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Preface
“If popular culture has taught us anything, it is that someday mankind must face and
destroy the growing robot menace.”

Daniel H. Wilson, How to Survive a Robot Uprising

The past several years have seen huge strides in computer security, particularly in
the field of software vulnerabilities. It seems as though every stop at the bookstore
introduces a new title on topics such as secure development or exploiting software. 

Books that cover application security tend to do so from the perspective of 
software designers and developers and focus on techniques to prevent software 
vulnerabilities from occurring in applications. These techniques start with solid
security design principles and threat modeling and carry all the way through to
implementation best practices and defensive programming strategies. Although
they serve as strong defensive foundations for application development, these
resources tend to give little treatment to the nature of vulnerabilities; instead, they
focus on how to avoid them. What’s more, every development team can’t start
rebuilding a secure application from the ground up. Real people have to deal with
huge existing codebases, in-place applications, and limited time and budget. 
Meanwhile, the secure coding mantra seems to be “If it smells bad, throw it out.”
That’s certainly necessary in some cases, but often it’s too expensive and time 
consuming to be reasonable. So you might turn your attention to penetration testing
and ethical hacking instead. A wide range of information on this topic is available,
and it’s certainly useful for the acid test of a software system. However, even the
most technically detailed resources have a strong focus on exploit development and
little to no treatment on how to find vulnerabilities in the first place. This still leaves
the hanging question of how to find issues in an existing application and how to get
a reasonable degree of assurance that a piece of software is safe.
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This problem is exactly the one faced by those in the field of professional 
software security assessment. People are growing more concerned with building
and testing secure systems, but very few resources address the practice of finding
vulnerabilities. After all, this process requires a deep technical understanding of
some very complex issues and must include a systematic approach to analyzing an
application. Without formally addressing how to find vulnerabilities, the software
security industry has no way of establishing the quality of a software security
assessment or training the next generation in the craft. We have written this book in
the hope of answering these questions and to help bridge the gap between secure
software development and practical post-implementation reviews. Although this
book is aimed primarily at consultants and other security professionals, much of
the material will have value to the rest of the IT community as well. Developers can
gain insight into the subtleties and nuances of how languages and operating 
systems work and how those features can introduce vulnerabilities into an application
that otherwise appears secure. Quality assurance (QA) personnel can use some of
the guidelines in this book to ensure the integrity of in-house software and cut
down on the likelihood of their applications being stung by a major vulnerability.
Administrators can find helpful guidelines for evaluating the security impact of
applications on their networks and use this knowledge to make better decisions
about future deployments. Finally, hobbyists who are simply interested in learning
more about how to assess applications will find this book an invaluable resource
(we hope!) for getting started in application security review or advancing their cur-
rent skill sets. 

Prerequisites
The majority of this book has been targeted at a level that any moderately experienced
developer should find approachable. This means you need to be fairly comfortable
with at least one programming language, and ideally, you should be familiar with
basic C/C++ programming. At several stages throughout the book, we use Intel
assembly examples, but we have attempted to keep them to a minimum and translate
them into approximate C code when possible. We have also put a lot of effort into
making the material as platform neutral as possible, although we do cover platform
specifics for the most common operating systems. When necessary, we have tried to
include references to additional resources that provide background for material that
can’t be covered adequately in this book. 

How to Use This Book
Before we discuss the use of this book, we need to introduce its basic structure. The
book is divided into three different parts:
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• Part I: Introduction to Software Security Assessment (Chapters 1–4)—These 
chapters introduce the practice of code auditing and explain how it fits into
the software development process. You learn about the function of design
review, threat modeling, and operational review—tools that are useful for 
evaluating an application as a whole, and not just the code. Finally, you learn
some generic high-level methods for performing a code review on any 
application, regardless of its function or size.

• Part II: Software Vulnerabilities (Chapters 5–13)—These chapters shift the focus of
the book toward practical implementation review and address how to find
specific vulnerabilities in an application’s codebase. Major software 
vulnerability classes are described, and you learn how to discover high-risk
security flaws in an application. Numerous real-world examples of security
vulnerabilities are given to help you get a feel for what software bugs look like
in real code.

• Part III: Software Vulnerabilities in Practice (Chapters 14–18)—The final portion of
the book turns your attention toward practical uses of lessons learned from
the earlier chapters. These chapters describe a number of common application
classes and the types of bugs they tend to be vulnerable to. They also show
you how to apply the technical knowledge gained from Part II to real-world
applications. Specifically, you look at networking, firewalling technologies,
and Web technologies. Each chapter in this section introduces the common
frameworks and designs of each application class and identifies where flaws
typically occur. 

You’ll get the most value if you read this book straight through at least once so that
you can get a feel for the material. This approach is best because we have tried to
use each section as an opportunity to highlight techniques and tools that help you
in performing application assessments. In particular, you should pay attention to
the sidebars and notes we use to sum up the more important concepts in a section. 

Of course, busy schedules and impending deadlines can have a serious impact
on your time. To that end, we want to lay out a few tracks of focus for different types
of reviews. However, you should start with Part 1 (Chapters 1–4) because it estab-
lishes a foundation for the rest of the book. After that, you can branch out to the fol-
lowing chapters:

• UNIX track (Chapters 5–10, 13)—This chapter track starts off by covering common
software vulnerability classes, such as memory corruption, program control
flow, and specially formatted data. Then UNIX-centered security problems that
arise because of quirks in the various UNIX operating systems are addressed.
Finally, this track ends with coverage of synchronization vulnerabilities 
common to most platforms.



xx

• Windows track (Chapters 5–8, 11–13)—This track starts off similarly to the UNIX
track, by covering platform-neutral security problems. Then two chapters specif-
ically address Windows APIs and their related vulnerabilities. Finally, this track
finishes with coverage of common synchronization vulnerabilities.

• Web track (Chapters 8, 13, 17, 18)—Web auditing requires understanding 
common security vulnerabilities as well as Web-based frameworks and 
languages. This track discusses the common vulnerability classes that pertain
to Web-based languages, and then finishes off with the Web-specific chapters.
Although the UNIX and Windows chapters aren’t listed here, reading them
might be necessary depending on the Web application’s deployment 
environment.

• Network application track (Chapters 5–8, 13, 16)—This sequence of chapters best
addresses the types of vulnerabilities you’re likely to encounter with network
client/server applications. Notice that even though Chapter 16 is targeted at
selected application protocols, it has a section for generic application protocol
auditing methods. Like the previous track, UNIX or Windows chapters might
also be relevant, depending on the deployment environment.

• Network analysis track (Chapters 5–8, 13–16)—This track is aimed at analyzing 
network analysis applications, such as firewalls, IPSs, sniffers, routing software,
and so on. Coverage includes standard vulnerability classes along with popular
network-based technologies and the common vulnerabilities in these products.
Again, the UNIX and Windows chapters would be a good addition to this track,
if applicable.

Preface
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Chapter 6
C Language Issues

“One day you will understand.”
Neel Mehta, Senior Researcher, Internet Security Systems X-Force

Introduction
When you’re reviewing software to uncover potential security holes, it’s important to
understand the underlying details of how the programming language implements data
types and operations, and how those details can affect execution flow. A code reviewer
examining an application binary at the assembly level can see explicitly how data is
stored and manipulated as well as the exact implications of an operation on a piece of
data. However, when you’re reviewing an application at the source code level, some
details are abstracted and less obvious. This abstraction can lead to the introduction 
of subtle vulnerabilities in software that remain unnoticed and uncorrected for long
periods of time. A thorough auditor should be familiar with the source language’s
underlying implementation and how these details can lead to security-relevant condi-
tions in border cases or exceptional situations.



This chapter explores subtle details of the C programming language that could
adversely affect an application’s security and robustness. Specifically, it covers the
storage details of primitive types, arithmetic overflow and underflow conditions,
type conversion issues, such as the default type promotions, signed/unsigned con-
versions and comparisons, sign extension, and truncation. You also look at some
interesting nuances of C involving unexpected results from certain operators and
other commonly unappreciated behaviors. Although this chapter focuses on C,
many principles can be applied to other languages.

C Language Background
This chapter deals extensively with specifics of the C language and uses termi-
nology from the C standards. You shouldn’t have to reference the standards to
follow this material, but this chapter makes extensive use of the public final 
draft of the C99 standard (ISO/IEC 9899:1999), which you can find at 
www.open-std.org/jtc1/sc22/wg14/www/standards.

The C Rationale document that accompanies the draft standard is also useful.
Interested readers should check out Peter Van der Linden’s excellent book Expert 
C Programming (Prentice Hall, 1994) and the second edition of Kernighan and
Ritchie’s The C Programming Language (Prentice Hall, 1988). You might also be 
interested in purchasing the final version of the ISO standard or the older ANSI
standard; both are sold through the ANSI organization’s Web site (www.ansi.org).

Although this chapter incorporates a recent standard, the content is targeted
toward the current mainstream use of C, specifically the ANSI C89/ISO 90 standards.
Because low-level security details are being discussed, notes on any situations in
which changes across versions of C are relevant have been added.

Occasionally, the terms “undefined behavior” and “implementation-defined
behavior” are used when discussing the standards. Undefined behavior is erro-
neous behavior: conditions that aren’t required to be handled by the compiler and,
therefore, have unspecified results. Implementation-defined behavior is behavior
that’s up to the underlying implementation. It should be handled in a consistent
and logical manner, and the method for handling it should be documented.

Data Storage Overview
Before you delve into C’s subtleties, you should review the basics of C types—specifically,
their storage sizes, value ranges, and representations. This section explains the types
from a general perspective, explores details such as binary encoding, twos complement
arithmetic, and byte order conventions, and winds up with some pragmatic observa-
tions on common and future implementations.
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The C standards define an object as a region of data storage in the execution 
environment; its contents can represent values. Each object has an associated type:
a way to interpret and give meaning to the value stored in that object. Dozens of
types are defined in the C standards, but this chapter focuses on the following:

■ Character types—There are three character types: char, signed char, and
unsigned char. All three types are guaranteed to take up 1 byte of storage.
Whether the char type is signed is implementation defined. Most current
systems default to char being signed, although compiler flags are usually
available to change this behavior.

■ Integer types—There are four standard signed integer types, excluding the 
character types: short int, int, long int, and long long int. Each standard type
has a corresponding unsigned type that takes the same amount of storage.
(Note: The long long int type is new to C99.)

■ Floating types—There are three real floating types and three complex types. 
The real floating types are float, double, and long double. The three complex
types are float _Complex, double _Complex, and long double _Complex.
(Note: The complex types are new to C99.)

■ Bit fields—A bit field is a specific number of bits in an object. Bit fields can be
signed or unsigned, depending on their declaration. If no sign type specifier is
given, the sign of the bit field is implementation dependent.

Note
Bit fields might be unfamiliar to some programmers, as they usually
aren’t present outside network code or low-level code. Here’s a brief
example of a bit field:

struct controller

{

unsigned int id:4;

unsigned int tflag:1;

unsigned int rflag:1;

unsigned int ack:2;

unsigned int seqnum:8;

unsigned int code:16;

};

The controller structure has several small members. id refers to a 
4-bit unsigned variable, and tflag and rflag refer to single bits. ack is a
2-bit variable, seqnum is an 8-bit variable, and code is a 16-bit variable.



The members of this structure are likely to be laid out so that they’re
contiguous bits in memory that fit within one 32-bit region. 

From an abstract perspective, each integer type (including character types) 
represents a different integer size that the compiler can map to an appropriate
underlying architecture-dependent data type. A character is guaranteed to consume
1 byte of storage (although a byte might not necessarily be 8 bits). sizeof(char) is
always one, and you can always use an unsigned character pointer, sizeof, and
memcpy() to examine and manipulate the actual contents of other types. The other
integer types have certain ranges of values they are required to be able to represent,
and they must maintain certain relationships with each other (long can’t be smaller
than short, for example), but otherwise, their implementation largely depends on
their architecture and compiler.

Signed integer types can represent both positive and negative values, whereas
unsigned types can represent only positive values. Each signed integer type has a
corresponding unsigned integer type that takes up the same amount of storage.
Unsigned integer types have two possible types of bits: value bits, which contain
the actual base-two representation of the object’s value, and padding bits, which are
optional and otherwise unspecified by the standard. Signed integer types have
value bits and padding bits as well as one additional bit: the sign bit. If the sign bit
is clear in a signed integer type, its representation for a value is identical to that
value’s representation in the corresponding unsigned integer type. In other words,
the underlying bit pattern for the positive value 42 should look the same whether
it’s stored in an int or unsigned int.

An integer type has a precision and a width. The precision is the number of
value bits the integer type uses. The width is the number of bits the type uses to
represent its value, including the value and sign bits, but not the padding bits. For
unsigned integer types, the precision and width are the same. For signed integer
types, the width is one greater than the precision.

Programmers can invoke the various types in several ways. For a given integer
type, such as short int, a programmer can generally omit the int keyword. So the key-
words signed short int, signed short, short int, and short refer to the same data
type. In general, if the signed and unsigned type specifiers are omitted, the type is
assumed to be signed. However, this assumption isn’t true for the char type, as
whether it’s signed depends on the implementation. (Usually, chars are signed. If you
need a signed character with 100% certainty, you can specifically declare a signed char.) 

C also has a rich type-aliasing system supported via typedef, so programmers
usually have preferred conventions for specifying a variable of a known size and
representation. For example, types such as int8_t, uint8_t, int32_t, and u_int32_t
are popular with UNIX and network programmers. They represent an 8-bit signed
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integer, an 8-bit unsigned integer, a 32-bit signed integer, and a 32-bit unsigned 
integer, respectively. Windows programmers tend to use types such as BYTE,
CHAR, and DWORD, which respectively map to an 8-bit unsigned integer, an 8-bit
signed integer, and a 32-bit unsigned integer.

Binary Encoding
Unsigned integer values are encoded in pure binary form, which is a base-two
numbering system. Each bit is a 1 or 0, indicating whether the power of two that the
bit’s position represents is contributing to the number’s total value. To convert a positive
number from binary notation to decimal, the value of each bit position n is multiplied by
2n-1. A few examples of these conversions are shown in the following lines:

0001 1011 = 24 + 23 + 21 + 20 = 27

0000 1111 = 23 + 22 + 21 + 20 = 15

0010 1010 = 25 + 23 + 21 = 42

Similarly, to convert a positive decimal integer to binary, you repeatedly subtract
powers of two, starting from the highest power of two that can be subtracted from
the integer leaving a positive result (or zero). The following lines show a few sample
conversions:

55 = 32 + 16 + 4 + 2 + 1

= (25) + (24) + (22) + (21) + (20)

= 0011 0111

37 = 32 + 4 + 1

= (25) + (22) + (20)

= 0010 0101

Signed integers make use of a sign bit as well as value and padding bits. The C
standards give three possible arithmetic schemes for integers and, therefore, three
possible interpretations for the sign bit: 

■ Sign and magnitude—The sign of the number is stored in the sign bit. It’s 1 if the
number is negative and 0 if the number is positive. The magnitude of the num-
ber is stored in the value bits. This scheme is easy for humans to read and
understand but is cumbersome for computers because they have to explicitly
compare magnitudes and signs for arithmetic operations.
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■ Ones complement—Again, the sign bit is 1 if the number is negative and 0 if the
number is positive. Positive values can be read directly from the value bits.
However, negative values can’t be read directly; the whole number must be
negated first. In ones complement, a number is negated by inverting all its
bits. To find the value of a negative number, you have to invert its bits. 
This system works better for the machine, but there are still complications
with addition, and, like sign and magnitude, it has the amusing ambiguity of
having two values of zero: positive zero and negative zero.

■ Twos complement—The sign bit is 1 if the number is negative and 0 if the 
number is positive. You can read positive values directly from the value bits,
but you can’t read negative values directly; you have to negate the whole 
number first. In twos complement, a number is negated by inverting all the
bits and then adding one. This works well for the machine and removes the
ambiguity of having two potential values of zero.

Integers are usually represented internally by using twos complement, espe-
cially in modern computers. As mentioned, twos complement encodes positive
values in standard binary encoding. The range of positive values that can be rep-
resented is based on the number of value bits. A twos complement 8-bit signed
integer has 7 value bits and 1 sign bit. It can represent the positive values 0 to 127
in the 7 value bits. All negative values represented with twos complement encod-
ing require the sign bit to be set. The values from -128 to -1 can be represented in
the value bits when the sign bit is set, thus allowing the 8-bit signed integer to
represent -128 to 127. 

For arithmetic, the sign bit is placed in the most significant bit of the data type.
In general, a signed twos complement number of width X can represent the range of
integers from -2X-1 to 2X-1-1. Table 6-1 shows the typical ranges of twos comple-
ment integers of varying sizes.

Table 6-1

Maximum and Minimum Values for Integers

8-bit 16-bit 32-bit 64-bit

Minimum value (signed) -128 -32768 -2147483648 -9223372036854775808

Maximum value (signed) 127 32767 2147483647 9223372036854775807

Minimum value (unsigned) 0 0 0 0

Maximum value (unsigned) 255 65535 4294967295 18446744073709551615

As described previously, you negate a twos complement number by inverting all
the bits and adding one. Listing 6-1 shows how you obtain the representation of -15
by inverting the number 15, and then how you figure out the value of an unknown
negative bit pattern.
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Listing 6-1
Twos Complement Representation of -15
0000 1111 – binary representation for 15
1111 0000 – invert all the bits
0000 0001 – add one
1111 0001 – twos complement representation for -15

1101 0110 – unknown negative number
0010 1001 – invert all the bits
0000 0001 – add one
0010 1010 – twos complement representation for 42

original number was -42

Byte Order
There are two conventions for ordering bytes in modern architectures: big endian
and little endian. These conventions apply to data types larger than 1 byte, such as a
short int or an int. In the big-endian architecture, the bytes are located in memory
starting with the most significant byte and ending with the least significant byte.
Little-endian architectures, however, start with the least significant byte and end
with the most significant. For example, you have a 4-byte integer with the decimal
value 12345. In binary, it’s 11000000111001. This integer is located at address 500.
On a big-endian machine, it’s represented in memory as the following:

Address 500: 00000000

Address 501: 00000000

Address 502: 00110000

Address 503: 00111001

On a little-endian machine, however, it’s represented this way:

Address 500: 00111001

Address 501: 00110000

Address 502: 00000000

Address 503: 00000000

Intel machines are little endian, but RISC machines, such as SPARC, tend to be
big endian. Some machines are capable of dealing with both encodings natively.

Common Implementations
Practically speaking, if you’re talking about a modern, 32-bit, twos complement
machine, what can you say about C’s basic types and their representations? 
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In general, none of the integer types have any padding bits, so you don’t need to
worry about that. Everything is going to use twos complement representation. Bytes
are going to be 8 bits long. Byte order varies; it’s little endian on Intel machines but
more likely to be big endian on RISC machines.

The char type is likely to be signed by default and take up 1 byte. The short type
takes 2 bytes, and int takes 4 bytes. The long type is also 4 bytes, and long long is 8
bytes. Because you know integers are twos complement encoded and you know their
underlying sizes, determining their minimum and maximum values is easy. Table 6-2
summarizes the typical sizes for ranges of integer data types on a 32-bit machine. 

