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Agile software development centers on four values, which are identified 
in the Agile Alliance’s Manifesto*:

 1. Individuals and interactions over processes and tools
 2. Working software over comprehensive documentation
 3. Customer collaboration over contract negotiation
 4. Responding to change over following a plan

The development of Agile software requires innovation and responsiveness, based on 
generating and sharing knowledge within a development team and with the customer. 
Agile software developers draw on the strengths of customers, users, and developers 
to find just enough process to balance quality and agility.

The books in The Agile Software Development Series focus on sharing the experiences 
of such Agile developers. Individual books address individual techniques (such as Use 
Cases), group techniques (such as collaborative decision making), and proven solutions 
to different problems from a variety of organizational cultures. The result is a core of 
Agile best practices that will enrich your experiences and improve your work.

* © 2001, Authors of the Agile Manifesto

Visit informit.com/agileseries for a complete list of available publications.
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Alistair Cockburn and Jim Highsmith, Series Editors
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xv

FOREWORD
BY JIM HIGHSMITH

I was introduced to Ken Collier through a mutual friend about seven years 
ago. We started meeting for coffee (a two-person Agile group in Flagstaff, 
Arizona) every week or so to talk about software development, a sprinkling 
of Agile here and there, skiing, mountain biking, and Ken’s analytics proj-
ects. Early on, as Ken talked about a project that was faltering and I talked 
about Agile, he decided to try out Agile on his next project. As he quipped, 
“It couldn’t be worse!”

Over the years I’ve heard every reason imaginable why “Agile won’t work 
in my company because we are different.” Ken never had that attitude and 
from the beginning kept trying to figure out not if Agile would work on 
business intelligence and data warehousing projects, but how it would work. 
Ken saw each impediment as an opportunity to figure out an Agile way to 
overcome it. From developing user stories that traversed the entire analyt-
ics software stack, to figuring out how to do continuous integration in that 
same diverse stack, Ken has always been Agile, just as he was learning to 
do Agile. Today, Ken champions the cause of being Agile and not just doing 
Agile.

Over subsequent analytics projects, one that ran for over three years, deliv-
ering releases every quarter, Ken took the fundamental Agile management 
and development practices and came up with innovative ways to apply them. 
Business intelligence and data warehousing developers have been reluctant 
to embrace Agile (although that is changing) in part because it wasn’t clear 
how to apply Agile to these large, data-centric projects. However, analytics 
projects suffered from the same problems as more typical IT projects—they 
took too long, cost too much, and didn’t satisfy their customers. In our cur-
rent turbulent business era these kinds of results are no longer acceptable. 

One remarkable aspect of Agile Analytics is the breadth of coverage—from 
product and backlog management, to Agile project management techniques, 
to self-organizing teams, to evolutionary design practices, to automated 
testing, to build management and continuous integration. Even if you are 
not on an analytics project, Ken’s treatment of this broad range of topics 
related to products with a substantial data-oriented flavor will be useful for 
and beyond the analytics community.
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In each subject area he has taken the basic Agile practices and custom-
ized them to analytics projects. For example, many BI and data warehouse 
teams are far behind their software development counterparts in configura-
tion management. With execution code in Java, Ruby, and other languages, 
stored procedures, SQL, and tool-specific code in specialized tools, analyt-
ics teams often have poor “code” management practices. Ken spends several 
chapters on reviewing techniques that software developers have been using 
and showing how those techniques can be adapted to an analytics envi-
ronment. Ken often asks analytics teams, “If your servers went down hard 
today, how long would it take you to rebuild?” The responses he typically 
receives vary from a few weeks to never! The automation of the build, inte-
gration, and test process is foreign to many analytics teams, so Ken spends 
a chapter each on version control and build automation, showing how to 
build a fast-paced continuous integration environment. 

The book also devotes a chapter to explaining how to customize test-driven 
development (TDD) to an analytics environment. Comprehensive, auto-
mated testing—from unit to acceptance—is a critical piece of Agile devel-
opment and a requirement for complete continuous integration. 

The breadth of Ken’s topic coverage extends to architecture. While he advo-
cates architecture evolution (and evolutionary design is covered in Chapter 6, 
“Evolving Excellent Design”), he describes architectural patterns that are 
adaptive. In Chapter 6 he introduces an adaptable analytics architecture, 
one that he used on a large project in which change over time was a key part 
of the challenge. This architecture advocates a “data pull” in contrast to the 
traditional “data push” approach, much like Kanban systems. 

What I like about Ken’s book can be summarized by three points: (1) It 
applies Agile principles and practices to analytics projects; (2) it addresses 
technical and management practices (doing Agile) and core Agile principles 
(being Agile); and (3) it covers an astonishingly wide range of topics—from 
architecture to build management—yet it’s not at all superficial. This is 
quite an accomplishment. Anyone participating in data-centric or business 
analytics projects will benefit from this superb book.

—Jim Highsmith
Executive Consultant
Thoughtworks, Inc.
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FOREWORD
BY WAYNE ECKERSON

Several years ago, I spearheaded the development of Web sites for The Data 
Warehousing Institute’s local chapters. I had established the program two 
years earlier and worked closely with many of the officers to grow the chap-
ters and host events. 

As the “business driver” of the project, I knew exactly what functionality 
the chapter Web sites needed. I had researched registration and collabora-
tion systems and mapped their capabilities to my feature matrix. I was ready 
to wheel and deal and get a new system up and running in three months. 

Unfortunately, the project went “corporate.” The president assigned some-
one to manage the project, an IT person to collect requirements, and a 
marketing person to coordinate integration with our existing Web site. We 
established a regular time to meet and discuss solutions. In short order, the 
project died. 

My first sense of impending doom came when I read the requirements doc-
ument compiled by the IT developer after I had e-mailed her my require-
ments and had a short conversation. When I read the document—and I’m 
technically astute—I no longer recognized my project. I knew that anyone 
working from the document (i.e., vendor or developer) would never get 
close to achieving the vision for the Web sites that I felt we needed. 

This experience made me realize how frustrated business people get with 
IT’s traditional approach to software development. Because I witnessed 
how IT translates business requirements into IT-speak, I now had a greater 
understanding of why so many business intelligence (BI) projects fail. 

Agile to the rescue. When I first read about Agile development techniques, 
I rejoiced. Someone with a tad of business (and common) sense had finally 
infiltrated the IT community. Everything about the methodology made 
perfect sense. Most important, it shifts the power in a development project 
from the IT team to business users for whom the solution is being built! 

However, the Agile development methodology was conceived to facili-
tate software projects for classic transaction-processing applications. 
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Unfortunately, it didn’t anticipate architecture- and data-laden develop-
ment projects germane to business intelligence. 

Fortunately, BI practitioners like Ken Collier have pioneered new territory 
by applying Agile methods to BI and have lived to tell about their experi-
ences. Ken’s book is a fount of practical knowledge gleaned from real project 
work that shows the dos and don’ts of applying Agile methods to BI. 

Although the book contains a wealth of process knowledge, it’s not a how-
to manual; it’s really more of a rich narrative that gives would-be Agile BI 
practitioners the look, feel, smell, and taste of what it’s like to apply Agile 
methods in a real-world BI environment. After you finish reading the book, 
you will feel as if you have worked side by side with Ken on a project and 
learned from the master. 

—Wayne Eckerson
Founder and President
BI Leadership Forum
Formerly Director of Research and Services, TDWI
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PREFACE

WHEN DW/BI PROJECTS GO BAD

Most data warehouse developers have experienced projects that were less 
than successful. You may even have experienced the pain of a failed or fail-
ing project. Several years ago I worked for a midsize company that was seek-
ing to replace its existing homegrown reporting application with a properly 
architected data warehouse. My role on the project was chief architect and 
technical lead. This project ended very badly and our solution was ulti-
mately abandoned. At the outset the project appeared poised for success and 
user satisfaction. However, in spite of the best efforts of developers, project 
managers, and stakeholders, the project ran over budget and over schedule, 
and the users were less than thrilled with the outcome. Since this project 
largely motivated my adaptation of Agile principles and practices to data 
warehouse and business intelligence (DW/BI) development, I offer this brief 
retrospective to help provide a rationale for the Agile DW/BI principles and 
practices presented throughout this book. It may have some similarities to 
projects that you’ve worked on.

About the Project

This section summarizes the essential characteristics of the project, includ-
ing the following:

 � Existing application. The company’s existing reporting application 
was internally referred to as a “data warehouse,” which significantly 
skewed users’ understanding of what a data warehouse applica-
tion offers. In reality the data model was a replication of parts of 
one of the legacy operational databases. This replicated database 
did not include any data scrubbing and was wrapped in a signifi-
cant amount of custom Java code to produce the reports required. 
Users had, at various times, requested new custom reports, and the 
application had become overburdened with highly specialized and 
seldom used reporting features. All of the reports could be classi-
fied as canned reports. The system was not optimized for analytical 
activities, and advanced analytical capabilities were not provided.
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 � Project motivation. Because the existing “data warehouse” was 
not architected according to data warehousing best practices, it 
had reached the practical limits of maintainability and scalability 
needed to continue meeting user requirements. Additionally, a new 
billing system was coming online, and it was evident that the exist-
ing system could not easily be adapted to accommodate the new 
data. Therefore, there was strong executive support for a properly 
designed data warehouse.

