

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

Sun Microsystems, Inc. has intellectual property rights relating to implementations of the technology
described in this publication. In particular, and without limitation, these intellectual property rights may
include one or more U.S. patents, foreign patents, or pending applications.

Sun, Sun Microsystems, the Sun logo, J2ME, J2EE, Java Card, and all Sun and Java based trademarks
and logos are trademarks or registered trademarks of Sun Microsystems, Inc., in the United States and
other countries. UNIX is a registered trademark in the United States and other countries, exclusively
licensed through X/Open Company, Ltd. This publication is provided “as is” without warranty of any
kind, either express or implied, including, but not limited to, the implied warranties of merchantability,
fitness for a particular purpose, or non-infringement. This publication could include technical inaccura-
cies or typographical errors. Changes are periodically added to the information herein; these changes
will be incorporated in new editions of the publication. Sun Microsystems, Inc. may make improve-
ments and/or changes in the product(s) and/or the program(s) described in this publication at any time.

The authors and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales, which may include electronic versions and/or custom covers and content particular to your
business, training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the web: informit.com/aw

Library of Congress Cataloging-in-Publication Data:

Kumar, B. V. (Balepur Venkatanna), 1959-
 Implementing SOA using Java EE / B.V. Kumar, Prakash Narayan, Tony Ng.
 p. cm.

 ISBN 978-0-321-49215-9 (pbk. : alk. paper) 1. Service-oriented architecture (Computer science)
2. Java (Computer program language) I. Narayan, Prakash, 1960- II. Ng, Tony. III. Title.

 TK5105.5828K95 2010
 004.6'54--dc22

 2009041877

Copyright © 2010 Sun Microsystems, Inc.

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic,
mechanical, photocopying, recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671 3447

ISBN-13: 978-0-321-49215-9
ISBN-10: 0-321-49215-3

Text printed in the United States on recycled paper at Edwards Brothers in Ann Arbor, Michigan.

First printing December 2009

Editor-in-Chief
Mark Taub

Acquisitions Editor
Greg Doench

Development Editor
Songlin Qiu

Managing Editor
Kristy Hart

Project Editor
Anne Goebel

Copy Editor
Apostrophe Editing
Services

Indexer
Lisa Stumpf

Proofreader
Karen A. Gill

Publishing Coordinator
Michelle Housley

Cover Designer
Alan Clements

Senior Compositor
Gloria Schurick

xvii

Forewords

Robert Brewin

Recently, seasoned analysts like Anne Thomas Manes have said that SOA is
dead and that it has failed to deliver its promised benefits. There have been
opposing viewpoints to this. ZDNet blogger Joe McKendrick hosted a panel dis-
cussion on “Avoiding SOA Disillusionment,” and the panelists concluded that
any perceived disillusionment stemmed from lack of planning and measurement
on the part of the Enterprises and not from a failure of SOA. In fact, Enterprises
that have been working with SOA practices and methodologies remain bullish
on the approach and recognize that SOA continues to hold promise as a model
for integration and helping to tactically reduce costs in tough times. The promise
of SOA is that it offers an architectural approach to support the proliferation and
adoption of reusable services. This is an approach that companies should adopt
to streamline their development processes and improve the quality and maintain-
ability of their code.

At Sun, we developed the Java Platform, Enterprise Edition (Java EE) as an
industry standard, and it forms the ideal foundation upon which developers can
implement Enterprise-class SOA and next generation web applications. I am
pleased to see this book by Kumar, Narayan, and Ng, which takes a practical
approach to implementing SOA with Java EE. The focus is on real implementa-
tion techniques, leveraging the GlassFish Application Server and NetBeans IDE.
By taking this approach, the authors have demystified SOA from an alphabet
soup of Web Services standards and shown how readers can implement SOA in
their Enterprise readily and easily. In addition to explaining the concepts of SOA
and the concepts of Java EE, the authors dive deep into implementing SOA with

xviii FOREWORDS

Java EE and show how services can be delivered within different tiers of an
Enterprise architecture.

Architects, developers, managers, other IT professionals, educators, and students
will benefit from different aspects of this book from concepts to architecting to
implementation, configuration, and tuning. I trust that you will find this book
beneficial and enlightening.

Robert Brewin
Chief Technology Officer, Software

Sun Microsystems

Raj Bala

Now more than ever, concepts like availability, leveragability, scalability,
expandability, extendibility, and security permeate every discussion on technol-
ogy architecture. As companies become more aware of harvesting maximum
sustainable value from technology investments, the architecture fraternity has
always cried loud for how the fundamentals matter. Architectural integrity is
measured by all the “itys” that I mentioned in my first sentence, and it is hearten-
ing to see how the answers have been around and, in fact, getting better.

Service oriented architecture (SOA) as a fundamental fix to future problems has
evolved to newer and more advanced frontiers. Saddling on ever-perfected tech-
nologies such as Java EE, SOA is becoming more appealing and compelling
than ever before.

At Cognizant, we have been developing and delivering Enterprise solutions
using SOA. And it is my privilege to write a Foreword for a book for one of our
own—Kumar is a coauthor along with Prakash and Tony. The book carefully
unravels the vast topic of service oriented architecture through a definitive and
illustrative approach. It segments web services across First Generation Web Ser-
vices for services composition, Second Generation Web Services for wiring
these services into the process/workflow of the enterprise, and WS-* for address-
ing the nonfunctional needs of the Enterprise application. This book will also
double-up as an effective implementation guide on the advanced features of the
new Java Platform, Enterprise Edition and indicate how different APIs, such as
JAX-WS and JAXB, of the new platform help in different aspects of service ori-
entation for the Enterprise application.

This book should be extremely relevant to a variety of stake holders including
architects, senior enterprise developers, and application integrators. This book is

FOREWORDS xix

also a great reference material for students of computer science, software, and
systems architecture.

From academics to architects, practitioners to pedants, students to specialists,
coders to CXOs, this book could be a vital source of SOA inspiration—of how to
build great architecture without compromising on the “itys.”

Raj Bala
VP and Chief Technology Officer
Cognizant Technology Solutions

37

3
Evolution of Service

Oriented Architecture

The requirement of service orientation for the enterprises first emerged with
the advent of the Internet and World Wide Web. The IT world has since witnessed
numerous paradigm shifts, as newer technologies such as XML and Java
impacted enterprise solution requirements. The business of “service delivery”
started gaining momentum among the enterprises and their collaborators. But
the IT definition of the term “service” was not aligned with that of the business
definition, and this cohesion was crucial for the enterprises to remain competi-
tive in the dynamically changing market conditions. Evolution of business com-
ponents such as Enterprise JavaBeans, as a part of J2EE technologies, on the
one hand, and the emergence of core constituents of web services such as SOAP,
WSDL, and UDDI, on the other, provided the opportunity to draft service defini-
tions in alignment with the business requirements. Furthermore, the eventuality
of loosely composing these services and binding them with the business process
of the enterprise resulted in the arrival of Service Oriented Architecture (SOA).

The idea of SOA is not completely new. Different forms of service orientations
were previously attempted and implemented as enterprise solutions by many
vendors on different businesses and enterprises during the era of client/server.
These architectures were implemented as enterprise solutions with different
degrees of success, but they were never known or termed as SOAs during those
eras. Regardless, none of these attempts could be considered successful imple-
mentation of SOAs. Before the arrival of XML and other web services, SOAs,
(though not referred to as such), were implemented as a solution, without snazzy

38 CHAPTER 3 EVOLUTION OF SERVICE ORIENTED ARCHITECTURE

name and fanfare. In this chapter, we first explore the concept of service orienta-
tion and then analyze how the emergence of different architectures' combined
paradigm shifts in enterprise technologies led to the evolution of web services
and SOA.

Services Oriented Architecture—The Description
SOA can be described as a unique style of architecting and designing the enter-
prise solution using business services throughout the life cycle—from concept to
retirement. SOA also enables for provisioning the IT infrastructure of the enter-
prise so that disparate applications1 can exchange data as a part of the business
process.

Business services can be defined as a set of actions or tasks an organization pro-
vides to different service stakeholders. Some of the service stakeholders are cus-
tomers, collaborators, clients, employees, and so on. Consider that whereas an
SOA can be defined as an approach to building IT systems, the business services
are considered the key organizing principle for aligning IT systems for business
needs.

The key point here is business services and alignment of IT infrastructure as per
business services and business process requirement. Service orientation, there-
fore, enables the architects to focus on the description of the business problem
rather than any development or execution environment of the enterprise solution.
Because these two are delinked, a business solution that is architected as per
SOA would be loosely coupled, flexible in nature, and allow implementation of
dynamic needs of the enterprise business requirements.

It is important to notice here that the description of SOA does not mention the
requirement of web services technologies as a prerequisite. Technologies such as
CORBA or J2EE can still be efficiently and effectively used to implement the
enterprise solution so that enterprise architecture is service oriented. However,
what is crucial in the context of service orientation is the possibility of separat-
ing the service interface from the execution environment. An SOA that is appro-
priately implemented provides a scope in which it is possible to mix and match
the execution environment.

