

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a
trademark claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales, which may include electronic versions and/or custom covers and content particular to
your business, training goals, marketing focus, and branding interests. For more information, please
contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data
Hillegass, Aaron.

Cocoa programming for Mac OS X / Aaron Hillegass. — 3rd ed.
p. cm.

Includes index.
ISBN 978-0-321-50361-9 (pbk. : alk. paper)

1. Cocoa (Application development environment) 2. Mac OS. 3. Operating systems
(Computers) 4. Macintosh (Computer)—Programming. I. Title.

QA76.76.O63H57145 2008
005.26'8—dc22

2008008239

Copyright © 2008 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0321-50361-9
ISBN-10: 0-321-50361-9
Text printed in the United States on recycled paper at Courier in Stoughton, Massachusetts.
Third printing, July 2008

xvii

PREFACE

If you are developing applications for the Mac, or are hoping to do so, this book
is just the resource you need. Does it cover everything you will ever want to
know about programming for the Mac? Of course it doesn’t. But it does cover
probably 80% of what you need to know. You can find the remaining 20%, the
20% that is unique to you, in Apple’s online documentation.

This book, then, acts as a foundation. It covers the Objective-C language and the
major design patterns of Cocoa. It will also get you started with the three most
commonly used developer tools: Xcode, Interface Builder, and Instruments.
After reading this book, you will be able to understand and utilize Apple’s online
documentation.

There is a lot of code in this book. Through that code, I will introduce you to
the idioms of the Cocoa community. My hope is that by presenting exemplary
code, I can help you to become not just a Cocoa developer, but a stylish Cocoa
developer.

This third edition includes technologies introduced in Mac OS X 10.4 and 10.5.
These include Xcode 3, Objective-C 2, Core Data, the garbage collector, and
CoreAnimation.

This book is written for programmers who already know some C programming
and something about objects. You are not expected to have any experience with
Mac programming. It’s a hands-on book and assumes that you have access to
Mac OS X and the developer tools. The developer tools are free. If you bought a
shrink-wrapped copy of Mac OS X, the installer for the developer tools was on
the DVD. The tools can also be downloaded from the Apple Developer
Connection Web site (http://developer.apple.com/).

I have tried to make this book as useful for you as possible, if not indispensable.
That said, I’d love to hear from you if you have any suggestions for improving it.

Aaron Hillegass
book-comments@bignerdranch.com

http://developer.apple.com/

233

Chapter 17

CUSTOM VIEWS

All visible objects in an application are either windows or views. In this chapter,
you will create a subclass of NSView. From time to time, you may need to create a
custom view to do custom drawing or event handling. Even if you do not plan to
do custom drawing or event handling, you will learn a lot about how Cocoa
works by learning how to create a new view class.

Windows are instances of the class NSWindow. Each window has a collection of
views, each of which is responsible for a rectangle of the window. The view
draws inside that rectangle and handles mouse events that occur there. A view
may also handle keyboard events. You have worked with several subclasses of
NSView already: NSButton, NSTextField, NSTableView, and NSColorWell are all
views. (Note that a window is not a subclass of NSView.)

The View Hierarchy

Views are arranged in a hierarchy (Figure 17.1). The window has a content view
that completely fills its interior. The content view usually has several subviews,
each of which may have subviews of its own. Every view knows its superview, its
subviews, and the window it lives on.

Here are the relevant methods from NSView:

- (NSView *)superview;
- (NSArray *)subviews;
- (NSWindow *)window;

Any view can have subviews, but most don’t. The following five views commonly
have subviews:

1. The content view of a window.

2. NSBox. The contents of a box are its subviews.

234 CHAPTER 17 � CUSTOM VIEWS

3. NSScrollView. A view that appears in a scroll view is a subview of the
scroll view. The scroll bars are also subviews of the scroll view.

4. NSSplitView. Each view in a split view is a subview (Figure 17.2).

5. NSTabView. As the user chooses different tabs, different subviews are
swapped in and out (Figure 17.3).

Figure 17.1 Views Hierarchy

Figure 17.2 A Scroll View in a Split View

GETTING A VIEW TO DRAW ITSELF 235

Getting a View to Draw Itself

In this section, you will create a very simple view that will appear and paint itself
green. It will look like Figure 17.4.

Create a new project of type Cocoa Application. Name the project ImageFun.

Using the File->New File menu item, create an Objective-C NSView subclass, and
name it StretchView.

Figure 17.3 A Tab View

Figure 17.4 Completed Application

236 CHAPTER 17 � CUSTOM VIEWS

Create an Instance of a View Subclass

Open MainMenu.nib. Create an instance of your class by dragging out a
CustomView placeholder from the Library (under Views & Cells -> Layout View)
and dropping it on the window (Figure 17.5).

Resize the view to fill most of the window. Open the Info panel, and set the class
of the view to be StretchView (Figure 17.6).

Figure 17.5 Drop a View on the Window

Figure 17.6 Set the Class of the View to StretchView

GETTING A VIEW TO DRAW ITSELF 237

Size Inspector

Your StretchView object is a subview of the window’s content view. This point
raises an interesting question: What happens to the view when the superview
resizes? A page in the Info panel allows you to specify that behavior. Open the
Size Info panel, and set it as shown in Figure 17.7. Now it will grow and shrink
as necessary to keep the distance from its edges to the edges of its superview
constant.

If you wanted the view to stay the same height, you could let the distance between
the bottom of the view and the bottom of the superview grow and shrink. You
could also let the distance between the right edge of the view and the right edge
of the window grow and shrink. In this exercise, you do not want this behavior.
But if you did want the view to stick to the upper-left corner of the window, the
Inspector would look like Figure 17.8.

Figure 17.7 Make the View Resize with the Window

Figure 17.8 Not This!

238 CHAPTER 17 � CUSTOM VIEWS

Figure 17.9 is a complete diagram of what the Size Inspector means.

Save and close the nib file.

drawRect:

When a view needs to draw itself, it is sent the message drawRect: with the
rectangle that needs to be drawn or redrawn. The method is called
automatically—you never need to call it directly. Instead, if you know that a view
needs redrawing, you send the view the setNeedsDisplay: message:

[myView setNeedsDisplay:YES];

This message informs myView that it is “dirty.” After the event has been handled,
the view will be redrawn.

Before calling drawRect:, the system locks focus on the view. Each view has its
own graphics context, which includes the view’s coordinate system, its current
color, its current font, and the clipping rectangle. When the focus is locked on a
view, the view’s graphics context is active. When the focus is unlocked, the
graphics context is no longer active. Whenever you issue drawing commands,
they will be executed in the current graphics context.

Figure 17.9 What the Red Lines in the Size Inspector Mean

GETTING A VIEW TO DRAW ITSELF 239

You can use NSBezierPath to draw lines, circles, curves, and rectangles. You can
use NSImage to create composite images on the view. In this example, you will fill
the entire view with a green rectangle.

Open StretchView.m and add the following code to the drawRect: method:

- (void)drawRect:(NSRect)rect
{
 NSRect bounds = [self bounds];
 [[NSColor greenColor] set];
 [NSBezierPath fillRect:bounds];
}

As shown in Figure 17.10, NSRect is a struct with two members: origin, which
is an NSPoint, and size, which is an NSSize.