 � External drivers. The data warehousing project was initially envi-
sioned by a sales team from one of the leading worldwide vendors of 
data warehousing and business intelligence software. In providing 
guidance and presales support, this sales team helped the project 
sponsors understand the value of eliciting the help of experienced 
business intelligence consultants with knowledge of industry best 
practices. However, as happens with many sales efforts, initial esti-
mates of project scope, cost, and schedule were overly ambitious.

 � Development team. The development team consisted exclusively of 
external data warehousing contractors. Because the company’s exist-
ing IT staff had other high-priority responsibilities, there were no 
developers with deep knowledge of the business or existing opera-
tional systems. However, the development team had open access to 
both business and technical experts within the company as well as 
technology experts from the software vendor. While initial discov-
ery efforts were challenging, there was strong participation from all 
stakeholders.

 � Customer. The primary “customer” for the new data warehouse was 
the company’s finance department, and the project was sponsored 
by the chief financial officer. They had a relatively focused busi-
ness goal of gaining more reliable access to revenue and profitability 
information. They also had a substantial volume of existing reports 
used in business analysis on a routine basis, offering a reasonable 
basis for requirements analysis.

 � Project management. Project management (PM) responsibilities 
were handled by corporate IT using traditional Project Management 
Institute/Project Management Body of Knowledge (PMBOK) prac-
tices. The IT group was simultaneously involved in two other large 
development projects, both of which had direct or indirect impact 
on the data warehouse scope.

 � Hosted environment. Because of limited resources and infrastruc-
ture, the company’s IT leadership had recently decided to partner 
with an application service provider (ASP) to provide hosting ser-
vices for newly developed production systems. The data warehouse 
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was expected to reside at the hosting facility, located on the west 
coast of the United States, while the company’s headquarters were 
on the east coast. While not insurmountable, this geographic sepa-
ration did have implications for the movement of large volumes of 
data since operational systems remained on the east coast, residing 
on the corporate IT infrastructure.

Project Outcome

The original project plan called for an initial data warehouse launch within 
three months but had an overly ambitious scope for this release cycle. Proj-
ect completion was a full eight months after project start, five months late! 
User acceptance testing did not go well. Users were already annoyed with 
project delays, and when they finally saw the promised features, there was 
a large gap between what they expected and what was delivered. As is com-
mon with late projects, people were added to the development team during 
the effort to try to get back on track. As Fred Brooks says, “Adding more 
people to a late project only makes it later” (Brooks 1975). Ultimately, proj-
ect costs far exceeded the budget, users were unsatisfied, and the project was 
placed on hold until further planning could be done to justify continued 
development.

Retrospective

So who was to blame? Everybody! Users felt that the developers had missed 
the mark and didn’t implement all of their requirements. Developers felt that 
the users’ expectations were not properly managed, and the project scope 
grew out of control. Project sponsors felt that the vendors overpromised and 
underdelivered. Vendors felt that internal politics and organizational issues 
were to blame. Finally, many of the organization’s IT staff felt threatened by 
lack of ownership and secretly celebrated the failure.

The project degenerated into a series of meetings to review contracts and 
project documents to see who should be held responsible, and guess what? 
Everyone involved was partially to blame. In addition to the normal techni-
cal challenges of data warehouse development, the following were identified 
as root causes of project failure:

 � The contract did not sufficiently balance scope, schedule, and 
resources.

 � Requirements were incomplete, vague, and open-ended.
 � There were conflicting interpretations of the previously approved 

requirements and design documents.
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 � Developers put in long nights and weekends in chaotic attempts to 
respond to user changes and new demands.

 � The technical team was afraid to publicize early warning signs 
of impending failure and continued trying to honor unrealistic 
commitments.

 � Developers did not fully understand the users’ requirements or 
expectations, and they did not manage requirements changes well.

 � Users had significant misconceptions about the purpose of a data 
warehouse since existing knowledge was based on the previous 
reporting application (which was not a good model of a warehouse). 

 � Vendors made ambitious promises that the developers could not 
deliver on in the time available.

 � The project manager did not manage user expectations.
 � IT staff withheld important information from developers.
 � The ASP partner did not provide the level of connectivity and tech-

nical support the developers expected.

Hindsight truly is 20/20, and in the waning days of this project several things 
became apparent: A higher degree of interaction among developers, users, 
stakeholders, and internal IT experts would have ensured accurate under-
standing on the part of all participants. Early and frequent working software,
no matter how simplistic, would have greatly reduced the users’ misconcep-
tions and increased the accuracy of their expectations. Greater emphasis on 
user collaboration would have helped to avoid conflicting interpretations 
of requirements. A project plan that focused on adapting to changes rather 
than meeting a set of “frozen” contractual requirements would have greatly 
improved user satisfaction with the end product. In the end, and regardless 
of blame, the root cause of this and many other data warehousing project 
failures is the disconnect in understanding and expectations between devel-
opers and users.

ABOUT THIS BOOK

About the same time I was in the throes of the painful and failing project 
just described, I met Jim Highsmith, one of the founding fathers of the Agile 
movement, author of Adaptive Software Development, Agile Software Devel-
opment Ecosystems, and Agile Project Management and one of the two series 
editors for the Agile Software Development Series of which this book is a 
part. Jim listened to my whining about our project difficulties and gave me 
much food for thought about how Agile methods might be adapted to DW/BI 
systems development. Unfortunately, by the time I met Jim it was too late 
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to right that sinking ship. However, since then Jim and I have become good 
friends, exchanging ideas over coffee on a mostly weekly basis. Well, mostly 
he shares good ideas and I do my best to absorb them. Jim has become my 
Agile mentor, and I have devoted my professional life since we first met to 
ensuring that I never, ever work on another failing DW/BI project again. 
Now that may seem like an audacious goal, but I believe that (a) life is too 
short to suffer projects that are doomed to fail; (b) Agile development is the 
single best project risk mitigation approach we have at our disposal; and (c) 
Agile development is the single best means of innovating high-value, high-
quality, working DW/BI systems that we have available. That’s what this 
book is about:

 � Mitigating DW/BI project risk
 � Innovating high-value DW/BI solutions
 � Having fun!

Since my last painful project experience I have had many wonderful oppor-
tunities to adapt Agile development methods to the unique characteristics 
of DW/BI systems development. Working with some very talented Agile 
DW/BI practitioners, I have successfully adapted, implemented, and refined 
a comprehensive set of project management and technical practices to create 
the Agile Analytics development method. 

This adaptation is nontrivial as there are some very significant and unique 
challenges that we face that mainstream software developers do not. DW/BI 
developers deal with a hybrid mix of integrating commercial software and 
writing some custom code (ETL scripting, SQL, MDX, and application pro-
gramming are common). DW/BI development teams often have a broad and 
disparate set of skills. DW/BI development is based on large data volumes 
and a complex mixture of operational, legacy, and specialty systems. The 
DW/BI systems development platform is often a high-end dedicated server 
or server cluster, making it harder to replicate for sandbox development and 
testing. For these reasons and more, Agile software development methods 
do not always easily transfer to DW/BI systems development, and I have met 
a few DW/BI developers who have given up trying. This book will introduce 
you to the key technical and project management practices that are essential 
to Agile DW/BI. Each practice will be thoroughly explained and demon-
strated in a working example, and I will show you how you might modify 
each practice to best fit the uniqueness of your situation.
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This book is written for three broad audiences:

 � DW/BI practitioners seeking to learn more about Agile techniques 
and how they are applied to the familiar complexities of DW/BI 
development. For these readers I provide the details of Agile techni-
cal and project management techniques as they relate to business 
intelligence and data-centric projects.

 � Agile practitioners who want to know how to apply familiar Agile 
practices to the complexities of DW/BI systems development. For 
these readers I elaborate upon the traits of business intelligence proj-
ects and systems that make them distinctly different from software 
development projects, and I show how to adapt Agile principles and 
practices to these unique characteristics.

 � IT and engineering management who have responsibility for and 
oversight of program portfolios, including data warehousing, busi-
ness intelligence, and analytics projects. This audience may possess 
neither deep technical expertise in business intelligence nor exper-
tise in Agile methods. For these readers I present an introduction to 
an approach that promises to increase the likelihood of successful 
projects and delighted customers.

Although this book isn’t a primer on the fundamentals of DW/BI systems, I 
will occasionally digress into coverage of DW/BI fundamentals for the ben-
efit of the second audience. Readers already familiar with business intelli-
gence should feel free to skip over these sections. 

By the way, although I’m not an expert in all types of enterprise IT systems, 
such as enterprise resource planning (ERP) implementations, I have reason 
to believe that the principles and practices that make up Agile Analytics can 
be easily adapted to work in those environments as well. If you are an IT 
executive, you might consider the broader context of Agile development in 
your organization.

WHY AN AGILE DW/BI BOOK?
In the last couple of years the Agile software development movement has 
exploded. Agile success stories abound. Empirical evidence continues to 
increase and strongly supports Agile software development. The Agile com-
munity has grown dramatically during the past few years, and many large 
companies have adopted agility across their IT and engineering depart-
ments. And there has been a proliferation of books published about various 
aspects of Agile software development. 
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Unfortunately, the popularity of Agile methods has been largely lost on the 
data and business intelligence communities. For some strange reason the 
data community and software development community have always tended 
to grow and evolve independently of one another. Big breakthroughs that 
occur in one community are often lost on the other. The object-oriented 
boom of the 1990s is a classic example of this. The software development 
community has reaped the tremendous benefits of folding object orientation 
into its DNA, yet object-oriented database development remains peripheral 
to the mainstream for the data community.

