Preface

We're all in the business of software development. Code is written and then
deployed. Once we've deployed the code, our customers will express plea-
sure or, depressingly often, displeasure.

For the last few decades, much has been written about how to minimize
this displeasure. We have countless languages, methodologies, tools, man-
agement techniques, and plain old-fashioned mythology to help address this
issue.

Some of these approaches are more effective than others. There has
certainly been a renewed emphasis and focus on testing lately, along with
the pleasures said testing would bring to developers and users alike.

Much has been written extolling the virtues of testing. It can make your
code better, faster, and lighter. It can add some sorely needed spice to the
drudgery of coding. It’s exciting and new (and therefore worth trying), not
to mention the feeling of responsibility and accountability it imparts; there’s
something mysteriously satisfying about adding a feature and having a test
to prove you did it right.

Unfortunately, religion has also crept into the science of testing. You
won't have to look far to find holy commandments or Persons of Authority
handing down instructions either applauding or scolding certain testing
behavior.

This book attempts to distill some of the wisdom that has emerged over
the last few years in the realm of Java testing. Neither of us has ever had a
job where we're paid to sell testing, nor has testing been forced on us. Nei-
ther of us works at a place where one methodology has been proclaimed the
“winner” and must be followed religiously.

Instead, we're pragmatic testers. Testing to us is simply another valu-
able tool that helps us as part of the software development cycle. We're not
particularly “test infected,” the term coined by JUnit early on that’s gained
so much adoption. We write tests when and where it makes sense; testing is
a choice and not an infectious disease for us.

As a result of this approach, we’ve noticed a rather large hole in our test-
ing arsenal: Very few tools seem to be practical and to lend themselves to

XV



XVi

Preface

the sort of tests we'd like to write. The dominant force in Java testing is
JUnit, and in many cases, it’s easy and intuitive to think of a test we’d like to
run. The main obstacle, however, ends up being the tooling and its inability
to capture concepts that are second nature to us in the code we'd like to
test—concepts such as encapsulation, state sharing, scopes, and ordering.

JUnit, for all its flaws, really brought the concept of testing to the fore-
front. No longer was it an ad hoc approach. Instead, tests now had a frame-
work and a measure of standardization applied. JUnit-based tests could be
easily automated and replayed in a variety of environments using any num-
ber of visualization tools. This ease of use encouraged its massive adoption
and the increased awareness of Java testing in general.

Its success has also spilled over to a number of other languages, with
ports to other languages all based on the same underlying concepts.

As with any successful tool, however, the success came at a price. A sub-
tle shift took place where instead of testing being the concern, and JUnit a
tool to help achieve that, JUnit became the main focus, with testing that
didn’t fit in its narrow confines resulting in doubts about the test, rather
than the tool.

Many will proclaim that a test that cannot be easily expressed in a sim-
ple “unit” is a flawed test. It's not a unit test since it has requirements
beyond the simplistic ones that JUnit provides for. It’s a functional test that
happens later, after having built the unit building blocks. We find this argu-
ment perplexing, to say the least. Ultimately there is no one right way to do
testing. It would be equally ridiculous to proclaim that development must
start from implementing small units to completion first, before thinking of
higher-level concerns. There are cases where that makes the most sense,
just as there are many where it doesn’t. Testing is a means to an end, and the
end is better software. It’s crucial to keep this in mind at all times.

Why Another Book about Testing?

This is a book about Java testing. Every chapter and section you will read in
the following pages will discuss testing in some way or another. Regardless
of what testing framework you use or whether you use tools that we don’t
cover, our goal is to show you some practices that have worked for us in
some way. We also tried to draw general conclusions from our own experi-
ences and use these to make recommendations for future scenarios that
might arise.



Why Another Book about Testing? xvii

Even though we use TestNG in this book to illustrate our ideas, we
firmly believe that you will find some of it useful, whether or not you use
JUnit—even if you're not programming on the Java platform. There are
plenty of TestNG/JUnit-like frameworks for other languages (C# and C++
come to mind), and the ideas used in a testing framework are usually uni-
versal enough to transcend the implementation details that you will encoun-
ter here and there.