NSSize is a struct with two members: width and height (both floats).

NSPoint is a struct with two members: x and y (both floats).

For performance reasons, structs are used in a few places instead of
Objective-C classes. For completeness, here is the list of all the Cocoa structs
that you are likely to use: NSSize, NSPoint, NSRect, NSRange, NSDecimal, and
NSAffineTransformStruct. NSRange is used to define subranges. NSDecimal
describes numbers with very specific precision and rounding behavior.
NSAffineTransformStruct describes linear transformations of graphics.

Figure 17.10 NSRect, NSSize, and NSPoint

NSRect

origin: NSPoint

x: float

y: float

width : float

height: float

siz
e:

 N
SSize

240 CHAPTER 17 � CUSTOM VIEWS

Note that your view knows its location as an NSRect called bounds. In this
method, you fetched the bounds rectangle, set the current color to green, and
filled the entire bounds rectangle with the current color.

The NSRect that is passed as an argument to the view is the region that is “dirty”
and needs redrawing. It may be less than the entire view. If you are doing very
time-consuming drawing, redrawing only the dirty rectangle may speed up your
application considerably.

Note that setNeedsDisplay: will trigger the entire visible region of the view to
be redrawn. If you wanted to be more precise about which part of the view needs
redrawing, you would use setNeedsDisplayInRect: instead:

NSRect dirtyRect;
dirtyRect = NSMakeRect(0, 0, 50, 50);
[myView setNeedsDisplayInRect:dirtyRect];

Build and run your app. Try resizing the window.

Drawing with NSBezierPath

If you want to draw lines, ovals, curves, or polygons, you can use NSBezierPath.
In this chapter, you have already used the NSBezierPath’s fillRect: class
method to color your view. In this section, you will use NSBezierPath to draw
lines connecting random points (Figure 17.11).

Figure 17.11 Completed Application

DRAWING WITH NSBEZIERPATH 241

The first thing you will need is an instance variable to hold the instance of
NSBezierPath. You will also create an instance method that returns a random
point in the view. Open StretchView.h and make it look like this:

#import <Cocoa/Cocoa.h>

@interface StretchView : NSView
{
 NSBezierPath *path;
}
- (NSPoint)randomPoint;

@end

In StretchView.m, you will override initWithFrame:. As the designated
initializer for NSView, initWithFrame: will be called automatically when an
instance of your view is created. In your version of initWithFrame:, you will
create the path object and fill it with lines to random points. Make
StretchView.m look like this:

#import "StretchView.h"

@implementation StretchView

- (id)initWithFrame:(NSRect)rect
{
 if (![super initWithFrame:rect])
 return nil;

 // Seed the random number generator
 srandom(time(NULL));

 // Create a path object
 path = [[NSBezierPath alloc] init];
 [path setLineWidth:3.0];
 NSPoint p = [self randomPoint];
 [path moveToPoint:p];
 int i;
 for (i = 0; i < 15; i++) {
 p = [self randomPoint];
 [path lineToPoint:p];
 }
 [path closePath];
 return self;
}
- (void)dealloc
{
 [path release];
 [super dealloc];
}

242 CHAPTER 17 � CUSTOM VIEWS

// randomPoint returns a random point inside the view
- (NSPoint)randomPoint
{
 NSPoint result;
 NSRect r = [self bounds];
 result.x = r.origin.x + random() % (int)r.size.width;
 result.y = r.origin.y + random() % (int)r.size.height;
 return result;
}

- (void)drawRect:(NSRect)rect
{
 NSRect bounds = [self bounds];

 // Fill the view with green
 [[NSColor greenColor] set];
 [NSBezierPath fillRect: bounds];

 // Draw the path in white
 [[NSColor whiteColor] set];
 [path stroke];
}

@end

Build and run your app. Pretty, eh?

Okay, now try replacing [path stroke] with [path fill]. Build and run it.

NSScrollView

In the art world, a larger work is typically more expensive than a smaller one of
equal quality. Your beautiful view is lovely, but it would be more valuable if it
were larger. How can it be larger yet still fit inside that tiny window? You are
going to put it in a scroll view (Figure 17.12).

A scroll view has three parts: the document view, the content view, and the scroll
bars. In this example, your view will become the document view and will be
displayed in the content view, which is an instance of NSClipView.

Although this change looks tricky, it is very simple to make. In fact, it requires no
code at all. Open MainMenu.nib in Interface Builder. Select the view, and choose
Embed Objects in Scroll View from the Layout menu (Figure 17.13).

NSSCROLLVIEW 243

Figure 17.12 Completed Application

Figure 17.13 Embed the StretchView in a Scroll View

244 CHAPTER 17 � CUSTOM VIEWS

As the window resizes, you want the scroll view to resize, but you do not want
your document to resize. Open the Size Inspector, select Scroll View, and set the
Size Inspector so that it resizes with the window (Figure 17.14).

Note the width and height of the view.

To select the document view, double-click inside the scroll view. You should see
the title of the inspector change to Stretch View Size. Make the view about twice
as wide and twice as tall as the scroll view. Set the Size Inspector so that the view
will stick to the lower-left corner of its superview and not resize (Figure 17.15).
Build the application and run it.

Figure 17.14 Make Scroll View Resize with Window

Figure 17.15 Make StretchView Larger and Nonresizing

FOR THE MORE CURIOUS: CELLS 245

Creating Views Programmatically

You will instantiate most of your views in Interface Builder. Every once in a
while, you will need to create views programmatically. For example, assume that
you have a pointer to a window and want to put a button on it. This code would
create a button and put it on the window’s content view:

NSView *superview = [window contentView];
NSRect frame = NSMakeRect(10, 10, 200, 100);
NSButton *button = [[NSButton alloc] initWithFrame:frame];
[button setTitle:@"Click me!"];
[superview addSubview:button];
[button release];

For the More Curious: Cells

NSControl inherits from NSView. With its graphics context, NSView is a relatively
large and expensive object to create. When the NSButton class was created, the
first thing someone did was to create a calculator with 10 rows and 10 columns
of buttons. The performance was less than it could have been because of the 100
tiny views. Later, someone had the clever idea of moving the brains of the button
into another object (not a view) and creating one big view (called an NSMatrix)
that would act as the view for all 100 button brains. The class for the button
brains was called NSButtonCell (Figure 17.16).

Figure 17.16 NSMatrix

246 CHAPTER 17 � CUSTOM VIEWS

In the end, NSButton became simply a view that had an NSButtonCell. The
button cell does everything, and NSButton simply claims a space in the window
(Figure 17.17).

Similarly, NSSlider is a view with an NSSliderCell, and NSTextField is a view
with an NSTextFieldCell. NSColorWell, by contrast, has no cell.

To create an instance of NSMatrix in Interface Builder, you drop a control with a
cell onto the window, choose Embed Objects In -> Matrix, and then Option-drag
as if resizing until the matrix has the correct number of rows and columns
(Figure 17.18).

An NSMatrix has a target and an action. A cell may also have a target and an
action. If the cell is activated, the cell’s target and action are used. If the target
and action of the selected cell are not set, the matrix’s target and action will be
used.