Whenever I talk to groups of DW/BI practitioners and database developers, 
the common reaction is that Agile methods aren’t applicable to data-centric 
systems development. Their arguments are wide and varied, and they are 
almost always based on myths, fallacies, and misunderstandings, such as 
“It is too costly to evolve and change a data model. You must complete the 
physical data model before you can begin developing reports and other user 
features.”

The reality is that there is nothing special about data-centric systems that 
makes Agile principles irrelevant or inappropriate. The challenge is that 
Agile practices must be adapted, and a different tool set must be adopted for 
data-centric systems development. Although many of the current books on 
Agile concepts and techniques are directly relevant to the data community, 
most of them do not speak directly to the data-minded reader. Unfortu-
nately, many current Agile books are too narrowly focused on new, green-
field software development using all the latest platforms, frameworks, and 
programming languages. It can be difficult for readers to extrapolate the 
ideas presented in these books to database development, data warehouse 
development, ERP implementation, legacy systems development, and so 
forth.

Agile author and database expert Scott Ambler has written books on Agile 
database development and database refactoring (a distinctly Agile practice) 
to engage the database community in the Agile dialogue. Similarly, I’ve 
written this book to engage the DW/BI community in the Agile movement 
because Agile is simply a better way to work on large, complex DW/BI sys-
tems. In 2008 Ralph Hughes’s book Agile Data Warehousing hit the shelves 
(Hughes 2008). Ralph does a great job of adapting Scrum and eXtreme Pro-
gramming (XP) techniques to the nuances of data warehousing, and many 
of those concepts are also present in this book. Additionally, this book aims 
to dive into many of the technical practices that are needed to develop in an 
Agile manner.



xxvi PREFACE

WHAT DO I MEAN BY AGILE ANALYTICS?
A word about terminology: I’ve chosen the title Agile Analytics more because 
it’s catchy and manageable than because it precisely captures my focus. Face 
it, Agile Data Warehousing, Business Intelligence, and Analytics would be a 
mouthful. By and large the data warehousing community has come to use 
the term data warehousing to refer to back-end management and prepara-
tion of data for analysis and business intelligence to refer to the user-facing 
front-end applications that present data from the warehouse for analysis. 
The term analytics is frequently used to suggest more advanced business 
intelligence methods involving quantitative analysis of data (e.g., predic-
tive modeling, statistical analysis, etc.). Moreover, the industry term busi-
ness intelligence is sometimes an ambiguous and broadly encompassing term 
that includes anything to do with data-driven business processes (business 
performance management, customer relationship management, etc.) or 
decision support (scorecards, dashboards, etc.). 

My use of the moniker Agile Analytics should not imply that Agile meth-
ods are applicable only to a certain class of user-facing BI application devel-
opment. Agile methods are applicable and adaptable to data warehouse 
development as well as business intelligence and analytical application 
development. For many people Agile BI development tends to be easier to 
imagine, since it is often assumed that the data warehouse has been built 
and populated. Certainly a preexisting data warehouse simplifies the effort 
required to build BI applications. However, you should not take this to 
mean that the data warehouse must be completed prior to building BI appli-
cations. In fact, Agile Analytics is a user-value–driven approach in which 
high-valued BI capabilities drive the evolutionary development of the data 
warehouse components needed to support those capabilities. In this way 
we avoid overbuilding the warehouse to support more than its intended 
purpose. 

In this book I focus primarily on the core of most flavors of DW/BI systems, 
the data warehouse. My use of the term business intelligence or BI through-
out this book should be assumed to include analytic as well as reporting and 
querying applications. When I use the term DW/BI system, you should infer 
that I mean the core data warehouse along with any presentation applica-
tions that are served by the warehouse such as a finance dashboard, a fore-
casting portal, or some other BI application. However, the DW/BI acronym 
is somewhat clunky, and I may occasionally use BI alone. In most of these 
cases you should assume that I mean to include relevant DW components 
as well. I’ll also address some of the advanced BI concepts like data mining 
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and data visualization. I’ll leave it to the reader to extrapolate the practices 
to more specific BI projects such as CRM implementations. The principles 
still apply.

WHO SHOULD READ THIS BOOK?
An Agile DW/BI team is made up of more than just developers. It includes 
the customer (user) community, who provide requirements; the business 
stakeholder community, who are monitoring the impact of the BI system on 
business improvements; and the technical community, who develop, deploy, 
and support the DW/BI system. These communities are connected by a 
project manager, a business analyst (or product owner), and an executive 
sponsor. Each of these communities plays a crucial role in project success, 
and each of these communities requires a well-defined set of Agile practices 
to be effective in its role. This book is intended for both business and techni-
cal readers who are involved in one or more of the communities described.

Not everything in the book is meant for everyone on the list, but there is 
something here for everyone. I have worked with many organizations that 
seek Agile training, mentoring, and coaching. Occasionally I have to dispel 
the myth that agility applies only to developers and techies. 

At one company with which I was invited to work, the executive who spon-
sored the training said something like, “If our engineers could just start 
doing Agile development, we could finish projects faster and our customers 
would be happier.” This statement represents some unfortunate misconcep-
tions that can be a buzzkill for Agile teams. 

First, successful agility requires a change in the mind-set of all team mem-
bers. Customer community members must understand that their time is 
required to explore and exercise newly completed features, and to provide 
continuous input and feedback on the same. Management community 
members must adapt their expectations as project risk and uncertainty 
unfolds, and as the team adapts to inevitable change. The technical com-
munity must learn a whole new way of working that involves lots of disci-
pline and rigor. And the project interface community must be committed 
to daily project involvement and a shift in their role and contribution to 
project success.

Second, Agile doesn’t always mean faster project completion. Even the best 
project teams still have a finite capacity to complete a scope of work. Agility 
is not a magic wand that makes teams work faster. Agile practices do steer 
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teams to focus on the high-value and riskiest features early. Therefore, it is 
possible that an Agile DW/BI system can be launched into production ear-
lier, as soon as the most critical features are complete and accepted. How-
ever, I would caution against expecting significantly faster project cycles, 
especially in the beginning. On the other hand, you should expect a signifi-
cant increase in quality and customer delight over traditional DW/BI devel-
opment approaches.

The bottom line is that successful adoption of Agile DW/BI requires aware-
ness, understanding, and commitment from the members of all of the 
aforementioned project communities. For this reason I have tried to design 
this book to provide something relevant for everyone.

HOW THIS BOOK IS ORGANIZED

This book is divided into two parts. Part I, “Agile Analytics: Management 
Methods,” is focused on Agile project management techniques and delivery 
team coordination. It includes the following chapters:

 � Chapter 1, “Introducing Agile Analytics,” provides an overview and 
baseline for this DW/BI approach.

 � Chapter 2, “Agile Project Management,” introduces an effective col-
lection of practices for chartering, planning, executing, and moni-
toring an Agile Analytics project.

 � Chapter 3, “Community, Customers, and Collaboration,” introduces 
a set of guidelines and practices for establishing a highly collabora-
tive project community.

 � Chapter 4, “User Stories for BI Systems,” introduces the story-driven 
alternative to traditional requirements analysis and shows how use 
cases and user stories drive the continuous delivery of value.

 � Chapter 5, “Self-Organizing Teams Boost Performance,” introduces 
an Agile style of team management and leadership as an effective 
alternative to more traditional command-and-control styles.

This first part is written for everyone involved in an Agile Analytics proj-
ect, from executive sponsors, to project managers, to business analysts and 
product owners, to technical leads and delivery team members. These chap-
ters establish a collection of core practices that shape the way an Agile proj-
ect community works together toward a successful conclusion.

Part II of the book, “Agile Analytics: Technical Methods,” is focused on 
the technical methods that are necessary to enable continuous delivery of 
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business value at production-quality levels. This part includes the following 
chapters:

 � Chapter 6, “Evolving Excellent Design,” shows how the evolutionary 
design process works and how to ensure that it results in higher-
quality data models and system components with minimal technical 
debt.

 � Chapter 7, “Test-Driven Data Warehouse Development,” introduces 
a collection of practices and tools for automated testing, and for 
taking a test-first approach to building data warehouse and business 
intelligence components.

 � Chapter 8, “Version Control for Data Warehousing,” introduces a set 
of techniques and tools for keeping the entire DW/BI system under 
version control and configuration management.

 � Chapter 9, “Project Automation,” shows how to combine test 
automation and version control practices to establish an automated 
continuous integration environment that maintains confidence in 
the quality of the evolving system.

 � Chapter 10, “Final Words,” takes a look at some of the remaining 
factors and considerations that are critical to the successful adoption 
of an Agile Analytics approach.

I think of this part as a collection of modern development practices that 
should be used on every DW/BI project, be it Agile or traditional (e.g., 
“waterfall”). However, these technical practices are essential when an Agile 
Analytics approach is taken. These methods establish the minimally suf-
ficient set of technical practices needed to succeed in the continuous, incre-
mental, and evolutionary delivery of a high-value DW/BI system.

Of course, these technical chapters should be read by technical team leads 
and delivery team members. However, I also recommend that nontechnical 
project team members read the introductory sections of each of these chap-
ters. Doing so will help nontechnical members establish a shared under-
standing of the purpose of these practices and appreciate the value of the 
technical team’s efforts to apply them.

