
139

4

Software Engineering
for Ajax

Perhaps the greatest advantage of using the Google Web Toolkit to build
Ajax applications is having the capability to leverage advanced software
engineering. JavaScript was never meant to be used to build large applica-
tions. It lacks language features that assist in code organization and compile-
time type checking. It also lacks mature tools for building large applications,
such as automation, integrated development environments, debugging,
and testing. This chapter looks at how to use the Java software engineering
tools in GWT to build nontrivial high-quality Ajax applications.

Setting Up the Development Environment

To build applications with GWT, you need the Java Development Kit (JDK)
1.4 or greater. Many other Java tools can also assist with your develop-
ment, such as an IDE like Eclipse or a build tool like Ant. All of these tools
bring a lot of value to the process of building Ajax applications. It is impor-
tant to note that users don’t need any of these tools to use your applica-
tion. They do not even need to have Java installed on their computer; they
only need a reasonably modern web browser like Firefox, Internet
Explorer, Safari, or Opera. The GWT compiler compiles your application
so it conforms to web-standard technology.

Dewsbury.book  Page 139  Wednesday, October 31, 2007  11:03 AM



140 Chapter 4 Software Engineering for Ajax

Installing the Java Development Kit

The JDK, a package provided by Sun Microsystems, includes the Java
Runtime Environment (JRE), which is required to run Java programs on
your computer, and command line developer tools which let you compile
Java classes to create code that can run. The JDK is on Sun’s web site at
http://java.sun.com/javase/downloads.

You can choose from several options to download, but the minimum you
need is the JDK without anything else bundled. Some options come with
NetBeans or Java EE, but these are not required. There is also a download
option for JRE, but this does not include the developer tools that you need.

Once you download the JDK (approximately 50MB), you need to install it.
On Windows, the download is an executable file that runs the installation.
Install the JDK with all the default options.

Installing the Google Web Toolkit

The GWT complements the JDK by adding the ability to compile your Java
code to JavaScript so that it can run in a web browser without the Java
Runtime Environment. Think of the GWT as another compiler to run Java on
a new platform—your web browser. It also provides a hosted mode
browser that lets you take advantage of Java’s powerful debugging features,
just like you would debug a normal Java application. JavaScript debugging
tools are primitive compared to what Java and GWT allow you to do. You can
find the Google Web Toolkit SDK at http://code.google.com/webtoolkit/
download.html.

On Windows, the GWT zip file is approximately 13MB. After you download
it, extract the file to your preferred installation directory. On Mac and
Linux you can extract the download using this tar command:

tar xvzf gwt-mac-1.3.3.tar.gz

Let’s look inside the distribution. The following list gives you a brief over-
view of the important files that come with GWT.

Dewsbury.book  Page 140  Wednesday, October 31, 2007  11:03 AM



Setting Up the Development Environment 141

• gwt-user.jar

This is the GWT library. It contains the Java classes that you use to
build your application with GWT. Your application uses this file when
you run it in hosted mode, but this file is not used when your applica-
tion is deployed, since your application code and the code used in this
file are translated to JavaScript.

• gwt-servlet.jar

This stripped down version of gwt-user.jar has the classes required for
the server side of your application. It is much smaller than gwt-user.jar
and better for deployment since it does not contain the GWT classes
that are required for hosted mode.

• applicationCreator

This script produces the files required to start a GWT application. The
generated files produce a runnable bare-bones GWT application.

• projectCreator

This script generates project files for an Eclipse GWT project.

• junitCreator

This script generates a starter test case along with scripts that start the
tests in web mode and hosted mode.

• i18nCreator

This script generates an interface based on a properties file for inter-
nationalizing an application.

With only the JDK and GWT installed, you can write, run, and compile
web-based applications. 

For convenience, you should put the GWT installation directory on your
path so that you can call the GWT scripts without specifying the full instal-
lation path each time. For example, if you installed GWT to c:\code\gwt
(this is a Windows path; for Mac and Linux you would similarly use your
install path), you would add this to your PATH variable. Then at a com-
mand line you can run the applicationCreator script inside your
application directory without specifying the script’s full path, as shown in
Figure 4-1.

Dewsbury.book  Page 141  Wednesday, October 31, 2007  11:03 AM



142 Chapter 4 Software Engineering for Ajax

Running this script creates the application named HelloWorld in the cur-
rent directory. It also generates scripts that let you run the application. You
can run this application by just typing the following line:

HelloWorld-shell

Running this generated script causes GWT to load its hosted browser,
which in turn loads the generated application. The hosted browser dis-
plays the default generated application, as illustrated in Figure 4-2.

You can also compile the application so that it can be used in a standard
browser using the generated HelloWorld-compile script, as seen in Figure 4-3.

The compile script builds the HTML and JavaScript files, which you need
to deploy the application, and copies them to the www directory in your
application directory, as shown in Figure 4-4.

The generated application can be run in any browser by simply loading
the host file. In this HelloWorld application, the host file is named Hel-
loWorld.html. Loading this file in Firefox, as shown in Figure 4-5, results in
the same application as in GWT’s hosted browser in Figure 4-2, with the
major difference being the lack of any Java dependency.

So you can see that the minimum environment for building web applica-
tions with GWT is small, only requiring GWT and the JDK to be installed.
However, you’ll be able to speed up the development process by using

Figure 4–1. Running the applicationCreator script for a GWT project 

Dewsbury.book  Page 142  Wednesday, October 31, 2007  11:03 AM



Setting Up the Development Environment 143

Figure 4–2. Running the default generated project in hosted mode

Figure 4–3. Compiling the project from the command line

Figure 4–4. The files generated from compiling a GWT project

Dewsbury.book  Page 143  Wednesday, October 31, 2007  11:03 AM



144 Chapter 4 Software Engineering for Ajax

many of the available Java tools. For example, an IDE like Eclipse is usually
used to speed up Java development. 

Installing Eclipse

Eclipse is an open source IDE developed in Java and supported by major
technology companies including IBM. An IDE allows you to write, orga-
nize, test, and debug software in an efficient way. There are many IDEs for
Java, and you can use any of them for GWT development. If you do not
have a Java IDE installed, I suggest using Eclipse since it works very well
and has support with the GWT scripts to help integration. 

Eclipse lets you write, organize, test, and debug your GWT Ajax applica-
tions in a productive way. It has great support for the Java language,
including refactoring and content assist.1 You can develop using many
languages through plugins with Eclipse by taking advantage of Eclipse’s
rich plugin framework, but the most widely used language is Java. You can
find the Eclipse download at www.eclipse.org/downloads.

Figure 4–5. The default project compiled and running in Firefox

1. Content assist is an Eclipse feature that suggests or completes what you are cur-
rently typing. It automatically appears, and you can activate it when needed by
pressing Ctrl+Spacebar.

Dewsbury.book  Page 144  Wednesday, October 31, 2007  11:03 AM



Adding Projects to Eclipse 145

Select the Eclipse SDK from this page. After you download the file (approx-
imately 120MB), extract the file to your preferred installation directory. On
Windows, the default location for the file eclipse.exe is in the root of the
installation directory; you may want to create a shortcut to the file since
you will be using it frequently to edit and debug your code.

Adding Projects to Eclipse

When you first load Eclipse, you are prompted by the dialog box shown in
Figure 4-6 for the workspace location. This is the location on your com-
puter that will hold your projects. 

Figure 4-6 shows setting the workspace to C:\Projects and selecting the
check box to save this as the default workspace, so the next time Eclipse
opens this workspace is automatically loaded. Since this is a new work-
space, when the main Eclipse window loads it will not have any projects
listed in its Package Explorer. At this point we could start building a project
manually in Eclipse for the HelloWorld application built earlier in this
chapter, but GWT gives us a shortcut with the projectCreator script
shown in Figure 4-7.

This creates an empty project that references GWT and can be easily
loaded into Eclipse. To load the GWT project into Eclipse, choose File >
Import to display the Import dialog box, shown in Figure 4-8.

Figure 4–6. Loading a workspace in Eclipse

Dewsbury.book  Page 145  Wednesday, October 31, 2007  11:03 AM



146 Chapter 4 Software Engineering for Ajax

In the Import dialog, select Exiting Projects into Workspace and then click
Next. The next page of the Import dialog, shown in Figure 4-9, lets you
select the projects you want to import.