Table 6-2

Typical Sizes and Ranges for Integer Types on 32-Bit Platforms

Type Width (in Bits) Minimum Value Maximum Value

signed char 8 -128 127

unsigned char 8 0 255

short 16 -32,768 32,767

unsigned short 16 0 65,535

Int 32 -2,147,483,648 2,147,483,647

unsigned int 32 0 4,294,967,295

long 32 -2,147,483,648 2,147,483,647

unsigned long 32 0 4,294,967,295

long long 64 -9,223,372,036,854,775,808 9,223,372,036,854,775,807

unsigned long long 64 0 18,446,744,073,709,551,615

What can you expect in the near future as 64-bit systems become more preva-
lent? The following list describes a few type systems that are in use today or have
been proposed:

■ ILP32—int, long, and pointer are all 32 bits, the current standard for most 
32-bit computers. 

■ ILP32LL—int, long, and pointer are all 32 bits, and a new type—long long—is 64
bits. The long long type is new to C99. It gives C a type that has a minimum
width of 64 bits but doesn’t change any of the language’s fundamentals.

■ LP64—long and pointer are 64 bits, so the pointer and long types have changed
from 32-bit to 64-bit values.

■ ILP64—int, long, and pointer are all 64 bits. The int type has been changed to a
64-bit type, which has fairly significant implications for the language.

■ LLP64—pointers and the new long long type are 64 bits. The int and long types
remain 32-bit data types.
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Table 6-3 summarizes these type systems briefly.

Table 6-3

64-Bit Integer Type Systems

Type ILP32 ILP32LL LP64 ILP64 LLP64

char 8 8 8 8 8

short 16 16 16 16 16

int 32 32 32 64 32

long 32 32 64 64 32

long long N/A 64 64 64 64

pointer 32 32 64 64 64

As you can see, the typical data type sizes match the ILP32LL model, which is
what most compilers adhere to on 32-bit platforms. The LP64 model is the de facto
standard for compilers that generate code for 64-bit platforms. As you learn later in
this chapter, the int type is a basic unit for the C language; many things are con-
verted to and from it behind the scenes. Because the int data type is relied on so
heavily for expression evaluations, the LP64 model is an ideal choice for 64-bit sys-
tems because it doesn’t change the int data type; as a result, it largely preserves the
expected C type conversion behavior.

Arithmetic Boundary Conditions
You’ve learned that C’s basic integer types have minimum and maximum possible
values determined by their underlying representation in memory. (Typical ranges
for 32-bit twos complement architectures were presented in Table 6-2.) So, now you
can explore what can happen when you attempt to traverse these boundaries. Sim-
ple arithmetic on a variable, such as addition, subtraction, or multiplication, can
result in a value that can’t be held in that variable. Take a look at this example:

unsigned int a;

a=0xe0000020;

a=a+0x20000020;

You know that a can hold a value of 0xE0000020 without a problem; Table 6-2
lists the maximum value of an unsigned 32-bit variable as 4,294,967,295, or
0xFFFFFFFF. However, when 0x20000020 is added to 0xE0000000, the result,
0x100000040, can’t be held in a. When an arithmetic operation results in a value
higher than the maximum possible representable value, it’s called a numeric over-
flow condition.
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Here’s a slightly different example:

unsigned int a;

a=0;

a=a-1;

The programmer subtracts 1 from a, which has an initial value of 0. The result-
ing value, -1, can’t be held in a because it’s below the minimum possible value of 0.
This result is known as a numeric underflow condition.

Note
Numeric overflow conditions are also referred to in secure-program-
ming literature as numeric overflows, arithmetic overflows, integer
overflows, or integer wrapping. Numeric underflow conditions can
be referred to as numeric underflows, arithmetic underflows, integer
underflows, or integer wrapping. Specifically, the terms “wrapping
around a value” or “wrapping below zero” might be used.

Although these conditions might seem as though they would be infrequent or
inconsequential in real code, they actually occur quite often, and their impact can
be quite severe from a security perspective. The incorrect result of an arithmetic
operation can undermine the application’s integrity and often result in a compro-
mise of its security. A numeric overflow or underflow that occurs early in a block of
code can lead to a subtle series of cascading faults; not only is the result of a single
arithmetic operation tainted, but every subsequent operation using that tainted
result introduces a point where an attacker might have unexpected influence. 

Note
Although numeric wrapping is common in most programming lan-
guages, it’s a particular problem in C/C++ programs because C
requires programmers to perform low-level tasks that more abstracted
high-level languages handle automatically. These tasks, such as
dynamic memory allocation and buffer length tracking, often require
arithmetic that might be vulnerable. Attackers commonly leverage
arithmetic boundary conditions by manipulating a length calculation
so that an insufficient amount of memory is allocated. If this happens,
the program later runs the risk of manipulating memory outside the
bounds of the allocated space, which often leads to an exploitable sit-
uation. Another common attack technique is bypassing a length
check that protects sensitive operations, such as memory copies. 
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This chapter offers several examples of how underflow and overflow
conditions lead to exploitable vulnerabilities. In general, auditors
should be mindful of arithmetic boundary conditions when reviewing
code and be sure to consider the possible implications of the subtle,
cascading nature of these flaws. 

In the following sections, you look at arithmetic boundary conditions affecting
unsigned integers and then examine signed integers.

Warning
An effort has been made to use int and unsigned int types in exam-
ples to avoid code that’s affected by C’s default type promotions.
This topic is covered in ”Type Conversions” later in the chapter, but
for now, note that whenever you use a char or short in an arithmetic
expression in C, it’s converted to an int before the arithmetic is 
performed.

Unsigned Integer Boundaries
Unsigned integers are defined in the C specification as being subject to the rules of
modular arithmetic (see the “Modular Arithmetic” sidebar). For an unsigned integer
that uses X bits of storage, arithmetic on that integer is performed modulo 2X. For
example, arithmetic on a 8-bit unsigned integer is performed modulo 28, or modulo
256. Take another look at this simple expression:

unsigned int a;

a=0xE0000020;

a=a+0x20000020;

The addition is performed modulo 232, or modulo 4,294,967,296 (0x100000000).
The result of the addition is 0x40, which is (0xE0000020 + 0x20000020) 
modulo 0x100000000. 

Another way to conceptualize it is to consider the extra bits of the result of a
numeric overflow as being truncated. If you do the calculation 0xE0000020 +
0x20000020 in binary, you would have the following:

1110 0000 0000 0000 0000 0000 0010 0000

+ 0010 0000 0000 0000 0000 0000 0010 0000

= 1 0000 0000 0000 0000 0000 0000 0100 0000



Chapter 6—C Language Issues

214

The result you actually get in a is 0x40, which has a binary representation of
0000 0000 0000 0000 0000 0000 0100 0000.

Modular Arithmetic
Modular arithmetic is a system of arithmetic used heavily in computer science.
The expression “X modulo Y” means “the remainder of X divided by Y.” For exam-
ple, 100 modulo 11 is 1 because when 100 is divided by 11, the answer is 9 and the
remainder is 1. The modulus operator in C is written as %. So in C, the expression
(100 % 11) evaluates to 1, and the expression (100 / 11) evaluates to 9.

Modular arithmetic is useful for making sure a number is bounded within a cer-
tain range, and you often see it used for this purpose in hash tables. To explain,
when you have X modulo Y, and X and Y are positive numbers, you know that the
highest possible result is Y-1 and the lowest is 0. If you have a hash table of 100
buckets, and you need to map a hash to one of the buckets, you could do this:

struct bucket *buckets[100];

...

bucket = buckets[hash % 100];

To see how modular arithmetic works, look at a simple loop:

for (i=0; i<20; i++)

printf(“%d “, i % 6);

printf(“\n”);

The expression (i % 6) essentially bounds i to the range 0 to 5. As the program
runs, it prints the following:

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1

You can see that as i advanced from 0 to 19, i % 6 also advanced, but it wrapped
back around to 0 every time it hit its maximum value of 5. As you move forward
through the value, you wrap around the maximum value of 5. If you move back-
ward through the values, you wrap “under” 0 to the maximum value of 5.

You can see that it’s the same as the result of the addition but without the high-
est bit. This isn’t far from what’s happening at the machine level. For example, Intel
architectures have a carry flag (CF) that holds this highest bit. C doesn’t have a
mechanism for allowing access to this flag, but depending on the underlying archi-
tecture, it could be checked via assembly code. 

Here’s an example of a numeric overflow condition that occurs because of 
multiplication:



unsigned int a;

a=0xe0000020;

a=a*0x42;

Again, the arithmetic is performed modulo 0x100000000. The result of the
multiplication is 0xC0000840, which is (0xE0000020 * 0x42) modulo 0x100000000.
Here it is in binary:

1110 0000 0000 0000 0000 0000 0010 0000

* 0000 0000 0000 0000 0000 0000 0100 0010

= 11 1001 1100 0000 0000 0000 0000 1000 0100 0000

The result you actually get in a, 0xC0000840, has a binary representation of 1100
0000 0000 0000 0000 1000 0100 0000. Again, you can see how the higher bits that did-
n’t fit into the result were effectively truncated. At a machine level, often it’s possible to
detect an overflow with integer multiplication as well as recover the high bits of a mul-
tiplication. For example, on Intel the imul instruction uses a destination object that’s
twice the size of the source operands when multiplying, and it sets the flags OF(over-
flow) and CF(carry) if the result of the multiplication requires a width greater than the
source operand. Some code even uses inline assembly to check for numeric overflow
(discussed in the “Multiplication Overflows on Intel” sidebar later in this chapter).

You’ve seen examples of how arithmetic overflows could occur because of addi-
tion and multiplication. Another operator that can cause overflows is left shift,
which, for this discussion, can be thought of as multiplication with 2. It behaves
much the same as multiplication, so an example hasn’t been provided.

Now, you can look at some security exposures related to numeric overflow of
unsigned integers. Listing 6-2 is a sanitized, edited version of an exploitable condi-
tion found recently in a client’s code.

Listing 6-2
Integer Overflow Example
u_char *make_table(unsigned int width, unsigned int height,

u_char *init_row)
{

unsigned int n;
int i;
u_char *buf;

n = width * height;

buf = (char *)malloc(n);
if (!buf)

return (NULL);
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for (i=0; i< height; i++)
memcpy(&buf[i*width], init_row, width);

return buf;
}

The purpose of the make_table() function is to take a width, a height, and an
initial row and create a table in memory where each row is initialized to have the
same contents as init_row. Assume that users have control over the dimensions of
the new table: width and height. If they specify large dimensions, such as a width
of 1,000,000, and a height of 3,000, the function attempts to call malloc() for
3,000,000,000 bytes. The allocation likely fails, and the calling function detects the
error and handles it gracefully. However, users can cause an arithmetic overflow in
the multiplication of width and height if they make the dimensions just a bit larger.
This overflow is potentially exploitable because the allocation is done by multiply-
ing width and height, but the actual array initialization is done with a for loop. So
if users specify a width of 0x400 and a height of 0x1000001, the result of the multi-
plication is 0x400000400. This value, modulo 0x100000000, is 0x00000400, or 1024.
So 1024 bytes would be allocated, but then the for loop would copy init_row
roughly 16 million too many times. A clever attacker might be able to leverage this
overflow to take control of the application, depending on the low-level details of the
process’s runtime environment.

Take a look at a real-world vulnerability that’s similar to the previous example,
found in the OpenSSH server. Listing 6-3 is from the OpenSSH 3.1 challenge-response
authentication code: auth2-chall.c in the input_userauth_info_response()
function.

Listing 6-3
Challenge-Response Integer Overflow Example in OpenSSH 3.1

u_int nresp;
...

nresp = packet_get_int();
if (nresp > 0) {

response = xmalloc(nresp * sizeof(char*));
for (i = 0; i < nresp; i++)

response[i] = packet_get_string(NULL);
}
packet_check_eom();

The nresp unsigned integer is user controlled, and its purpose is to tell the
server how many responses to expect. It’s used to allocate the response[] array and
fill it with network data. During the allocation of the response[] array in the call to
xmalloc(), nresp is multiplied by sizeof(char *), which is typically 4 bytes. If users
specify an nresp value that’s large enough, a numeric overflow could occur, and the
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result of the multiplication could end up being a small number. For example, if
nresp has a value of 0x40000020, the result of the multiplication with 4 is 0x80.
Therefore, 0x80 bytes are allocated, but the following for loop attempts to retrieve
0x40000020 strings from the packet! This turned out to be a critical remotely
exploitable vulnerability.

Now turn your attention to numeric underflows. With unsigned integers, 
subtractions can cause a value to wrap under the minimum representable value of
0. The result of an underflow is typically a large positive number because of the
modulus nature of unsigned integers. Here’s a brief example:

unsigned int a;

a=0x10;

a=a-0x30;

Look at the calculation in binary: 

0000 0000 0000 0000 0000 0000 0001 0000

- 0000 0000 0000 0000 0000 0000 0011 0000

= 1111 1111 1111 1111 1111 1111 1110 0000

The result you get in a is the bit pattern for 0xffffffe0, which in twos comple-
ment representation is the correct negative value of -0x20. Recall that in modulus
arithmetic, if you advance past the maximum possible value, you wrap around to 0.
A similar phenomenon occurs if you go below the minimum possible value: You
wrap around to the highest possible value. Since a is an unsigned int type, it has a
value of 0xffffffe0 instead of -0x20 after the subtraction. Listing 6-4 is an example of
a numeric underflow involving an unsigned integer.

Listing 6-4
Unsigned Integer Underflow Example
struct header {

unsigned int length;
unsigned int message_type;

};

char *read_packet(int sockfd)
{

int n;
unsigned int length;
struct header hdr;
static char buffer[1024];

if(full_read(sockfd, (void *)&hdr, sizeof(hdr))<=0){
error(“full_read: %m”);
return NULL;
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}

length = ntohl(hdr.length);

if(length > (1024 + sizeof (struct header) - 1)){
error(“not enough room in buffer\n”);
return NULL;

}

if(full_read(sockfd, buffer,
length – sizeof(struct header))<=0)

{
error(“read: %m”);
return NULL;

}

buffer[sizeof(buffer)-1] = ‘\0’;

return strdup(buffer);
}

This code reads a packet header from the network and extracts a 32-bit length
field into the length variable. The length variable represents the total number of
bytes in the packet, so the program first checks that the data portion of the packet
isn’t longer than 1024 bytes to prevent an overflow. It then tries to read the rest of
the packet from the network by reading (length – sizeof(struct header)) bytes
into buffer. This makes sense, as the code wants to read in the packet’s data
portion, which is the total length minus the length of the header.

The vulnerability is that if users supply a length less than sizeof(struct
header), the subtraction of (length – sizeof(struct header)) causes an integer
underflow and ends up passing a very large size parameter to full_read(). 
This error could result in a buffer overflow because at that point, read() would
essentially copy data into the buffer until the connection is closed, which would
allow attackers to take control of the process.

Multiplication Overflows on Intel
Generally, processors detect when an integer overflow occurs and provide mecha-
nisms for dealing with it; however, they are seldom used for error checking and
generally aren’t accessible from C. For example, Intel processors set the overflow
flag (OF) in the EFLAGS register when a multiplication causes an overflow, but a C
programmer can’t check that flag without using inline assembler. Sometimes this
is done for security reasons, such as the NDR unmarshalling routines for handling
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MSRPC requests in Windows operating systems. The following code, taken from
rpcrt4.dll, is called when unmarshalling various data types from RPC requests:

sub_77D6B6D4 proc near

var_of = dword ptr -4

arg_count = dword ptr 8

arg_length = dword ptr 0Ch

push ebp

mov ebp, esp

push ecx

and [ebp+var_of], 0

; set overflow flag to 0

push esi

mov esi, [ebp+arg_length]

imul esi, [ebp+arg_count]

; multiply length * count

jno short check_of

mov [ebp+var_of], 1

; if of set, set out flag

check_of:

cmp [ebp+var_of], 0

jnz short raise_ex

; must not overflow

cmp esi, 7FFFFFFFh

jbe short return

; must be a positive int

raise_ex:

push 6C6h

; exception

call RpcRaiseException

return:

mov eax, esi

; return result

pop esi

leave

retn 8
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Multiplication Overflows on Intel Continued
You can see that this function, which multiplies the number of provided elements
with the size of each element, does two sanity checks. First, it uses jno to check the
overflow flag to make sure the multiplication didn’t overflow. Then it makes sure
the resulting size is less than or equal to the maximum representable value of a
signed integer, 0x7FFFFFFF. If either check fails, the function raises an exception.

Signed Integer Boundaries
Signed integers are a slightly different animal. According to the C specifications, the
result of an arithmetic overflow or underflow with a signed integer is implementa-
tion defined and could potentially include a machine trap or fault. However, on most
common architectures, the results of signed arithmetic overflows are well defined
and predictable and don’t result in any kind of exception. These boundary behaviors
are a natural consequence of how twos complement arithmetic is implemented at the
hardware level, and they should be consistent on mainstream machines.

If you recall, the maximum positive value that can be represented in a twos
complement signed integer is one in which all bits are set to 1 except the most
significant bit, which is 0. This is because the highest bit indicates the sign of the
number, and a value of 1 in that bit indicates that the number is negative. When
an operation on a signed integer causes an arithmetic overflow or underflow to
occur, the resulting value “wraps around the sign boundary” and typically causes
a change in sign. For example, in a 32-bit integer, the value 0x7FFFFFFF is a large
positive number. Adding 1 to it produces the result 0x80000000, which is a large
negative number. Take a look at another simple example:

int a;

a=0x7FFFFFF0;

a=a+0x100;

The result of the addition is -0x7fffff10, or -2,147,483,408. Now look at the
calculation in binary: 

0111 1111 1111 1111 1111 1111 1111 0000

+ 0000 0000 0000 0000 0000 0001 0000 0000

= 1000 0000 0000 0000 0000 0000 1111 0000

The result you get in a is the bit pattern for 0x800000f0, which is the correct
result of the addition, but because it’s interpreted as a twos complement number,
the value is actually interpreted as -0x7fffff10. In this case, a large positive number
plus a small positive number resulted in a large negative number.
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With signed addition, you can overflow the sign boundary by causing a positive num-
ber to wrap around 0x80000000 and become a negative number. You can also underflow
the sign boundary by causing a negative number to wrap below 0x80000000 and become
a positive number. Subtraction is identical to addition with a negative number, so you can
analyze them as being essentially the same operation. Overflows during multiplication
and shifting are also possible, and classifying their results isn’t as easy. Essentially, the bits
fall as they may; if a bit happens to end up in the sign bit of the result, the result is nega-
tive. Otherwise, it’s not. Arithmetic overflows involving multiplication seem a little tricky
at first glance, but attackers can usually make them return useful, targeted values.

Note
Throughout this chapter, the read() function is used to demonstrate
various forms of integer-related flaws. This is a bit of an oversimpli-
fication for the purposes of clarity, as many modern systems vali-
date the length argument to read() at the system call level. These
systems, which include BSDs and the newer Linux 2.6 kernel, check
that this argument is less than or equal to the maximum value of a
correspondingly sized signed integer, thus minimizing the risk of
memory corruption.

Certain unexpected sign changes in arithmetic can lead to subtly exploitable
conditions in code. These changes can cause programs to calculate space require-
ments incorrectly, leading to conditions similar to those that occur when crossing
the maximum boundary for unsigned integers. Bugs of this nature typically occur in
applications that perform arithmetic on integers taken directly from external
sources, such as network data or files. Listing 6-5 is a simple example that shows
how crossing the sign boundary can adversely affect an application.

