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Forewords

Robert Brewin

Recently, seasoned analysts like Anne Thomas Manes have said that SOA is
dead and that it has failed to deliver its promised benefits. There have been
opposing viewpoints to this. ZDNet blogger Joe McKendrick hosted a panel dis-
cussion on “Avoiding SOA Disillusionment,” and the panelists concluded that
any perceived disillusionment stemmed from lack of planning and measurement
on the part of the Enterprises and not from a failure of SOA. In fact, Enterprises
that have been working with SOA practices and methodologies remain bullish
on the approach and recognize that SOA continues to hold promise as a model
for integration and helping to tactically reduce costs in tough times. The promise
of SOA is that it offers an architectural approach to support the proliferation and
adoption of reusable services. This is an approach that companies should adopt
to streamline their development processes and improve the quality and maintain-
ability of their code.

At Sun, we developed the Java Platform, Enterprise Edition (Java EE) as an
industry standard, and it forms the ideal foundation upon which developers can
implement Enterprise-class SOA and next generation web applications. I am
pleased to see this book by Kumar, Narayan, and Ng, which takes a practical
approach to implementing SOA with Java EE. The focus is on real implementa-
tion techniques, leveraging the GlassFish Application Server and NetBeans IDE.
By taking this approach, the authors have demystified SOA from an alphabet
soup of Web Services standards and shown how readers can implement SOA in
their Enterprise readily and easily. In addition to explaining the concepts of SOA
and the concepts of Java EE, the authors dive deep into implementing SOA with
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Java EE and show how services can be delivered within different tiers of an
Enterprise architecture. 

Architects, developers, managers, other IT professionals, educators, and students
will benefit from different aspects of this book from concepts to architecting to
implementation, configuration, and tuning. I trust that you will find this book
beneficial and enlightening.

Robert Brewin
Chief Technology Officer, Software

Sun Microsystems

Raj Bala

Now more than ever, concepts like availability, leveragability, scalability,
expandability, extendibility, and security permeate every discussion on technol-
ogy architecture. As companies become more aware of harvesting maximum
sustainable value from technology investments, the architecture fraternity has
always cried loud for how the fundamentals matter. Architectural integrity is
measured by all the “itys” that I mentioned in my first sentence, and it is hearten-
ing to see how the answers have been around and, in fact, getting better. 

Service oriented architecture (SOA) as a fundamental fix to future problems has
evolved to newer and more advanced frontiers. Saddling on ever-perfected tech-
nologies such as Java EE, SOA is becoming more appealing and compelling
than ever before. 

At Cognizant, we have been developing and delivering Enterprise solutions
using SOA. And it is my privilege to write a Foreword for a book for one of our
own—Kumar is a coauthor along with Prakash and Tony. The book carefully
unravels the vast topic of service oriented architecture through a definitive and
illustrative approach. It segments web services across First Generation Web Ser-
vices for services composition, Second Generation Web Services for wiring
these services into the process/workflow of the enterprise, and WS-* for address-
ing the nonfunctional needs of the Enterprise application. This book will also
double-up as an effective implementation guide on the advanced features of the
new Java Platform, Enterprise Edition and indicate how different APIs, such as
JAX-WS and JAXB, of the new platform help in different aspects of service ori-
entation for the Enterprise application. 

This book should be extremely relevant to a variety of stake holders including
architects, senior enterprise developers, and application integrators. This book is
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also a great reference material for students of computer science, software, and
systems architecture. 

From academics to architects, practitioners to pedants, students to specialists, 
coders to CXOs, this book could be a vital source of SOA inspiration—of how to 
build great architecture without compromising on the “itys.” 