Early Architectures
Earlier approaches to building enterprise solutions essentially focused on func-
tional aspects of the enterprise problem. These approaches tended to directly use

EARLY ARCHITECTURES 39

the specific implementation environments, such as object orientation, procedure
orientation, data or information orientation, message orientation, and so on to
solve business problems. This resulted in enterprise solutions that were often tied
to features and functions of a particular environment technology. Some of the
popular technologies that evolved were Information Management Systems (IMS),
Customer Information Control Systems (CICS),2 Common Object Request Bro-
kered Architecture (CORBA), Component Object Model/Distributed Component
Object Model (COM/DCOM), and Message Oriented Middleware (MOM).

Enterprise architectures have evolved tremendously since the Mainframe era or
the Centralized Model of mainframe architecture. The progression in architec-
tures such as client/server architectures, distributed architecture, or web archi-
tectures discussed in Chapter 1, “Introduction,” are generic in nature. Specific
architectures on mainframe systems, such as IMS, CICS, CORBA, and DCOM,
have evolved as environment-specific distributed architectures. You need to ana-
lyze some of these technologies and their contribution to the evolution of enter-
prise architectures.

IMS
IMS is one of the earliest technologies to lay the foundation for more advanced
data accessing technologies such as DB2 and Universal Database. IMS was
developed by IBM in the late 1960s to manage data for NASA's Apollo Moon
Landing project. This technology was later released as the world's first commer-
cially sold Database Management System. IMS technology's data management
was based on the earliest data model called the Hierarchical Data model. This
premier database and transactional management system was implemented to
handle many commercially critical, online operational and on-demand business
applications and data that enabled information integration, information manage-
ment, and scalability.

The IMS technology essentially is composed of two subsystems: a Database
Manager called IMS DB and a Transactional Manager called the IMS TM. We
explore briefly these two subsystems in the next section.

IMS as Database Manager
The IMS DB is basically a large system Hierarchical Database Management
System. When introduced, IMS DB was an enormous success, and many large
organizations employed IMS DB for managing the enterprise information. Sub-
sequent research and development efforts by IBM resulted in the revolutionary
way of handling the data. The Relational Database Management System
(RDBMS) by E. F. Codd in 1971 prompted IBM to introduce a radical product

40 CHAPTER 3 EVOLUTION OF SERVICE ORIENTED ARCHITECTURE

called the DB2. Following the introduction of DB2, IBM intended to replace the
Hierarchical Data Management System with relational databases and replace
IMS DB with DB2. However, IBM was not entirely successful in replacing IMS
because a number of major IMS-based organizations were not interested in
replacing the otherwise stable and satisfactorily running IMS-based applica-
tions. As a result, IBM continues to develop newer products and packages
around the IMS technologies that help those organizations that continue to main-
tain IMS-based legacy products on their mainframe systems.

IMS as Transactional Manager
The IMS TM is a robust transactional management system that primarily func-
tions on the IBM mainframe systems. This Transaction Manager was initially
designed as an interactive system that interacts with an end user, through a com-
bination of 3270 screens and VTAM communication mode to process business
transactions. In coordination with IMS DB, IMS TM technology uses a messag-
ing and queuing methodology to implement the transactions in the business pro-
cesses.

When the user initiates a transaction through a 3270 screen, the IMS Control
Program receives a transaction identification number and stores it on a message
queue. The Transaction Manager, thereafter, invokes a scheduler on the queued
transaction to initiate the business process. The message processing region of the
IMS TM then retrieves the transaction from the IMS message queue and pro-
cesses the same. The processing could involve reading/writing/updating the
information on the IMS DB.3 Based on the system design and the architecture of
the enterprise application, the IMS TM could respond and return an output mes-
sage to the user who initiated the transaction on the 3270 terminal.

CICS
CICS from IBM is a transaction server that runs primarily on IBM mainframe
systems under operating environments such as z/OS. CICS is now available for
other operating environments such as OS/2, AIX, Microsoft Windows, and
Linux. The z/OS implementation of CICS is, by far, the most popular and signif-
icant implementation of the CICS technologies.

CICS is a transaction processing system designed for both batch and online busi-
ness transactions. On large IBM mainframe systems, CICS technology supports
a large number of transactions in a given time. The CICS technology has enabled
IBM to retain a dominant position in the mainframe-oriented enterprise comput-
ing. Initially CICS applications were written in COBOL. Presently, CICS appli-
cations can be created using a variety of modern programming languages, such

EARLY ARCHITECTURES 41

as PL/I, C, C++, REXX, and Java. CICS is one of the world's most durable soft-
ware products on the IBM mainframe system. Supported by a variety of applica-
tions and tools, CICS is known for its reliability, security, and performance,
particularly on IBM mainframe systems. Thanks to the aggressive marketing by
IBM and rich research and development efforts in the United States and the UK,
many of the Fortune 500 giants that invested into these systems during the Main-
frame era continue to rely on core parts of enterprise applications based on CICS
technologies.

The CICS applications programs are basically screens, popularly known as 3270
screens.4 The initiation of a CICS program signals the initiation of a transaction,
and the system initiates a transaction identification number. The CICS screens
are sent as “maps” or “pages” using a programming language such as COBOL.
The end user, on the other end of the system, inputs data that is made available to
the CICS program by receiving a map. CICS screens essentially contain textual
information. The textual information is presented to the end user in different for-
mats. This includes highlighted text, colored fonts, or even blinking text.

CORBA
CORBA is not that different from the RPC technologies introduced in Chapter 2,
“Evolution of IT Architectures.” Developed and supported by Object Man-
agement Group (OMG), CORBA technology can be considered a generalization
of RPC technology and includes several improvements on the data objects and
on the data primitives. The purpose of this technology and architecture was to
enable the development of distributed applications and services that can interop-
erably communicate with other disparate applications over the network. The
CORBA architecture was essentially developed to bring about a discipline to
implement portability and interoperability of applications across different hard-
ware platforms, operating environments, and disparate hardware implementa-
tions. CORBA technology uses a binary protocol called Internet Inter-ORB
Protocol (IIOP) for communicating with the remote objects.

DCOM
A bit of background is required here. In the mid-1990s Microsoft Corporation
introduced a technology popular as the COM.5 This technology enabled the
development of software modules called components for integrating applications
over the client/server architecture. To build these components, developers must
adhere to the COM specification so that the components can operate interopera-
bly within the network. The DCOM technology, introduced sometime in late

42 CHAPTER 3 EVOLUTION OF SERVICE ORIENTED ARCHITECTURE

1990s, enabled interaction among network-based components to bring in the Dis-
tributed Communication Environment (DCE). DCOM technology is essentially
built on an object RPC layer, which in turn is on top of DEC RPC to enable the
communication among the remote objects. DCOM technology uses a binary pro-
tocol, termed Object Remote Procedure Call (ORPC), for distributed communica-
tion among remote objects. Technologies such as Object Linking and Embedding
(OLE), ActiveX, and Microsoft Transaction Server (MTS) are some of
Microsoft’s technological advancements built on COM and DCOM technologies.

Paradigm Shifts
We previously indicated that the field of information technology has witnessed
many paradigm shifts.6 These paradigm shifts are affecting the enterprise busi-
nesses in many ways—specifically in how they conduct business and communi-
cate. These paradigm shifts can be primarily attributed to technological
innovations in the field of hardware, software, and operating and networking
environments. Some of the paradigm shifts7 that are of importance to the enter-
prise businesses are

• Internet and World Wide Web

• Java and Java 2 Enterprise Edition

• Extensible Markup Language

• Web Services—XML-RPC and SOAP

• Influence of the Internet and the World Wide Web

The arrival of both the Internet and the World Wide Web ushered in a paradigm
shift to the enterprises, specifically in the way business transaction takes place.
You might be aware that extensive research and development work sponsored by
the Department of Defense8 resulted in the foundation of what is now the Inter-
net. The evolution of the web, in fact, ensured fundamental changes in the way
B2C and B2B partners interact. More revolution than evolution, the Internet and
World Wide Web has enormously grown, thanks partly to the contribution from
several companies, organizations, academic and research institutions, and even
the individual professionals all over the world. On the technology front, the web
has not only rendered TCP/IP as the default business protocol, it also has
brought forth a new type of client called the browser client.

Java and Java 2 Enterprise Edition
Prior to the arrival of Java, the software development for any enterprise applica-
tion needed to be developed on many programming environments, on different

PARADIGM SHIFTS 43

hardware and operating environment. Frequently a software application would
need to be developed and delivered on multiple hardware platform and operating
environments so that functionally they delivered repeatable results. Developed
by Dr. James Gosling of Sun Microsystems, Java technology was introduced in
1995. The arrival of Java as a programming language ushered in yet another par-
adigm shift in the world of software development. A Java Virtual Machine would
behave the same way on any platform, and therefore, applications developed
using Java programming language would behave reliably and consistently on
any platform. Java programming has brought about acronyms such as WORA
(Write Once Run Anywhere), WORE (Write Once Run Everywhere), and WORD
(Write Once and Run on any Device).

