

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was aware
of a trademark claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases
or special sales, which may include electronic versions and/or custom covers and content particular
to your business, training goals, marketing focus, and branding interests. For more information,
please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Wagner, Bill.
More effective C# : 50 specific ways to improve your C# / Bill Wagner.

p. cm.
Includes bibliographical references and index.
ISBN 978-0-321-48589-2 (pbk. : alk. paper)
1. C# (Computer program language) 2. Database management. 3.

Microsoft .NET. I. Title.

QA76.73.C154W343 2008
005.13'3—dc22

2008030878

Copyright © 2009 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copy-
right, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671 3447

ISBN-13: 978-0-321-48589-2
ISBN-10: 0-321-48589-0
Text printed in the United States on recycled paper at Donnelley in Crawfordsville, IN.
First printing, October 2008

❘ Introduction

xiii

When Anders Hejlsberg first showed Language-Integrated Query (LINQ)
to the world at the 2005 Professional Developers Conference (PDC), the
C# programming world changed. LINQ justified several new features in
the C# language: extension methods, local variable type inference, lambda
expressions, anonymous types, object initializers, and collection initializers.
C# 2.0 set the stage for LINQ by adding generics, iterators, static classes,
nullable types, property accessor accessibility, and anonymous delegates.
But all these features are useful outside LINQ: They are handy for many
programming tasks that have nothing to do with querying data sources.

This book provides practical advice about the features added to the C#
programming language in the 2.0 and 3.0 releases, along with advanced
features that were not covered in my earlier Effective C#: 50 Specific Ways
to Improve Your C# (Addison-Wesley, 2004). The items in More Effective
C# reflect the advice I give developers who are adopting C# 3.0 in their
professional work. There’s a heavy emphasis on generics, an enabling tech-
nology for everything in C# 2.0 and 3.0. I discuss the new features in C#
3.0; rather than organize the topics by language feature, I present these tips
from the perspective of recommendations about the programming prob-
lems that developers can best solve by using these new features.

Consistent with the other books in the Effective Software Development
Series, this book contains self-contained items detailing specific advice
about how to use C#. The items are organized to guide you from using C#
1.x to using C# 3.0 in the best way.

Generics are an enabling technology for all new idioms that are part of
C# 3.0. Although only the first chapter specifically addresses generics,
you’ll find that they are an integral part of almost every item. After read-
ing this book, you’ll be much more comfortable with generics and
metaprogramming.

Of course, much of the book discusses how to use C# 3.0 and the LINQ
query syntax in your code. The features added in C# 3.0 are very useful in

their own right, whether or not you are querying data sources. These
changes in the language are so extensive, and LINQ is such a large part of
the justification for those changes, that each warrants its own chapter.
LINQ and C# 3.0 will have a profound impact on how you write code in
C#. This book will make that transition easier.

Who Should Read This Book?

This book was written for professional software developers who use C#. It
assumes that you have some familiarity with C# 2.0 and C# 3.0. Scott
 Meyers counseled me that an Effective book should be a developer’s second
book on a subject. This book does not include tutorial information on the
new language features added as the language has evolved. Instead, I explain
how you can integrate these features into your ongoing development activ-
ities. You’ll learn when to leverage the new language features in your devel-
opment activities, and when to avoid certain practices that will lead to
brittle code.

In addition to some familiarity with the newer features of the C# language,
you should have an understanding of the major components that make
up the .NET Framework: the .NET CLR (Common Language Runtime),
the .NET BCL (Base Class Library), and the JIT (Just In Time) compiler.
This book doesn’t cover .NET 3.0 components, such as WCF (Windows
Communication Foundation), WPF (Windows Presentation Foundation),
and WF (Windows Workflow Foundation). However, all the idioms pre-
sented apply to those components as well as any other .NET Framework
components you happen to prefer.

About the Content

Generics are the enabling technology for everything else added to the C#
language since C# 1.1. Chapter 1 covers generics as a replacement for
System.Object and casts and then moves on to discuss advanced tech-
niques such as constraints, generic specialization, method constraints, and
backward compatibility. You’ll learn several techniques in which generics
will make it easier to express your design intent.

Multicore processors are already ubiquitous, with more cores being added
seemingly every day. This means that every C# developer needs to have a
solid understanding of the support provided by the C# language for multi-

xiv ❘ Introduction

threaded programming. Although one chapter can’t cover everything you
need to be an expert, Chapter 2 discusses the techniques you’ll need every
day when you write multithreaded applications.

Chapter 3 explains how to express modern design idioms in C#. You’ll
learn the best way to express your intent using the rich palette of C# lan-
guage features. You’ll see how to leverage lazy evaluation, create compos-
able interfaces, and avoid confusion among the various language elements
in your public interfaces.

Chapter 4 discusses how to use the enhancements in C# 3.0 to solve the
programming challenges you face every day. You’ll see when to use exten-
sion methods to separate contracts from implementation, how to use C#
closures effectively, and how to program with anonymous types.

Chapter 5 explains LINQ and query syntax. You’ll learn how the compiler
maps query keywords to method calls, how to distinguish between dele-
gates and expression trees (and convert between them when needed), and
how to escape queries when you’re looking for scalar results.

Chapter 6 covers those items that defy classification. You’ll learn how to
define partial classes, work with nullable types, and avoid covariance and
contravariance problems with array parameters.

Regarding the Sample Code

The samples in this book are not complete programs. They are the small-
est snippets of code possible that illustrate the point. In several samples
the method names substitute for a concept, such as AllocateExpen-
siveResource(). Rather than read pages of code, you can grasp the con-
cept and quickly apply it to your professional development. Where
methods are elided, the name implies what’s important about the missing
method.

In all cases, you can assume that the following namespaces are specified:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

Where types are used from other namespaces, I’ve explicitly included the
namespace in the type.

Introduction ❘ xv

In the first three chapters, I often show C# 2.0 and C# 3.0 syntax where
newer syntax is preferred but not required. In Chapters 4 and 5 I assume
that you would use the 3.0 syntax.

Making Suggestions and Providing Feedback

I’ve made every effort to remove all errors from this book, but if you believe
you have found an error, please contact me at bill.wagner@srtsolutions.com.
Errata will be posted to http://srtsolutions.com/blogs/MoreEffectiveCSharp.

Acknowledgments

A colleague recently asked me to describe what it feels like to finish a book.
I replied that it gives you that same feeling of satisfaction and relief that
shipping a software product gives you. It’s very satisfying, and yet it’s an
incredible amount of work. Like shipping a software product, completing
a book requires collaboration among many people, and all those people
deserve thanks.

I was honored to be part of the Effective Software Development Series
when I wrote Effective C# in 2004. To follow that up with More Effective C#
and cover the numerous and far-reaching changes in the language since
then is an even greater honor. The genesis of this book was a dinner I
shared with Curt Johnson and Joan Murray at PDC 2005, when I expressed
my excitement about the direction Hejlsberg and the rest of the C# team
were presenting there. I was already taking notes about the changes and
learning how they would affect the daily lives of C# developers.

Of course, it was some time before I felt comfortable in offering advice on
all these new features. I needed to spend time using them and discussing
different idioms with coworkers, customers, and other developers in the
community. Once I felt comfortable with the new features, I began work-
ing on the new manuscript.

I was lucky enough to have an excellent team of technical reviewers. These
people suggested new topics, modified the recommendations, and found
scores of technical errors in earlier drafts. Bill Craun, Wes Dyer, Nick
Paldino, Tomas Restrepo, and Peter Ritchie provided detailed technical
feedback that made this book as useful as it is now. Pavin Podila reviewed
those areas that mention WPF to ensure correctness.

xvi ❘ Introduction

http://srtsolutions.com/blogs/MoreEffectiveCSharp

Throughout the writing process, I discussed many ideas with members of
the community and the C# team. The regulars at the Ann Arbor .NET
Developers Group, the Great Lakes Area .NET User Group, the Greater
Lansing User Group, the West Michigan .NET User Group, and the Toledo
.NET User Group acted as prototype audiences for much of the advice
presented here. In addition, CodeMash attendees helped me decide what
to leave in and what to leave out. In particular, I want to single out Dustin
Campbell, Jay Wren, and Mike Woelmer for letting me discuss ideas with
them. In addition, Mads Torgersen, Charlie Calvert, and Eric Lippert
joined me in several conversations that helped clarify the advice detailed
here. In particular, Charlie Calvert has the great skill of mixing an engi-
neer’s understanding with a writer’s gift of clarity. Without all those dis-
cussions, this manuscript would be far less clear, and it would be missing
a number of key concepts.

Having been through Scott Meyers’s thorough review process twice now,
I’d recommend any book in his series sight unseen. Although he’s not a
C# expert, he’s highly gifted and clearly cares about the books in his series.
Responding to his comments takes quite a bit of time, but it results in a
much better book.

Throughout the whole process, Joan Murray has been an incredible asset.
As editor, she’s always on top of everything. She prodded me when I
needed prodding, she provided a great team of reviewers, and she helped
shepherd the book from inception through outlines, manuscript drafts,
and finally into the version you hold now. Along with Curt Johnson, she
makes working with Addison-Wesley a joy.

The last step is working with a copy editor. Betsy Hardinger was somehow
able to translate an engineer’s jargon into English without sacrificing tech-
nical correctness. The book you’re holding is much easier to read after her
edits.

Of course, writing a book takes a large investment of time. During that
time, Dianne Marsh, the other owner of SRT Solutions, kept the company
moving forward. The greatest sacrifice was from my family, who saw much
less of me than they’d like while I was writing this book. The biggest thanks
go to Marlene, Lara, Sarah, and Scott, who put up with me as I did this
again.

Introduction ❘ xvii

Simply return from the background thread procedure, and handle the
error in the event handler for the foreground results.