Raj Bala
VP and Chief Technology Officer
Cognizant Technology Solutions
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3
Evolution of Service

Oriented Architecture

The requirement of service orientation for the enterprises first emerged with 
the advent of the Internet and World Wide Web. The IT world has since witnessed 
numerous paradigm shifts, as newer technologies such as XML and Java 
impacted enterprise solution requirements. The business of “service delivery” 
started gaining momentum among the enterprises and their collaborators. But 
the IT definition of the term “service” was not aligned with that of the business 
definition, and this cohesion was crucial for the enterprises to remain competi-
tive in the dynamically changing market conditions. Evolution of business com-
ponents such as Enterprise JavaBeans, as a part of J2EE technologies, on the 
one hand, and the emergence of core constituents of web services such as SOAP, 
WSDL, and UDDI, on the other, provided the opportunity to draft service defini-
tions in alignment with the business requirements. Furthermore, the eventuality 
of loosely composing these services and binding them with the business process 
of the enterprise resulted in the arrival of Service Oriented Architecture (SOA).

The idea of SOA is not completely new. Different forms of service orientations
were previously attempted and implemented as enterprise solutions by many
vendors on different businesses and enterprises during the era of client/server.
These architectures were implemented as enterprise solutions with different
degrees of success, but they were never known or termed as SOAs during those
eras. Regardless, none of these attempts could be considered successful imple-
mentation of SOAs. Before the arrival of XML and other web services, SOAs,
(though not referred to as such), were implemented as a solution, without snazzy
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name and fanfare. In this chapter, we first explore the concept of service orienta-
tion and then analyze how the emergence of different architectures' combined
paradigm shifts in enterprise technologies led to the evolution of web services
and SOA.

Services Oriented Architecture—The Description
SOA can be described as a unique style of architecting and designing the enter-
prise solution using business services throughout the life cycle—from concept to
retirement. SOA also enables for provisioning the IT infrastructure of the enter-
prise so that disparate applications1 can exchange data as a part of the business
process.

Business services can be defined as a set of actions or tasks an organization pro-
vides to different service stakeholders. Some of the service stakeholders are cus-
tomers, collaborators, clients, employees, and so on. Consider that whereas an
SOA can be defined as an approach to building IT systems, the business services
are considered the key organizing principle for aligning IT systems for business
needs.

The key point here is business services and alignment of IT infrastructure as per
business services and business process requirement. Service orientation, there-
fore, enables the architects to focus on the description of the business problem
rather than any development or execution environment of the enterprise solution.
Because these two are delinked, a business solution that is architected as per
SOA would be loosely coupled, flexible in nature, and allow implementation of
dynamic needs of the enterprise business requirements.

It is important to notice here that the description of SOA does not mention the
requirement of web services technologies as a prerequisite. Technologies such as
CORBA or J2EE can still be efficiently and effectively used to implement the
enterprise solution so that enterprise architecture is service oriented. However,
what is crucial in the context of service orientation is the possibility of separat-
ing the service interface from the execution environment. An SOA that is appro-
priately implemented provides a scope in which it is possible to mix and match
the execution environment. 

Early Architectures
Earlier approaches to building enterprise solutions essentially focused on func-
tional aspects of the enterprise problem. These approaches tended to directly use
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the specific implementation environments, such as object orientation, procedure
orientation, data or information orientation, message orientation, and so on to
solve business problems. This resulted in enterprise solutions that were often tied
to features and functions of a particular environment technology. Some of the
popular technologies that evolved were Information Management Systems (IMS),
Customer Information Control Systems (CICS),2 Common Object Request Bro-
kered Architecture (CORBA), Component Object Model/Distributed Component
Object Model (COM/DCOM), and Message Oriented Middleware (MOM).

Enterprise architectures have evolved tremendously since the Mainframe era or
the Centralized Model of mainframe architecture. The progression in architec-
tures such as client/server architectures, distributed architecture, or web archi-
tectures discussed in Chapter 1, “Introduction,” are generic in nature. Specific
architectures on mainframe systems, such as IMS, CICS, CORBA, and DCOM,
have evolved as environment-specific distributed architectures. You need to ana-
lyze some of these technologies and their contribution to the evolution of enter-
prise architectures.