HOW SHOULD YOU READ THIS BOOK?
I like to think of Agile Analytics techniques as supporting one of the follow-
ing focal points:
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 � Agile DW/BI management: the set of practices that are devoted to 
how you run your project, including precursors to agility, Agile proj-
ect management methods, the Agile team, developer-user interface, 
and so on

 � Agile DW/BI technical methods: the set of practices that are 
devoted to the development and delivery of a high-value, high-
quality, working DW/BI system, including specific technical prac-
tices like story-driven development, test-driven development, build 
automation, code management, refactoring, and so on

The chapters are organized into these major sections. Each chapter is dedi-
cated to a key practice or related set of practices, beginning with an execu-
tive-level overview of the salient points of the chapter and progressing into 
deeper coverage of the topic. Some of the chapter topics are rich enough to 
deserve to be entire books. In these cases, my aim is to give the reader a solid 
understanding of the topic, and ideally the motivation needed for a deeper 
self-study of its mechanics.

If you are reading this to gain a high-level understanding of Agile DW/BI, 
the initial overview at the beginning of each chapter will suffice. My goal in 
these overviews is to provide an accurate portrayal of each of the Agile DW/
BI practices, but these sections aren’t intended to give you all the techniques 
needed to apply the practice.

If you are a data warehouse manager, project sponsor, or anyone who needs 
to have a good working understanding of the practices without getting 
bogged down in the technical details, I recommend reading the middle sec-
tions of each chapter, especially the project management chapters. These 
sections are designed to provide a deep enough understanding of the topic to 
either use the techniques or understand how they are used on your project.

If you are a member of the day-to-day project team (project managers, 
technical team members, business analysts, product managers, etc.), I rec-
ommend reading the details and examples in each of the project manage-
ment chapters (Part I, “Agile Analytics: Management Methods”). These are 
designed to give you a concrete set of techniques to apply in your release 
planning, iteration planning, and all other project management and user 
collaboration activities. If you are a member of the technical community, 
the chapters in Part II, “Agile Analytics: Technical Methods,” are intended 
for you. 
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A word about DW/BI technologies: I am a technology agnostic. I have 
done DW/BI development using a variety of technology stacks that are 
IBM-DB2-centric, Oracle-centric, SAS-centric, and Microsoft-centric, as 
well as a variety of hybrid technology stacks. While some technologies may 
lend themselves to Agile DW/BI better than others, I am confident that the 
guiding principles and practices introduced in this book are technology- 
independent and can be effective regardless of your tool choices. 

As this book goes to press, there are an increasing number of data ware-
house and business intelligence tool vendors that are branding their prod-
ucts as Agile. Tools and tool suites from forward-thinking vendors such 
as WhereScape, Pentaho, Balanced Insight, and others offer some exciting 
possibilities for enabling agility. While I do not believe that you must have 
these types of tools to take an Agile approach, they certainly do offer some 
powerful benefits to Agile delivery teams. The Agile software development 
community has greatly benefited from tools that help automate difficult 
development activities, and I look forward to the benefits that our com-
munity stands to gain from these vendors. At the same time I would cau-
tion you not to believe that you must have such tools before you can start 
being Agile. Instead, I encourage you to get started with Agile techniques 
and practices and adopt tools incrementally as you determine that they are 
of sufficient benefit.
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Chapter 1

INTRODUCING AGILE ANALYTICS

Like Agile software development, Agile Analytics is established on a set of 
core values and guiding principles. It is not a rigid or prescriptive methodol-
ogy; rather it is a style of building a data warehouse, data marts, business 
intelligence applications, and analytics applications that focuses on the early 
and continuous delivery of business value throughout the development life-
cycle. In practice, Agile Analytics consists of a set of highly disciplined prac-
tices and techniques, some of which may be tailored to fit the unique data 
warehouse/business intelligence (DW/BI) project demands found in your 
organization. 

Agile Analytics includes practices for project planning, management, and 
monitoring; for effective collaboration with your business customers and 
management stakeholders; and for ensuring technical excellence by the 
delivery team. This chapter outlines the tenets of Agile Analytics and estab-
lishes the foundational principles behind each of the practices and tech-
niques that are introduced in the successive chapters in this book. 

Agile is a reserved word when used to describe a development style. It means 
something very specific. Unfortunately, “agile” occasionally gets misused as 
a moniker for processes that are ad hoc, slipshod, and lacking in discipline. 
Agile relies on discipline and rigor; however, it is not a heavyweight or highly 
ceremonious process despite the attempts of some methodologists to codify 
it with those trappings. Rather, Agile falls somewhere in the middle between 
just enough structure and just enough flexibility. It has been said that Agile 
is simple but not easy, describing the fact that it is built on a simple set of 
sensible values and principles but requires a high degree of discipline and 
rigor to properly execute. It is important to accurately understand the mini-
mum set of characteristics that differentiate a true Agile process from those 
that are too unstructured or too rigid. This chapter is intended to leave you 
with a clear understanding of those characteristics as well as the underlying 
values and principles of Agile Analytics. These are derived directly from the 
tried and proven foundations established by the Agile software community 
and are adapted to the nuances of data warehousing and business intelli-
gence development.
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ALPINE-STYLE SYSTEMS DEVELOPMENT

I’m a bit of an armchair climber and mountaineer. I’m fascinated by the 
trials and travails of climbing high mountains like Everest, Annapurna, 
and others that rise to over 8,000 meters above sea level. These expeditions 
are complicated affairs involving challenging planning and logistics, a high 
degree of risk and uncertainty, a high probability of death (for every two 
climbers who reach the top of Annapurna, another one dies trying!), diffi-
cult decisions in the face of uncontrollable variables, and incredible rewards 
when success is achieved. While it may not be as adventuresome, building 
complex business intelligence systems is a lot like high-altitude climbing. 
We face lots of risk and uncertainty, complex planning, difficult decisions 
in the heat of battle, and the likelihood of death! Okay, maybe not that last 
part, but you get the analogy. Unfortunately the success rate for building 
DW/BI systems isn’t very much better than the success rate for high-altitude 
mountaineering expeditions.

Climbing teams first began successfully “conquering” these high mountains 
in the 1950s, ’60s, and ’70s. In those early days the preferred mountaineer-
ing style was known as “siege climbing,” which had a lot of similarities to a 
military excursion. Expeditions were led in an autocratic command-and-
control fashion, often by someone with more military leadership experi-
ence than climbing experience. Climbing teams were supported by the large 
numbers of porters required to carry massive amounts of gear and supplies 
to base camp and higher. Mounting a siege-style expedition takes over a 
year of planning and can take two months or more to execute during the 
climbing season. Siege climbing is a yo-yo-like affair in which ropes are 
fixed higher and higher on the mountain, multiple semipermanent camps 
are established at various points along the route, and loads of supplies are 
relayed by porters to those higher camps. Finally, with all this support, a 
small team of summit climbers launches the final push for the summit on a 
single day, leaving from the high camp and returning to the same. Brilliant 
teams have successfully climbed mountains for years in this style, but the 
expeditions are prohibitively expensive, time-consuming to execute, and 
fraught with heavyweight procedures and bureaucracy. 

Traditional business intelligence systems development is a lot like siege climb-
ing. It can result in high-quality, working systems that deliver the desired 
capabilities. However, these projects are typically expensive, exhibiting a lot 
of planning, extensive design prior to development, and long development 
cycles. Like siege-style expeditions, all of the energy goes into one shot at the 
summit. If the summit bid fails, it is too time-consuming to return to base 
camp and regroup for another attempt. In my lifetime (and I’m not that old 
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yet) I’ve seen multiple traditional DW/BI projects with budgets of $20 mil-
lion or more, and timelines of 18 to 24 months, founder. When such projects 
fail, the typical management response is to cancel the project entirely rather 
than adjust, adapt, and regroup for another “summit attempt.”

In the 1970s a new mountaineering method called “alpine-style” emerged, 
making it feasible for smaller teams to summit these high peaks faster, more 
cheaply, and with less protocol. Alpine-style mountaineering still requires 
substantial planning, a sufficient supporting team, and enough gear and 
supplies to safely reach the summit. However, instead of spending months 
preparing the route for the final summit push, alpine-style climbers spend 
about a week moving the bare essentials up to the higher camps. In this style, 
if conditions are right, summits can be reached in a mere ten days. Teams 
of two to three climbers share a single tent and sleeping bag, fewer ropes are 
needed, and the climbers can travel much lighter and faster. When condi-
tions are not right, it is feasible for alpine-style mountaineers to return to 
base camp and wait for conditions to improve to make another summit bid.

Agile DW/BI development is much like alpine-style climbing. It is essential 
that we have a sufficient amount of planning, the necessary support to be 
successful, and an appropriate amount of protocol. Our “summit” is the 
completion of a high-quality, working business intelligence system that is of 
high value to its users. As in mountaineering, reaching our summit requires 
the proper conditions. We need just the right amount of planning—but we 
must be able to adapt our plan to changing factors and new information. 
We must prepare for a high degree of risk and uncertainty—but we must be 
able to nimbly manage and respond as risks unfold. We need support and 
involvement from a larger community—but we seek team self-organization 
rather than command-and-control leadership.

