&A forums for VB.NET infor-

mation, 871
QAT (Quick Access Toolbar), 292
Qualified ID, 281
queries. See SQL
QueryClose event (UserForms),

396
QueryTables, 664-667

calculated fields/items,
670-672

question mark character (?), vari-
able evaluation in
Immediate window, 519

questioning assumptions (cre-
ative thinking), 556

questions, resources for informa-
tion, 11-12

Quick Access Toolbar (QAT), 292

Quick Watch window,
531-532, 850

QuickSort procedure, 560-563
quiet mode for UAC (User

Account Control), 328

R
Raise method (Err object), 474
Raise property (Err object), 466
raising

custom errors, 474, 484
events, 180-188

RAM, determining current
usage, 183

Range object
CopyFromRecordset

method, 624
Word object model, 729

ranges
in advanced filters, 674
array formulas and, 680-683
converting to Lists, 664
data consolidation, 672-673
named ranges, 73-75
reading/writing, 572-573
structured ranges, 662-663

formulas in, 667
unstructured ranges, 662

RCW (Runtime Callable
Wrapper), 860

RDBMS (relational database
management systems), 977

re-throw system (error
handling), 501

Recent documents list, clearing,
292-293

recompiling. See compiling
Recordset object (ADO),

607-612
BOF property, 607
Close method, 609
CursorLocation property, 608
disconnected recordsets, 640
EOF property, 607, 624
events, 612
Fields collection, 612
Filter property, 608
Move methods, 609-610
multiple recordsets, 639
NextRecordset method, 610
Open method, 610, 612, 624
Sort property, 608

Index 1143

recordsets
disconnected recordsets,

640-642
looping, 624
multiple recordsets, 638-640

Recycle Bin, deleting files to,
360-361

redimensioning arrays, 841
Reference Name property

(auto-generated refer-
ences), 897

references
auto-generated references for

managed COM add-ins,
897-899

to existing application
instances, 720-721

setting in ActiveX DLLs, 747
in VSTO add-ins, 991-992

referencing
ActiveDocument (Word), 712
ActiveX DLLs, 745-746
collections in For…Each

loops, 176
Excel object library, 776
Microsoft ActiveX Data

Objects 2.X Library, 618
object libraries, 710-711
sheets by CodeNames, 65

referential integrity, 587-592
DRI (Declarative Referential

Integrity), 644
refreshing

advanced filters, 675
parameters (SQL Server),

637-638
QueryTables, 665
screen, disabling, 571

regasm.exe, 900, 940
regions, 853
registering

ActiveX DLLs, 744
COM add-ins, 790

manually, 940
COM shim DLL files, 959
custom worksheet functions,

1054-1057
Office applications, 710
UDFs with Excel Function

Wizard, 112-114

Registry Editor, 905
User/Machine Hive registry

section, 958
registry keys

Add-in Designer, 788-790,
1102

Add-in Manager, 1100
managed automation

add-ins, 929
managed COM add-in setup

projects, 905-906
managed COM add-ins,

899-900
VSTO add-ins, 992-993
VSTO security, 1018

regsvr32 command, 960
regsvr32.exe, 791
related windows, finding with

API calls, 343-346
relational database management

systems (RDBMS), 977
relational databases, 578-579. See

also databases
Relationship items (in Open

XML), 275
relationships, 587-592

in criteria ranges, 678
many-to-many, 590-591
one-to-many, 589-590
one-to-one, 588-589
in XML, 250

relative named ranges
defined, 73
types of, 73

release builds, 851
RemoveRange method (VB.NET

arrays), 844
removing

break points, 512-513
function registrations,

1054-1057
object references, 182-184
right-click menus, 294

reports. See also PETRAS
Report Tool.NET
(time sheet example
application)

in dictator applications, 157

time sheet example applica-
tion, 157-160, 162-163

central error handler for,
499-506

database handling, 656-659
multiple document inter-

face, 194
progress bars, adding, 431
Shift key, checking state of,

371-373
table-driven command bars,

243-247
requirements

for add-ins, 783
desktop environment require-

ments, when to use
VSTO, 984

of dictator applications, 21-22
for installation

of add-ins, 1100-1102
of templates, 1100

resizing UserForms, 403-404
resolutions, screen

adapting UserForms to,
402-403

reading, 337-338
resource DLLs, 790
resource files, 773

adding bitmaps to, 804-806
adding to projects, 802-804
loading bitmaps from, 806-807

resources for information, 11-12
databases, 613-614, 647-648
managed COM add-ins, 962
.NET Framework, 870-871
Office applications, 739
VSTO, 1026
XLLs, 1062-1063

resources in VB.NET solutions,
863-864

response times, targets for, 545
restoring

toolbar customizations, 147
user settings, 143-148

Results application context, 244
results of PerfMon utility,

importing, 550
results presentation. See charts;

reports

1144 Index

Resume <Label> statement, 474
single exit point, implement-

ing, 475
Resume Next statement, 473
Resume statements, 472-474

debugging with, 473
Resume <Label>, 474
Resume Next, 473

retrieving
data

with ADO.NET, 864-870
from data access tier, 620
time sheet example applica-

tion, 882-883
database data, 595-596

from Access databases, 622-
625, 650-652

reusing code, 435-437
reusing variables, avoiding, 54
RHS variable name, 445
Ribbon designer tool, 890
Ribbon IDs Tool window, 1027
Ribbon UI, 273, 909

best practices, 278-289
Add-Ins tab, 279
control custom image man-

agement, 284-286
global callback handlers,

286-287
invalidation, 287-289
keytips, 284
shared tabs, 279-284
work processes support,