Listing 6-5
Signed Integer Vulnerability Example
char *read_data(int sockfd)
{

char *buf;
int length = network_get_int(sockfd);

if(!(buf = (char *)malloc(MAXCHARS)))
die(“malloc: %m”);

if(length < 0 || length + 1 >= MAXCHARS){
free(buf);
die(“bad length: %d”, value);

}
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if(read(sockfd, buf, length) <= 0){
free(buf);
die(“read: %m”);

}

buf[value] = ‘\0’;

return buf;
}

This example reads an integer from the network and performs some sanity
checks on it. First, the length is checked to ensure that it’s greater than or equal to
zero and, therefore, positive. Then the length is checked to ensure that it’s less than
MAXCHARS. However, in the second part of the length check, 1 is added to the
length. This opens an attack vector: A value of 0x7FFFFFFF passes the first check
(because it’s greater than 0) and passes the second length check (as 0x7FFFFFFF + 1
is 0x80000000, which is a negative value). read()would then be called with an effec-
tively unbounded length argument, leading to a potential buffer overflow situation.

This kind of mistake is easy to make when dealing with signed integers, and it
can be equally challenging to spot. Protocols that allow users to specify integers
directly are especially prone to this type of vulnerability. To examine this in 
practice, take a look at a real application that performs an unsafe calculation. The
following vulnerability was in the OpenSSL 0.9.6 codebase related to processing
Abstract Syntax Notation (ASN.1) encoded data. (ASN.1 is a language used for
describing arbitrary messages to be sent between computers, which are encoded
using BER, its basic encoding rules.) This encoding is a perfect candidate for a vul-
nerability of this nature because the protocol deals explicitly with 32-bit integers
supplied by untrusted clients. Listing 6-6 is taken from crypto/asn1/
a_d2i_fp.c—the ASN1_d2i_fp() function, which is responsible for reading ASN.1
objects from buffered IO (BIO) streams. This code has been edited for brevity.

Listing 6-6
Integer Sign Boundary Vulnerability Example in OpenSSL 0.9.6l

c.inf=ASN1_get_object(&(c.p),&(c.slen),&(c.tag),&(c.xclass),
len-off);

...
{

/* suck in c.slen bytes of data */
want=(int)c.slen;
if (want > (len-off))
{

want-=(len-off);
if (!BUF_MEM_grow(b,len+want))
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{
ASN1err(ASN1_F_ASN1_D2I_BIO,

ERR_R_MALLOC_FAILURE);
goto err;

}
i=BIO_read(in,&(b->data[len]),want);

This code is called in a loop for retrieving ASN.1 objects. The ASN1_get_object()
function reads an object header that specifies the length of the next ASN.1 object.
This length is placed in the signed integer c.slen, which is then assigned to want.
The ASN.1 object function ensures that this number isn’t negative, so the highest
value that can be placed in c.slen is 0x7FFFFFFF. At this point, len is the amount
of data already read in to memory, and off is the offset in that data to the object
being parsed. So, (len-off) is the amount of data read into memory that hasn’t yet
been processed by the parser. If the code sees that the object is larger than the
available unparsed data, it decides to allocate more space and read in the rest of 
the object.

The BUF_MEM_grow() function is called to allocate the required space in the
memory buffer b; its second argument is a size parameter. The problem is that the
len+want expression used for the second argument can be overflowed. Say that
upon entering this code, len is 200 bytes, and off is 50. The attacker specifies an
object size of 0x7FFFFFFF, which ends up in want. 0x7FFFFFFF is certainly larger
than the 150 bytes of remaining data in memory, so the allocation code will be
entered. want will be subtracted by 150 to reflect the amount of data already read in,
giving it a value of 0x7FFFFF69. The call to BUF_MEM_grow() will ask for len+want
bytes, or 0x7FFFFF69 + 200. This is 0x80000031, which is interpreted as a large neg-
ative number.

Internally, the BUF_MEM_grow() function does a comparison to check its length
argument against how much space it has previously allocated. Because a negative
number is less than the amount of memory it has already allocated, it assumes
everything is fine. So the reallocation is bypassed, and arbitrary amounts of data
can be copied into allocated heap data, with severe consequences.

Type Conversions
C is extremely flexible in handling the interaction of different data types. For exam-
ple, with a few casts, you can easily multiply an unsigned character with a signed
long integer, add it to a character pointer, and then pass the result to a function
expecting a pointer to a structure. Programmers are used to this flexibility, so they
tend to mix data types without worrying too much about what’s going on behind
the scenes. 



To deal with this flexibility, when the compiler needs to convert an object of one
type into another type, it performs what’s known as a type conversion. There are
two forms of type conversions: explicit type conversions, in which the programmer
explicitly instructs the compiler to convert from one type to another by casting, and
implicit type conversions, in which the compiler does “hidden” transformations of
variables to make the program function as expected.

Note
You might see type conversions referred to as “type coercions” in
programming-language literature; the terms are synonymous.

Often it’s surprising when you first learn how many implicit conversions occur
behind the scenes in a typical C program. These automatic type conversions, known
collectively as the default type conversions, occur almost magically when a pro-
grammer performs seemingly straightforward tasks, such as making a function call
or comparing two numbers.

The vulnerabilities resulting from type conversions are often fascinating, because
they can be subtle and difficult to locate in source code, and they often lead to situa-
tions in which the patch for a critical remote vulnerability is as simple as changing a
char to an unsigned char. The rules governing these conversions are deceptively 
subtle, and it’s easy to believe you have a solid grasp of them and yet miss an impor-
tant nuance that makes a world of difference when you analyze or write code.

Instead of jumping right into known vulnerability classes, first you look at
how C compilers perform type conversions at a low level, and then you study the
rules of C in detail to learn about all the situations in which conversions take
place. This section is fairly long because you have to cover a lot of ground before
you have the foundation to analyze C’s type conversions with confidence. How-
ever, this aspect of the language is subtle enough that it’s definitely worth taking
the time to gain a solid understanding of the ground rules; you can leverage this
understanding to find vulnerabilities that most programmers aren’t aware of,
even at a conceptual level. 

Overview
When faced with the general problem of reconciling two different types, C goes to
great lengths to avoid surprising programmers. The compilers follow a set of rules
that attempt to encapsulate “common sense” about how to manage mixing different
types, and more often than not, the result is a program that makes sense and simply
does what the programmer intended. That said, applying these rules can often lead
to surprising, unexpected behaviors. Moreover, as you might expect, these unex-
pected behaviors tend to have dire security consequences.
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You start in the next section by exploring the conversion rules, the general rules
C uses when converting between types. They dictate how a machine converts from
one type to another type at the bit level. After you have a good grasp of how C con-
verts between different types at the machine level, you examine how the compiler
chooses which type conversions to apply in the context of C expressions, which
involves three important concepts: simple conversions, integer promotions, and
usual arithmetic conversions. 

Note
Although non-integer types, such as floats and pointers, have some
coverage, the primary focus of this discussion is on how C manipu-
lates integers because these conversions are widely misunderstood
and are critical for security analysis. 

Conversion Rules
The following rules describe how C converts from one type to another, but they
don’t describe when conversions are performed or why they are performed. 

Note
The following content is specific to twos complement implementa-
tions and represents a distilled and pragmatic version of the rules in
the C specification. 

Integer Types: Value Preservation
An important concept in integer type conversions is the notion of a value-preserving
conversion. Basically, if the new type can represent all possible values of the old
type, the conversion is said to be value-preserving. In this situation, there’s no way
the value can be lost or changed as a result of the conversion. For example, if an
unsigned char is converted into an int, the conversion is value-preserving because
an int can represent all of the values of an unsigned char. You can verify this by
referring to Table 6-2 again. Assuming you’re considering a twos complement
machine, you know that an 8-bit unsigned char can represent any value between 0
and 255. You know that a 32-bit int can represent any value between -2147483648
and 2147483647. Therefore, there’s no value the unsigned char can have that the int
can’t represent.

Correspondingly, in a value-changing conversion, the old type can contain val-
ues that can’t be represented in the new type. For example, if you convert an int into
an unsigned int, you have potentially created an intractable situation. The unsigned



int, on a 32-bit machine, has a range of 0 to 4294967295, and the int has a range 
of -2147483648 to 2147483647. The unsigned int can’t hold any of the negative values
a signed int can represent. 

According to the C standard, some of the value-changing conversions have
implementation-defined results. This is true only for value-changing conversions
that have a signed destination type; value-changing conversions to an unsigned type
are defined and consistent across all implementations. (If you recall from the
boundary condition discussion, this is because unsigned arithmetic is defined as a
modulus arithmetic system.) Twos complement machines follow the same basic
behaviors, so you can explain how they perform value-changing conversions to
signed destination types with a fair amount of confidence.

Integer Types: Widening
When you convert from a narrow type to a wider type, the machine typically copies
the bit pattern from the old variable to the new variable, and then sets all the remain-
ing high bits in the new variable to 0 or 1. If the source type is unsigned, the machine
uses zero extension, in which it propagates the value 0 to all high bits in the new
wider type. If the source type is signed, the machine uses sign extension, in which it
propagates the sign bit from the source type to all unused bits in the destination type. 

Warning
The widening procedure might have some unexpected implications:
If a narrow signed type, such as signed char, is converted to a wider
unsigned type, such as unsigned int, sign extension occurs. 

Figure 6-1 shows a value-preserving conversion of an unsigned char with a value
of 5 to a signed int.

The character is placed into the integer, and the value is preserved. At the bit
pattern level, this simply involved zero extension: clearing out the high bits and
moving the least significant byte (LSB) into the new object’s LSB.
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Type:     unsigned char

Value: 5

Type:                    int

Value: 5

05 00 00 00 05

Figure 6-1 Conversion of unsigned char to int (zero extension, big endian)



Now consider a signed char being converted into a int. A int can represent all
the values of a signed char, so this conversion is also value-preserving. Figure 6-2
shows what this conversion looks like at the bit level.

This situation is slightly different, as the value is the same, but the transforma-
tion is more involved. The bit representation of -5 in a signed char is 1111 1011. The
bit representation of -5 in an int is 1111 1111 1111 1111 1111 1111 1111 1011. To do
the conversion, the compiler generates assembly that performs sign extension. You
can see in Figure 6-2 that the sign bit is set in the signed char, so to preserve the
value -5, the sign bit has to be copied to the other 24 bits of the int.

The previous examples are value-preserving conversions. Now consider a
value-changing widening conversion. Say you convert a signed char with a value of
-5 to an unsigned int. Because the source type is signed, you perform sign exten-
sion on the signed char before placing it in the unsigned int (see Figure 6-3).

As mentioned previously, this result can be surprising to developers. You explore
its security ramifications in “Sign Extension” later in this chapter. This conversion is
value changing because an unsigned int can’t represent values less than 0.

Integer Types: Narrowing
When converting from a wider type to a narrower type, the machine uses only one
mechanism: truncation. The bits from the wider type that don’t fit in the new narrower
type are dropped. Figures 6-4 and 6-5 show two narrowing conversions. Note that all
narrowing conversions are value-changing because you’re losing precision.
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Type:         signed char

Value: -5

Type:                    int

Value: -5

FB FF FF FF FB

Figure 6-2 Conversion of signed char to integer (sign extension, big endian)

Type:                   char

Value: -5

Type:       unsigned int

Value: 4,294,967,291

FB FF FF FF FB

Figure 6-3 Conversion of signed char to unsigned integer (sign extension, big endian)



Integer Types: Signed and Unsigned
One final type of integer conversion to consider: If a conversion occurs between 
a signed type and an unsigned type of the same width, nothing is changed in 
the bit pattern. This conversion is value-changing. For example, say you have the
signed integer -1, which is represented in binary as 1111 1111 1111 1111 1111 
1111 1111 1111.

If you interpret this same bit pattern as an unsigned integer, you see a value of
4,294,967,295. The conversion is summarized in Figure 6-6. The conversion from
unsigned int to int technically might be implementation defined, but it works in the
same fashion: The bit pattern is left alone, and the value is interpreted in the con-
text of the new type (see Figure 6-7).
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Type:                      int

Value: -1

Type:        signed char

Value: -1

FFFF FF FF FF

Type:                      int

Value: -1

Type:        unsigned int

Value: 4,294,967,295

FF FF FF FF FF FF FF FF

Figure 6-5 Conversion of integer to signed char (truncation, big endian)

Figure 6-6 Conversion of int to unsigned int (big endian)

Type:                      int

Value: -1000000

Type:     unsigned short

Value: 48576

BD C0FF F0 BD C0

Figure 6-4 Conversion of integer to unsigned short integer (truncation, big endian)



Integer Type Conversion Summary
Here are some practical rules of thumb for integer type conversions:

■ When you convert from a narrower signed type to a wider unsigned type, the
compiler emits assembly to do sign extension, and the value of the object
might change.

■ When you convert from a narrower signed type to a wider signed type, the
compiler emits assembly to do sign extension, and the value of the object is
preserved.

■ When you convert from a narrower unsigned type to a wider type, the 
compiler emits assembly to do zero extension, and the value of the object is
preserved.

■ When you convert from a wider type to a narrower type, the compiler emits
assembly to do truncation, and the value of the object might change.

■ When you convert between signed and unsigned types of the same width, the
compiler effectively does nothing, the bit pattern stays the same, and the value
of the object might change.

Table 6-4 summarizes the processing that occurs when different integer types
are converted in twos complement implementations of C. As you cover the informa-
tion in the following sections, this table can serve as a useful reference for recalling
how a conversion occurs.

Table 6-4

Integer Type Conversion in C (Source on Left, Destination on Top)

signed unsigned short int Unsigned int unsigned 
char char short int int

signed  Compatible Value Value Value Value Value
char types changing preserving changing preserving changing

Bit pattern Sign Sign Sign Sign
same extension extension extension extension

Type Conversions

229

Type:         unsigned int

Value: -1

Type:                       int

Value: 4,294,967,295

FF FF FF FF FF FF FF FF

Figure 6-7 Conversion of unsigned int to signed int (big endian)
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Table 6-4 continued

Integer Type Conversion in C (Source on Left, Destination on Top)

signed unsigned short int Unsigned int unsigned 
char char short int int

unsigned Value Compatible Value Value Value Value
char changing types preserving preserving preserving preserving

Bit pattern Zero Zero Zero Zero
same extension extension extension extension
Implementation
defined

short int Value Value Compatible Value Value Value
changing changing types changing changing changing
Truncation Truncation Bit pattern Sign Sign
Implementation same extension extension
defined

unsigned Value Value Value Compatible Value Value
short int changing changing changing types preserving preserving

Truncation Truncation Bit pattern Zero Zero
Implementation same extension extension
defined Implementation

defined

Int Value Value Value Value Compatible Value
changing changing changing changing types changing

Truncation Truncation Truncation Truncation Bit pattern
Implementation Implementation same
defined defined

unsigned Value Value Value Value Value Compatible
int changing changing changing changing changing types

Truncation Truncation Truncation Truncation Bit pattern
Implementation Implementation same
defined defined Implementation

defined

Floating Point and Complex Types
Although vulnerabilities caused by the use of floating point arithmetic haven’t been
widely published, they are certainly possible. There’s certainly the possibility of
subtle errors surfacing in financial software related to floating point type conver-
sions or representation issues. The discussion of floating point types in this chapter
is fairly brief. For more information, refer to the C standards documents and the
previously mentioned C programming references. 

The C standard’s rules for conversions between real floating types and integer
types leave a lot of room for implementation-defined behaviors. In a conversion
from a real type to an integer type, the fractional portion of the number is 
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discarded. If the integer type can’t represent the integer portion of the floating
point number, the result is undefined. Similarly, a conversion from an integer type
to a real type transfers the value over if possible. If the real type can’t represent the
integer’s value but can come close, the compiler rounds the integer to the next
highest or lowest number in an implementation-defined manner. If the integer is
outside the range of the real type, the result is undefined.

Conversions between floating point types of different precision are handled
with similar logic. Promotion causes no change in value. During a demotion that
causes a change in value, the compiler is free to round numbers, if possible, in an
implementation-defined manner. If rounding isn’t possible because of the range of
the target type, the result is undefined.

Other Types
There are myriad other types in C beyond integers and floats, including pointers,
Booleans, structures, unions, functions, arrays, enums, and more. For the most part,
conversion among these types isn’t quite as critical from a security perspective, so
they aren’t extensively covered in this chapter.

Pointer arithmetic is covered in “Pointer Arithmetic” later in this chapter.
Pointer type conversion depends largely on the underlying machine architecture,
and many conversions are specified as implementation defined. Essentially, pro-
grammers are free to convert pointers into integers and back, and convert pointers
from one type to another. The results are implementation defined, and program-
mers need to be cognizant of alignment restrictions and other low-level details.

Simple Conversions
Now that you have a good idea how C converts from one integer type to another,
you can look at some situations where these type conversions occur. Simple conver-
sions are C expressions that use straightforward applications of conversion rules.

Casts
As you know, typecasts are C’s mechanism for letting programmers specify an
explicit type conversion, as shown in this example:

(unsigned char) bob

Whatever type bob happens to be, this expression converts it into an unsigned
char type. The resulting type of the expression is unsigned char.

Assignments
Simple type conversion also occurs in the assignment operator. The compiler must
convert the type of the right operand into the type of the left operand, as shown in
this example:
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short int fred;

int bob = -10;

fred = bob;

For both assignments, the compiler must take the object in the right operand
and convert it into the type of the left operand. The conversion rules tell you that
conversion from the int bob to the short int fred results in truncation.

Function Calls: Prototypes
C has two styles of function declarations: the old K&R style, in which parameter
types aren’t specified in the function declaration, and the new ANSI style, in which
the parameter types are part of the declaration. In the ANSI style, the use of func-
tion prototypes is still optional, but it’s common. With the ANSI style, you typically
see something like this:

int dostuff(int jim, unsigned char bob);

void func(void)

{

char a=42;

unsigned short b=43;

long long int c;

c=dostuff(a, b);

}

The function declaration for dostuff() contains a prototype that tells the
compiler the number of arguments and their types. The rule of thumb is that if the
function has a prototype, the types are converted in a straightforward fashion using
the rules documented previously. If the function doesn’t have a prototype, something
called the default argument promotions kicks in (explained in “Integer Promotions”).

The previous example has a character (a) being converted into an int (jim), an
unsigned short (b) being converted into an unsigned char (bob), and an int (the
dostuff() function’s return value) being converted into a long long int (c).

Function Calls: return
return does a conversion of its operand to the type specified in the enclosing func-
tion’s definition. For example, the int a is converted into a char data type by return:
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char func(void)

{

int a=42;

return a;

}

Integer Promotions
Integer promotions specify how C takes a narrow integer data type, such as a char
or short, and converts it to an int (or, in rare cases, to an unsigned int). This up-
conversion, or promotion, is used for two different purposes: 

■ Certain operators in C require an integer operand of type int or unsigned int.
For these operators, C uses the integer promotion rules to transform a nar-
rower integer operand into the correct type—int or unsigned int.

■ Integer promotions are a critical component of C’s rules for handling arith-
metic expressions, which are called the usual arithmetic conversions. For
arithmetic expressions involving integers, integer promotions are usually
applied to both operands.

Note
You might see the terms “integer promotions” and “integral 
promotions” used interchangeably in other literature, as they are 
synonymous.

