
CHAPTER 1

IN THIS CHAPTER

• Wait Types

• Troubleshooting Blocking

• Identifying Blocking

• Identifying the Cause of
Blocking

• Resource Type Specifics

• Deadlocks

• Monitoring Blocking

• Conclusion

• Other Resources

Waiting and Blocking
Issues

By Santeri Voutilainen

I will start this chapter on blocking by talking
about waiting. Why would I start a chapter on
blocking with waiting? Well, the two are very much
related, and they are often treated as synonyms.
Because they are so related, the SQL Server concepts
and tools related to each are intermingled; there-
fore, it is important to distinguish one from the
other.

Conceptually, waiting usually refers to an idle state
in which a task is waiting for something to occur
before continuing execution. This “something”
might be the acquisition of a synchronization
resource, the arrival of a new command batch, or
some other event. Although this description is gen-
erally accurate, there is an important caveat: Not all
tasks identified as waiting within SQL Server are in
fact idle. This is because the waiting classification is
sometimes used to indicate that the task is execut-
ing a particular type of code. This code is often out-
side the direct control of SQL Server. In effect, the
SQL Server task is waiting for the completion of the
external code.

Wait Types
All waits within SQL Server are categorized into wait
types. The current wait type for a task is set based
on the reason for the wait. Each wait type is given a
name that describes, to some extent, the location,
component, resource, or reason for the wait.

01_0321447743_CH01.qxd 11/15/06 9:55 AM Page 1

Although some of the names can be somewhat cryptic (I cover some of these later), others
are self-explanatory. The list of wait types is available from the sys.dm_os_wait_stats
dynamic management view (DMV). By default, the output from this DMV is not the full
list. For SQL Server 2005, the SQL Server product team opted not to include some wait
types that fall under one of the following three categories:

■ Wait types that are never used in SQL Server 2005; note that some wait types not
excluded are also never used.

■ Wait types that can occur only at times when they do not affect user activity, such
as during initial server startup and shutdown, and are not visible to users.

■ Wait types that are innocuous but have caused concern among users because of
their high occurrence or duration.

Unfortunately, the omission of these wait types can also lead to concern because the last
category of excluded wait types does appear in other sources of waits—namely, the
sys.dm_os_waiting_tasks DMV. The complete list of wait types is available by enabling
trace flag 8001. The only effect of this trace flag is to force sys.dm_os_wait_stats to dis-
play all wait types.

dbcc traceon (8001, -1)

NOTE

This trace flag is undocumented, and, like all undocumented features, it is unsupported,
so you use it at your own risk.

The list of wait types can be divided into four basic categories: Resource, Timer/Queue, IO,
and External. The Resource waits category is by far the largest. It covers waits for resources
such as synchronization objects, events, and CPU. The Timer/Queue wait category
includes waits where the task is waiting for the expiration of a timer before proceeding or
when a task is waiting for new items in a queue to process. The IO category contains most
wait types related to IO operations. Both network and disk IO are included. The External
waits category covers the cases mentioned earlier, where the task is executing certain
types of code, often external to SQL Server, such as extended stored procedures.

The list of tasks currently in the waiting state is available from sys.dm_os_waiting_tasks.
With regard to waiting, this DMV includes information identifying the waiting tasks, the
duration of the wait, the wait type, and, in some cases, additional information about
what is being waited for. The DMV also includes blocking-specific information—namely,
the identity of the process blocking the continued execution of the task, when the iden-
tity is known. It is also the root source of blocking information, so knowing how to dis-
tinguish blocking from plain waiting using this DMV is important.

Chapter 1 Waiting and Blocking Issues2

01_0321447743_CH01.qxd 11/15/06 9:55 AM Page 2

Blocking is distinguished from waiting in that the wait is not voluntary; instead, it is
forced on the waiting worker by another task preventing worker’s task from proceeding.
This occurs when the tasks attempt simultaneous access of a shared resource.1 This defini-
tion is generally considered to exclude the wait types in the External and Timer/Queue
categories from indicating that the waiting task is blocking, even though the definition
does not strictly exclude the External category. Nevertheless, short sections on both
External and Timer/Queue waits are included toward the end of the chapter.

Troubleshooting Blocking
There are three general steps to investigate and deal with blocking:

1. Identify that blocking occurred.

2. Identify the cause of the blocking.

3. Eliminate the cause of the blocking.

This chapter focuses mostly on the first two steps. Because blocking can occur in a variety
of components, and the causes can be specific to those components, the solutions often
are component-specific, too. Rather than include detailed information on these compo-
nents in this chapter, I make references to the documentation for those components.
However, I have included causes and solutions for some of the more common blocking
types.

Note that many of the examples and the discussion assume SQL Server 2005 SP1 (or
later). This is particularly the case for the sys.dm_os_waiting_tasks DMV. Several changes
and fixes for this DMV were included in SP1. The SQL Server 2005 RTM behavior would
have significant differences compared to what is described next.

Identifying Blocking

Identifying Blocking Using sys.dm_os_waiting_tasks
In SQL Server 2005, the sys.dm_os_waiting_tasks DMV is the fundamental repository for
blocking information within the server. Before discussing how it can be used to detect the
existence of blocking, we cover some of its more important columns.

sys.dm_os_waiting_tasks contains three groups of columns: those that identify the
waiter, those that identify the blocker (if applicable), and those that provide information
about the wait.

1 In general, this requires the existence of two tasks. However, it is possible for a task to block itself. In
reality, this occurs rarely and generally results in a deadlock. Its existence can affect scripts used to
monitor or investigate blocking.

Identifying Blocking 3

01_0321447743_CH01.qxd 11/15/06 9:55 AM Page 3

The columns that identify the waiting task are the waiting_task_address, session_id,
and exec_context_id columns. The waiting_task_address contains the internal memory
address of the object that represents the task. This uniquely identifies a task within SQL
Server. The session_id represents the user session with which the task is currently associ-
ated. The association of a task with a session lasts only for the duration of the task,
generally a batch. The blocking task is identified by the blocking_task_address,
blocking_session_id, and blocking_exec_context_id. These have the same semantics as
the columns identifying the waiting task.

The relationship between the task address and session id columns should be noted.
Only sessions that are currently executing a statement within SQL Server have an associ-
ated task. However, a task need not be associated with a session ID: this occurs with vari-
ous system tasks. Because all waiting in SQL Server is done by tasks, it is not possible for a
session that is not currently associated with a task to be waiting or blocked. Therefore, the
waiting_task_address is never null, but the session_id and exec_context_id columns
may be null if the task is not associated with a session. On the flip side, a task can be
blocked by either an active task or an inactive session. This occurs if the resource involved
in the wait can be held by a session across tasks (that is, across batches). In SQL Server
2005, the only type of resource that can cause blocking and that is held across batches are
locks. Note that although some other resources such as memory associated with a session
are held across batches, these do not cause direct blocking but are rather represented
through proxy waits such as the LOWFAIL_MEMMGR_QUEUE wait type. Locks are held by
transactions, and because it is possible for a transaction to contain multiple batches, it is
thus possible for locks to be held by a session that has a transaction active while perform-
ing operations on the client side and thus would not have an associated task within the
server.

The identity of the blocking task is not always known. In these cases, the columns identi-
fying the blocking task are null. This is rather common because blocker information is
not available for most wait types—either because it does not make sense for the particular
wait type or because the information is not tracked (due to, for example, performance
concerns).

As its name implies, the wait_type column contains the current wait type for the waiting
task. Similarly, the wait_duration_ms column contains the duration of the current wait.
The resource_address column provides the memory address of the resource on which
the task is waiting. This is mainly useful as an identifier to differentiate blocking on dif-
ferent instances of a resource when the wait type names are the same. The
resource_description column can also provide differentiating information in such cases,
but it is only populated with useful information by a handful of wait types—all lock and
latch wait types, the CXPACKET and THREADPOOL wait types.

The simplest method for detecting blocking using sys.dm_os_waiting_tasks is simply to
run the T-SQL query select * from sys.dm_os_waiting_tasks and treat any row in the
output as signifying blocking. This, however, is not very useful, because there will almost
always be at least a handful of task wait states from the categories that can generally be
excluded from blocking investigations. For example, the deadlock monitor thread usually

Chapter 1 Waiting and Blocking Issues4

01_0321447743_CH01.qxd 11/15/06 9:55 AM Page 4

is listed as waiting with a wait type of REQUEST_FOR_DEADLOCK_SEARCH, which merely indi-
cates that it is pausing between deadlock detection events and is not blocked by anything.
The one time this category of waits should not be ignored is if the tasks in these waits are
blocking others, which is almost never the case except with the WAITFOR wait type.

Although it is possible to memorize the set of excludable wait types and mentally exclude
them from the result set, this is generally not efficient. A view built on top of
sys.dm_os_waiting_tasks can help.

The amalgam.innocuous_wait_types view available on the accompanying CD produces a
list of innocuous wait types that usually can be ignored. The amalgam.dm_os_waiting_
tasks_filtered view uses the helper view to filter out these innocuous waits:

create view amalgam.dm_os_waiting_tasks_filtered
as
select *
from sys.dm_os_waiting_tasks
where wait_type not in (

select *
from amalgam.innocuous_wait_types)

go

Any rows left in the filtered rowset represent tasks that are truly blocked. This set can be
further analyzed and narrowed based on the severity, cause, and nature of the blocking.
You learn more about this analysis in the sections dealing with identifying the cause of
blocking.

Why Not Use sysprocesses or sys.dm_exec_requests?
In previous versions of SQL Server, the DMV of choice for investigating waiting and
blocking was sysprocesses. Although this DMV exists in SQL Server 2005, it has been
deprecated and replaced by a set of new DMVs. The new DMV that contains the waiting
and blocking information from sysprocesses is sys.dm_exec_requests. Although both of
these DMVs contain information that you can use to investigate blocking and waiting,
there are good reasons not to use them.

The main reason you should not use these views is that they do not provide the level of
detailed information that is available from sys.dm_os_waiting_tasks. Sysprocesses and
sys.dm_exec_requests display session-level information. This means that they do not
contain system processes that are not associated with session IDs. Their session basis also
makes it harder to handle parallel queries where multiple tasks are executing under the
same session ID. sys.dm_exec_requests displays just one entry for each session. Because
of this, sys.dm_exec_requests is not usable when investigating blocking involving paral-
lel queries, because it displays only the blocked/waiting status of the parent task, not the
child tasks.

Identifying Blocking 5

01_0321447743_CH01.qxd 11/15/06 9:55 AM Page 5

The session-level focus also affects the display of blocker information. Both sysprocesses
and sys.dm_os_waiting_tasks display only the session ID of the blocking task rather
than the specific task in case of parallel queries.

Finally, the resource descriptions for sysprocesses and sys.dm_exec_requests are not as
complete as those in sys.dm_os_waiting_tasks, which provides the most complete
set of resource descriptions available. Further, the resource_address column in
sys.dm_os_waiting_tasks can be used to differentiate between multiple resources that do
not have resource descriptions. With the other two DMVs, these multiple resources could
not be distinguished from each other.

Although sys.dm_exec_requests should not be used as the primary source of blocking
information, it does contain information that is useful when you’re investigating certain
types of blocking, so it should not be ignored.

Statistically Identifying Blocking
Sys.dm_os_waiting_task, although a useful resource, is not the only resource for detect-
ing blocking. Statistical information on waiting and blocking is available from several
sources. This information can at times prove more useful than current wait and blocking
data from sys.dm_os_waiting_tasks because the statistical information can differentiate
between occasional and frequent, and short and long waits. Frequent long blocking is
generally of much more concern than occasional short blocking.

sys.dm_os_wait_stats
In addition to providing a list of wait types, as mentioned in the first section,
sys.dm_os_wait_stats provides statistics for each wait type. The information provided
includes the number of times a wait with a given wait type has occurred, the total dura-
tion of those waits, and the maximum wait time for a single wait.

A single query over this DMV can be used to identify wait types with long average waits.
Keep in mind that no significance should be assigned to the absolute wait counts
returned by a single snapshot of the view, because these counts are cumulative since the
last reset, which might have occurred some time ago. The wait counts are interesting
when measured over a known time span. The deltas between two snapshots indicate the
severity of blocking during that interval. These snapshots can be generated manually by
running a query over the DMV twice and calculating the difference, or, more conve-
niently, using the SQLDiag tool that ships with SQL Server 2005.