Java and J2EE technologies have witnessed tremendous growth over the past
decade and Java, in particular, has been the most widely employed programming
environment in the world today. Java is easily considered the most successful
programming language. Some of the features and attributes that popularized the
Java platform are object oriented, platform independent, portable, secure, robust,
multithreaded, and more.

One of the prime reasons for the widespread industry adoption of this environ-
ment could be because the environment has been the product of the industry
movement toward the requirement of portable and interoperable applications
that can work over the web. Other contributing factors include reliable web com-
ponent technologies, such as Servlet and JavaServer Pages (JSP), and distrib-
uted components such as Enterprise JavaBeans (EJB) that can enable the
developers to deploy these components in a variety of container/component
environments. These components essentially use a binary protocol called Java
Remote Method Protocol (RMI over IIOP) for communicating with remote
objects.

Since its introduction over a decade ago, Java has grown from the status of a
mere programming language to a full-fledged platform on a variety of systems
and environments,9 including devices such as PDAs, mobile phones, set-top
boxes, rings, cards, chips, and so on. A community called the Java Community
Process (JCP) now governs the development of this language. Most of the indus-
try leaders and key players in the IT field participate in shaping the development
of this remarkable technology.

Extensible Markup Language
John Bosak of Sun Microsystems is credited with the revolutionary work on
Extensible Markup Language (XML). The idea of XML essentially emerged

44 CHAPTER 3 EVOLUTION OF SERVICE ORIENTED ARCHITECTURE

from the other nonexpendable markup languages such as Generalized Markup
Language (GML) from IBM, Standardized Generalized Markup Language
(SGML) from ISO, and Hypertext Markup Language (HTML) from ECRN.
XML’s popularity essentially stems out of its extensible capability. One of the
biggest contributions of XML is its capability of interoperability.

The development of XML resulted in its adoption by a variety of industries—
both vertical and horizontal. This has resulted in the creation of a large number
of XML vocabularies that cater to the interoperability needs of different indus-
tries. The biggest contributions of XML for enterprise solution needs are the
SOAP, WSDL, and UDDI technologies. Part II, “Service Oriented Architecture
Essentials,” discusses this in detail.

Web Services—XML-RPC and SOAP
Introduced by Dave Winer, XML-RPC is an RPC protocol that is text based. As
the name indicates, the XML-RPC protocol enables the exchange of XML data
between remote objects. The idea of transporting XML as a payload over trans-
port protocols such as HTTP has resulted in laying the foundation of web ser-
vices such as SOAP and WSDL. Initial work on XML-RPC resulted in a simple
and portable way of making text-based RPC in a distributed environment. This
pioneering work resulted in the opening of a new perspective in the history of
middleware technologies. Further work in this direction resulted in a new mes-
sage-oriented protocol called SOAP and brought the interoperability one step
closer to business automation.

Arrival of Web Services and SOA
Earlier in this chapter we highlighted the Remote Procedure Call and its influ-
ence in the distributed communication technologies such as CORBA, DCOM,
and J2EE. The protocols used in these technologies, IIOP, ORPC, and RMI/
IIOP, respectively, are the binary protocols used for communication between
remote objects over the corporate networks. This laid the foundations for a radi-
cally new protocol and resulted in the development of extensible vocabularies
such as SOAP, WSDL, and UDDI. These extensible languages are referred to as
First Generation Web Services. These languages provide fundamental level sup-
port for enterprise applications and enable them to be web service-oriented at the
functional level. However, for enterprises, nonfunctional requirements take pri-
ority over functional requirements. The web services extensions that attempt to
meet the nonfunctional aspects of enterprise requirements are referred to as the

ARRIVAL OF WEB SERVICES AND SOA 45

Second Generation Web Services extensions, and we explore them briefly in the
following sections.

First Generation Web Services
As you may recall from Chapter 1, the three pillars of web services are SOAP,
WSDL, and UDDI. These technologies are advanced vocabularies of the XML
and use other supportive XML vocabularies such as Namespace and XML
Schema Definition (XSD). Each of these web services vocabularies address dif-
ferent aspects of enterprise information interchange in an interoperable manner.

SOAP
This new text-based messaging technology enables applications to exchange
information in the form of messages. The messages can be interchanged in a
synchronous or asynchronous manner. The design of SOAP message structure is
such that the messages can be interchanged between applications through RPC
invocation or through MOM technologies.

WSDL
WSDL enables description of the service through the use of a set of specialized
XML elements. The service description includes the data types interchanged
(this is programming language-independent), name of the service, parameters
passed, transport protocol used, and so on. WSDL also enables several related
services to aggregate into a service suite.

UDDI
UDDI is a specification and service that helps businesses provide a platform in
such a way that the service requesters can discover service providers, zero in on
appropriate partners, and enable an agreed-upon business automation. UDDI,
like WSDL, uses advanced XML vocabularies to define the business and service
information in an elaborate manner. As a service, UDDI registries enable the ser-
vice requester to store all necessary information regarding business and service
information that is suitably categorized as per industry standards.

The Second Generation Web Services
Enterprise solution requirements might be categorized into functional require-
ments and nonfunctional requirements. Nonfunctional requirements govern the
architectural and design aspects of any enterprise solution. There are many non-
functional requirements, and one enterprise's nonfunctional requirements list

46 CHAPTER 3 EVOLUTION OF SERVICE ORIENTED ARCHITECTURE

and priorities would be different from another. Some of the nonfunctional
requirements that are common to most of the enterprises are

• Security

• Reliability

• Availability

• Quality of service

• Business process

• Choreography

Several web services extensions and frameworks have been proposed by various
industry consortia, and there is more than one web service extension proposed
by competing industry consortia. These extensions and frameworks address one
or more nonfunctional enterprise requirements Although there is a general con-
sensus among the industry consortia on some of the web service extensions, this
is not the case for all web service extensions.

Some of the important web services extensions are

• WS-Security Specifications and Frameworks

• WS-Addressing Specification

• WS-Reliable Messaging Specifications

• WS-Business Process Execution Language

• WS-Choreography Definition Language

• WS-Metadata Exchange Specifications

SOA Using Web Services
We have already discussed how the arrival of XML and related technologies
brought in a paradigm shift for enterprise solutions. The core web services tech-
nologies provided a sound foundation for the functional aspects of the services,
its description, and invocation. The second generation web services extensions,
on the other hand, brought the nonfunctional requirements into the web services
fold. Together, web services technologies provide several key features and
advantages that the earlier technological solutions could not. Interoperability, for
example, enables a clear separation of the service interface from the execution
environment. Therefore, SOA implemented using web services technologies is
likely to provide a leading edge over any other technological implementation.

Using web services, it is easier to change service compositions of the enterprise
application and implement the changes at a lower cost. These features help the

SOA IMPLEMENTATION TECHNOLOGIES 47

enterprise project developers to quickly respond to the dynamic requirements of
the enterprise business needs.

Benefits and Challenges with SOA
SOA with web services as an implementation route brings a host of advantages
to the enterprises. This doesn’t necessarily mean that service orientation of the
enterprise architecture is void of any disadvantages. Some of the significant pros
and cons associated with SOA are as follows:

Benefits

• Rapid integration of enterprise applications—departments and partners

• Efficient business automation

• Enhanced corporate agility

• Faster time to market for new products and services

• Reduced IT costs for the corporate long-term investment

• Improved operational efficiency of the business processes

• Better ROI

Challenges

• Identifying the need for SOA

• Significant investment in resources on rearchitecting the core IT assets

• Identifying the right kind of governance model for the enterprise

• Mind share for the right kind of professionals and stake holders

• Legacy system issues—some legacy applications cannot be service
oriented

Notice here that the issues and challenges for SOA relate more to the cultural
aspect of the problem than the technological or business aspects. Of course,
issues such as integration of unsupported legacy systems to service orientation
remain as bottlenecks to the implementation of SOA.

SOA Implementation Technologies
Web services implementation of SOA has many crucial advantages over any
other implementation strategies. Presently, there are two predominant solutions
that help in web services implementation of SOA: Microsoft’s .NET technolo-
gies and Sun Microsystems’s Java Platform Enterprise Edition10 technologies.

48 CHAPTER 3 EVOLUTION OF SERVICE ORIENTED ARCHITECTURE

Microsoft's .NET Technologies
The .NET product suite from Microsoft enables enterprises to build enterprise-
class web SOAs. The .NET product suite is largely a rewrite of Windows
DNA,11 which constitutes Microsoft's previous platform constituents for devel-
oping enterprise applications. The new .NET Framework replaces these technol-
ogies and includes the web services layer.