In this dialog you first need to select the location of your project files. The
dialog then presents the list of possible projects that you can import.
Figure 4-9 shows the GwtApps project that we created with the GWT
projectCreator script. Make sure this project is checked and then click
Finish.

Figure 4–7. Creating a project with the projectCreator script and the -eclipse
flag

Figure 4–8. Step 1 of importing a generated GWT project into Eclipse 

Dewsbury.book  Page 146  Wednesday, October 31, 2007  11:03 AM



Adding Projects to Eclipse 147

At this point Eclipse loads the project into the Eclipse workspace, and the
HelloWorld application is listed under Package Explorer, as shown in Figure
4-10, since it was generated in the Projects directory.

You can add other applications to this project using the application
Creator script, but since we’re in Eclipse now we can take advantage of
the -eclipse option with the script. When the HelloWorld application was
run this option was not specified, so we do not have any Eclipse-specific
files that allow you to launch the application from Eclipse. So let’s run the
applicationCreator script again, this time specifying the -eclipse
option, as shown in Figure 4-11.

If you’re creating a new application for use in Eclipse, you do not need the
-overwrite option. This example used this option to overwrite the previ-
ously generated application, which did not have Eclipse support. Notice in
Figure 4-11 that the new file HelloWorld.launch was created. This launch

Figure 4–9. Step 2 of importing a generated GWT project into Eclipse

Dewsbury.book  Page 147  Wednesday, October 31, 2007  11:03 AM



148 Chapter 4 Software Engineering for Ajax

file allows you to select the Debug or Run command options for the Hel-
loWorld application inside Eclipse. To see this change in Eclipse, refresh
your project (right-click on the project and select Refresh), and then run
the HelloWorld application in Debug mode by clicking on the Debug icon
(see the bug icon on the toolbar in Figure 4-12). If your application isn’t
listed in the debug drop-down box, which shows a list of recently
debugged configurations, you’ll need to click Debug… in the drop-down
menu to load the Debug dialog. You’ll find the launch configuration for
the HelloWorld application under Java Application.

The application will load in GWT’s hosted mode browser, and you can
interact with it while still being connected to the Eclipse IDE. This means

Figure 4–10. The generated GWT project in the Eclipse IDE

Figure 4–11. Creating an application for use in Eclipse

Dewsbury.book  Page 148  Wednesday, October 31, 2007  11:03 AM



Writing Java Code in Eclipse 149

you can set breakpoints, change code, and perform other Eclipse func-
tions while your application is running. The ability to do this shortens the
code-test cycle dramatically and its ease promotes heavy testing. 

Attaching GWT development to Eclipse, or any other Java IDE, is a giant
step forward for Ajax application development. Let’s look at some of the
details of writing code with Eclipse.

Writing Java Code in Eclipse

Eclipse has many tools for writing Java code that provide hints and con-
straints on what is possible, shortcuts for common tasks, and refactoring
functions for large code changes. Of course, you don’t have to use these
tools to produce Ajax applications with GWT, but they make writing Java
code a lot easier.

Creating Classes in Eclipse

First, let’s look at Eclipse’s tools for creating classes. Eclipse lets you create
new classes or interfaces by clicking on the New Class icon on the top tool-
bar (shown in Figure 4-13). After clicking on the New Class icon, a drop-
down menu presents a list of options. For a new class you need to click
Class in the drop-down menu.

Clicking this icon displays a New Java Class dialog box that prompts you
for the information required to create a class. This method is faster than
writing a Java class file from scratch and it ensures that everything

Figure 4–12. Running a GWT application in the Eclipse debugger

Dewsbury.book  Page 149  Wednesday, October 31, 2007  11:03 AM



150 Chapter 4 Software Engineering for Ajax

required to be in the file will be there and will be correct. Notice in Figure
4-13 that the com.gwtapps.examples.client package is listed. This is
where the new class will go. When the New Java Class dialog appears, it
displays this package as the default package.

Figure 4–13. Creating a new class

Figure 4–14. The New Java Class dialog in Eclipse

Dewsbury.book  Page 150  Wednesday, October 31, 2007  11:03 AM



Writing Java Code in Eclipse 151

In this dialog, the name HelloWorldView is specified as the class name
for the new class. The superclass is set to Composite. Clicking Finish cre-
ates the file and a usable Java class inside, as shown in Figure 4-15.

Actually, the new Java class isn’t quite usable yet. We’ve specified a super-
class that doesn’t exist. Notice how Eclipse has unobtrusive indicators that
let you know something is wrong. The Package Explorer has an X in a red
square on the new Java file and on every parent node in the tree up to the
project. If we had the project node closed, we would still know that there is
an error somewhere in the project. Eclipse also displays a problems list at
the bottom that shows a list of errors and warnings in the workspace. It
also has the new problems listed. Double-clicking on any of the errors in
this list brings you directly to the location of the error in an Eclipse Editor
window. In this case there are two errors and the Editor window for the
new Java class file is open. Inside the Editor window you can see a further
indication of errors. On the right side of the Editor window red marks rep-
resent the location of the error within the file. 

The file representation for this vertical space is the same scale as the verti-
cal scroll bar. So if this was a bigger file and there were errors, you could

Figure 4–15. The new Java class in the Eclipse IDE

Dewsbury.book  Page 151  Wednesday, October 31, 2007  11:03 AM



152 Chapter 4 Software Engineering for Ajax

quickly locate them by moving the scrollbar to the location of one of the
red marks to see the error in the Editor window. Inside the Editor window,
error icons display on the left side and the actual code producing the error
has a jagged red underline. Furthermore, when you hover the mouse over
the code with the error, a tooltip displays an error message, in this case
“The import Composite cannot be resolved.” The problem is that we
selected just the simple class name as the superclass in the New Java Class
dialog, but Eclipse requires the full class name. Often it’s hard to remem-
ber the full class name for a class, but Eclipse helps us here as well. We can
have Eclipse automatically suggest the full class name by clicking on the
error and selecting the Source > Add Import command, as shown in Fig-
ure 4-16. 

Alternatively, you could use the keyboard shortcut Ctrl+Shift+M to run the
Add Import command. Eclipse automatically adds the required import
information. In situations where there is more than one matching import,
Eclipse presents you with a choice, as shown in Figure 4-17.

Figure 4–16. Automatically adding a Java import

Dewsbury.book  Page 152  Wednesday, October 31, 2007  11:03 AM



Writing Java Code in Eclipse 153

Choosing the GWT Composite class as the import fixes the errors and all of
the error indications go away. Eclipse provides this type of early warning of
errors for any compile-time errors instantly, instead of having to wait until
you compile to get this feedback, as is typical with typed languages.
Eclipse updates the IDE with this information as you develop, so you can
catch errors immediately after they are created.

Using the Eclipse Java Editor

Now let’s look at some of the unique features of the Eclipse Java editor.
We’ll start by adding some code to the constructor of the HelloWorld
View class. We can save some typing and generate the constructor by
choosing Source > Generate Constructors from Superclass…, as shown in
Figure 4-18. Eclipse can also automatically suggest items from the Refac-
tor menu if you press Ctrl+L when the cursor is on a section of code. For
example, if you implement an interface on a class but have not yet written
the methods that must be implemented, you can press Ctrl+L for the sug-
gestions and Eclipse presents a command to automatically implement the
required methods.

Syntax may be all the compiler needs to understand code, but adding code
syntax coloring in the editor makes it much easier for us to read the Java

Figure 4–17. Eclipse presents a list of matching import packages

Dewsbury.book  Page 153  Wednesday, October 31, 2007  11:03 AM



154 Chapter 4 Software Engineering for Ajax

code, as illustrated in Figure 4-19. The default syntax coloring in Eclipse
uses a bold purple font for Java keywords like class, super, extends, and
public, a green font for all comments, a blue font for fields, and a blue
italic font for static fields.

Now let’s create a HorizontalPanel in the constructor and add a couple
widgets to it. As you type, Eclipse watches for errors. After you type the
word HorizontalPanel it will appear as an error, because the class has
not been imported. Use the same technique as before to import it
(Ctrl+Shift+M or Source > Add Import). When you start typing to call a
method on the panel, Eclipse’s content assist feature displays a list of
method suggestions, as shown in Figure 4-20.