Earlier I said that I often use BackgroundWorker in classes that aren’t the
Form class, and even in non-Windows Forms applications, such as services
or Web services. This works fine, but it does have some caveats. When
BackgroundWorker determines that it is running in a Windows Forms
application and the form is visible, the ProgressChanged and RunWork-

erCompleted events are marshaled to the graphical user interface (GUI)
thread via a marshaling control and Control.BeginInvoke (see Item 16
later in this chapter). In other scenarios, those delegates are simply called
on a free thread pool thread. As you will see in Item 16, that behavior may
affect the order in which events are received.

Finally, because BackgroundWorker is built on QueueUserWorkItem, you
can reuse BackgroundWorker for multiple background requests. You need
to check the IsBusy property of BackgroundWorker to see whether Back-
groundWorker is currently running a task. When you need to have multiple
background tasks running, you can create multiple BackgroundWorker
objects. Each will share the same thread pool, so you have multiple tasks
running just as you would with QueueUserWorkItem. You need to make
sure that your event handlers use the correct sender property. This prac-
tice ensures that the background threads and foreground threads are com-
municating correctly.

BackgroundWorker supports many of the common patterns that you will
use when you create background tasks. By using it you can reuse that
implementation in your code, adding any of those patterns as needed. You
don’t have to design your own communication protocols between fore-
ground and background threads.

Item 13: Use lock() as Your First Choice for Synchronization

Threads need to communicate with each other. Somehow, you need to
provide a safe way for various threads in your application to send and
receive data. However, sharing data between threads introduces the poten-
tial for data integrity errors in the form of synchronization issues. There-
fore, you need to be certain that the current state of every shared data item
is consistent. You achieve this safety by using synchronization primitives
to protect access to the shared data. Synchronization primitives ensure that
the current thread is not interrupted until a critical set of operations is
completed.

78 ❘ Chapter 2 Multithreading in C#

There are many primitives available in the .NET BCL that you can use to
safely ensure that access to shared data is synchronized. Only one pair of
them—Monitor.Enter() and Monitor.Exit()—was given special sta-
tus in the C# language. Monitor.Enter() and Monitor.Exit() imple-
ment a critical section block. Critical sections are such a common
synchronization technique that the language designers added support for
them using the lock() statement. You should follow that example and
make lock() your primary tool for synchronization.

The reason is simple: The compiler generates consistent code, but you may
make mistakes some of the time. The C# language introduces the lock key-
word to control synchronization for multithreaded programs. The lock state-
ment generates exactly the same code as if you used Monitor.Enter()
and Monitor.Exit() correctly. Furthermore, it’s easier and it automati-
cally generates all the exception-safe code you need.

However, under two conditions Monitor gives you necessary control that
you can’t get when you use lock(). First, be aware that lock is lexically
scoped. This means that you can’t enter a Monitor in one lexical scope
and exit it in another when using the lock statement. Thus, you can’t enter
a Monitor in a method and exit it inside a lambda expression defined in that
method (see Item 41, Chapter 5). The second reason is that Monitor.Enter
supports a time-out, which I cover later in this item.

You can lock any reference type by using the lock statement:

public int TotalValue

{

get

{

lock(syncHandle)

{

return total;

}

}

}

public void IncrementTotal()

{

lock (syncHandle)

{

total++;

}

}

Item 13: Use lock() as Your First Choice for Synchronization ❘ 79

The lock statement gets the exclusive monitor for an object and ensures
that no other thread can access the object until the lock is released. The
preceding sample code, using lock(), generates the same IL as the fol-
lowing version, using Monitor.Enter() and Monitor.Exit():

public void IncrementTotal()

{

object tmpObject = syncHandle;

System.Threading.Monitor.Enter(tmpObject);

try

{

total++;

}

finally

{

System.Threading.Monitor.Exit(tmpObject);

}

}

The lock statement provides many checks that help you avoid common
mistakes. It checks that the type being locked is a reference type, as
opposed to a value type. The Monitor.Enter method does not include
such safeguards. This routine, using lock(), doesn’t compile:

public void IncrementTotal()

{

lock (total) // compiler error: can't lock value type

{

total++;

}

}

But this does:

public void IncrementTotal()

{

// really doesn’t lock total.

// locks a box containing total.

Monitor.Enter(total);

try

{

total++;

}

80 ❘ Chapter 2 Multithreading in C#

finally

{

// Might throw exception

// unlocks a different box containing total

Monitor.Exit(total);

}

}

Monitor.Enter() compiles because its official signature takes a Sys-
tem.Object. You can coerce total into an object by boxing it. Moni-
tor.Enter() actually locks the box containing total. That’s where the
first bug lurks. Imagine that thread 1 enters IncrementTotal() and
acquires a lock. Then, while incrementing total, the second thread calls
IncrementTotal(). Thread 2 now enters IncrementTotal() and acquires
the lock. It succeeds in acquiring a different lock, because total gets put
into a different box. Thread 1 has a lock on one box containing the value
of total. Thread 2 has a lock on another box containing the value of
total. You’ve got extra code in place, and no synchronization.

Then you get bitten by the second bug: When either thread tries to release
the lock on total, the Monitor.Exit() method throws a Synchroniza-
tionLockException. That’s because total goes into yet another box to
coerce it into the method signature for Monitor.Exit, which also expects
a System.Object type. When you release the lock on this box, you unlock
a resource that is different from the resource that was used for the lock.
Monitor.Exit() fails and throws an exception.

Of course, some bright soul might try this:

public void IncrementTotal()

{

// doesn’t work either:

object lockHandle = total;

Monitor.Enter(lockHandle);

try

{

total++;

}

finally

{

Monitor.Exit(lockHandle);

}

}

Item 13: Use lock() as Your First Choice for Synchronization ❘ 81

This version doesn’t throw any exceptions, but neither does it provide any
synchronization protection. Each call to IncrementTotal() creates a new
box and acquires a lock on that object. Every thread succeeds in immedi-
ately acquiring the lock, but it’s not a lock on a shared resource. Every
thread wins, and total is not consistent.

There are subtler errors that lock also prevents. Enter() and Exit() are
two separate calls, so you can easily make the mistake of acquiring and
releasing different objects. This action may cause a Synchronization-
LockException. But if you happen to have a type that locks more than
one synchronization object, it’s possible to acquire two different locks in
a thread and release the wrong one at the end of a critical section.

The lock statement automatically generates exception-safe code, some-
thing many of us humans forget to do. Also, it generates more-efficient
code than Monitor.Enter() and Monitor.Exit(), because it needs to
evaluate the target object only once. So, by default, you should use the
lock statement to handle the synchronization needs in your C# programs.

However, there is one limitation to the fact that lock generates the same
MSIL as Monitor.Enter(). The problem is that Monitor.Enter() waits
forever to acquire the lock. You have introduced a possible deadlock con-
dition. In large enterprise systems, you may need to be more defensive in
how you attempt to access critical resources. Monitor.TryEnter() lets
you specify a time-out for an operation and attempt a workaround when
you can’t access a critical resource.

public void IncrementTotal()

{

if (!Monitor.TryEnter(syncHandle, 1000)) // wait 1 second

throw new PreciousResourceException

("Could not enter critical section");

try

{

total++;

}

finally

{

Monitor.Exit(syncHandle);

}

}

You can wrap this technique in a handy little generic class:

82 ❘ Chapter 2 Multithreading in C#

public sealed class LockHolder<T> : IDisposable

where T : class

{

private T handle;

private bool holdsLock;

public LockHolder(T handle, int milliSecondTimeout)

{

this.handle = handle;

holdsLock = System.Threading.Monitor.TryEnter(

handle, milliSecondTimeout);

}

public bool LockSuccessful

{

get { return holdsLock; }

}

#region IDisposable Members

public void Dispose()

{

if (holdsLock)

System.Threading.Monitor.Exit(handle);

// Don't unlock twice

holdsLock = false;

}

#endregion

}

You would use this class in the following manner:

object lockHandle = new object();

using (LockHolder<object> lockObj = new LockHolder<object>

(lockHandle, 1000))

{

if (lockObj.LockSuccessful)

{

// work elided

}

}

// Dispose called here.

Item 13: Use lock() as Your First Choice for Synchronization ❘ 83

The C# team added implicit language support for Monitor.Enter() and
Monitor.Exit() pairs in the form of the lock statement because it is the
most common synchronization technique that you will use. The extra
checks that the compiler can make on your behalf make it easier to create
synchronization code in your application. Therefore, lock() is the best
choice for most synchronization between threads in your C# applications.

However, lock is not the only choice for synchronization. In fact, when
you are synchronizing access to numeric types or are replacing a reference,
the System.Threading.Interlocked class supports synchronizing sin-
gle operations on objects. System.Threading.Interlocked has a num-
ber of methods that you can use to access shared data so that a given
operation completes before any other thread can access that location. It
also gives you a healthy respect for the kinds of synchronization issues that
arise when you work with shared data.

Consider this method:

public void IncrementTotal()

{

total++;

}

As written, interleaved access could lead to an inconsistent representation
of the data. An increment operation is not a single machine instruction.
The value of total must be fetched from main memory and stored in a
register. Then the value of the register must be incremented, and the new
value from the register must be stored back into the proper location in
main memory. If another thread reads the value after the first thread, the
second thread grabs the value from main memory but before storing the
new value, thereby causing data inconsistency.

Suppose two threads interleave calls to IncrementTotal. Thread A reads
the value of 5 from total. At that moment, the active thread switches to
thread B. Thread B reads the value of 5 from total, increments it, and
stores 6 in the value of total. At this moment, the active thread switches
back to thread A. Thread A now increments the register value to 6 and
stores that value in total. As a result, IncrementTotal() has been called
twice—once by thread A, and once by thread B—but because of untimely
interleaved access, the end effect is that only one update has occurred.
These errors are hard to find, because they result from interleaved access
at exactly the wrong moment.