278-279
combining with command

bars, 304
heavy weight design,

307-308, 310-319
light weight design, 304-307

creating
for dictator applications,

291-294
loader add-in for, 312-318
in managed COM add-ins,

918-927
customUI folder, 277
hiding, 294-295
sheet navigation in, 296-298
sizing comboBox controls,

295-296

table-driven customization,
289-291

template creation, 299
websites for information, 300

Ribbon Visual Designer,
995-998

toggle buttons for custom task
panes (CTPs), 1003

RibbonX, 273-274
for light weight UI design, 306

RibbonX: Customizing the
Office 2007 Ribbon
(Martin et al), 300

right-click command bar exam-
ple, 226-228

right-click menus, removing, 294
Roaming folder (Windows

Vista), 329
roaming user profiles, 329
RoboHelp, 1085
robustness of custom

interfaces, 448
Roman numeral conversion

example, 775-780, 782
root element (XML), 252
row headers, worksheet UI set-

ting, 120
ROW() function, 683
row-relative named ranges, 73
rows

adding to user interface work-
books (time sheet exam-
ple application), 133-134

duplicate rows in
databases, 580

hidden rows (worksheet UI
setting), 119

program rows
defined, 70-71
time sheet example applica-

tion, 102
Ruby Forms, 759
rules, breaking (creative think-

ing), 554-555
Run function (Application

object), 109
run mode, break mode

versus, 507
running VSTO add-ins, 993-995

Runtime Callable Wrapper
(RCW), 860

runtime errors. See also error
handling

Err object, 466-467
types of, 465

runtime stage (applications), 109
runtime versions of ActiveX con-

trols, 760

S
Sams Teach Yourself SQL in 10

Minutes (Forta), 614
satellite DLLs, 790
SaveFileDialog component,

836, 877
SaveSetting property

(ThisWorkbook object), 17
saving

debugging output files, 849
project versions, 66
user interface workbooks (time

sheet example applica-
tion), 131-133

schema validation for Ribbon
user interface, 920

schemas, creating DataSets from,
1075. See also XSD

scope
defined names, 77-78
error handlers, 468-469
properties (VB.NET), 947
variables, 58-59
VB.NET, 833-834
watch expressions, 526-527

scope specifiers in naming con-
ventions, 29

Screen object (VB6), 774
screen refresh, disabling, 571
screen resolution

adapting UserForms to,
402-403

reading, 337-338
screen-related API calls, 337

pixel size, determining,
338-340

screen resolution, reading,
337-338

screentips, enabling, 823

Index 1145

ScreenUpdating property
(Application object), 571

scroll area (worksheet UI set-
ting), 119

Scroll Lock key, checking state
of, 350-351

scroll regions in dynamic
UserForms, 415

scrolling in time series, 694
SDK, 333. See also Excel 2007

SDK
Search combo box (Object

Browser), 535
searching

arrays
binary searches, 563-565
VB.NET, 842

MSDN Library, 332, 346
second normal form, 582-583
secondary axes (charts), 690
security

code protection in VB6, 758
COM add-ins, 798
digital signatures, 1097-1098
encrypting passwords, 783
Excel, 1094-1095
macro security, 1097-1098
managed COM add-ins,

953-954
network groups, checking

membership, 1095-1096
Public profile, 329
SQL Server databases, 631
standard user accounts,

328-329
User Account Control (UAC),

326-328
VB6 EXE front loaders as, 783
VSTO, 1016-1019

Internet security zone,
1019-1020, 1022

SEH (structured exception han-
dling), 818, 829-833

Select Case statement
error handling and, 480
performance and, 571

SELECT clause (SQL SELECT
statement), 595

SELECT statement (SQL),
595-596

for Access databases, 622-625
time sheet example applica-

tion, 650, 652
selecting

application architectures, 13,
24-25

file formats, 275
installation location,

1099-1100
managed automation add-ins

in Add-in Manager,
938-940

VSTO project templates, 981
Selection property, performance

and, 573
selections

object type of, validating, 65
performance and, 571-572

self-automated workbooks, 15-16
sending messages between win-

dows, 346-348
SendMessage API call, 346, 352
separating data and application

with XML, 254, 256
separator bars, 198

creating, 215
SERIES function, 691-692
server-side programming for

Office, 981
server-side VSTO solutions,

1008-1009
ServerDocument class, 981, 1009
Set blocks (VB.NET properties),

946-947
SET clause (SQL UPDATE

statement), 597
Set Next Statement command,

516-517
Set Transparent Color

control, 214
SetCurDir API call, 357
SetIcon API call, 348
settings management (worksheet

UI), table-driven
approach to, 118-124

settings, storing and restoring,
143-148

setup projects
creating in COM Shim

Wizard, 956, 958
for managed COM add-ins,

900-908
setup solutions, 893
Setup.xls installation workbook,

1103
SetWindowLong API call, 349
Shape object (PowerPoint object

model), 732
shapes, 87-88

naming conventions, 37-38
Shared Add-in Template,

889-891
creating automation

add-ins, 928
Shared Add-in Wizard, 891, 893

Connection class module,
893-897

creating automation
add-ins, 928

shared tabs for add-ins, 279-284
SHBrowseForFolder API call,

363-368
sheet navigation in Ribbon UI,

296-298
sheet visibility (worksheet UI

setting), 120
sheets. See chart sheets; work-

sheets
SHFileOperation API call,

360-361
SHGetFolderPath API call,

358, 360
Shift key, checking state of,

350-351
time sheet example applica-

tion, 371-373
Shift+F2 keyboard shortcut (pro-

cedure definition), 543
Shift+F8 keyboard shortcut

(Step Over command),
515, 542

Shift+F9 keyboard shortcut
(Quick Watch window),
531, 543

shimming managed COM add-
ins, 952-961

COM Shim Wizard, 954-961
isolation, 952-953
security, 953-954

1146 Index

shims, 889
Short data type (VB.NET), 839
shortcut keys. See accelerator

keys; keyboard shortcuts
Shortcut Text setting (command

bar definition table), 216
shortcut_text entry (XLL func-

tion table), 1038
Show Hidden Members setting

(Object Browser), 535
ShowWindowsInTaskBar proper-

ty (Application object), 21
shutdown code, On Error

Resume Next statement
in, 472

shutdown process for dictator
applications, 142-151

restoring user settings,
143-148

shutdown stage (applications), 110
Sign Tool, 960
signatures, 953, 960-961,

1097-1098
signing deployment manifest,

1022
silent errors, 484
simple error handling, 475-476
simplicity in UserForms design,