-- Create temporary tables to store the initial
-- and final snapshots
--
create table #StatsInitial (

wait_type sysname,
waiting_tasks_count bigint,
wait_time_ms bigint,
signal_wait_time_ms bigint);

create table #StatsFinal (
wait_type sysname,
waiting_tasks_count bigint,

Chapter 1 Waiting and Blocking Issues6

01_0321447743_CH01.qxd 11/15/06 9:55 AM Page 6

wait_time_ms bigint,
signal_wait_time_ms bigint);

-- Create indexes for join performance
--
create index idxInitialWaitType

on #StatsInitial (wait_type);
create index idxFinalWaitType

on #StatsFinal (wait_type);

-- Create an initial snapshot
--
insert into #StatsInitial
select wait_type,

waiting_tasks_count,
wait_time_ms,
signal_wait_time_ms

from amalgam.dm_os_wait_stats_filtered;

-- Wait for a ten second delay
-- This delay can be adjusted to suit your needs
-- and preferences
--
waitfor delay '00:00:10';

-- Create the final snapshot
--
insert into #StatsFinal
select wait_type,

waiting_tasks_count,
wait_time_ms,
signal_wait_time_ms

from amalgam.dm_os_wait_stats_filtered;

-- Report any wait types that had waits during
-- the wait delay, and the number and duration
-- of the waits
--
select f.wait_type,

f.waiting_tasks_count - i.waiting_tasks_count
as wait_tasks_count_delta,

f.wait_time_ms - i.wait_time_ms
as wait_time_ms_delta,

f.signal_wait_time_ms - i.signal_wait_time_ms
as signal_wait_time_delta

from #StatsFinal f join #StatsInitial i
on f.wait_type = i.wait_type

where f.waiting_tasks_count - i.waiting_tasks_count > 0
order by f.waiting_tasks_count - i.waiting_tasks_count
desc;

-- Finally drop the tables
--
drop table #StatsInitial;
drop table #StatsFinal;
go

Identifying Blocking 7

01_0321447743_CH01.qxd 11/15/06 9:55 AM Page 7

Note that, as written, the preceding queries exclude the innocuous wait types by referenc-
ing the amalgam.dm_os_wait_stats_filtered view.

Note that although it is possible to simplify this process by clearing the stats and then
running the query, this approach has several drawbacks, including the loss of historical
statistics, and the negative effect it can have on other tools that are also using the DMV
for wait statistics, including some ISV monitoring tools:

dbcc sqlperf ('sys.dm_os_wait_stats', CLEAR)
waitfor delay '00:00:10';
select *
from amalgam.dm_os_wait_stats_filtered;

When determining the severity of blocking based on these statistics, it is important to
keep in mind that these are aggregated statistics for all waits of each type. For many waits,
this might not point to a single resource. Prime examples of this are latch and lock waits.
The page latch count waits cover all pages in all databases, files, and objects. The same is
true for lock waits.

Similarly, comparing overall wait counts is not as important as the rate of waits (waits per
second) or the average duration of the waits. A few long waits generally indicate a local-
ized issue, whereas many short or medium-length waits are more indicative of hot spot-
ting or throughput bottlenecks.

Performance Counters
You can also use performance monitor counters to detect blocking. Some of the informa-
tion provided by the performance counters mirrors the information available from
sys.dm_os_wait_stats, but other counters provide information data that is available only
from performance monitor counters.

Although the easiest way of monitoring SQL Server performance counters is via the
SQLDiag tool, SQL Server’s counters are also available in rowset form through the
sys.dm_os_performance_counters DMV. The data in this DMV is the raw data reflected in
the performance counters, so some of it requires some processing in order to be useful.

The Wait Statistics group accumulates counters for various types of waits. The Process
blocked counter in the General Statistics group is a useful one that you can use to track
the number of blocked processes without needing to query sys.dm_os_waiting_tasks.

Notification-Based Detection
SQL Server 2005 includes a built-in proactive method of blocking notification. This is the
Blocked Process Report event, which can be captured in a trace and that can be used to
trigger code to deal with the blocking or notify operators. This event is triggered when a
wait exceeds the specified threshold. The usefulness of this event for monitoring general
blocking is somewhat limited by the fact that it only detects blocking on resources that
support deadlock detection. Resources that support deadlock detection are listed in Table
1-1 along with the corresponding wait types.

Chapter 1 Waiting and Blocking Issues8

01_0321447743_CH01.qxd 11/15/06 9:55 AM Page 8

TABLE 1-1 Resources that support deadlock detection

Deadlock-Detectable Resource Corresponding Wait Types

Locks LCK_M_*

Worker threads Any deadlock detectable resource wait types,
but generally lock waits

Memory RESOURCE_SEMAPHORE

Parallel query execution CXPACKET, EXCHANGE, EXECSYNC

Multiple active result set (MARS) resources
TRANSACTION_MUTEX, MSQL_DQ, MSQL_XP,
ASYNC_NETWORK_IO

CLR resources SQLCLR_APPDOMAIN, CLR_MONITOR,
CLR_RWLOCK_READER, CLR_RWLOCK_WRITER

The blocking threshold trigger is set using the 'blocked process threshold' option of
the sp_configure command. Note that this is an advanced option, so the 'show
advanced options' option must first be enabled. When the specified blocking threshold
duration is crossed, the event is produced. As with other events, you can configure this
event to produce an alert or run diagnostic scripts:

sp_configure 'show advanced options', 1;
go
reconfigure;
go
sp_configure 'blocked process threshold',

<threshold-in-seconds>;
go
reconfigure;

The event includes a blocking graph similar to that produced for deadlocks. When the
event fires because of blocking on a lock resource, identifying information for the lock
resource is included in the event columns.

Using the Blocked Process Threshold event is particularly useful to capture unexpectedly
long waits on lock and MARS resources. The threshold value should be established after
having achieved an acceptable level of blocking by tuning the application and SQL Server.
Under these conditions, this event provides a lightweight blocking monitoring mecha-
nism for these types of blocking.

Identifying the Cause of Blocking
After blocking has been discovered, the next step is to identify the cause. The root cause
is often specific to a particular wait type, but several shared concepts and operations help
determine the root cause.

Identifying the Cause of Blocking 9

01_0321447743_CH01.qxd 11/15/06 9:55 AM Page 9

Current Statements and Plans
Although the name of the wait type and the wait description can help identify the com-
ponent and resource in which blocking is occurring, the current statements for both the
blocked and blocking tasks are useful to have for gathering more information. The current
statement for both sessions is available from the sys.dm_exec_requests DMV. This works
only for sessions that are currently executing. It is not possible, using DMVs, to find the
text of the last batch for a session, although you can use DBCC INPUTBUFFER in many cir-
cumstances. sys.dm_exec_sessions does, however, contain the time the last batch was
issued. You can use this to determine a minimum duration since the earliest possible start
of blocking. Some blocking, especially lock-based blocking, is often affected by the query
plans chosen. The current query plan is also available from sys.dm_exec_requests. The
amalgam.current_statements_and_plans view included on the CD accompanying this
book hides some of the messy details.

For monitoring purposes, it is useful to note that the source of the current statement text,
sys.dm_exec_requests.sql_handle, is a durable handle within an instance of SQL Server.
This means that the same sql_handle value is always used for the same batch on a partic-
ular instance of SQL Server. Note, however, that to retrieve the actual text corresponding
to the sql_handle, the batch must be in cache. For dynamic SQL, the sql_handle can
even be compared across SQL Server instances. For objects, such as stored procedures and
functions, the sql_handle is derived from the database and object IDs, so it varies across
instances.

A word of caution is in order regarding the current statement and query plan for the
blocking tasks. A blocking task’s current statement may not be the actual cause of the
blocking. Given that some locks are held longer than a single statement, this is particu-
larly the case with locks where the lock that is causing the blocking could have been
acquired by any statement in the blocking task’s transaction, not just the current
statement.

Blocking Patterns
The output of sys.dm_os_waiting_tasks may exhibit several blocking patterns. These are
relatively easy to identity, and their classification can be useful in determining which
blocking issues to investigate first.

The first pattern is that of a single long wait. This is characterized by one task (or a small
number of tasks) waiting on a unique wait type and resource for a long time. This type of
blocking might not have a significant effect on the server’s throughput, but it can dramat-
ically increase the response time for the blocked query. Externally the response time delay
could have more-significant effects. The following query lists waits that have lasted longer
than ten seconds. The threshold level is relative and should be adjusted to the tolerances
of each individual system. You can further adjust it to specific levels based on the wait
type or some other qualifier:

select *
from amalgam.dm_os_waiting_tasks_filtered

Chapter 1 Waiting and Blocking Issues10

01_0321447743_CH01.qxd 11/15/06 9:55 AM Page 10

-- adjust the following threshold as appropriate
where wait_duration_ms > 10000
order by wait_duration_ms desc

The next pattern is a large number of direct waits for a single resource. There is no
extended blocking chain in this case—each task is blocked by the same single task. This
blocking may start having an effect on the server throughput, because fewer workers are
available to process the remainder of the workload. Response time is also affected for all
queries. This pattern is often a hot spot, and because all contention is on a single
resource, this type of blocking is generally relatively easy to resolve.

The third pattern is a large number of single waits on different resources. These can be much
harder to handle than the previous categories, because there is no clear target to investigate.
One option is to do short investigations of each of these waits. This might uncover a com-
mon trait between them. When this category is coupled with short wait times, it may be bet-
ter to use statistical approaches to determining the cause of the blocking.

The final pattern is a blocking chain with multiple levels of blocking. Each level may have
different types of waits as well as categories of blocking. This pattern is effectively a com-
bination of the preceding three categories, and, as such, each level of blocking can be
investigated separately.

Blocking Chains
As mentioned earlier, not all blocking is created equal. Some forms of blocking affect
throughput or response times more than others. One measure of this is the number of
other tasks blocked by a given blocking task. Some of these tasks are directly blocked by
the head blockers; others are blocked indirectly. Indirect blocking is blocking where task
T2 is blocked by T1 and T3 is blocked by T2, so T3 is indirectly blocked by T1 because it
cannot proceed until T2 can proceed, which cannot occur until T1 unblocks T2.

Finding head blockers is deceptively simple: Just find all blocking tasks that are not
blocked themselves. The task is made slightly more complex by the fact that not all waits
have blocking information. Thus, if task T2 is blocked by T1, which itself is waiting but
has no identified blocker, who should be marked as the head blocker? In order not to lose
sight of this type of blocking chain, it is useful to consider tasks that are blocking others
but do not have an identified blocker themselves as head blockers. This is especially the
case for voluntary waits such as WAITFOR queries where there truly is no blocker:

create view amalgam.head_blockers
as
select blocking_task_address
as head_blocker_task_address,

blocking_session_id
as head_blocker_session_id
from sys.dm_os_waiting_tasks
where blocking_task_address is not null OR

blocking_session_id is not null
except
select waiting_task_address, session_id

Identifying the Cause of Blocking 11

01_0321447743_CH01.qxd 11/15/06 9:55 AM Page 11

from sys.dm_os_waiting_tasks
where blocking_task_address is not null OR

blocking_session_id is not null
go

Note two important aspects about this query. First, it qualifies a task/session as a head
blocker if it is blocking some task and it itself does not have an identified blocker—in
fact, it may not even exist in the DMV as a waiter. Second, not all waiting tasks without
an identified blocker are head blockers. This is the case for wait types that do not provide
the ability to determine the blocker, in which case the head blocker may be waiting for a
resource, but the identity of the blocker cannot be determined.

You can use the list of head blockers to calculate the number of direct and indirect block-
ers. This measure is one factor to consider when deciding which blocking chains to tackle
first. You can use the amalgam.blocking_chain view to calculate the direct blocking
counts for any blocker, and indirect blocking counts for head blockers. The view uses a
recursive common table expression (CTE). The indirect count relies on the fact that at
every level of the blocking chain, the head blocker information is maintained. Because of
the possibility that any given snapshot of sys.dm_os_waiting_tasks may contain block-
ing chain cycles, the maxrecursion option should always be specified. This option could
not be included as part of the view because option clauses are not allowed in views.
Blocking chain cycles may exist due to three reasons:

■ A deadlock exists, but the deadlock monitor has not yet detected it.

■ A deadlock exists, but it cannot be detected, because it involves resources that do
not participate in deadlock detection but populate the blocking information. This is
the case, for example, with latches.

■ No deadlock exists, but it appears as if one does exist (due to timing conditions
when sys.dm_os_waiting_tasks was materialized).

-- Count of directly blocked tasks per blocker
--
select blocking_task_address,

blocking_session_id,
count(*) as directly_blocked_tasks

from amalgam.blocking_chain
group by blocking_task_address, blocking_session_id
option (maxrecursion 128)

-- Count of indirectly blocked tasks for each
-- head blocker
--
select head_blocker_task_address,

head_blocker_session_id,
count(*) as indirectly_blocked_tasks

from amalgam.blocking_chain
group by head_blocker_task_address,

head_blocker_session_id
option (maxrecursion 128)

Chapter 1 Waiting and Blocking Issues12

01_0321447743_CH01.qxd 11/15/06 9:55 AM Page 12

Resource Type Specifics
Beyond the common tools covered previously, much of the details of determining the
cause of blocking and resolving it are specific to each wait type. Next, we’ll cover some of
the more common wait types.