84 ❘ Chapter 2 Multithreading in C#

You could use lock() to synchronize this operation, but there is a better
way. The Interlocked class has a simple method that fixes the problem:
InterlockedIncrement. If you rewrite IncrementTotal as follows, the
increment operation cannot be interrupted and both increment opera-
tions will always be recorded:

public void IncrementTotal()

{

System.Threading.Interlocked.Increment(ref total);

}

The Interlocked class contains other methods to work with built-in
data types. Interlocked.Decrement() decrements a value. Inter-
locked.Exchange() switches a value with a new value and returns the
current value. You’d use Interlocked.Exchange() to set new state and
return the preceding state. For example, suppose you want to store the user
ID of the last user to access a resource. You can call Interlock-
ed.Exchange() to store the current user ID while at the same time
retrieving the previous user ID.

Finally, there is the CompareExchange() method, which reads the value of
a piece of shared data and, if the value matches a sought value, updates it.
Otherwise, nothing happens. In either case, CompareExchange returns the
preceding value stored at that location. In the next section, Item 14 shows
how to use CompareExchange to create a private lock object inside a class.

The Interlocked class and lock() are not the only synchronization
primitives available. The Monitor class also includes the Pulse and Wait

methods, which you can use to implement a consumer/producer design.
You can also use the ReaderWriterLockSlim class for those designs in
which many threads are accessing a value that few threads are modifying.
ReaderWriterLockSlim contains several improvements over the earlier
version of ReaderWriterLock. You should use ReaderWriterLockSlim
for all new development.

For most common synchronization problems, examine the Interlocked
class to see whether you can use it to provide the capabilities you need.
With many single operations, you can. Otherwise, your first choice is the
lock() statement. Look beyond those only when you need special-
 purpose locking capability.

Item 13: Use lock() as Your First Choice for Synchronization ❘ 85

That introduces a breaking change in the application. This code snippet
sets the value of Marker to 5:

MyType t = new MyType();

t.NextMarker(); // t.Marker == 5

You can’t avoid this problem entirely, but you can minimize its effects. This
sample was contrived to exhibit bad behavior. In production code, the
behavior of the extension method should be semantically the same as that
of the class method having the same signature. If you can create a better,
more efficient algorithm in a class, you should do that. However, you must
ensure that the behavior is the same. If you do that, then this behavior
won’t affect program correctness.

When you find that your design calls for making an interface definition
that many classes will be forced to implement, consider creating the small-
est possible set of members defined in the interface. Then provide an
implementation of convenience methods in the form of extension meth-
ods. In that way, class designers who implement your interface will have
the least amount of work to do, and developers using your interface can get
the greatest possible benefit.

Item 29: Enhance Constructed Types with Extension Methods

You’ll probably use a number of constructed generic types in your appli-
cation. You’ll create specific collection types: List<int>, Diction-
ary<EmployeeID, Employee>, and many other collections. The purpose
of creating these collections is that your application has a specific need for
a collection of a certain type and you want to have specific behavior
defined for those specific constructed types. To implement that function-
ality in a low-impact way, you can create a set of extension methods on
specific constructed types.

You can see this pattern in the System.Linq.Enumerable class. Item 28
(in this chapter) discusses the extension pattern used by Enumerable<T>
to implement many common methods on sequences as extension meth-
ods on IEnumerable<T>. In addition, Enumerable contains a number of
methods that are implemented specifically for particular constructed types
that implement IEnumerable<T>. For example, several numeric methods
are implemented on numeric sequences (IEnumerable<int>, IEnumer-
able<double>, IEnumerable<long>, and IEnumerable<float>). Here

Item 29: Enhance Constructed Types with Extension Methods ❘ 167

are a few of the extension methods implemented specifically for
IEnumerable<int>:

public class Enumerable

{

public static int Average(this IEnumerable<int>

sequence);

public static int Max(this IEnumerable<int> sequence);

public static int Min(this IEnumerable<int> sequence);

public static int Sum(this IEnumerable<int> sequence);

// other methods elided

}

Once you recognize the pattern, you can see many ways you could imple-
ment the same kind of extensions for the constructed types in your own
domain. If you were writing an e-commerce application and you wanted
to send e-mail coupons to a set of customers, the method signature might
look something like this:

public static void SendEmailCoupons(this

IEnumerable<Customer>

customers, Coupon specialOffer);

Similarly, you could find all customers with no orders in the past month:

public static IEnumerable<Customer> LostProspects(

this IEnumerable<Customer> targetList);

If you didn’t have extension methods, you could achieve a similar effect by
deriving a new type from the constructed generic type you used. For exam-
ple, the Customer methods just shown could be implemented like this:

public class CustomerList : List<Customer>

{

public void SendEmailCoupons(Coupon specialOffer);

public static IEnumerable<Customer> LostProspects();

}

It works, but it is actually much more limiting than extension methods on
IEnumerable<Customer> to the users of this list of customers. The dif-
ference in the method signatures provides part of the reason. The exten-
sion methods use IEnumerable<Customer> as the parameter, but the
methods added to the derived class are based on List<Customer>. They

168 ❘ Chapter 4 C# 3.0 Language Enhancements

mandate a particular storage model. For that reason, they can’t be com-
posed as a set of iterator methods (see Item 17, Chapter 3). You’ve placed
unnecessary design constraints on the users of these methods. That’s a
misuse of inheritance.

Another reason to prefer the extension methods as a way to implement
this functionality has to do with the way queries are composed. The Lost-
Prospects() method probably would be implemented something like
this:

public static IEnumerable<Customer> LostProspects(

IEnumerable<Customer> targetList)

{

IEnumerable<Customer> answer =

from c in targetList

where DateTime.Now - c.LastOrderDate >

TimeSpan.FromDays(30)

select c;

return answer;

}

Item 34 (later in this chapter) discusses why lambda expressions are pre-
ferred over methods in queries. Implementing these features as extension
methods means that they provide a reusable query expressed as a lambda
expression. You can reuse the entire query rather than try to reuse the
predicate of the where clause.

If you examine the object model for any application or library you are
writing, you’ll likely find many constructed types used for the storage
model. You should look at these constructed types and decide what meth-
ods logically would be added to each of them. It’s best to create the imple-
mentation for those methods as extension methods by using either the
constructed type or a constructed interface implemented by the type. You’ll
turn a simple generic instantiation into a class having all the behavior you
need. Furthermore, you’ll create that implementation in a manner that
decouples the storage model from the implementation to the greatest
extent possible.

Item 30: Prefer Implicitly Typed Local Variables

Implicitly typed local variables were added to the C# language to support
anonymous types. A second reason for using implicitly typed locals is that

Item 30: Prefer Implicitly Typed Local Variables ❘ 169

5 ❘ Working with LINQ

201

The driving force behind the language enhancements to C# 3.0 was LINQ.
The new features and the implementation of those features were driven
by the need to support deferred queries, translate queries into SQL to sup-
port LINQ to SQL, and add a unifying syntax to the various data stores.
Chapter 4 shows you how the new language features can be used for many
development idioms in addition to data query. This chapter concentrates
on using those new features for querying data, regardless of source.

A goal of LINQ is that language elements perform the same work no mat-
ter what the data source is. However, even though the syntax works with
all kinds of data sources, the query provider that connects your query to
the actual data source is free to implement that behavior in a variety of
ways. If you understand the various behaviors, it will make it easier to work
with various data sources transparently. If you need to, you can even cre-
ate your own data provider.

Item 36: Understand How Query Expressions Map to
Method Calls

LINQ is built on two concepts: a query language, and a translation from
that query language into a set of methods. The C# compiler converts query
expressions written in that query language into method calls.

Every query expression has a mapping to a method call or calls. You should
understand this mapping from two perspectives. From the perspective of
a class user, you need to understand that your query expressions are noth-
ing more than method calls. A where clause translates to a call to a method
named Where(), with the proper set of parameters. As a class designer,
you should evaluate the implementations of those methods provided by
the base framework and determine whether you can create better imple-
mentations for your types. If not, you should simply defer to the base
library versions. However, when you can create a better version, you must
make sure that you fully understand the translation from query expressions

into method calls. It’s your responsibility to ensure that your method sig-
natures correctly handle every translation case. For some of the query
expressions, the correct path is rather obvious. However, it’s a little more
difficult to comprehend a couple of the more complicated expressions.

The full query expression pattern contains eleven methods. The following
is the definition from The C# Programming Language, Third Edition, by
Anders Hejlsberg, Mads Torgersen, Scott Wiltamuth, and Peter Golde
(Microsoft Corporation, 2009), §7.15.3 (reprinted with permission from
Microsoft Corporation):

delegate R Func<T1,R>(T1 arg1);

delegate R Func<T1,T2,R>(T1 arg1, T2 arg2);

class C

{

public C<T> Cast<T>();

}

class C<T> : C

{

public C<T> Where(Func<T,bool> predicate);

public C<U> Select<U>(Func<T,U> selector);

public C<V> SelectMany<U,V>(Func<T,C<U>> selector,

Func<T,U,V> resultSelector);

public C<V> Join<U,K,V>(C<U> inner,

Func<T,K> outerKeySelector,

Func<U,K> innerKeySelector,

Func<T,U,V> resultSelector);

public C<V> GroupJoin<U,K,V>(C<U> inner,

Func<T,K> outerKeySelector,

Func<U,K> innerKeySelector,

Func<T,C<U>,V> resultSelector);

public O<T> OrderBy<K>(Func<T,K> keySelector);

public O<T> OrderByDescending<K>(Func<T,K> keySelector);

public C<G<K,T>> GroupBy<K>(Func<T,K> keySelector);

public C<G<K,E>> GroupBy<K,E>(Func<T,K> keySelector,

Func<T,E> elementSelector);

}

class O<T> : C<T>

{

202 ❘ Chapter 5 Working with LINQ

public O<T> ThenBy<K>(Func<T,K> keySelector);

public O<T> ThenByDescending<K>(Func<T,K> keySelector);

}

class G<K,T> : C<T>

{

public K Key { get; }

}

The .NET base library provides two general-purpose reference imple-
mentations of this pattern. System.Linq.Enumerable provides exten-
sion methods on IEnumerable<T> that implement the query expression
pattern. System.Linq.Queryable provides a similar set of extension
methods on IQueryable<T> that supports a query provider’s ability to
translate queries into another format for execution. (For example, the
LINQ to SQL implementation converts query expressions into SQL
queries that are executed by the SQL database engine.) As a class user, you
are probably using one of those two reference implementations for most
of your queries.

