
xiii

Foreword

Doing the right thing is rarely easy. Most of us should probably eat better,
exercise more, and spend more time with our families. But each day, when
confronted with the choice of being good or doing the easy thing, we often
choose the easy thing because, well, it’s easier.

It is the same way with software testing. We all know that we should
spend more effort on testing, that more testing will make our code more
reliable and maintainable, that our users will thank us if we do, that it will
help us better understand our own programs, but each day when we sit
down to the computer and choose between writing more tests and writing
more application code, it is very tempting to reach for the easy choice.

Today, it is largely accepted that unit testing is the responsibility of
developers, not QA, but this is a relatively recent development, one for
which we can largely thank the JUnit testing framework. It is notable that
JUnit had such an impact because there’s not really very much to it—it’s a
simple framework, with not a lot of code. What enabled JUnit to change
developer behavior where years of lecturing and guilt could not was that, for
the first time, the pain of writing unit tests was reduced to a bearable level,
making it practical for the merely responsible to include unit testing in our
daily coding. Rather than make testing more desirable, which is not such an
easy sell (eat those vegetables, they’re good for you!), JUnit simply made it
easier to do the right thing.

With all the righteousness of the newly converted, many developers
proclaimed their zeal for testing, proudly calling themselves “test-infected.”
This is all well and good—few could argue that software developers were
doing too much testing, so more is probably an improvement—but it is only
the first step. There’s more to testing than unit tests, and if we expect devel-
opers to take this next step we must provide testing tools that reduce the pain
of creating them—and demand testability as a fundamental design require-
ment. If software engineering is ever to become a true engineering discipline,
testing will form one of the critical pillars on which it will be built. (Perhaps
one day, writing code without tests will be considered as professionally irre-
sponsible as constructing a bridge without performing a structural analysis.)

Beust.book Page xiii Monday, September 17, 2007 12:36 PM

xiv Foreword

This book is dedicated to the notion that we’ve only just begun our rela-
tionship with responsible testing. The TestNG project aims to help develop-
ers take the next step—the NG stands for “next generation”—enabling
broader and deeper test coverage that encompasses not only unit tests but
also acceptance, functional, and integration tests. Among other useful fea-
tures, it provides a rich mechanism for specifying and parameterizing test
suites, encompassing concurrent testing and a flexible mechanism for
decoupling test code from its data source. (And, as proof that TestNG is suc-
ceeding, a number of its features have been adopted in more recent ver-
sions of JUnit.)

One challenge to more effective developer testing, no matter what tools
are provided, is that writing effective tests requires different skills than writ-
ing effective code. But, like most skills, testing can be learned, and one of
the best ways to learn is to watch how more experienced hands might do it.
Throughout this book, Hani and Cédric share with you their favorite tech-
niques for effectively testing Java applications and for designing applications
and components for testability. (This last skill—designing for testability—is
probably one of the most valuable lessons from this book. Designing code
for testability forces you to think about the interactions and dependencies
between components earlier, thereby encouraging you to build cleaner,
more loosely coupled code.) Of course, the TestNG framework is used to
illustrate these techniques, but even if you are not a TestNG user (and not
interested in becoming one), the practical techniques presented here will
help you to be a better tester and, in turn, a better engineer.

Brian Goetz
Senior Staff Engineer, Sun Microsystems

Beust.book Page xiv Monday, September 17, 2007 12:36 PM