IMS
IMS is one of the earliest technologies to lay the foundation for more advanced
data accessing technologies such as DB2 and Universal Database. IMS was
developed by IBM in the late 1960s to manage data for NASA's Apollo Moon
Landing project. This technology was later released as the world's first commer-
cially sold Database Management System. IMS technology's data management
was based on the earliest data model called the Hierarchical Data model. This
premier database and transactional management system was implemented to
handle many commercially critical, online operational and on-demand business
applications and data that enabled information integration, information manage-
ment, and scalability.

The IMS technology essentially is composed of two subsystems: a Database
Manager called IMS DB and a Transactional Manager called the IMS TM. We
explore briefly these two subsystems in the next section.

IMS as Database Manager
The IMS DB is basically a large system Hierarchical Database Management
System. When introduced, IMS DB was an enormous success, and many large
organizations employed IMS DB for managing the enterprise information. Sub-
sequent research and development efforts by IBM resulted in the revolutionary
way of handling the data. The Relational Database Management System
(RDBMS) by E. F. Codd in 1971 prompted IBM to introduce a radical product



40 CHAPTER 3 EVOLUTION OF SERVICE ORIENTED ARCHITECTURE

called the DB2. Following the introduction of DB2, IBM intended to replace the
Hierarchical Data Management System with relational databases and replace
IMS DB with DB2. However, IBM was not entirely successful in replacing IMS
because a number of major IMS-based organizations were not interested in
replacing the otherwise stable and satisfactorily running IMS-based applica-
tions. As a result, IBM continues to develop newer products and packages
around the IMS technologies that help those organizations that continue to main-
tain IMS-based legacy products on their mainframe systems.

IMS as Transactional Manager
The IMS TM is a robust transactional management system that primarily func-
tions on the IBM mainframe systems. This Transaction Manager was initially
designed as an interactive system that interacts with an end user, through a com-
bination of 3270 screens and VTAM communication mode to process business
transactions. In coordination with IMS DB, IMS TM technology uses a messag-
ing and queuing methodology to implement the transactions in the business pro-
cesses.

When the user initiates a transaction through a 3270 screen, the IMS Control
Program receives a transaction identification number and stores it on a message
queue. The Transaction Manager, thereafter, invokes a scheduler on the queued
transaction to initiate the business process. The message processing region of the
IMS TM then retrieves the transaction from the IMS message queue and pro-
cesses the same. The processing could involve reading/writing/updating the
information on the IMS DB.3 Based on the system design and the architecture of
the enterprise application, the IMS TM could respond and return an output mes-
sage to the user who initiated the transaction on the 3270 terminal.

CICS
CICS from IBM is a transaction server that runs primarily on IBM mainframe
systems under operating environments such as z/OS. CICS is now available for
other operating environments such as OS/2, AIX, Microsoft Windows, and
Linux. The z/OS implementation of CICS is, by far, the most popular and signif-
icant implementation of the CICS technologies.

CICS is a transaction processing system designed for both batch and online busi-
ness transactions. On large IBM mainframe systems, CICS technology supports
a large number of transactions in a given time. The CICS technology has enabled
IBM to retain a dominant position in the mainframe-oriented enterprise comput-
ing. Initially CICS applications were written in COBOL. Presently, CICS appli-
cations can be created using a variety of modern programming languages, such
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as PL/I, C, C++, REXX, and Java. CICS is one of the world's most durable soft-
ware products on the IBM mainframe system. Supported by a variety of applica-
tions and tools, CICS is known for its reliability, security, and performance,
particularly on IBM mainframe systems. Thanks to the aggressive marketing by
IBM and rich research and development efforts in the United States and the UK,
many of the Fortune 500 giants that invested into these systems during the Main-
frame era continue to rely on core parts of enterprise applications based on CICS
technologies.