Second, as a class author, you can create a data source that implements
IEnumerable<T> or IQueryable<T> (or a closed generic type from IEnu-
merable<T> or IQueryable<T>), and in that case your type already
implements the query expression pattern. Your type has that implemen-
tation because you’re using the extension methods defined in the base
library.

Before we go further, you should understand that the C# language does
not enforce any execution semantics on the query expression pattern. You
can create a method that matches the signature of one of the query meth-
ods and does anything internally. The compiler cannot verify that your
Where method satisfies the expectations of the query expression pattern.
All it can do is ensure that the syntactic contract is satisfied. This behav-
ior isn’t any different from that of any interface method. For example, you
can create an interface method that does anything, whether or not it meets
users’ expectations.

Of course, this doesn’t mean that you should ever consider such a plan. If
you implement any of the query expression pattern methods, you should
ensure that its behavior is consistent with the reference implementations,
both syntactically and semantically. Except for performance differences,
callers should not be able to determine whether your method is being used
or the reference implementations are being used.

Item 36: Understand How Query Expressions Map to Method Calls ❘ 203

Translating from query expressions to method invocations is a compli-
cated iterative process. The compiler repeatedly translates expressions to
methods until all expressions have been translated. Furthermore, the com-
piler has a specified order in which it performs these translations, although
I’m not explaining them in that order. The compiler order is easy for the
compiler and is documented in the C# specification. I chose an order that
makes it easier to explain to humans. For our purposes, I discuss some of
the translations in smaller, simpler examples.

In the following query, let’s examine the where, select, and range
 variables:

int[] numbers = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };

var smallNumbers = from n in numbers

where n < 5

select n;

The expression from n in numbers binds the range variable n to each value
in numbers. The where clause defines a filter that will be translated into a
where method. The expression where n < 5 translates to the following:

numbers.Where((n) => n < 5);

Where is nothing more than a filter. The output of Where is a proper sub-
set of the input sequence containing only those elements that satisfy the
predicate. The input and output sequences must contain the same type,
and a correct Where method must not modify the items in the input
sequence. (User-defined predicates may modify items, but that’s not the
responsibility of the query expression pattern.)

That where method can be implemented either as an instance method
accessible to numbers or as an extension method matching the type of
numbers. In the example, numbers is an array of int. Therefore, n in the
method call must be an integer.

Where is the simplest of the translations from query expression to method
call. Before we go on, let’s dig a little deeper into how this works and what
that means for the translations. The compiler completes its translation
from query expression to method call before any overload resolution or
type binding. The compiler does not know whether there are any candi-
date methods when the compiler translates the query expression to a
method call. It doesn’t examine the type, and it doesn’t look for any can-

204 ❘ Chapter 5 Working with LINQ

didate extension methods. It simply translates the query expression into
the method call. After all queries have been translated into method call
syntax, the compiler performs the work of searching for candidate meth-
ods and then determining the best match.

Next, you can extend that simple example to include the select expres-
sion in the query. Select clauses are translated into Select methods.
However, in certain special cases the Select method can be optimized
away. The sample query is a degenerate select, selecting the range variable.
Degenerate select queries can be optimized away, because the output
sequence is not equal to the input sequence. The sample query has a where
clause, which breaks that identity relationship between the input sequence
and the output sequence. Therefore, the final method call version of the
query is this:

var smallNumbers = numbers.Where(n => n < 5);

The select clause is removed because it is redundant. That’s safe because
the select operates on an immediate result from another query expres-
sion (in this example, where).

When the select does not operate on the immediate result of another
expression, it cannot be optimized away. Consider this query:

var allNumbers = from n in numbers select n;

It will be translated into this method call:

var allNumbers = numbers.Select(n => n);

While we’re on this subject, note that select is often used to transform or
project one input element into a different element or into a different type.
The following query modifies the value of the result:

int[] numbers = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };

var smallNumbers = from n in numbers

where n < 5

select n * n;

Or you could transform the input sequence into a different type as follows:

int [] numbers = {0,1,2,3,4,5,6,7,8,9};

var squares = from n in numbers

select new { Number = n, Square = n * n};

Item 36: Understand How Query Expressions Map to Method Calls ❘ 205

The select clause maps to a Select method that matches the signature
in the query expression pattern:

var squares = numbers.Select(n =>

new { Number = n, Square = n * n});

Select transforms the input type into the output type. A proper select
method must produce exactly one output element for each input element.
Also, a proper implementation of Select must not modify the items in the
input sequence.

That’s the end of the simpler query expressions. Now we discuss some of
the less obvious transformations.

Ordering relations map to the OrderBy and ThenBy methods, or Order-
ByDescending and ThenByDescending. Consider this query:

var people = from e in employees

where e.Age > 30

orderby e.LastName, e.FirstName, e.Age

select e;

It translates into this:

var people = employees.Where(e => e.Age > 30).

OrderBy(e => e.LastName).

ThenBy(e => e.FirstName).

ThenBy(e => e.Age);

Notice in the definition of the query expression pattern that ThenBy oper-
ates on a sequence returned by OrderBy or ThenBy. Those sequences can
contain markers that enable ThenBy to operate on the sorted subranges
when the sort keys are equal.

This transformation is not the same if the orderby clauses are expressed
as different clauses. The following query sorts the sequence entirely by
LastName, then sorts the entire sequence again by FirstName, and then
sorts again by Age:

// Not correct. Sorts the entire sequence three times.

var people = from e in employees

where e.Age > 30

orderby e.LastName

orderby e.FirstName

orderby e.Age

select e;

206 ❘ Chapter 5 Working with LINQ

As separate queries, you could specify that any of the orderby clauses use
descending order:

var people = from e in employees

where e.Age > 30

orderby e.LastName descending

thenby e.FirstName

thenby e.Age

select e;

The OrderBy method creates a different sequence type as its output so
that thenby clauses can be more efficient and so that the types are correct
for the overall query. OrderBy cannot operate on an unordered sequence,
only on a sorted sequence (typed as O<T> in the sample). Subranges are
already sorted and marked. If you create your own orderby and thenby

methods for a type, you must adhere to this rule. You’ll need to add an
identifier to each sorted subrange so that any subsequent thenby clause
can work properly. ThenBy methods need to be typed to take the output
of an OrderBy or ThenBy method and then sort each subrange correctly.

Everything I’ve said about OrderBy and ThenBy also applies to OrderBy-
Descending and ThenByDescending. In fact, if your type has a custom
version of any of those methods, you should almost always implement all
four of them.

The remaining expression translations involve multiple steps. Those
queries involve either groupings or multiple from clauses that introduce
continuations. Query expressions that contain continuations are trans-
lated into nested queries. Then those nested queries are translated into
methods. Following is a simple query with a continuation:

var results = from e in employees

group e by e.Department into d

select new { Department = d.Key,

Size = d.Count() };

Before any other translations are performed, the continuation is translated
into a nested query:

var results = from d in

from e in employees group e by e.Department

select new { Department = d.Key, Size = d.Count()};

Item 36: Understand How Query Expressions Map to Method Calls ❘ 207

Once the nested query is created, the methods translate into the following:

var results = employees.GroupBy(e => e.Department).

Select(d => new { Department = d.Key, Size = d.Count()});

The foregoing query shows a GroupBy that returns a single sequence. The
other GroupBy method in the query expression pattern returns a sequence
of groups in which each group contains a key and a list of values:

var results = from e in employees

group e by e.Department into d

select new { Department = d.Key,

Employees = d.AsEnumerable()};

That query maps to the following method calls:

var results2 = employees.GroupBy(e => e.Department).

Select(d => new { Department = d.Key,

Employees = d.AsEnumerable()});

GroupBy methods produce a sequence of key/value list pairs; the keys are
the group selectors, and the values are the sequence of items in the group.
The query select clause may create new objects for the values in each
group. However, the output should always be a sequence of key/value pairs
in which the value contains some element created by each item in the input
sequence that belongs to that particular group.

The final methods to understand are SelectMany, Join, and GroupJoin.
These three methods are complicated, because they work with multiple
input sequences. The methods that implement these translations perform
the enumerations across multiple sequences and then flatten the resulting
sequences into a single output sequence. SelectMany performs a cross
join on the two source sequences. For example, consider this query:

int[] odds = {1,3,5,7};

int[] evens = {2,4,6,8};

var pairs = from oddNumber in odds

from evenNumber in evens

select new {oddNumber, evenNumber,

Sum=oddNumber+evenNumber};

It produces a sequence having 16 elements:

1,2, 3

1,4, 5

208 ❘ Chapter 5 Working with LINQ

1,6, 7

1,8, 9

3,2, 5

3,4, 7

3,6, 9

3,8, 11

5,2, 7

5,4, 9

5,6, 11

5,8, 13

7,2, 9

7,4, 11

7,6, 13

7,8, 15

Query expressions that contain multiple select clauses are translated into
a SelectMany method call. The sample query would be translated into
the following SelectMany call:

int[] odds = { 1, 3, 5, 7 };

int[] evens = { 2, 4, 6, 8 };

var values = odds.SelectMany(oddNumber => evens,

(oddNumber, evenNumber) =>

new { oddNumber, evenNumber,

Sum = oddNumber + evenNumber });

The first parameter to SelectMany is a function that maps each element
in the first source sequence to the sequence of elements in the second
source sequence. The second parameter (the output selector) creates the
projections from the pairs of items in both sequences.