This book is about pragmatic testing. You will not find absolute state-
ments, unfounded religious proclamations, and golden rules that guarantee
robust code in this book. Instead, we always try to present pros and cons for
every situation because ultimately you, the developer, are the one with the
experience and the knowledge of the system you are working with. We can’t
help you with the specifics, but we can definitely show you various options
for solving common problems and let you decide which one fits you best.

With that in mind, let’s address the question asked above: Why another
book about testing?

There are plenty of books (some very good) about Java testing, but
when we tried to look more closely, we came to the conclusion that hardly
any books covered a broad topic that we found very important to our day-to-
day job: modern Java testing.

Yes, using the adjective modern in a book is dangerous because, by
nature, books don’t remain modern very long. We don’t think this book will
be the exception to this rule, but it is clear to us that current books on Java
testing do not properly address the challenges that we, Java developers, face
these days. As you can see in the table of contents, we cover a very broad
range of frameworks, most of which have come into existence only in the
last three years.

In our research on prior art, we also realized that most books on Java
testing use JUnit, which, despite its qualities, is a testing framework that has
barely evolved since its inception in 2001." It’s not just JUnits age that we
found limiting in certain ways but also its very design goal: JUnit is a unit
testing framework. If you are trying to do more than unit testing with JUnit
(e.g., testing the deployment of a real servlet in an application server), you
are probably using the wrong tool for the job.

Finally, we also cover a few frameworks that are quite recent and are
just beginning to be adopted (e.g., Guice) but that we believe have such a

1. JUnit 4, which came out in 2006, was the first update in five years that JUnit received, but
at the time of writing, its adoption is still quite marginal, as most Java projects are still using
JUnit 3.



Xviii Preface

potential and open so many doors when used with a modern testing frame-
work such as TestNG that we just couldn’t resist writing about them. Hope-
fully, our coverage of these bleeding-edge frameworks will convince you to
give them a try as well.

Throughout the book, we have tried hard to demonstrate a pragmatic
application of testing. Many patterns are captured in these pages. It’s not an
explicit list that we expect to be recited; rather, it's more of a group of exam-
ples to ensure you develop the right approach and way of thinking when it
comes to testing code.

We achieve this through two separate approaches, the first of which is
TestNG usage specifics. We discuss most of its features, explaining how and
why they arose, as well as practical real-world examples of where they might
be applicable. Through this discussion, we’ll see how testing patterns can be
captured by the framework and what goes into a robust maintainable test
suite (and more importantly, what doesn’t!).

The second aspect is showing how TestNG integrates with your existing
code and the larger ecosystem of Java frameworks and libraries. Few of us
are lucky enough to work on projects that are started completely from
scratch. There are always components to reuse or integrate, legacy sub-
systems to invoke, or backward compatibility concerns to address. It would
be equally foolish to demand redesigns and rewrites just to enable testing.
Instead, we try to show how it’s possible to work with existing code and how
small incremental changes can make code more testable and more robust
over time. Again, through this approach, a number of patterns emerge,
along with more practices on how to write tests and approach testing in general.

We hope you enjoy reading this book as much as we enjoyed writing it.
We feel very strongly about testing, but we feel equally strongly that it isn’t a
golden hammer in a world of nails. Despite what many would like to
believe, there are no solutions or approaches that absolve you from the need
to think and the need to understand your goals and ensure that your testing
journey is a rational and well-considered one, where both the downsides
and upsides have received equal consideration.

Audience

So, what is this book and who is it for? In short, it’s for any Java developer
who is interested in testing.

We are also targeting developers who have been testing their code for
quite a while (with JUnit or any other framework) but still find themselves



Audience Xix

sometimes intimidated by the apparent complexity of their code and, by
extension, by the amount of effort needed to test it. With the help of the
TestNG community over these years, we have made a lot of progress in
understanding some of the best practices in testing all kinds of Java code,
and we hope that this book will capture enough of them that nobody will
ever be stuck when confronted with a testing problem.

This book uses TestNG for its code samples, but don't let that intimi-
date you if you're not a TestNG user: A lot of these principles are very easy
to adapt (or port) to the latest version of JUnit.

Whether you use TestNG or not, we hope that once you close this book,
you will have learned new techniques for testing your Java code that you will

be able to apply right away.