The CICS applications programs are basically screens, popularly known as 3270
screens.4 The initiation of a CICS program signals the initiation of a transaction,
and the system initiates a transaction identification number. The CICS screens
are sent as “maps” or “pages” using a programming language such as COBOL.
The end user, on the other end of the system, inputs data that is made available to
the CICS program by receiving a map. CICS screens essentially contain textual
information. The textual information is presented to the end user in different for-
mats. This includes highlighted text, colored fonts, or even blinking text. 

CORBA
CORBA is not that different from the RPC technologies introduced in Chapter 2,
“Evolution of IT Architectures.” Developed and supported by Object Man-
agement Group (OMG), CORBA technology can be considered a generalization
of RPC technology and includes several improvements on the data objects and
on the data primitives. The purpose of this technology and architecture was to
enable the development of distributed applications and services that can interop-
erably communicate with other disparate applications over the network. The
CORBA architecture was essentially developed to bring about a discipline to
implement portability and interoperability of applications across different hard-
ware platforms, operating environments, and disparate hardware implementa-
tions. CORBA technology uses a binary protocol called Internet Inter-ORB
Protocol (IIOP) for communicating with the remote objects. 

DCOM
A bit of background is required here. In the mid-1990s Microsoft Corporation
introduced a technology popular as the COM.5 This technology enabled the
development of software modules called components for integrating applications
over the client/server architecture. To build these components, developers must
adhere to the COM specification so that the components can operate interopera-
bly within the network. The DCOM technology, introduced sometime in late
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1990s, enabled interaction among network-based components to bring in the Dis-
tributed Communication Environment (DCE). DCOM technology is essentially
built on an object RPC layer, which in turn is on top of DEC RPC to enable the
communication among the remote objects. DCOM technology uses a binary pro-
tocol, termed Object Remote Procedure Call (ORPC), for distributed communica-
tion among remote objects. Technologies such as Object Linking and Embedding
(OLE), ActiveX, and Microsoft Transaction Server (MTS) are some of
Microsoft’s technological advancements built on COM and DCOM technologies.

Paradigm Shifts
We previously indicated that the field of information technology has witnessed
many paradigm shifts.6 These paradigm shifts are affecting the enterprise busi-
nesses in many ways—specifically in how they conduct business and communi-
cate. These paradigm shifts can be primarily attributed to technological
innovations in the field of hardware, software, and operating and networking
environments. Some of the paradigm shifts7 that are of importance to the enter-
prise businesses are

• Internet and World Wide Web

• Java and Java 2 Enterprise Edition

• Extensible Markup Language

• Web Services—XML-RPC and SOAP

• Influence of the Internet and the World Wide Web

The arrival of both the Internet and the World Wide Web ushered in a paradigm
shift to the enterprises, specifically in the way business transaction takes place.
You might be aware that extensive research and development work sponsored by
the Department of Defense8 resulted in the foundation of what is now the Inter-
net. The evolution of the web, in fact, ensured fundamental changes in the way
B2C and B2B partners interact. More revolution than evolution, the Internet and
World Wide Web has enormously grown, thanks partly to the contribution from
several companies, organizations, academic and research institutions, and even
the individual professionals all over the world. On the technology front, the web
has not only rendered TCP/IP as the default business protocol, it also has
brought forth a new type of client called the browser client.

Java and Java 2 Enterprise Edition
Prior to the arrival of Java, the software development for any enterprise applica-
tion needed to be developed on many programming environments, on different
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hardware and operating environment. Frequently a software application would
need to be developed and delivered on multiple hardware platform and operating
environments so that functionally they delivered repeatable results. Developed
by Dr. James Gosling of Sun Microsystems, Java technology was introduced in
1995. The arrival of Java as a programming language ushered in yet another par-
adigm shift in the world of software development. A Java Virtual Machine would
behave the same way on any platform, and therefore, applications developed
using Java programming language would behave reliably and consistently on
any platform. Java programming has brought about acronyms such as WORA
(Write Once Run Anywhere), WORE (Write Once Run Everywhere), and WORD
(Write Once and Run on any Device).