The .NET Environment
The .NET technologies offer language independence and language interoperabil-
ity. This is an interesting aspect of the .NET technology. Accordingly, a .NET
component can be written, for example, partially in different programming lan-
guages and implemented as part of the web services solution. The .NET technol-
ogy converts this composite language component into an intermediary neutral
language called Microsoft Intermediate Language (MSIL). This MSIL12 code is
then interpreted and compiled to a native executable file.

The .NET Framework also includes a runtime environment called the Common
Language Runtime (CLR). This environment is analogous to the Sun Microsys-
tems Java Runtime Environment (JRE).

The .NET Server Services
Microsoft has packed a number of servers as part of the .NET platform called
The .NET Enterprise Servers. These servers provide vital services for hosting
enterprise-class applications. Some important servers included as part of the
.NET Servers are SQL Server, Exchange Server, Commerce Server, Cluster
Server, Host Integration Server, and BizTalk Server.

Sun Microsystems’s Java Enterprise Edition Technologies
The Java Platform, Enterprise Edition (Java EE) is a progression of the Java
environment to the server side of the application software paradigm. J2EE,
unlike Microsoft’s .NET, could be termed a defacto industry standard and has
resulted in a large industry initiative called the Java Community Process (JCP).
The participants of this community include the “who's who” in the IT and
related industries—IBM, Oracle, Nokia, BEA, and so on. The spirit of Java as
well as the other related technologies, such as Java EE, was to free the customers
from the dependency of products and tools from vendors.

SOA IMPLEMENTATION TECHNOLOGIES 49

Java Foundation
The launching of Java as a programming language took the industry by storm in
1995. As previously indicated, the Java programming environment provided
unique features that no other programming language provided: portability, plat-
form independence, and so on. The core feature is the Java Runtime Environ-
ment (JRE) that can be made available on any hardware or operating
environment. The application is developed using the Java programming lan-
guage and compiled into platform-independent bytecodes. This bytecode can
then be deployed to run on JRE that is installed on any compatible system.

Java EE is the server-side extension of Java. The applications are not just Java
objects but are also appropriate server-side components. For creating web appli-
cations, components such as Java Servlets and JavaServer Pages (JSP) are used
and deployed on web servers, and these web servers run on JRE. Likewise, for
creating enterprise applications, components such as Enterprise JavaBeans
(EJB) are developed and deployed, optionally with web applications, in applica-
tion servers. Again, these application servers also run in JRE.

Web Services Using Java Enterprise Edition
The evolution of Java EE has been steady. Java EE technologies are consistently
improving with each version. These improvements are essentially driven by Java
Specification Requests (JSR), and once again, this is the JCP initiative. The arrival
of XML and the related advanced vocabularies has resulted in immediate adop-
tion into the Java environment. Simply put, this is because Java, as a portable pro-
gramming language, and XML, as portable information, are an excellent
combination for any environment. Further, the arrival of web services, in the form
of SOAP, WSDL, and UDDI, has resulted in the creation of appropriate APIs.

Java EE applications can be executed on the web and on application servers.
Appropriate components are developed and assembled to create enterprise appli-
cations. The Java EE servers and containers provide all the necessary “service
plumbing” support for the web and application server.

Java EE architecture supports the following tiers: presentation tier, business tier,
and data tier (or EAI tier). Not all of them are essential, and depending on the
enterprise requirement, even one of the tiers can enable the application to be
identified as a Java EE application. If the presentation tier is present, Java Serv-
lets and JSP can be designed and deployed to create the web application. The
Servlets can also be configured to be the services (or clients of) web services
application. If the business tier is present, EJB can be developed and deployed as
part of the enterprise application. The EJBs can be Session EJBs and Entity
EJBs. Although session EJBs can handle session management, Entity EJBs

50 CHAPTER 3 EVOLUTION OF SERVICE ORIENTED ARCHITECTURE

address persistence activity. Alternatively, session EJBs can participate in the
web services interactions. Business partners can connect with the presentation
tier and business tier of J2EE applications through web services technologies.

Summary
The concept of Service Oriented Architecture is not entirely new. SOA essen-
tially promotes the separation of the service interface and the execution environ-
ment. SOA also promotes the alignment of IT infrastructure to meet the business
service requirements. Although SOA can be implemented in a number of ways,
utilizing web services provides several advantages, particularly because web ser-
vices bring enterprise application closer to business automation. Two of the most
popular technologies for implementing SOA through web services are
Microsoft’s .NET and Sun Microsystem's Java Platform, Enterprise Edition.

In the next part, we devote our attention toward the building blocks of SOA tech-
nology. Three elements included here are the derivatives of the extensible markup
language, namely SOAP, WSDL, and UDDI, and business process-related XML
vocabularies such as BPEL and CDL. Advanced elements of web services address
aspects such as security, reliability, quality of services, and so on.

Endnotes
1. Different applications are exchanging the data, while participating in business processes, regard-

less of hardware platform, operating environment, or programming languages underlying these
applications.

2. Often pronounced as “kicks.”
3. The IMS DB now supports relational database management systems such as DB2 and Universal

DB.
4. Pronounced “three two seven zero” screen or terminal.
5. Most of the technologies invented/introduced by Microsoft Corporation are invariably on the

Windows/Intel combination. Often this combination is referred to as Wintel: Windows and Intel.
6. The term paradigm shift was first used by Thomas Kuhn in his famous book The Structure of Sci-

entific Revolutions, in 1962, to describe the process and result of a change in basic assumptions
within the ruling theory of science. It has since become widely applied to many other realms of
human experience and the field of information technology as well. Paradigm shift can also be de-
fined as a significant change from one fundamental view to another. Such changes are usually
accompanied by discontinuity.

ENDNOTES 51

7. We are essentially focused on the field of enterprise solutions here. Scope of information tech-
nology is really wide, and paradigm shifts as applied to this scope, as per the interpretations of
different experts, could be different. For example, as per the essays of Bioss Sari, the following
three events mark the paradigm shifts in the field of information technology:
• Invention of the microprocessor and its impact on the computer industry
• Paul Baran’s invention of the distributed network and packet switching
• The future of computing and the end of the silicon era

8. DARPANet and ARPANet are the two revolutionary projects sponsored by the U.S. Department
of Defense. DARPANet is the origin of ARPANet project. The aim of the DARPANet project was
to exchange military information among analysts, scientists, and researchers located at different
geographical locations of the United States. The ARPANet project was launched by DOD some-
time in the late 1960s. The network infrastructure for this project was created by the U.S. Defense
Advanced Research Project Agency (ARPA). The idea of ARPANet was to set up an experimen-
tal wide area network within the United States to survive the military exigencies.

9. Java technology from Sun Microsystems was initially developed as a programming environment
for devices. However, when it was launched, it was launched as a “portable” programming lan-
guage. However, the language grew in several directions, including the devices.

10. Sun Microsystems has rechristened the J2EE as the Java EE. This change is not just in the name.
There are fundamental changes in the way web services are created as a part of web applications
or enterprise applications. These aspects are discussed in detail in Chapter 9, “Java Platform, En-
terprise Edition Overview.”

11. Windows DNA includes many technologies that are part of Microsoft’s products today. They in-
clude Microsoft Transaction Server (MTS) and COM+, Microsoft Message Queue (MSMQ), and
the Microsoft SQL Server database.

12. This IL code is language-neutral and is analogous to Sun Microsystem’s Java bytecode.

331

INDEX
A
accessing web services, Java, 212–213
Acknowledgment, 141
activities elements, managing (WS-

BPEL), 124
activity execution points, 270
actor attribute, Header element, 62
advanced branching and synchroniza-

tion patterns, 275
alliance members, Open Travel Alliance

(OTA), 287–288
annotations

@HandlerChain, 211
@Oneway, 211
@SOAPBinding, 212
@WebMethod, 211
@WebParam, 211
@WebResult, 211
@WebService, 210
@XmlAttribute, 220
@XmlType, 219

Apache Struts, 244
application client, Java EE, 167
application service design pattern,

258–259

apply request values phase, JSF life
cycle, 241

architecture
CICS (Customer Information Control

System), 40–41
CORBA, 41
DCOM (Distributed Component

Model), 41
IMS (Information Management),

39-40
Asynchronous Communication Mode,

25
asynchronous interactions, JAX-WS,

214–215
asynchronous messaging patterns, 263

correlation identifiers, 265–266
request-reply, 263–264
return address, 264

AtLeastOnce pattern, WS-Reliable
Messaging, 142

AtMostOnce pattern, WS-Reliable
Messaging, 142

authentication, requester level security,
143

332 INDEX

authorization, requester level security,
143

auto start patterns, 279
availability, Java EE, 170

B
B2B (Business-to-Business), 6
B2C (Bussiness-to-Consumer), 6, 27
Backing Beans, 186
basic activity elements, WS-BPEL,

122–123
basic control flow patterns, 274–275
Basic profile, WS-I, 147
bidirectional relationships, 196
binding element, WSDL documents,