Agile Analytics is a development “style” rather than a methodology or even 
a framework. The line between siege-style and alpine-style mountaineering is 
not precisely defined, and alpine-style expeditions may include some siege-style 
practices. Each style is best described in terms of its values and guiding prin-
ciples. Each alpine-style expedition employs a distinct set of climbing practices 
that support a common set of values and principles. Similarly, each Agile DW/
BI project team must adapt its technical, project management, and customer 
collaboration practices to best support the Agile values and principles.1

1. I’m not the first Agile advocate to discuss the analogy between climbing and Agile 
development. Jim Highsmith made a similar analogy in his 2000 book, Adaptive 
Software Development: A Collaborative Approach to Managing Complex Systems
(Highsmith 2000).
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Premier mountaineer Ed Viesturs has a formula, or core value, that is his 
cardinal rule in the big mountains: “Getting to the top is optional. Get-
ting down is mandatory.” (Viesturs and Roberts 2006) I love this core value 
because it is simple and elegant, and it provides a clear basis for all of Ed’s 
decision making when he is on the mountain. In the stress of the climb, or 
in the midst of an intensely challenging project, we need just such a basis for 
decision making—our “North Star.” In 2000, a group of the most influen-
tial application software developers convened in Salt Lake City and formed 
the Agile Alliance. Through the process of sharing and comparing each 
of their “styles” of software development, the Agile Manifesto emerged as 
a simple and elegant basis for project guidance and decision making. The 
Agile Manifesto reads:2

Manifesto for Agile Software Development

We are uncovering better ways of developing software by doing it and 
helping others do it. Through this work we have come to value:

Individuals and interactions over processes and tools 
Working software over comprehensive documentation 
Customer collaboration over contract negotiation 
Responding to change over following a plan

That is, while there is value in the items on the right, we value the 
items on the left more.

With due respect to the Agile Alliance, of which I am a member, I have 
adapted the Agile Manifesto just a bit in order to make it more appropriate 
to Agile Analytics:

Manifesto for Agile Analytics Development

We are uncovering better ways of developing data warehousing and business 
intelligence systems by doing it and helping others do it. Through this work 
we have come to value:

Individuals and interactions over processes and tools 
Working DW/BI systems over comprehensive documentation 
End-user and stakeholder collaboration over contract negotiation 
Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the 
left more.

2. www.agilealliance.org

www.agilealliance.org
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I didn’t want to mess with the original manifesto too much, but it is impor-
tant to acknowledge that DW/BI systems are fundamentally different from 
application software. In addition to dealing with large volumes of data, 
our efforts involve systems integration, customization, and programming. 
Nonetheless, the Agile core values are very relevant to DW/BI systems devel-
opment. These values emphasize the fact that our primary objective is the 
creation of high-quality, high-value, working DW/BI systems. Every activity 
related to any project either (a) directly and materially contributes to this 
primary objective or (b) does not. Agile Analytics attempts to maximize 
a-type activities while acknowledging that there are some b-type activities 
that are still important, such as documenting your enterprise data model.

WHAT IS AGILE ANALYTICS?
Throughout this book I will introduce you to a set of Agile DW/BI prin-
ciples and practices. These include technical, project management, and user 
collaboration practices. I will demonstrate how you can apply these on your 
projects, and how you can tailor them to the nuances of your environment. 
However, the title of this section is “What Is Agile Analytics?” so I should 
probably take you a bit further than the mountaineering analogy.

Here’s What Agile Analytics Is

So here is a summary of the key characteristics of Agile Analytics. This is 
simply a high-level glimpse at the key project traits that are the mark of agil-
ity, not an exhaustive list of practices. Throughout the remainder of this 
book I will introduce you to a set of specific practices that will enable you to 
achieve agility on your DW/BI projects. Moreover, Agile Analytics is a devel-
opment style, not a prescriptive methodology that tells you precisely what 
you must do and how you must do it. The dynamics of each project within 
each organization require practices that can be tailored appropriately to 
the environment. Remember, the primary objective is a high-quality, high-
value, working DW/BI system. These characteristics simply serve that goal: 

 � Iterative, incremental, evolutionary. Foremost, Agile is an iterative, 
incremental, and evolutionary style of development. We work in 
short iterations that are generally one to three weeks long, and never 
more than four weeks. We build the system in small increments or 
“chunks” of user-valued functionality. And we evolve the working 
system by adapting to frequent user feedback. Agile development is 
like driving around in an unfamiliar city; you want to avoid going 
very far without some validation that you are on the right course. 
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Short iterations with frequent user reviews help ensure that we are 
never very far off course in our development.

 � Value-driven development. The goal of each development itera-
tion is the production of user-valued features. While you and I may 
appreciate the difficulty of complex data architectures, elegant data 
models, efficient ETL scripts, and so forth, users generally couldn’t 
care less about these things. What users of DW/BI systems care 
about is the presentation of and access to information that helps 
them either solve a business problem or make better business deci-
sions. Every iteration must produce at least one new user-valued 
feature in spite of the fact that user features are just the tip of the 
architectural iceberg that is a DW/BI system.

 � Production quality. Each newly developed feature must be fully 
tested and debugged during the development iteration. Agile devel-
opment is not about building hollow prototypes; it is about incre-
mentally evolving to the right solution with the best architectural 
underpinnings. We do this by integrating ruthless testing early and 
continuously into the DW/BI development process.3 Developers 
must plan for and include rigorous testing in their development 
process. A user feature is “Done” when it is of production quality, it 
is successfully integrated into the evolving system, and developers 
are proud of their work. That same feature is “Done! Done!” when 
the user accepts it as delivering the right value.

 � Barely sufficient processes. Traditional styles of DW/BI develop-
ment are rife with a high degree of ceremony. I’ve worked on many 
projects that involved elaborate stage-gate meetings between stages 
of development such as the transition from requirements analysis 
to design. These gates are almost always accompanied by a formal 
document that must be “signed off” as part of the gating process. 
In spite of this ceremony many DW/BI projects struggle or founder. 
Agile DW/BI emphasizes a sufficient amount of ceremony to meet 
the practical needs of the project (and future generations) but noth-
ing more. If a data dictionary is deemed important for use by future 
developers, then perhaps a digital image of a whiteboard table or a 
simple spreadsheet table will suffice. Since our primary objective 
is the production of high-quality, high-value, working systems, we 
must be able to minimize the amount of ceremony required for 
other activities. 

3. Historically database and data warehouse testing has lacked the rigor, discipline, and 
automation that have benefited software development efforts (www.ambysoft.com/
surveys/dataQualitySeptember2006.html).

www.ambysoft.com/surveys/dataQualitySeptember2006.html
www.ambysoft.com/surveys/dataQualitySeptember2006.html
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 � Automation, automation, automation. The only way to be truly 
Agile is to automate as many routine processes as possible. Test 
automation is perhaps the most critical. If you must test your fea-
tures and system manually, guess how often you’re likely to rerun 
your tests? Test automation enables you to frequently revalidate that 
everything is still working as expected. Build automation enables 
you to frequently build a version of your complete working DW/BI 
system in a demo or preproduction environment. This helps estab-
lish continuous confidence that you are never more than a few hours 
or days away from putting a new version into production. Agile 
Analytics teams seek to automate any process that is done more 
than once. The more you can automate, the more you can focus on 
developing user features.

 � Collaboration. Too often in traditional projects the development 
team solely bears the burden of ensuring that timelines are met, 
complete scope is delivered, budgets are managed, and quality is 
ensured. Agile business intelligence acknowledges that there is a 
broader project community that shares responsibility for project 
success. The project community includes the subcommunities of 
users, business owners, stakeholders, executive sponsors, techni-
cal experts, project managers, and others. Frequent collaboration 
between the technical and user communities is critical to success. 
Daily collaboration within the technical community is also critical. 
In fact, establishing a collaborative team workspace is an essential 
ingredient of successful Agile projects.

 � Self-organizing, self-managing teams. Hire the best people, give 
them the tools and support they need, then stand aside and allow 
them to be successful. There is a key shift in the Agile project man-
agement style compared to traditional project management. The 
Agile project manager’s role is to enable team members to work their 
magic and to facilitate a high degree of collaboration with users and 
other members of the project community. The Agile project team 
decides how much work it can complete during an iteration, then 
holds itself accountable to honor those commitments. The Agile 
style is not a substitute for having the right people on the team.

Guiding Principles

The core values contained in the Agile Manifesto motivate a set of guid-
ing principles for DW/BI systems design and development. These prin-
ciples often become the tiebreaker when difficult trade-off decisions must 
be made. Similarly, the Agile Alliance has established a set of principles for 
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software development.4 The following Agile Analytics principles borrow 
liberally from t he Agile Alliance principles:

 � Our highest priority is to satisfy the DW/BI user community 
through early and continuous delivery of working user features.

 � We welcome changing requirements, even late in development. 
Agile processes harness change for the DW/BI users’ competitive 
advantage. 

 � We deliver working software frequently, providing users with new 
DW/BI features every few weeks.

 � Users, stakeholders, and developers must share project ownership 
and work together daily throughout the project. 

 � We value the importance of talented and experienced business intel-
ligence experts. We give them the environment and support they 
need and trust them to get the job done. 

 � The most efficient and effective method of conveying information 
to and within a development team is face-to-face conversation. 

 � A working business intelligence system is the primary measure of 
progress. 