Java and J2EE technologies have witnessed tremendous growth over the past
decade and Java, in particular, has been the most widely employed programming
environment in the world today. Java is easily considered the most successful
programming language. Some of the features and attributes that popularized the
Java platform are object oriented, platform independent, portable, secure, robust,
multithreaded, and more.

One of the prime reasons for the widespread industry adoption of this environ-
ment could be because the environment has been the product of the industry
movement toward the requirement of portable and interoperable applications
that can work over the web. Other contributing factors include reliable web com-
ponent technologies, such as Servlet and JavaServer Pages (JSP), and distrib-
uted components such as Enterprise JavaBeans (EJB) that can enable the
developers to deploy these components in a variety of container/component
environments. These components essentially use a binary protocol called Java
Remote Method Protocol (RMI over IIOP) for communicating with remote
objects.

Since its introduction over a decade ago, Java has grown from the status of a
mere programming language to a full-fledged platform on a variety of systems
and environments,9 including devices such as PDAs, mobile phones, set-top
boxes, rings, cards, chips, and so on. A community called the Java Community
Process (JCP) now governs the development of this language. Most of the indus-
try leaders and key players in the IT field participate in shaping the development
of this remarkable technology.

Extensible Markup Language
John Bosak of Sun Microsystems is credited with the revolutionary work on
Extensible Markup Language (XML). The idea of XML essentially emerged
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from the other nonexpendable markup languages such as Generalized Markup
Language (GML) from IBM, Standardized Generalized Markup Language
(SGML) from ISO, and Hypertext Markup Language (HTML) from ECRN.
XML’s popularity essentially stems out of its extensible capability. One of the
biggest contributions of XML is its capability of interoperability.

The development of XML resulted in its adoption by a variety of industries—
both vertical and horizontal. This has resulted in the creation of a large number
of XML vocabularies that cater to the interoperability needs of different indus-
tries. The biggest contributions of XML for enterprise solution needs are the
SOAP, WSDL, and UDDI technologies. Part II, “Service Oriented Architecture
Essentials,” discusses this in detail.

Web Services—XML-RPC and SOAP
Introduced by Dave Winer, XML-RPC is an RPC protocol that is text based. As
the name indicates, the XML-RPC protocol enables the exchange of XML data
between remote objects. The idea of transporting XML as a payload over trans-
port protocols such as HTTP has resulted in laying the foundation of web ser-
vices such as SOAP and WSDL. Initial work on XML-RPC resulted in a simple
and portable way of making text-based RPC in a distributed environment. This
pioneering work resulted in the opening of a new perspective in the history of
middleware technologies. Further work in this direction resulted in a new mes-
sage-oriented protocol called SOAP and brought the interoperability one step
closer to business automation.

Arrival of Web Services and SOA 
Earlier in this chapter we highlighted the Remote Procedure Call and its influ-
ence in the distributed communication technologies such as CORBA, DCOM,
and J2EE. The protocols used in these technologies, IIOP, ORPC, and RMI/
IIOP, respectively, are the binary protocols used for communication between
remote objects over the corporate networks. This laid the foundations for a radi-
cally new protocol and resulted in the development of extensible vocabularies
such as SOAP, WSDL, and UDDI. These extensible languages are referred to as
First Generation Web Services. These languages provide fundamental level sup-
port for enterprise applications and enable them to be web service-oriented at the
functional level. However, for enterprises, nonfunctional requirements take pri-
ority over functional requirements. The web services extensions that attempt to
meet the nonfunctional aspects of enterprise requirements are referred to as the
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Second Generation Web Services extensions, and we explore them briefly in the
following sections. 

First Generation Web Services
As you may recall from Chapter 1, the three pillars of web services are SOAP,
WSDL, and UDDI. These technologies are advanced vocabularies of the XML
and use other supportive XML vocabularies such as Namespace and XML
Schema Definition (XSD). Each of these web services vocabularies address dif-
ferent aspects of enterprise information interchange in an interoperable manner.