SelectMany() iterates the first sequence. For each value in the first
sequence, it iterates the second sequence, producing the result value from
the pair of input values. The output selected is called for each element in
a flattened sequence of every combination of values from both sequences.
One possible implementation of SelectMany is as follows:

static IEnumerable<TOutput> SelectMany<T1, T2, TOutput>(

this IEnumerable<T1> src,

Func<T1, IEnumerable<T2>> inputSelector,

Func<T1, T2, TOutput> resultSelector)

{

foreach (T1 first in src)

Item 36: Understand How Query Expressions Map to Method Calls ❘ 209

{

foreach (T2 second in inputSelector(first))

yield return resultSelector(first, second);

}

}

The first input sequence is iterated. Then the second input sequence is iter-
ated using the current value on the input sequence. That’s important,
because the input selector on the second sequence may depend on the cur-
rent value in the first sequence. Then, as each pair of elements is generated,
the result selector is called on each pair.

If your query has more expressions and if SelectMany does not create the
final result, then SelectMany creates a tuple that contains one item from
each input sequence. Sequences of that tuple are the input sequence for
later expressions. For example, consider this modified version of the orig-
inal query:

int[] odds = { 1, 3, 5, 7 };

int[] evens = { 2, 4, 6, 8 };

var values = from oddNumber in odds

from evenNumber in evens

where oddNumber > evenNumber

select new { oddNumber, evenNumber,

Sum = oddNumber + evenNumber };

It produces this SelectMany method call:

odds.SelectMany(oddNumber => evens,

(oddNumber, evenNumber) =>

new {oddNumber, evenNumber});

The full query is then translated into this statement:

var values = odds.SelectMany(oddNumber => evens,

(oddNumber, evenNumber) =>

new { oddNumber, evenNumber }).

Where(pair => pair.oddNumber > pair.evenNumber).

Select(pair => new {

pair.oddNumber,

pair.evenNumber,

Sum = pair.oddNumber + pair.evenNumber });

210 ❘ Chapter 5 Working with LINQ

You can see another interesting property in the way SelectMany gets
treated when the compiler translates multiple from clauses into Select-
Many method calls. SelectMany composes well. More than two from
clauses will produce more than one SelectMany() method call. The
resulting pair from the first SelectMany() call will be fed into the second
SelectMany(), which will produce a triple. The triple will contain all
combinations of all three sequences. Consider this query:

var triples = from n in new int[] { 1, 2, 3 }

from s in new string[] { "one", "two",

"three" }

from r in new string[] { "I", "II", "III" }

select new { Arabic = n, Word = s, Roman = r };

It will be translated into the following method calls:

var numbers = new int[] {1,2,3};

var words = new string[] {"one", "two", "three"};

var romanNumerals = new string[] { "I", "II", "III" };

var triples = numbers.SelectMany(n => words,

(n, s) => new { n, s}).

SelectMany(pair => romanNumerals,

(pair,n) =>

new { Arabic = pair.n, Word = pair.s, Roman = n });

As you can see, you can extend from three to any arbitrary number of
input sequences by applying more SelectMany() calls. These later exam-
ples also demonstrate how SelectMany can introduce anonymous types
into your queries. The sequence returned from SelectMany() is a
sequence of some anonymous type.

Now let’s look at the two other translations you need to understand: Join
and GroupJoin. Both are applied on join expressions. GroupJoin is always
used when the join expression contains an into clause. Join is used when
the join expression does not contain an into clause.

A join without an into looks like this:

var numbers = new int[] { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };

var labels = new string[] { "0", "1", "2", "3", "4", "5" };

var query = from num in numbers

join label in labels on num.ToString() equals

label

select new { num, label };

Item 36: Understand How Query Expressions Map to Method Calls ❘ 211

It translates into the following:

var query = numbers.Join(labels, num => num.ToString(),

label => label, (num, label) => new { num, label });

The into clause creates a list of subdivided results:

var groups = from p in projects

join t in tasks on p equals t.Parent

into projTasks

select new { Project = p, projTasks };

That translates into a GroupJoin:

var groups = projects.GroupJoin(tasks,

p => p, t => t.Parent, (p, projTasks) =>

new { Project = p, TaskList = projTasks });

The entire process of converting all expressions into method calls is com-
plicated and often takes several steps.

The good news is that for the most part, you can happily go about your
work secure in the knowledge that the compiler does the correct transla-
tion. And because your type implements IEnumerable<T>, users of your
type are getting the correct behavior.

But you may have that nagging urge to create your own version of one or
more of the methods that implement the query expression pattern. Maybe
your collection type is always sorted on a certain key, and you can short-
circuit the OrderBy method. Maybe your type exposes lists of lists, and
this means that you may find that GroupBy and GroupJoin can be imple-
mented more efficiently.

More ambitiously, maybe you intend to create your own provider and
you’ll implement the entire pattern. That being the case, you need to
understand the behavior of each query method and know what should go
into your implementation. Refer to the examples, and make sure you under-
stand the expected behavior of each query method before you embark on
creating your own implementations.

Many of the custom types you define model some kind of collection. The
developers who use your types will expect to use your collections in the
same way that they use every other collection type, with the built-in query
syntax. As long as you support the IEnumerable<T> interface for any type
that models a collection, you’ll meet that expectation. However, your types
may be able to improve on the default implementation by using the inter-

212 ❘ Chapter 5 Working with LINQ

nal specifics in your type. When you choose to do that, ensure that your
type matches the contract from the query pattern in all forms.

Item 37: Prefer Lazy Evaluation Queries

When you define a query, you don’t actually get the data and populate a
sequence. You are actually defining only the set of steps that you will exe-
cute when you choose to iterate that query. This means that each time you
execute a query, you perform the entire recipe from first principles. That’s
usually the right behavior. Each new enumeration produces new results, in
what is called lazy evaluation. However, often that’s not what you want.
When you grab a set of variables, you want to retrieve them once and
retrieve them now, in what is called eager evaluation.

Every time you write a query that you plan to enumerate more than once,
you need to consider which behavior you want. Do you want a snapshot
of your data, or do you want to create a description of the code you will
execute in order to create the sequence of values?

This concept is a major change in the way you are likely accustomed to
working. You probably view code as something that is executed immedi-
ately. However, with LINQ queries, you’re injecting code into a method.
That code will be invoked at a later time. More than that, if the provider
uses expression trees instead of delegates, those expression trees can be
combined later by combining new expressions into the same expression tree.

Let’s start with an example to explain the difference between lazy and eager
evaluation. The following bit of code generates a sequence and then iter-
ates that sequence three times, with a pause between iterations.

private static IEnumerable<TResult>

Generate<TResult>(int number, Func<TResult> generator)

{

for (int i = 0; i < number; i++)

yield return generator();

}

private static void LazyEvaluation()

{

Console.WriteLine("Start time for Test One: {0}",

DateTime.Now);

var sequence = Generate(10, () => DateTime.Now);

Item 37: Prefer Lazy Evaluation Queries ❘ 213

orderby p.GoalsScored

select p).Skip(2).First();

I chose First() rather than Take() to emphasize that I wanted exactly
one element, and not a sequence containing one element. Note that
because I use First() instead of FirstOrDefault(), the compiler
assumes that at least three forwards have scored goals.

However, once you start looking for an element in a specific position, it’s
likely that there is a better way to construct the query. Are there different
properties you should be looking for? Should you look to see whether your
sequence supports IList<T> and supports index operations? Should you
rework the algorithm to find exactly the one item? You may find that other
methods of finding results will give you much clearer code.

Many of your queries are designed to return one scalar value. Whenever
you query for a single value, it’s best to write your query to return a scalar
value rather than a sequence of one element. Using Single() means that
you expect to always find exactly one item. SingleOrDefault() means
zero or one item. First and Last mean that you are pulling one item out
of a sequence. Using any other method of finding one item likely means
that you haven’t written your query as well as you should have. It won’t be
as clear for developers using your code or maintaining it later.

Item 44: Prefer Storing Expression<> to Func<>

In Item 42 (earlier in this chapter) I briefly discuss how query providers
such as LINQ to SQL examine queries before execution and translate them
into their native format. LINQ to Objects, in contrast, implements queries
by compiling lambda expressions into methods and creating delegates that
access those methods. It’s plain old code, but the access is implemented
through delegates.

LINQ to SQL (and any other query provider) performs this magic by ask-
ing for query expressions in the form of a System.Linq.Expres-
sions.Expression object. Expression is an abstract base class that
represents an expression. One of the classes derived from Expression is
System.Linq.Expressions.Expression<TDelegate>, where TDele-
gate is a delegate type. Expression<TDelegate> represents a lambda
expression as a data structure. You can analyze it by using the Body, Node-
Type, and Parameters properties. Furthermore, you can compile it into
a delegate by using the Expression<TDelegate>.Compile() method.

Item 44: Prefer Storing Expression<> to Func<> ❘ 249

That makes Expression<TDelegate>more general than Func<T>. Simply
put, Func<T> is a delegate that can be invoked. Expression<TDelegate>
can be examined, or it can be compiled and then invoked in the normal way.

When your design includes the storage of lambda expressions, you’ll have
more options if you store them using Expression<T>. You don’t lose any
features; you simply have to compile the expression before invoking it:

Expression<Func<int, bool>> compound = val =>

(val % 2 == 1) && (val > 300);

Func<int, bool> compiled = compound.Compile();

Console.WriteLine(compiled(501));

The Expression class provides methods that allow you to examine the
logic of an expression. You can examine an expression tree and see the
exact logic that makes up the expression. The C# team provides a reference
implementation for examining an expression with the C# samples deliv-
ered with Visual Studio 2008. The Expression Tree Visualizer sample,
which includes source code, provides code that examines each node type
in an expression tree and displays the contents of that node. It recursively
visits each subnode in the tree; this is how you would examine each node
in a tree in an algorithm to visit and modify each node.