Figure 4–18. Automatically creating a class constructor

Figure 4–19. An automatically generated constructor

Dewsbury.book  Page 154  Wednesday, October 31, 2007  11:03 AM



Writing Java Code in Eclipse 155

Eclipse automatically shows the suggestions, or you can force them to dis-
play by pressing Ctrl+Spacebar. In this case we want the add method, but
we can also get an idea of the other methods available. In a way, content
assist not only helps speed up typing and locating method names, but it
also acts as an educational tool for the class you’re using. Instead of leafing
through documentation, you can pick up quite a bit of information about
a library through this feature.

Another way to educate yourself about a class you’re using is to use the
editor’s Ctrl+Click feature, shown in Figure 4-21. Using Ctrl+Click on a vari-
able, class, or method in the editor takes you to its source in the Eclipse
editor. For example, if you click on a variable name, the editor takes you to
the variable declaration. If you click on a class name, it takes you to the class’
Java file, and if you click on a method, it takes you to the method declara-
tion. This allows you to browse your source code with the same conve-
nience and efficiency as browsing the web. This even works with classes in
the GWT library, since the GWT jar file contains the Java source code.

When you can’t find what you’re looking for while browsing your code,
Eclipse provides rich support for searching. First of all, there is a simple
single file Find/Replace command which you can access from the Edit
menu or by pressing Ctrl+F. This is a standard find and replace feature that
you find in most editors. On top of this single file find, Eclipse provides a
rich multifile search feature that you can access from the Search menu or
by pressing Ctrl+H. Figure 4-22 shows the Search dialog.

Figure 4–20. Content assist in Eclipse

Dewsbury.book  Page 155  Wednesday, October 31, 2007  11:03 AM



156 Chapter 4 Software Engineering for Ajax

The first tab in the Search dialog, File Search, lets you search for any string
within any files in your workspace. The second tab, Java Search, provides a
more restrictive search since it has an understanding of the Java language.
In this tab you can search for specific instances of a certain string. For
example, the dialog in Figure 4-22 shows searching for toString when it’s
being called as a reference. This search would ignore any other occurrence
of toString, such as toString declarations or any comments.

The file search also allows you to replace matching values across files. This
is helpful for refactoring code. For example, you could replace all occur-
rences of HelloWorld in our project files with MyFirstApp.

Eclipse provides refactoring support beyond multiple file search and
replace. For example, you can change the name of the HelloWorld class

Figure 4–21. Using Ctrl+Click to browse source code

Figure 4–22. Searching in Eclipse

Dewsbury.book  Page 156  Wednesday, October 31, 2007  11:03 AM



Writing Java Code in Eclipse 157

to MyFirstApp with the Refactor > Rename command, as shown in Fig-
ure 4-23.

When you make changes through the Refactor menu, Eclipse ensures that
references using the original value are also changed. This method is less
error prone than doing a search and replace. Eclipse has many more time-
saving refactoring commands, and you can easily find them by checking
the Refactor context menu for any item, including highlighted code.

Eclipse also has many more features that can help you write your code.
Even though they may not seem like dramatic productivity features, as you
start using more of them you’ll find yourself writing code faster and with
fewer frustrations. Writing code is only one piece of the application devel-
opment puzzle that Eclipse enhances. The next piece we’ll look at is its
debugging support.

Figure 4–23. Renaming a class

Dewsbury.book  Page 157  Wednesday, October 31, 2007  11:03 AM



158 Chapter 4 Software Engineering for Ajax

Debugging in Eclipse

Eclipse provides a nice environment for debugging a running Java appli-
cation. When you run a GWT application in hosted mode, Eclipse runs it
as a Java application and you can debug it within Eclipse. This ability to
debug a browser-based web application is a huge advancement for the
Ajax development process.

Earlier in this chapter you saw that an Eclipse launch configuration can be
automatically created by the GWT applicationCreator script by using
the –eclipse option when creating the application. You can launch the
application in hosted mode from Eclipse using either the Run or Debug
command. When launched, the application runs in the hosted mode
browser. In Debug mode, the hosted mode browser is connected to
Eclipse and can use Eclipse’s debugging commands.

First, let’s look at breakpoints. Breakpoints allow you to set a location
within your code where, when reached, the application running would
break and pass control to the debugger. This lets you inspect variables or
have the application step through the code line by line to analyze the pro-
gram flow. To see how this works, add a breakpoint to the HelloWorld
application on the first line of the button’s ClickListener.onClick
method by right-clicking on the left margin of that line in the editor and
selecting Toggle Breakpoint, as shown in Figure 4-24.

You’ll see the breakpoint added represented by a blue circle in the margin.
Alternatively, you can double-click the same spot in the margin to toggle
the breakpoint. Now when you debug the application, Eclipse will break
into the debugger when it reaches the breakpoint. In this case it will hap-
pen when you click on the button. Start the debugger by opening the
Debug menu from the Bug icon on the toolbar and selecting HelloWorld,
as shown in Figure 4-25.

When the HelloWorld application opens in the hosted mode browser, click
on its Click Me button to see Eclipse display the debugger. You should see
Eclipse in the Debug perspective, as shown in Figure 4-26.

This is the view you should become familiar with if you are going to be
building an Ajax application of any decent size. It provides you with a
working view of exactly what is going on in your application. If your appli-

Dewsbury.book  Page 158  Wednesday, October 31, 2007  11:03 AM



Debugging in Eclipse 159

cation exhibits strange behavior, you can set a breakpoint to see exactly
what is happening. If you are a JavaScript developer, this type of debug-
ging tool may be new to you and seem somewhat complex. However, it is
definitely worth the effort to learn how to use it properly, since it will save
you a lot of time when finding bugs. Instead of printing out and analyzing
logs, you can set a breakpoint and step through the program one line at a
time, while checking variable values, to determine what the bug is.

Let’s briefly look at some of the tools in the Debug perspective. First of all,
there are the controls that sit above the stack. The Resume and Terminate
buttons are the green triangle and red square, respectively. Resume lets
the program continue running. In Figure 4-26 it is stopped on the break-
point. The Terminate button ends the debug session. You typically end
your program by closing the hosted mode browser windows; however,

Figure 4–24. Setting breakpoints

Figure 4–25. Starting the debugger

Dewsbury.book  Page 159  Wednesday, October 31, 2007  11:03 AM



160 Chapter 4 Software Engineering for Ajax

when you are in a breakpoint, the application has stopped and you cannot
access the interface of the hosted mode browser. The only way to end the
program in this case is to use the Terminate button. The yellow arrows
next to the Resume and Terminate buttons are used for stepping through
the application. Taking a step when the application has stopped on a break-
point executes one step. This allows you to see how one step of code affects
any variables. It also lets you inch your way through the program and at a
slow pace see how it flows. The first step button, Step Into, takes a step by
calling the next method on the current line. Typically this will take you to
another method and add a line to the stack. You would use this button
when you want to follow the program flow into a method. To avoid stepping
into another method, use the next step button, Step Over, which executes
the current line, calls any methods, and stops on the next line in the cur-
rent method. The third yellow arrow button, Step Return, executes the rest
of the current method and returns to the calling method, where it stops.

Figure 4–26. The debugging perspective in Eclipse

Variable browser

Debug controls

Current line

Application stack

Dewsbury.book  Page 160  Wednesday, October 31, 2007  11:03 AM



Debugging in Eclipse 161

Underneath the debug controls is the calling stack.2 This is actually a tree
that lists threads in the Java application with their stacks as children. The
stacks are only visible if the thread is stopped on a breakpoint. Ajax appli-
cations are single threaded, so we only need to worry about the one thread
and its stack. When we hit the breakpoint in the onClick method, the sin-
gle JavaScript thread displays its method call stack with the current
method highlighted. You will find the stack particularly helpful to see
when and how a method is called. You can click on other methods in the
stack to look at their code in the editor. When you browse the stack like
this, the Debug perspective adjusts to the currently selected line on the
stack. For example, the editor will show the line in the selected method
where the child method was called. It will also adjust the Variables view to
show the variables relevant to the currently selected method.

The Variables view lists local and used variables in the current method.
The list is a columned tree that lets you browse each variable’s contents,
and if it is an object, displays its value in the second column. An area on
the bottom of the view displays text for the currently selected variable
using its toString method.