Latches
Latches are short-term synchronization objects. Although originally used mainly for syn-
chronization of physical access to database pages, their use in SQL Server as a general syn-
chronization primitive has become widespread. SQL Server 2005 has more than 120
distinct usages of latches. Certain types of latches are a common source of blocking and,
unfortunately, latch blocking is often hard to investigate and resolve (because of the
scarcity of diagnostic information available for them). Fortunately, SQL Server 2005 pro-
vides much more information than was available in previous releases.

Latch waits are divided into two main groups: page latch waits and nonpage latch waits.
Each of these groups can be subdivided into two subgroups. The main groups are the
PAGELATCH and PAGEIOLATCH, and TRANMARKLATCH and LATCH wait base wait types, often
referred to as page and nonpage latches, respectively. The TRANMARKLATCH group can be
treated as any other nonpage latch even though it has the special status of having its own
wait types.

In addition to these groups, different wait types exist for the latch mode being requested.
The modes for each of these are NL, KP, SH, UP, EX, and DT. (Lock modes are defined in the
Books Online topic sys.dm_os_wait_stats.) The actual wait type is formed by appending
one of the modes to the group name (for example, LATCH_EX). Of the six modes, three are
much more common the others. Waits for the NL, KP, and DT modes are rarely, if ever,
seen. The NL mode is in fact never used. Although KP use is common, it only conflicts
with DT, which is rarely used, so waits of either are quite rare.

Blocking Information
Blocking task information for latch waits is provided under certain circumstances. This
information is not available for all latch waits because latches track information for only
certain types of owners so as to remain lightweight. The blocking task information is
known when a latch is held in UP, EX, or DT modes. The common factor with these modes
is that a latch can be held in only one of these modes at a time and by only a single task,
whereas KP and SH latches can be held by multiple tasks simultaneously. It is important to
note that the available blocking information is not a factor of the mode specified in the
wait type but rather a factor of the mode in which the latch is held. The mode specified
in the wait type indicates the requested mode, not the blocking mode. If a latch is held in
one of the preceding modes, all waiters for that latch are marked as blocked by the task
that owns the latch in one of the preceding modes. Note that the blocking task informa-
tion may change during a single uninterrupted wait. An example of this is the case in
which the latch is held in both SH and UP modes and a task requests it in EX mode.

Resource Type Specifics 13

01_0321447743_CH01.qxd 11/15/06 9:55 AM Page 13

Although both the SH and UP modes are held by their respective tasks, the EX request is
reported as blocked by the owner of the UP mode. When the UP mode is released while
the SH is still held, the blocking information for EX reverts to unknown, because the
owner of the SH mode is not available.

Grant Order
There are a few important aspects to the latch grant order. For the most part, latches are
granted in first-in-first-out (FIFO) order, and any new requests need to wait if there are
any other waiters—even if the requested mode is compatible with the granted modes.
This is done to avoid starvation of the waiting task. Two exceptions apply to these rules.
The first is that KP requests never need to wait to be granted unless the current mode is
DT. The second is that when granting waiting requests after a release of a latch, all com-
patible requests are granted, regardless of their position in the list of waiters. An example
illustrates this behavior: If a latch is held in UP mode, the first waiter also wants an UP
mode latch, the second waiter wants an EX mode latch, and the following three want SH,
EX, and SH, respectively. When the UP mode is released, not only is the first UP waiter
granted, but the two SH requests are granted, too, even through they arrived after the first
EX request. This does not cause starvation, because no grants are made unless the first
waiter can be granted.

Latch Wait Time
The wait time displayed in sys.dm_os_waiting_tasks, and the averages derived from
sys.dm_os_wait_stats, for latch waits is misleading. The wait time used in these
locations is how long the task has been idle waiting for the latch. Latch waits, however,
wake up every five minutes to check for signs of a problem with the latch. This check
resets the wait time, so no latch wait ever shows having a wait time longer than five min-
utes. It is important to note that this does not mean that the logical duration for a latch
wait never exceeds five minutes; it just means that this total duration is made up of units
of at most five minutes. Although the full logical wait time for an individual latch wait is
not available from a DMV, full logical average and maximum durations are available from
the sys.dm_os_latch_stats DMV.

Latches were intended to be held for only short durations, and this is usually the case.
However, in severely overburdened systems and in a few other rare cases, it is possible
that a latch can take an extended amount of time to acquire—it cannot be acquired
within five minutes. When this occurs, SQL Server writes a warning message in the error
log. This warning is commonly referred to as a latch timeout warning. For nonpage
latches, this is a purely informative message. Noncritical page latch waits abort with an
845 exception if the latch request is no closer to being granted than it was at the start of
the five-minute duration.

Page Latches
Page latches are used to provide synchronization on physical access to individual database
pages that are stored in the buffer pool. Access to on-disk database pages is controlled by
the buffer pool; thus, page latches effectively provide access to the on-disk pages.

Chapter 1 Waiting and Blocking Issues14

01_0321447743_CH01.qxd 11/15/06 9:55 AM Page 14

Resource Description
The resource description in the resource_description column of
sys.dm_os_waiting_tasks for all page latches is <dbid>:<file-id>:<page-in-file>. The
<dbid> is the database ID for the database to which the page belongs. The <file-id> is
the ID of the file within the database. This corresponds to the file_id column in the
sys.database_files catalog view. <page-in-file> corresponds to the <page-in-file>th
page in the file.

PAGELATCH Versus PAGEIOLATCH
The difference between the two wait type subgroups for page latches is minor. For a given
page ID, waits for a latch may use a wait type for either subgroup. The choice is deter-
mined by whether an IO operation is outstanding on the page at the time the latch wait
starts. The wait time is updated only every five minutes during a latch wait, correspond-
ing to the timeout check described earlier.

Latch Mode Usage
To read a database page, at least an SH latch is required. Writes to a page generally require
an EX latch; exceptions to this rule are internal allocation system pages and versioning
pages in tempdb that require only UP mode latches.

Causes of Blocking on Page Latches
There are four main causes of page latch blocking:

■ IO subsystem performance

■ Contention on internal allocation system tables

■ Contention on catalog pages

■ Contention on data pages

The first cause manifests itself as PAGEIOLATCH waits. This is an indication that the IO sub-
system cannot keep up with the IO load. This may be caused by a malfunctioning IO sub-
system or excessive, and possibly unnecessary, load on the IO subsystem. When observing
the PAGEIOLATCH waits, the first thing to check is the duration of the waits. Very long
waits are signs of a malfunctioning IO subsystem; short durations are more likely to be a
sign of high IO load. In the middle are the troublesome ones that do not clearly belong in
either camp. SQL Server defines a long IO as one taking more than 15 seconds. If such an
IO is encountered, a message is written to the error log. Note that this error message
occurs only once every five minutes for a given file. The message includes a count of the
lengthy IOs seen for file in question during the past five minutes:

SQL Server has encountered 1 occurrence(s) of I/O requests taking longer than 15

seconds to complete on file [D:\SQL\DATA\tempdb.mdf] in database [tempdb] (2). The

OS file handle is 0x00000638. The offset of the latest long I/O is:

0x000000ffd00000

Resource Type Specifics 15

01_0321447743_CH01.qxd 11/15/06 9:55 AM Page 15

You can use the sys.dm_io_pending_io_requests DMV to determine where a pending IO
is held up. The io_pending column indicates whether the operating system has marked
the IO as completed. For long IOs, the next step is to examine where the IO is stuck. If
the io_pending value is 1, the operating system has not completed the IO. These cases
require investigating the operating system and/or IO subsystem for the cause of the
delayed IO. Note that the duration of PAGEIOLATCH waits should not be used as a direct
measure of IO duration; this also applies to wait statistics. This is because these latch waits
start when someone attempts to wait for the completion of the IO, not when the IO was
originally issued. Similarly, at the completion of the IO, the latch wait does not end until
the latch has been granted. This could be some time after the completion of the physical
IO, because there could have been multiple requests for the latch, and later requests
would have to wait for earlier requests to be granted first. For similar reasons, the wait
count counters for these waits do not indicate the number of IOs that were waited on,
because multiple waiters can wait for the same IO to complete.

Many short IO waits are most likely caused by an overloaded IO subsystem. This requires
investigation of what is causing the IO overload. One possible cause is lack of memory
relative to the size of the application’s working set of database pages. Not all pages
accessed by an application need to be in memory, but if a significant fraction of the most
often used pages do not fit in the buffer pool, they are likely to be constantly read from
disk. A related cause is excessive and unnecessary IO activity from SQL Server, such as
that caused by table scans on large tables when the query could benefit from an index to
avoid the scan. These scans can cause unnecessary thrashing in the buffer pool, which is
characteristic of the insufficient memory case. Therefore, it is important to rule out
unnecessary buffer pool thrashing due to less-than-ideal access patterns before determin-
ing whether more memory is required. The sys.dm_exec_query_stats and
sys.dm_db_index_operational_stats DMVs can be of help with this. The former con-
tains counters for both logical and physical reads and for logical writes.2 The latter con-
tains counters for PAGEIOLATCH waits and wait times on a per-index basis. These stats can
point toward queries and plans that perform a lot of IO and therefore might be worth
investigation as to whether all that IO really needs to be generated. Similarly, indexes
with heavy IO loads can be identified:

select sql_handle, plan_handle,
total_physical_reads, last_physical_reads,
min_physical_reads, max_physical_reads,
total_logical_writes, last_logical_writes,
min_logical_writes, max_logical_writes,
total_logical_reads, last_logical_reads,
min_logical_reads, max_logical_reads

from sys.dm_exec_query_stats
select database_id, object_id,
index_id, partition_number,

page_io_latch_wait_count,

Chapter 1 Waiting and Blocking Issues16

2 Queries never directly cause physical IO in SQL Server; therefore, physical IO counters are not
included. All physical data page IOs are issued by the buffer pool as part of managing the set of
cached pages.

01_0321447743_CH01.qxd 11/15/06 9:55 AM Page 16

page_io_latch_wait_in_ms
from sys.dm_db_index_operational_stats (null, null,
null, null)

The remaining causes do not require IO activity; rather, they are caused by high concur-
rent activity on specific pages. Differentiating among the three requires determining
which category the page ID falls under. The internal allocation system pages are the easi-
est to determine; the others need a bit more work.

The internal allocation system pages are at fixed intervals in each file, so they can be
identified using simple calculations on the page-in-file portion of the page ID. The set of
pages are the PFS, GAM, and SGAM pages. The first PFS page is always page-in-file ID 1;
after that, it is always a multiple of 8088. The GAM and SGAM pages are page-in-file IDs 2
and 3, and thereafter occur every 511,232 pages, which is approximately 4GB worth of
disk space per file.

Another alternative for identifying these pages is the latch mode requests. As mentioned
earlier, for page latches, the UP mode is used almost exclusively for these internal alloca-
tion system pages. Thus, PAGELATCH_UP and PAGEIOLATCH_UP waits can be assumed to be
for these internal system pages. These pages are used for tracking the allocation status of
pages with each file. Contention on them reflects lack of file parallelism in a file group.
Thus, contention on these pages can be reduced by adding more files to the file group.
This is especially the case in tempdb. You can read more about tempdb-specific trou-
bleshooting in Chapter 9, “Tempdb Issues.”

As mentioned previously, distinguishing between the remaining two causes requires
knowing the object to which a page belongs. Although there is no documented way to
determine this link, you can use the undocumented DBCC PAGE command for this pur-
pose. As with all undocumented commands, Microsoft does not provide support for usage
of this command. Use it at your own risk. That said, DBCC PAGE is widely used. As its
name implies, it provides information regarding a database page. Its can write its output
in either text or rowset format. The former is more convenient to read, whereas the latter
is easier to process programmatically. For the purposes of determining the object associ-
ated with a page, you can use the following snippet. It returns four rows, one each for the
object ID, index and partition number, and allocation unit ID. An allocation unit is a set
of related pages tracked as a unit. It corresponds to the set of pages tracked by a single
IAM chain.

declare @dbccpage table (
ParentObject sysname,
Object sysname,
Field sysname,
VALUE sysname)

insert into @dbccpage
exec ('dbcc page (<dbid>, <file-id>,

<page-in-file>) with tableresults')
select Field, VALUE
from @dbccpage
where Field like 'Metadata:%'

Resource Type Specifics 17

01_0321447743_CH01.qxd 11/15/06 9:55 AM Page 17

Although contention on catalog table pages is not common in most databases, it does
sometimes occur and is a sign of a high volume of DDL operations, because these opera-
tions modify catalog tables. This is most common in tempdb, where heavy usage of short-
lived temp tables or table variables results in heavy catalog table activity. Contrary to
popular belief, table variables are not fully in memory but have the same storage seman-
tics as temp tables. As with contention on internal system allocation pages, resolution for
catalog table page contention is discussed in Chapter 9. The key concept is to reduce the
number of DDL operations by changing temp table and table-variable usage patterns so
that either the tables are cachable or the usages are removed or reduced.