 � We recognize the balance among project scope, schedule, and cost. 
The data warehousing team must work at a sustainable pace.

 � Continuous attention to the best data warehousing practices 
enhances agility. 

 � The best architectures, requirements, and designs emerge from self-
organizing teams. 

 � At regular intervals, the team reflects on how to become more effec-
tive, then tunes and adjusts its behavior accordingly. 

Take a minute to reflect on these principles. How many of them are present 
in the projects in your organization? Do they make sense for your organiza-
tion? Give them another look. Are they realistic principles for your organi-
zation? I have found these not only to be commonsense principles, but also 
to be effective and achievable on real projects. Furthermore, adherence to 
these principles rather than reliance on a prescriptive and ceremonious pro-
cess model is very liberating.

Myths and Misconceptions

There are some myths and misconceptions that seem to prevail among 
other DW/BI practitioners and experts that I have talked to about this style 

4. www.agilemanifesto.org/principles.html

www.agilemanifesto.org/principles.html
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of development. I recently had an exchange on this topic with a seasoned 
veteran in both software development and data warehousing who is certi-
fied at the mastery level in DW/BI and data management and who has man-
aged large software development groups. His misunderstanding of Agile 
development made it evident that myths and misconceptions abound even 
among the most senior DW/BI practitioners. Agile Analytics is not:

 � A wholesale replacement of traditional practices. I am not suggest-
ing that everything we have learned and practiced in the short his-
tory of DW/BI systems development is wrong, and that Agile is the 
new savior that will rescue us from our hell. There are many good 
DW/BI project success stories, which is why DW/BI continues to 
be among the top five strategic initiatives for most large companies 
today. It is important that we keep the practices and methods that 
work well, improve those that allow room for improvement, and 
replace those that are problematic. Agile Analytics seeks to modify 
our general approach to DW/BI systems development without dis-
carding the best practices we’ve learned on our journey so far.

 � Synonymous with Scrum or eXtreme Programming (XP). Scrum is 
perhaps the Agile flavor that has received the most publicity (along 
with XP) in recent years. However, it is incorrect to say that “Agile 
was formerly known as eXtreme Programming,” as one skeptic 
told me. In fact, there are many different Agile development flavors 
that add valuable principles and practices to the broader collective 
known as Agile development. These include Scrum, Agile Model-
ing, Agile Data, Crystal, Adaptive, DSDM, Lean Development, 
Feature Driven Development, Agile Project Management (APM), 
and others.5 Each is guided by the core values expressed in the 
Agile Manifesto. Agile Analytics is an adaptation of principles and 
practices from a variety of these methods to the complexities of 
data-intensive, analytics-based systems integration efforts like data 
warehousing and data mart development.

 � Simply iterating. Short, frequent development iterations are an 
essential cornerstone of Agile development. Unfortunately, this key 
practice is commonly misconstrued as the definition of agility. Not 
long ago I was asked to mentor a development team that had “gone 
Agile” but wasn’t experiencing the expected benefits of agility. Upon 
closer inspection I discovered that they were planning in four-week 
“iterations” but didn’t expect to have any working features until 

5. For a great survey of the various Agile f lavors I highly recommend reading Agile 
Software Development Ecosystems (Highsmith 2002).
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about the sixth month of the project. Effectively they had divided 
the traditional waterfall model into time blocks they called itera-
tions. They completely missed the point. The aim of iterative devel-
opment is to demonstrate working features and to obtain frequent 
feedback from the user community. This means that every iteration 
must result in demonstrable working software.

 � For systems integration; it’s only for programming. Much of 
our effort in DW/BI development is focused on the integration of 
multiple commercial tools, thereby minimizing the volume of raw 
programming required. DW/BI tool vendors would have us believe 
that DW/BI development is simply a matter of hooking up the tools 
to the source systems and pressing the “Go” button. You’ve probably 
already discovered that building an effective DW/BI system is not 
that simple. A DW/BI development team includes a heterogeneous 
mixture of skills, including extraction, transformation, load (ETL) 
development; database development; data modeling (both relational 
and multidimensional); application development; and others. In 
fact, compared to the more homogeneous skills required for appli-
cations development, DW/BI development is quite complex in this 
regard. This complexity calls for an approach that supports a high 
degree of customer collaboration, frequent delivery of working soft-
ware, and frequent feedback—aha, an Agile approach!

 � An excuse for ad hoc behavior. Some have mistaken the tenets of 
Agile development for abandonment of rigor, quality, or structure, 
in other words, “hacking.” This misperception could not be farther 
from the truth. Agility is a focus on the frequent delivery of high-
value, production-quality, working software to the user community 
with the goal of continuously adapting to user feedback. This means 
that automated testing and quality assurance are critical compo-
nents of all iterative development activities. We don’t build proto-
types; we build working features and then mature those features 
in response to user input. Others mistake the Agile Manifesto as 
disdain of documentation, which is also incorrect. Agile DW/BI 
seeks to ensure that a sufficient amount of documentation is pro-
duced. The keyword here is sufficient. Sufficiency implies that there 
is a legitimate purpose for the document, and when that purpose is 
served, there is no need for additional documentation.

In my work with teams that are learning and adopting the Agile DW/BI 
development style, I often find that they are looking for a prescriptive meth-
odology that makes it very clear which practices to apply and when. This is 
a natural inclination for new Agile practitioners, and I will provide some 
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recommendations that may seem prescriptive in nature. In fact you may 
benefit initially by creating your own “recipe” for the application of Agile 
DW/BI principles and practices. However, I need to reemphasize that Agile 
Analytics is a style, not a methodology and not a framework. Figuratively, 
you can absorb agility into your DNA with enough focus, practice, and 
discipline. You’ll know you’ve reached that point when you begin applying 
Agile principles to everything you do such as buying a new car, remodeling 
a bathroom, or writing a book.

DATA WAREHOUSING ARCHITECTURES AND SKILL SETS

To ensure that we are working from a common understanding, here is a very 
brief summary of data warehouse architectures and requisite skill sets. This 
is not a substitute for any of the more comprehensive technical books on 
data warehousing but should be sufficient as a baseline for the remainder of 
the book.

Data Warehousing Conceptual Architectures

Figure 1.1 depicts an abstracted classical data warehousing architecture and 
is suitable to convey either a Kimball-style (Kimball and Ross 2002) or an 
Inmon-style (Inmon 2005) architecture. This is a high-level conceptual 
architecture containing multiple layers, each of which includes a complex 
integration of commercial technologies, data modeling and manipulation, 
and some custom code.

The data warehouse architecture includes one or more operational source 
systems from which data is extracted, transformed, and loaded into the data 
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warehouse repositories. These systems are optimized for the daily trans-
actional processing required to run the business operations. Most DW/
BI systems source data from multiple operational systems, some of which 
are legacy systems that may be several decades old and reside on older 
technologies.

Data from these sources is extracted into an integration tier in the architec-
ture that acts as a “holding pen” where data can be merged, manipulated, 
transformed, cleansed, and validated without placing an undue burden on 
the operational systems. This tier may include an operational data store or 
an enterprise information integration (EII) repository that acts as a system 
of record for all relevant operational data. The integration database is typi-
cally based on a relational data model and may have multiple subcompo-
nents, including pre-staging, staging, and an integration repository, each 
serving a different purpose relating to the consolidation and preprocessing 
of data from disparate source systems. Common technologies for staging 
databases are Oracle, IBM DB2, Microsoft SQL Server, and NCR Teradata. 
The DW/BI community is beginning to see increasing use of the open-
source database MySQL for this architectural component.

Data is extracted from the staging database, transformed, and loaded into a 
presentation tier in the architecture that contains appropriate structures for 
optimized multidimensional and analytical queries. This system is designed 
to support the data slicing and dicing that define the power of a data ware-
house. There are a variety of alternatives for the implementation of the 
presentation database, including normalized relational schemas and denor-
malized schemas like star, snowflake, and even “starflake.” Moreover, the 
presentation tier may include a single enterprise data warehouse or a col-
lection of subject-specific data marts. Some architectures include a hybrid 
of both of these. Presentation repositories are typically implemented in the 
same technologies as the integration database.

Finally, data is presented to the business users at the analysis tier in the 
architecture. This conceptual layer in the system represents the variety of 
applications and tools that provide users with access to the data, including 
report writers, ad hoc querying, online analytical processing (OLAP), data 
visualization, data mining, and statistical analysis. BI tool vendors such as 
Pentaho, Cognos, MicroStrategy, Business Objects, Microsoft, Oracle, IBM, 
and others produce commercial products that enable data from the presen-
tation database to be aggregated and presented within user applications.
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This is a generalized architecture, and actual implementations vary in the 
details. One major variation on the Kimball architecture is the Inmon 
architecture (Inmon 2005), which inserts a layer of subject-specific data 
marts that contain subsets of the data from the main warehouse. Each data 
mart supports only the specific end-user applications that are relevant to 
the business subject area for which that mart was designed. Regardless of 
your preferences for Kimball- versus Inmon-style architectures, and of the 
variations found in implementation detail, Figure 1.1 will serve as reference 
architecture for the discussions in this book. The Agile DW/BI principles 
and practices that are introduced here are not specific to any particular 
architecture. 