375-376
simulating splitter bars in

UserForms, 405-406
single exit point principle, 475
Size argument (ADO

CreateParameter
method), 628

sizing comboBox controls in
Ribbon UI, 295-296

Slide object (PowerPoint object
model), 732

Snippet Editor, 855
snippets, 853-855
.snk files, 955
Soap type library, 1068
Solution Explorer, 825
solutions (VB.NET), 823

adding classes to, 941
creating, 824-829
debugging, 845-853

Breakpoints window,
849-850

Call Stack window, 850

Command window, 848
conditional compilation con-

stants, 851-852
Error List window, 848
Exception Assistant,

846-847
Exceptions dialog, 850-851
Immediate window, 849
keyboard shortcuts,

setting, 845
Object Browser, 847-848
Output window, 849
unmanaged code, enabling

debugging, 846
Watch/Quick Watch

windows, 850
resources in, 863-864
time sheet example applica-

tion, 873-874, 876
Sort property (ADO Recordset

object), 608
sorting arrays

combining with binary
searches, 565

examples
code reuse, 435-437
custom interfaces, 440-443

QuickSort procedure, 560-563
SORTSEARCH_INDEX UDT,

566-567
Source property (Err object), 467
special folders, locating, 357-360
splash screens, 420-421
splitter bars, simulating in

UserForms, 405-406
spreadsheets. See worksheets
Spy++ utility, 340
SQL (structured query lan-

guage), 594
DELETE statement, 597-598

for Access databases,
629-630

INSERT statement, 596-597
for Access databases, 625-

626, 652-656
SELECT statement, 595-596

for Access databases,
622-625, 650-652

UPDATE statement, 597
for Access databases,

626-629

SQL Native Client, 601
SQL Server databases

advantages of, 630
connecting to, 630-631
connection pooling, 632-633
default instances versus named

instances, 642
disconnected recordsets,

640-642
error handling connections,

633-635
multiple recordsets, 638-640
Northwind sample database,

installing, 615
parameter refreshing, 637-638
security types, 631
stored procedures, 635-637
upsizing Access databases to,

642-646
Stack class (VB.NET), 844
standard format, XML as, 250
standard security for SQL Server

databases, 631
standard user accounts, 328-329
starting

add-ins, 784
multiple instances of

Excel, 781
Outlook instances, 813
PowerPoint instances, 721
Word instances, 813
XLLs, 1040-1041

starting point
for dynamic lists, 77
for relative named ranges, 73

startup process for dictator appli-
cations, 142-151

environment modifications,
148-151

storing user settings, 143-148
version and dependency

checks, 142-143
startup stage (applications),

108-109
State property (ADO Connection

object), 601
State setting (command bar

definition table),
217-218, 222

states, checking key states with
API calls, 350-351,
371-373

Index 1147

StaticData.XSD, 1073
step charts, creating, 699-701
Step Into command, 514-515
Step Out command, 515
Step Over command, 515
Step to Cursor command, 516
stepping through code, 513-516

Step Into command, 514-515
Step Out command, 515
Step Over command, 515
Step to Cursor command, 516

Stop statement, 510-511
stored procedures (SQL Server),

635-637
StoreTimeSheet function (Web

Services time sheet exam-
ple application), 1073

storing
toolbar customizations, 147
user settings, 143-148

strict type checking early bound
object variables, 60

string versions (string-handling
functions), 569

string-handling functions, variant
versus string versions, 569

strings
C-strings, 1036
checking length of, 569
length prefixes, 1043
Option Compare Text, avoid-

ing, 569
Pascal strings, 1036
passing ByRef versus

ByVal, 569
passing to API calls, 356
string-handling functions, vari-

ant versus string versions,
569

in VB.NET, 839
in XLOPER data type, 1047

Strong Name Key (.snk) files, 955
strong names, 856

creating, 954-955
explained, 954

strong typing, 822
strongly typed format,

XML as, 250
structure of dictator applications,

141-142

structured exception handling
(SEH), 818, 829-833

structured format, XML as, 249
structured query language.

See SQL
structured ranges, 662-663

formulas in, 667
structures, API call usage,

352-355
styles, 78-83

adding drop-down to toolbar,
82-83

creating custom, 79-81
modifying, 82
time sheet example applica-

tion, 103
window styles

changing, 349
modifying for UserForms,

392-396
Sub New (constructors), 943
subroutines

code comments in, 46
naming conventions, 35-36

subset UserForms as
dynamic, 411

sum of digits calculation, 682
SUM() function, 683
SUMIF function, 680
supported versions of Excel, 9-10
supporting