This leaves just user table latch contention. This contention occurs because of simultane-
ous access attempts on index or data pages in a table. The contention is generally on one
or more hot pages. Hot pages are pages that are frequently accessed within conflicting
modes, such as a combination of read and write access or multiple concurrent write
accesses. Although multiple concurrent read accesess also make a page hot, they do not
cause blocking, because read accesses require only SH latches, which are compatible with
each other. This means that select queries by themselves do not cause page latch block-
ing, so the contention is caused by data modifications—by insert, update, and delete
operations on the pages.

The resolution for this contention requires examining the reasons for the simultaneous
access. This requires examining the table and index schema and data modification pat-
terns. One common cause is concurrent insert activity into an index where inserts are
adjacent, or nearly adjacent. Examples of these are identity columns as the first key of an
index, or a datetime column that is populated by the current time. Because the rows are
adjacent in the index, they are likely to be placed on the same page. Concurrent inserts to
the same page are serialized by the required EX latch on the page. This might result in sig-
nificant contention on the page latch if there are many concurrent inserts. This con-
tention can be further exacerbated by another factor: page splits.

Page splits occur when a new row is inserted onto a page that is already full and the con-
tent of the existing page is split into two pages. During splits, latches are held on the page
that is being split, the existing next page in the index, and the parent page in the index
tree for the duration of the split. The latches are held in EX mode, thus blocking even read
access to the pages. A split needs to allocate a new page and thus is not necessarily an
instant operation. Attempts to access any of these pages during the split become blocked.

One solution to the insert point contention problem is to reorder the index keys so that
the insert activity is distributed across multiple regions in the index. For an index of any
significant size, this also distributes the activity across multiple pages. Of course, any
changes to the order of index keys may result in application performance degradation,
because the index might no longer be useful for the types of queries used in the applica-
tion. If the contention is on a clustered index, in certain circumstances another option is
to replace the clustered index with a heap (that is, to drop the clustered index). This
might help as SQL Server automatically distributes heap inserts across multiple pages.
Removal of the clustered index might also hurt application performance and should be
done only after you have considered the trade-offs between clustered indexes and heaps.

Chapter 1 Waiting and Blocking Issues18

01_0321447743_CH01.qxd 11/15/06 9:55 AM Page 18

Choosing Which Page Latch Contention to Focus On
It is unlikely that a few isolated page latch waits for a particular table will warrant exten-
sive examination of the table and index schemas or access patterns—it would probably
not be cost-effective, and some contention is bound to happen in any busy system. A bet-
ter approach is to gather statistics based on the table/index affected by the page latch
waits. Although this can be accomplished using sys.dm_os_waiting_tasks and DBCC
PAGE, it is not a trivial task. Part of the reason for this is that, for programmatic process-
ing, the DBCC PAGE output needs to be stored in a temporary table or table variable. More
important, the page ID in object and index ID lookups needs to be performed at the time
of the sys.dm_os_waiting_tasks query, because the pages could become reallocated to
some other object if the lookup is delayed. Fortunately, the sys.dm_db_index_
operational_stats DMV insulates you from many of the details. It contains several
columns of interest, particularly page_latch_wait_count and page_latch_wait_in_ms.
You can use deltas of these statistics to find indexes that are experiencing significant latch
wait times or counts and focus the investigation on those indexes.

Nonpage Latches
In addition to being used for physical access control on database pages, latches are used
for a variety of other synchronization needs within SQL Server. In fact, there are more
than 100 unique nonpage latch usages. It is not possible to discuss all of these here, nor
would it provide much useful information, because some are used extremely rarely.
Therefore, I discuss some of the more common ones and provide general guidance for the
rest. Although TRANMARK latches have unique wait type status within this group, that is
only for backward compatibility, and they can be treated as any other nonpage latch.

Latch Classes
The different types of nonpage latches can be distinguished by their latch class. The latch
class is an identifier attached to each latch that indicates is usage scenario. It can be used
to group latches used for different purposes. The full list of latch classes is available from
sys.dm_os_latch_stats. This DMV also provides statistical information similar to
sys.dm_os_wait_stats for each of the latch classes. It is worth noting that latch classes
apply to page latches, too; they are the BUFFER latch class. Because of their distinct and
important usage, however, page latches are treated uniquely. The names of the latch
classes were designed to provide some ability to infer the purpose of the latch or when it
may be acquired. The names are generally in two or three parts: component, optional
subcomponent, and usage within the component.

Resource Description
The resource description for nonpage latches provides arguably less information than
page latches. The format for TRANMARK latches is a GUID. The GUID is the transaction
UOW (unit of work) identifier for the owning task’s current transaction at the time of the
latch acquire. Latches are transactional, so this GUID just provides guidance as to which
task acquired and holds the latch. This can be mapped to the transaction_uow column in

Resource Type Specifics 19

01_0321447743_CH01.qxd 11/15/06 9:55 AM Page 19

the sys.dm_tran_active_transactions DMV. For all other nonpage latches, the conven-
tion is <latch-class-name> (<memory-address-for-the-latch>). This allows grouping
latch waits by latch class as well as identifier and by which waits are on different
instances of latches of the same class using the memory address. For example, each in-
memory data structure that represents a database file contains a latch, of class FCB, so the
address allows for determining whether the FCB latch contention is all on a single file or
multiple files. The next logical step is to map this FCB latch to a database and file ID.
Unfortunately, there is no way to do that mapping currently, but hopefully it will be con-
sidered in a future release of SQL Server.

Latch Class Descriptions
The next sections contain short descriptions of a handful of the latch classes on which
latch contention is commonly seen. It is not a comprehensive list. For those that are not
listed, the following generic latch investigation steps can be used:

1. Check the latch class description in Books Online, if available.

2. Examine the latch class for indications of what components or what type of state-
ments may acquire the latch.

3. Examine the blocked task’s current statement for more hints regarding the latch
usage.

4. Use the suffix of the wait type to determine the mode for the blocked request. This
will help identify whether the latch is being acquired for shared access—in which
case, it must currently be held for exclusive access. An exclusive request implies that
the blocked task’s current session needs to do some update, and this can provide
further info regarding resolving the blocking.

FCB, FCB_REPLICA, FGCB_ADD_REMOVE, FILE_MANAGER, FILEGROUP_MANAGER
These latch classes are all related to various aspects of database file management. FCB
stands for File Control Block. The FCB latch is used to synchronize standard database files,
whereas the FCB_REPLICA latch class is used by objects that represent the sparse files used
for database snapshots.

The FGCB_ADD_REMOVE class is used to synchronize files within a file group. (FGCB stands
for File Group Control Block.) It is acquired in SH mode during operations such as select-
ing a file from which to allocate. Operations such as adding or removing a file from the
file group need to acquire it in EX mode. File grow operations also need to acquire the
latch in EX mode. A file grow operation thus blocks not only other file grow operations
but possibly other allocations, too. Because the latch is held for the duration of the opera-
tion, large file grow operations can cause a lot of blocking. For data files, SQL Server 2005
can make use of the Windows ability to instantly initialize a file to a given size, thus
improving file growth performance dramatically. These performance optimizations can-
not, however, be used for log files or on older versions of Windows. In these cases, the
duration of the file grow operation is dependent on the size of the file grow and the
amount of other IO activity.

Chapter 1 Waiting and Blocking Issues20

01_0321447743_CH01.qxd 11/15/06 9:55 AM Page 20

ALLOC_EXTENT_CACHE and ALLOC_FREESPACE_CACHE
These classes are used to synchronize access to caches of extents and pages with available
spaces. The extent cache is used by all HoBts, whereas the freespace cache is used by only
heaps and lobs. Contention on these caches can occur during extremely high concurrent
insert, update, and delete operations on an index or heap where the operations require
new space within a page or a new page to be allocated. This contention is not affected by
IO performance. If contention is significant, a possible solution is to partition the table so
that the insert/update/delete operations are spread across the partitions. This helps
because these caches are specific to a single HoBt, and partitions are implemented using
multiple HoBts.

APPEND_ONLY_STORAGE_* and VERSIONING_*
These groups of latch classes are related to row versioning. The APPEND_ONLY_STORAGE
group of latch classes is used for synchronization by append-only storage units. These are
special allocation structures that exist only in tempdb and are heavily used by row ver-
sioning to store previous versions of rows. The VERSIONING group is used for state transi-
tions and transaction management.

ACCESS_METHODS_*
This group of latches is used by the Access Methods component of SQL Server. This com-
ponent handles the access paths to reach data; for example, it navigates the index and
heap structures to reach the appropriate rows based on the query predicates.

Individual classes worth mentioning within this group are HOBT_COUNT, which is used to
synchronize updates to row and page counters, and DATASET_PARENT, KEY_RANGE_
GENERATOR, and SCAN_RANGE_GENERATOR, which are specific to parallel plans. Cache-only
HoBts represent HoBts that do not appear in the system catalog, such as work tables, and
thus are not persisted across SQL Server restarts.

TRACE_*
Classes within the trace group are used during SQL Server tracing, such as through
Profiler. Contention caused by waits on these latches can be reduced by reducing or dis-
abling trace activity.

LOG_MANAGER
With this class, it is important to note that it is not used for basic transaction log
operations and thus does not affect mainline log throughput. It is, however, used to syn-
chronize log file grow operations. Thus, an option for resolving contention on this latch
class is to size the log file appropriately upfront or monitor log file usage and manually
grow the file during slow periods.

TRANSACTION_*, MSQL_TRANSACTION_MANAGER, NESTING_TRANSACTION_FULL,
NESTING_TRANSACTION_READONLY
Within this group of latch classes that are used during various transaction-related
operations, the TRANSACTION_DISTRIBUTED_MARK latch is unique. It is used when placing
markers in the transaction logs to allow for recovery to a named point. There is only one

Resource Type Specifics 21

01_0321447743_CH01.qxd 11/15/06 9:55 AM Page 21

transaction mark latch in any instance of SQL Server 2005. This latch rarely, if ever,
encounters contention, and thus there is no need for an extensive description. The source
of any contention is also clear, because this latch is used by only a single operation. The
other latch classes in this group are used in various transaction contents.

Locks
Blocking on lock resources is perhaps one of the most common causes of blocking.
Although much information is available for investigating lock blocking, the process is
made tricky by the fact that locks are one of the resources that can be held across batches.
This is an important aspect to remember when investigating lock blocking and one that I
cannot emphasize enough: Locks held by a transaction may not have been acquired by the cur-
rent statement within the transaction. Waits on locks use one of the LCK_M_* wait types. The
suffix of the wait type name is the lock mode requested by the blocked process.

Lock Resource Definition
Locks are acquired on lock resources. A lock resource is just a set of values that identifies
the resource. Although these resources are divided into 11 groups based on the logical
object being locked, no physical connection exists between the lock and the object.
Therefore, it is possible to acquire a lock on an object that does not exist. This is impor-
tant to keep in mind when attempting to query for additional information on a certain
lock resource. The list of groups is available in Books Online under the
sys.dm_tran_locks topic. In addition to the lock resource type, lock resources contain
database ID and resource-type-dependent information. The size of the type-dependent
data is limited, so some resource types cannot store full uniquely identifying information
for a particular resource. This means that it is possible to have false collisions between
locks for different resources of the same type. It is, however, impossible to have false colli-
sions for locks in different databases or of different resource types, because that informa-
tion is uniquely available for all lock resources. Some lock resource types also have
subtypes. It is important to note that the type-subtype pairs do not form a hierarchy and
specifically do not use multigranular locking. Subtypes only further scope the lock
resource and are used for resources that are related to the main type.

A lock resource is described in readable form in the resource description of the
sys.dm_os_waiting_tasks DMV and sys.dm_tran_locks. Note that the formats of the
resource descriptions in these DMVs are new to SQL Server 2005. These new formats are
described for each resource type in the section for that resource type.