Figure 17.17 NSButton and NSButtonCell

Figure 17.18 A Matrix of Buttons

FOR THE MORE CURIOUS: ISFLIPPED 247

When dealing with matrices, you will often ask which cell was activated. Cells
can also be given a tag:

- (IBAction)myAction:(id)sender {
 id theCell = [sender selectedCell];
 int theTag = [theCell tag];
 ...
}

The cell’s tag can be set in Interface Builder.

Cells are used in several other types of objects. The data in an NSTableView, for
example, is drawn by cells.

For the More Curious: isFlipped

Both PDF and PostScript use the standard Cartesian coordinate system,
whereby y increases as you move up the page. Quartz follows this model by
default. The origin is usually at the lower-left corner of the view.

For some types of drawing, the math becomes easier if the upper-left corner is
the origin and y increases as you move down the page. We say that such a view is
flipped.

To flip a view, you override isFlipped in your view class to return YES:

- (BOOL)isFlipped
{
 return YES;
}

While we are discussing the coordinate system, note that x- and y-coordinates
are measured in points. A point is typically defined as 72.0 points = 1 inch. In
reality, by default 1.0 point = 1 pixel on your screen. You can, however, change
the size of a point by changing the coordinate system:

// Make everything in the view twice as large
NSSize newScale;
newScale.width = 2.0;
newScale.height = 2.0;
[myView scaleUnitSquareToSize:newScale];
[myView setNeedsDisplay:YES];

248 CHAPTER 17 � CUSTOM VIEWS

Challenge

NSBezierPath can also draw Bezier curves. Replace the straight lines with
randomly curved ones. (Hint: Look in the documentation for NSBezierPath.)

419

INDEX

Symbols
%@, 38, 41–42, 71–72, 231
$ (in tokens), 231
+ in method names, 52
@ symbol, 24, 38
.???? extension, 163
+ prefix, 203
: (in method name), 34

A
Abstract classes, 123, 154
Accented characters, 228, 284
acceptsFirstResponder, 265, 272–273
Accessor methods, 48, 74–77, 113, 117, 119,

142–143
Action, 22, 80

See also Target/action
Action methods, 19, 136
Active Build Configuration, 39
add:, 125, 130, 178, 370–372
addEmployeesObject:, 369
addObject:, 34, 44, 63
addObjectsFromArray:, 44
addObserver:, 121, 146, 210–214, 414
Adobe PDF, 2, 262, 283–285, 294, 339
Advanced Mac OS X Programming, 417
Affine transform, 239, 379–380
Alert panels

confirm delete request, 218–219
icon, 217
modal operation, 218
NSRunAlertPanel(), 217–218
removeEmployee:, 218–220
sheet, 218

allKeys, 199, 333

alloc, 33–34, 72
Amazon Web service, 346–349
AND (&), 250
Animation. See Core animation
AppController, 85–89, 185–186, 252–256, 412
appendData:, 414
AppKit framework, 6, 79, 107, 283
Apple, Inc.

Cocoa developers mailing list, 418
Copland, 3
Developer Connection, 418
Developer Technical Support, 418
GUI guidelines, 16
history, 1
Mac OS X, 3
and NeXT, 3

applicationShouldOpenUntitledFile:, 205
archivedDataWithRootObject:, 161
Archived (objects), 14
Archiving/unarchiving

decoding, 156–157
encoding, 154–155
extension and icon, 163–165
infinite loops, 165–166
Info.plist, 157, 163–165, 168
initWithCoder, 154–156
NSCoder, 154–157, 166
NSCoding, 154–157, 167
NSDocument, 157–160, 168
NSDocumentController, 157–158
NSKeyedArchiver, 154, 161, 166
NSKeyedUnarchiver, 161–163, 166
NSWindowController, 157–160, 162
universal type identifiers (UTIs), 168–169
updateChangeCount:, 168

Arguments and methods, 34, 56, 201

420 INDEX

Array controller, 120, 128, 149
Array Controller Attributes, 129, 174, 370
Array Controller Bindings, 129, 174
Arrays, 37
aSelector, 90, 108–109, 210
Assertion checking, 61–62
assign, 119
Atomic setter methods, 119
attributedStringForObjectValue:, 337
Attributed strings, 278–281, 337–338
Attributes, 172–173
Attributes (property), 118–119
Attributes dictionary, 281
Attributes Inspector, 16–17, 174
Autocompletion, 336–337
Autoreleased objects, 52, 72–74
Autorelease Old Value, 76
autorelease pool, 72–73
autoscroll:, 260–261, 316
availableTypeFromArray:, 289
@avg, 120
awakeFromNib, 28–30, 352
AWS ID, 349

B
Background color, 204–206, 213–215, 270
becomeFirstResponder, 265, 272
beginSheetForDirectory:file:types:

modalForWindow:modalDelegate:

didEndSelector:contextInfo:, 255–
256, 283

beginSheetModalForWindow:modalDelegate:

didEndSelector:contextInfo:, 220
Berners-Lee, Tim, 3
Bézier path, 239–241, 248
BigLetterView

adding bold and italic, 286
drag-and-drop, 300–307
typing-tutor application, 309

BigLetterView, 266–270, 275, 281–283
cut:, copy:, and paste:, 289–290

Big Nerd Ranch, Inc., 3, 6, 417
Binding(s), 117, 120–121, 129–131, 135

to cells, scroll view, or table view, 128, 178
Core Data, 177–180
DepartmentView.nib, 371
EmployeeView.nib, 372
key-value coding (KVC), 113–115

NSArrayController, 135
to NSUserDefaultsController, 207

Bindings Inspector, 114–115, 128, 173
bind:toObject:withKeyPath:options:, 120
Blast button, 389–390
blastem:, 389–390, 393
BMP, 262
BNR prefix, 202
BNR_ prefix, 296–297
bold and italic, 286
BOOL, 23
boolForKey:, 201
bounds, 239–242, 270–272, 283
Box Bindings, 179
Box Size, 362–363
Breakpoints, 58–60
BSD Unix, 1
Bundle, 10, 194–195
Button Attributes, 82, 132, 312, 412
Button Bindings, 131
Button Inspector, 82
Buttons, 15–17, 80–83, 98–99, 101, 116–118

C
CAAnimation, 390–395
CALayer, 387, 390–395
calendarDate, 52
Calendar format string tokens, 54
CAOpenGLLayer, 395
Capitalization, 7–8, 10, 19, 92, 133–134
carArrayController, 181–182
CarLot project, 172
C array, 378, 380
caseInsensitiveCompare:, 133
Categories, 295–297
CATextLayer, 394
Cells, 245–247
CFMakeCollectable(), 377, 379–380
CGColorRef, 378–380, 383
change:, 121, 146, 148
changeBackgroundColor:, 190, 204–205, 212–213
changeKeyPath:, 148
changeNewEmptyDoc:, 188, 191, 204–205
changeParameter:, 398, 400, 402–403
changeViewController:, 356–357, 361–362
char, 23
Characters, 228, 284
characters method, 265

INDEX 421

Check Before Change, 76
checkbox, 191
@class, 24, 185, 186
Classes, 2, 5–7

creating objective-C, 46–58
existing, 35–46
online reference, 7
reusable, 132
sending messages to, 34