debug mode, 149-151
XML, 269

switching. See casting
System.EnterpriseServices

namespace, 855
System.IO namespace, 922
System.Reflection

namespace, 921
System.Runtime.InteropServices

namespace, 855, 893
System.Windows.Forms name-

space, 986, 1008

T
T-SQL, 635
tab order for controls

in UserForms, 386
setting, 826

Table of Contents file
(in help files), creating,
1088, 1091

table-driven command bar
builder, 199-200

table-driven command bars,
199-219

associating icons with controls,
228-232, 796

command bar definition table,
200-219

custom menu with sub-
menus example, 220-223

custom right-click command
bar example, 226-228

custom toolbar example,
223-226

event hooks, 232-241, 795
table-driven command bar

builder, 199-200
time sheet example applica-

tion, 241-247
table-driven dynamic wizards,

411-415
table-driven methodology

defined, 119
to worksheet UI settings man-

agement, 118-124
table-driven Ribbon UI cus-

tomization, 289-291
TableDefs collection, 726
tables

dynamic tables, creating with
conditional formatting,
93-94, 96

formatting, 85-86
Tag property, resizing

UserForms, 403
Tag setting (command bar defini-

tion table), 216-217,
233-235

tags (XML), 252
target applications, 710
target response times, 545
targeting Excel versions for man-

aged COM add-ins, 909
Task List, 855
task panes, custom task panes

(CTPs), 998-1006
TaskItem object (Outlook object

model), 736
technical support, resources for

information, 11-12

1148 Index

template workbooks
for application-specific

add-ins, 18
creating (time sheet example

application), 189-190
templates

class modules as, 168-170
creating in Custom UI

Editor, 299
installation requirements, 1100
native VSTO templates, 979
project templates (VSTO),

977-983
application-centric, 979
document-centric, 979-981
installing and running, 982
managed COM add-ins ver-

sus, 982
selecting, 981

VSTO templates. See work-
books (VSTO)

Terminate event
AddinInstance object, 794
error handling, 489
On Error Resume Next state-

ment in, 472
Terminate method, 182-184
test harnesses

building, 537-540
defined, 64

testing
for key presses, 352-355
properties before setting, 573

text boxes
ComboBox control as, 426
performance expectations

for, 546
text editors, collections, default

properties and member
processing, 176-177

text files, importing code
from, 855

Thawte, 1097
“think outside the box” example

(creative thinking),
552-554

third normal form, 584-586
ThisWorkbook object

events, 784
GetSetting property, 17

IsAddin property, 17, 115
SaveSetting property, 17

threading
with COM add-ins, 798-799
multithreading (time sheet

example application),
879-882

Throw statement (structured
exception handling), 833

time series, scrolling/zooming
in, 694

time sheet example application,
8-9, 100-101

adding data to Access data-
base, 652-656

application organization, 138
application-specific add-ins,

125-137
borders, 104
cell comments, 104
central error handler for,

496-506
conditional formatting, 105
connecting to Access databas-

es, 648-649
custom interfaces, 462
data validation, 104
database handling changes in

reporting application,
656-657, 659

defined names, 102-103
event handling class module,

190-193
folders, browsing for, 369, 371
heavy weight cross-version UI

design, 307-308, 310-319
hidden rows/columns, 102
menu structure, 158
multiple document

interface, 194
PETRAS Report Tool.NET,

817, 872-887
converting to managed

COM add-in, 963-972
progress bars, adding, 431
reporting application for,

157-163
retrieving data from Access

database, 650, 652
Shift key, checking state of,

371-373

styles, 103
table-driven command bars,

241-247
template workbooks, creating,

189-190
Web Services, 1072-1083

Timer calls, 568
TimeSheet.XSD, 1073
timestamping digital signatures,

1098
timestamps, 961
title bar text in message

boxes, 747
TlbImp.exe, 857
toolbar buttons, disabling, 192
Toolbar List command bar,

disabling, 208
toolbars

building
in managed COM add-ins,

909-918
time sheet example applica-

tion, 127
custom toolbar example,

223-226
customizing

in dictator applications, 156
storing and restoring cus-

tomizations, 147
Debug toolbar, displaying, 514
deleting, 127
docking, 198
Paste Special toolbar example,

235-241, 797
style drop-down, adding, 82-83

tools, knowledge of (creative
thinking), 556

ToolTip component, 877
Tooltip setting (command bar

definition table), 216
top-level windows, 342

forms (VB6) as, 756
topic files (in help files)

creating list of, 1089-1090
displaying from VBA,

1092-1094
ID numbers for, 1090

in enumerations, 1092
mapping, 1090

Index 1149

introductory file, creating,
1088

“No Help Available” file,
creating, 1088

topics (help files), 1086
ToString method (exception han-

dling), 832
total rows in Lists, 664
Transact SQL, 635
transferring VB6 applications to

VB.NET, 820
TranslateMessage API call, 354
transparency in image files, 925
transparent backgrounds for

icons, setting, 214-215
trapping errors, 480

settings for, 507-508
trapping events, 177-182, 492
TreeView control, 430
trigger classes, creating, 185-188
TrimToSize method (VB.NET

arrays), 844
trivial procedures, 480-481
troubleshooting getEnabled call-

back, 288
Trust Center in Office, 1017
Trusted Publishers certificate

store, 1018
Trusted Root Certification

Authority certificate store,
1018

TrustManager registry key, 1018
Try statement (structured excep-

tion handling), 830
TweakUAC, 328
twips, defined, 338
two-way communication example

(ActiveX DLLs), 747-751
Type argument (ADO

CreateParameter
method), 628

type library, 717. See also object
libraries

Type mismatch errors, 433
Type property (auto-generated

references), 897
TypeName() function, 447
TypeOf function, 447

type_text entry (XLL function
table), 1037-1038

U
UAC (User Account Control),

326-328
UDFs (user-defined functions),

110-117. See also function
library add-ins

category numbers for, 113
critical details, 116-117
disadvantages of, 117
example of, 110-112
managed UDFs, 1006
naming conventions, 112
registering with Excel