Diverse and Disparate Technical Skills

Inherent in the implementation of this architecture are the following aspects 
of development, each requiring a unique set of development skills:

 � Data modeling. Design and implementation of data models are 
required for both the integration and presentation repositories. 
Relational data models are distinctly different from dimensional 
data models, and each has unique properties. Moreover, relational 
data modelers may not have dimensional modeling expertise and 
vice versa.

 � ETL development. ETL refers to the extraction of data from source 
systems into staging, the transformations necessary to recast source 
data for analysis, and the loading of transformed data into the pre-
sentation repository. ETL includes the selection criteria to extract 
data from source systems, performing any necessary data transfor-
mations or derivations needed, data quality audits, and cleansing.

 � Data cleansing. Source data is typically not perfect. Furthermore, 
merging data from multiple sources can inject new data quality 
issues. Data hygiene is an important aspect of data warehouse that 
requires specific skills and techniques.

 � OLAP design. Typically data warehouses support some variety of 
online analytical processing (HOLAP, MOLAP, or ROLAP). Each 
OLAP technique is different but requires special design skills to bal-
ance the reporting requirements against performance constraints.

 � Application development. Users commonly require an applica-
tion interface into the data warehouse that provides an easy-to-use 
front end combined with comprehensive analytical capabilities, and 
one that is tailored to the way the users work. This often requires 
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some degree of custom programming or commercial application 
customization.

 � Production automation. Data warehouses are generally designed for 
periodic automated updates when new and modified data is slurped 
into the warehouse so that users can view the most recent data avail-
able. These automated update processes must have built-in fail-over 
strategies and must ensure data consistency and correctness.

 � General systems and database administration. Data warehouse 
developers must have many of the same skills held by the typical 
network administrator and database administrator. They must 
understand the implications of efficiently moving possibly large vol-
umes of data across the network, and the issues of effectively storing 
changing data.

WHY DO WE NEED AGILE ANALYTICS?
In my years as a DW/BI consultant and practitioner I have learned three 
consistent truths: Building successful DW/BI systems is hard; DW/BI devel-
opment projects fail very often; and it is better to fail fast and adapt than to 
fail late after the budget is spent.

First Truth: Building DW/BI Systems Is Hard

If you have taken part in a data warehousing project, you are aware of the 
numerous challenges, perils, and pitfalls. Ralph Kimball, Bill Inmon, and 
other DW/BI pioneers have done an excellent job of developing reusable 
architectural patterns for data warehouse and DW/BI implementation. Soft-
ware vendors have done a good job of creating tools and technologies to 
support the concepts. Nonetheless, DW/BI is just plain hard, and for several 
reasons: 

 � Lack of expertise. Most organizations have not previously built a 
DW/BI system or have only limited experience in doing so.

 � Lack of experience. Most organizations don’t build multiple DW/BI 
systems, and therefore development processes don’t get a chance to 
mature through experience.

 � Ambitious goals. Organizations often set out to build an enterprise 
data warehouse, or at least a broad-reaching data mart, which makes 
the process more complex.

 � Domain knowledge versus subject matter expertise. DW/BI prac-
titioners often have extensive expertise in business intelligence 
but not in the organization’s business domain, causing gaps in 



WHY DO WE NEED AGILE ANALYTICS? 17

understanding. Business users typically don’t know what they can, 
or should, expect from a DW/BI system.

 � Unrealistic expectations. Business users often think of data ware-
housing as a technology-based plug-and-play application that will 
quickly provide them with miraculous insights.

 � Educated user phenomenon. As users gain a better understanding of 
data warehousing, their needs and wishes change.

 � Shooting the messenger. DW/BI systems are like shining a bright 
light in the attic: You may not always like what you find. When the 
system exposes data quality problems, business users tend to dis-
trust the DW/BI system.

 � Focus on technology. Organizations often view a DW/BI system 
as an IT application rather than a joint venture between business 
stakeholders and IT developers.

 � Specialized skills. Data warehousing requires an entirely different 
skill set from that of typical database administrators (DBAs) and 
developers. Most organizations do not have staff members with 
adequate expertise in these areas.

 � Multiple skills. Data warehousing requires a multitude of unique 
and distinct skills such as multidimensional modeling, data cleans-
ing, ETL development, OLAP design, application development, and 
so forth.

These unique DW/BI development characteristics compound the already 
complex process of building software or building database applications. 

Second Truth: DW/BI Development Projects Fail Often

Unfortunately, I’m not the only one who has experienced failure on DW/
BI projects. A quick Google search on “data warehouse failure polls” results 
in a small library of case studies, postmortems, and assessment articles. 
Estimated failure rates of around 50 percent are common and are rarely 
disputed. 

When I speak to groups of business intelligence practitioners, I often 
begin my talks with an informal survey. First I ask everyone who has been 
involved in the completion of one or more DW/BI projects to stand. It var-
ies depending on the audience, but usually more than half the group stands 
up. Then I ask participants to sit down if they have experienced projects 
that were delivered late, projects that had significant budget overruns, or 
projects that did not satisfy users’ expectations. Typically nobody is left 
standing by the third question, and I haven’t even gotten to questions about 
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acceptable quality or any other issues. It is apparent that most experienced 
DW/BI practitioners have lived through at least one project failure.

While there is no clear definition of what constitutes “failure,” Sid Adelman 
and Larissa Moss classify the following situations as characteristic of limited 
acceptance or outright project failure (Moss and Adelman 2000):

 � The project is over budget.
 � The schedule has slipped.
 � Some expected functionality was not implemented.
 � Users are unhappy.
 � Performance is unacceptable.
 � Availability of the warehouse applications is poor.
 � There is no ability to expand.
 � The data and/or reports are poor.
 � The project is not cost-justified.
 � Management does not recognize the benefits of the project.

In other words, simply completing the technical implementation of a data 
warehouse doesn’t constitute success. Take another look at this list. Nearly 
every situation is “customer”-focused; that is, primarily end users deter-
mine whether a project is successful.

There are literally hundreds of similar evaluations of project failures, and 
they exhibit a great deal of overlap in terms of root causes: incorrect require-
ments, weak processes, inability to adapt to changes, project scope misman-
agement, unrealistic schedules, inflated expectations, and so forth.

Third Truth: It Is Best to Fail Fast and Adapt

Unfortunately, the traditional development model does little to uncover 
these deficiencies early in the project. As Jeff DeLuca, one of the creators 
of Feature Driven Development (FDD), says, “We should try to break the 
back of the project as early as possible to avoid the high cost of change later 
downstream.” In a traditional approach, it is possible for developers to plow 
ahead in the blind confidence that they are building the right product, only 
to discover at the end of the project that they were sadly mistaken. This is 
true even when one uses all the best practices, processes, and methodologies.

What is needed is an approach that promotes early discovery of project 
peril. Such an approach must place the responsibility of success equally on 
the users, stakeholders, and developers and should reward a team’s ability to 
adapt to new directions and substantial requirements changes.
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As we observed earlier, most classes of project failure are user-satisfaction-
oriented. If we can continuously adapt the DW/BI system and align with 
user expectations, users will be satisfied with the outcome. In all of my past 
involvement in traditional DW/BI implementations I have consistently seen 
the following phenomena at the end of the project:

 � Users have become more educated about BI. As the project pro-
gresses, so does users’ understanding of BI. So, what they told you 
at the beginning of the project may have been based on a misunder-
standing or incorrect expectations.

 � User requirements have changed or become more refined. That’s 
true of all software and implementation projects. It’s just a fact of 
life. What they told you at the beginning is much less relevant than 
what they tell you at the end.

 � Users’ memories of early requirements reviews are fuzzy. It often 
happens that contractually speaking, a requirement is met by the 
production system, but users are less than thrilled, having reactions 
like “What I really meant was . . .” or “That may be what I said, but 
it’s not what I want.”

 � Users have high expectations when anticipating a new and use-
ful tool. Left to their own imaginations, users often elevate their 
expectations of the BI system well beyond what is realistic or reason-
able. This only leaves them disappointed when they see the actual 
product.

 � Developers build based on the initial snapshot of user require-
ments. In waterfall-style development the initial requirements are 
reviewed and approved, then act as the scoping contract. Meeting 
the terms of the contract is not nearly as satisfying as meeting the 
users’ expectations. 

All these factors lead to a natural gap between what is built and what is 
needed. An approach that frequently releases new BI features to users, hears 
user feedback, and adapts to change is the single best way to fail fast and 
correct the course of development.

Is Agile Really Better?

There is increasing evidence that Agile approaches lead to higher project 
success rates. Scott Ambler, a leader in Agile database development and 
Agile Modeling, has conducted numerous surveys on Agile development in 
an effort to quantify the impact and effectiveness of these methods. Begin-
ning in 2007, Ambler conducted three surveys specifically relating to IT 
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project success rates.6 The 2007 survey explored success rates of different IT 
project types and methods. Only 63 percent of traditional projects and data 
warehousing projects were successful, while Agile projects experienced a 72 
percent rate of success. The 2008 survey focused on four success criteria: 
quality, ROI, functionality, and schedule. In all four areas Agile methods 
significantly outperformed traditional, sequential development approaches. 
The 2010 survey continued to show that Agile methods in IT produce better 
results.