Sometimes stepping through an application with breakpoints isn’t enough
to find and fix problems. For example, an exception may occur at an
unknown time, and placing a breakpoint would cause the debugger to
break perhaps thousands of times before you encountered the exception.
This is obviously not ideal. Fortunately, Eclipse provides a way to break
into the debugger when a specific exception occurs. To add an exception
breakpoint you simply need to choose Run > Add Java Exception Break-
point. This displays the dialog shown in Figure 4-27. 

In this dialog you select the exception you’d like to break on. The list is a
dynamically updating list filtered by the text entered. Figure 4-27 shows
breaking on Java’s ArrayIndexOutOfBoundsException. After clicking
on OK, you can see that the breakpoint was added by looking at the Break-
points view in the Debug perspective shown in Figure 4-28.

2. A calling stack is a list of methods calls in an application, where each item on the
stack is a method preceded by its calling method. So, for example, when a method
completes, control returns to the calling method on the top of the stack.

Dewsbury.book  Page 161  Wednesday, October 31, 2007  11:03 AM



162 Chapter 4 Software Engineering for Ajax

To test this, let’s write some code that will cause an index to be out of bounds:

public void onModuleLoad() {

   int[] ints = new int[1000];

   for( int i = 0; i<=1000; i++ ){

      ints[i] = i;

   }

Now when running the application in Debug mode, Eclipse breaks when
this code tries to write to the 1,001st int in the array (if you bump into
another out-of-bounds exception when trying this, press the Resume but-
ton). Figure 4-29 shows the Debug perspective stopping on the exception
breakpoint.

Figure 4–27. Adding an exception breakpoint

Figure 4–28. The list of breakpoints in Eclipse

Dewsbury.book  Page 162  Wednesday, October 31, 2007  11:03 AM



Debugging in Eclipse 163

Notice that the current line is the line where the out of bounds exception
occurs. The value of i can be seen in the variables window as 1000 (arrays
start at 0, so index 1,000 is the 1,001st item and over the bounds which was
set at 1,000 items). The benefit of this type of breakpoint is that we did not
need to step through 1,000 iterations of the loop to see where the problem
is. Of course this is a trivial example, but you can apply this technique to
more complex examples that exhibit similar behavior.

Now that we know we have a bug in our HelloWorld code, we can use
another great feature of Eclipse that allows us to update the code live and
resume the application without restarting. With the application stopped at
the exception breakpoint, let’s fix the code so that it looks like Figure 4-30.

We’ve set the comparison operation to less than instead of less than or
equals, and removed the 1,000 value to use the length property of the
array. Save the file, resume the application, and then click the Refresh but-
ton on the hosted mode browser. You’ll see that the application runs the

Figure 4–29. Breaking into the debugger on an exception

Dewsbury.book  Page 163  Wednesday, October 31, 2007  11:03 AM



164 Chapter 4 Software Engineering for Ajax

new fixed code and does not encounter the exception. This technique
saves quite a bit of time which would otherwise be spent restarting the
hosted mode browser. Also, reducing breaks in your workflow helps keep
your mind on the task at hand.

Organizing Your Application Structure

When you generate an application using GWT’s applicationCreator
script, the script creates files and directories that follow a recommended
structure. Each application that you create shares your Projects directory.
Figure 4-31 shows how the directory looks for the HelloWorld generated
application. Figure 4-32 shows the directory result after running the
applicationCreator again and adding the new application, HelloWorld2,
to the same Eclipse project used for HelloWorld. Notice that new scripts
were created for the HelloWorld2 application. The applicationCreator
script creates the application source files in the src directory, and shares
this directory with the first HelloWorld application, as shown in Figure 4-33.   

The source code is organized in standard Java package structure. Since we
created the application as com.gwt.examples.HelloWorld2, the script gen-
erates the source files in the src/com/gwt/examples directory. This
directory structure technique is a nice way of organizing Java modules and
applications. It allows you to add packages and give them a unique loca-
tion in the source tree, avoiding overwriting other classes that may be in a
different package but have the same name. It also gives you a unique way
to refer to a class from Java code. 

Figure 4–30. Fixing the code while debugging

Changed  <=1000  to  < ints.length

Dewsbury.book  Page 164  Wednesday, October 31, 2007  11:03 AM



Organizing Your Application Structure 165

Each generated GWT application has a module file and other source files
in the client subdirectory and public subdirectory. Figure 4-33 shows the
module file for HelloWorld2, HelloWorld2.gwt.xml. This file specifies the
application’s configuration options for the GWT compiler. The generated
module file looks like this:

<module>

   <!-- Inherit the core Web Toolkit stuff.                  -->

   <inherits name='com.google.gwt.user.User'/>

Figure 4–31. Directory structure for the HelloWorld application

Figure 4–32. Directory structure after adding a new application

Figure 4–33. Two applications sharing the same source directory

Dewsbury.book  Page 165  Wednesday, October 31, 2007  11:03 AM



166 Chapter 4 Software Engineering for Ajax

   <!-- Specify the app entry point class.                   -->

   <entry-point class='com.gwtapps.examples.client.HelloWorld2'/>

</module>

This is the minimum specification that the application needs to run. The
GWT compiler needs to know the class that acts as the entry point to
the application, specified with the entry-point tag, and it needs to use the
com.google.gwt.user.User module for its user interface. When you
need to use other modules in your application you specify their location
here. The module file has many more configuration options, all of which
are outlined on the GWT web site at http://code.google.com/webtoolkit.

Now let’s look inside the public folder shown in Figure 4-34. For each gen-
erated application, the script creates a new HTML host file in the public
directory. The GWT compiler considers files placed in the public directory
to be part of the distribution. In other words, when you compile your
application, GWT will copy all of the files in this directory to the www out-
put directory. For example, we could move the CSS from inside the HTML
host file to a separate CSS file and place it in this directory. Other common
files you might place in this directory are images that are used in the appli-
cation’s user interface.

The generated Java source file for the applications is found in the client
directory, as shown in Figure 4-35. When the GWT compiler compiles the
Java source to JavaScript, it compiles the Java files in this directory. Any
files outside of this directory will not be compiled to JavaScript, and if you
use them you will get an exception when compiling or running in hosted
mode. However, using the inherits tag in your module file tells the GWT
compiler to use another module.

Figure 4–34. The public folder holding the static application files

Figure 4–35. The client directory holding the files that will be compiled to JavaScript

Dewsbury.book  Page 166  Wednesday, October 31, 2007  11:03 AM



Organizing Your Application Structure 167

The GWT compile automatically includes subdirectories and packages in
the client directory without inheriting a module. This is useful for organiz-
ing subcategories of code within your application. For example, many of
the sample applications in this book use a model-view-controller (MVC)
architecture and keep the model and view in subpackages. Figure 4-36
shows this type of organization for Chapter 7’s Multi-Search sample appli-
cation. You can use this to organize your client-side code into categories
other than model and view.

There may be situations where you’ll have application code that shouldn’t
be compiled to JavaScript and shouldn’t be in the client directory; for
example, when writing server-side code in Java, perhaps using a GWT RPC
servlet. The common place to put this server-side code is in a server direc-
tory. For example, the Instant Messenger application in Chapter 9 places
the servlet class in the server subdirectory, as shown in Figure 4-37. Since
this is outside of the client directory, the GWT compile ignores the code
when compiling the client. Typically the GWT compiler will not be able to
compile server-side code since it usually uses packages that aren’t emu-
lated by GWT and would not be useful in a browser.

The reverse is possible, however. The server classes can use classes in the
client directory as long as they don’t rely on browser features. The Instant
Messenger application does this to share the Java classes that are used to
transmit data over RPC between the client and the server.

Figure 4–36. MVC organization inside the client directory

Figure 4–37. Server-side code is placed outside the client directory

Dewsbury.book  Page 167  Wednesday, October 31, 2007  11:03 AM



168 Chapter 4 Software Engineering for Ajax

Finally, when you’re ready to deploy your application, you run the gener-
ated compile script. GWT copies all of the files used for distribution,
including the generated JavaScript files and all of the files in the public
directory, to the applications directory inside the www directory. The com-
piler names the application’s directory with the full module name, as
shown in Figure 4-38.