Working with expressions and expression trees instead of functions and
delegates can be a better choice, because expressions have quite a bit more
functionality: You can convert an Expression to a Func, and you can tra-
verse expression trees, meaning that you can create modified versions of
the expressions. You can use Expression to build new algorithms at run-
time, something that is much harder to do with Func.

This habit helps you by letting you later combine expressions using code.
In this way, you build an expression tree that contains multiple clauses.
After building the code, you can call Compile() and create the delegate
when you need it.

Here is one way to combine two expressions to form a larger expression:

Expression<Func<int, bool>> IsOdd = val => val % 2 == 1;

Expression<Func<int, bool>> IsLargeNumber = val => val > 300;

InvocationExpression callLeft = Expression.Invoke(IsOdd,

Expression.Constant(5));

InvocationExpression callRight = Expression.Invoke(

IsLargeNumber,

Expression.Constant(5));

250 ❘ Chapter 5 Working with LINQ

BinaryExpression Combined =

Expression.MakeBinary(ExpressionType.And,

callLeft, callRight);

// Convert to a typed expression:

Expression<Func<bool>> typeCombined =

Expression.Lambda<Func<bool>>(Combined);

Func<bool> compiled = typeCombined.Compile();

bool answer = compiled();

This code creates two small expressions and combines them into a single
expression. Then it compiles the larger expression and executes it. If you’re
familiar with either CodeDom or Reflection.Emit, the Expression APIs
can provide similar metaprogramming capabilities. You can visit expres-
sions, create new expressions, compile them to delegates, and finally exe-
cute them.

Working with expression trees is far from simple. Because expressions are
immutable, it’s a rather extensive undertaking to create a modified version
of an expression. You need to traverse every node in the tree and either (1)
copy it to the new tree or (2) replace the existing node with a different
expression that produces the same kind of result. Several implementations
of expression tree visitors have been written, as samples and as open source
projects. I don’t add yet another version here. A Web search for “expression
tree visitor” will find several implementations.

The System.Linq.Expressions namespace contains a rich grammar
that you can use to build algorithms at runtime. You can construct your
own expressions by building the complete expression from its compo-
nents. The following code executes the same logic as the previous exam-
ple, but here I build the lambda expression in code:

// The lambda expression has one parameter:

ParameterExpression parm = Expression.Parameter(

typeof(int), "val");

// We'll use a few integer constants:

ConstantExpression threeHundred = Expression.Constant(300,

typeof(int));

ConstantExpression one = Expression.Constant(1, typeof(int));

ConstantExpression two = Expression.Constant(2, typeof(int));

Item 44: Prefer Storing Expression<> to Func<> ❘ 251

// Creates (val > 300)

BinaryExpression largeNumbers =

Expression.MakeBinary(ExpressionType.GreaterThan,

parm, threeHundred);

// creates (val % 2)

BinaryExpression modulo = Expression.MakeBinary(

ExpressionType.Modulo,

parm, two);

// builds ((val % 2) == 1), using modulo

BinaryExpression isOdd = Expression.MakeBinary(

ExpressionType.Equal,

modulo, one);

// creates ((val % 2) == 1) && (val > 300),

// using isOdd and largeNumbers

BinaryExpression lambdaBody =

Expression.MakeBinary(ExpressionType.AndAlso,

isOdd, largeNumbers);

// creates val => (val % 2 == 1) && (val > 300)

// from lambda body and parameter.

LambdaExpression lambda = Expression.Lambda(lambdaBody, parm);

// Compile it:

Func<int, bool> compiled = lambda.Compile() as

Func<int, bool>;

// Run it:

Console.WriteLine(compiled(501));

Yes, using Expression to build your own logic is certainly more compli-
cated than creating the expression from the Func<> definitions shown ear-
lier. This kind of metaprogramming is an advanced topic. It’s not the first
tool you should reach for in your toolbox.

Even if you don’t build and modify expressions, libraries you use might
do so. You should consider using Expression<> instead of Func<> when
your lambda expressions are passed to unknown libraries whose imple-
mentations might use the expression tree logic to translate your algorithms
into a different format. Any IQueryProvider, such as LINQ to SQL,
would perform that translation.

252 ❘ Chapter 5 Working with LINQ

Also, you might create your own additions to your type that would be bet-
ter served by expressions than by delegates. The justification is the same:
You can always convert expressions into delegates, but you can’t go the
other way.

You may find that delegates are an easier way to represent lambda expres-
sions, and conceptually they are. Delegates can be executed. Most C# devel-
opers understand them, and often they provide all the functionality you
need. However, if your type will store expressions and passing those
expressions to other objects is not under your control, or if you will com-
pose expressions into more-complex constructs, then you should consider
using expressions instead of funcs. You’ll have a richer set of APIs that will
enable you to modify those expressions at runtime and invoke them after
you have examined them for your own internal purposes.

Item 44: Prefer Storing Expression<> to Func<> ❘ 253

ArrayTypeMismatchException
class, 266

as operator, 59

AsEnumerable method, 244

AsQueryable method, 246

B
Background threads, 68

BackgroundWorker class, 74–78

Base Class Library (BCL), 41

Base classes
abstract, 121, 126–127
generic specialization on, 42–46
inheritance from, 157–158

BaseType class, 279

BCL (Base Class Library), 41

BeginInvoke method
Control, 78, 101
ControlExtensions, 102
Dispatcher, 93–94

Behavior
array covariance, 270
must-have, 14
properties, 150–156

BindingList class, 13, 117–118

Bound variables
in closures, 229–231
modifying, 185–191

A
Abstract base classes, 121, 126–127

Action delegates, 113

Action method, 11, 113

Action methods, 114, 223

Actions
decoupling iterations from, 112–116
exceptions in, 222–225

Add method
Example, 36–37
operator +, 135–136
Vector, 128–129

Addition operators (+, +=), 135–136

AddRange method, 183–184

AddToStream method, 31

Algorithm runtime type checking,
19–26

Aliases
array, 270
closed generic type, 55

Ambiguities from overloads, 127–134

Anonymous delegates, 94

Anonymous types
local functions on, 191–195
for type scope, 176–180

Arrays
parameters, 266–271
sorting, 11

283

❘ Index

C
C# 3.0 language enhancements, 163

anonymous types
local functions on, 191–195
for type scope, 176–180

bound variables, 185–191
composable APIs, 180–185
extension methods

constructed types, 167–169
minimal interface contracts, 163–167
overloading, 196–200

implicitly typed local variables,
169–176

Call stacks
exceptions on, 147
in multithreading, 92, 100

Callbacks, 91–92

Calls
cross-thread, 93–103
mapping query expressions to,

201–213
virtual functions in constructors,

271–274

CancellationPending flag, 77

Candidate methods for compiler
choices, 128

Capturing expensive resources,
229–242

ChangeName method, 53–54

CheckEquality method, 58–59

Classes
abstract, 121, 126–127
derived, 157–158, 272, 279
generic specialization on, 42–46
inheritance from, 157–158
interface separation, 121–122
nested, 191, 193, 239
partial, 261–266

284 ❘ Index

Classic interfaces with generic
interfaces, 56–62

Closed generic types, 2

Closure class, 190, 230–231

Closures
bound variables in, 229–231
nested classes for, 239

CLS (Common Language
Specification), 134

Collections, 1, 5
for enumerator patterns, 27
processing, 10–12, 105–106
random access support, 21

COM (Component Object Model), 93

Common Language Specification
(CLS), 134

Comparable class, 17, 164

CompareExchange method, 85, 88

Comparer class, 47, 61

CompareTo method
IComparable, 7–8, 163–164
Name, 57–58
Order, 9

Comparing strings, 47

Comparison method, 11

Compile method, 249–250

Compile-time type inference, 26–32

Component class, 75

Component Object Model (COM), 93

Composable APIs
for external components, 180–185
for sequences, 105–112

Composable methods, 180

Composite keys, 179

Composition vs. inheritance, 156–162

Concatenation, 111–112, 135

ConsoleExtensions namespace, 197

Constraints
minimal and sufficient, 14–19
on type parameters, 36–42

Constructed types, 167–169

Constructors
partial methods for, 261–266
virtual functions in, 271–274

Continuation methods, 109

ControlExtensions class, 95–98,
101–102

ControlInvoke method, 93

Converter delegate, 11–12

Count property, 23

Coupling
and events, 137–139
loosening, 120–127

Covariance behavior of arrays, 270

CreateSequence method, 117–119, 124

Critical section blocks, 78–79, 82

Cross-thread communication
BackgroundWorker for, 74–78
in Windows Forms and WPF, 93–103

CurrencyManager class, 13

D
Data member properties, 150

Data sources, IEnumerable vs.
IQueryable, 242–246

Deadlocks
causes, 66, 91
scope limiting for, 86–90

Declarative code, 225

Declaring nonvirtual events, 139–146

Index ❘ 285

Decoupling iterations, 112–116

Decrement method, 85

default method, 17

Default property, 6

DefaultParse method, 181, 232, 255

Deferred execution
benefits, 106
bound variables in, 191
composability, 109
vs. early execution, 225–229
and locks, 89

Degenerate selects, 205

Delegates
action, 113
anonymous, 94
converter, 11–12
for method constraints on type

parameters, 36–42

Dependencies, 120

Derived classes
with events, 140–143
inheritance by, 157–158
with ref modifier, 53
and virtual functions, 93, 272–274
and virtual implied properties, 279

DerivedType class, 279

Deserialization, 258

Design practices, 105
composable APIs for sequences,

105–112
declaring nonvirtual events, 139–146
decoupling iterations, 112–116
events and runtime coupling, 137–139
exceptions, 146–150
function parameters, 120–127
inheritance vs. composition, 156–162
method groups, 127–134