97–98
binding information

deleting, 115
drill-down, 117
finding, 116
saving, 114

binding SOAP, 57, 75
to transport protocols, 68

binding Template data structure, UDDI,
110

bindings, JAX-WS, 213
@BindingType, 213
Blueprints, 151
Body element, detailed SOAP model,

63–64
BPEL4WS (Business Process Execution

Language for Web Services), 121
brokers, 103
browser clients, 27, 31
browsing information, 116–117

bulk update and delete, Java Persistence
query language, 201

business information
deleting, 114
drill-down, 117
finding, 116
saving, 113
service publication

creating and modifying, 113–114
deleting, 114–115

business perspective, ESB, 224–225
Business Process Execution Language

for Web Services (BPEL4WS), 121
business processes, 120
business tier, 247–248

overview, 248–250
business tier design patterns, 250–251

presentation tier-to-business tier,
251–252

SOA and, 250-251
transfer object, 252–254

businessEntity data structure, UDDI,
108

businessService data structure, UDDI,
109–110

Business-to-Business (B2B), 6
Business-to-Consumer (B2C), 6, 27
bytecodes, 49

C
C2C, 27
callback, 215
case studies

OTA. See Open Travel Alliance (OTA)
Silhouette Tours, 288–289

challenges, 289–290

INDEX 333

solution implementation strategies,
290

solution platform considerations,
296–298

travel reservation services, 291–293
workflow, 294–296

Cathode Ray Tube (CRT), 29
Centralized Model, 17
choreography, 127–128

SOA and, 130
WS-CDL, 128

CICS (Customer Information Control
System), 40–41

client/server architecture, 19–20
client-side architecture, 28–29

browser clients, 31
mobile clients, 31
terminals, 29
thick clients, 30
thin clients, 30

CLR (Common Language Runtime), 48
Codd, E.F., 39
COM (Component Model), 41
common annotations, Java EE, 161
Common Object Request Brokered

Architecture (CORBA), 10, 22, 41
common platform technologies, Java

EE, 160–162
compensating action, orchestration pat-

terns, 273
complex data types, SOAP Encoding, 67
Complex Type SOAP Encoding, 66–68
component model, Java EE, 167

application client, 167

EJB (Enterprise JavaBeans) compo-
nents, 168

resource adapters, 168
web components, 168

Composite view, presentation tier design
patterns, 236

Concurrency, Java EE, 171
conditional transitions, orchestration

patterns, 272
Connector Architecture, 160
container services, EJB 3.0, 191

life cycle, 193
security, 192
transaction, 192

contemporary web services extension,
134

control-flow patterns, 273
advanced branching and synchroniza-

tion patterns, 275
basic control flow patterns, 274–275
multiple instance patterns, 276–277

conversation patterns, 267
process patterns, 269
request-reply, 267–268
subscribe notify, 268–269

Conversational Message Exchanges, 64
CORBA (Common Object Request Bro-

kered Architecture), 10, 22, 41
correlation identifiers, asynchronous

messaging patterns, 265–266
courier services, 4
courier-tracking services, 4
creation patterns, 278
CRM (Customer Relation Manage-

ment), 13, 160

334 INDEX

CRT (Cathode Ray Tube), 29
Customer Information Control System

(CICS), 40–41

D
DAO (data access object) pattern, 256
data access object pattern, 255-256
data-based routing, data patterns, 278
data conversion, JSF (JavaServer Faces),

184–185
data integrity, Java EE, 169
data interaction, data patterns, 277
data patterns, 277-278
data structures, UDDI, 107

bindingTemplate, 110
businessEntity, 108
businessService, 109–110
tModel, 111–112

data transfer mechanisms, data patterns,
278

data types
complex, SOAP Encoding, 67
derived, SOAP Encoding, 66
simple data types, SOAP Encoding,

65
XML Schema versus Java, 218

data visibility, data patterns, 277
Database Manager (IMS DB), 39
database portability, Java Persistence

query language, 202
DCE (Distributed Communication Envi-

ronment), 42
DCOM (Distributed Component

Model), 10, 41
declarations elements, WS-BPEL, 122

delete_binding, 115
delete_business, 114
delete_service, 115
delete_tModel, 115
deleting

binding information, 115
business information, 114

service publication, 114–115
service information, 115
technical model information, 115

delivering services through web tier,
234–235

@DenyAll, 192
dependency injection, EJB 3.0, 191
derived data types, SOAP Encoding, 66
describing web services with XML,

91–94
WSDL documents

binding element, 97–98
message element, 95
operation element, 98–99
port element, 100
portType element, 96–97
service element, 99
types element, 94–95

detached state, entity life-cycle opera-
tions (JPA), 198–199

detail, error/exception information
(SOAP), 73

detour patterns, 279
developer productivity, Java EE 5,

166–167
Digital, 17
discovering web services, 87, 90–91

service publication, 115–116

INDEX 335

Dispatch API, 215
Dispatcher view, presentation tier design

patterns, 236
distributed architecture, 21

messaging, 23–25
RPC (Remote Procedure Call), 22–23

Distributed Communication Environ-
ment (DCE), 42

Distributed Component Model
(DCOM), 10, 41

Distributed Network Architecture
(DNA), 21

distribution, Java EE, 169
DNA (Distributed Network Architec-

ture), 21
drill-down, 117

E
e-commerce, post-internet era, 27
EAI (Enterprise Application Integra-

tion), 160
EDI (Electronic Data Interchange), 26
EIS (Enterprise Information System),

160, 168
EJB (Enterprise JavaBeans), 43, 49, 158

business tier, 249
EJB (Enterprise JavaBeans) compo-

nents, Java EE, 168
EJB 3.0, 189–190

container services, 191
life cycle, 193
security, 192
transaction, 192

dependency injection, 191
interceptors, 193

Electronic Data Interchange (EDI), 26
encoding rules (SOAP), 56
endpoint references, WS-Addressing,

139
engine monitoring and control, orches-

tration patterns, 272
Enterprise Application Integration

(EAI), 160
enterprise application technologies, Java

EE, 158
Connector Architecture, 160
Enterprise JavaBeans (EJB), 158
Java Message Service API (JMS), 160
Java Persistence API, 159

enterprise applications, case studies (Sil-
houette Tours), 297

enterprise architecture, 39
Enterprise Information Systems (EIS),

160
Enterprise JavaBeans (EJB), 43, 158
Enterprise Resource Planning (ERP),

160
Enterprise Service Bus. See ESB
@Entity, 191, 194
entity class, Java Persistence API,

194–195
entity life-cycle operations API, Java

Persistence API, 197–200
Entity Manager API, Java Persistence

API, 197
Envelope element, detailed SOAP

model, 60–61
ERP (Enterprise Resource Planning),

160

336 INDEX

error handling, SOAP, 71
detail, 73
Fault, 72
faultactor, 73
faultcode, 72
faultstring, 73

ESB (Enterprise Service Bus), 223-224
business perspective, 224–225
features, 226-227
Java and, 227–230

evaluator, orchestration patterns, 271
Eventing, 137
events, JSF (JavaServer faces), 185
ExactlyOnce pattern, WS-Reliable Mes-

saging, 142
exclusive choice pattern, 274
exploring IDE, NetBeans, 304–305
Extensible Markup Language. See XML

F
Fault, error/exception information

(SOAP), 72
fault reporting mechanism, SOAP, 72
faultactor, error/exception information

(SOAP), 73
faultcode, error/exception information

(SOAP), 72
faultstring, error/exception information

(SOAP), 73
Federation, Single-Sign On, 144
find_binding, 116–117
find_business, 116
find_service, 116
finding

binding information, 116
business information, 116

service information, 116
technical model information, 117

First Generation Core Standards, 10
First Generation Web Services, 44–45
first-generation web services, 134
foreign keys, 195
frameworks, web tier design patterns,

237–238
front controller, presentation tier design

patterns, 236

G
Gang of Four (GoF), 261
Generalized Markup Language (GML),

44
generating web service descriptions,

87-89
global distribution systems, Open Travel

Alliance (OTA), 288
GML (Generalized Markup Language,

44
goals, Open Travel Alliance (OTA), 286
GoF (Gang of Four), 261
Gosling, Dr. James, 43
GUIs (Graphical User Interfaces), 5

H
handler framework, JAX-WS, 213–214
@HandlerChain, 211
Header element, detailed SOAP model,

61–63
hotel industry, Open Travel Alliance

(OTA), 287
HTTP (Hypertext Transfer Protocol),

6, 10
transport protocols, 68

INDEX 337

I
IBM, 17
IDE (Integrated Development Environ-

ment), NetBeans
exploring, 304–305
project basics, 305–306
project creation, 306–318

identification, requester level security,
143

IIOP (Internet Inter-ORB Protocol), 55
implementing web services in Java, 208
IMS DB (Database Manager), 39
IMS TM (Transactional Manager), 40
IMS. See Information Management