Class methods, 52
clickCount, 250–251
CocoaDev Wiki, 418
Cocoa/OpenGL application

using NSOpenGLView, 397–398
writing the application, 398–404

ColorFormatter
ColorFormatter.h, 329
methods, 332–334
nib file, 329–331
NSColorList, 331–332
search strings for substrings, 332

Color well, 184, 190–193, 205
Color Well Bindings, 330
Command-line tools, 207–208, 405–415
compare: method, 133–134
Compiler, 4, 33, 58
Compositing an image, 256–258
Composition, compared with inheritance, 45–46
Conditional encoding, 166
Conditionally Sets Editable, 179
Console (log), 26–28
containsObject:, 43
Continuous sliders, 83, 114, 253, 399
control:, 334–335
Controller classes, 123–124, 129–130
Coordinate systems, 247, 258–260
copy, 119
copy:, 289–290
Copy and paste operations, 287
Core animation

CALayer, 387–390
CALayer and CAAnimation, 390–395
object diagram, 387
polynomials, 388–391

Core Data
bindings, 177–180
fetch, 173–174, 180–181, 370
framework, 6
interface, 173–179

Level Indicator, 175–176
NSArrayController, 171, 178, 181
NSManagedObjectContext, 171–173, 180–181
NSManagedObjectModel, 171–173
NSPersistentDocument, 172, 180–181, 356
Number Formatter Attributes, 175
object graph, 181
objects, 180–181
Views & Cells, 175–177

Core Data relationships
bindings, 371–372
custom NSManagedObject classes, 366–369
data model, 365–366
DepartmentView.nib, 369–371
EmployeeView.nib, 371–372
events and nextResponder, 372–373
interface layout, 369–372
inverse relationships, 366

Core Foundation (CF) data structures, 377
CoreGraphics framework, 2
count, 25, 43, 199
@count, 120
Counterparts, 26–27
countOfSongs, 143
Cox, Brad, 33
C Primitive, 376–377
C programming languages, 4
createEmployee:, 136–137, 149–151
createNewPolynomial:, 380–381, 389, 391
currentEvent:, 316
currentRect, 259–260
Custom views

cells, 245–247
creating views programmatically, 245
drawRect:, 238–240
ImageFun project, 235–240
isFlipped, 247
NSBezierPath, 239–242, 248
NSScrollView, 242–244
NSView, 233–235, 241, 245
Size Inspector, 237–238
view hierarchy, 233–235
view subclass, 236

cut:, 289–290

D
Dalrymple, Mark, 417
Darwin, 1

422 INDEX

dataForType:, 289
dataOfType:, 158, 162, 410
dataReady:, 414
dataSource, 99–104, 136, 407–408
dataWithPDFInsideRect:, 283
dateByAddingYears:, 53
Date formatter, 84, 327
dateWithYear:, 52
dayOfCommonEra, 53
dayOfMonth, 53
dayOfWeek, 53
dayOfYear, 53
dealloc, 71–72, 80
Deallocation, 69–72
Debugger, 4, 41, 51, 58–62, 92
declareTypes:, 288–289, 293
decodeBoolForKey:, 156
decodeDoubleForKey:, 156
decodeFloatForKey:, 156
decodeIntForKey:, 156
decodeObjectForKey:, 156
Decoding, 156–157
defaultCenter method, 210–214
Default settings, 200–201

See also Preferences panel; User defaults
defaults (Terminal tool), 207–208
#define, 202
delegate, 96–99, 105–106, 205
Delegate methods, 297–298
Delegates, 96–99, 107–109, 215
Delete button, 132, 220
deleteRandomPolynomial:, 380–381, 389, 392
deltaX, 250
deltaY, 250
deltaZ, 250
Department entity, 366–369
DepartmentView.nib, 369–371
description method, 41–42, 50–55, 59, 84
Designated initializers, 57
Development tools, 3–4
Dictionary

attributes, 281, 337
change:, 121, 146, 148
key-value pairs, 168, 199
NSDictionary, 198–199, 409
NSMutableDictionary, 198–199
userInfo, 214, 324
UTIs, 168–169

displayViewController:, 361–363, 372
.doc files, 280
Document architecture, 157–160
Document-based application, 125
Document controller, 157–158
Document object, 125
Document types, 165
Drag-and-drop

drag destination, 303–307
dragging-destination methods, 305–306
draggingSourceOperationMaskForLocal:,

300–302, 307
draggingUpdated, 307
drag source, 300–303
highlighting, 304–305
operation mask, 307
and pasteboards, 287
registerForDraggedTypes, 303–304
user feedback, 299

drawAtPoint:, 280
Drawing

with NSBezierPath, 240–242
with OpenGL, 397–404

Drawing text with attributes
adding bold and italic, 286
BigLetterView, 281–283
generating PDF data, 283–285
NSAttributedString, 278–281
NSFont, 277–278
NSFontManager, 286
NSMakeRange(), 278
NSMutableAttributedString, 278
NSShadow, 286
NSString, 281

drawInRect:, 279–280
drawInRect:fromRect:operation:fraction:,

257
drawInRect:withAttributes:, 281
drawRect:, 238–239, 257, 260, 271–272, 282–

283, 304, 341, 389, 398, 403
Dual-mode code, 67, 376

E
Editor view, 12–13
Embed objects in box, 176–177, 311
Embed objects in matrix, 246, 399
Embed objects in scroll view, 242–243

INDEX 423

Employee entity, 366–368
EmployeeView.nib, 371–373
encodeBool:forKey:, 155
encodeConditionalObject:forKey, 166
encodeDouble:forKey, 155
encodeFloat:forKey, 155
encodeInt:forKey, 155
encodeObject:forKey, 155
encodeWithCoder:forKey, 154–155, 161, 166
Encoding, 154–155
@end, 24, 29
endSpeedSheet:returnCode:, 324
Entity, 171–174, 180, 365–367
entryDate, 47–51, 61, 71–73
Enumerations, 199
Errors, 161
Event-handling methods, 249, 259
Event object, 249–250
Event queue, 17, 31
Events and nextResponder, 372–373
Exceptions, 57–61, 92
exec(), 405
Extensions, 6, 26, 38, 163–165

F
Fetch (managed objects), 173–174, 180–181, 370
File encoding and localization, 228–229
File’s Owner, 17, 189–193
Filesystem defaults, 200–201
File wrapper, 158–159
fileWrapperOfType:, 159
finalize message, 376
FirstLetter category, 295–297
firstResponder, 263–265, 270–272, 291–292
flagsChanged:, 265
Flipping a view, 247
float, 132–133
floatForKey:, 201
floatValue:, 82
Focus, locked and unlocked, 238, 301–302
Focus ring, 275–276
Font methods, 277–278, 286
fontWithName:, 277
fork(), 405
for loop, 37, 50
Formatters, 84, 128–130, 175, 327–334
forwardInvocation:, 139–141

Foundation framework, 6, 127
Foundation Tool, 35–37
Frame load delegate, 353
.framework extension, 6
Frameworks, 2, 6–7, 388
Free Software Foundation, 33, 58, 62
Fuzzy blue box, 275–276

G
Garbage collection

dual-mode code, 67, 376
finalize message, 376
Instruments, 383–385
malloc(), 375–376
non-object data types, 376–377
NSAllocateCollectable(), 376–377, 379–