There’s a useful concept from the C standards: Each integer data type is
assigned what’s known as an integer conversion rank. These ranks order the integer
data types by their width from lowest to highest. The signed and unsigned varieties
of each type are assigned the same rank. The following abridged list sorts integer
types by conversion rank from high to low. The C standard assigns ranks to other
integer types, but this list should suffice for this discussion:

long long int, unsigned long long int
long int, unsigned long int
unsigned int, int
unsigned short, short
char, unsigned char, signed char
_Bool

Type Conversions

233



Basically, any place in C where you can use an int or unsigned int, you can also
use any integer type with a lower integer conversion rank. This means you can use
smaller types, such as chars and short ints, in the place of ints in C expressions. You
can also use a bit field of type _Bool, int, signed int, or unsigned int. The bit fields
aren’t ascribed integer conversion ranks, but they are treated as narrower than their
corresponding base type. This makes sense because a bit field of an int is usually
smaller than an int, and at its widest, it’s the same width as an int.

If you apply the integer promotions to a variable, what happens? First, if the
variable isn’t an integer type or a bit field, the promotions do nothing. Second, if the
variable is an integer type, but its integer conversion rank is greater than or equal to
that of an int, the promotions do nothing. Therefore, ints, unsigned ints, long ints,
pointers, and floats don’t get altered by the integer promotions.

So, the integer promotions are responsible for taking a narrower integer type or
bit field and promoting it to an int or unsigned int. This is done in a straightforward
fashion: If a value-preserving transformation to an int can be performed, it’s done.
Otherwise, a value-preserving conversion to an unsigned int is performed.

In practice, this means almost everything is converted to an int, as an int can
hold the minimum and maximum values of all the smaller types. The only types
that might be promoted to an unsigned int are unsigned int bit fields with 32 bits or
perhaps some implementation-specific extended integer types.

Historical Note
The C89 standard made an important change to the C type conver-
sion rules. In the K&R days of the C language, integer promotions
were unsigned-preserving rather than value-preserving. So with the
current C rules, if a narrower, unsigned integer type, such as an
unsigned char, is promoted to a wider, signed integer, such as an int,
value conversion dictates that the new type is a signed integer. With
the old rules, the promotion would preserve the unsigned-ness, so
the resulting type would be an unsigned int. This changed the
behavior of many signed/unsigned comparisons that involved pro-
motions of types narrower than int. 

Integer Promotions Summary
The basic rule of thumb is this: If an integer type is narrower than an int, integer
promotions almost always convert it to an int. Table 6-5 summarizes the result of
integer promotions on a few common types.

Chapter 6—C Language Issues

234



Table 6-5

Results of Integer Promotions

Source Type Result Type Rationale

unsigned char int Promote; source rank less than int rank

char int Promote; source rank less than int rank

short int Promote; source rank less than int rank

unsigned short int Promote; source rank less than int rank

unsigned int: 24 int Promote; bit field of unsigned int

unsigned int: 32 unsigned int Promote; bit field of unsigned int

int int Don’t promote; source rank equal to int rank

unsigned int unsigned int Don’t promote; source rank equal to int rank

long int long int Don’t promote; source rank greater than int rank

float float Don’t promote; source not of integer type

char * char * Don’t promote; source not of integer type

Integer Promotion Applications
Now that you understand integer promotions, the following sections examine
where they are used in the C language.

Unary + Operator
The unary + operator performs integer promotions on its operand. For example, if
the bob variable is of type char, the resulting type of the expression (+bob) is int,
whereas the resulting type of the expression (bob) is char.

Unary - Operator
The unary - operator does integer promotion on its operand and then does a negation.
Regardless of whether the operand is signed after the promotion, a twos complement
negation is performed, which involves inverting the bits and adding 1.

The Leblancian Paradox
David Leblanc is an accomplished researcher and author, and one of the world’s
foremost experts on integer issues in C and C++. He documented a fascinating
nuance of twos complement arithmetic that he discovered while working on the 
SafeInt class with his colleague Atin Bansal (http://msdn.microsoft.com/
library/en-us/dncode/html/secure01142004.asp). To negate a twos complement
number, you flip all the bits and add 1 to the result. Assuming a 32-bit signed
data type, what’s the inverse of 0x80000000?
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The Leblancian Paradox Continued

If you flip all the bits, you get 0x7fffffff. If you add 1, you get 0x80000000. So the
unary negation of this corner-case number is itself!

This idiosyncrasy can come into play when developers use negative integers to
represent a special sentinel set of numbers or attempt to take the absolute
value of an integer. In the following code, the intent is for a negative index to
specify a secondary hash table. This works fine unless attackers can specify an
index of 0x80000000. The negation of the number results in no change in the
value, and 0x80000000 % 1000 is -648, which causes memory before the array to
be modified.

int bank1[1000], bank2[1000];

...

void hashbank(int index, int value)

{

int *bank = bank1;

if (index<0) {

bank = bank2;

index = -index;

}

bank[index % 1000] = value;

}

Unary ~ Operator
The unary ~ operator does a ones complement of its operand after doing an integer
promotion of its operand. This effectively performs the same operation on both signed
and unsigned operands for twos complement implementations: It inverts the bits.

Bitwise Shift Operators
The bitwise shift operators >> and << shift the bit patterns of variables. The integer
promotions are applied to both arguments of these operators, and the type of the
result is the same as the promoted type of the left operand, as shown in this
example:
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char a = 1;

char c = 16;

int bob;

bob = a << c;

a is converted to an integer, and c is converted to an integer. The promoted type
of the left operand is int, so the type of the result is an int. The integer representa-
tion of a is left-shifted 16 times. 

Switch Statements
Integer promotions are used in switch statements. The general form of a switch
statement is something like this:

switch (controlling expression)

{

case (constant integer expression): body;

break;

default: body;

break;

}

The integer promotions are used in the following way: First, they are applied to
the controlling expression, so that expression has a promoted type. Then, all the
integer constants are converted to the type of the promoted control expression.

Function Invocations
Older C programs using the K&R semantics don’t specify the data types of argu-
ments in their function declarations. When a function is called without a prototype,
the compiler has to do something called default argument promotions. Basically,
integer promotions are applied to each function argument, and any arguments of the
float type are converted to arguments of the double type. Consider the following
example:

int jim(bob)

char bob;

{

printf(“bob=%d\n”, bob);

}

int main(int argc, char **argv)

{
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char a=5;

jim(a);

}

In this example, a copy of the value of a is passed to the jim() function. The
char type is first run through the integer promotions and transformed into an inte-
ger. This integer is what’s passed to the jim() function. The code the compiler emits
for the jim() function is expecting an integer argument, and it performs a direct
conversion of that integer back into a char format for the bob variable.

Usual Arithmetic Conversions
In many situations, C is expected to take two operands of potentially divergent
types and perform some arithmetic operation that involves both of them. The C
standards spell out a general algorithm for reconciling two types into a compatible
type for this purpose. This procedure is known as the usual arithmetic conversions.
The goal of these conversions is to transform both operands into a common real
type, which is used for the actual operation and then as the type of the result. These
conversions apply only to the arithmetic types—integer and floating point types.
The following sections tackle the conversion rules.

Rule 1: Floating Points Take Precedence
Floating point types take precedence over integer types, so if one of the arguments in
an arithmetic expression is a floating point type, the other argument is converted to a
floating point type. If one floating point argument is less precise than the other, the
less precise argument is promoted to the type of the more precise argument.

Rule 2: Apply Integer Promotions
If you have two operands and neither is a float, you get into the rules for reconciling
integers. First, integer promotions are performed on both operands. This is an
extremely important piece of the puzzle! If you recall from the previous section, this
means any integer type smaller than an int is converted into an int, and anything
that’s the same width as an int, larger than an int, or not an integer type is left
alone. Here’s a brief example:

unsigned char jim = 255;

unsigned char bob = 255;

if ((jim + bob) > 300) do_something();

In this expression, the + operator causes the usual arithmetic conversions to be
applied to its operands. This means both jim and bob are promoted to ints, the 
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addition takes place, and the resulting type of the expression is an int that holds the
result of the addition (510). Therefore, do_something() is called, even though it
looks like the addition could cause a numeric overflow. To summarize: Whenever
there’s arithmetic involving types narrower than an integer, the narrow types are
promoted to integers behind the scenes. Here’s another brief example:

unsigned short a=1;

if ((a-5) < 0) do_something();

Intuition would suggest that if you have an unsigned short with the value 1, and
it’s subtracted by 5, it underflows around 0 and ends up containing a large value.
However, if you test this fragment, you see that do_something() is called because
both operands of the subtraction operator are converted to ints before the compari-
son. So a is converted from an unsigned short to an int, and then an int with a value of
5 is subtracted from it. The resulting value is -4, which is a valid integer value, so the
comparison is true. Note that if you did the following, do_something() wouldn’t be
called:

unsigned short a=1;

a=a-5;

if (a < 0) do_something();

The integer promotion still occurs with the (a-5), but the resulting integer value
of -4 is placed back into the unsigned short a. As you know, this causes a simple
conversion from signed int to unsigned short, which causes truncation to occur, and
a ends up with a large positive value. Therefore, the comparison doesn’t succeed.

Rule 3: Same Type After Integer Promotions
If the two operands are of the same type after integer promotions are applied, you
don’t need any further conversions because the arithmetic should be straightfor-
ward to carry out at the machine level. This can happen if both operands have been
promoted to an int by integer promotions, or if they just happen to be of the same
type and weren’t affected by integer promotions.

Rule 4: Same Sign, Different Types
If the two operands have different types after integer promotions are applied, but
they share the same signed-ness, the narrower type is converted to the type of the
wider type. In other words, if both operands are signed or both operands are
unsigned, the type with the lesser integer conversion rank is converted to the type
of the operand with the higher conversion rank.

Note that this rule has nothing to do with short integers or characters because
they have already been converted to integers by integer promotions. This rule is
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more applicable to arithmetic involving types of larger sizes, such as long long int or
long int. Here’s a brief example:

int jim =5;

long int bob = 6;

long long int fred;

fred = (jim + bob)

Integer promotions don’t change any types because they are of equal or higher
width than the int type. So this rule mandates that the int jim be converted into a
long int before the addition occurs. The resulting type, a long int, is converted into a
long long int by the assignment to fred.

In the next section, you consider operands of different types, in which one is
signed and the other is unsigned, which gets interesting from a security perspective. 

Rule 5: Unsigned Type Wider Than or Same Width as Signed Type
The first rule for this situation is that if the unsigned operand is of greater integer
conversion rank than the signed operand, or their ranks are equal, you convert the
signed operand to the type of the unsigned operand. This behavior can be surpris-
ing, as it leads to situations like this:

int jim = -5;

if (jim < sizeof (int))

do_something();

The comparison operator < causes the usual arithmetic conversions to be
applied to both operands. Integer promotions are applied to jim and to
sizeof(int), but they don’t affect them. Then you continue into the usual arith-
metic conversions and attempt to figure out which type should be the common type
for the comparison. In this case, jim is a signed integer, and sizeof (int) is a
size_t, which is an unsigned integer type. Because size_t has a greater integer
conversion rank, the unsigned type takes precedence by this rule. Therefore, jim is 
converted to an unsigned integer type, the comparison fails, and do_something()
isn’t called. On a 32-bit system, the actual comparison is as follows:

if (4294967291 < 4)

do_something();

Rule 6: Signed Type Wider Than Unsigned Type, Value Preservation Possible
If the signed operand is of greater integer conversion rank than the unsigned
operand, and a value-preserving conversion can be made from the unsigned integer
type to the signed integer type, you choose to transform everything to the signed
integer type, as in this example:
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long long int a=10;

unsigned int b= 5;

(a+b);

The signed argument, a long long int, can represent all the values of the
unsigned argument, an unsigned int, so the compiler would convert both operands
to the signed operand’s type: long long int. 

Rule 7: Signed Type Wider Than Unsigned Type, Value Preservation Impossible
There’s one more rule: If the signed integer type has a greater integer conversion
rank than the unsigned integer type, but all values of the unsigned integer type can’t
be held in the signed integer type, you have to do something a little strange. You take
the type of the signed integer type, convert it to its corresponding unsigned integer
type, and then convert both operands to use that type. Here’s an example:

unsigned int a = 10;

long int b=20;

(a+b);

For the purpose of this example, assume that on this machine, the long int size
has the same width as the int size. The addition operator causes the usual arithmetic
conversions to be applied. Integer promotions are applied, but they don’t change the
types. The signed type (long int) is of higher rank than the unsigned type (unsigned
int). The signed type (long int) can’t hold all the values of the unsigned type
(unsigned int), so you’re left with the last rule. You take the type of the signed
operand, which is a long int, convert it into its corresponding unsigned equivalent,
unsigned long int, and then convert both operands to unsigned long int. The addi-
tion expression, therefore, has a resulting type of unsigned long int and a value of 30.

Summary of Arithmetic Conversions
The following is a summary of the usual arithmetic conversions. Table 6-6 demon-
strates some sample applications of the usual arithmetic conversions.

■ If either operand is a floating point number, convert all operands to the float-
ing point type of the highest precision operand. You’re finished.

■ Perform integer promotions on both operands. If the two operands are now of
the same type, you’re finished.

■ If the two operands share the same signed-ness, convert the operand with the
lower integer conversion rank to the type of the operand of the higher integer
conversion rank. You’re finished.
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■ If the unsigned operand is of higher or equal integer conversion rank than the
signed operand, convert the signed operand to the type of the unsigned
operand. You’re finished.

■ If the signed operand is of higher integer conversion rank than the unsigned
operand, and you can perform a value-preserving conversion, convert the
unsigned operand to the signed operand’s type. You’re finished.

■ If the signed operand is of higher integer conversion rank than the unsigned
operand, but you can’t perform a value-preserving conversion, convert both
operands to the unsigned type that corresponds to the type of the signed operand.

Table 6-6

Usual Arithmetic Conversion Examples

Left Operand Type Right Operand Type Result Common Type

int float 1. Left operand converted to float
float

double char 1. Right operand converted to double
double

unsigned int int 1. Right operand converted to unsigned int
unsigned int

unsigned short int 1. Left operand converted to int int

unsigned char unsigned short 1. Left operand converted to int int
2. Right operand converted

to int

unsigned int: 32 short 1. Left operand converted to unsigned int 
unsigned int

2. Right operand converted to int

3. Right operand converted to
unsigned int

unsigned int long int 1. Left operand converted to unsigned long int
unsigned long int

2. Right operand converted to
unsigned long int

unsigned int long long int 1. Left operand converted to long long int
long long int

unsigned int unsigned long long int 1. Left operand converted to unsigned long
unsigned long long int long int

Usual Arithmetic Conversion Applications
Now that you have a grasp of the usual arithmetic conversions, you can look at
where these conversions are used.
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Addition
Addition can occur between two arithmetic types as well as between a pointer type
and an arithmetic type. Pointer arithmetic is explained in “Pointer Arithmetic,” but
for now, you just need to note that when both arguments are an arithmetic type, the
compiler applies the usual arithmetic conversions to them.

Subtraction
There are three types of subtraction: subtraction between two arithmetic types, 
subtraction between a pointer and an arithmetic type, and subtraction between two
pointer types. In subtraction between two arithmetic types, C applies the usual
arithmetic conversions to both operands.

Multiplicative Operators
The operands to * and / must be an arithmetic type, and the arguments to % must be
an integer type. The usual arithmetic conversions are applied to both operands of
these operators.

Relational and Equality Operators
When two arithmetic operands are compared, the usual arithmetic conversions are
applied to both operands. The resulting type is an int, and its value is 1 or 0,
depending on the result of the test.

Binary Bitwise Operators
The binary bitwise operators &, ^, and | require integer operands. The usual arith-
metic conversions are applied to both operands.

Question Mark Operator
From a type conversion perspective, the conditional operator is one of C’s more
interesting operators. Here’s a short example of how it’s commonly used:

int a=1;

unsigned int b=2;

int choice=-1;

...

result = choice ? a : b ;

In this example, the first operand, choice, is evaluated as a scalar. If it’s set, the
result of the expression is the evaluation of the second operand, which is a. If it’s
not set, the result is the evaluation of the third operand, b.

The compiler has to know at compile time the result type of the conditional
expression, which could be tricky in this situation. What C does is determine which
type would be the result of running the usual arithmetic conversions against the
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second and third arguments, and it makes that type the resulting type of the expres-
sion. So in the previous example, the expression results in an unsigned int, regard-
less of the value of choice.

Type Conversion Summary
Table 6-7 shows the details of some common type conversions.

Table 6-7

Default Type Promotion Summary

Operation Operand Types Conversions Resulting Type

Typecast Expression is converted Type
(type)expression to type using simple

conversions

Assignment = Right operand converted Type of left operand
to left operand type using
simple conversions

Function call with Arguments converted Return type of function
prototype using simple conversions

according to prototype

Function call without Arguments promoted int
prototype via default argument

promotions, which are
essentially integer
promotions

Return 
Unary +, - Operand must be Operand undergoes Promoted type of
+a arithmetic type integer promotions operand
-a
~a

Unary ~ Operand must be Operand undergoes Promoted type of
~a integer type integer promotions operand

Bitwise << and >> Operands must be Operands undergo Promoted type of
integer type integer promotions left operand

switch statement Expression must Expression undergoes
have integer type integer promotion; 

cases are converted
to that type

Binary +, - Operands must be Operands undergo Common type from
arithmetic type usual arithmetic usual arithmetic
*Pointer arithmetic conversions conversions
covered in “Pointer
Arithmetic”
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Binary * and / Operands must be Operands undergo Common type from
arithmetic type usual arithmetic usual arithmetic

conversions conversions

Binary % Operands must be Operands undergo Common type from
integer type usual arithmetic usual arithmetic

conversions conversions

Binary subscript [] Interpreted as 
a[b] *((a)+(b))

Unary ! Operand must be int, value 0 or 1
arithmetic type
or pointer

sizeof size_t (unsigned 
integer type)

Binary < > <= => == Operands must be Operands undergo int, value 0 or 1
!= arithmetic type usual arithmetic

*Pointer arithmetic conversions
covered in “Pointer
Arithmetic”

Binary & ^ | Operands must Operands undergo Common type from
be integer type usual arithmetic usual arithmetic 

conversions conversions

Binary && || Operands must be int, value 0 or 1
arithmetic type or
pointer

Conditional ? 2nd and 3rd Second and third Common type 
operands must be operands undergo from usual arithmetic 
arithmetic type usual arithmetic conversions
or pointer conversions

, Type of right operand

Auditing Tip: Type Conversions
Even those who have studied conversions extensively might still be
surprised at the way a compiler renders certain expressions into
assembly. When you see code that strikes you as suspicious or poten-
tially ambiguous, never hesitate to write a simple test program or
study the generated assembly to verify your intuition. 

If you do generate assembly to verify or explore the conversions dis-
cussed in this chapter, be aware that C compilers can optimize out
certain conversions or use architectural tricks that might make the
assembly appear incorrect or inconsistent. At a conceptual level,
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compilers are behaving as the C standard describes, and they 
ultimately generate code that follows the rules. However, the
assembly might look inconsistent because of optimizations or even
incorrect, as it might manipulate portions of registers that should
be unused.

Type Conversion Vulnerabilities
Now that you have a solid grasp of C’s type conversions, you can explore some of
the exceptional circumstances they can create. Implicit type conversions can catch
programmers off-guard in several situations. This section focuses on simple conver-
sions between signed and unsigned types, sign extension, truncation, and the usual
arithmetic conversions, focusing on comparisons.

Signed/Unsigned Conversions
Most security issues related to type conversions are the result of simple conversions
between signed and unsigned integers. This discussion is limited to conversions
that occur as a result of assignment, function calls, or typecasts. 