Lock Grant/Blocking Order
It is often useful to know the order in which locks are granted, because this can help
you understand why certain blocking occurs. This order also affects lock blocking chains,
because it determines which tasks appear first in the blocking chain. Lock requests can be
in one of three different states: granted, converting, or waiting. Requests in the GRANT
state have been granted. (That is, the lock is held in that mode.) Requests in the CONVERT
and WAIT states have not yet been granted. In both cases, the requestor is waiting for the

Chapter 1 Waiting and Blocking Issues22

01_0321447743_CH01.qxd 11/15/06 9:55 AM Page 22

lock to be granted. The difference between the two states is that in CONVERT, the requestor
already holds a lock with a weaker mode on the resource, whereas in WAIT, it owns no
lock on the resource. Conversion happens, for example, if a transaction first reads a row,
resulting in an S lock, and then proceeds to update the row, which requires an X lock.
Note that the update must happen before the S lock is released for conversion to occur. A
conversion attempt simply converts (or upgrades) the existing grant mode; it does not
result in a new entry in sys.dm_tran_locks when the conversion has been granted. In the
following example, the first sp_getapplock acquires an S application lock on the resource
amalgam-demo-lock, and the second converts it to an X:

begin tran
exec sp_getapplock 'amalgam-demo-lock', 'Shared'
select *
from sys.dm_tran_locks
where request_session_id = @@spid
exec sp_getapplock 'amalgam-demo-lock', 'Exclusive'
select *
from sys.dm_tran_locks
where request_session_id = @@spid
rollback

The order of blocking chains on a single lock resource is as follows:

■ If a waiter is not the first waiter with state WAIT, it is always considered blocked by
the first waiter with state WAIT. This because it cannot be granted before the first
waiter is granted.

■ If a waiter is the first waiter with state WAIT and at least one waiter has state
CONVERT, the waiter is considered blocked by the conversion requests. This is because
conversion requests have priority over nonconversion requests, so the waiter cannot
be granted until the converter has been granted.

■ If a waiter is the first waiter with state WAIT and no waiters have state CONVERT, it is
considered blocked by all granted requests with incompatible lock modes.

■ A waiter with state CONVERT is considered blocked by all granted requests with
incompatible lock modes.

Note that if a waiter is considered blocked by multiple other tasks or sessions,
sys.dm_os_waiting_tasks displays each of the blockers in a separate row. This is different
from what sys.dm_exec_requests or the deprecated sysprocesses show; they show only
the first blocker.

Locks are granted in a relaxed first-in, first-out (FIFO) fashion. Although the order is not
strict FIFO, it preserves desirable properties such as avoiding starvation and works to
reduce unnecessary deadlocks and blocking. New lock requests where the requestor does
not yet own a lock on the resource become blocked if the requested mode is incompatible
with the union of granted requests and the modes of pending requests. A conversion

Resource Type Specifics 23

01_0321447743_CH01.qxd 11/15/06 9:55 AM Page 23

request becomes blocked only if the requested mode is incompatible with the union of all
granted modes, excluding the mode in which the conversion request itself was originally
granted. A couple exceptions apply to these rules; these exceptions involve internal trans-
actions that are marked as compatible with some other transaction. Requests by transac-
tions that are compatible with another transaction exclude the modes held by the
transactions with which they are compatible from the unions just described. The exclu-
sion for compatible transactions means that it is possible to see what look like conflicting
locks on the same resource (for example, two X locks held by different transactions).

The FIFO grant algorithm was significantly relaxed in SQL Server 2005 compared to SQL
Server 2000. This relaxation affected requests that are compatible with all held modes and
all pending modes. In these cases, the new lock could be granted immediately by passing
any pending requests. Because it is compatible with all pending requests, the newly
requested mode would not result in starvation. In SQL Server 2000, the new request
would not be granted, because, under its stricter FIFO implementation, new requests
could not be granted until all previously made requests had been granted. In the follow-
ing example, connections 1 and 3 would be granted when run against SQL Server 2005 in
the specified order. In SQL Server 2000, only connection 1 would be granted:

/* Conn 1 */
begin tran
exec sp_getapplock ‘amalgam-demo', 'IntentExclusive'
/* Conn 2 */
begin tran
exec sp_getapplock 'amalgam-demo', 'Shared'
/* Conn 3 */
begin tran
exec sp_getapplock 'amalgam-demo', 'IntentShared'

When Was a Lock Acquired?
As mentioned previously, locks may have been acquired by statements prior to the cur-
rent statement, so the question of determining when a lock was acquired is a common
one. Unfortunately, there is no guaranteed way to determine which statement acquired a
lock, or even when a lock was acquired. It is sometimes possible to rule out the current
statement as the acquirer. You can do this by comparing the wait time for the task that is
blocked on the lock and the start time of the owner’s last batch. If the lock owner’s cur-
rent batch has been running for a shorter time than the waiter has been waiting, the lock
could not have been acquired by the owner’s current statement. Here’s an example:

select *,
case
when getdate () >
DateAdd (ms, wt.wait_duration_ms,

es.last_request_start_time)
then 'yes'
else 'unknown'

end as blockers_past_statement_acquired_resource from

Chapter 1 Waiting and Blocking Issues24

01_0321447743_CH01.qxd 11/15/06 9:55 AM Page 24

amalgam.dm_os_waiting_tasks_filtered wt left join
sys.dm_exec_sessions es
on es.session_id = blocking_session_id

Although this can be used to rule out the current statement, it does not help identify the
specific previous statement that acquired the lock. The only way to reliably determine
which statement acquired a lock is to examine all the statements executed within the
owner’s current transaction and analyze them to determine which one(s) would have
needed to access the locked resource. This process is complicated by the fact that a trans-
action may have started earlier than the application developer planned. This can occur,
for example, if a previous transaction was not terminated correctly. A simple case of this
occurs when the application contains a bug that causes it to erroneously neglect to termi-
nate a transaction. However, a more subtle cause occurs when a statement or batch is
aborted and the application assumes the transaction has also been aborted, but, in fact,
the error wasn’t severe enough to abort the transaction. This is commonly caused by the
client sending an abort request to the server. The transaction-related DMVs can be used to
help detect cases such as these where a transaction has been active longer than expected.
The following query, for example, shows the open transaction count and transaction
name and start times for every session with an active transaction. Both the open transac-
tion count and the transaction name can be of use in determining that a transaction has
not been terminated properly. The open transaction count is incremented with each
begin transaction, so a value greater than expected for the application’s current location is
a hint of a possible problem. Even clearer is a transaction name mismatch. This is, in fact,
a good reason to use named transactions in applications. Here’s a sample query:

select er.session_id, er.request_id,
er.open_transaction_count, er.transaction_id,
at.name, at.transaction_begin_time

from sys.dm_exec_requests er join
sys.dm_tran_active_transactions at
on er.transaction_id = at.transaction_id

When attempting to match a lock with a statement in a transaction, it is useful to know
what lock mode the lock is held in by the owner. A simple way to do this is to look at the
mode attribute in the sys.dm_os_waiting_tasks.resource_description. This mode cor-
responds to the sum of all granted lock modes on the resource. When there are multiple
blockers, this value is the same for each of them, even if they acquired different lock
modes.

Another technique is to get each owner’s individual granted lock mode from
sys.dm_tran_locks. To do this, the resource description attributes need to be mapped to
lock resource identification information in sys.dm_tran_locks. The resource identifica-
tion columns are all the columns with the resource_ prefix. As a unit, these columns
uniquely describe a lock resource:

select request_mode
from sys.dm_tran_locks

Resource Type Specifics 25

01_0321447743_CH01.qxd 11/15/06 9:55 AM Page 25

where request_session_id = <blocker-session-id> and
request_execution_context =
<blocker-execution-context> and
resource_database_id =
<resource-dbid> and
resource_type =
<resource-type> and
resource_subtype =
<resource-subtype> and
resource_lock_partition =
<resource-lock-partition> and
resource_associated_entity_id =
<resource-associated-entity-id> and
resource_description =
<resource-other-desc-as-in-tran-locks>

Armed with the blocker’s lock mode, it is easier to identify the statement that might have
acquired the lock. Share-type lock modes may be acquired by any statement. Even DML
statements may acquire such locks as part of subqueries or to qualify rows. Exclusive-type
lock modes are usually acquired only by DML queries, although regular queries can also
acquire them when a locking hint such as XLOCK is specified. SCH_M locks are acquired
only for DDL operations that include table truncations. Even queries running under the
read uncommitted isolation level or with NOLOCK hints acquire some locks. Specifically,
they can acquire metadata locks while compiling the query and SCH_S locks on the
objects used. The SCH_S locks are required even under these isolation-level requirements
to block DDL operations for the duration of the query. Otherwise, the object could be
dropped while the query is executing. Key range locks are acquired only by statements
executed under the SERIALIZABLE ISOLATION level. This can help identify the statements
responsible for acquiring the locks, because most applications do not make heavy use of
this isolation level. Note that the HOLDLOCK locking hint is equivalent to the SERIALIZABLE
ISOLATION level.

Although most locks are transaction scoped and are released when the transaction termi-
nates, it is possible to hold locks across transaction boundaries. In these cases, the locks
are owned by some other entity. The owning entity is available from the
sys.dm_tran_locks.request_owner_type. Cursors and sessions are examples of such enti-
ties. For locks held by sessions, the scope of investigation expands to the start of the
owner’s session. Fortunately, only a limited number of lock types can be acquired at the
session level; of those, only two are ever held across transaction boundaries—database
and application locks. It is easy to identify which statements would have acquired these
locks. Session-level database locks are acquired only by USE statements. Session-level appli-
cation locks can only be acquired using the sp_getapplock stored procedure. Remember,
however, that the sp_getapplock call could be made from another stored procedure. The
statements responsible for acquiring the locks held by a cursor are also relatively easy to
determine, because they could only have been acquired during cursor operations (for
example, FETCH).

Chapter 1 Waiting and Blocking Issues26

01_0321447743_CH01.qxd 11/15/06 9:55 AM Page 26

Although there is no way to accurately determine, in every case, which statement
acquired a particular lock after the fact, it is possible in test environments with a little
forethought. You can do this by capturing the Lock Acquire trace events along with
Statement Start and End trace events. Note that this can produce an extremely large
quantity of trace output and will likely cause performance degradation for the statement
and the server, so the Lock trace event should not be used in production systems. Also
note that the specific locks acquired depends on several factors, including the query plan
and other concurrent operations. Query plans affect the locks acquired, because different
plans may examine more or fewer lockable resources while producing the result set.
Concurrent access can also result in the acquisition of different or varying numbers of
locks. One example of a runtime behavior difference is an optimization used during read
committed isolation-level queries that safely skips the acquisition of row locks if there
have been no modifications to the page since the start of the transaction. When tracing
multiple statements within a transaction, you can also use the Lock Release trace event
to exclude locks that are released at the end of a statement.

When using lock tracing, it is advisable to filter the trace output based on the session ID
for the connection on which the statement(s) of interest will be executed. This is because
even on a relatively idle server, background system tasks acquire locks and cause trace
output. Similarly, the trace should be started after the connection has been established so
as not to populate the trace with events for locks acquired during the login phase. Also,
ideally the statement will have been compiled and cached prior to the traced execution,
because this further helps limit the amount of output to examine.

Lock Resource Descriptions
The next sections cover a selection of lock resources commonly seen in blocking situa-
tions. It is not a complete list, but the sys.dm_tran_locks topic in Books Online has good
descriptions of the remaining resources.

Object
The objectlock resource is used for locking database objects. These objects can be tables,
stored procedures, views, triggers, or any other object with an object ID as listed in the
sys.all_objects catalog table. Object locks appear in blocking mainly in two flavors—
object-level locks on tables that cause blocking and blocking on the COMPILE subresource.

The first step is to determine the identity of the object on which blocking is occurring.
The format of the resource description in sys.dm_os_waiting_tasks for object locks is as
follows:

objectlock
lockPartition=<lock-partition-id>
objid=<object-id>
subresource=<sub-resource-name>
dbid=<database-id>
id=lock<lock-memory-address>
mode=<sum-of-all-granted-owners>
associatedObjectId=<associated-object-id>

Resource Type Specifics 27

01_0321447743_CH01.qxd 11/15/06 9:55 AM Page 27

The non-self-explanatory fields are explained next. The <sub-resource-name> indicates
the subresource used for this lock. A value of FULL indicates that the full resource is used,
not the subresource. The <associated-object-id> is in fact the object ID, and it corre-
sponds to the resource_associate_entity_id column in sys.dm_tran_locks.

The name of the object can be retrieved using the OBJECT_NAME function. Note that this
function operates on the current database, so it must be used from the appropriate data-
base for it to return accurate results, because the same object IDs likely refer to different
objects in different databases:

SELECT OBJECT_NAME (<object-id>)

Alternatively, you can use the sys.all_objects catalog. This has the benefit of displaying
the type of object too:

SELECT name, object_id, schema_id, type_desc
FROM sys.all_objects
WHERE object_id = <object-id>

Because of the use of multigranular locking in SQL Server, most statements need only an
intent lock at the table level. (Refer to the Books Online topic “Lock Modes” for more
information on intent and nonintent locks.) Because all intent locks are compatible with
each other, under most circumstances blocking does not occur at the table level. Blocking
occurs only if a statement requires a nonintent lock and conflicting locks are held by
other transactions, or if the table is already held in a nonintent mode when an intent
mode request is made. In both cases, avoiding the nonintent mode lock is the best option
for resolving the blocking.