Testing Applications

Having the capability to build Ajax applications with Java gives you many
tools that let you maintain larger applications with less work. One very
important aspect of maintaining a large application is being able to easily
create unit tests for most, if not all, functionality. This need comes from a
common problem with software development: the code size grows to a
point where small changes can have cascading effects that create bugs.

It has become common practice to incorporate heavy testing into the
development cycle. In the traditional waterfall development cycle you
would write code to a specification until the specification was complete.
Then the application would be passed to testers who would look for bugs.
Developers would respond to bug reports by fixing the bugs. Once all the
bugs were fixed, the product would be shipped. Figure 4-39 illustrates the
steps in traditional software development testing.

The problem encountered with this type of development cycle is that dur-
ing the bug finding and fixing phase, code changes can easily cause more

Figure 4–38. The GWT writes the compiled and static files to the www directory

Dewsbury.book  Page 168  Wednesday, October 31, 2007  11:03 AM



Testing Applications 169

bugs. To fix this problem, testers would need to start testing right from the
beginning after every code change to ensure new bugs weren’t created and
old bugs didn’t reappear.

One successful testing methodology has developers write automated unit
tests before they write the features. The tests cover every use case of the
new feature to be added. The first time the test is run, it will fail for each
case. The development process then continues until each test case in the
unit test is successful. Then the unit test becomes part of a test suite for
the application and is run before committing any source code changes to
the source tree. If a new feature causes any part of the application to
break, other tests in the automated test suite will identify this problem,
since every feature of the application has had tests built. If a bug is found
at this point, it is relatively easy to pinpoint the source since only one new
feature was added. Finding and fixing bugs early in the development life-
cycle like this is much easier and quicker than finding and fixing them at
the end. The test suite grows with the application. The initial investment
in time to produce the unit tests pays off over the long run since they are
run again on every code change, ensuring each feature’s health. Figure 4-40
illustrates this process.

In practice, when comparing this approach to the one illustrated in Figure
4-39, there is a large time saving from finding bugs earlier and less of a
need for a large testing team since the developer is responsible for much
of the testing.

Figure 4–39. Old-style testing = bad

Figure 4–40. Test-first testing = good

Add feature

More features 

Find bugs/change code

More bugs 

No more bugs No more features 

Add feature test Add feature

More features 

No more features 

Run all tests
No more bugs 

Change code
More bugs 

Dewsbury.book  Page 169  Wednesday, October 31, 2007  11:03 AM



170 Chapter 4 Software Engineering for Ajax

This technique is relatively novel for client-side web applications. Testing
is reduced to usability testing and making sure that different browsers ren-
der pages properly with traditional web applications. This is one of the
great things about HTML. It’s a declarative language that leaves little room
for logical bugs. It’s easy to deploy HTML web pages that work (browser-
rendering quirks aside). However, using JavaScript introduces the possibil-
ity of logic bugs. This wasn’t too much of a problem when JavaScript was
being used lightly, but for Ajax applications heavily using JavaScript, logi-
cal bugs are somewhat of a problem. Since JavaScript is not typed and
does not have a compile step, many bugs can only be found by running
the application, which makes the creation of unit tests difficult. Further-
more, it is difficult to test an entire application through its interface. Many
simple bugs, such as trying to call an undefined function, cannot be
caught without running the program and trying to execute the code that
has the bug, but by using Java you could catch these bugs immediately in
the IDE or at compile time. From a testing perspective, it does not make
sense to build large Ajax applications with JavaScript.

Using JUnit

JUnit is another great Java tool that assists in creating an automated test-
ing for your application. It provides classes that assist in building and
organizing tests, such as assertions to test expected results, a test-case
base class that allows you to set up several tests, and a mechanism to join
tests together in a test suite. To create a test case for JUnit you would typically
extend the TestCase class, but since GWT applications require a special
environment, GWT provides a GWTTestCase class for you to extend.

Let’s walk through the creation of a test case for the Multi-Search applica-
tion in Chapter 7. The first step is to use the GWT junitCreator script to
generate a test case class and some scripts that can launch the test case.
The junitCreator script takes several arguments to run. Table 4-1 out-
lines each argument.

To run this script for the Multi-Search application we can use the following
command:

junitCreator -junit E:\code\eclipse\plugins\org.junit_3.8.1\junit.jar -module 

com.gwtapps.multisearch.MultiSearch -eclipse GWTApps 

com.gwtapps.multisearch.client.MultiSearchTest  

Dewsbury.book  Page 170  Wednesday, October 31, 2007  11:03 AM



171

Ta
b

le
 4

–1
j
u
n
i
t
C
r
e
a
t
o
r

 S
cr

ip
t 

A
rg

u
m

en
ts

A
rg

u
m

en
t

D
es

cr
ip

ti
o

n
Ex

am
p

le

j
u
n
i
t

Le
ts

 y
o

u
 d

ef
in

e 
th

e 
lo

ca
ti

o
n

 o
f t

h
e 

ju
n

it
 ja

r 
fil

e.
 Y

o
u

 c
an

 fi
n

d
 a

 c
o

p
y 

in
 t

h
e 

p
lu

g
in

 
d

ir
ec

to
ry

 o
f y

o
u

r E
cl

ip
se

 in
st

al
la

ti
o

n
.

-
j
u
n
i
t
 
E
:
\
c
o
d
e
\
e
c
l
i
p
s
e
\
p
l
u
g
i
n
s
\
o
r
g
.
j
u
n
i
t
_
3
.
8
.
1
\
j
u
n
i
t
.
j
a
r

m
o
d
u
l
e

Sp
ec

ifi
es

 t
h

e 
G

W
T 

m
o

d
u

le
 t

h
at

 y
o

u’
ll 

b
e 

te
st

in
g.

 It
 is

 re
q

u
ir

ed
 s

in
ce

 t
h

e 
en

vi
ro

n
-

m
en

t 
n

ee
d

s 
to

 ru
n

 t
h

is
 m

o
d

u
le

 fo
r y

o
u

r 
te

st
.

-
m
o
d
u
l
e
 
c
o
m
.
g
w
t
a
p
p
s
.
m
u
l
t
i
s
e
a
r
c
h
.
M
u
l
t
i
S
e
a
r
c
h

e
c
l
i
p
s
e

Sp
ec

ifi
es

 y
o

u
r E

cl
ip

se
 p

ro
je

ct
 n

am
e 

if 
yo

u
 

w
an

t 
to

 g
en

er
at

e 
Ec

lip
se

 la
u

n
ch

 c
o

n
fig

u
-

ra
ti

o
n

s.

-
e
c
l
i
p
s
e
 
G
W
T
A
p
p
s

Th
e 

la
st

 a
rg

u
m

en
t 

sh
o

u
ld

 b
e 

th
e 

cl
as

s 
n

am
e 

fo
r t

h
e 

te
st

 c
as

e.
 Y

o
u

 w
o

u
ld

 t
yp

i-
ca

lly
 u

se
 t

h
e 

sa
m

e 
p

ac
ka

g
e 

as
 t

h
e 

o
n

e 
b

ei
n

g
 te

st
ed

.

c
o
m
.
g
w
t
a
p
p
s
.
m
u
l
t
i
s
e
a
r
c
h
.
c
l
i
e
n
t
.
M
u
l
t
i
S
e
a
r
c
h
T
e
s
t

Dewsbury.book  Page 171  Wednesday, October 31, 2007  11:03 AM



172 Chapter 4 Software Engineering for Ajax

Figure 4-41 shows the output from this command. The script created two
scripts, two launch configurations for launching the test in web mode or
hosted mode, and one test case class that is stored in the test directory. In
Eclipse the test case class will look like Figure 4-42.

The generated test case has two methods. The first, getModuleName, is
required by GWT and must specify the module that is being tested. The
junitCreator script has set this value to the Multi-Search module
because it was specified with the module command line argument. The
second method, a test case, is implemented as a simple test that just
asserts that the value true is true. You can build as many test cases as you
like in this one class.