For a quick recap of the simple conversion rules, when a signed variable is con-
verted to an unsigned variable of the same size, the bit pattern is left alone, and the
value changes correspondingly. The same thing occurs when an unsigned variable
is converted to a signed variable. Technically, the unsigned-to-signed conversion is
implementation defined, but in twos complement implementations, usually the bit
pattern is left alone.

The most important situation in which this conversion becomes relevant is dur-
ing function calls, as shown in this example:

int copy(char *dst, char *src, unsigned int len)

{

while (len--)

*dst++ = *src++;

}

The third argument is an unsigned int that represents the length of the memory
section to copy. If you call this function and pass a signed int as the third argument,
it’s converted to an unsigned integer. For example, say you do this:

int f = -1;

copy(mydst, mysrc, f);
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The copy() function sees an extremely large positive len and most likely copies
until it causes a segmentation fault. Most libc routines that take a size parameter have
an argument of type size_t, which is an unsigned integer type that’s the same width
as pointer. This is why you must be careful never to let a negative length field make its
way to a libc routine, such as snprintf(), strncpy(), memcpy(), read(), or strncat().

This situation occurs fairly often, particularly when signed integers are used for
length values and the programmer doesn’t consider the potential for a value less
than 0. In this case, all values less than 0 have their value changed to a high positive
number when they are converted to an unsigned type. Malicious users can often
specify negative integers through various program interfaces and undermine an
application’s logic. This type of bug happens commonly when a maximum length
check is performed on a user-supplied integer, but no check is made to see whether
the integer is negative, as in Listing 6-7.

Listing 6-7
Signed Comparison Vulnerability Example
int read_user_data(int sockfd)
{

int length, sockfd, n;
char buffer[1024];

length = get_user_length(sockfd);

if(length > 1024){
error(“illegal input, not enough room in buffer\n”);
return –1;

}

if(read(sockfd, buffer, length) < 0){
error(“read: %m”);
return –1;

}

return 0;
}

In Listing 6-7, assume that the get_user_length() function reads a 32-bit integer
from the network. If the length the user supplies is negative, the length check can be
evaded, and the application can be compromised. A negative length is converted to a
size_t type for the call to read(), which as you know, turns into a large unsigned
value. A code reviewer should always consider the implications of negative values in
signed types and see whether unexpected results can be produced that could lead to
security exposures. In this case, a buffer overflow can be triggered because of the
erroneous length check; consequently, the oversight is quite serious.
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Auditing Tip: Signed/Unsigned Conversions
You want to look for situations in which a function takes a size_t or
unsigned int length parameter, and the programmer passes in a
signed integer that can be influenced by users. Good functions to look
for include read(), recvfrom(), memcpy(), memset(), bcopy(),
snprintf(), strncat(), strncpy(), and malloc(). If users can coerce
the program into passing in a negative value, the function interprets it
as a large value, which could lead to an exploitable condition.

Also, look for places where length parameters are read from the net-
work directly or are specified by users via some input mechanism. If
the length is interpreted as a signed variable in parts of the code, you
should evaluate the impact of a user supplying a negative value.

As you review functions in an application, it’s a good idea to note
the data types of each function’s arguments in your function audit
log. This way, every time you audit a subsequent call to that func-
tion, you can simply compare the types and examine the type con-
version tables in this chapter’s “Type Conversions” section to
predict exactly what’s going to happen and the implications of that
conversion. You learn more about analyzing functions and keeping
logs of function prototypes and behavior in Chapter 7, “Program
Building Blocks.” 

Sign Extension
Sign extension occurs when a smaller signed integer type is converted to a larger
type, and the machine propagates the sign bit of the smaller type through the
unused bits of the larger type. The intent of sign extension is that the conversion is
value-preserving when going from a smaller signed type to a larger signed type.

As you know, sign extension can occur in several ways. First, if a simple conver-
sion is made from a small signed type to a larger type, with a typecast, assignment,
or function call, sign extension occurs. You also know that sign extension occurs if a
signed type smaller than an integer is promoted via the integer promotions. Sign
extension could also occur as a result of the usual arithmetic conversions applied
after integer promotions because a signed integer type could be promoted to a
larger type, such as long long.

Sign extension is a natural part of the language, and it’s necessary for value-
preserving promotions of integers. So why is it mentioned as a security issue? There
are two reasons:
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■ In certain cases, sign extension is a value-changing conversion that has an
unexpected result.

■ Programmers consistently forget that the char and short types they use are
signed!

To examine the first reason, if you recall from the conversion section, one of the
more interesting findings was that sign extension is performed if a smaller signed type
is converted into a larger unsigned type. Say a programmer does something like this:

char len;

len=get_len_field();

snprintf(dst, len, “%s”, src);

This code has disaster written all over it. If the result of get_len_field() is
such that len has a value less than 0, that negative value is passed as the length
argument to snprintf(). Say the programmer tries to fix this error and does the 
following:

char len;

len=get_len_field();

snprintf(dst, (unsigned int)len, “%s”, src);

This solution sort of makes sense. An unsigned integer can’t be negative, right?
Unfortunately, sign extension occurs during the conversion from char to unsigned
int, so the attempt to get rid of characters less than 0 backfired. If len happens to be
below 0, (unsigned int)len ends up with a large value.

This example might seem somewhat arbitrary, but it’s similar to an actual bug
the authors recently discovered in a client’s code. The moral of the story is that you
should always remember sign extension is applied when converting from a smaller
signed type to a larger unsigned type.

Now for the second reason—programmers consistently forget that the char and
short types they use are signed. This statement rings quite true, especially in net-
work code that deals with signed integer lengths or code that processes binary or
text data one character at a time. Take a look at a real-world vulnerability in the
DNS packet-parsing code of l0pht’s antisniff tool (http://packetstormsecurity.org/
sniffers/antisniff/). It’s an excellent bug for demonstrating some vulnerabilities
that have been discussed. A buffer overflow was first discovered in the software
involving the improper use of strncat(), and after that vulnerability was patched,
researchers from TESO discovered that it was still vulnerable because of a sign-
extension issue. The fix for the sign-extension issue wasn’t correct, and yet another
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vulnerability was published. The following examples take you through the timeline
of this vulnerability.

Listing 6-8 contains the slightly edited vulnerable code from version 1 of the
antisniff research release, in the raw_watchdns.c file in the watch_dns_ptr()
function.

Listing 6-8
Antisniff v1.0 Vulnerability
char *indx;
int count;
char nameStr[MAX_LEN]; //256

...
memset(nameStr, ‘\0’, sizeof(nameStr));

...
indx = (char *)(pkt + rr_offset);
count = (char)*indx;

while (count){
(char *)indx++;
strncat(nameStr, (char *)indx, count);
indx += count;
count = (char)*indx;
strncat(nameStr, “.”,

sizeof(nameStr) – strlen(nameStr));
}
nameStr[strlen(nameStr)-1] = ‘\0’;

Before you can understand this code, you need a bit of background. The pur-
pose of the watch_dns_ptr() function is to extract the domain name from the
packet and copy it into the nameStr string. The DNS domain names in DNS packets
sort of resemble Pascal strings. Each label in the domain name is prefixed by a byte
containing its length. The domain name ends when you reach a label of size 0. (The
DNS compression scheme isn’t relevant to this vulnerability.) Figure 6-8 shows
what a DNS domain name looks like in a packet. There are three labels—test, jim,
and com—and a 0-length label specifying the end of the name.
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The code starts by reading the first length byte from the packet and storing it in
the integer count. This length byte is a signed character stored in an integer, so you
should be able to put any value you like between -128 and 127 in count. Keep this in
mind for later.

The while() loop keeps reading in labels and calling strncat() on them to the
nameStr string. The first vulnerability that was published is no length check in this
loop. If you just provide a long enough domain name in the packet, it could write
past the bounds of nameStr[]. Listing 6-9 shows how this issue was fixed in version
1.1 of the research version.

Listing 6-9
Antisniff v1.1 Vulnerability
char *indx;
int count;
char nameStr[MAX_LEN]; //256

...
memset(nameStr, ‘\0’, sizeof(nameStr));

...
indx = (char *)(pkt + rr_offset);
count = (char)*indx;

while (count){
if (strlen(nameStr) + count < ( MAX_LEN - 1) ){
(char *)indx++;
strncat(nameStr, (char *)indx, count);
indx += count;
count = (char)*indx;
strncat(nameStr, “.”,

sizeof(nameStr) – strlen(nameStr));
} else {
fprintf(stderr, “Alert! Someone is attempting “

“to send LONG DNS packets\n”);
count = 0;

}

}
nameStr[strlen(nameStr)-1] = ‘\0’;

The code is basically the same, but length checks have been added to try to pre-
vent the buffer from being overflowed. At the top of the loop, the program checks to
make sure there’s enough space in the buffer for count bytes before it does the
string concatenation. Now examine this code with sign-extension vulnerabilities in
mind. You know that count can be any value between -128 and 127, so what hap-
pens if you give a negative value for count? Look at the length check:

if (strlen(nameStr) + count < ( MAX_LEN - 1) ){
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You know that strlen(nameStr) is going to return a size_t, which is effectively
an unsigned int on a 32-bit system, and you know that count is an integer below 0.
Say you’ve been through the loop once, and strlen(nameStr) is 5, and count is -1.
For the addition, count is converted to an unsigned integer, and you have 
(5 + 4,294,967,295). This addition can easily cause a numeric overflow so that you
end up with a small value, such as 4; 4 is less than (MAX_LEN - 1), which is 256. So
far, so good. Next, you see that count (which you set to -1), is passed in as the length
argument to strncat(). The strncat() function takes a size_t, so it interprets that
as 4,294,967,295. Therefore, you win again because you can essentially append as
much information as you want to the nameStr string.

Listing 6-10 shows how this vulnerability was fixed in version 1.1.1 of the
research release.

Listing 6-10
Antisniff v1.1.1 Vulnerability
char *indx;
int count;
char nameStr[MAX_LEN]; //256

…
memset(nameStr, ‘\0’, sizeof(nameStr));

…
indx = (char *)(pkt + rr_offset);
count = (char)*indx;

while (count){
/* typecast the strlen so we aren’t dependent on

the call to be properly setting to unsigned. */
if ((unsigned int)strlen(nameStr) +

(unsigned int)count < ( MAX_LEN - 1) ){
(char *)indx++;
strncat(nameStr, (char *)indx, count);
indx += count;
count = (char)*indx;
strncat(nameStr, “.”,

sizeof(nameStr) – strlen(nameStr));
} else {
fprintf(stderr, “Alert! Someone is attempting “

“to send LONG DNS packets\n”);
count = 0;

}

}
nameStr[strlen(nameStr)-1] = ‘\0’;

This solution is basically the same code, except some typecasts have been added
to the length check. Take a closer look:
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if ((unsigned int)strlen(nameStr) +

(unsigned int)count < ( MAX_LEN - 1) ){

The result of strlen() is typecast to an unsigned int, which is superfluous because
it’s already a size_t. Then count is typecast to an unsigned int. This is also superflu-
ous, as it’s normally converted to an unsigned integer type by the addition operator. 
In essence, nothing has changed. You can still send a negative label length and bypass
the length check! Listing 6-11 shows how this problem was fixed in version 1.1.2.

Listing 6-11
Antisniff v1.1.2 Vulnerability
unsigned char *indx;
unsigned int count;
unsigned char nameStr[MAX_LEN]; //256

...
memset(nameStr, ‘\0’, sizeof(nameStr));

...
indx = (char *)(pkt + rr_offset);
count = (char)*indx;

while (count){
if (strlen(nameStr) + count < ( MAX_LEN - 1) ){
indx++;
strncat(nameStr, indx, count);
indx += count;
count = *indx;
strncat(nameStr, “.”,

sizeof(nameStr) – strlen(nameStr));
} else {
fprintf(stderr, “Alert! Someone is attempting “

“to send LONG DNS packets\n”);
count = 0;

}

}
nameStr[strlen(nameStr)-1] = ‘\0’;

The developers have changed count, nameStr, and indx to be unsigned and
changed back to the previous version’s length check. So the sign extension you
were taking advantage of now appears to be gone because the character pointer,
indx, is now an unsigned type. However, take a closer look at this line:

count = (char)*indx;

This code line dereferences indx, which is an unsigned char pointer. This gives
you an unsigned character, which is then explicitly converted into a signed char.
You know the bit pattern won’t change, so you’re back to something with a range of
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-128 to 127. It’s assigned to an unsigned int, but you know that converting from a
smaller signed type to a larger unsigned type causes sign extension. So, because of
the typecast to (char), you still can get a maliciously large count into the loop, but
only for the first label. Now look at that length check with this in mind:

if (strlen(nameStr) + count < ( MAX_LEN - 1) ){

Unfortunately, strlen(nameStr) is 0 when you enter the loop for the first time.
So the rather large value of count won’t be less than (MAX_LEN - 1), and you get
caught and kicked out of the loop. Close, but no cigar. Amusingly, if you do get
kicked out on your first trip into the loop, the program does the following:

nameStr[strlen(nameStr)-1] = ‘\0’;

Because strlen(nameStr) is 0, that means it writes a 0 at 1 byte behind the
buffer, at nameStr[-1]. Now that you’ve seen the evolution of the fix from the van-
tage point of 20-20 hindsight, take a look at Listing 6-12, which is an example based
on a short integer data type.

Listing 6-12
Sign Extension Vulnerability Example
unsigned short read_length(int sockfd)
{

unsigned short len;

if(full_read(sockfd, (void *)&len, 2) != 2)
die(“could not read length!\n”);

return ntohs(len);
}

int read_packet(int sockfd)
{

struct header hdr;
short length;
char *buffer;

length = read_length(sockfd);

if(length > 1024){
error(“read_packet: length too large: %d\n”, length);
return –1;

}

buffer = (char *)malloc(length+1);
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if((n = read(sockfd, buffer, length) < 0){
error(“read: %m”);
free(buffer);
return –1;

}

buffer[n] = ‘\0’;

return 0;
}

Several concepts you’ve explored in this chapter are in effect here. First, the
result of the read_length() function, an unsigned short int, is converted into a
signed short int and stored in length. In the following length check, both sides of
the comparison are promoted to integers. If length is a negative number, it passes
the check that tests whether it’s greater than 1024. The next line adds 1 to length
and passes it as the first argument to malloc(). The length parameter is again sign-
extended because it’s promoted to an integer for the addition. Therefore, if the spec-
ified length is 0xFFFF, it’s sign-extended to 0xFFFFFFFF. The addition of this value
plus 1 wraps around to 0, and malloc(0) potentially returns a small chunk of mem-
ory. Finally, the call to read() causes the third argument, the length parameter, to
be converted directly from a signed short int to a size_t. Sign extension occurs
because it’s a case of a smaller signed type being converted to a larger unsigned
type. Therefore, the call to read allows you to read a large number of bytes into the
buffer, resulting in a potential buffer overflow.

Another quintessential example of a place where programmers forget whether
small types are signed occurs with use of the ctype libc functions. Consider the
toupper() function, which has the following prototype:

int toupper(int c);

The toupper() function works on most libc implementations by searching for
the correct answer in a lookup table. Several libcs don’t handle a negative argument
correctly and index behind the table in memory. The following definition of 
toupper() isn’t uncommon:

int toupper(int c)

{

return _toupper_tab[c];

}

Say you do something like this:

void upperize(char *str)
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{

while (*str)

{

*str = toupper(*str);

str++;

}

}

If you have a libc implementation that doesn’t have a robust toupper() func-
tion, you could end up making some strange changes to your string. If one of the
characters is -1, it gets converted to an integer with the value -1, and the toupper()
function indexes behind its table in memory.

Take a look at a final real-world example of programmers not considering sign
extension. Listing 6-13 is a Sendmail vulnerability that security researcher Michael
Zalewski discovered (www.cert.org/advisories/CA-2003-12.html). It’s from Send-
mail version 8.12.3 in the prescan() function, which is primarily responsible for
parsing e-mail addresses into tokens (from sendmail/parseaddr.c). The code has
been edited for brevity.

Listing 6-13
Prescan Sign Extension Vulnerability in Sendmail
register char *p;
register char *q;
register int c;
...
p = addr;

for (;;)
{

/* store away any old lookahead character */
if (c != NOCHAR && !bslashmode)
{

/* see if there is room */
if (q >= &pvpbuf[pvpbsize - 5])
{

usrerr(“553 5.1.1 Address too long”);
if (strlen(addr) > MAXNAME)

addr[MAXNAME] = ‘\0’;
returnnull:

if (delimptr != NULL)
*delimptr = p;

CurEnv->e_to = saveto;
return NULL;

}
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/* squirrel it away */
*q++ = c;

}

/* read a new input character */
c = *p++;

..

/* chew up special characters */
*q = ‘\0’;
if (bslashmode)
{

bslashmode = false;

/* kludge \! for naive users */
if (cmntcnt > 0)
{

c = NOCHAR;
continue;

}
else if (c != ‘!’ || state == QST)
{

*q++ = ‘\\’;
continue;

}
}

if (c == ‘\\’)
bslashmode = true;

}

The NOCHAR constant is defined as -1 and is meant to signify certain error con-
ditions when characters are being processed. The p variable is processing a user-
supplied address and exits the loop shown when a complete token has been
read. There’s a length check in the loop; however, it’s examined only when two
conditions are true: when c is not NOCHAR (that is, c != -1) and bslashmode is
false. The problem is this line:

c = *p++;

Because of the sign extension of the character that p points to, users can specify the
char 0xFF and have it extended to 0xFFFFFFFF, which is NOCHAR. If users supply a
repeating pattern of 0x2F (backslash character) followed by 0xFF, the loop can run con-
tinuously without ever performing the length check at the top. This causes backslashes
to be written continually into the destination buffer without checking whether enough
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room is left. Therefore, because of the character being sign-extended when stored in
the variable c, an unexpected code path is triggered that results in a buffer overflow.

This vulnerability also reinforces another principle stated at the beginning of
this chapter. Implicit actions performed by the compiler are subtle, and when
reviewing source code, you need to examine the implications of type conversions
and anticipate how the program will deal with unexpected values (in this case, the
NOCHAR value, which users can specify because of the sign extension). 

Sign extension seems as though it should be ubiquitous and mostly harmless in C
code. However, programmers rarely intend for their smaller data types to be sign-
extended when they are converted, and the presence of sign extension often indicates
a bug. Sign extension is somewhat difficult to locate in C, but it shows up well in
assembly code as the movsx instruction. Try to practice searching through assembly
for sign-extension conversions and then relating them back to the source code, which
is a useful technique. 

As a brief demonstration, compare Listings 6-14 and 6-15.

Listing 6-14
Sign-Extension Example
unsigned int l;
char c=5;
l=c;

Listing 6-15
Zero-Extension Example
unsigned int l;
unsigned char c=5;
l=c;

Assuming the implementation calls for signed characters, you know that sign
extension will occur in Listing 6-14 but not in Listing 6-15. Compare the generated
assembly code, reproduced in Table 6-8.

Table 6-8

Sign Extension Versus Zero Extension in Assembly Code

Listing 6-14: Sign Extension Listing 6-15: Zero Extension

mov [ebp+var_5], 5 mov [ebp+var_5], 5

movsx eax, [ebp+var_5] xor eax, eax

mov al, [ebp+var_5]

mov [ebp+var_4], eax mov [ebp+var_4], eax
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You can see that in the sign-extension example, the movsx instruction is used. In
the zero-extension example, the compiler first clears the register with xor eax, eax
and then moves the character byte into that register.