Function Wizard, 112-114
UDTs (user-defined types)

naming conventions
example, 33

passing data with, 620
watching, 529-531

UI (user interface). See also UI
design

for cross-version
applications, 304

heavy weight design, 307-
308, 310-319

light weight design, 304-307
customizing for dictator appli-

cations, 151-156
for managed COM add-ins,

building, 908-927
Ribbon UI, 273

best practices, 278-289
creating for dictator applica-

tions, 291-294
creating loader add-in for,

312-318
customUI folder, 277
hiding, 294-295
sheet navigation in, 296-298
sizing comboBox controls,

295-296
table-driven customization,

289-291
template creation, 299
websites for information,

300
UserForms. See UserForms

UI design
borders, 84

time sheet example applica-
tion, 104

cell comments, 86-87
time sheet example applica-

tion, 104
conditional formatting, 92-94,

96-98
dynamic tables, creating,

93-94, 96
error conditions, highlight-

ing, 96-98
time sheet example applica-

tion, 105
controls, 98-100
data validation, 88-92

cascading lists for, 90-92
time sheet example applica-

tion, 104
unique entries,

enforcing, 89
defined names, 71-78

named constants, 72-73
named formulas, 76-77
named ranges, 73-75
scope of, 77-78
time sheet example applica-

tion, 102-103
dynamically modifying,

124-125
principles of, 69-70
program rows/columns, 70-71

time sheet example applica-
tion, 102

settings management,
table-driven approach to,
118-124

shapes, 87-88
styles, 78, 80-83

adding drop-down to tool-
bar, 82-83

creating custom, 79-81
modifying, 82
time sheet example applica-

tion, 103
table formatting, 85-86

UIS (user interface support)
layer, 377

UNC paths, changing to,
356-357

1150 Index

unhandled errors, 465
UnHighlight method (Cell

object), 174
Unicode versus ANSI in API

calls, 342-343
unique entries, enforcing with

data validation, 89
unique indexes, 594
unloading

COM add-ins, 989-990
XLAs, 987-989

unmanaged code, 820
enabling debugging, 846

unmanaged COM add-ins, 889.
See also COM add-ins

unregistering
COM add-ins manually, 940
COM shim DLL files, 960

unstructured ranges, 662
UPDATE clause (SQL UPDATE

statement), 597
UPDATE statement (SQL), 597

for Access databases, 626-629
updates

distributing, 1104-1105
for VSTO workbooks,

1023-1024
updating

charts automatically, 692-694
code comments, 49

upsizing Access databases to
SQL Server, 642-646

Upsizing Wizard (Access), 642,
644-646

User Account Control (UAC),
326-328

user controls, 999
user ID, finding, 355-356
user interface. See UI
user interface design. See UI

design
User Interface Editor, 908
user interface support (UIS)

layer, 377
user interface workbooks

(time sheet example
application)

adding rows to, 133-134
clearing data entry cells, 134
locating, 137

opening and initializing,
128-130

saving, 131-133
user name setting, changing, 87
user selections. See selections
user settings, storing and restor-

ing, 143-148
user-defined debug mode,

509-510
user-defined functions. See

UDFs
user-defined types. See UDTs
user-interface tier, defined, 41
User/Machine Hive registry sec-

tion, 958
user32.dll file, 332
user32.exe file, 332
UserForms

add-ins and, 17
close button, disabling, 396
controls

accelerator keys, 386
data binding, 386
data validation, 388-392
event handling, 386-388
layering, 385
locking versus disabling,

398-399
naming, 384
positioning, 385
tab order, 386

design best practices, 375-384
business logic, separating

from, 376-379
classes versus default

instances, 379-381
properties and methods,

exposing, 382-384
simplicity, 375-376

dynamic UserForms, 411
event handling, 416-419
scroll regions in, 415
subset UserForms as, 411
table-driven dynamic wiz-

ards, 411-415
encapsulation, 382-384
enumeration and, 383
error handling in, 488-489

forms (VB6) versus, 759-762,
764-769

ActiveX control
support, 760

control arrays, 761-769
graphics, displaying, 397-398
hiding, 381
modal, 419
modeless, 420

combining with menu items,
423-425, 460-461

as progress bars,
421-422, 431

as splash screens, 420-421
naming conventions, 36
pop-up menus in, 399-400
positioning next to cells,

400-402
resizing, 403-404
screen resolutions, adapting to,

402-403
splitter bars, simulating,

405-406
window styles, modifying,

392-396
wizard dialogs, 407

creating, 409, 411
design best practices,

407-408
UserForms-based user inter-

faces, worksheet-based
user interfaces versus,
154-156

users
canceling program execution,

484-485, 491, 494-495
defined, 2

Users folder (Windows
Vista), 328

Using keyword, 945
utility add-ins. See general

add-ins
utility modules, defined, 121

V
Validating event, 877
validation, 16-18, 117-118

of arguments, 63
data validation lists, 590

Index 1151

of object types, 65
schema validation for Ribbon

user interface, 920
XML, 250

with XSD file, 252-254
VALUE() function, 683
VALUES clause (SQL INSERT

statement), 596
variables

auto-completing names of, 31
avoiding reusing, 54
best practices, 54-61
declaring

with conditional compilation
constants, 511

including object libraries in,
711-712

VB.NET, 834-836
evaluating in Immediate win-

dow, 519
initializing (VB.NET), 834-836
interfaces and, 434
member variables, defined, 33
naming conventions