I should note here that traditional definitions of success involve metrics 
such as on time, on budget, and to specification. While these metrics may 
satisfy management efforts to control budgets, they do not always correlate 
to customer satisfaction. In fact, scope, schedule, and cost are poor mea-
sures of progress and success. Martin Fowler argues, “Project success is 
more about whether the software delivers value that’s greater than the cost 
of the resources put into it.” He points out that XP 2002 conference speaker 
Jim Johnson, chairman of the Standish Group, observed that a large propor-
tion of features are frequently unused in software products. He quoted two 
studies: a DuPont study, which found that only 25 percent of a system’s fea-
tures were really needed, and a Standish study, which found that 45 percent 
of features were never used and only 20 percent of features were used often 
or always (Fowler 2002). These findings are further supported by a Depart-
ment of Defense study, which found that only 2 percent of the code in $35.7 
billion worth of software was used as delivered, and 75 percent was either 
never used or was canceled prior to delivery (Leishman and Cook 2002).

Agile development is principally aimed at the delivery of high-priority value 
to the customer community. Measures of progress and success must focus 
more on value delivery than on traditional metrics of on schedule, on bud-
get, and to spec. Jim Highsmith points out, “Traditional managers expect 
projects to be on-track early and off-track later; Agile managers expect 
projects to be off-track early and on-track later.” This statement reflects 
the notion that incrementally evolving a system by frequently seeking and 
adapting to customer feedback will result in building the right solution, but 
it may not be the solution that was originally planned.

The Difficulties of Agile Analytics

Applying Agile methods to DW/BI is not without challenges. Many of the 
project management and technical practices I introduce in this book are 

6. The detailed results are available at www.ambysoft.com/surveys/.

www.ambysoft.com/surveys/
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adapted from those of our software development colleagues who have been 
maturing these practices for the past decade or longer. Unfortunately, the 
specific practices and tools used to custom-build software in languages like 
Java, C++, or C# do not always transfer easily to systems integration using 
proprietary technologies like Informatica, Oracle, Cognos, and others. 
Among the problems that make Agile difficult to apply to DW/BI develop-
ment are the following:

 � Tool support. There aren’t many tools that support technical prac-
tices such as test-driven database or ETL development, database 
refactoring, data warehouse build automation, and others that are 
introduced in this book. The tools that do exist are less mature than 
the ones used for software development. However, this current state 
of tool support continues to get better, through both open-source as 
well as commercial tools.

 � Data volume. It takes creative thinking to use lightweight devel-
opment practices to build high-volume data warehouses and BI 
systems. We need to use small, representative data samples to 
quickly build and test our work, while continuously proving that 
our designs will work with production data volumes. This is more of 
an impediment to our way of approaching the problem rather than 
a barrier that is inherent in the problem domain. Impediments are 
those challenges that can be eliminated or worked around; barriers 
are insurmountable.

 � “Heavy lifting.” While Agile Analytics is a feature-driven (think 
business intelligence features) approach, the most time-consuming 
aspect of building DW/BI systems is in the back-end data warehouse 
or data marts. Early in the project it may seem as if it takes a lot of 
“heavy lifting” on the back end just to expose a relatively basic BI 
feature on the front end. Like the data volume challenge, it takes 
creative thinking to build the smallest/simplest back-end data solu-
tion needed to produce business value on the front end.

 � Continuous deployment. The ability to deploy new features into 
production frequently is a goal of Agile development. This goal is 
hampered by DW/BI systems that are already in production with 
large data volumes. Sometimes updating a production data ware-
house with a simple data model revision can require significant time 
and careful execution. Frequent deployment may look very different 
in DW/BI from the way it looks in software development.

The nuances of your project environment may introduce other such diffi-
culties. In general, those who successfully embrace Agile’s core values and 
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guiding principles learn how to effectively adapt their processes to mitigate 
these difficulties. For each of these challenges I find it useful to ask the ques-
tion “Will the project be better off if we can overcome this difficulty despite 
how hard it may be to overcome?” As long as the answer to that question is 
yes, it is worth grappling with the challenges in order to make Agile Ana-
lytics work. With time and experience these difficulties become easier to 
overcome.

INTRODUCING FLIXBUSTER ANALYTICS

Now seems like a good time to introduce the running DW/BI example that 
I’ll be revisiting throughout this book to show you how the various Agile 
practices are applied. I use an imaginary video rental chain to demonstrate 
the Agile Analytics practices. The company is FlixBuster, and they have 
retail stores in cities throughout North America. FlixBuster also offers video 
rentals online where customers can manage their rental requests and mov-
ies are shipped directly to their mailing address. Finally, FlixBuster offers 
movie downloads directly to customers’ computers. 

FlixBuster has customers who are members and customers who are non-
members. Customers fall into three buying behavior groups: those who shop 
exclusively in retail stores, those who shop exclusively online, and those who 
split their activity across channels. FlixBuster customers can order a rental 
online or in the store, and they can return videos in the store or via a post-
age-paid return envelope provided by the company. 

Members pay a monthly subscription fee, which determines their rental 
privileges. Top-tier members may rent up to three videos at the same time. 
There is also a membership tier allowing two videos at a time as well as a tier 
allowing one at a time. Members may keep their rentals indefinitely with no 
late charges. As soon as FlixBuster receives a returned video from a member, 
the next one is shipped. Nonmembers may also rent videos in the stores fol-
lowing the traditional video rental model with a four-day return policy. 

Approximately 75 percent of the brick-and-mortar FlixBuster stores across 
North America are corporately owned and managed; the remaining 25 per-
cent are privately owned franchises. FlixBuster works closely with franchise 
owners to ensure that the customer experience is consistent across all stores. 
FlixBuster prides itself on its large inventory of titles, the rate of customer 
requests that are successfully fulfilled, and how quickly members receive 
each new video by mail.
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FlixBuster has a complex partnership with the studios producing the films 
and the clearinghouses that provide licensed media to FlixBuster and man-
age royalty payments and license agreements. Each title is associated with 
a royalty percentage to be paid to the studio. Royalty statements and pay-
ments are made on a monthly basis to each of the clearinghouses.

Furthermore, FlixBuster sales channels (e-tail and retail) receive a per-
centage of the video rental revenue. Franchise owners receive a negotiated 
revenue amount that is generally higher than for corporately owned retail 
outlets. The online channel receives still a different revenue percentage to 
cover its operating costs.

FlixBuster has determined that there is a good business case for develop-
ing an enterprise business intelligence system. This DW/BI system will serve 
corporate users from finance, marketing, channel sales, customer man-
agement, inventory management, and other departments. FlixBuster also 
intends to launch an intranet BI portal for subscription use by its clearing-
house partners, studios, franchisees, and possibly even Internet movie data-
base providers. Such an intranet portal is expected to provide additional 
revenue streams for FlixBuster.

There are multiple data sources for the FlixBuster DW/BI system, includ-
ing FlixBackOffice, the corporate ERP system; FlixOps, the video-by-mail 
fulfillment system; FlixTrans, the transactional and point-of-sale system; 
FlixClear, the royalty management system; and others.

FlixBuster has successfully completed other development projects using 
Agile methods and is determined to take an Agile Analytics approach on the 
development of its DW/BI system, FlixAnalysis. During high-level executive 
steering committee analysis and reviews, it has been decided that the first 
production release of FlixAnalysis will be for the finance department and 
will be a timeboxed release cycle of six months.

WRAP-UP

This chapter has laid the foundation for an accurate, if high-level, under-
standing of Agile Analytics. Successive chapters in this book serve to fill 
in the detailed “how-to” techniques that an Agile Analytics team needs to 
put these concepts into practice. You should now understand that Agile 
Analytics isn’t simply a matter of chunking tasks into two-week iterations, 
holding a 15-minute daily team meeting, or retitling the project manager a 
“scrum master.” Although these may be Agile traits, new Agile teams often 



24 CHAPTER 1 � INTRODUCING AGILE ANALYTICS

limit their agility to these simpler concepts and lose sight of the things that 
truly define agility. True agility is reflected by traits like early and frequent 
delivery of production-quality, working BI features, delivering the highest-
valued features first, tackling risk and uncertainty early, and continuous 
stakeholder and developer interaction and collaboration. 

Agile Analytics teams evolve toward the best system design by continu-
ously seeking and adapting to feedback from the business community. Agile 
Analytics balances the right amount of structure and formality against a 
sufficient amount of flexibility, with a constant focus on building the right 
solution. The key to agility lies in the core values and guiding principles 
more than in a set of specific techniques and practices—although effective 
techniques and practices are important. Mature Agile Analytics teams ele-
vate themselves above a catalog of practices and establish attitudes and pat-
terns of behavior that encourage seeking feedback, adapting to change, and 
delivering maximum value.

If you are considering adopting Agile Analytics, keep these core values and 
guiding principles at the top of your mind. When learning any new tech-
nique, it is natural to look for successful patterns that can be mimicked. 
This is a valuable approach that will enable a new Agile team to get on the 
right track and avoid unnecessary pitfalls. While I have stressed that Agile 
development is not a prescriptive process, new Agile teams will benefit from 
some recipe-style techniques. Therefore, many of the practices introduced 
in this book may have a bit of a prescriptive feel. I encourage you to try these 
practices first as prescribed and then, as you gain experience, tailor them 
as needed to be more effective. But be sure you’re tailoring practices for the 
right reasons. Be careful not to tailor a practice simply because it was diffi-
cult or uncomfortable on the first try. Also, be sure not to simply cherry-pick 
the easy practices while ignoring the harder ones. Often the harder practices 
are the ones that will have the biggest impact on your team’s performance.
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