Auditing Tip: Sign Extension
When looking for vulnerabilities related to sign extensions, you
should focus on code that handles signed character values or point-
ers or signed short integer values or pointers. Typically, you can find
them in string-handling code and network code that decodes pack-
ets with length elements. In general, you want to look for code that
takes a character or short integer and uses it in a context that causes
it to be converted to an integer. Remember that if you see a signed
character or signed short converted to an unsigned integer, sign
extension still occurs.

As mentioned previously, one effective way to find sign-extension vul-
nerabilities is to search the assembly code of the application binary
for the movsx instruction. This technique can often help you cut
through multiple layers of typedefs, macros, and type conversions
when searching for potentially vulnerable locations in code.

Truncation
Truncation occurs when a larger type is converted into a smaller type. Note that the
usual arithmetic conversions and the integral promotions never really call for a
large type to be converted to a smaller type. Therefore, truncation can occur only as
the result of an assignment, a typecast, or a function call involving a prototype.
Here’s a simple example of truncation:

int g = 0x12345678;

short int h;

h = g;

When g is assigned to h, the top 16 bits of the value are truncated, and h has a
value of 0x5678. So if this data loss occurs in a situation the programmer didn’t
expect, it could certainly lead to security failures. Listing 6-16 is loosely based 
on a historic vulnerability in Network File System (NFS) that involves integer
truncation.
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Listing 6-16
Truncation Vulnerability Example in NFS
void assume_privs(unsigned short uid)
{

seteuid(uid);
setuid(uid);

}

int become_user(int uid)
{

if (uid == 0)
die(“root isnt allowed”);

assume_privs(uid);
}

To be fair, this vulnerability is mostly known of anecdotally, and its existence
hasn’t been verified through source code. NFS forbids users from mounting a disk
remotely with root privileges. Eventually, attackers figured out that they could spec-
ify a UID of 65536, which would pass the security checks that prevent root access.
However, this UID would get assigned to an unsigned short integer and be trun-
cated to a value of 0. Therefore, attackers could assume root’s identity of UID 0 and
bypass the protection.

Take a look at one more synthetic vulnerability in Listing 6-17 before looking at
a real-world truncation issue.

Listing 6-17
Truncation Vulnerabilty Example
unsigned short int f;
char mybuf[1024];
char *userstr=getuserstr();

f=strlen(userstr);
if (f > sizeof(mybuf)-5)
die(“string too long!”);

strcpy(mybuf, userstr);

The result of the strlen() function, a size_t, is converted to an unsigned short.
If a string is 66,000 characters long, truncation would occur and f would have the
value 464. Therefore, the length check protecting strcpy() would be circumvented,
and a buffer overflow would occur.

A show-stopping bug in most SSH daemons was caused by integer truncation.
Ironically, the vulnerable code was in a function designed to address another secu-
rity hole, the SSH insertion attack identified by CORE-SDI. Details on that attack
are available at www1.corest.com/files/files/11/CRC32.pdf.
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The essence of the attack is that attackers can use a clever known plain-text
attack against the block cipher to insert small amounts of data of their choosing
into the SSH stream. Normally, this attack would be prevented by message integrity
checks, but SSH used CRC32, and the researchers at CORE-SDI figured out how to
circumvent it in the context of the SSH protocol.

The responsibility of the function containing the truncation vulnerability is to
determine whether an insertion attack is occurring. One property of these insertion
attacks is a long sequence of similar bytes at the end of the packet, with the pur-
pose of manipulating the CRC32 value so that it’s correct. The defense that was
engineered was to search for repeated blocks in the packet, and then do the CRC32
calculation up to the point of repeat to determine whether any manipulation was
occurring. This method was easy for small packets, but it could have a performance
impact on large sets of data. So, presumably to address the performance impact, a
hashing scheme was used.

The function you’re about to look at has two separate code paths. If the packet
is below a certain size, it performs a direct analysis of the data. If it’s above that
size, it uses a hash table to make the analysis more efficient. It isn’t necessary to
understand the function to appreciate the vulnerability. If you’re curious, however,
you’ll see that the simpler case for the smaller packets has roughly the algorithm
described in Listing 6-18.

Listing 6-18
Detect_attack Small Packet Algorithm in SSH
for c = each 8 byte block of the packet

if c is equal to the initialization vector block
check c for the attack.
If the check succeeds, return DETECTED.
If the check fails, you aren’t under attack so return OK.

for d = each 8 byte block of the packet before c
If d is equal to c, check c for the attack.

If the check succeeds, return DETECTED.
If the check fails, break out of the d loop.

next d
next c

The code goes through each 8-byte block of the packet, and if it sees an identical
block in the packet before the current one, it does a check to see whether an attack
is underway.

The hash-table-based path through the code is a little more complex. It has the
same general algorithm, but instead of comparing a bunch of 8-byte blocks with
each other, it takes a 32 bit hash of each block and compares them. The hash table
is indexed by the 32-bit hash of the 8-byte block, modulo the hash table size, and
the bucket contains the position of the block that last hashed to that bucket. 
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The truncation problem happened in the construction and management of the hash
table. Listing 6-19 contains the beginning of the code.

Listing 6-19
Detect_attack Truncation Vulnerability in SSH
/* Detect a crc32 compensation attack on a packet */
int
detect_attack(unsigned char *buf, u_int32_t len,

unsigned char *IV)
{

static u_int16_t *h = (u_int16_t *) NULL;
static u_int16_t n = HASH_MINSIZE / HASH_ENTRYSIZE;
register u_int32_t i, j;
u_int32_t l;
register unsigned char *c;
unsigned char *d;

if (len > (SSH_MAXBLOCKS * SSH_BLOCKSIZE) ||
len % SSH_BLOCKSIZE != 0) {
fatal(“detect_attack: bad length %d”, len);

}

First, the code checks whether the packet is overly long or isn’t a multiple of 8
bytes. SSH_MAXBLOCKS is 32,768 and BLOCKSIZE is 8, so the packet can be as large as
262,144 bytes. In the following code, n starts out as HASH_MINSIZE / HASH_ENTRYSIZE,
which is 8,192 / 2, or 4,096, and its purpose is to hold the number of entries in the
hash table:

for (l = n; l < HASH_FACTOR(len / SSH_BLOCKSIZE); l = l << 2)

;

The starting size of the hash table is 8,192 elements. This loop attempts to deter-
mine a good size for the hash table. It starts off with a guess of n, which is the cur-
rent size, and it checks to see whether it’s big enough for the packet. If it’s not, it
quadruples l by shifting it left twice. It decides whether the hash table is big
enough by making sure there are 3/2 the number of hash table entries as there are
8-byte blocks in the packet. HASH_FACTOR is defined as ((x)*3/2). The following
code is the interesting part:

if (h == NULL) {

debug(“Installing crc compensation “

“attack detector.”);

n = l;

h = (u_int16_t *) xmalloc(n * HASH_ENTRYSIZE);

} else {

Chapter 6—C Language Issues

262



if (l > n) {

n = l;

h = (u_int16_t *)xrealloc(h, n * HASH_ENTRYSIZE);

}

}

If h is NULL, that means it’s your first time through this function and you need to
allocate space for a new hash table. If you remember, l is the value calculated as the
right size for the hash table, and n contains the number of entries in the hash table.
If h isn’t NULL, the hash table has already been allocated. However, if the hash table
isn’t currently big enough to agree with the newly calculated l, you go ahead and
reallocate it.

You’ve looked at enough code so far to see the problem: n is an unsigned short
int. If you send a packet that’s big enough, l, an unsigned int, could end up with a
value larger than 65,535, and when the assignment of l to n occurs, truncation
could result. For example, assume you send a packet that’s 262,144 bytes. It passes
the first check, and then in the loop, l changes like so:

Iteration 1: l = 4096 l < 49152 l<<=4

Iteration 2: l = 16384 l < 49152 l<<=4

Iteration 3: l = 65536 l >= 49152

When l, with a value of 65,536, is assigned to n, the top 16 bits are truncated,
and n ends up with a value of 0. On several modern OSs, a malloc() of 0 results in a
valid pointer to a small object being returned, and the rest of the function’s behav-
ior is extremely suspect.

The next part of the function is the code that does the direct analysis, and
because it doesn’t use the hash table, it isn’t of immediate interest:

if (len <= HASH_MINBLOCKS) {

for (c = buf; c < buf + len; c += SSH_BLOCKSIZE) {

if (IV && (!CMP(c, IV))) {

if ((check_crc(c, buf, len, IV)))

return (DEATTACK_DETECTED);

else

break;

}

for (d = buf; d < c; d += SSH_BLOCKSIZE) {

if (!CMP(c, d)) {

if ((check_crc(c, buf, len, IV)))
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return (DEATTACK_DETECTED);

else

break;

}

}

}

return (DEATTACK_OK);

}

Next is the code that performs the hash-based detection routine. In the follow-
ing code, keep in mind that n is going to be 0 and h is going to point to a small but
valid object in the heap. With these values, it’s possible to do some interesting
things to the process’s memory:

memset(h, HASH_UNUSEDCHAR, n * HASH_ENTRYSIZE);

if (IV)

h[HASH(IV) & (n - 1)] = HASH_IV;

for (c = buf, j = 0; c < (buf + len); c += SSH_BLOCKSIZE, j++) {

for (i = HASH(c) & (n - 1); h[i] != HASH_UNUSED;

i = (i + 1) & (n - 1)) {

if (h[i] == HASH_IV) {

if (!CMP(c, IV)) {

if (check_crc(c, buf, len, IV))

return (DEATTACK_DETECTED);

else

break;

}

} else if (!CMP(c, buf + h[i] * SSH_BLOCKSIZE)) {

if (check_crc(c, buf, len, IV))

return (DEATTACK_DETECTED);

else

break;

}

}

h[i] = j;

}
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return (DEATTACK_OK);

}

If you don’t see an immediate way to attack this loop, don’t worry. (You are in good
company, and also some critical macro definitions are missing.) This bug is extremely
subtle, and the exploits for it are complex and clever. In fact, this vulnerability is
unique from many perspectives. It reinforces the notion that secure programming is
difficult, and everyone can make mistakes, as CORE-SDI is easily one of the world’s
most technically competent security companies. It also demonstrates that sometimes a
simple black box test can uncover bugs that would be hard to find with a source audit;
the discoverer, Michael Zalewski, located this vulnerability in a stunningly straightfor-
ward fashion (ssh -l long_user_name). Finally, it highlights a notable case in which
writing an exploit can be more difficult than finding its root vulnerability.

Auditing Tip: Truncation
Truncation-related vulnerabilities are typically found where integer
values are assigned to smaller data types, such as short integers or
characters. To find truncation issues, look for locations where these
shorter data types are used to track length values or to hold the result
of a calculation. A good place to look for potential variables is in
structure definitions, especially in network-oriented code.

Programmers often use a short or character data type just because
the expected range of values for a variable maps to that data type
nicely. Using these data types can often lead to unanticipated trun-
cations, however.

Comparisons
You’ve already seen examples of signed comparisons against negative numbers in
length checks and how they can lead to security exposures. Another potentially haz-
ardous situation is comparing two integers that have different types. As you’ve learned,
when a comparison is made, the compiler first performs integer promotions on the
operands and then follows the usual arithmetic conversions on the operands so that a
comparison can be made on compatible types. Because these promotions and conver-
sions might result in value changes (because of sign change), the comparison might not
be operating exactly as the programmer intended. Attackers can take advantage of
these conversions to circumvent security checks and often compromise an application. 

To see how comparisons can go wrong, take a look at Listing 6-20. This code
reads a short integer from the network, which specifies the length of an incoming
packet. The first half of the length check compares (length – sizeof(short)) with
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0 to make sure the specified length isn’t less than sizeof(short). If it is, it could
wrap around to a large integer when sizeof(short) is subtracted from it later in the
read() statement. 

Listing 6-20
Comparison Vulnerability Example
#define MAX_SIZE 1024

int read_packet(int sockfd)
{

short length;
char buf[MAX_SIZE];

length = network_get_short(sockfd);

if(length – sizeof(short) <= 0 || length > MAX_SIZE){
error(“bad length supplied\n”);
return –1;

}

if(read(sockfd, buf, length – sizeof(short)) < 0){
error(“read: %m\n”);
return –1;

}

return 0;
}

The first check is actually incorrect. Note that the result type of the sizeof oper-
ator is a size_t, which is an unsigned integer type. So for the subtraction of
(length - sizeof(short)), length is first promoted to a signed int as part of the
integer promotions, and then converted to an unsigned integer type as part of the
usual arithmetic conversions. The resulting type of the subtraction operation is an
unsigned integer type. Consequently, the result of the subtraction can never be less
than 0, and the check is effectively inoperative. Providing a value of 1 for length
evades the very condition that the length check in the first half of the if statement
is trying to protect against and triggers an integer underflow in the call to read(). 

More than one value can be supplied to evade both checks and trigger a buffer
overflow. If length is a negative number, such as 0xFFFF, the first check still passes
because the result type of the subtraction is always unsigned. The second check also
passes (length > MAX_SIZE) because length is promoted to a signed int for the
comparison and retains its negative value, which is less than MAX_SIZE (1024). This
result demonstrates that the length variable is treated as unsigned in one case and
signed in another case because of the other operands used in the comparison.
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When dealing with data types smaller than int, integer promotions cause nar-
row values to become signed integers. This is a value-preserving promotion and not
much of a problem in itself. However, sometimes comparisons can be promoted to a
signed type unintentionally. Listing 6-21 illustrates this problem.

Listing 6-21
Signed Comparison Vulnerability
int read_data(int sockfd)
{

char buf[1024];
unsigned short max = sizeof(buf);
short length;

length = get_network_short(sockfd);

if(length > max){
error(“bad length: %d\n”, length);
return –1;

}

if(read(sockfd, buf, length) < 0){
error(“read: %m”);
return –1;

}

... process data ...

return 0;
}

Listing 6-21 illustrates why you must be aware of the resulting data type used in
a comparison. Both the max and length variables are short integers and, therefore,
go through integer conversions; both get promoted to signed integers. This means
any negative value supplied in length evades the length check against max. Because
of data type conversions performed in a comparison, not only can sanity checks be
evaded, but the entire comparison could be rendered useless because it’s checking
for an impossible condition. Consider Listing 6-22.

Listing 6-22
Unsigned Comparison Vulnerability
int get_int(char *data)
{

unsigned int n = atoi(data);

if(n < 0 || n > 1024)
return –1;
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return n;
}

int main(int argc, char **argv)
{

unsigned long n;
char buf[1024];

if(argc < 2)
exit(0);

n = get_int(argv[1]);

if(n < 0){
fprintf(stderr, “illegal length specified\n”);
exit(-1);

}

memset(buf, ‘A’, n);

return 0;
}

Listing 6-22 checks the variable n to make sure it falls within the range of 0 to
1024. Because the variable n is unsigned, however, the check for less than 0 is
impossible. An unsigned integer can never be less than 0 because every value that
can be represented is positive. The potential vulnerability is somewhat subtle; if
attackers provide an invalid integer as argv[1], get_int() returns a -1, which is
converted to an unsigned long when assigned to n. Therefore, it would become a
large value and end up causing memset() to crash the program.

Compilers can detect conditions that will never be true and issue a warning if
certain flags are passed to it. See what happens when the preceding code is com-
piled with GCC:

[root@doppelganger root]# gcc -Wall -o example example.c

[root@doppelganger root]# gcc -W -o example example.c

example.c: In function ‘get_int’:

example.c:10: warning: comparison of unsigned expression < 0 is always

false

example.c: In function ‘main’:

example.c:25: warning: comparison of unsigned expression < 0 is always

false

[root@doppelganger root]#
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Notice that the -Wall flag doesn’t warn about this type of error as most develop-
ers would expect. To generate a warning for this type of bug, the -W flag must be
used. If the code if(n < 0) is changed to if(n <= 0), a warning isn’t generated
because the condition is no longer impossible. Now take a look at a real-world
example of a similar mistake. Listing 6-23 is taken from the PHP Apache module
(4.3.4) when reading POST data.

Listing 6-23
Signed Comparison Example in PHP
/* {{{ sapi_apache_read_post
*/
static int sapi_apache_read_post(char *buffer,

uint count_bytes TSRMLS_DC)
{

uint total_read_bytes=0, read_bytes;
request_rec *r = (request_rec *) SG(server_context);
void (*handler)(int);

/*
* This handles the situation where the browser sends a
* Expect: 100-continue header and needs to receive
* confirmation from the server on whether or not it
* can send the rest of the request. RFC 2616
*
*/
if (!SG(read_post_bytes) && !ap_should_client_block(r)) {

return total_read_bytes;
}

handler = signal(SIGPIPE, SIG_IGN);
while (total_read_bytes<count_bytes) {

/* start timeout timer */
hard_timeout(“Read POST information”, r);
read_bytes = get_client_block(r,

buffer + total_read_bytes,
count_bytes - total_read_bytes);

reset_timeout(r);
if (read_bytes<=0) {

break;
}
total_read_bytes += read_bytes;

}
signal(SIGPIPE, handler);
return total_read_bytes;

}
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The return value from get_client_block() is stored in the read_bytes variable
and then compared to make sure a negative number wasn’t returned. Because
read_bytes is unsigned, this check doesn’t detect errors from get_client_block()
as intended. As it turns out, this bug isn’t immediately exploitable in this function.
Can you see why? The loop controlling the loop also has an unsigned comparison, so
if total_read_bytes is decremented under 0, it underflows and, therefore, takes a
value larger than count_bytes, thus exiting the loop.

Auditing Tip
Reviewing comparisons is essential to auditing C code. Pay particu-
lar attention to comparisons that protect allocation, array indexing,
and copy operations. The best way to examine these comparisons is
to go line by line and carefully study each relevant expression.

In general, you should keep track of each variable and its underlying
data type. If you can trace the input to a function back to a source
you’re familiar with, you should have a good idea of the possible val-
ues each input variable can have. 

Proceed through each potentially interesting calculation or compari-
son, and keep track of potential values of the variables at different
points in the function evaluation. You can use a process similar to
the one outlined in the previous section on locating integer bound-
ary condition issues.

When you evaluate a comparison, be sure to watch for unsigned
integer values that cause their peer operands to be promoted to
unsigned integers. sizeof and strlen () are classic examples of
operands that cause this promotion.

Remember to keep an eye out for unsigned variables used in com-
parisons, like the following:
if (uvar < 0) ...
if (uvar <= 0) ...

The first form typically causes the compiler to emit a warning, but
the second form doesn’t. If you see this pattern, it’s a good indica-
tion something is probably wrong with that section of the code. 
You should do a careful line-by-line analysis of the surrounding
functionality.
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Operators
Operators can produce unanticipated results. As you have seen, unsanitized
operands used in simple arithmetic operations can potentially open security holes
in applications. These exposures are generally the result of crossing over boundary
conditions that affect the meaning of the result. In addition, each operator has asso-
ciated type promotions that are performed on each of its operands implicitly which
could produce some unexpected results. Because producing unexpected results is
the essence of vulnerability discovery, it’s important to know how these results
might be produced and what exceptional conditions could occur. The following sec-
tions highlight these exceptional conditions and explain some common misuses of
operators that could lead to potential vulnerabilities.

The sizeof Operator
The first operator worth mentioning is sizeof. It’s used regularly for buffer alloca-
tions, size comparisons, and size parameters to length-oriented functions. The
sizeof operator is susceptible to misuse in certain circumstances that could lead to
subtle vulnerabilities in otherwise solid-looking code. 