example, 33
object variables

declaring and initializing, 55
early binding versus late

binding, 59-61
fully qualified names, 56
performance advantages

of, 571
passing as Double data

type, 573
RHS (Right Hand Side), 445
scope, 58-59
watching

in arrays, UDTs, classes,
529-531

editing watches, 525-529
setting watches, 522, 524

variant arrays, performance and,
572-573

Variant data type, 54-55
variant versions (string-handling

functions), 569
VB.NET (Visual Basic.NET),

817-820
arrays, 839-845
backward compatibility, 820

ByVal or ByRef argument
passing, 838

classes, 940-947
adding to solutions, 941
creating well-designed,

941-945
properties, 946-947

COM communications and,
817. See also automation,
.NET Framework and

data types, 838-839
exception handling, 829-833
exporting data with ADO,

948-952
managed automation add-ins

creating, 928-933
limitations of, 933-940

managed COM add-ins
building user interface,

908-927
creating, 891, 893-908

object instances, creating,
836-837

Q&A forums, 871
resources for information,

870-871
scope, 833-834
Shared Add-in template, 889
time sheet example applica-

tion, 872-874, 876-887
transferring VB6 applications

to, 820
variables, declaring/initializing,

834-836
VB6 versus, 817
versions of, 820
Visual Studio IDE (VS IDE),

821-823
Web Services, creating,

1066-1068
wizards, 838

VB.NET solutions, 823
creating, 824-829
debugging, 845-846, 848-853

Breakpoints window,
849-850

Call Stack window, 850
Command window, 848
conditional compilation con-

stants, 851-852

Error List window, 848
Exception Assistant,

846-847
Exceptions dialog, 850-851
Immediate window, 849
keyboard shortcuts,

setting, 845
Object Browser, 847-848
Output window, 849
unmanaged code, enabling

debugging, 846
Watch/Quick Watch win-

dows, 850
resources in, 863-864
time sheet example applica-

tion, 873-874, 876
VB6 (Visual Basic 6), 5, 741

ActiveX DLLs, 742
advantages of using,

758-774
COM add-ins. See COM

add-ins
compiling, 744, 750
form display example,

751-758
in-process communication,

774
loading icons with resource

file, 802-807
one-way communication

example, 744-747
projects, creating, 742-744
referencing, 745-746
registering, 744
setting references, 747
two-way communication

example, 747-751
collections, default properties

and member processing,
175-176, 771-772

COM add-ins, 783-787
Add-in Designer, 788-790
AddinInstance object

events, 792-794
advantages of using,

798-799
automation add-ins, 799-802
checking for installation, 788
command bar architecture,

795-796

1152 Index

command bar event
hooks, 795

converting Excel add-ins
to, 797

custom toolbar faces, 796
enabling/disabling, 787
Hello World example,

783-787
installing for multiple users,

791-792
as multi-application, 798
registering, 790
security, 798
separate threading, 798-799

EXE applications, 775-783
front loaders, 782-783,

808-815
out-of-process communica-

tion, 774
Roman numeral conversion

example, 775-780, 782
forms. See forms (VB6)
obtaining, 741
transferring applications to

VB.NET, 820
VB.NET versus, 817
VBA versus, 5

VB6 Resource Editor, 802
VBA (Visual Basic for

Applications), 5
OOP (object-oriented pro-

gramming) and, 5
uses of, 5-6
VB6 versus, 5
in VSTO workbooks, 1019

VBA developers, defined, 3
VBA programming best prac-

tices, 52-65
defensive coding, 62-65
module directives, 52-53
variables and constants, 54-61

VBE Tools Control Nudger tool-
bar, 385

vbObjectError constant, 474
VeriSign, 1097
version checks, 142-143
version control, 65-67
Version property (Application

object), 142

Version property (auto-generated
references), 897

versions. See also cross-version
applications

of applications (Add-in
Designer), 789

of Excel, support for, 9-10
of projects, saving, 66
of .NET Framework, 818-819
of VB.NET, 820

vertical partitioning, 588
viewing value of constants, 58
Virtual PC, 62
visibility. See also hiding

sheet visibility (worksheet UI
setting), 120

in VB.NET, 833-834
Visible setting (command bar

definition table), 206, 223
visible workbooks, counting

(time sheet example
application), 136

Vista
cross-version applications. See

cross-version applications
Public profile, 329
standard user accounts,

328-329
User Account Control (UAC),

326-328
Visual Basic 2008 Programmer’s

Reference (Stephens), 871
Visual Basic 6. See VB6
Visual Basic Development

Settings (in Visual Studio
IDE), 821

Visual Basic for Applications. See
VBA

Visual Basic Projects, naming
conventions, 37

Visual Basic.NET. See VB.NET
Visual Studio, creating XLL proj-

ects, 1030-1032, 1034
Visual Studio IDE. See VS IDE
Visual Studio Tools for Office.

See VSTO
Visual Studio Tools for Office

(Carter and Lippert),
1026

Visual Studio.NET. See VS.NET

VMWare, 62
volatile functions, 1038
Volatile method (Application

object), 117
volume of data, effect on per-

formance, 558-560
VS IDE (Visual Studio IDE),

821-823
debugging in, 845-853

Breakpoints window,
849-850

Call Stack window, 850
Command window, 848
conditional compilation con-

stants, 851-852
Error List window, 848
Exception Assistant,

846-847
Exceptions dialog, 850-851
Immediate window, 849
keyboard shortcuts,

setting, 845
Object Browser, 847-848
Output window, 849
unmanaged code, enabling

debugging, 846
Watch/Quick Watch win-

dows, 850
development tools, 871

Code Region, 853
Code Snippets Manager,

853-855
Insert File as Text, 855
MZ-Tools, 871
Task List, 855
VSNETCodePrint, 871
XML Editor, 920