Design practices (continued)
methods vs. overloading operators,

134–137
property behavior, 150–156
sequence items, 117–120

Dictionary class, 5

Dispatcher class, 93, 95, 99–100

DispatcherObject class, 97

Disposable type parameters support,
32–35

Dispose method
event handler, 139
Generator, 235–236
IDisposable, 33–35
LockHolder, 83
ReverseEnumerable, 20
ReverseStringEnumerator, 24
weak references, 276

DoesWorkThatMightFail class, 148–150

DoWork method, 75–76, 148–150

E
Eager evaluation, 213

Early execution vs. deferred, 225–229

End-of-task cycle in multithreading,
67–68

EndInvoke method, 94

engine_RaiseProgress method, 91

EngineDriver class, 33–35

Enhancements. See Language
enhancements

Enumerable class
extension methods, 163, 167–168,

185, 203, 243
numeric types, 45

286 ❘ Index

EnumerateAll method, 11

Enumerations, 112

EqualityComparer class, 6

Equals method
EmployeeComparer, 6
IEqualityComparer, 5–6
Name, 57–59
Object, 16–17
Order, 9–10
overriding, 135–136

Equals operator (==)
implementing, 59–60
overloading, 134–136

Equatable class, 17, 61

Error codes, 146–147

Error property, 77

Evaluation queries, 213–218

EventHandler method, 12–13

Events and event handlers
declaring, 139–146
generics for, 12–13
multithreading, 66, 75–78
partial methods for, 261–266
predicates, 27
and runtime coupling, 137–139

EveryNthItem method, 115

Exception-safe code
multithreading, 79, 82
and queries, 224

Exceptions
delegates, 101, 126
in functions and actions, 222–225
for method contract failures,

146–150
multithreading, 75, 77, 81–82
null reference, 183

Exchange method, 85

Exists method, 147

Exit method, 79–82, 84

Expensive resources, capturing,
229–242

ExpensiveSequence method, 238–239

Expression class vs. Func, 249–253

Expression patterns, 202–203

Expression Tree Visualizer sample, 250

Expression trees, 243

Expressions, query, 201–213

Expressions namespace, 251

Extension methods, 133
constructed types with, 167–169
minimal interface contracts, 163–167
overloading, 196–200

External components, composable
APIs for, 180–185

F
Factory class, 18

FactoryFunc class, 18

Failure reporting for method
contracts, 146–150

FillArray method, 268–269

Filter method, 114–115

Filters, 114–115

Find method, 27

FindAll method, 27

FindValue method, 191–192

FindValues method
Closure, 190
ModFilter, 187–189

First method, 247–249

FirstOrDefault method, 248

Index ❘ 287

Forcing compile-time type inference,
26–32

ForEach method and foreach loops
collections, 10–12
List, 27

Format method
ConsoleReport, 197
XmlReport, 198

FormatAsText method, 199

FormatAsXML method, 199

Func method
delegates, 37–38
vs. Expression, 249–253
.NET library, 113

Functions
on anonymous types, 191–195
decoupling iterations from, 112–116
exceptions in, 222–225
parameters, 120–127
virtual, 271–274

G
Garbage collection

expensive resources, 229–231,
238–240

and weak references, 274–277

GeneratedStuff class, 262–265

Generator class, 235–236

Generic namespace, 7

Generic type definitions, 2–3

Generics, 1–3
1.x Framework API class

replacements, 4–14
algorithm runtime type checking,

19–26
with base classes and interfaces, 42–46
classic interfaces in addition to, 56–62

Generics (continued)
compile-time type inference, 26–32
constraints, 14–19
delegates for method constraints on

type parameters, 36–42
disposable type parameters support,

32–35
tuples, 50–56
type parameters as instance fields,

46–50

Generics namespace, 5

GenericXmlPersistenceManager class,
30–32

get accessors, 150

GetEnumerator method, 21–23,
26–27, 163

GetHashCode method
EmployeeComparer, 6
IEqualityComparer, 5–6
overriding, 59, 135

GetNextNumber method, 235

GetSyncHandle method, 88

GetUnderlyingType method, 10

GetValueOrDefault method, 257

Greater-than operators (>, >=)
implementing, 61
overloading, 135, 137

GreaterThan method, 164

GreaterThanEqual method, 164

GroupBy method, 208, 212

GroupInto method, 163

GroupJoin method, 208, 211–212

H
Handles, lock, 86–90

Hero class, 69

288 ❘ Index

Hero of Alexandria algorithm, 69

Higher-order functions, 192–193

I
IAdd interface, 36

IBindingList interface, 13

ICancelAddNew interface, 13

ICloneable interface, 10

ICollection interface, 5, 23
extensions, 183–185
and IList, 22
inheritance by, 62

IComparable interface, 7–10, 15
extensions, 164
implementing, 41, 60–61, 122
nullable types, 259

IComparer interface, 5, 7, 47

IContract interface, 158, 160

IContractOne interface, 160

IContractTwo interface, 160

IDictionary interface, 5

IDisposable interface
expensive resources, 230–231
type parameters, 32–35
weak references, 276–277

IEngine interface, 33

IEnumerable interface, 5, 185
collection processing, 10–12
constraints, 17
extensions, 163, 167–169
implementing, 41
inheritance from, 62
vs. IQueryable, 242–246
for LINQ, 203, 222
random access support, 21
sequence output, 38–39
typed local variables, 170, 174–175

IEnumerator interface, 21–25, 163

IEquality interface, 59

IEqualityComparer interface, 5–6

IEquatable interface, 5–6
anonymous types, 195
implementing, 41, 122
overriding methods, 135
support for, 16–17

IFactory interface, 36

IHashCodeProvider interface, 6

IL (Intermediate Language), 1–3

IList interface, 5, 21–22, 24, 185

IMessageWriter interface, 42

Imperative code, 225

Implicit properties
benefits, 151
for mutable, nonserializable data,

277–282

Implicitly typed local variables,
169–176

IncrementTotal method, 79–85, 88

Inheritance vs. composition, 156–162

Initialize method, 265–266

InnerClassOne class, 159

InnerClassTwo class, 159

InnerTypeOne class, 160

InnerTypeTwo class, 160

InputCollection class, 40–41

Instance fields, type parameters as,
46–50

Interfaces
class separation, 121–122
extension methods for, 163–167
generic specialization on, 42–46

Interlocked class, 84–85

Index ❘ 289

InterlockedIncrement method, 85

Intermediate Language (IL), 1–3

InternalShippingSystem namespace, 8

InvalidOperationException class, 93,
248

Invoke method
Control, 91, 100–101
Dispatcher, 93

InvokeIfNeeded method
ControlExtensions, 95–96
WPFControlExtensions, 97–98

Invoker method, 94–95

InvokeRequired method, 93, 97–100

IPredicate interface, 122

IQueryable interface
vs. IEnumerable, 242–246
for LINQ, 203, 221–222
typed local variables, 170, 174–175

IQueryProvider interface, 170, 221,
244, 252

IsBusy property, 78

isValidProduct method, 244

Iterations
composability, 110
decoupling, 112–116
return values, 109

Iterators, 106, 117

J
JIT compiler, 1–3

Join method, 208
INumerable, 111–112, 122–124
query expressions, 211–212

Joining strings, 111–112, 135

K
Keys, composite, 179

KeyValuePair type, 54

L
Lambda expressions and syntax

anonymous types, 193
benefits, 226
bound variables, 186–191
for data structure, 249–250
delegate methods, 37, 39
lock handles, 79, 89
vs. methods, 218–222
multithreading, 72, 79, 89, 92
in queries, 169

Language enhancements, 163
anonymous types

local functions on, 191–195
for type scope, 176–180

bound variables, 185–191
composable APIs, 180–185
extension methods

constructed types, 167–169
minimal interface contracts, 163–
167
overloading, 196–200

implicitly typed local variables,
169–176

overloading extension methods,
196–200

Language-Integrated Query. See LINQ
(Language-Integrated Query)
language

Large objects, weak references for,
274–277

Last Name property, 151

290 ❘ Index

LastIndexOf method, 246

Lazy evaluation queries, 213–218

LazyEvaluation method, 213–214

LeakingClosure method, 239

Length property, 151

Less-than operators (<, <=)
implementing, 61
overloading, 135, 137

LessThan method, 164

LessThanEqual method, 164

Lexical scope, 79

Lifetime of objects, 139, 229

LinkedList class, 5

LINQ (Language-Integrated Query)
language, 163, 201

capturing expensive resources,
229–242

early vs. deferred execution, 225–229
exceptions in functions and actions,

222–225
IEnumerable vs. IQueryable data

sources, 242–246
lambda expressions vs. methods,

218–222
lazy evaluation queries, 213–218
mapping query expressions to

method calls, 201–213
semantic expectations on queries,

247–249
storing techniques, 249–253

List class, 5, 23–24, 27, 122

Livelocks, 66

LoadFromDatabase method, 154–155

LoadFromFile method
GenericXmlPersistenceManager,

30–31
XmlPersistenceManager, 27–29

Local functions on anonymous types,
191–195

Local variables
captured, 229–230
implicitly typed, 169–176

Lock handles scope, 86–90

lock method, 78–85

Locked sections, 90–93

LockHolder class, 83

LockingExample class, 86

Locks
adding, 65
deadlocks, 66, 86–91
synchronization, 78–85
unknown code in, 90–93

Long weak references, 277

Loops, 10–12, 27, 105

Loosening coupling, 120–127

LostProspects method, 169

LowPaidSalaried method, 219

LowPaidSalariedFilter method,
220–221

M
MakeAnotherSequence method, 241

MakeDeposit method, 64–65

MakeSequence method, 231

MakeWithdrawal method, 64–65

ManualThreads method, 71–72

Mapping query expressions to method
calls, 201–213

Match method, 122

Mathematical operators, overloading,
135–136

Index ❘ 291

Max method
Enumerable, 45
lazy queries, 217
Math, 47
Utilities, 133
Utils, 47–48

Merge method, 39

Message pumps, 94

MethodImplAttribute method, 87

Methods and method groups, 133
constraints on type parameters,

36–42
constructed types with, 167–169
contract failure reports, 146–150
generics, 46–50
guidelines, 127–134
vs. lambda expressions, 218–222
mapping query expressions to, 201–