380, 385
polynomials, 377–383
reachable objects, 375
strong references, 376
weak references, 376, 385

Garbage collector
assign and retain, 119
dual-mode code, 67
and Mac OS versions, 66, 68
memory management, 66–68

gcc (GNU C compiler), 4, 33, 58
gdb console, 59–60
gdb (GNU debugger), 4, 58
generalPasteboard:, 288, 290
genstrings, 229
getObjectValue:forString:errorDescription:,

328, 334
get prefix, 76
Getter method, 76, 113, 118
GIF, 262
glEndList(), 404
Gliss, 398–404
glLoadIdentity(), 403
Global variables, 202, 206, 212, 217, 279, 288
GLUT.framework, 398

H
.h file, 26–27, 149
handleColorChange:, 214
Header file, 17, 24–25

424 INDEX

Helper objects
connecting, 103–104
dataSource, 99–104
and delegates, 96–99, 107–109

hidesOnDeactivate, 184
Highlighting, drag-and-drop, 304–305
hourOfDay, 53
HTML, 280
HTTP, 345

I
IBAction, 24, 26
IBM, 79
IBOutlet, 24
ibtool, 230–231
Icon alert panel, 217
Icons, 163–165
id, 23
Identity Inspector, 19, 86, 182
image, 256
Image file formats, 262
ImageFun, 235–240, 316
Image opacity, 251–254, 257
Image representations, 261
Image View Bindings, 179
Image Well, 175
Immutability, 43, 52
@implementation, 24, 29
Implementation file, 17–19, 24–26
#import, 19, 23–24, 186, 202
#include, 24
incrementFido:, 116–117
Indentation, in Xcode, 24–25
indexOfObject:, 43
Infinite loops, 166
Info.plist, 157, 163–165, 168
Informal protocols, 297
Inheritance, 23, 41, 45–46, 81, 265
Inheritance diagrams, 41, 81
init, 34, 41, 55, 57–58, 80
initialFirstResponder, 269
Initializers, 55–58
initWithCoder:, 154–156, 403
initWithData:encoding:, 410, 414
initWithEntryDate:, 57, 61
initWithFormat:, 45
initWithFrame:, 241, 257, 270, 282, 342

initWithFrame:pixelFormat:, 397
initWithPeople:, 342
inLetterView, 313–314
insertObject:atIndex:, 44
Inspector, 16–17, 21, 128

See also Bindings Inspector; Identity
Inspector; Size Inspector; TextField
Inspector

Instances, 2, 5, 33–35
Instance variables, 5, 19
Instruments, 383–385
integerForKey:, 201
@interface, 19, 24
Interface Builder, 4, 8, 13–21, 28, 87–88
interpretKeyEvents:, 273
Invisible objects, 17
Invocations, 139–142
iPing, 411–415
isa pointer, 62–63
isARepeat, 265
isDrawingToScreen, 344
isEqual: method, 42–43
isFlipped, 247
isOpaque, 272
isPartialStringValid:newEditingString:

errorDescription:, 335–336
Italicized text, 286
Iterators, 199

J
Java code, 23
Java interface, 154
Jobs, Steve, 1
JPG, 262
Justification (text), 16–17

K
Keyboard events

BigLetterView, 266–270, 275
custom view project, 266–274
firstResponder, 263–265, 270–272
fuzzy blue box, 275–276
interpretKeyEvents:, 273
loop of key views, 267–269
NSEvent, 265–266
NSResponder, 265

INDEX 425

rollovers, 274–275
TypingTutor project, 266–274

keyCode, 265
keyDown:, 80, 265, 272–273, 373
keyEnumerator, 199
Key paths, 120–121
keyUp:, 265
Key-value coding (KVC)

bindings, 113–115
key paths, 120–121
and nil, 132–133
observers, 115–118
for ordered relationships, 143
project example, 111–113
properties and attributes, 118–119
for unordered relationships, 144

Key-value pairs, 121, 168, 198–199, 226
Key views, 267–269
Key window, 152, 263, 291
keyWindow, 183
knowsPageRange:, 340, 342

L
lastObject, 43
Late Night Cocoa podcast, 418
laterDate:, 54
Lazy copying, 293–294
length, 45, 91, 135, 278, 332, 336
Loading files to apps, 161–163
Localizable.strings, 226–227
Localization

accented characters, 226, 228
explicit ordering of tokens, 231
genstrings, 229
ibtool, 230–231
Keyboard Viewer, 226
languages, 223
Localizable.strings, 226–227
nib file, 224–226
NSBundle, 223–224, 226
NSLocalizedString, 229–231
string tables, 226–230
Unicode UTF-8, 228–229
Xcode Add Localization, 224

location, 278, 296, 332–333, 337, 343
locationInWindow, 250
lockFocus, 238, 301–302
Locks, 119

Logging arrival of notifications, 214
LotteryEntry class, 46–49
lottery.m, 49–50

M
Mac OS X

Developer Tools, 3–4
speech synthesizer, 85–86
window server appearance, 2

main(), 13, 39, 59
Main event loop, 31–32
MainMenu.nib, 13–14, 86, 185–186, 206, 341, 410
mainWindow, 183
malloc(), 375–376
Managed Object Class, 367
managedObjectContext, 171–174, 180–181,

357, 360, 366, 371
ManagingViewController, 357–358, 360–361
Matrix Attributes, 246, 400
Matrix Size, 401
@max, 120
Memory leak, 70, 72, 380, 383, 405
Memory management

accessor methods, 74–77
autoreleased objects, 72–74
dealloc, 71–72
garbage collector, 66–68
retain counts, 68–77
temporary objects, 73–74

messageFontOfSize:, 278
Message forwarding, 139–140
Messages, 4–5, 34, 40, 62–63
Methods

accessor, 48, 74–77, 113, 117, 119, 142–143
action, 19, 136
and arguments, 34
atomic setter, 119
class methods, 52
ColorFormatter, 332–334
defined, 5
event-handling, 249, 259
formatter, 328, 332–334
get prefix, 76
NSString, 91
NSTextField, 84, 91
private, 297
public, 26

Method name, 34

426 INDEX

Method naming steps, 215
.m file, 26–27
@min, 120
minuteOfHour, 54
minuteOfYear, 54
modalDelegate, 317
Modal operation, 218, 256
Modal windows, 325
Model classes, 123
modifierFlags, 249–250, 266
Modifier keys, 250, 266, 307
Modularity, and panels, 184, 355
mouseDown:, 80, 249–251, 258–259, 301, 316
mouseDragged:, 249, 251, 259, 261, 316
mouseEntered:, 274–275
Mouse events

autoscrolling, 260–261
clickCount, 250–251
compositing, 256–258
getting, 251
and image opacity, 251–254, 257
NSEvent, 249–250
NSImage, 252, 256, 261–262
NSOpenPanel, 251–256
NSResponder, 249, 372
#pragma mark, 251, 256
view coordinate system, 258–260

mouseExited:, 274–275
mouseMoved:, 274
Mouse rollovers, 274–275
mouseUp:, 249, 251, 258–259, 316
Multibyte characters, 39
Mutable array, 43–44
mutableArrayValueForKey, 143
mutableCopy, 43–44
MyDocument, 125–128, 135, 144, 149, 161
MyDocument.h, 127, 135, 145, 149, 218, 341,