VS.NET (Visual Studio.NET),
817

programming languages in, 819
VSNETCodePrint, 871
VSTO (Visual Studio Tools for

Office), 290, 890-891, 975
context within Office System,

976-979
deployment, 1016

ClickOnce deployment
model, 1016-1025

development tools, 1026
documents, 979

Index 1153

managed VSTO add-ins, 979
multiple Office versions

and, 983
native templates, 979
project templates, 977-983

application-centric, 979
document-centric, 979-981
installing and running, 982
managed COM add-ins

versus, 982
selecting, 981

resources for information,
1026

security, 1016-1019
Internet security zone,

1019-1022
versions of, 975
when to use, 983-985
workbooks, 1006

creating, 1009-1011
host controls, 1006-1008
ListObject controls,

1013-1016
NamedRange controls,

1011-1012
server-side solutions,

1008-1009
Windows Forms controls,

1008
VSTO add-ins, 985

creating, 985-995
loading/unloading COM

add-ins, 989-990
loading/unloading XLAs,

987-989
referenced assemblies, 991-

992
registry entries, 992-993

custom task panes (CTPs),
998-1006

managed COM add-ins
versus, 984

Ribbon Visual Designer,
995-998

running, 993-995
VSTO automation add-ins, 1006
VSTO Developer Cleaner, 1027
VSTO loader, 993
VSTO portal, 1026
VSTO Troubleshooter, 1027

VSTOEE.DLL, 982
VSTOLoader.DLL, 982
vTable, 714-716

W
Watch Expression setting (Watch

Type options), 527
Watch Type options (Watch win-

dow), 527-529
Watch window, 522-532, 850

Context options, 526-527
editing watches, 525-529
modifying lvalue expressions,

524-525
Quick Watch window, 531-532
setting watches, 522, 524
Watch Type options, 527-529
watching arrays, UDTs,

classes, 529-531
Web Services

advantages of using, 1065
connecting to, 1068-1069,

1071
creating with VB.NET,

1066-1068
defined, 1065
publishing, 1068
time sheet example applica-

tion, 1072-1083
for update distribution, 1105
wrapper functions in,

1071-1072
Web Services Toolkit, 1068

installing, 1069
Web Services connections,

1068-1069, 1071
Web sites

resources for information,
11-12

Ribbon UI information, 300
well-designed classes (VB.NET),

creating, 941-945
WF (Windows Workflow

Foundation), 976
WHERE clause

SQL DELETE statement, 598
SQL SELECT statement, 595

Access database
example, 624

SQL UPDATE statement, 597

white space in code, 50-52
Whitechapel, Andrew, 962
Width setting (command bar def-

inition table), 206-207
wildcard characters in criteria

ranges, 677
win32api.txt file, 333
window classes, 341
window handles, 340
window styles for UserForms,

modifying, 392-396
window-related API calls, 340

messages, sending, 346-348
related windows, finding,

343-346
window classes, 341
window icons, changing,

348-349
window styles, changing, 349
windows, finding, 342-343

windows
changing icons for, 348-349
changing styles for, 349
finding with API calls, 342-343
finding related with API calls,

343-346
hiding, 823
parent windows, changing, 756
sending messages between,

346-348
Windows API, exceptions to

naming conventions, 39
Windows API calls. See API calls
Windows Common Controls,

430-431
Windows Forms, 825. See also

custom task panes (CTPs)
adding ActiveX controls

to, 826
closing, 828
controls, 1008
displaying, 971-972
extender providers, 876-879
Load event, 826

Windows Installer, 1104
deployment model, 982, 993

Windows integrated security for
SQL Server databases, 631

Windows Script Networking
object library, 1095

1154 Index

Windows SharePoint
Services, 976

Windows versions needed for
.NET Framework, 819

Windows Vista
cross-version applications. See

cross-version applications
Public profile, 329
standard user accounts,

328-329
User Account Control (UAC),

326-328
Windows Workflow Foundation

(WF), 976
Windows XP styles, 876
With blocks, performance advan-

tages of, 571
WithEvents assignments, 234
WithEvents object variable,

declaring, 177
wizard dialogs, 407

creating, 409, 411
design best practices, 407-408
table-driven dynamic wizards,

411-415
wizards in VB.NET, 838
wksBackDrop worksheet (time

sheet example applica-
tion), 158

WMWare, 863
wndproc message-handling pro-

cedure, 346
Word, starting instances of, 813
Word MVP Web site, 740
Word object library, 729-732

ActiveDocument,
referencing, 712

Application object, 729
Bookmark object, 729
Document object, 729
example application, 730-732
Range object, 729
referencing, 710

WordArt, displaying on
UserForms, 397-398

work processes, support for,
278-279

workbook events, add-ins
and, 784

workbook-level defined names,
77-78

workbooks
add-ins as, 17
identifying with custom docu-

ment properties, 161-163
installation workbooks, 1103
self-automated, 15-16
template workbooks

for application-specific add-
ins, 18

creating, 189-190
user interface workbooks. See

user interface workbooks
visible workbooks,

counting, 136
workbooks (VSTO), 1006

creating, 1009-1011
host controls, 1006, 1008
ListObject controls, 1013-1016
NamedRange controls,

1011-1012
server-side solutions,

1008-1009
Windows Forms controls,

1008
worksheet functions, XLL-based.