Systems
information, browsing and retrieving,

116–117
information drill down, service publica-

tion, 117
Information Management Systems

(IMS), 39
Database Manager, 39
Transactional Manager, 40

information model, UDDI, 107
inheritance, Java Persistence API,

196–197
inheritance mapping, Java Persistence

API, 204–205
Initial Senders, 69-70
In-Only Pattern, 135
In-Optional-Out Pattern, 136
InOrder pattern, WS-Reliable Messag-

ing, 142
In-Out Pattern, 135

integration tier design patterns, 254
data access object pattern, 255-256

intelligent routing, ESB, 226
interaction, SOAP, 68

message exchange model, 69–71
interceptors, EJB 3.0, 193
intermediary, SOAP, 70
Internet, 26–27
Internet Inter-ORB Protocol (IIOP), 55
interoperability, 7

Java EE, 171
intrabusiness tier design patterns,

257–258
application service design pattern,

258–259
invocation, web services, 80, 91

Request-Response, 80
Solicit-Response, 81
synchronous invocation and funda-

mentals of RPC mechanisms,
81–84

invoke application phase, JSF life cycle,
241

J
J2EE (Java 2 Enterprise Edition), 32,

42-43, 48-50, 151
web services, 49–50

JACC (Java Authorization Contract for
Containers), 162

Java, 42–43
ESB and, 227–230
mapping to WSDL, 208–210
web services

338 INDEX

accessing, 212–213
implementing, 208

Java annotations, Java EE 5, 163–165
Java API for XML Registries

(JAXR), 157
Java API for XML Web Services. See

JAX-WS
Java API for XML-Based RPC

(JAX-RPC), 158
Java Architecture for XML Binding. See

JAXB
Java Authorization Contract for

Containers (JACC), 162
Java Business Integration. See JBI
Java Community Process. See JCP
Java data types versus XML

Schema, 218
Java EE, (Java Platform, Enterprise

Edition), 151-152
component model, 167

application client, 167
EJB (Enterprise JavaBeans)

components, 168
resource adapters, 168
web components, 168

quality of services (QoS), 169
availability, 170
concurrency, 171
data integrity, 169
distribution, 169
interoperability, 171
performance and scalability, 170
security, 169

technology categories, 153
common platform technologies,

160–162

enterprise application technologies,
158–160

web application technologies,
153–155

web services technologies, 155–158
web technologies, 173–174

Java Servlet, 174–175
JavaServer Faces (JSF). See JSF
JavaServer Pages (JSP), 176–177
JSP Standard Tag Library

(JSTL), 177
Java EE 5, 162

developer productivity, 166–167
Java annotations, 163–165
POJO (Plain Old Java Object)

model, 165
Java EE Application Deployment, 161
Java EE Management, 162
Java logging API, 214
Java Message Service (JMS), 223
Java Message Service (JMS) API, 160
Java Persistence API, 159, 189-190,

193–194
entity class, 194–195
entity life-cycle operations, 197–200
Entity Manager API, 197
inheritance, 196–197
inheritance mapping, 204–205
object-relational mapping, 203
persistence query language, 200–202
relationship mapping, 203
relationships, 195–196

Java Persistence Query Language, 159
Java Pet Store, 151
Java Platform, Enterprise Edition. See

Java EE

INDEX 339

Java Remote Method Protocol (JRMP),
22

Java Runtime Environment (JRE), 48
Java Server Faces (JSF). See JSF

(JavaServer Faces)
JavaServer Pages (JSP), 43, 154,

176–177
JavaServer Pages Standard Tag Library

(JSTL), 155
Java Servlet, 154, 174–175
Java Transaction API (JTA), 161
Java Virtual Machine (JVM), 31
Java2 Enterprise Edition (J2EE), 32
JavaBeans, 161
JavaMail, 161
JAXB (Java Architecture for XML

Binding), 157, 208, 217-220
schema evolution, 220–222

JAXR (Java API for XML
Registries), 157

JAX-RPC (Java API for XML-Based
RPC), 158

JAX-WS (Java API for XML Web Ser-
vices), 156, 207-208

asynchronous interactions, 214–215
handler framework, 213–214
messaging API, 215–217
protocol binding, 213

JBI (Java Business Integration),
223, 228

JBI Abstraction Business Process
Metadata, 228

JBI runtime environment, 229
JCP (Java Community Process), 43,

152, 227
JMS (Java Message Service), 223

JMS (Java Message Service) API, 160
JPA (Java Persistence API), 190
JRE (Java Runtime Environment), 48-49
JRMP (Java Remote Method

Protocol), 22
JSF (JavaServer Faces), 155, 178

data conversion and validation,
184–185

events, 185
framework, functional aspects of, 239
life cycle of, 240-241
Managed Beans, 182–183
MVC (Model-View-Controller)

paradigm, 178
navigation model, 180–182
unified expression language, 183–184
user interface component framework,

179–180
web services delivery, 242-243

JSP (JavaServer Pages), 43, 49, 154,
176–177

JSP Standard Tag Library (JSTL), 177
JSTL (JavaServer Pages Standard Tag

Library), 155, 177, 233
JTA (Java Transaction API), 161
JVM (Java Virtual Machine), 31

K
kerberos, Single Sign On, 144
Kodali, Raghu, 166

L
LAN (local area network), 5
layered systems, 84
legacy systems, 16
Liberty Alliance, 144

340 INDEX

life cycles
container services, EJB 3.0, 193
JSF, 240

apply request values phase, 241
invoke application phase, 241
process validations phase, 241
reconstitute component tree phase,

240
render response phase, 241
update model values phase, 241

of products and services, 4
@Local, 191
local area network (LAN), 5
local calls, synchronous invocation, 81
logical handlers, 214

M
mainframe systems, 17–18
MAN (metropolitan area network), 5
Managed Beans, JSF (JavaServer

Faces), 182–183
managed state, entity life-cycle opera-

tions (JPA), 198
@ManyToMany, 194
@ManyToOne, 194
mapped superclasses, 196
mapping between Java and WSDL,

208–210
MEPs (Message Exchange Patterns),

135-136
Message Addressing Properties, 137

WS-Addressing, 139
message element, WSDL documents, 95
Message Envelope (SOAP), 56

message exchange model, SOAP inter-
action, 69-71

Message Exchange Patterns (MEPs),
135-136

message level security, 145
Message Oriented Middleware

(MOM), 224
@MessageDriven, 191
messaging

distributed architecture, 23–25
PTP (Point-to-Point), 25
Pub/Sub (Publish/Subscribe), 25

messaging APIJAX-WS, 215–217
messaging distribution, Open Travel

Alliance (OTA), 285
Metadata, 138
metropolitan area network (MAN), 5
Microsoft, 34

Component Object Model (COM), 41
.NET product suite, 48

Microsoft Intermediate Language
(MSIL), 48

MIME attachments, SOAP, 59
mobile clients, 31
models, information model (UDDI), 107
Model-View-Controller (MVC) para-

digm, JSF (JavaServer Faces), 178
modifying business information, service

publication, 113–114
MOM (Message Oriented

Middleware), 224
MSIL (Microsoft Intermediate Lan-

guage), 48
multichoice pattern, 275
multimerge pattern, 275

INDEX 341

multiple instance patterns, 276–277
multiprotocol transport, ESB, 227
mustUnderstand attribute, Header ele-

ment, 62

N
NAG (Numerical Algorithms Group), 18
NAICS (North American Industry Clas-

sification System), 105
navigation model, JSF (JavaServer

Faces), 180–182
Negative Acknowledgment, 141–142
.NET Enterprise Servers, 48
.NET product suite, 48
NetBeans Enterprise Pack, 302

implementing, 302–303
NetBeans IDE (Integrated Development

Environment), 303–304
exploring, 304–305
project basics, 305–306
project creation, 306–318

new state, entity life-cycle operations
(JPA), 198

node API sets, UDDI, 106
North American Industry Classification

System (NAICS), 105
Notification behavior, operation ele-

ment, 99
Numerical Algorithms Group (NAG), 18

O
Object Modeling Group (OMG), 10
Object Remote Procedure Call (ORPC),

42, 55
object-relational mapping

Java Persistence API, 203
ORM, 159

OLE (Object Linking and Embedding),
42

OMG (Object Modeling Group), 10
one-way, operation element, 99
@Oneway, 211
Open Travel Alliance (OTA), 283–285

alliance members, 287–288
global distribution systems, 288
goals, 286
messaging distribution, 285
plans and specifications, 286–287

operation element, WSDL documents,
98–99

orchestration, 121
process patterns, 269
SOA and, 129
WS-BPEL, 122

basic activity elements, 122–123
declarations elements, 122
managing activities elements, 124
processing, 124, 127
structured activity elements,

123–124
orchestration builder, 270
orchestration context, orchestration pat-

terns, 272
orchestration engine, 269–270
orchestration patterns, 269

compensating action, 273
conditional transitions, 272
engine monitoring and control, 272
evaluator, 271
orchestration builder, 270
orchestration context, 272
orchestration engine, 270
rule builder, 271