356, 407
MyDocument.m, 127, 136, 144, 341, 360–363,

372, 408
MyDocument.nib, 128, 133, 135, 173, 230, 356,

362, 407

N
Name keys, 202
name method, 210–212
NeXT Computer, Inc., 1

nextKeyView, 267–268, 306
nextResponder, 290–291, 372–373
NeXT Software, Inc., 1
NeXTSTEP, 1–3
Nib (NeXT Interface Builder) files, 13, 17, 28–29,

87–88, 183–195
nil, 24, 40, 44, 132–133
Nil-targeted actions

nextResponder, 290–291
nib file, 292–293
and pasteboards, 287–294
searching the responder chain, 291–292

nonatomic, 119
Non-object data types, 376–377
Notifications

delegates, 215
logging arrival, 214
method naming steps, 215
NSNotification, 210–212
NSNotificationCenter, 209–212
observer, 209–215
poster, 209–210, 214
posting, 211–213
prefixes, 212
registering for, 211
userInfo dictionary, 214–215

NSAffineTransformStruct, 239
NSAlert, 107
NSAllocateCollectable(), 376–377, 379–380,

385
NSAnimation, 107
NSAnimationContext, 387, 393–394
NSApplication, 17, 107, 291, 293, 317
NSApplicationMain(), 13
NSArray, 41–43, 407
NSArrayController, 163, 178, 181, 373

bindings, 135
key-value coding and nil, 132–133
model-view-controller, 123
sorting, 133–135

NSAssert() , 61–62
NSAttributedString, 278–281
NSAutoReleasePool, 36–38, 72
NSBezierPath, 239–242, 248, 262
NSBox, 233
NSBrowser, 107
NSBundle, 63, 194–195, 226
NSButton, 81–82, 118, 246

INDEX 427

NSButtonCell, 245–246
NSCalendarDate, 52–55
NSCAssert() , 62
NSClipView, 242
NSCoder, 154–157, 166, 403
NSCoding, 154–157, 167
NSColorList, 331–332
NSControl, 81, 334–335
NSController, 123–124
NSControl subclasses, 81–85
NSData, 142, 158–159, 161–162, 349
NSDate, 52, 54–55
NSDateFormatter, 327
NSDatePicker, 107, 175
NSDecimal, 133, 239
NSDictionary, 198–199, 409
NSDocument, 157–160, 168, 172
NSDocumentController, 157–158, 291
NSDraggingInfo protocol, 305
NSDrawer, 107
NSEvent, 249–250, 265–266
NSException, 57–58
NSFont, 277–278
NSFontManager, 107, 286
NSFormatter

attributed strings, 337–338
autocompletion, 336–337
ColorFormatter, 328–334
formatter methods, 332–334
NSControl delegate, 334–335
partial strings, validating, 335–337
search strings for substrings, 332

NSGarbageCollector, 68–70
NSGradient, 304
NSImage, 107, 252, 256, 261–262
NSImageView, 175–176
NSInputManager, 284
NSInvocation, 139–141
NSKeyedArchiver, 154, 161, 165, 203–204,

213–214
NSKeyedUnarchiver, 154, 161–163, 165, 204,

206
NSLayoutManager, 107
NSLevelIndicator, 175–176
NSLocalizedString, 229–231
NSLog(), 38
NSMakeRange(), 278

NSManagedObject classes, 366–369
NSManagedObjectContext, 171–173, 180–181,

355, 357
NSMatrix, 107, 245
NSMenu, 107
NSMutableArray, 33–37, 41, 43–44, 68, 134
NSMutableAttributedString, 278
NSMutableDictionary, 198–199
NSNotification, 210–212
NSNotificationCenter, 209–212
NSNull, 44
NSNumber, 35–37
NSNumberFormatter, 327
NSObject, 41–42, 62–63, 80–81, 108, 121
NSObjectController, 123–124
NSOpenGLView, 397–398
NSOpenPanel, 208, 251–256
NSPanel, 183–184, 190
NSPasteboard, 287–289
NSPathControl, 107
NSPersistentDocument, 172, 180–181, 356
NSPipe, 405, 408–409, 412, 414
NSPoint, 239, 241–242, 249, 259, 280–282, 300
NSPrintOperation, 339–342
NSProgressIndicator, 309–314
NSRange, 96, 239, 278, 332, 340
NSRect, 239–242, 245
NSResponder, 80–81, 249, 265, 372
NSRuleEditor, 107
NSRunAlertPanel(), 217–218
NSSavePanel, 107
NSScannedOption, 376–377, 385
NSScrollView, 234, 242–244
NSSecureTextField, 84
NSShadow, 286
NSSize, 239
NSSlider, 81–83, 118, 123, 252–254, 399
NSSortDescriptor, 134
NSSound, 107
NSSpeechRecognizer, 107
NSSpeechSynthesizer, 88–89, 96–99, 101, 107
NSSplitView, 107, 234
NSString, 38–39, 41, 226, 281

adding a method to, 295–297
methods, 44–45, 91

NSTableView, 99–105, 107–108, 407
NSTabView, 107, 234–235

428 INDEX

NSTask
asynchronous reads, 410–411
multithreading versus multiprocessing, 405–

406
object diagram, 409
ping, 411–415
.tar and .tgz files, 415
zipinfo, 406–410, 415

NSText, 107
NSTextField, 81, 83–84, 91, 107, 118
NSTextStorage, 107
NSTextView, 79, 107, 151–152
NSTimer

AppController, 314
NSProgressIndicator, 309–314
NSRunLoop, 316
object diagram, 310
timer-driven autoscrolling, 316
typing-tutor project, 309–315

NSTokenField, 107
NSToolbar, 107
NSUndoManager

adding undo to RaiseMan, 142–145
editing on insert, 149–151
key-value coding, 142–145
key-value observing, 145–146
NSInvocation, 139
undo and redo stacks, 140–142
undoing edits, 146–148
and windows, 151–152

NSURL, 345
NSURLConnection, 345, 352
NSURLRequest, 345
NSUserDefaults, 200–201
NSUserDefaultsController, 207
NSView, 80–81, 233–235, 241, 245, 283, 300–

301, 359
NSViewController, 355, 357, 372
NSWindow, 14, 81, 107, 291
NSWindowController, 157–161, 163, 183–195

See also View swapping
NSWindow’s initialFirstResponder outlet, 88
NSXMLDocument, 345–346, 349–350
NSXMLNode, 345–346, 348, 351–352
NULL, 24
Number formatter, 128–130
Number Formatter Attributes, 130, 175
numberOfRowsInTableView:, 100, 105, 137, 351,

410

O
Object(s)

accessor methods, 74–77
archived, 14
autoreleased, 52, 72–74
connecting, 20–23
copies, 37
Core Data, 180–181
defined, 5
delegates, 96–99, 107
and key paths, 120–121
po, 41, 59
pointers, 62
reachable, 375–376
retain counts, 68–70
temporary, 73–74
unarchived, 14
See also Archiving/unarchiving