SOAP
This new text-based messaging technology enables applications to exchange
information in the form of messages. The messages can be interchanged in a
synchronous or asynchronous manner. The design of SOAP message structure is
such that the messages can be interchanged between applications through RPC
invocation or through MOM technologies.

WSDL
WSDL enables description of the service through the use of a set of specialized
XML elements. The service description includes the data types interchanged
(this is programming language-independent), name of the service, parameters
passed, transport protocol used, and so on. WSDL also enables several related
services to aggregate into a service suite. 

UDDI
UDDI is a specification and service that helps businesses provide a platform in
such a way that the service requesters can discover service providers, zero in on
appropriate partners, and enable an agreed-upon business automation. UDDI,
like WSDL, uses advanced XML vocabularies to define the business and service
information in an elaborate manner. As a service, UDDI registries enable the ser-
vice requester to store all necessary information regarding business and service
information that is suitably categorized as per industry standards.

The Second Generation Web Services
Enterprise solution requirements might be categorized into functional require-
ments and nonfunctional requirements. Nonfunctional requirements govern the
architectural and design aspects of any enterprise solution. There are many non-
functional requirements, and one enterprise's nonfunctional requirements list
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and priorities would be different from another. Some of the nonfunctional
requirements that are common to most of the enterprises are

• Security

• Reliability

• Availability

• Quality of service

• Business process 

• Choreography

Several web services extensions and frameworks have been proposed by various
industry consortia, and there is more than one web service extension proposed
by competing industry consortia. These extensions and frameworks address one
or more nonfunctional enterprise requirements Although there is a general con-
sensus among the industry consortia on some of the web service extensions, this
is not the case for all web service extensions. 

Some of the important web services extensions are

• WS-Security Specifications and Frameworks

• WS-Addressing Specification

• WS-Reliable Messaging Specifications

• WS-Business Process Execution Language

• WS-Choreography Definition Language

• WS-Metadata Exchange Specifications

SOA Using Web Services
We have already discussed how the arrival of XML and related technologies
brought in a paradigm shift for enterprise solutions. The core web services tech-
nologies provided a sound foundation for the functional aspects of the services,
its description, and invocation. The second generation web services extensions,
on the other hand, brought the nonfunctional requirements into the web services
fold. Together, web services technologies provide several key features and
advantages that the earlier technological solutions could not. Interoperability, for
example, enables a clear separation of the service interface from the execution
environment. Therefore, SOA implemented using web services technologies is
likely to provide a leading edge over any other technological implementation.

Using web services, it is easier to change service compositions of the enterprise
application and implement the changes at a lower cost. These features help the
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enterprise project developers to quickly respond to the dynamic requirements of
the enterprise business needs.

Benefits and Challenges with SOA
SOA with web services as an implementation route brings a host of advantages
to the enterprises. This doesn’t necessarily mean that service orientation of the
enterprise architecture is void of any disadvantages. Some of the significant pros
and cons associated with SOA are as follows: 

Benefits

• Rapid integration of enterprise applications—departments and partners

• Efficient business automation

• Enhanced corporate agility

• Faster time to market for new products and services

• Reduced IT costs for the corporate long-term investment

• Improved operational efficiency of the business processes

• Better ROI

Challenges

• Identifying the need for SOA

• Significant investment in resources on rearchitecting the core IT assets

• Identifying the right kind of governance model for the enterprise

• Mind share for the right kind of professionals and stake holders

• Legacy system issues—some legacy applications cannot be service 
oriented

Notice here that the issues and challenges for SOA relate more to the cultural
aspect of the problem than the technological or business aspects. Of course,
issues such as integration of unsupported legacy systems to service orientation
remain as bottlenecks to the implementation of SOA.