Figure 4–41. Using junitCreator to generate a test case

Figure 4–42. A generated test case in Eclipse

Dewsbury.book  Page 172  Wednesday, October 31, 2007  11:03 AM



Testing Applications 173

You can run the tests by running the scripts generated by junitCreator.
Alternatively, you can launch JUnit inside Eclipse for a visual representa-
tion of the results. Running inside Eclipse also lets you debug the JUnit test
case, which can greatly assist in finding bugs when a test case fails. Since
junitCreator created a launch configuration for Eclipse, we can simply
click the Run or Debug icons in the Eclipse toolbar and select the Multi
SearchTest launch configuration from the drop-down menu. After
launching this configuration, the JUnit view automatically displays in
Eclipse. When the test has completed, you will see the results in the JUnit
view, as shown in Figure 4-43. Notice the familiar check marks, which are
displayed in green in Eclipse, next to the test case indicating that the test
case was successful. 

Now let’s create a test case for each type of search engine that the applica-
tion uses. Adding the following code to the test class creates four new
tests:

protected MultiSearchView getView(){

   MultiSearchView view = new MultiSearchView( new MultiSearchViewListener(){

      public void onSearch( String query ){}

   });

   RootPanel.get().add( view );

   return view;

}

protected void doSearchTest( Searcher searcher ){

   searcher.query( "gwt" );

}

Figure 4–43. Running a JUnit test case from Eclipse

Dewsbury.book  Page 173  Wednesday, October 31, 2007  11:03 AM



174 Chapter 4 Software Engineering for Ajax

public void testYahoo() {

   doSearchTest( new YahooSearcher( view ) );

}

public void testFlickr() {

   doSearchTest( new FlickrSearcher( view ) );

}

public void testAmazon() {

   doSearchTest( new AmazonSearcher( view ) );

}

public void testGoogleBase() {

   doSearchTest( new GoogleBaseSearcher( view ) );

}

The first two methods, getView and doSearchTest, are helper methods for
each test in this test case. The getView method simply creates a view, the
MultiSearchView defined in the application, and adds it to the RootPanel
so that it is attached to the document. Then the doSearchTest method
sends a query to a Searcher class implementation. Each test case instanti-
ates a different Searcher implementation and sends it to the doSearchTest
method. When JUnit runs, each test case runs and submits a query to the
respective search engine. Figure 4-44 shows what the result looks like in
the Eclipse JUnit view.

If any search failed by an exception being thrown, then the stack trace for
the exception would display in the right pane of this view and a red X icon
would display over the test case.

The problem with this test case is that it doesn’t verify the results. JUnit
provides many assertion helper methods that compare actual results to

Figure 4–44. Running several tests in one test case

Dewsbury.book  Page 174  Wednesday, October 31, 2007  11:03 AM



Testing Applications 175

expected results. However, in this case our results are asynchronous; that
is, they don’t arrive until after the test case completes. GWT provides help
with this since much of Ajax development is asynchronous with the
delayTestFinish method.

To use this method we need to have a way of validating an asynchronous
request. When we have validated that an asynchronous request is com-
plete, then we call the finishTest method. In the case of the Multi-
Search test, we will validate when we receive one search result. To do this
we need to hook into the application to intercept the asynchronous event.
This requires a bit of knowledge about the application and may seem a lit-
tle obscure otherwise. We will create a mock object, which is an object
that pretends to be another object in the application, to simulate the
SearchResultsView class. By simulating this class we will be able to
extend it and override the method that receives search results. The class
can be declared as an inner class on the test case like this:

private class MockSearchResultsView extends SearchResultsView {

   public MockSearchResultsView( SearchEngine engine ){ 

      super(engine); 

   }

   

   public void clearResults(){}

   public void addSearchResult( SearchEngineResult result ){

      assertNotNull(result);

      finishTest();

   }

}

The class overrides the addSearchResult method, which one of the
Searcher classes calls when a search result has been received from the
server. Instead of adding the result to the view, this test case will use one of
JUnit’s assert methods, assertNotNull, to assert that the search engine
result object is not null. Then it calls the GWT’s finishTest method to
indicate that the asynchronous test is complete.

To run this test we need to change the doSearchTest method on the test
case to insert the mock view and tell JUnit to wait for an asynchronous
response:

protected void doSearchTest( Searcher searcher ){

   searcher.setView(

      new MockSearchResultsView(searcher.getView().getEngine()));

Dewsbury.book  Page 175  Wednesday, October 31, 2007  11:03 AM



176 Chapter 4 Software Engineering for Ajax

   searcher.query( "gwt" );

   delayTestFinish(5000);

}

In this code we set the view of the searcher to the mock view that we’ve
created, and then call the delayTestFinish method with a value of
5,000 milliseconds (5 seconds). If the test does not complete within 5 sec-
onds, it will fail. If the network connection is slow, you may want to con-
sider a longer value here to properly test for errors.

Running these tests at this point tests the application code in the proper
GWT environment and with asynchronous events occurring. You should
use these testing methods as you build your application so you have a
solid regression testing library.

Benchmarking

When using GWT to create Ajax applications, taking user experience into con-
sideration almost always comes first. Part of creating a good user experience
with an application is making it perform well. Fortunately, since GWT has
a compile step, each new GWT version can create faster code, an advantage
that you don’t have with regular JavaScript development. However, you
probably shouldn’t always rely on the GWT team to improve performance
and should aim at improving your code to perform better. Starting with
release 1.4, GWT includes a benchmarking subsystem that assists in making
smart performance-based decisions when developing Ajax applications.

The benchmark subsystem works with JUnit. You can benchmark code
through JUnit by using GWT’s Benchmark test case class instead of GWT-
TestCase. Using this class causes the benchmarking subsystem to kick in
and measure the length of each test. After the tests have completed, the
benchmark system writes the results to disk as an XML file. You can open
the XML file to read the results, but you can view them easier in the bench-
markViewer application that comes with GWT.

Let’s look at a simple example of benchmarking. We can create a bench-
mark test case by using the junitCreator script in the same way we
would for a regular test case:

junitCreator -junit E:\code\eclipse\plugins\org.junit_3.8.1\junit.jar -module 

com.gwtapps.desktop.Desktop -eclipse GWTApps com.gwtapps.desktop.client. 

CookieStorageTest

Dewsbury.book  Page 176  Wednesday, October 31, 2007  11:03 AM



Testing Applications 177

In this code we’re creating a test case for the cookie storage feature in
Chapter 6’s Gadget Desktop application. The application uses the Cookie
Storage class to easily save large cookies while taking into account
browser cookie limits. In this test we’re going to measure the cookie per-
formance. First, we extend the Benchmark class instead of GWTTestCase:

public class CookieStorageTest extends Benchmark {

   public String getModuleName() {

      return "com.gwtapps.desktop.Desktop";

   }

   public void testSimpleString(){

      try {

         CookieStorage storage = new CookieStorage();

         storage.setValue("test", "this is a test string");

         assertEquals( storage.getValue("test"), "this is a test string" );

         storage.save();

         storage.load();

         assertEquals( storage.getValue("test"), "this is a test string");

 

      } catch (StorageException e) { fail(); }

   }

}

You can run this benchmark from the Eclipse JUnit integration or the
launch configuration generated by the junitCreator script. The test
simply creates a cookie, saves it, loads it, and then verifies that it hasn’t
changed. The generated XML file will contain a measurement of the time
it took to run this method. At this point the benchmark is not very interest-
ing. We can add more complex benchmarking by testing with ranges. 

Using ranges in the benchmark subsystem gives you the capability to run
a single test case multiple times with different parameter values. Each run
will have its duration measured, which you can later compare in the
benchmark report. The following code adds a range to the cookie test to
test writing an increasing number of cookies:

public class CookieStorageTest extends Benchmark {

   final IntRange smallStringRange = 

      new IntRange(1, 64, Operator.MULTIPLY, 2);

   public String getModuleName() {

      return "com.gwtapps.desktop.Desktop";

   }

Dewsbury.book  Page 177  Wednesday, October 31, 2007  11:03 AM



178 Chapter 4 Software Engineering for Ajax

   /**

   * @gwt.benchmark.param cookies -limit = smallStringRange

   */

   public void testSimpleString( Integer cookies ){

      try {

         CookieStorage storage = new CookieStorage();

         for( int i=0; i< cookies.intValue(); i++){

            storage.setValue("test"+i, "this is a test string"+i);

            assertEquals( storage.getValue("test"+i), 

               "this is a test string"+i );

         }

         storage.save();

         storage.load();

         for( int i=0; i< cookies.intValue(); i++){

            assertEquals( storage.getValue("test"+i), 

               "this is a test string"+i );

         }

      } catch (StorageException e) { fail(); }

   }

   public void testSimpleString(){

   }

}

This code creates an IntRange. The parameters in the IntRange con-
structor create a range that starts at one and doubles until it reaches the
value 64 (1, 2, 4, 8, 16, 32, 64). GWT passes each value in the range into sep-
arate runs of the testSimpleString method. GWT knows to do this by
the annotation before the method, which identifies the parameter and the
range to apply.