ObjectAllocations instrument, 383
objectAtIndex:, 43
objectEnumerator, 199
objectForKey:, 199, 201
Object graph, 65, 181
Objective-C, 2–5

classes, creating, 46–58
code, 23
debugger, 58–62
description method, 50–55
existing classes, 35–46
extensions, 26, 38
format string tokens, 38
functions, calling, 26
initializers, 55–58
instances, 33–35
keywords, 24
messaging, 62–63
NSArray, 41–43
NSMutableArray, 41, 43–44
NSObject, 41–42
NSString, 41, 44–45
protocol, 154–157
strings, 38–39
subclassing, 45–46
types and constants, 23–24
typographical conventions, 7
visibility specifiers, 26

The Objective-C Language, 5
object method, 210–211

INDEX 429

Object-oriented programming terms, 4–5
Objects & Controllers, 19–20, 128
objectValue, 84
Observable keys, 116–118
Observers, 115–118, 209–215
observeValueForKeyPath:ofObject:change:

context:, 121, 146, 148
opacity, 256, 257, 272
Open counterparts in same editor, 26–27
OpenGL, 387, 397
OpenGL application, 397–404
OpenGL.framework, 398
OpenGL View Attributes, 399–401
openItem:, 352
OpenOffice, 280
openPanelDidEnd:returnCode:contextInfo:,

252, 255–256
OpenStep, 2–3
Operation mask, 307
Operators, 120
@optional, 167, 297
Ordered-to-many relationships, 142
otherMouseDown:, 249
otherMouseDragged:, 249
otherMouseUp:, 249
Outlets (instance variables), 19–20
Overriding init, 57–58

P
Pagination, 339–344
Panel Attributes, 192
Panels, 183–194
Partial strings, validating, 335–337
Password display bullets, 84
paste:, 289–290
pasteboardChangedOwner:, 294
Pasteboards

BigLetterView cut:, copy:, and paste:,
289–290

Lazy copying, 293–294
nil-targeted actions, 290–293
NSApplication, 291, 293
NSPasteboard, 287–289
pasteboardChangedOwner:, 294
and PDF text, 294
responder chain, 291–293
server, 287–288, 294

PDF (portable document format), 2, 262, 283–
285, 294, 339

PeopleView, 341–342
performClick:, 348
Persistence framework, 6
Persistent document, 172, 180–181, 356
Person class, 125–127, 136
Person.h file, 126
PICT, 262
Pixels, 247
Plug-in, 10
PNG, 262
Pointers, 21–22, 34
Points (measurement), 247
Polynomials, 388–393
Polynomial View Effects, 388
Polynomial View Identity, 382
po (print-object), 41, 59
Poster, 209–210, 214
Posting a notification, 212–213
postNotification:, 211
postNotificationName:, 211
PostScript, 2
#pragma mark, 137, 251, 256, 271, 305, 342,

343, 351
Precedence of defaults, 201
Preferences panel

AppController.m, 187–188
menu setup, 186–187
NSBundle, 194–195
NSPanel, 183–184
NSWindowController, 183–195
object diagram, 185
PreferenceController.m, 185, 188, 192–194
Preferences.nib, 188–192
Reset Preferences button, 208

prepareRandomNumbers, 48–49, 55
prepareWithInvocationTarget:, 141, 144–145,

147–148
pressure, 250
printDocument:, 341
printf, 38
Printing

isDrawingToScreen, 344
NSPrintOperation, 339–342
pagination, 339–344

print-object (po), 41, 59, 342
Private methods, 297

430 INDEX

Progress Indicator Attributes, 312
Progress Indicator Bindings, 313
Project directory, 10–11
@property, 24, 118–119
Property attributes, 118–119
Property list classes, 203
Property (NSManagedObjectModel), 171–172,

357, 367
Protocol, 154–157, 167, 297–298
@protocol, 24
Public methods, 26
Python programming language, 4

Q
Quartz, 247, 397
QuartzCore framework, 378, 388
Quicklook, 168
Quit menu item, 32
Quotation marks, 38, 202, 226

R
RaiseMan application

Interface Builder, 128–132
NSArrayController, 124–132
.rsmn extension, 163–164
and undo, 140–145
Xcode, 125–127

RANDFLOAT(), 378
random(), 26, 48, 55–56, 61, 71, 242, 392
Random number generator application

build and run, 27–28
class creation, 17–19
compiling, 27–28
implementation file, 25–27
instance creation, 19–20
main function, 12–13
new project creation, 10–12
objects, 20–23
troubleshooting, 28–29
user interface layout, 15–17

Range of characters, 278
Range of numbers, 278
Reachable objects, 375
readFromData:error:, 159, 162
readFromFileWrapper:error:, 159
readFromPasteboard:, 289–290, 296, 306
readFromURL:error:, 160, 408–409

readonly, 119
readwrite, 119
rectForPage:, 340, 343
registerDefaults:, 201
registerForDraggedTypes:, 303–304
Relationships, 120, 142–144, 172

See also Core data relationships
release, 69, 80
reloadData, 100
remove:, 125, 130, 178, 220, 370–373
removeAllObjects, 44
removeEmployee:, 218–220
removeEmployeesObject:, 369
removeObject:, 44
removeObjectAtIndex:, 44
removeObjectForKey:, 199, 201
removeObserver:, 211
Reset Preferences button, 208
reshape, 397
resignFirstResponder, 265, 272, 276
resizeAndRedrawPolynomialLayers, 393–394
Resizing the window, 109, 320–321, 362–363
Responder chain, 291–293, 372–373
respondsToSelector:, 105, 109
retain, 69, 80, 119
Retain, then Release, 75
Retain counts

accessor methods, 74–77
autoreleased objects, 72–74
deallocation, 70–72
dog and leash analogy, 66, 68
NSAutoreleasePool, 72
retain and release balance, 69–70

Return code, 317, 324–325
rightMouseDown:, 249
rightMouseDragged:, 249
rightMouseUp:, 249
Rollovers, 274–275
.rsmn extension, 163–164
RTF, 280
RTFD, 280
Ruby programming language, 4
Run loop, 316, 410
runModalForWindow:, 325

S
Save panel, 283
savePDF:, 284

INDEX 431

Saving (adding to apps), 161
sayIt:, 86, 88–89, 97–98, 101, 106
Scanned, 376–377
Scroll view, 234, 242–244
scrollWheel:, 249
Sculley, John, 1
Search strings for substrings, 332
secondNumber, 47–51, 55–57, 71–73
seed: method, 19, 22, 26
Seed button, 22
Selector, 34, 90, 133, 139, 309, 317
@selector, 24, 90
Selector table, 63
Serialization. See Archiving/unarchiving
set, 75–77
setBool:forKey:, 201
setCalendarFormat:, 54
setEmployees:, 127
setEnabled:, 81
setEntryDate:, 47–49, 56–57, 77
setExpectedRaise:, 132
setFido:, 113, 119
setFloat:forKey:, 201
setFloatValue:, 82
setFrameLoadDelegate:, 353
setImage:, 260
setInteger:forKey:, 201
setMainFrameURL:, 353
setNeedsDisplay:, 238–240, 247, 257, 282
setNilValueForKey:, 132–133
setObject:forKey:, 199, 201
setObjectValue:, 84, 100, 137, 327
setState:, 82
setString:, 282
setStringValue:, 84, 91
Setter methods, 75–76, 119
setValue:forKey:, 111–113, 132
setValue:forKeyPath:, 120
Shadow text style, 286
Sheet (alert panel window), 218
Sheets