Three nonintent modes are responsible for most table lock blocking. The first are the
SCH_M lock mode, the strongest possible mode, which is used for schema modifications.
S and X locks may be caused by lock escalation, locking hints, the query plan or relevant
statistics operations, or index options.

Index options can result in table-level locks if both page and row locking are disabled on
an index. You can use the INDEXPROPERTY function to determine whether this is the case.
Note that because an object lock covers an entire table, including all indexes, a single
index with both page and row locking disabled will affect access to the entire table if the
index is accessed.

A locking strategy is calculated for a query when it starts. This calculation determines
what locking granularity the query should use. This calculation may determine that even
with the decreased concurrency, it would be beneficial for the query to acquire a single
table lock rather than thousands or millions of page and row locks. Note that these calcu-
lations are biased against table-level granularity because of potential negative concurrency
effects. In certain cases, however, a table lock is the best option. Fortunately, a table-level
granularity choice is only a best-effect choice—if the nonintent lock cannot be acquired
instantly, the query backs off to page- or row-level locking. However, if there is no

Chapter 1 Waiting and Blocking Issues28

01_0321447743_CH01.qxd 11/15/06 9:55 AM Page 28

conflict at the start of the query, the table-level lock is granted. Often, these table-level
granularity choices are caused by nonideal or out-of-date table statistics that skew the cal-
culations in the table granularity direction. That said, it is of course certainly possible that
the query plan is valid and a table lock is a good choice, in which case locking hints can
be used to avoid the table-level lock if the query results in blocking. Either a page or row
locking hint can be used.

A related cause of table-level locks are heaps (tables without clustered indexes) and the
SERIALIZABLE ISOLATION level. Under the SERIALIZABLE ISOLATION level, any scan of a
heap requires a table-level lock for maintaining isolation-level characteristics. These locks
can be avoided either by not using the SERIALIZABLE ISOLATION level or by querying a
heap through a secondary index rather than directly. Such a query acquires the appropri-
ate locks on the index, and the access to the heap goes directly to the appropriate page
and row, thus not requiring a table-level lock.

On the flip side, locking hints can also cause table-level locks. This is the case if the
TABLOCK or TABLOCKX hints are used. These instruct query execution to acquire either an S
or an X lock on the table, respectively. As opposed to table locks that are suggested by
granularity calculations, table lock requests based on locking hints wait until the lock can
be granted and thus are much more likely to cause blocking.

The final factor that can result in table-level locking is lock escalation. Lock escalation is
the process of a statement escalating from using page or row-level locking granularity to
table lock granularity based on a system observation that the statement is acquiring a
large number of locks on the table. The trigger point for lock escalation is when a single
query has acquired at least 5,000 locks on a single partition. Note that for self joins, each
“instance” of a partition is counted separately. When lock escalation occurs, previously
acquired page and row locks for the table in question are released after a table-level lock
has been acquired. The intent of this is twofold: reduce the memory requirements of large
queries (each lock takes about 96 bytes of memory) and slightly increase performance by
avoiding the execution of the locking code completely. The attempt to escalate is best-
effort; that is, if the table-level lock cannot be acquired, lock escalation is skipped. In cer-
tain types of workloads, it is fairly common for lock escalation to occur. Although the
only way to determine whether lock escalation has occurred in a particular query is to run
a trace that includes the Lock: Escalation event, it is possible to determine statistically
which tables are likely to experience lock escalation based on their query patterns. This is
done using the index_lock_promotion_attempt_count and index_lock_promotion_count
columns in sys.dm_db_index_operational_stats. Lock promotion is a synonym for lock
escalation. These counts tell you how many times lock escalation has been attempted and
how many times it has succeeded. It is important to note that the attempt count is based
on the number of times the lock manager suggests that escalation might be needed. This
occurs even before the 5,000-lock-per-partition threshold is reached, so the attempt count
should not be viewed as indicating that queries on this index have acquired 5,000 locks
on the index but failed to acquire the table lock. A more accurate description is that the
attempts count reflects the number of times the index has been used in a query where the
transaction has acquired increments of 1,250 locks—the count is incremented every time
a multiple of 1,250 locks is reached.

Resource Type Specifics 29

01_0321447743_CH01.qxd 11/15/06 9:55 AM Page 29

Even though it often has a bad reputation, lock escalation is not always a bad thing. The
server supports lock escalation for a very good reason—to minimize the resources used to
manage concurrency. However, when lock escalation affects concurrency negatively, it
can be avoided either by modifying queries so that they do not acquire so many locks or
by disabling lock escalation. Lock escalation can be disabled instance-wide by enabling
trace flag 1211 or 1224. The difference between the two is that 1211 disables lock escala-
tion across the board, whereas 1224 disables it only until the lock manager is under mem-
ory pressure. Lock escalation can also be prevented on a table-by-table basis with a little
extra work. This involves making sure that an intent-exclusive lock is always held on the
table. Because both S and X locks are incompatible with an IX lock, lock escalation would
always fail. One way to guarantee this is to always start a process at SQL Server startup
that connects to the server and within a transaction acquires a lock on the table using an
update or delete statement that does not affect any rows. This connection would then
need to remain idle. The connection cannot terminate, because that would release the
lock. This approach is not always convenient, but it has been used successfully and is use-
ful when lock escalation is desired on some tables but is causing blocking on others. A
query like this would work, for example:

BEGIN TRAN
DELETE FROM <table-name> WHERE 1=0

Object Compile Locks
The COMPILE subresource of an object lock is used to synchronize compiles. Blocking on
this resource indicates that multiple tasks are concurrently attempting to compile the
same object. Usually, it is a stored procedure. After the object in question has been identi-
fied, the next step is to determine why the object is being compiled concurrently by mul-
tiple tasks. When the number of such compiles or recompiles has been reduced, the
contention on the compile lock is alleviated.

Page, Key, and Row Locks
I have grouped these three resources because they share common traits and are closely
related. As their names imply, these resources are used to lock database pages, index keys,
and heap rows. Note that key locks are never acquired on heaps, and row locks are never
acquired on indexes.

The resource description formats for these resources are as follows:

Page: pagelock
fileid=<file-id>
pageid=<page-in-file>
dbid=<database-id>
id=lock<memory-address-for-lock>
mode=<sum-of-all-granted-owners>
associatedObjectId=<associated-entity-id>
Row: ridlock

Chapter 1 Waiting and Blocking Issues30

01_0321447743_CH01.qxd 11/15/06 9:55 AM Page 30

fileid=<file-id>
pageid=<page-in-file>
dbid=<database-id>
id=lock<memory-address-for-lock>
mode=<sum-of-all-granted-owners>
associatedObjectId=<associated-entity-id>
Key: keylock
hobtid=<hobt-id>
dbid=<database-id>
id=lock<memory-address-for-lock>
mode=<sum-of-all-granted-owners>
associatedObjectId=<associated-entity-id>

The dbid tag indicates the database for the resource. The id tag contains the in-memory
address of the lock resource data structure; this is the structure shared among locks on a
given resource. The resource_address column for locks contains the address of the lock
owner structure, which is a per-lock owner structure. The mode tag contains the combined
mode of all granted locks for this resource. For page and row locks, the file and pageid
tags provide the page identity for the resource. For these two resources, the
associatedObjectId tag contains the hobtid.

For key locks, the hobtid and associatedObjectId tags contain the same value—the HoBt
ID of the HoBt in which the key exists. This can be mapped to a table, index, and parti-
tion using the sys.partitions catalog view:

select object_name (object_id), object_id, index_id,
partition_number, hobt_id

from sys.partitions
where hobt_id = <hobtid>

Unfortunately, the “Row and Key” resource description in sys.dm_os_waiting_tasks
leaves out two crucial pieces of information. This is regrettable considering that the DMV
is otherwise an excellent and improved source of blocking information. The missing
pieces are the slot ID for row locks and the key column hash for key resources. Each of
these distinguishes a particular row or key resource from other resources on the same page
or HoBt, respectively. Fortunately, it is relatively simple to get this information from other
sources. The two options are the sys.dm_tran_locks and sys.dm_exec_requests DMVs.
The sys.dm_tran_locks option is more reliable but is more expensive when a very large
number of locks are held in the system. Conversely, the sys.dm_exec_requests option
may be faster but is less accurate because it includes only the resource description for the
main worker during parallel queries. Therefore, the key resource information would not
be available if a parallel worker is blocked on the key lock.

The sys.dm_tran_locks option makes use of the
sys.dm_os_waiting_tasks.resource_address column, which can be used to join
with sys.dm_tran_locks.lock_owner_address to find the row corresponding to the
pending lock request. The missing information is contained in the sys.dm_tran_
locks.resource_description column and can be included in addition to the standard

Resource Type Specifics 31

01_0321447743_CH01.qxd 11/15/06 9:55 AM Page 31

sys.dm_os_waiting_tasks columns. This additional information is included in the amal-
gam.dm_waiting_tasks_filtered2 view:

select wt.*,
l.resource_description as

addition_resource_description
from sys.dm_os_waiting_tasks wt left join
sys.dm_tran_locks l

on wt.resource_address = l.lock_owner_address

Alternatively, the join can instead be with sys.dm_exec_requests:

select wt.*,
er.wait_resource as

additional_resource_description
from amalgam.dm_os_waiting_tasks_filtered wt left join

sys.dm_exec_requests er
on wt.waiting_task_address = er.task_address

The extra information this makes available for row locks is the slot ID. The slot ID is the
ordinal of the row slot on a page in which the row has been placed. Note that the extra
column displays the full row ID—that is, <file-id>:<page-in-file>:<slot-id>. For key
resources, the extra information is the hash of the index key values for the index row.

A common difficulty with page, row ID, and key resources is that they cannot be easily
mapped to the actual row or rows that they cover. The difficulty with page resources is
the page resource is a physical resource, which means the set of rows it covers can
change. In fact, the page can be repurposed for another HoBt when it is no longer needed
by the current HoBt. The result is that page resources have no permanent relationship to
rows in a table except as the current storage for the rows. The same is the case for rows
that are identified by a page ID and slot ID on the page. Page and Row ID resources can
become associated with a different HoBt when a page becomes empty and is deallocated.
At this point, it can be reallocated to some other object. The HoBt ID that is provided for
page and row resources is extra information that is not always available. This is because it
needs to be provided at the time the lock is acquired, and in some cases the code acquir-
ing the lock knows only the page ID. As opposed to page and row resources, key resources
are logical and are always specific to a particular HoBt, and the HoBt ID is an integral part
of the resource identifier; a different HoBt ID changes the identity of the resource.
Although key resources can always be matched to a HoBt, they cannot be easily matched
to a particular index key, because the index keys are represented by a hash value in the
key resource identifier. This hash is not reversible, and the system does not maintain a
mapping of hash values to keys.

Although there is no built-in mapping, there are two ways to determine which rows exist
on a given page and which rows correspond to a particular row or key resource. For row
ID resources, there is also a third option. The first is common to pages, row, and key
resources. It uses the fact that cursors can hold locks on the current page and key/row

Chapter 1 Waiting and Blocking Issues32

01_0321447743_CH01.qxd 11/15/06 9:55 AM Page 32

position. Therefore, if a cursor is used to scan an entire index, it is possible to definitively
match the row values with the resource identifiers of the resources currently locked by the
cursor and then compare these resource identifiers with those that are being searched.
Here’s an example:

declare @key1 keytype1
declare @key2 keytype2
...
declare @page_resource_description nvarchar(512)
declare @row_resource_description nvarchar(512)
-- some page resource of the form
-- '<file-id>:<page-in-file''
select @page_resource_description = ''
-- some row resource of the form
-- '<file-if>:<page-in-file>:<slot-id>'
-- or a key resource hash of the form
-- '(<hash-value>)'
select @row_resource_description = ''
declare find_lock_cursor cursor
scroll dynamic scroll_locks
for

select <keyname1>, <keyname2>, ...
from <table-name>

with (index = <index-id>)
open find_lock_cursor
fetch next from find_lock_cursor
into @key1, @key2, ...
while @@fetch_status = 0
begin

if (exists (
select *
from sys.dm_tran_locks
where request_session_id = @@spid and

resource_database_id =
db_id (<target-database>) and

resource_associated_entity_id =
<hobtid-of-interest> and

(resource_description =
@page_resource_description or

resource_description =
@row_resource_description) and

request_owner_type = 'CURSOR'))
begin

select @key1, @key2, ...
end
fetch next from find_lock_cursor
into @key1, @key2, ...

end
close find_lock_cursor
deallocate find_lock_cursor
go

Resource Type Specifics 33

01_0321447743_CH01.qxd 11/15/06 9:55 AM Page 33

There are several keys to making this method work. First, the HoBt ID corresponding to
the page, row, or key needs to be known. This information is generally available from the
resource descriptor in sys.dm_os_waiting_tasks; if not, you can use one of the alterna-
tive methods. The HoBt ID then needs to be mapped to a table and an index. The table
name is needed for the FROM clause and the latter for the index hint. This hint needs to be
used because the lock resources are specific to an index partition. Although including
nonkey columns in the projection does not break the algorithm, it can make the search
slower, because the index covers the query, and therefore the extra columns need to be
retrieved from the base table.