Notice that there is also a version of the testSimpleString method
without any parameters. You need to provide a version of this method with
no arguments to run in JUnit since it does not support tests without
parameters. The benchmark subsystem is aware of this and is able to
choose the correct method.

After running this code we can launch the benchmarkViewer application
from the command line in the directory that the reports were generated in
(this defaults to the Projects directory):

benchmarkViewer

The benchmarkViewer application shows a list of reports that are in the
current directory. You can load a report by clicking on it in the list. Each

Dewsbury.book  Page 178  Wednesday, October 31, 2007  11:03 AM



Testing Applications 179

report contains the source code for each test along with the results as a
table and a graph. Figure 4-45 shows the result of the testSimpleString test.

The benchmark system also recognizes beginning and ending methods.
Using methods like these allows you to separate set up and take down code
for each test that you don’t want measured. For example, to define a setup
method for the testSimpleString test, you would write the following code:

   public void beginSimpleString( Integer cookies ){

      /* do some initialization */

   }

Figure 4–45. Benchmark results for the cookie test

Dewsbury.book  Page 179  Wednesday, October 31, 2007  11:03 AM



180 Chapter 4 Software Engineering for Ajax

Building and Sharing Modules

Each GWT module is not necessarily a full application, but it can be used
as a reusable library for other applications instead. The GWT module
structure, also used for applications, gives you the tools necessary to pack-
age your module and share it with other applications. In fact, GWT itself is
divided into several modules, as you’ve seen with the user interface, XML,
JSON, HTTP, and RPC modules, so you’ve already used the process of
importing other libraries.

Using Modules

GWT modules are distributed as jar files that you can include in your
application by adding them to your project’s classpath and inheriting their
project name in your application’s module file. This is the same process
that you use to include the GWT library classes in your application. In this
case GWT automatically adds the module jar file, gwt-user.jar, to your
project’s classpath when you generate the project using the GWT
createProject script. The createApplication script then generates
a module XML file for your application and automatically adds the
com.google.gwt.user.User module to it. When we generate the mod-
ule XML file for the Gadget Desktop application in Chapter 6, we get the
following XML:

<module>

   <inherits name='com.google.gwt.user.User'/>

   <entry-point class='com.gwtapps.desktop.client.Desktop'/>  

</module>

 This module file tells the GWT compiler how to compile the application to
JavaScript. The inherits element tells the compiler that we are using
classes from the name module, which will also need to be compiled to Jav-
aScript. We can continue to add modules from gwt-user.jar since the file is
are already on the classpath. For new modules in other jar files, we first
need to add the jar to the classpath. In Eclipse, you can do this by going to
the project’s Properties dialog and selecting the Libraries tab from Java
Build Path, as shown in Figure 4-46.

From here you can add and remove jar files. Notice that gwt-user.jar is
already in the list. For the Gadget Desktop application we add the gwt-
google-apis library to the project to use the Gears module from it. First,

Dewsbury.book  Page 180  Wednesday, October 31, 2007  11:03 AM



Building and Sharing Modules 181

we add the gwt-google-apis jar to this list, and then the application’s
module XML file inherits the Gears module like this:

<module>

   <inherits name='com.google.gwt.user.User'/>

   <inherits name='com.google.gwt.json.JSON'/>

   <inherits name='com.google.gwt.xml.XML'/>

   <inherits name='com.google.gwt.gears.Gears'/>

   <entry-point class='com.gwtapps.desktop.client.Desktop'/>  

</module>

Notice also that this project imports the JSON and XML modules which
are already in the gwt-user.jar file. If you miss this step—adding the
inherits tag to your application’s module file—you will get an error from
the GWT compiler that it can’t find the module that you’re using.

Creating a Reusable Module

If you’ve built a GWT application, you’ve already built a reusable module.
The only difference is that your application has specified an entry point
and can be turned into a GWT application loaded on its own in the GWT

Figure 4–46. Editing the build path in Eclipse

Dewsbury.book  Page 181  Wednesday, October 31, 2007  11:03 AM



182 Chapter 4 Software Engineering for Ajax

hosted mode browser or web browser. You could reference the applica-
tion’s module file from another application to reuse its components. 

 You create a module the same way you create an application, using GWT’s
applicationCreator script. You may want to use the ant flag with this
script to build an ant file that will automatically package your module in a
jar file for distribution. 

The module structure of GWT is hierarchical using inheritance. For exam-
ple, if you write a module that inherits GWT’s User module, then any mod-
ule or application that uses your module also automatically inherits
GWT’s User module. This is an important feature, since it allows the users
of your module to automatically get all the requirements to run. GWT
takes this concept further and lets you also inject resources into modules
to ensure CSS or other JavaScript libraries are automatically included.

For example, if you were creating a module of widgets that required
default CSS to be included, you could reference this in the module XML
like this:

<module>

   <inherits name='com.google.gwt.user.User'/>

   <stylesheet src="widgets.css"/> 

</module>

The widgets file would need to be included in your module’s public files,
and when other modules inherit your module they would automatically
get the widgets.css file without directly including it.

You can similarly include JavaScript in your module using the script tag
like this:

<module>

   <inherits name='com.google.gwt.user.User'/>

   <!-- Include google maps -->

   <script src="http://maps.google.com/

maps?file=api&amp;v=2&amp;key=ABQIAAAACeDba0As0X6mwbIbUYWv-RTb-

vLQlFZmc2N8bgWI8YDPp5FEVBQUnvmfInJbOoyS2v-qkssc36Z5MA"></script>

</module>

This tag is similar to the script tag that you would use in your HTML file
to include a JavaScript library, except that this file would be automatically
included with every module that includes this module. 

Dewsbury.book  Page 182  Wednesday, October 31, 2007  11:03 AM



Deploying Applications 183

As of GWT 1.4 you can use image bundles to include resources with your
reusable modules. Image bundles allow you to package several images
together into a single image for deployment. If you use an image bundle
within your module, applications that use your module will automatically
generate the single image. In Chapter 6, images bundles are used to build
the Gadget toolbar in the Gadget Desktop application.

Sharing a Compiled Application (Mashups)

Sometimes you’d like to share your compiled JavaScript application for
use on other web sites. As of GWT 1.4, other web sites can easily load your
application using the cross-site version of the generated JavaScript. The
cross-site version has –xs appended to the package name for the Java-
Script file name, and you can find it in the www directory after compiling
an application. For example, to include the Hangman application devel-
oped in Chapter 1, you would use the following script tag:

<script language='javascript' src='http://gwtapps.com/hangman/

com.gwtapps.tutorial.Hangman-xs.nocache.js'></script>

Notice that this line differs from the line found in the original host HTML
page for the application; it has the addition of –xs in the filename and is
loading the script from the gwtapps.com domain. 

Each application that you share may have additional requirements for
integration on another site. In the Hangman example, the application
looks for an HTML element with the ID hangman, so anyone including this
on their site would need to also have the following HTML in the location
where they’d like the Hangman application to show up:

<div id="hangman"></div>

Deploying Applications

Deploying a GWT application can be as easy as deploying a regular web
page. A simple GWT client is made up of HTML and JavaScript files that
can be copied to a directory on a web server and loaded into a browser. For
example, the Gadget Desktop application in Chapter 6 does not use any
server-side code, so its files for deployment are simply its JavaScript files,

Dewsbury.book  Page 183  Wednesday, October 31, 2007  11:03 AM



184 Chapter 4 Software Engineering for Ajax

several image files, and the host HTML file. You can install this application
on any web server simply by copying the files. 