ORM (object-relational mapping), 159

342 INDEX

ORPC (Object Remote Procedure Call),
42, 55

OTA. See Open Travel Alliance
Out-In Pattern, 135
Out-Only Pattern, 135
Out-Optional-In Pattern, 136

P
paradigm shifts, 42

Java and Java 2 Enterprise Edition,
42–43

XML, 43
parallel split pattern, 274
pass-by-reference, 82–83
pass-by-value, 83
patterns, 261

asynchronous messaging
patterns, 263

correlation identifiers, 265–266
request-reply, 263–264
return address, 264

AtLeastOnce, 142
AtMostOnce, WS-Reliable Messag-

ing, 142
business tier design patterns, 250–251

presentation tier-to-business tier,
251–252

transfer object, 252–254
conversation patterns, 267

process patterns, 269
request-reply, 267–268
subscribe notify, 268–269

data patterns, 277
data based routing, 278
data interaction, 277

data transfer mechanisms, 278
data visibility, 277

ExactlyOnce, 142
InOrder, 142
integration tier design patterns, 254

data access object, 255-256
intrabusiness tier design patterns,

257–258
application service design pattern,

258–259
MEPs, 136
orchestration patterns, 269

compensating action, 273
conditional transitions, 272
engine monitoring and control, 272
evaluator, 271
orchestration builder, 270
orchestration context, 272
orchestration engine, 270
rule builder, 271

resource patterns, 278
auto-start patterns, 279
creation patterns, 278
detour patterns, 279
pull patterns, 279
push patterns, 279

SOA, 262
web tier design patterns, 236

choosing right framework, 244–245
frameworks and service delivery,

237–238
presentation tier, 236–237
services delivery using JavaServer

Faces, 238–241, 243

INDEX 343

workflow patterns, 273
control-flow patterns, 273–277

PC (Personal Computers), 20
PDAs (Portable Digital Assistants), 6, 31
performance, Java EE, 170
@PermitAll, 192
persistence query language, Java Persis-

tence API, 200–202
Personal Computers (PC), 20
Plain Old Java Object (POJO) model,

Java EE 5, 165–166
Point-of-Sale (POS), 15
Point-to-Point (PTP), 25
POJO (Plain Old Java Object) model,

Java EE 5, 165–166
polling, 215

polymorphism, Java Persistence API,
196

port element, WSDL documents, 100
Portable Digital Assistants (PDAs), 6, 31
portType, 92–93

WSDL documents, 96–97
POS (Point-of-Sale), 15
post back, 241
post-Internet era, e-commerce, 27
presentation tier design patterns,

236–237
presentation tier-to-business tier design

patterns, 251–252
private registries versus public registries,

UDDI, 105
process patterns, conversation patterns,

269

process validations phase, JSF life cycle,
241

processing WS-BPEL, 124, 127
process-related, basic activity elements

(WS-BPEL), 122
products, life cycle of, 4
project basics, IDe (NetBeans), 305–306
project creation, IDe (NetBeans),

306–318
Project Liberty, 144
protocol binding, JAX-WS, 213
protocol handlers, 214
Provider API, 215
PTP (Point-to-Point), 25
Pub/Sub (Publish/Subscribe), 25
public registries versus private registries,

UDDI, 105
Publish/Subscribe (Pub/Sub), 25
publishing web services, 87
pull patterns, 279
push patterns, 279

Q
quality of services (QoS), Java EE, 169

availability, 170
concurrency, 171
data integrity, 169
distribution, 169
interoperability, 171
performance and scalability, 170
security, 169

query creation, Java Persistence query
language, 201

344 INDEX

R
RDBMS (Relational Database Manage-

ment System), 39
receivers, 69–70
reconstitute component tree phase, JSF

life cycle, 240
Reference Implementation (RI), 151
registering web services, 87–90
registries, 103

public versus private, UDDI, 105
Relational Database Management Sys-

tem (RDBMS), 39
relationship mapping, Java Persistence

API, 203
relationships

bidirectional, 196
Java Persistence API, 195–196
Java Persistence query language, 200

reliable messaging, ESB, 227
@Remote, 191
remote communication, 83
Remote Procedure Call (RPC), 22, 82
Remote Reference Layer (RRL), 84
removed state, entity life-cycle opera-

tions (JPA), 199–200
render response phase, JSF life

cycle, 241
Request Acknowledgment, 141
requester level security, 143
requesters, 78
request-reply

asynchronous messaging
patterns, 263

conversation patterns, 267–268

Request-Response
operation element, 98
web services invocation, 80

resource adapters, Java EE, 168
resource patterns, 278-279
response, SOAP, 71

detail, 73
Fault, 72
faultactor, 73
faultcode, 72
faultstring, 73

retrieving information, 116–117
return address, asynchronous messaging

patterns, 264
RI (Reference Implementation), 151
Robust In-Only Pattern, 135
Robust Out-Only Pattern, 136
@RolesAllowed, 192
RPC (Remote Procedure Call), 22–23

SOAP, 56
synchronous invocation, 81–84

RRL (Remote Reference Layer), 84
rule builder, orchestration patterns, 271

S
SAAJ (SOAP with Attachments API for

Java), 157
SAML (Security Assertion Markup Lan-

guage), 144
save_business, 113
save_service, 114
save_tModel, 114
saving

business information, 113
service information, 113
technical model information, 114

INDEX 345

saving_binding, 114
scalability, Java EE, 170
schema evolution, JAXB, 220–222
SCM (Supply Chain Management), 13
Second Generation Web Services, 45–46
second-generation web services, 134
Secure Socket Layers (SSL), 144
security

container services, EJB 3.0, 192
ESB, 227
Java EE, 169

Security Assertion Markup Language
(SAML), 144

security. See WS-Security
senders, 69–70
separation of concerns, 270
Sequence Acknowledgment, 141
sequence pattern, 274
server-side architecture, 16

client/server era, 19–20
distributed era, 21

messaging, 23–25
Remote Procedure Call (RPC),

22–23
Internet era, 26–27
mainframe era, 17–18

service creation, WSDL (invocation of
web service), 88

service delivery, web tier design pat-
terns, 237–238

service element, WSDL documents, 99
service information

deleting, 115
drill-down, 117
finding, 116
saving, 113

Service Oriented Architecture. See SOA
service publication, 112

business information
creating and modifying, 113–114
deleting, 114–115

discovering web services, 115–116
information browsing and retrieval,

116–117
information drill-down, 117

Service to worker, presentation tier
design patterns, 237

service-related, basic activity elements
(WS-BPEL), 123

services, 4
courier services, 4
direct services, 4
life cycle of, 4
software-driven services, 4–6
UDDI, 105
web services, 6–8

services delivery, JavaServer Faces,
238–241, 243

session EJBs, 247
Silhouette Tours, 288–289

challenges, 289–290
implementation strategy, 302–303
NetBeans IDE, 303–304

exploring, 304–305
project basics, 305–306
project creation, 306–318

solution implementation strategies,
290

solution platform considerations,
296–298

travel reservation services, 291–293
workflow, 294–296

346 INDEX

simple data type, SOAP Encoding, 65
simple merge pattern, 275
Simple Object Access Protocol. See

SOAP
Simple Type SOAP Encoding, 65–66
Single Sign On, WS-Security, 143–144
Small and Medium Business (SMB), 19
SMB (Small and Medium Business), 19
SNA (System Network Architecture), 21
SOA (Service Oriented Architecture), 3,

8-11
business tier design patterns, 251-254
choreography and, 130
description of, 38
orchestration and, 129
patterns, 262
web services and, 12–13, 32, 44–47

First Generation Web Services,
44–45

Second Generation Web Services,
45–46

web tier design patterns, 236
choosing right framework, 244–245
frameworks and service delivery,

237–238
presentation tier, 236–237
services delivery using JavaServer

Faces, 238–241, 243
WS-* and, 146
WS-Reliable Messaging and, 147
WS-Security and, 147

SOA implementation technologies
J2EE (Java Enterprise Edition), 48–50
.NET product suite, 48

SOAP (Simple Object Access Protocol),
7, 34, 133

basic SOAP model, 57–58, 60
binding, 57, 75

to transport protocols, 68
detailed SOAP model, 60

Body element, 63–64
Envelope element, 60–61
Header element, 61–63

elements, 74
encoding rules, 56
First Generation Web Services, 45
interaction, 68

message exchange model, 69–71
Message Envelope, 56
overview, 56
response and error handling, 71-73
RPC, 56
versioning, 73

SOAP 0.8, 73
SOAP 1.1, 73
SOAP 1.2, 74

SOAP Encoding, 75
SOAP Encoding, 65

Complex Type, 66–68
Simple Type, 65–66
SOAP 1.2, 75

SOAP with Attachments API for Java
(SAAJ), 157

@SOAPBinding, 212
software-driven services, 4–6
Solicit-Response

operation element, 98
web services invocation, 81

INDEX 347

specifications
Open Travel Alliance (OTA), 286–287
UDDI, 105

SSL (Secure Socket Layers), 144
@Stateful, 191
@Stateless, 191
StAX (Streaming API for XML), 161
structured activity elements, WS-BPEL,