One of the most common mistakes with sizeof is accidentally using it on a
pointer instead of its target. Listing 6-24 shows an example of this error.

Listing 6-24
Sizeof Misuse Vulnerability Example
char *read_username(int sockfd)
{

char *buffer, *style, userstring[1024];
int i;

buffer = (char *)malloc(1024);

if(!buffer){
error(“buffer allocation failed: %m”);
return NULL;

}

if(read(sockfd, userstring, sizeof(userstring)-1) <= 0){
free(buffer);
error(“read failure: %m”);
return NULL;

}

userstring[sizeof(userstring)-1] = ‘\0’;

style = strchr(userstring, ‘:’);
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if(style)
*style++ = ‘\0’;

sprintf(buffer, “username=%.32s”, userstring);

if(style)
snprintf(buffer, sizeof(buffer)-strlen(buffer)-1,

“, style=%s\n”, style);

return buffer;
}

In this code, some user data is read in from the network and copied into the
allocated buffer. However, sizeof is used incorrectly on buffer. The intention is for
sizeof(buffer) to return 1024, but because it’s used on a character pointer type, it
returns only 4! This results in an integer underflow condition in the size parameter
to snprintf() when a style value is present; consequently, an arbitrary amount of
data can be written to the memory pointed to by the buffer variable. This error is
quite easy to make and often isn’t obvious when reading code, so pay careful atten-
tion to the types of variables passed to the sizeof operator. They occur most fre-
quently in length arguments, as in the preceding example, but they can also occur
occasionally when calculating lengths for allocating space. The reason this type of
bug is somewhat rare is that the misallocation would likely cause the program to
crash and, therefore, get caught before release in many applications (unless it’s in a
rarely traversed code path).

sizeof() also plays an integral role in signed and unsigned comparison bugs
(explored in the “Comparison” section previously in this chapter) and structure
padding issues (explored in “Structure Padding” later in this chapter).

Auditing Tip: sizeof
Be on the lookout for uses of sizeof in which developers take the
size of a pointer to a buffer when they intend to take the size of the
buffer. This often happens because of editing mistakes, when a
buffer is moved from being within a function to being passed into a
function.

Again, look for sizeof in expressions that cause operands to be con-
verted to unsigned values.

Unexpected Results
You have explored two primary idiosyncrasies of arithmetic operators: boundary
conditions related to the storage of integer types and issues caused by conversions
that occur when arithmetic operators are used in expressions. A few other nuances
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of C can lead to unanticipated behaviors, specifically nuances related to underlying
machine primitives being aware of signed-ness. If a result is expected to fall within a
specific range, attackers can sometimes violate those expectations.

Interestingly enough, on twos complement machines, there are only a few opera-
tors in C in which the signed-ness of operands can affect the result of the operation.
The most important operators in this group are comparisons. In addition to compar-
isons, only three other C operators have a result that’s sensitive to whether operands
are signed: right shift (>>), division (/), and modulus (%). These operators can pro-
duce unexpected negative results when they’re used with signed operands because
of their underlying machine-level operations being sign-aware. As a code reviewer,
you should be on the lookout for misuse of these operators because they can produce
results that fall outside the range of expected values and catch developers off-guard.

The right shift operator (>>) is often used in applications in place of the divi-
sion operator (when dividing by powers of 2). Problems can happen when using
this operator with a signed integer as the left operand. When right-shifting a
negative value, the sign of the value is preserved by the underlying machine
performing a sign-extending arithmetic shift. This sign-preserving right shift is
shown in Listing 6-25.

Listing 6-25
Sign-Preserving Right Shift
signed char c = 0x80;
c >>= 4;

1000 0000 – value before right shift
1111 1000 – value after right shift

Listing 6-26 shows how this code might produce an unexpected result that leads
to a vulnerability. It’s close to an actual vulnerability found recently in client code.

Listing 6-26
Right Shift Vulnerability Example
int print_high_word(int number)
{

char buf[sizeof(“65535”)];

sprintf(buf, “%u”, number >> 16);

return 0;
}

This function is designed to print a 16-bit unsigned integer (the high 16 bits of
the number argument). Because number is signed, the right shift sign-extends number
by 16 bits if it’s negative. Therefore, the %u specifier to sprintf() has the capability
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of printing a number much larger than sizeof(“65535”), the amount of space 
allocated for the destination buffer, so the result is a buffer overflow.Vulnerable
right shifts are good examples of bugs that are difficult to locate in source code yet
readily visible in assembly code. In Intel assembly code, a signed, or arithmetic,
right shift is performed with the sar mnemonic. A logical, or unsigned, right shift is
performed with the shr mnemonic. Therefore, analyzing the assembly code can
help you determine whether a right shift is potentially vulnerable to sign extension.
Table 6-9 shows signed and unsigned right-shift operations in the assembly code.

Table 6-9

Signed Versus Unsigned Right-Shift Operations in Assembly

Signed Right-Shift Operations Unsigned Right-Shift Operations

mov eax, [ebp+8] mov eax, [ebp+8]

sar eax, 16 shr eax, 16
push eax push eax

push offset string push offset string

lea eax, [ebp+var_8] lea eax, [ebp+var_8]

push eax push eax

call sprintf call sprintf

Division (/) is another operator that can produce unexpected results because of
sign awareness. Whenever one of the operands is negative, the resulting quotient is
also negative. Often, applications don’t account for the possibility of negative
results when performing division on integers. Listing 6-27 shows how using nega-
tive operands could create a vulnerability with division.

Listing 6-27
Division Vulnerability Example
int read_data(int sockfd)
{

int bitlength;
char *buffer;

bitlength = network_get_int(length);

buffer = (char *)malloc(bitlength / 8 + 1);

if (buffer == NULL)
die(“no memory”);

if(read(sockfd, buffer, bitlength / 8) < 0){
error(“read error: %m”);
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return -1;
}

return 0;
}

Listing 6-27 takes a bitlength parameter from the network and allocates mem-
ory based on it. The bitlength is divided by 8 to obtain the number of bytes needed
for the data that’s subsequently read from the socket. One is added to the result,
presumably to store extra bits in if the supplied bitlength isn’t a multiple of 8. If
the division can be made to return -1, the addition of 1 produces 0, resulting in a
small amount of memory being allocated by malloc(). Then the third argument to
read() would be -1, which would be converted to a size_t and interpreted as a
large positive value.

Similarly, the modulus operator (%) can produce negative results when dealing with
a negative dividend operand. Code auditors should be on the lookout for modulus oper-
ations that don’t properly sanitize their dividend operands because they could produce
negative results that might create a security exposure. Modulus operators are often used
when dealing with fixed-sized arrays (such as hash tables), so a negative result could
immediately index before the beginning of the array, as shown in Listing 6-28.

Listing 6-28
Modulus Vulnerability Example
#define SESSION_SIZE 1024

struct session {
struct session *next;
int session_id;

}

struct header {
int session_id;
...

};

struct session *sessions[SESSION_SIZE];

struct session *session_new(int session_id)
{

struct session *new1, *tmp;

new1 = malloc(sizeof(struct session));
if(!new1)

die(“malloc: %m”);

new1->session_id = session_id;
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new1->next = NULL;

if(!sessions[session_id%(SESSION_SIZE-1)])
{

sessions[session_id%(SESSION_SIZE-1] = new1;
return new1;

}

for(tmp = sessions[session_id%(SESSION_SIZE-1)]; tmp->next;
tmp = tmp->next);

tmp->next = new1;

return new1;
}

int read_packet(int sockfd)
{

struct session *session;
struct header hdr;

if(full_read(sockfd, (void *)&hdr, sizeof(hdr)) !=
sizeof(hdr))

{
error(“read: %m”);
return –1;

}

if((session = session_find(hdr.session_id)) == NULL)
{

session = session_new(hdr.sessionid);
return 0;

}

... validate packet with session ...

return 0;
}

As you can see, a header is read from the network, and session information is
retrieved from a hash table based on the header’s session identifier field. The ses-
sions are stored in the sessions hash table for later retrieval by the program. If the
session identifier is negative, the result of the modulus operator is negative, and
out-of-bounds elements of the sessions array are indexed and possibly written to,
which would probably be an exploitable condition.

As with the right-shift operator, unsigned and signed divide and modulus
operations can be distinguished easily in Intel assembly code. The mnemonic for
the unsigned division instruction is div and its signed counterpart is idiv. Table

Chapter 6—C Language Issues

276



6-10 shows the difference between signed and unsigned divide operations. Note
that compilers often use right-shift operations rather than division when the
divisor is a constant.

Table 6-10

Signed Versus Unsigned Divide Operations in Assembly

Signed Divide Operations Unsigned Divide Operations

mov eax, [ebp+8] mov eax, [ebp+8]

mov ecx, [ebp+c] mov ecx, [ebp+c]

cdq cdq

idiv ecx div ecx
ret ret

Auditing Tip: Unexpected Results
Whenever you encounter a right shift, be sure to check whether the
left operand is signed. If so, there might be a slight potential for a
vulnerability. Similarly, look for modulus and division operations
that operate with signed operands. If users can specify negative val-
ues, they might be able to elicit unexpected results.

Pointer Arithmetic
Pointers are usually the first major hurdle that beginning C programmers
encounter, as they can prove quite difficult to understand. The rules involving
pointer arithmetic, dereferencing and indirection, pass-by-value semantics, pointer
operator precedence, and pseudo-equivalence with arrays can be challenging to
learn. The following sections focus on a few aspects of pointer arithmetic that might
catch developers by surprise and lead to possible security exposures.

Pointer Overview
You know that a pointer is essentially a location in memory—an address—so it’s a data
type that’s necessarily implementation dependent. You could have strikingly different
pointer representations on different architectures, and pointers could be imple-
mented in different fashions even on the 32-bit Intel architecture. For example, you
could have 16-bit code, or even a compiler that transparently supported custom virtual
memory schemes involving segments. So assume this discussion uses the common
architecture of GCC or vc++ compilers for userland code on Intel machines.

You know that pointers probably have to be unsigned integers because valid vir-
tual memory addresses can range from 0x0 to 0xffffffff. That said, it seems slightly
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odd when you subtract two pointers. Wouldn’t a pointer need to somehow repre-
sent negative values as well? It turns out that the result of the subtraction isn’t a
pointer at all; instead, it’s a signed integer type known as a ptrdiff_t.

Pointers can be freely converted into integers and into pointers of other types
with the use of casts. However, the compiler makes no guarantee that the resulting
pointer or integer is correctly aligned or points to a valid object. Therefore, pointers
are one of the more implementation-dependent portions of the C language.

Pointer Arithmetic Overview
When you do arithmetic with a pointer, what occurs? Here’s a simple example of
adding 1 to a pointer:

short *j;

j=(short *)0x1234;

j = j + 1;

This code has a pointer to a short named j. It’s initialized to an arbitrary fixed
address, 0x1234. This is bad C code, but it serves to get the point across. As men-
tioned previously, you can treat pointers and integers interchangeably as long you
use casts, but the results depend on the implementation. You might assume that
after you add 1 to j, j is equal to 0x1235. However, as you probably know, this isn’t
what happens. j is actually 0x1236.

When C does arithmetic involving a pointer, it does the operation relative to
the size of the pointer’s target. So when you add 1 to a pointer to an object, the
result is a pointer to the next object of that size in memory. In this example, the
object is a short integer, which takes up 2 bytes (on the 32-bit Intel architecture),
so the short following 0x1234 in memory is at location 0x1236. If you subtract 1,
the result is the address of the short before the one at 0x1234, which is 0x1232. If
you add 5, you get the address 0x123e, which is the fifth short past the one at
0x1234.

Another way to think of it is that a pointer to an object is treated as an array
composed of one element of that object. So j, a pointer to a short, is treated like the
array short j[1], which contains one short. Therefore, j + 2 would be equivalent
to &j[2]. Table 6-11 shows this concept.

Table 6-11

Pointer Arithmetic and Memory

Pointer Expression Array Expression Address

j - 2 &j[-2] 0x1230

0x1231
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j - 1 &j[-1] 0x1232

0x1233

j j or &j[0] 0x1234

0x1235

j + 1 &j[1] 0x1236

0x1237

j + 2 &j[2] 0x1238

0x1239

j + 3 &j[3] 0x123a

0x123b

j + 4 &j[4] 0x123c

0x123d

j + 5 &j[5] 0x123e

0x123f

Now look at the details of the important pointer arithmetic operators, covered
in the following sections.

Addition
The rules for pointer addition are slightly more restrictive than you might expect.
You can add an integer type to a pointer type or a pointer type to an integer type,
but you can’t add a pointer type to a pointer type. This makes sense when you con-
sider what pointer addition actually does; the compiler wouldn’t know which
pointer to use as the base type and which to use as an index. For example, look at
the following operation:

unsigned short *j;

unsigned long *k;

x = j+k;

This operation would be invalid because the compiler wouldn’t know how to
convert j or k into an index for the pointer arithmetic. You could certainly cast j or k
into an integer, but the result would be unexpected, and it’s unlikely someone
would do this intentionally.

One interesting rule of C is that the subscript operator falls under the category
of pointer addition. The C standard states that the subscript operator is equivalent
to an expression involving addition in the following way:

E1[E2] is equivalent to (*((E1)+(E2)))
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With this in mind, look at the following example:

char b[10];

b[4]=’a’;

The expression b[4] refers to the fifth object in the b character array. According
to the rule, here’s the equivalent way of writing it:

(*((b)+(4)))=’a’;

You know from your earlier analysis that b + 4, with b of type pointer to char, is
the same as saying &b[4]; therefore, the expression would be like saying
(*(&b[4])) or b[4].

Finally, note that the resulting type of the addition between an integer and a
pointer is the type of the pointer.

Subtraction
Subtraction has similar rules to addition, except subtracting one pointer from
another is permissible. When you subtract a pointer from a pointer of the same
type, you’re asking for the difference in the subscripts of the two elements. In this
case, the resulting type isn’t a pointer but a ptrdiff_t, which is a signed integer
type. The C standard indicates it should be defined in the stddef.h header file. 

Comparison
Comparison between pointers works as you might expect. They consider the rela-
tive locations of the two pointers in the virtual address space. The resulting type is
the same as with other comparisons: an integer type containing a 1 or 0.

Conditional Operator
The conditional operator (?) can have pointers as its last two operands, and it has to
reconcile their types much as it does when used with arithmetic operands. It does
this by applying all qualifiers either pointer type has to the resulting type.

Vulnerabilities 
Few vulnerabilities involving pointer arithmetic have been widely publicized, at
least in the sense being described here. Plenty of vulnerabilities that involve manip-
ulation of character pointers essentially boil down to miscounting buffer sizes, and
although they technically qualify as pointer arithmetic errors, they aren’t as subtle
as pointer vulnerabilities can get. The more pernicious form of problems are those
in which developers mistakenly perform arithmetic on pointers without realizing
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that their integer operands are being scaled by the size of the pointer’s target. Con-
sider the following code:

int buf[1024];

int *b=buf;

while (havedata() && b < buf + sizeof(buf))

{

*b++=parseint(getdata());

}

The intent of b < buf + sizeof(buf) is to prevent b from advancing past
buf[1023]. However, it actually prevents b from advancing past buf[4092]. There-
fore, this code is potentially vulnerable to a fairly straightforward buffer overflow.

Listing 6-29 allocates a buffer and then copies the first path component from
the argument string into the buffer. There’s a length check protecting the wcscat
function from overflowing the allocated buffer, but it’s constructed incorrectly.
Because the strings are wide characters, the pointer subtraction done to check the
size of the input (sep - string) returns the difference of the two pointers in wide
characters—that is, the difference between the two pointers in bytes divided by 2.
Therefore, this length check succeeds as long as (sep – string) contains less than
(MAXCHARS * 2) wide characters, which could be twice as much space as the allo-
cated buffer can hold.

Listing 6-29
Pointer Arithmetic Vulnerability Example
wchar_t *copy_data(wchar_t *string)
{

wchar *sep, *new;
int size = MAXCHARS * sizeof(wchar);

new = (wchar *)xmalloc(size);

*new = ‘\0’;

if(*string != ‘/’){
wcscpy(new, “/”);
size -= sizeof(wchar_t);

}

sep = wstrchr(string, ‘/’);

if(!sep)
sep = string + wcslen(string);
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if(sep - string >= (size – sizeof(wchar_t))
{

free(new);
die(“too much data”);

}

*sep = ‘\0’;

wcscat(new, string);

return new;
}

Auditing Tip
Pointer arithmetic bugs can be hard to spot. Whenever an arithmetic
operation is performed that involves pointers, look up the type of
those pointers and then check whether the operation agrees with
the implicit arithmetic taking place. In Listing 6-29, has sizeof()
been used incorrectly with a pointer to a type that’s not a byte? Has
a similar operation happened in which the developer assumed the
pointer type won’t affect how the operation is performed? 

Other C Nuances
The following sections touch on features and dark corners of the C language where
security-relevant mistakes could be made. Not many real-world examples of these
vulnerabilities are available, yet you should still be aware of the potential risks.
Some examples might seem contrived, but try to imagine them as hidden beneath
layers of macros and interdependent functions, and they might seem more realistic.

Order of Evaluation
For most operators, C doesn’t guarantee the order of evaluation of operands or the
order of assignments from expression “side effects.” For example, consider this code:

printf(“%d\n”, i++, i++);

There’s no guarantee in which order the two increments are performed, and you’ll
find that the output varies based on the compiler and the architecture on which you
compile the program. The only operators for which order of evaluation is guaranteed
are &&, ||, ?:, and ,. Note that the comma doesn’t refer to the arguments of a func-
tion; their evaluation order is implementation defined. So in something as simple as
the following code, there’s no guarantee that a() is called before b():
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x = a() + b();

Ambiguous side effects are slightly different from ambiguous order of evaluation,
but they have similar consequences. A side effect is an expression that causes the mod-
ification of a variable—an assignment or increment operator, such as ++. The order of
evaluation of side effects isn’t defined within the same expression, so something like
the following is implementation defined and, therefore, could cause problems:

a[i] = i++;

How could these problems have a security impact? In Listing 6-30, the devel-
oper uses the getstr() call to get the user string and pass string from some external
source. However, if the system is recompiled and the order of evaluation for the
getstr() function changes, the code could end up logging the password instead of
the username. Admittedly, it would be a low-risk issue caught during testing.

Listing 6-30
Order of Evaluation Logic Vulnerability
int check_password(char *user, char *pass)
{

if (strcmp(getpass(user), pass))
{

logprintf(“bad password for user %s\n”, user);
return -1;

}
return 0;

}
...
if (check_password(getstr(), getstr())

exit(1);

Listing 6-31 has a copy_packet() function that reads a packet from the network. It
uses the GET32() macro to pull an integer from the packet and advance the pointer.
There’s a provision for optional padding in the protocol, and the presence of the
padding size field is indicated by a flag in the packet header. So if FLAG_PADDING is set,
the order of evaluation of the GET32() macros for calculating the datasize could pos-
sibly be reversed. If the padding option is in a fairly unused part of the protocol, an
error of this nature could go undetected in production use.