Deploying to a Web Server

You’ve seen how to set up development environments with Java tools, run
the GWT scripts, and use the GWT jar files, but for a client-side applica-
tion these files are left on the development machine. You simply need to
run the GWT compile script, or click the Compile button in the GWT
hosted mode browser, to generate the files needed for deployment. For
example, compiling the Gadget Desktop application can be done from the
command line. Or it can be compiled from the hosted mode browser, as
shown in Figure 4-47. GWT places these files in a directory named after
your application inside the www directory for your project, as you can see
in Figure 4-48. This is the file list that you would copy to a directory on
your web server.

Deploying a Servlet to a Servlet Container

If you are using GWT-RPC, you will need to deploy your service implemen-
tation to a servlet container. Although the GWT hosted mode browser runs

Figure 4–47. Compiling your application from the GWT hosted mode browser

Dewsbury.book  Page 184  Wednesday, October 31, 2007  11:03 AM



Deploying Applications 185

an embedded version of Tomcat, deploying to a regular Tomcat instance is
somewhat different. If you are deploying to Tomcat, you’ll need to add
your application to its webapps directory. Figure 4-49 outlines the steps to
add your application to Tomcat’s directory structure.

Figure 4–48. The GWT compiler places the files to deploy in www

Dewsbury.book  Page 185  Wednesday, October 31, 2007  11:03 AM



186 Chapter 4 Software Engineering for Ajax

Let’s look at the five steps shown in Figure 4-49. First you need to locate
the installation directory for Tomcat. Second, you need to create your
application directory under the webapps directory. Third, you need to set
up your web.xml file in the WEB-INF directory for your application. For
the Instant Messenger application, the file looks like this:

<?xml version="1.0" encoding="UTF-8"?>

<web-app>

   <servlet>

      <servlet-name>messenger</servlet-name>

   <servlet-class>com.gwtapps.messenger.server.MessengerServiceImpl</servlet-class>

   </servlet>

   <servlet-mapping>

      <servlet-name>messenger</servlet-name>

      <url-pattern>/messenger</url-pattern>

   </servlet-mapping>

</web-app>

Fourth, copy your servlet class to the class’ directory in the WEB-INF
directory. Finally, fifth, copy the gwt-servlet.jar file to the lib directory in
the WEB-INF directory. The gwt-servlet.jar file has the GWT classes
required to support the server-side RPC. You could use gwt-user.jar
instead, but gwt-servlet.jar is smaller and therefore preferred. Deployment
can be automated by using a build tool such as Ant.

Figure 4–49. Steps to deploy your application to Tomcat

1. Tomcat installation 

2. Your application

3. Configure the servlet here

4. Your class files go here
5. GWT library goes here

Dewsbury.book  Page 186  Wednesday, October 31, 2007  11:03 AM



Deploying Applications 187

Automating Deployment with Ant

As you can see from the previous section, deployment to a server con-
tainer often involves many steps of compiling code, copying files, and cre-
ating directories. When a task involves many steps like this, it is best to
automate the process. Ant is the ideal Java tool for automating build tasks
like this. With it you can accomplish all of the previous steps of deploying a
GWT web application with one Ant step.

Ant is a command line tool that accepts an XML build file. The build file
contains a list of build targets with steps to accomplish build tasks. There
is rich support for different types of steps, including copying files, creating
directories, and compiling code. The Ant system is also extensible, so you
can develop new steps or add new steps from other developers. 

Let’s run through an example of how to build a GWT application for use on
a servlet container with Ant. First, verify that you have Ant installed and in
your path. You should be able to type ant –version at the command line,
as shown in Figure 4-50.

If you don’t have Ant installed, you can download it from http://
ant.apache.org. After ensuring that Ant is installed on your development
machine, you can write a build.xml file for a project. The following is the
build.xml file we will use:

<project default="deploy"> 

   <property name="gwtpath" value="/Users/ryan/lib/gwt-mac-1.4.10"/> 

   <property name="gwtapipath" value="/Users/ryan/lib/gwt-google-apis-1.0.0"/> 

   <property name="targetdir" value="${basedir}/www/${app}"/> 

 

Figure 4–50. Verifying Ant is on your system

Dewsbury.book  Page 187  Wednesday, October 31, 2007  11:03 AM



188 Chapter 4 Software Engineering for Ajax

   <property name="wwwdir" value="${basedir}/www"/> 

   <property name="srcdir" value="${basedir}/src"/> 

   <property name="bindir" value="${basedir}/bin"/> 

   <path id="classpath">

      <pathelement location="${gwtapipath}/gwt-google-apis.jar"/>

      <pathelement location="${gwtpath}/gwt-user.jar"/>

      <pathelement location="${gwtpath}/gwt-dev-mac.jar"/>

      <pathelement location="${srcdir}"/>

      <pathelement location="${bindir}"/>

   </path>

   <target name="compile-gwt">

      <java classname="com.google.gwt.dev.GWTCompiler" fork="true">

         <classpath refid="classpath"/> 

         <jvmarg value="-XstartOnFirstThread"/>

         <arg value="-out"/>

         <arg value="${wwwdir}"/>

         <arg value="${app}"/>

      </java> 

   </target>

   <target name="compile" depends="compile-gwt">

      <mkdir dir="${targetdir}/WEB-INF/classes"/>

      <javac srcdir="${srcdir}" 

         destdir="${targetdir}/WEB-INF/classes" 

         excludes="**/client/*.java"> 

         <classpath refid="classpath"/> 

      </javac> 

   </target>

   <target name="deploy" depends="compile"> 

      <mkdir dir="${targetdir}/WEB-INF/lib"/> 

      <copy todir="${targetdir}/WEB-INF/lib" file="${gwtpath}/gwt-servlet.jar"/> 

      <copy tofile="${targetdir}/WEB-INF/web.xml"   

         file="${basedir}/${app}.web.xml"/>

   </target>

</project>

 The file begins by defining a project element with a default target. This
target is run when one is not specified on the command line. The first few
elements inside the project tag are property definition elements. You
can place variables in these elements that will be reused throughout the
build file. For example, in this file we have the source directories and jar
directories set for use later. Inside the attributes you can see how the prop-
erties can be referenced with the ${name} format. Before the targets are
defined in the file, we set a path element. This element lists the jar files

Dewsbury.book  Page 188  Wednesday, October 31, 2007  11:03 AM



Deploying Applications 189

and directories that are on the classpath. We use this classpath later and
can refer to it by its ID.

The first target, compile-gwt, runs the GWT compiler on our GWT mod-
ule. The module is not specified in this target. Instead the ${app} place-
holder is used. We have not defined this as a property, but we can pass in
this variable as a command line argument. This gives the build file the
flexibility of being used for more than one application. Running this target
generates the compiled JavaScript files for the application and copies all of
the public files used for the project to the www directory.

The second target, compile, uses the regular javac compiler to compile all
of the other Java class files. These are class files that will be needed on the
server and will include the GWT-RPC service servlet if one is used. The Ant
script copies these class files to the www directory under WEB-INF/
classes. This is the standard location for class files for a servlet container
web application.

The final target, deploy, copies the required GWT library, gwt-servlet.jar,
to the WEB-INF/lib directory. This is the standard location for jar files for a
servlet container web application. The target also copies a predefined
web.xml file to the www directory. The web.xml file is required to describe
the servlets in the web application. 

Running the task for the Instant Messenger application in Chapter 9
results in the output shown in Figure 4-51. Once this is complete, we should
have a www directory that is ready to be used in a servlet container, and
which follows the conventions for servlet containers for file names and
locations, as illustrated in Figure 4-52.

Figure 4–51. Compiling and deploying with Ant

Dewsbury.book  Page 189  Wednesday, October 31, 2007  11:03 AM



190 Chapter 4 Software Engineering for Ajax

Summary

GWT simplifies real software engineering for Ajax applications. This was
really lacking when attempting to build substantial applications based on
JavaScript. Using Eclipse to write and debug applications can substantially
increase development productivity. Java organization and modularization
help you decouple application parts and leverage existing code. Testing
and benchmarking using JUnit helps ensure that your applications are of
high quality and perform well. When it’s time to deploy your application,
Ant can automate any tedious tasks. Overall, the ability to leverage the vast
range of mature Java software engineering tools is a significant part of cre-
ating great Ajax applications with GWT. 

Figure 4–52. The output from an Ant script

Dewsbury.book  Page 190  Wednesday, October 31, 2007  11:03 AM