213
minimal interface contracts, 163–167
vs. operator overloading, 134–137
overloading, 196–200
partial, 261–266
signatures, 5

Min method
Enumerable, 45
lazy queries, 217
Math, 47
Utils, 47–48

Minus sign operators (-, -=), 136

ModFilter class, 187–190

Modifying bound variables, 185–191

Monitor class, 79–82, 84

Moore's law, 63

MoveNext method
implementing, 163
ReverseEnumerable, 20
ReverseStringEnumerator, 25

Multiple parameters in overloaded
methods, 130–131

Multithreading, 63–66
BackgroundWorker for, 74–78
cross-thread calls in Windows Forms

and WPF, 93–103
lock handle scope, 86–90
lock method for, 78–85
thread pools, 67–74
unknown code in locked sections,

90–93

Mutable, nonserializable data, implicit
properties for, 277–282

Mutators, partial methods for, 261–266

MyEventHandler method, 12

MyInnerClass class, 158–159

MyLargeClass class, 274–276

MyOuterClass class, 157–161

MyType class, 153–156

N
Name class, 56–60

Name resolution, 45

NaN value, 256–257

Negate method, 136

Nested classes
anonymous types, 193
bound variables, 191
for closure, 239

.NET platform
BCL, 41
collections, 27
delegates, 38
generic replacements, 4–14
inheritance, 121–122, 161–162
multithreading. See Multithreading

292 ❘ Index

null references, 183
numeric types, 45

new method, 17–18

NextMarker method, 165–166

Nonserializable data, implicit
properties for, 277–282

Nonvirtual events, 139–146

Not equal operator (!=), 59–60

Null coalescing operator, 257

Nullable generic types
support by, 10
visibility of, 255–260

Nullable struct, 10

NullReferenceException class, 258–260

O
Object class generic replacements, 4

ObjectDisposedException class, 233

ObjectModel namespace, 5

ObjectName property, 153–156

Objects
lifetime, 139, 229
runtime coupling among, 137–139

1.x Framework API class generic
replacements, 4–14

OneThread method, 69–70

OnProgress method, 140–141, 143

OnTick method, 94, 96, 103

OnTick2 method, 94

OnTick20 method, 98

op_ version of methods, 134

Open generic types, 2

Open method, 147

Operators
implementing, 59–61
overloading, 134–137

Order class, 8–10

orderby clause, 243

OrderBy method, 163, 206–207, 217

OrderByDescending method, 206

Output parameters vs. tuples, 50–56

Overloading
extension methods, 196–200
guidelines, 127–134
operators, 134–137

Overriding methods, 59, 132, 135–136

P
Parameters

arrays, 266–271
function, 120–127
overloaded methods, 128–134
type. See Type parameters

params arrays, 266–271

Parking windows, 99

ParseFile method, 234

ParseLine method, 181–182

Partial classes and methods, 261–266

Patterns
generics for, 26–27
query expression, 202–203

Performance
with generics, 1, 3–4, 10, 16
iterations, 105–106
thread pools, 67, 69, 73–74

Plus sign operators (+, +=), 135–136

Point class
multiple parameters, 131–132

Index ❘ 293

properties, 152–153
sequences, 38–40

Point3D class, 132

Predicate method, 113

Predicates
decoupling iterations from,

112–116
defining, 27
delegates, 12, 113–114

Program class, 43–44

Progress accessor, 91

ProgressChanged event, 78

Properties
behavior, 150–156
for mutable, nonserializable data,

277–282

Pulse method, 85

Q
Queries

lazy evaluation, 213–218
LINQ. See LINQ (Language-

Integrated Query) language
mapping expressions to method

calls, 201–213
semantic expectations on, 247–249

Queryable class, 45, 244

QueueInvoke method, 102

QueueUserWorkItem class, 67–68,
72–75

R
Race conditions, 64–65, 93

raiseProgress method, 91

Readability
anonymous types, 179
cross-thread calls, 95, 97
implicit properties, 277, 279, 282
local variables, 170–172, 175–176
patterns, 164

ReaderWriterLockSlim class, 85

ReadFromStream method
GenericXmlPersistenceManager, 32
InputCollection, 41

ReadLines method, 232

ReadNumbersFromStream method,
232

Ref parameters vs. tuples, 50–56

References for large objects, 274–277

RemoveAll method, 113–114, 121–122

ReplaceIndices method, 266–267

ReportChange struct, 262–263

Reporting method contract failures,
146–150

ReportValueChanged method, 263–265

ReportValueChanging method,
263–264

RequestCancel method, 138

RequestChange class, 263, 265

Reset method
implementing, 163
ReverseEnumerable, 20
ReverseStringEnumerator, 25

ResourceHog method, 238–239

ResourceHogFilter method, 240

Return codes for method failures, 147

Reuse, generic type parameters for, 19

Reverse method, 175, 184–185

ReverseEnumerable class, 19–24

ReverseStringEnumerator class, 24–26

294 ❘ Index

Runtime coupling among objects,
137–139

Runtime type checking, 19–26

RunWorkerAsync method, 75

RunWorkerCompleted event, 78

S
SaveToDatabase method, 154–155

SaveToFile method
GenericXmlPersistenceManager,

30–31
XmlPersistenceManager, 28–29

Scale method
overloading, 129–130
Point, 131–132
Point3D, 132

Scope
anonymous types for, 176–180
lock handles, 86–90

sealed keyword, 33

Select clause, 205–206, 209

Select method, 205–206

SelectClause method, 188, 190

SelectMany method, 208–211

Semantic expectations on queries,
247–249

SendMailCoupons method, 168

Sequences
composable APIs for, 105–112
generating as requested, 117–120

Serialization
nullable types, 258
XML, 27–30

set accessors, 150–151

Short weak references, 277

Side effects
early execution, 226–228
race conditions, 65

Signatures for interface methods, 5

Single method, 247–249

Single-threaded apartment (STA)
model, 93

SingleOrDefault method, 248–249

Sort method, 11

SortedList class, 5

Sorts
array objects, 11
lazy queries, 217

SQL queries and LINQ. See LINQ
(Language-Integrated Query)
language

Square method, 110, 112

Square root algorithm, 69

STA (single-threaded apartment)
model, 93

Stack class, 5

StorageLength property, 183

Storing techniques, 249–253

StreamReader class, 236

Strings
comparing, 47
concatenating, 111–112, 135

Subtract method, 136

Subtraction operators (-, -=), 136

Sum method, 125–126

syncHandle object, 88

Synchronization, 78–85

Synchronization primitives, 78

SynchronizationLockException class, 82

System namespace, 7, 113

Index ❘ 295

T
Take method, 216, 249

TakeWhile method, 193

TestConditions method, 149

TextReader class, 233–234

ThenBy method, 163, 206–207

ThenByDescending method, 206

ThirdPartyECommerceSystem
namespace, 8

Thread pools, 67–74

ThreadAbortException class, 68

ThreadPoolThreads method, 70–71

Throwing exceptions, 222–225

ToArray method, 218

ToList method, 118, 218

ToString method
CommaSeparatedListBuilder, 49
Employee, 51, 53
nullable values, 259
Person, 280–281

Transform method, 115–116, 177

Transformations, 177–178

Transformer method, 115–116

Transport method, 12

TrueForAll method, List, 27

TryDoWork method, 148–150

TryParse method, 180

Tuple struct, 54–55

Tuples vs. output and ref parameters,
50–56

Type inference, 26–32

Type parameters
disposable, 32–35
for generic reuse, 19
generic types, 2–3

Type parameters (continued)
as instance fields, 46–50
method constraints on, 36–42

Type scope, anonymous types for,
176–180

U
Unique method, 106–109, 112

Unknown code in locked sections,
90–93

UpdateMarker method, 166

UpdateTime method, 95

UpdateValue method, 262–265

using statements
runtime behavior affected by,

198–200
for type parameters, 33

Utilities class, 133

Utils class, 47–50

V
Value type parameters, 3

Variables
bound, 185–191, 229–231
implicitly typed, 169–176
local, 229–230

Vector class, 128–129

VFunc method, 271–273

Virtual functions in constructors,
271–274

Virtual implied properties, 279

Visibility of nullable values, 255–260

296 ❘ Index

W
Wait method, 85

WaitCallback method, 75

Weak references for large objects,
274–277

where clause, 201, 243

Where method, 163, 201, 203–204

WhereClause method, 188, 190

Windows Forms, cross-thread calls in,
93–103

Windows Presentation Foundation
(WPF), cross-thread calls in,
93–103

Work method, 149

WorkerClass class, 90–91

WorkerEngine class, 137–138

WorkerEngineBase class, 140–145

WorkerEngineDerived class, 141–142,
144–146

WorkerEventArgs class, 138

WorkerSupportsCancellation
property, 76

WPF (Windows Presentation
Foundation), cross-thread calls in,
93–103

WPFControlExtensions class, 96–97

WriteMessage method, 45–46
AnotherType, 43
IMessageWriter, 42
Program, 43–44

WriteOutput1 method, 269–270

WriteOutput2 method, 269–270

WriteType method, 267–268

X
XML serializers, 27–30

XmlPersistenceManager class, 27–29

XmlSerializer class, 28–30

Index ❘ 297

Y
yield return statement, 12, 106–111,

117, 221

	Introduction
	Item 13: Use lock() as Your First Choice for Synchronization
	Item 29: Enhance Constructed Types with Extension Methods
	Item 36: Understand How Query Expressions Map to Method Calls
	Item 44: Prefer Storing Expression<> to Func<>
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