adding, 318–324
contextInfo, 324
modalDelegate, 317
modal windows, 325
NSApplication methods, 317
object diagram, 318
outlets and actions, 319

showOpenPanel:, 252, 254–255

showSpeedSheet:, 319–320
showWindow:, 187, 193
sigint signal, 411
size, 280
Size Inspector, 109, 237–238, 243–244
sizeWithAttributes:, 281
Slider Attributes, 83, 114, 253, 321, 400
Slider Bindings, 114, 254, 322
Slider Cell Attributes, 400
Slider Inspector, 83
Sliders, 82–83, 114–115, 253–256, 399
Smalltalk (language), 33
Snapshot, 294
Sort descriptors, 135
sortDescriptorsDidChange:, 135
Sorting, 133–135
sortUsingDescriptors:, 134
Speech synthesizer, 85–86, 96–99
speechSynthesizer:, 96
speechSynthesizer:didFinishSpeaking:, 96
speechSynthesizer:willSpeakPhoneme:, 96
speechSynthesizer:willSpeakWord:, 96
speedSheet, 319, 321–324
Split views, 234
srandom(), 26
standardUserDefaults, 200
startButton, 97–99, 101, 106, 412
startStopPing:, 413
state, 80–82
stopButton, 97–99, 101, 106
stopGo:, 311–312, 315, 319
stopModalWithCode:, 325
StretchView, 236–237, 241, 243–244, 251–261,

316
stringByAppendingString:, 45
stringForObjectValue:, 328, 333, 337–338
stringForType:, 289
Strings, 38–39, 44, 278–281
stringValue, 84, 91
stringWithFormat:, 73–74, 91
Strong references, 376
structs, 5, 109, 239
Subclass, 19, 24
Subclassing, 45–46, 79
Subversion, 188
subviews, 233–234
@sum, 120
Superclass, 23–24
superview, 233, 237, 244–245, 291

432 INDEX

Symbolic breakpoints, 59–60
Syntax-aware indention, 24–25
@synthesize, 24, 118–119

T
Table Column Attributes, 134, 349
Table Column Bindings, 130–131, 180
Table view

dataSource, 99–104, 410
delegate, 105–106

tableView, 100–106, 135–137, 150, 346, 408, 410
Table View Attributes, 102–103, 219
tableView:objectValueForTableColumn:row:,

100, 105
Taligent, 79
.tar files, 415
target, 22, 80
Target/action, 22

AppController class, 88–90
debugging, 92–93
menu items, 90
Nib file, 86–88
NSControl subclasses, 81–85
SpeakLine project, 85–86

taskTerminated:, 414–415
Temporary objects, 73–74
Terminal tool, 165, 207–208
terminate:, 32
Text, 277–286

See also Drawing text with attributes
Text field, 16–17, 84
Text Field Attributes, 348
Text Field Bindings, 115, 330
Text Field Inspector, 83
textField outlet, 21, 88
Text View Attributes, 151
.tgz files, 415
TIFF, 262
timeIntervalSinceDate:, 55
Timer. See NSTimer
timestamp, 250
titleBarFontOfSize:, 278
Toggles, 80–81
Tokens, 38, 45, 54, 165, 231
To-many relationships, 142, 365
Tool names, 36
toolTipsFontOfSize:, 278

To-one relationships, 142, 365
Tracking area for rollovers, 274–275
Type declarations, 168
Types, Objective-C, 23–24
TypingTutor project, 266–274, 309–315
Typographical conventions, 7

U
Unarchived (objects), 14
unarchiveObjectWithData:, 162
Unarchiving. See Archiving/unarchiving
unbind: method, 121
Undo, 167
undoManager, 141–145, 151–152

See also NSUndoManager
undoManagerForTextView:, 151–152
Undo/redo, 140–142, 151–152
Unicode, 38–39, 44
Unicode UTF-8, 228–229
Universal type identifiers (UTIs), 168–169,

406–407
University of California, Berkeley, 1
Unix, 1–3, 405
Unordered-to-many relationships, 142, 365
updateChangeCount:, 168
User defaults

command line tool, 207–208
name keys, 202
NSDictionary, 198–199
NSMutableDictionary, 198–199
NSUserDefaults, 200–201
NSUserDefaultsController, 207
prefix of global variables, 202
registering defaults, 203
setting background color, 206
untitled documents, 198, 205–206
user-edited, 203–205

userFixedPitchFontOfSize:, 278
userFontOfSize:, 278
userInfo dictionary, 214–215, 324
User interface layout, 15–17, 190–192
UTExportedTypeDeclarations, 168

V
valueForKey:, 111
valueForKeyPath:, 120

INDEX 433

Version-control systems, 188
View(s)

coordinate system, 258–260
flipping, 247
hierarchy, 233–235
See also Custom views

View-backing layer, 395
View class, 123
Views & Cells, 15, 128
View subclass, 236
View swapping

changeViewController:, 356–357, 361–362
design, 356–362
displayViewController:, 361–363, 372
ManagingViewController, 357–358, 360–361
NSViewController, 355, 357
object diagram, 356
resizing the window, 362–363

Visibility specifiers, 26
Voice projects. See Speech synthesizer
void, 24, 26

W
Weak references, 376
WebKit framework, 353
Web service

AmaZone, 346–352
Amazon Web service, 346–349
AWS ID, 349
code, 349–352
fetchBooks:, 346–349
interface layout, 347–349
NSURL, 345
NSXMLDocument, 345–346, 349–350
NSXMLNode, 345–346, 348, 351–352
webView:, 353–354
XML, 348

Web sites
Darwin development, 1
Free Software Foundation, 62
The Objective-C Language PDF, 5
this books’s, 418

window, 250

Window Attributes, 321, 363
windowControllerDidLoadNib:, 160, 206
windowDidLoad:, 193, 204–205
window (NSView method), 233
Window resizing, 192, 320–321, 362–363
Window server, 2, 31
windowWillReturnUndoManager:, 152
Wozniak, Steve, 1
writeToPasteboard:, 289–290, 302
writeToURL:, 159

X
x- and y-coordinates, 247, 258
Xcode

breakpoints, 58–60
console, 26–28
and defaults, 207–208
documentation, 29–30
document-based application, 125, 172
Foundation Tool, 35–37
and garbage collector, 382
icons and extensions, 163–165
Info.plist, 157, 163–164, 168
localization, 224–227
new controller class, 86
#pragma mark, 251
preferences, 25–28
project directory, 9–11
RandomApp (random number generator), 9–13
targets, 66

XIB files, 188
XML, 168, 188, 202–203, 345, 348
XML data, 349–351
XML node, 348
XPath, 348–352
X window server, 2

Z
Zero-length strings, 89, 301, 333, 336
Zip files, 407
ZIPspector, 406–410
Zombies, 92–93

	Preface
	Chapter 17 Custom Views
	The View Hierarchy
	Getting a View to Draw Itself
	Create an Instance of a View Subclass
	Size Inspector
	drawRect:

	Drawing with NSBezierPath
	NSScrollView
	Creating Views Programmatically
	For the More Curious: Cells
	For the More Curious: isFlipped
	Challenge

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