Although the sample code does not demonstrate this, it is possible to terminate the loop
early after all matching rows have been found. The termination case for row IDs and keys
is obvious: only one row can match the lock resource, so, after that row has been seen,
there is no need to continue searching. For pages, the termination case relies on the fact
that the index is scanned in order, which means the same page is not visited twice during
the scan. Therefore, if a matching page resource has been seen and the current page
resource no longer matches, all rows on the page have been seen.

Note that it is theoretically possible to have multiple distinct index keys that hash to the
same value. This is rare. The size of the hash is 6 bytes, which mathematically means that
only in a HoBt with more than 2^48 unique keys is such a collision guaranteed to occur.
It is, however, theoretically possible to have such a false collision with just two keys. If a
hash collision is suspected, the termination condition of the search can be removed to
search the entire index. An output with more than two rows indicates that a collision has
occurred. The effect of a collision is that attempts to lock two rows with distinct keys will
conflict. Again, this false conflict is extremely rare, and other causes of blocking should be
investigated before focusing on this remote possibility.

It is possible that the scan will not find any qualifying rows. This does not mean the
process is broken, but rather that the row/key/page no longer exists in the HoBt. This
occurs if the row has been deleted or moved or the page has been deallocated. It is also
not possible to use this method while the blocking being investigated is occurring,
because it relies on the ability to acquire locks on rows and pages in the index.

The second option for row and key resources is to use the %%lockres%% virtual column.
This column contains the key hash or the row ID for index keys and heap rows, respec-
tively. As with the cursor, an index hint is required, because %%lockres%% displays values
for the index used. Note that this results in a full table scan unless a predicate is provided.
Also, in contrast to the cursor method, this scan cannot be terminated early. The
content of the virtual column matches the content of the sys.dm_tran_locks.resource_
description column for key and row ID resources. You can use this method even when
blocking is occurring by specifying the NOLOCK locking hint. The virtual column can pro-
duce the resource identifiers without needing to acquire the locks.

The other alternative for finding all rows on a page, and the third option for row IDs, is
to use DBCC PAGE, which can be instructed to display the rows on the page:

dbcc page (1, 1, 19, 3) with tableresults

Chapter 1 Waiting and Blocking Issues34

01_0321447743_CH01.qxd 11/15/06 9:55 AM Page 34

When using DBCC PAGE, it is important to verify that the page still belongs to the
expected HoBt. This can be done by verifying the HoBt ID from the output by comparing
the object, index, and partition IDs or names. The rows on the page are output in slot ID
order. The Field column contains the column names, and the Value column contains the
column’s content. You can also use this method when blocking exists.

Range Locks
When using SERIALIZABLE ISOLATION level, it is important to understand the behavior of
range locks. Range locks apply only to KEY locks. In SQL Server, key range locks are imple-
mented as a special lock mode. Each range lock mode consists of two lock modes: a range
mode and a specific key mode. The range mode covers the range from the key resource on
which the lock is placed to the next lesser key value in the index. This range portion is
exclusive of both key resources. The key portion covers the key on which the lock is
placed. Thus, the combined mode is inclusive of the high key value and exclusive of the
low key value. To lock the range from the highest index key to infinity, a special key
resource is used. This key resource contains a hash value of FFFFFFFFFFFF and represents
the infinity key. Any operations on key values that would exist between two existing keys
coordinate with key range locking by attempting to acquire a lock on the next greater
existing key. This design means that the range of key values covered by a key range lock
depends on the existing keys in the index, and the number of key range locks required to
lock a specific range depends on the number of existing keys within that range. Note that
a key value considered existing for key range locking need not be visible to queries—keys
that have been logically but not physically deleted from the index, such as ghosted
records, qualify.

The key range behavior can lead to confusing situations where it appears an operation
should not succeed but actually becomes blocked because of range locking. The rules for
acquiring range locks are explained next.

When a predicate defines exactly one matching key, no range locks are acquired. This is
because if there can be only one key with the specified values, the index must be unique,
and any attempt to insert another matching key would violate the uniqueness predicate.

When a predicate may match multiple keys, range locks must be acquired for all ranges
that could match the predicate. Range locks must obviously be acquired on existing keys
that match the criteria. These range locks cover the range from the matching key to the
next lower key. In addition, a lock must be acquired on the first key higher than the last
matching key. This range lock is required to cover the range above the last existing key
that currently qualifies.

The need to lock the next higher key may unexpectedly block attempts to access that
range. For example, a query such as

select * from demo_table where a <= 4

would not intuitively require a lock on a key value of 10. But if only rows with a = 3 and
a = 10 exist, to block inserts of keys with a = 4, the range from 3 to 10 must be locked.
Therefore, take care not to miss this type of query when attempting to match locks to
statements that may have acquired them.

Resource Type Specifics 35

01_0321447743_CH01.qxd 11/15/06 9:55 AM Page 35

External Wait Types
As mentioned at the beginning of this chapter, external wait types do not always indicate
that the task is idle; instead, they are often used to indicate that SQL Server is executing
code that may be outside its direct control. A prime example of this is an extended stored
procedure call. Extended stored procedures can be written by users or third parties, and
SQL Server does not have direct control over what they do. Therefore, to provide better
task state information, the task is marked, for the duration of the call, as waiting for the
external code to complete. This design allows for the side benefit of providing statistics
on the duration of these calls—the total wait time and wait counter in
sys.dm_os_waits_stats can be used to determine the average duration of these calls. Four
wait types fall under this category:

■ MSQL_DQ. This indicates that the task is executing a distributed query. The execution
of the distributed query is outside of SQL Server’s control, so the task is marked as
waiting for the completion of the distributed query. Further investigation of these
waits requires determining the destination of the distributed query and applying the
tools available on the remote side. The destination can often be determined by
examining the current statement, because it will likely be using a linked server or an
ad-hoc method such as OPENROWSET or OPENDATASOURCE.

■ MSQL_XP. This wait type occurs when a task is executing an extended stored proce-
dure (XP). SQL Server does not have control over an XP even though it is executing
within the SQL Server process. Investigation of these waits requires investigating the
execution of the extended stored procedure code—the vendor may have provided
diagnostic tools for the XP. If such tools are not available and the source code of the
XP is not available and the documentation does not provide other troubleshooting
information, contacting the vendor may be the only option.

■ MSSEARCH. Full-text operations use this wait type to indicate that the task is process-
ing such an operation.

■ OLEDB. As its name implies, this wait type is used during calls to the Microsoft SQL
Native Client OLEDB provider. It is also used during synchronization of certain full-
text operations. Internally in SQL Server, DMVs are implemented as special OLEDB
calls, and therefore any task executing a DMV-based query appears to be waiting
with this wait type.

Timer and Queue Wait Types
The wait types that fall under this category do not indicate blocking. They are used by
tasks for two main purposes: waiting for timers to expire before performing some periodic
operation or to delay or throttle execution, and waiting for work packets for processing
on a queue. Both are used almost exclusively by background system processes. Similarly,
while idle with these wait types, tasks hardly ever hold any other resources on which
other tasks could become blocked. Because of the nature of how these wait types are used,
their associated wait times and counts can be extremely large. These high values can
cause concern at first sight; however, they are perfectly normal:

Chapter 1 Waiting and Blocking Issues36

01_0321447743_CH01.qxd 11/15/06 9:55 AM Page 36

■ BAD_PAGE_PROCESS. This is used by a background bad page detection process to
throttle its execution when running continuously for more than five seconds.

■ BROKER_TRANSMITTER. When the service broker message transmitter has no messages
to be processed, it waits on a queue for more work.

■ CHECKPOINT_QUEUE. The database checkpoint task operates on a periodic basis.
Instead of spawning a new task at every checkpoint interval, SQL Server uses a dedi-
cated task that uses this wait type to indicate that it is waiting for the next interval,
or for a new explicit checkpoint request.

■ DBMIRROR_EVENTS_QUEUE. The database mirroring component uses this wait type
when its work queue is empty.

■ LAZYWRITER_SLEEP. This wait type is used by the background lazywriter tasks when
they are suspended between work intervals. Lazywriter tasks write dirty data pages
back to disk in a lazy manner; in other words, they attempt to not flood the disk
subsystem with a large number of IOs.

■ ONDEMAND_TASK_QUEUE. Long wait times on this wait type simply indicate that there
have been no high-priority on-demand system tasks to execute. Although some
background tasks, such as the deadlock monitor and checkpoint, have dedicated
tasks, others share a pool of worker threads. These tasks are divided into high and
low priority. The scheduler for these tasks uses this wait type when waiting for high-
priority requests to arrive.

■ REQUEST_FOR_DEADLOCK_SEARCH. The deadlock monitor is another background task
that operates on a periodic basis and has a dedicated worker thread. In addition to
period deadlock searches, other tasks can explicitly request a deadlock search. The
deadlock monitor uses this wait type while waiting for the timer to expire or for
explicit requests to arrive.

■ WAITFOR. This is the one timer wait type that can occur while the task holds
resources that could block other tasks. This is because this wait type is used for the
WAITFOR T-SQL statement and thus is user-controlled. Any resources held by the con-
nection when it executes a WAITFOR statement are held for the duration of the state-
ment. Especially when a WAITFOR is executed within the context of a transaction,
there is a risk that such resources are held.

■ LOGMGR_QUEUE. The log write background thread waits on its work packet queue
when it has no current work to do.

■ KSOURCE_WAKEUP. When SQL Server is running as a service, a task is dedicated for
responding to requests from the Service Control Manager. While waiting for such
requests, the task is marked with this wait type.

■ SQLTRACE_BUFFER_FLUSH. A dedicated worker is used for flushing trace buffers. This
worker runs periodically, and between executions it idles with this wait type.

Resource Type Specifics 37

01_0321447743_CH01.qxd 11/15/06 9:55 AM Page 37

■ BROKER_EVENTHANDLER. The Service Broker main event handler waits on its event
queue using this wait type. The documentation for this wait type is somewhat mis-
leading in Books Online, because it claims the duration should not last long; but in
fact on an idle system or a system that does not use the Service Broker, this value is
large by design.

■ DBMIRRORING_CMD. As its name implies, database mirroring uses this wait type for a
command queue.

IO Wait Types
There are several IO-related wait types. These wait types do not occur because of regular
database page IO operations, because those are covered by the PAGEIOLATCH set of wait
types. These other IO-related wait types apply to various other IO operations, such as log
IOs, and can be either disk or network IO operations.

The LOGBUFFER and WRITELOG wait types are related to transaction logging. The latter
occurs when tasks are waiting for a log flush to complete. This occurs most often during
transaction commits where it is needed to maintain durability of transactions. Long wait
times for this wait type generally indicate that the log disk cannot support the log volume
being produced. Resolving these waits requires investigating the cause for the log disk
performance problems. A common cause is having the transaction log on a shared
drive. This limits the maximum performance levels, especially when the disk is used for
random-access IO, such as data files. Log files are written sequentially and thus perform
best when the underlying disk also can write sequentially. For highly active databases, it
might be necessary to have a dedicated disk for the log. The cause of LOGBUFFER waits is
similar; it occurs when no buffers are available in which to write a log record. There are a
limited number of these buffers, and their unavailability indicates that the existing ones
have not yet been written to the log file, allowing them to be reused.

DISKIO_SUSPEND and REQUEST_DISPENSER_PAUSE are related to external backups that freeze
system IO for a moment while making a backup of the database files or drives.

Database snapshots store old copies of database pages in sparse files. Access to these pages
can result in IO, which is reported with the FCB_REPLICA_READ, FCB_REPLICA_WRITE, and
REPLICA_WRITES wait types. The first two indicate that multiple tasks are attempting to
access the same pages in the database snapshots. The latter one occurs when a nonsnap-
shot statement needs to push out old copies of pages before updating the current version.

A long ASYNC_NETWORK_IO wait type is often caused by the client not processing results
from the server. This causes the network buffers to fill. The server cannot send more data
to the client, so the task executing the batch needs to pause while waiting for the ability
to continue sending results. The fix is to change the client so that it does not leave a par-
tially fetched result set open.

Chapter 1 Waiting and Blocking Issues38

01_0321447743_CH01.qxd 11/15/06 9:55 AM Page 38

Other IO-related wait types are ASYNC_IO_COMPLETION, DBMIRROR_SEND, IMPPROV_IOWAIT,
IO_COMPLETION, SOAP_READ, and SOAP_WRITE. Note that BACKUPIO and IO_AUDIT_MUTEX are
not related to IO performance.