123–124
structured discriminator pattern, 275
structured synchronizing merge pattern,

275
subscribe notify, conversation patterns,

268–269
Supply Chain Management (SCM), 13
synchronization pattern, 274
Synchronous Communication Model,

25
synchronous invocation, RPC mecha-

nism and, 81–84
System Network Architecture (SNA), 21

T
taxonomy, 105
taxonomy-based business information,

UDDI, 104
TCK (Technology Compatibility Kit),

152
TCP/IP (Transport Communication Pro-

tocol/Internet Protocol), 21
technical model information

deleting, 115
drill-down, 117
finding, 117
saving, 114

technology categories, Java EE, 153
common platform technologies,

160–162
enterprise application technologies,

158–160
web application technologies,

153–155
web services technologies, 155–158

Technology Compatibility Kit (TCK),
152

terminals, 29
thick clients, 30
thin clients, 30
TL (Transport Layer), 84
tModel data structure, UDDI, 111–112
transaction, container services (EJB

3.0), 192
@TransactionAttribute, 192
Transactional Manager (IMS TM), 40
transfer object design patterns, 252–253
transformation, ESB, 227
Transport Communication Protocol/

Internet Protocol (TCP/IP), 21
Transport Layer (TL), 84
transport level security, 144
TravelReservationService sample

project
creating, 307–308
debugging, 315–318
examining, 311–312
exploring, 309–310
running, 312–314
testing, 314

types element, WSDL documents,
94–95

348 INDEX

U
UBR (UDDI Browser Registries), 105
UDDI (Universal Description, Discov-

ery and Integration), 7, 34, 103-104,
133

data structures, 107
bindingTemplate, 110
businessEntity, 108
businessService, 109–110
tModel, 111–112

First Generation Web Services, 45
information model, 107
node API sets, 106
public registries versus private regis-

tries, 105
registries. See UDDI Registry
specifications and services, 105
taxonomy-based business informa-

tion, 104
UDDI Node, 106

UDDI Browser Registries (UBR), 105
UDDI Node, 106
UDDI Registry, 106

business information
creating and modifying, 113–114
deleting, 114–115

Ultimate Receivers, 69–70
unified expression language, JSF

(JavaServer Faces), 183–184
Universal Description, Discovery and

Integration. See UDDI
Universal Standard Products and Code

System (UNSPSC), 105
unmarshalling, 83–84

UNSPSC (Universal Standard Products
and Code System), 105

update model values phase, JSF life
cycle, 241

user interface component framework,
JSF (JavaServer Faces), 179–180

Userland Software, 34

V
validation, JSF (JavaServer Faces),

184–185
VAN (Value Added Networks), 26
versioning

SOAP, 73
WSDL, 100

View Helper, presentation tier design
patterns, 236

W
WAN (wide area network), 5
web application technologies, Java EE,

153
JavaServer Faces (JSF), 155
Java Servlet, 154
JavaServer Pages (JSP), 154
JavaServer Pages Standard Tag

Library (JSTL), 155
web applications, case study (Silhouette

Tours), 297
web components, Java EE, 168
web service invocation, 88, 91

service creation, 88
WSDL and, 85–86

creation of service, 86-88
discovering web services, 87,

90–91

INDEX 349

generating web service descrip-
tions, 87-89

publishing web services, 87
registering web services, 87–90

web services, 6–8
accessing with Java, 212–213
annotations, 210

@HandlerChain, 211
@Oneway, 211
@SOAPBinding, 212
@WebMethod, 211
@WebParam, 211
@WebResult, 211
@WebService, 210

creation of, 86, 88
defined, 78
describing with XML, 91–93

WSDL documents, 94
WSDL documents, binding ele-

ment, 97–98
WSDL documents, message ele-

ment, 95
WSDL documents, operation ele-

ment, 98–99
WSDL documents, port element,

100
WSDL documents, portType ele-

ment, 96–97
WSDL documents, service element,

99
WSDL documents, types element,

94–95
first generation, 134
implementing in Java, 208

invocation, 80
Request-Response, 80
Solicit-Response, 81
synchronous invocation and RPC

mechanisms, 81–84
J2EE, 49–50
publishing, 87
registering, 87, 89–90
second generation, 134
service publication, 115–116
SOA and, 12–13, 32, 44–47

First Generation Web Services,
44–45

Second Generation Web Services,
45–46

XML, 33
web services applications, case studies

(Silhoutte Tours), 298
web services clients, 78
web services delivery, JSF, 242

involved route, 242–243
simple route, 242

Web Services Description Language.
See WSDL

Web Services Flow Language
(WSFL), 121

Web Services Interoperability (WS-I),
11, 47

web services metadata, 158
web services technologies, Java EE, 155

Java API for XML Registries (JAXR),
157

Java API for XML Web Services
(JAX-WS), 156

350 INDEX

Java API for XML-Based RPC (JAX-
RPC), 158

Java Architecture for XML Binding
(JAXB), 157

SOAP with Attachments API for Java
(SAAJ), 157

web services metadata, 158
web services triangle, 78–80
web technologies, Java EE, 173–174

Java Servlet, 174–175
JavaServer Pages (JSP), 176–177
JSF (JavaServer Faces). See JSF
JSP Standard Tag Library (JSTL), 177

web tier, 233
delivering services through, 234–235

web tier design patterns, SOA and, 236
choosing right framework, 244–245
frameworks and service delivery,

237–238
presentation tier, 236–237
services delivery using JavaServer

Faces, 238–241, 243
@WebMethod, 209, 211
@WebParam, 211
@WebResult, 211
@WebService, 209–210
wide area network (WAN), 5
Winer, Dave, 34
WORA (Write Once Run Anywhere), 43
WORD (Write Once and Run on any

Device), 43
WORE (Write Once Run Everywhere),

43
workflow, 120

Silhouette Tours case study, 294–296

workflow patterns, control-flow pat-
terns, 273

advanced branching and synchroniza-
tion, 275

basic control flow patterns, 274–275
multiple instance patterns, 276–277

workflow resource patterns, 278-279
World Wide Web, 26–27
WS-*, 134

SOA and, 146
WS-Addressing, 137-139

endpoint references, 139
message addressing properties, 139

WS-Atomic Transaction, 137
WS-BPEL (WS-Business Process Exe-

cution Language), 119, 122, 134,
269

basic activity elements, 122–123
declarations elements, 122
managing activities elements, 124
processing, 124, 127
structured activity elements, 123–124

WS-CDL (WS-Choreography Defini-
tion Language), 119, 134

choreography, 128
WS-Coordination, 137
WSDL (Web Services Description Lan-

guage), 7, 10, 34, 77–78, 133, 135
anatomy of documents, 93–94

binding element, 97–98
message element, 95
operation element, 98–99
port element, 100
portType element, 96–97
service element, 99
types element, 94–95

INDEX 351

elements, 92–93
First Generation Web Services, 45
invocation of web service, service cre-

ation, 88
mapping to Java, 208–210
versioning, 100
web service invocation and, 85–86

creation of service, 86-88
discovering web services, 87,

90–91
generating web service descrip-

tions, 87, 89
publishing web services, 87
registering web services, 87–90

web services triangle, 78–80
WSDL 1.1, 100
WSDL 1.2, 100
WS-Eventing, 137
WSFL (Web Services Flow Language),

121
WS-I (Web Services Interoperability),

11, 147
WS-Metadata Exchange, 138
WS-Notification, 138
WS-Policy Framework, 138
WS-Reliability, 138–142
WS-Reliable Messaging, 138–142

SOA and, 147
WS-Security, 138, 142–143

message level security, 145
requester level security, 143
Single Sign-On, 143–144
SOA and, 147
transport level security, 144

X–Y–Z
XML (Extensible Markup Language), 7

describing web services, 91–93
WSDL documents, 94
WSDL documents, binding ele-

ment, 97–98
WSDL documents, message ele-

ment, 95
WSDL documents, operation ele-

ment, 98–99
WSDL documents, port element,

100
WSDL documents, portType ele-

ment, 96–97
WSDL documents, service element,

99
WSDL documents, types element,

94–95
paradigm shifts, 43
web services, 33

XML Encryption, 145
XML Infoset, 74
XML Schema versus Java data types,

218
XML Signature, 145
@XmlAttribute, 220
@XmlType, 219
XOR (Exclusive OR) pattern, 274

	Foreword
	Foreword
	Chapter 3 Evolution of Service Oriented Architecture
	Services Oriented Architecture—The Description
	Early Architectures
	Paradigm Shifts
	Arrival of Web Services and SOA
	SOA Implementation Technologies
	Summary
	Endnotes

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X-Y-Z