SOA Implementation Technologies
Web services implementation of SOA has many crucial advantages over any
other implementation strategies. Presently, there are two predominant solutions
that help in web services implementation of SOA: Microsoft’s .NET technolo-
gies and Sun Microsystems’s Java Platform Enterprise Edition10 technologies.
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Microsoft's .NET Technologies
The .NET product suite from Microsoft enables enterprises to build enterprise-
class web SOAs. The .NET product suite is largely a rewrite of Windows
DNA,11 which constitutes Microsoft's previous platform constituents for devel-
oping enterprise applications. The new .NET Framework replaces these technol-
ogies and includes the web services layer.

The .NET Environment 
The .NET technologies offer language independence and language interoperabil-
ity. This is an interesting aspect of the .NET technology. Accordingly, a .NET
component can be written, for example, partially in different programming lan-
guages and implemented as part of the web services solution. The .NET technol-
ogy converts this composite language component into an intermediary neutral
language called Microsoft Intermediate Language (MSIL). This MSIL12 code is
then interpreted and compiled to a native executable file.

The .NET Framework also includes a runtime environment called the Common
Language Runtime (CLR). This environment is analogous to the Sun Microsys-
tems Java Runtime Environment (JRE).

The .NET Server Services 
Microsoft has packed a number of servers as part of the .NET platform called
The .NET Enterprise Servers. These servers provide vital services for hosting
enterprise-class applications. Some important servers included as part of the
.NET Servers are SQL Server, Exchange Server, Commerce Server, Cluster
Server, Host Integration Server, and BizTalk Server. 

Sun Microsystems’s Java Enterprise Edition Technologies
The Java Platform, Enterprise Edition (Java EE) is a progression of the Java
environment to the server side of the application software paradigm. J2EE,
unlike Microsoft’s .NET, could be termed a defacto industry standard and has
resulted in a large industry initiative called the Java Community Process (JCP).
The participants of this community include the “who's who” in the IT and
related industries—IBM, Oracle, Nokia, BEA, and so on. The spirit of Java as
well as the other related technologies, such as Java EE, was to free the customers
from the dependency of products and tools from vendors. 
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Java Foundation
The launching of Java as a programming language took the industry by storm in
1995. As previously indicated, the Java programming environment provided
unique features that no other programming language provided: portability, plat-
form independence, and so on. The core feature is the Java Runtime Environ-
ment (JRE) that can be made available on any hardware or operating
environment. The application is developed using the Java programming lan-
guage and compiled into platform-independent bytecodes. This bytecode can
then be deployed to run on JRE that is installed on any compatible system. 

Java EE is the server-side extension of Java. The applications are not just Java
objects but are also appropriate server-side components. For creating web appli-
cations, components such as Java Servlets and JavaServer Pages (JSP) are used
and deployed on web servers, and these web servers run on JRE. Likewise, for
creating enterprise applications, components such as Enterprise JavaBeans
(EJB) are developed and deployed, optionally with web applications, in applica-
tion servers. Again, these application servers also run in JRE.

Web Services Using Java Enterprise Edition
The evolution of Java EE has been steady. Java EE technologies are consistently
improving with each version. These improvements are essentially driven by Java
Specification Requests (JSR), and once again, this is the JCP initiative. The arrival
of XML and the related advanced vocabularies has resulted in immediate adop-
tion into the Java environment. Simply put, this is because Java, as a portable pro-
gramming language, and XML, as portable information, are an excellent
combination for any environment. Further, the arrival of web services, in the form
of SOAP, WSDL, and UDDI, has resulted in the creation of appropriate APIs. 

Java EE applications can be executed on the web and on application servers.
Appropriate components are developed and assembled to create enterprise appli-
cations. The Java EE servers and containers provide all the necessary “service
plumbing” support for the web and application server.