Other Wait Types
■ CMEMTHREAD. This wait type occurs during synchronization of access to shared mem-

ory objects. This wait type was somewhat common in SQL Server 2000 during heavy
query cache insert/delete activity because the memory for all cached query plans
came from the same memory object. This has been improved in SQL Server 2005,
but it can still occur. More information on memory-related investigations is avail-
able in Chapter 3, “Memory Issues.”

■ Parallel query wait types. Several wait types related to parallel queries are worth
identifying. The CXPACKET wait type occurs when the parallel workers synchronize
on a query processor exchange operator to transmit data between each other. It can
indicate an imbalance in the work being performed by the tasks, and lowering the
degree of parallelism may help alleviate the problem. The EXCHANGE and EXECSYNC
wait types have similar causes. QUERY_EXECUTION_INDEX_SORT_EVENT_OPEN occurs
during parallel index build operations.

■ MISCELLANEOUS. Although common in past versions of SQL Server, this wait type
should be less common in SQL Server 2005. As the name suggests, it indicates that a
task is waiting for some miscellaneous reason. In SQL Server 2005, most of these
unusual cases have been converted to more descriptive wait types, but several are
still grouped under the MISCELLANEOUS wait type. Of these, two are worth mention-
ing. The first is synchronization for the NEWSEQUENTIALID built-in function. The
other is synchronization of CLR assembly loads. Because these usages get clumped
with each other in the MISCELLANEOUS bucket, it is not possible to differentiate
between them without examining the statements being executed by the sessions.

■ THREADPOOL. This wait type occurs when there are more concurrent work requests
than there are workers to execute these requests. The waiting requests cannot be
processed until a currently executing request completes. Depending on the expected
usage levels of a system, this might indicate that the Max Workers configuration set-
ting is too low. Whether this is the case depends on whether the currently executing
requests are completing in the expected duration. Unusually long delays during the
execution of requests can cause the worker pool to run out. If this is not the case,
you can resolve THREADPOOL waits by increasing the Max Workers setting. However,
if current statements are taking longer than average (for example, when some other
blocking is causing long waits), increasing the Max Workers setting is likely to bring
only temporary, if any, relief. This is because although more requests can be exe-
cuted with the increased worker pool, it is likely that these requests will also execute
slowly or become blocked and thus deplete the worker pool. Therefore, the key to
dealing with THREADPOOL waits is to investigate and eliminate any other blocking
that might be occurring.

Resource Type Specifics 39

01_0321447743_CH01.qxd 11/15/06 9:55 AM Page 39

Waits on THREADPOOL can be quite overwhelming in sys.dm_os_waiting_tasks
because SQL Server SP1 considers all currently executing tasks as blocking the wait-
ing request. This results in a large amount of output. The majority of this output
can be ignored in favor of noting that a request is waiting for a worker to become
available.

■ SOS_SCHEDULER_YIELD. SQL Server uses cooperative scheduling. Under this schedul-
ing model, workers are not arbitrarily interrupted by the system but are instead
allowed to execute until they are forced to enter a wait state due to the unavailabil-
ity of a resource or they yield voluntarily to allow other workers to execute. When a
worker voluntarily yields to another worker, the yielding worker becomes idle and is
effectively waiting for its turn to execute. The wait type used for this voluntary wait
is the SOS_SCHEDULER_YIELD wait type, which indicates that the task yielded the
scheduler and is waiting for access again. This is an expected wait type and should
not be of concern; it simply indicates that the task is being a good cooperative
player.

Waits with this wait type populate the blocking task columns with the identity of
the task that is currently executing on the scheduler. Until that task yields the
scheduler, the blocked task will not be able to run.

A BIT OF TRIVIA

The wait type documentation in Books Online lists quite a few wait types as “Internal
Only.” This means that these wait types are not used in SQL Server 2005.

Deadlocks
Up to this point, I have not made much mention of deadlocks even though deadlocks are
considered by many to be the ultimate in blocking. This has been intentional. In the final
analysis, deadlocks are just cases of blocking that form a blocking chain with a cycle. This
means that nearly everything that has been covered thus far is applicable to determining
the cause and finding a resolution to deadlocks. This may sound a bit simplistic, and in
certain respects it is, because deadlock avoidance may require more extensive modifica-
tion than blocking avoidance. An example of this is reordering access to resources so that
they are accessed in the same order so as to prevent deadlocks. However, both blocking
and deadlocks can be lessened by holding resources for shorter durations, but neither is
completely eliminated, because an increase in the workload could cause the blocking and
deadlocking to become more prevalent.

The new deadlock output in SQL Server 2005 is far superior to the output available in pre-
vious versions. Collecting the new output does require changes to existing deadlock graph
collection scripts, because it is enabled by a new trace flag. This trace flag is 1222. As with
the old trace flag, the output is sent to the error log. This output can also be captured in
traces, and the Profiler tool can display the deadlock graph in graphical format, which
can also be saved as an XML file for more detailed analysis.

Chapter 1 Waiting and Blocking Issues40

01_0321447743_CH01.qxd 11/15/06 9:55 AM Page 40

Among the improvements in the SQL Server 2005 deadlock output are the inclusion of
session state, the start time of the current statement, and the transaction isolation level.
Object IDs are also resolved to names when possible. The current statements of each par-
ticipant are now more detailed, because they include a T-SQL call stack that shows the
stored procedures and other objects in the current execution location. In addition, the
SQL handle is available, so it can be used to query DMVs related to queries such as
sys.dm_exec_sql_text and sys.dm_exec_query_stats.

Monitoring Blocking
The preceding sections have focused first on detecting that blocking is occurring and
second on identifying the cause and possible resolutions. They have been geared more
toward interactive investigations. However, it is generally not possible to dedicate a data-
base operator to continuous active monitoring of a system. It would also not be efficient.
This calls for a way to monitor blocking where alerts can be raised when blocking is
encountered or the proper information gets collected automatically. To achieve this,
many of the scripts from earlier sections, and some additional ones, can be rolled into a
collection that can be run via SQLDiag to monitor blocking and collect the appropriate
data. I have included here several script snippets and explanations as to why I would
include them in a monitoring script. These can be used to build monitoring stored proce-
dures such as sp_blocker_pssNNN used by SQLDiag and also available from the Microsoft
website. As mentioned previously, SQLDiag is now included as part of SQL Server. This
tool can collect many of the data points included here out of the box and can be
extended to include custom scripts. The level of monitoring can be customized based on
specific needs and the availability of CPU cycles to execute the scripts. This is an impor-
tant concern because some of these script snippets can be somewhat expensive to run or
might produce a lot of output that must then be analyzed.

Wait Statistics
It’s always useful to collect wait statistics. These are low-impact queries. Filtering out the
innocuous wait types and any zero statistics greatly reduces the output and makes it easier
to review. Here’s a sample query:

select *
from amalgam.dm_os_wait_stats_filtered
select *
from sys.dm_os_latch_stats
where waiting_requests_count <> 0

Monitoring Blocking 41

01_0321447743_CH01.qxd 11/15/06 9:55 AM Page 41

Current Wait Information
Various queries can be run against sys.dm_os_waiting_tasks to collect information on
current waiters. The cheapest option is to just include the entire contents of
sys.dm_os_waiting_tasks, or amalgam.dm_os_waiting_tasks_filtered, like this:

select * from sys.dm_os_waiting_tasks
select * from amalgam.dm_os_waiting_tasks_filtered
select * from amalgam.dm_os_waiting_tasks_filtered2

A slightly enhanced version includes the current statements and plans for the waiting
tasks:

select
amalgam.current_statement (

st.dbid, st.objectid, st.encrypted,
st.text,

er.statement_start_offset,
er.statement_end_offset)
as current_statement,
qp.query_plan,

wt.*
from amalgam.dm_os_waiting_tasks_filtered wt

left join sys.dm_exec_requests er
on wt.waiting_task_address = er.task_address

outer apply
sys.dm_exec_sql_text (er.sql_handle) st

outer apply
sys.dm_exec_query_plan (er.plan_handle) qp

And a further enhancement includes the blocking task’s current statement and plan.
Remember: Locks might have been acquired by a statement other than the current
statement:

select
amalgam.current_statement (

st.dbid, st.objectid, st.encrypted,
st.text,

er.statement_start_offset,
er.statement_end_offset)

as waiters_current_statement,
qp.query_plan,

amalgam.current_statement (
stb.dbid, stb.objectid, stb.encrypted,
stb.text,
erb.statement_start_offset,
erb.statement_end_offset)

as blockers_current_statement,
qp.query_plan,

wt.*
from amalgam.dm_os_waiting_tasks_filtered wt

Chapter 1 Waiting and Blocking Issues42

01_0321447743_CH01.qxd 11/15/06 9:55 AM Page 42

left join sys.dm_exec_requests er
on wt.waiting_task_address = er.task_address

outer apply
sys.dm_exec_sql_text (er.sql_handle) st

outer apply
sys.dm_exec_query_plan (er.plan_handle) qp

left join sys.dm_exec_requests erb
on wt.blocking_task_address =

erb.task_address
outer apply

sys.dm_exec_sql_text (erb.sql_handle) stb
outer apply

sys.dm_exec_query_plan (erb.plan_handle) qpb

These, however, require manual analysis of potentially verbose output. This can be eased
by analyzing some of the information at the time of collection.

Often, it is useful to find the hottest resources or wait types. The following queries find all
resources and wait types with at least five waiters:

select resource_description,
additional_resource_description,
count(*)

from amalgam.dm_os_waiting_tasks_filtered2
where resource_description is not null
group by resource_description, additional_resource_description
having count (*) > 5
select wait_type, count(*)
from amalgam.dm_os_waiting_tasks_filtered
group by wait_type
having count (*) > 5

Long waiters are generally of more concern than short-duration waiters, so it might be
useful to call them out; let’s see all waiters that have been waiting more than 10 seconds:

select *
from amalgam.dm_os_waiting_tasks_filtered
where wait_duration_ms > 10000
order by wait_duration_ms desc

The blocking chain also has some interesting information available (for example, head
blockers that are blocking a large number of other tasks, and the chains themselves):

select head_blocker_task_address,
head_blocker_session_id,
count(*)

from amalgam.blocking_chain
group by head_blocker_task_address,

head_blocker_session_id
having count(*) > 10

Monitoring Blocking 43

01_0321447743_CH01.qxd 11/15/06 9:55 AM Page 43

order by count(*) desc
option (maxrecursion 128)
select *
from amalgam.blocking_chain
option (maxrecursion 128)

The index operational statistics are also useful to have when looking for tables with high
latch or lock waits:

select top 20 *
from sys.dm_db_index_operational_stats (
null, null, null, null)
order by page_latch_wait_count +

page_io_latch_wait_count desc
select top 20 *
from sys.dm_exec_query_stats
order by

(total_physical_reads +
total_logical_reads +
total_logical_writes) /

execution_count desc

These are a sampling of queries that can prove useful in monitoring and then investigat-
ing blocking. Again, much of this can be easily collected using SQL Server’s SQLDiag tool.
Obviously, the more information that is available, the easier it is to investigate, but the
costlier it is to monitor. The balance depends largely on the extra load that the system
can handle without adversely affecting throughput and response times of actual applica-
tion work.

Conclusion
Blocking is one of those issues that can touch many aspects of SQL Server. Although
investigating blocking benefits from an understanding of how SQL Server works, it is also
a good way to learn even more about the server. Of course, the immediate need to resolve
blocking is often more important than learning more about the server. The intent of this
chapter was to provide you with the tools and knowledge you need to face those situa-
tions when the phone is ringing off the hook on Monday morning because system perfor-
mance has dropped through the floor due to heavy blocking.

And, remember that the locks in blocking you see might not have been acquired in the
blocker’s current statement. Look at the previous statements in the transaction; it might
be immediately obvious why the locks are being held.

Chapter 1 Waiting and Blocking Issues44

01_0321447743_CH01.qxd 11/15/06 9:55 AM Page 44

Other Resources
Quite a few resources deal with SQL Server blocking. Here is a sampling of some resources:

■ Microsoft SQL Server Books Online. The descriptions of wait types and latch types
are improving with every web release. The DMV documentation is also worth look-
ing at.

■ SQL Server Storage Engine Blog
(http://blogs.msdn.com/sqlserverstorageengine/default.aspx)

■ MSDN blogs in general (http://blogs.msdn.com—search for SQL and Blocking)

■ The Guru’s Guide to SQL Server Architecture and Internals, by Ken Henderson

Other Resources 45

01_0321447743_CH01.qxd 11/15/06 9:55 AM Page 45

01_0321447743_CH01.qxd 11/15/06 9:55 AM Page 46