See XLLs
Worksheet Menu Bar, adding

custom menu with sub-
menus, 220-221, 223

worksheet-based user interfaces,
form-based user inter-
faces versus, 154-156

worksheet-level defined names,
77-78

worksheets
adding to VSTO workbooks,

1010-1011
as data entry forms, 4-5
as data stores, 5
databases versus, 577-578
functions as declarative pro-

gramming language, 6-7
naming conventions, 37
referencing, 65
sheet navigation in Ribbon UI,

296-298
UI design

borders, 84, 104
cell comments, 86-87, 104
conditional formatting,

92-98, 105

controls, 98-100
data validation, 88-92, 104
defined names, 71-78,

102-103
dynamically modifying,

124-125
principles of, 69-70
program rows/columns,

70-71, 102
settings management,

118-124
shapes, 87-88
styles, 78, 80-83, 103
table formatting, 85-86

Worksheets property, perform-
ance and, 573

wrapper functions in Web
Services, 1071-1072

wrapping procedures in On
Error Resume Next state-
ment, 471

writing help file contents, 1091

X
x,y coordinates, converting polar

coordinates to, 694, 696
XL-Dennis blog, 962
xlAddInManagerInfo function

(XLLs), 1042-1043
XLAs, loading/unloading,

987-989
xlAutoAdd function (XLLs), 1044
xlAutoClose function (XLLs),

1041-1042
xlAutoFree function (XLLs),

1044
xlAutoOpen function (XLLs),

1040-1041
xlAutoRegister function (XLLs),

1043
xlAutoRemove function (XLLs),

1044
.xlb files, 147
xlcall.h file, 1030, 1045
xlcall32.lib file, 1030
xlCoerce function, 1052-1053
xlerrDiv0 constant (XLOPER

error value), 1048
xlerrNA constant (XLOPER

error value), 1048

Index 1155

xlerrName constant (XLOPER
error value), 1048

xlerrNull constant (XLOPER
error value), 1048

xlerrNum constant (XLOPER
error value), 1048

xlerrRef constant (XLOPER
error value), 1048

xlerrValue constant (XLOPER
error value), 1048

xlfn parameter (Excel4 function),
1050

xlFree function, 1052
xlGetName function, 1053
XLL+, 1062
XLLs

advantages of using, 1029
C API functions called in,

1052-1053
COM automation and, 1061
debugging, 1060-1061
defined, 1029-1030
Excel4 function, 1050-1051
IFERROR function example,

1057-1060
K data type arguments, 1039
projects, creating, 1030-1034
registering functions in,

1054-1057
resources for information,

1062-1063
structure of, 1034, 1036-1044

callback functions,
1040-1044

DLLMain function,
1039-1040

function table, 1035-1039
XLOPER data type,

1044-1050
C++ keywords and, 1061

XLM functions, 698
XLM macros

hiding Ribbon UI using,
294-295

registering UDFs with, 114
xlmacro.exe, 698
XLOPER data type, 1044-1050

arrays and, 1048-1049
C++ keywords and, 1061
constants defined in, 1046

error values, 1048
memory management,

1049-1054
numeric data in, 1047
string data in, 1047
xlCoerce function, 1052-1053
xlFree function, 1052
xlGetName function, 1053

xlretAbort constant (Excel4 func-
tion return value), 1051

xlretFailed constant (Excel4
function return value),
1051

xlretInvCount constant (Excel4
function return value),
1051

xlretInvXlfn constant (Excel4
function return value),
1051

xlretInvXloper constant (Excel4
function return value),
1051

xlretStackOvfl constant (Excel4
function return value),
1051

xlretSuccess constant (Excel4
function return value),
1051

xlretUncalced constant (Excel4
function return value),
1051

.xls files, 275

.xlsx files, 319-320
xlType argument (xlCoerce func-

tion), 1053
xltypeBigData constant (XLOP-

ER data type), 1047
xltypeBool constant (XLOPER

data type), 1046
xltypeErr constant (XLOPER

data type), 1046
xltypeFlow constant (XLOPER

data type), 1047
xltypeInt constant (XLOPER

data type), 1047
xltypeMissing constant (XLOP-

ER data type), 1047
xltypeMulti constant (XLOPER

data type), 1047
xltypeNil constant (XLOPER

data type), 1047

xltypeNum constant (XLOPER
data type), 1046

xltypeRef constant (XLOPER
data type), 1046

xltypeSRef constant (XLOPER
data type), 1047

xltypeStr constant (XLOPER
data type), 1046

XML, 1065
attributes, 252
data files, importing/exporting,

262-263
elements, 251

root element, 252
example file, 251-252
example XSD file, 252-254
explained, 249-251
exporting data files, 256
financial model example,

256-257
preventing results

import, 269
XML data file from, 268
XML Maps, 259-267
XSD file, 263-265
XSD, creating, 257-259

importing data files, 255
namespaces, 253, 270-271

for shared tabs, 280
Open XML, 273-277
for separating applications and

data, 254, 256
support for, 269
tags, 252
XPaths, 267

XML data files from financial
model example, 268

XML data islands, 981
XML Editor, 920
XML file formats, Open XML,

1009
XML in Office Developer

Portal, 300
XML Maps, 259-267

object and event model,
266-267

XML markup, 1067
XML parsers, 290
XML parts, customUI, 290-291

1156 Index

XML Schema Definition files.
See XSD

XML Source Task Pane, 255
XMLDataQuery method, 267
XMLMappedRange control,

1007
XMLMapQuery method, 267
XPaths, 267
XSD (XML Schema Definition

files), 250, 290
creating for financial model

example, 257-259
example XSD file, 252-254
financial model example,

263-265
importing, 255

Xtreme VB Talk, 871

Z
z-order, changing, 385
ZIP archives

components of, 275
defined, 274

zooming in time series, 694

	Chapter 7 Using Class Modules to Create Objects
	Creating Objects
	Creating a Collection
	Trapping Events
	Raising Events
	Practical Example

	Chapter 24 Excel and VB.NET
	.NET Framework Fundamentals
	Visual Basic.NET
	Debugging
	Useful Development Tools
	Automating Excel
	Resources in .NET Solutions
	Retrieving Data with ADO.NET
	Further Reading
	Additional Development Tools
	Q&A Forums
	Practical Example—PETRAS Report Tool .NET

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