Java EE architecture supports the following tiers: presentation tier, business tier,
and data tier (or EAI tier). Not all of them are essential, and depending on the
enterprise requirement, even one of the tiers can enable the application to be
identified as a Java EE application. If the presentation tier is present, Java Serv-
lets and JSP can be designed and deployed to create the web application. The
Servlets can also be configured to be the services (or clients of) web services
application. If the business tier is present, EJB can be developed and deployed as
part of the enterprise application. The EJBs can be Session EJBs and Entity
EJBs. Although session EJBs can handle session management, Entity EJBs
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address persistence activity. Alternatively, session EJBs can participate in the
web services interactions. Business partners can connect with the presentation
tier and business tier of J2EE applications through web services technologies. 

Summary
The concept of Service Oriented Architecture is not entirely new. SOA essen-
tially promotes the separation of the service interface and the execution environ-
ment. SOA also promotes the alignment of IT infrastructure to meet the business
service requirements. Although SOA can be implemented in a number of ways,
utilizing web services provides several advantages, particularly because web ser-
vices bring enterprise application closer to business automation. Two of the most
popular technologies for implementing SOA through web services are
Microsoft’s .NET and Sun Microsystem's Java Platform, Enterprise Edition. 

In the next part, we devote our attention toward the building blocks of SOA tech-
nology. Three elements included here are the derivatives of the extensible markup
language, namely SOAP, WSDL, and UDDI, and business process-related XML
vocabularies such as BPEL and CDL. Advanced elements of web services address
aspects such as security, reliability, quality of services, and so on.

Endnotes
1. Different applications are exchanging the data, while participating in business processes, regard-

less of hardware platform, operating environment, or programming languages underlying these
applications.

2. Often pronounced as “kicks.”
3. The IMS DB now supports relational database management systems such as DB2 and Universal

DB.
4. Pronounced “three two seven zero” screen or terminal.
5. Most of the technologies invented/introduced by Microsoft Corporation are invariably on the

Windows/Intel combination. Often this combination is referred to as Wintel: Windows and Intel.
6. The term paradigm shift was first used by Thomas Kuhn in his famous book The Structure of Sci-

entific Revolutions, in 1962, to describe the process and result of a change in basic assumptions
within the ruling theory of science. It has since become widely applied to many other realms of
human experience and the field of information technology as well. Paradigm shift can also be de-
fined as a significant change from one fundamental view to another. Such changes are usually
accompanied by discontinuity.
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7. We are essentially focused on the field of enterprise solutions here. Scope of information tech-
nology is really wide, and paradigm shifts as applied to this scope, as per the interpretations of
different experts, could be different. For example, as per the essays of Bioss Sari, the following
three events mark the paradigm shifts in the field of information technology:
• Invention of the microprocessor and its impact on the computer industry
• Paul Baran’s invention of the distributed network and packet switching
• The future of computing and the end of the silicon era 

8. DARPANet and ARPANet are the two revolutionary projects sponsored by the U.S. Department
of Defense. DARPANet is the origin of ARPANet project. The aim of the DARPANet project was
to exchange military information among analysts, scientists, and researchers located at different
geographical locations of the United States. The ARPANet project was launched by DOD some-
time in the late 1960s. The network infrastructure for this project was created by the U.S. Defense
Advanced Research Project Agency (ARPA). The idea of ARPANet was to set up an experimen-
tal wide area network within the United States to survive the military exigencies. 

9. Java technology from Sun Microsystems was initially developed as a programming environment
for devices. However, when it was launched, it was launched as a “portable” programming lan-
guage. However, the language grew in several directions, including the devices.

10. Sun Microsystems has rechristened the J2EE as the Java EE. This change is not just in the name.
There are fundamental changes in the way web services are created as a part of web applications
or enterprise applications. These aspects are discussed in detail in Chapter 9, “Java Platform, En-
terprise Edition Overview.”

11. Windows DNA includes many technologies that are part of Microsoft’s products today. They in-
clude Microsoft Transaction Server (MTS) and COM+, Microsoft Message Queue (MSMQ), and
the Microsoft SQL Server database.

12. This IL code is language-neutral and is analogous to Sun Microsystem’s Java bytecode.
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