Listing 6-31
Order of Evaluation Macro Vulnerability
#define GET32(x) (*((unsigned int *)(x))++)

u_char *copy_packet(u_char *packet)
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{
int *w = (int *)packet;
unsigned int hdrvar, datasize;

/* packet format is hdr var, data size, padding size */

hdrvar = GET32(w);

if (hdrvar & FLAG_PADDING)
datasize = GET32(w) - GET32(w);

else
datasize = GET32(w);

...
}

Structure Padding
One somewhat obscure feature of C structures is that structure members don’t have
to be laid out contiguously in memory. The order of members is guaranteed to fol-
low the order programmers specify, but structure padding can be used between
members to facilitate alignment and performance needs. Here’s an example of a
simple structure:

struct bob

{

int a;

unsigned short b;

unsigned char c;

};

What do you think sizeof(bob) is? A reasonable guess is 7; that’s sizeof(a) +
sizeof(b) + sizeof(c), which is 4 + 2 + 1. However, most compilers return 8
because they insert structure padding! This behavior is somewhat obscure now, but
it will definitely become a well-known phenomenon as more 64-bit code is intro-
duced because it has the potential to affect this code more acutely. How could it
have a security consequence? Consider Listing 6-32.

Listing 6-32
Structure Padding in a Network Protocol
struct netdata
{

unsigned int query_id;
unsigned short header_flags;
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unsigned int sequence_number;
};

int packet_check_replay(unsigned char *buf, size_t len)
{

struct netdata *n = (struct netdata *)buf;

if ((ntohl(n->sequence_number) <= g_last_sequence number)
return PARSE_REPLAYATTACK;

// packet is safe - process
return PARSE_SAFE;

}

On a 32-bit big-endian system, the netdata structure is likely to be laid out as
shown in Figure 6-9. You have an unsigned int, an unsigned short, 2 bytes of
padding, and an unsigned int for a total structure size of 12 bytes. Figure 6-10 shows
the traffic going over the network, in network byte order. If developers don’t antici-
pate the padding being inserted in the structure, they could be misinterpreting the
network protocol. This error could cause the server to accept a replay attack.

The possibility of making this kind of mistake increases with 64-bit architec-
tures. If a structure contains a pointer or long value, the layout of the structure in
memory will most likely change. Any 64-bit value, such as a pointer or long int, will
take up twice as much space as on a 32 bit-system and have to be placed on a 64-bit
alignment boundary.
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Figure 6-9 Netdata structure on a 32-bit big-endian machine

Figure 6-10 Network protocol in network byte order



The contents of the padding bits depend on whatever happens to be in memory
when the structure is allocated. These bits could be different, which could lead to
logic errors involving memory comparisons, as shown in Listing 6-33.

Listing 6-33
Example of Structure Padding Double Free
struct sh
{

void *base;
unsigned char code;
void *descptr;

};

void free_sechdrs(struct sh *a, struct sh *b)
{

if (!memcmp(a, b, sizeof(a)))
{

/* they are equivalent */
free(a->descptr);
free(a->base);
free(a);
return;

}

free(a->descptr);
free(a->base);
free(a);
free(b->descptr);
free(b->base);
free(b);
return;

}

If the structure padding is different in the two structures, it could cause a dou-
ble-free error to occur. Take a look at Listing 6-34.

Listing 6-34
Example of Bad Counting with Structure Padding
struct hdr
{

int flags;
short len;

};

struct hdropt
{

char opt1;
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char optlen;
char descl;

};

struct msghdr
{

struct hdr h;
struct hdropt o;

};

struct msghdr *form_hdr(struct hdr *h, struct hdropt *o)
{

struct msghdr *m=xmalloc(sizeof *h + sizeof *o);

memset(m, 0, sizeof(struct msghdr));

...

The size of hdropt would likely be 3 because there are no padding requirements
for alignment. The size of hdr would likely be 8 and the size of msghdr would likely
be 12 to align the two structures. Therefore, memset would write 1 byte past the allo-
cated data with a \0.

Precedence
When you review code written by experienced developers, you often see complex
expressions that seem to be precariously void of parentheses. An interesting vulner-
ability would be a situation in which a precedence mistake is made but occurs in
such a way that it doesn’t totally disrupt the program.

The first potential problem is the precedence of the bitwise & and | operators,
especially when you mix them with comparison and equality operators, as shown in
this example:

if ( len & 0x80000000 != 0)

die(“bad len!”);

if (len < 1024)

memcpy(dst, src, len);

The programmers are trying to see whether len is negative by checking the
highest bit. Their intent is something like this:

if ( (len & 0x80000000) != 0)

die(“bad len!”);
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What’s actually rendered into assembly code, however, is this:

if ( len & (0x80000000 != 0))

die(“bad len!”);

This code would evaluate to len & 1. If len’s least significant bit isn’t set, that
test would pass, and users could specify a negative argument to memcpy().

There are also potential precedence problems involving assignment, but they
aren’t likely to surface in production code because of compiler warnings. For exam-
ple, look at the following code:

if (len = getlen() > 30)

snprintf(dst, len - 30, “%s”, src)

The authors intended the following:

if ((len = getlen()) > 30)

snprintf(dst, len - 30, “%s”, src)

However, they got the following:

if (len = (getlen() > 30))

snprintf(dst, len - 30, “%s”, src)

len is going to be 1 or 0 coming out of the if statement. If it’s 1, the second
argument to snprintf() is -29, which is essentially an unlimited string.

Here’s one more potential precedence error:

int a = b + c >> 3;

The authors intended the following:

int a = b + (c >> 3);

As you can imagine, they got the following:

int a = (b + c) >> 3;

Macros/Preprocessor
C’s preprocessor could also be a source of security problems. Most people are 
familiar with the problems in a macro like this:

#define SQUARE(x) x*x
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If you use it as follows:

y = SQUARE(z + t);

It would evaluate to the following:

y = z + t*z + t;

That result is obviously wrong. The recommended fix is to put parentheses
around the macro and the arguments so that you have the following:

#define SQUARE(x) ((x)*(x))

You can still get into trouble with macros constructed in this way when you
consider order of evaluation and side-effect problems. For example, if you use the
following:

y = SQUARE(j++);

It would evaluate to

y = ((j++)*(j++));

That result is implementation defined. Similarly, if you use the following:

y = SQUARE(getint());

It would evaluate to

y = ((getint())*(getint()));

This result is probably not what the author intended. Macros could certainly
introduce security issues if they’re used in way outside mainstream use, so pay
attention when you’re auditing code that makes heavy use of them. When in doubt,
expand them by hand or look at the output of the preprocessor pass.

Typos
Programmers can make many simple typographic errors that might not affect pro-
gram compilation or disrupt a program’s runtime processes, but these typos could
lead to security-relevant problems. These errors are somewhat rare in production
code, but occasionally they crop up. It can be entertaining to try to spot typos in
code. Possible typographic mistakes have been presented as a series of challenges.
Try to spot the mistake before reading the analysis.
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Challenge 1

while (*src && left)

{

*dst++=*src++;

if (left = 0)

die(“badlen”);

left--;

}

The statement if (left = 0) should read if (left == 0). 
In the correct version of the code, if left is 0, the loop detects a buffer overflow

attempt and aborts. In the incorrect version, the if statement assigns 0 to left, and the
result of that assignment is the value 0. The statement if (0) isn’t true, so the next
thing that occurs is the left--; statement. Because left is 0, left-- becomes a nega-
tive 1 or a large positive number, depending on left’s type. Either way, left isn’t 0, so
the while loop continues, and the check doesn’t prevent a buffer overflow.

Challenge 2

int f;

f=get_security_flags(username);

if (f = FLAG_AUTHENTICATED)

{

return LOGIN_OK;

}

return LOGIN_FAILED;

The statement if (f = FLAG_AUTHENTICATED) should read as follows:

if (f == FLAG_AUTHENTICATED)

In the correct version of the code, if users’ security flags indicate they’re authen-
ticated, the function returns LOGIN_OK. Otherwise, it returns LOGIN_FAILED.

In the incorrect version, the if statement assigns whatever FLAG_AUTHENTICATED
happens to be to f. The if statement always succeeds because FLAG_AUTHENTICATED
is some nonzero value. Therefore, the function returns LOGIN_OK for every user.
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Challenge 3

for (i==5; src[i] && i<10; i++)

{

dst[i-5]=src[i];

}

The statement for (i==5; src[i] && i<10; i++) should read as follows:

for (i=5; src[i] && i<10; i++)

In the correct version of the code, the for loop copies 4 bytes, starting reading
from src[5] and starting writing to dst[0]. In the incorrect version, the expression
i==5 evaluates to true or false but doesn’t affect the contents of i. Therefore, if i is
some value less than 10, it could cause the for loop to write and read outside the
bounds of the dst and src buffers.

Challenge 4

if (get_string(src) &&

check_for_overflow(src) & copy_string(dst,src))

printf(“string safely copied\n”);

The if statement should read like so:

if (get_string(src) &&

check_for_overflow(src) && copy_string(dst,src))

In the correct version of the code, the program gets a string into the src buffer
and checks the src buffer for an overflow. If there isn’t an overflow, it copies the
string to the dst buffer and prints “string safely copied.”

In the incorrect version, the & operator doesn’t have the same characteristics as the
&& operator. Even if there isn’t an issue caused by the difference between logical and
bitwise AND operations in this situation, there’s still the critical problem of short-circuit
evaluation and guaranteed order of execution. Because it’s a bitwise AND operation,
both operand expressions are evaluated, and the order in which they are evaluated
isn’t necessarily known. Therefore, copy_string() is called even if check_for_
overflow() fails, and it might be called before check_for_overflow() is called.

Challenge 5

if (len > 0 && len <= sizeof(dst));

memcpy(dst, src, len);
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The if statement should read like so:

if (len > 0 && len <= sizeof(dst))

In the correct version of the code, the program performs a memcpy() only if the
length is within a certain set of bounds, therefore preventing a buffer overflow
attack. In the incorrect version, the extra semicolon at the end of the if statement
denotes an empty statement, which means memcpy() always runs, regardless of the
result of length checks.

Challenge 6

char buf[040];

snprintf(buf, 40, “%s”, userinput);

The statement char buf[040]; should read char buf[40];.
In the correct version of the code, the program sets aside 40 bytes for the

buffer it uses to copy the user input into. In the incorrect version, the program
sets aside 32 bytes. When an integer constant is preceded by 0 in C, it instructs
the compiler that the constant is in octal. Therefore, the buffer length is inter-
preted as 040 octal, or 32 decimal, and snprintf() could write past the end of
the stack buffer.

Challenge 7

if (len < 0 || len > sizeof(dst)) /* check the length

die(“bad length!”);

/* length ok */

memcpy(dst, src, len);

The if statement should read like so:

if (len < 0 || len > sizeof(dst)) /* check the length */

In the correct version of the code, the program checks the length before it
carries out memcpy() and calls abort() if the length is out of the appropriate
range.

In the incorrect version, the lack of an end to the comment means memcpy()
becomes the target statement for the if statement. So memcpy() occurs only if the
length checks fail.
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Challenge 8

if (len > 0 && len <= sizeof(dst))

copiedflag = 1;

memcpy(dst, src, len);

if (!copiedflag)

die(“didn’t copy”);

The first if statement should read like so:

if (len > 0 && len <= sizeof(dst))

{

copiedflag = 1;

memcpy(dst, src, len);

}

In the correct version, the program checks the length before it carries out 
memcpy(). If the length is out of the appropriate range, the program sets a flag that
causes an abort.

In the incorrect version, the lack of a compound statement following the if
statement means memcpy() is always performed. The indentation is intended to
trick the reader’s eyes.

Challenge 9

if (!strncmp(src, “magicword”, 9))

// report_magic(1);

if (len < 0 || len > sizeof(dst))

assert(“bad length!”);

/* length ok */

memcpy(dst, src, len);

The report_magic(1) statement should read like so:

// report_magic(1);

;
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In the correct version, the program checks the length before it performs 
memcpy(). If the length is out of the appropriate range, the program sets a flag that
causes an abort.

In the incorrect version, the lack of a compound statement following the 
magicword if statement means the length check is performed only if the 
magicword comparison is true. Therefore, memcpy() is likely always performed.

Challenge 10

l = msg_hdr.msg_len;

frag_off = msg_hdr.frag_off;

frag_len = msg_hdr.frag_len;

...

if ( frag_len > (unsigned long)max)

{

al=SSL_AD_ILLEGAL_PARAMETER;

SSLerr(SSL_F_DTLS1_GET_MESSAGE_FRAGMENT,

SSL_R_EXCESSIVE_MESSAGE_SIZE);

goto f_err;

}

if ( frag_len + s->init_num >

(INT_MAX - DTLS1_HM_HEADER_LENGTH))

{

al=SSL_AD_ILLEGAL_PARAMETER;

SSLerr(SSL_F_DTLS1_GET_MESSAGE_FRAGMENT,

SSL_R_EXCESSIVE_MESSAGE_SIZE);

goto f_err;

}

if ( frag_len &

!BUF_MEM_grow_clean(s->init_buf, (int)frag_len +

DTLS1_HM_HEADER_LENGTH + s->init_num))

{

SSLerr(SSL_F_DTLS1_GET_MESSAGE_FRAGMENT,

ERR_R_BUF_LIB);

goto err;
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}

if ( s->d1->r_msg_hdr.frag_off == 0)

{

s->s3->tmp.message_type = msg_hdr.type;

s->d1->r_msg_hdr.type = msg_hdr.type;

s->d1->r_msg_hdr.msg_len = l;

/* s->d1->r_msg_hdr.seq = seq_num; */

}

/* XDTLS: ressurect this when restart is in place */

s->state=stn;

/* next state (stn) */

p = (unsigned char *)s->init_buf->data;

if ( frag_len > 0)

{

i=s->method->ssl_read_bytes(s,SSL3_RT_HANDSHAKE,

&p[s->init_num],

frag_len,0);

/* XDTLS: fix this—message fragments cannot

span multiple packets */

if (i <= 0)

{

s->rwstate=SSL_READING;

*ok = 0;

return i;

}

}

else

i = 0;

Did you spot the bug? There is a mistake in one of the length checks where the
developers use a bitwise AND operator (&) instead of a logical AND operator (&&).
Specifically, the statement should read:
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if ( frag_len &&

!BUF_MEM_grow_clean(s->init_buf, (int)frag_len +

DTLS1_HM_HEADER_LENGTH + s->init_num))

This simple mistake could lead to memory corruption if the BUF_MEM_grow_
clean() function were to fail. This function returns 0 upon failure, which will be set
to 1 by the logical not operator. Then, a bitwise AND operation with frag_len will
occur. So, in the case of failure, the malformed statement is really doing the follow-
ing:

if(frag_len & 1)

{

SSLerr(...);

}

Summary
This chapter has covered nuances of the C programming language that can lead to
subtle and complex vulnerabilities. This background should enable you to identify
problems that can occur with operator handling, type conversions, arithmetic opera-
tions, and common C typos. However, the complex nature of this topic does not lend
itself to complete understanding in just one pass. Therefore, refer back to this material
as needed when conducting application assessments. After all, even the best code
auditor can easily miss subtle errors that could result in severe vulnerabilities.
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audit logs, 339-340
return value testing, 340-350
side-effects, 351, 353-359

hidden fields, 1036
importance of, 9, 11
memory management, 362

ACC (allocation-check-copy) logs, 362-369
allocation functions, 369-377
allocator scorecards, 377-379
double-frees, 379-385
error domains, 378-379

permissions, ACLs, 652-653
RPC applications, 722-724
running code, 567
UNIX privileges, management code, 488-490
variables, 298-326

arithmetic boundaries, 316-319
initialization, 312-315
lists, 321-326
object management, 307-312
relationships, 298-307
structure management, 307-312
tables, 321-326
type confusion, 319-321
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Web applications, 1078-1081
activities to isolate, 1079
avoiding assumptions, 1080
black box testing, 1079
enumerating functionality, 1081
goals, 1081
multiple approaches, 1080
reverse-engineering, 1081
testing and experimentation, 1080-1081

authenticate( ) function, 177
authentication, 36

common vulnerabilities, 36
insufficient validation, 38
untrustworthy credentials, 37

HTTP authentication, 1033-1036, 1056-1057
RPC servers, 714-716
RPCs (Remote Procedure Calls), UNIX, 623-624
Web-based applications, 75

authentication files, OpenSSH, 161
authorization, 38, 1057-1058

ASP.NET, 1122
common vulnerabilities, 39

Authorization header field (HTTP), 1018
AUTH_TYPE (environment variable), 1088
automated source analysis tools, code audits, CP 

candidate point) strategy, 120-122
automatic threat modeling, 65
automation objects, COM (Component Object

Model), 729
fuzz testing, 749

automation servers, 729
availability, 48

common vunerabilities, 48-49
expectations of, 9

B
back-tracing code, 111
bait-and-switch attacks, 47
Bansal, Altin, 235
Bellovin, Steve, 891
BER (Basic Encoding Rules), ASN.1 (Abstract Syntax

Notation), 975-979
Bercegay, James, 1101
big-endian architecture, bytes, ordering, 209
/bin directory (UNIX), 463
binary audits, COM (Component Object Model), 

743-749
binary bitwise operators, 243
binary encoding, C programming language, 207-208
binary layout (Windows), imports, 70
binary navigation tools, code auditing, 155-157
binary notation

positive decimal integers, converting to, 207
positive numbers, converting to decimal, 207

binary protocols, data types, matching, 927-932

binary-only application access, 95
Bind 9.2.1 Resolver Code gethostans( ) Vulnerability

listing (7-2), 300
binding endpoints, RPC servers, 712-714
bindings, 706
BinNavi binary navigation tool, 157
Bishop, Matt, 5
bit fields, C programming language, 205
bitmasks, permissions, 495-497
bitwise shift operators, C programming language,

236-237
black box analysis, 118
black box generated CPs (candidate points), 123-128
black box hits, tracing, 117-119
black box testing, 1079

auditing, compared, 11-13
black-list filters, metacharacters, 435-436
blind connection spoofing, TCP streams, 876-879
blind data injection attacks, TCP streams, 880
blind reset attacks, TCP streams, 879-880
block ciphers, 42
boot files, UNIX, 511
bottom-up approach, application review, 100
bottom-up decomposition, 27
Bouchareine, Pascal, 877
boundaries, trust boundaries, 28

complex trust boundaries, 30
simple trust boundaries, 28-30

boundary conditions, sequence numbers, TCP
(Transmission Control Protocol), 888

boundary descriptor objects, Windows NT, 631
bounded string functions, 393-400
Break Statement Omission Vulnerability 

listing (7-23), 337
break statements, omissions, 337-338
Bret-Mounet, Frederic, 749
Brown, Keith, 637
BSD linux, 459

securelevels, 492
setenv( ) function, 576-577

BUF-MEM_grow( ) function, 311-312
buffer overflow, text-based protocols, 933-934
Buffer Overflow in NSS Library’s

ssl2_HandleClientHelloMessage listing (7-34), 365
buffer overflows, 168-169

global overflows, 186
heap overflows, 183-186
off-by-one errors, 180-183
process memory layout, 169
SHE (structured exception handling) attacks,

178-180
stack overflows, 169-178
static overflows, 186

buffer subsystem, SSH server, code audits, 160
buffers, OpenSSH, vunerabilities, 307-310
bugs, software, 4-5
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business logic, 26-27, 1041
business tier (Web applications), 1042-1044
byte order, C programming language, 209
bytes, overwriting, 198-199

C
C programming language, 204

arithmetic boundary conditions, 211-223
binary encoding, 207-208
bit fields, 205
bitwise shift operators, 236-237
byte order, 209
character types, 205
data storage, 204-211
floating types, 205
format strings, 422-425
function invocations, 237-238
implementation defined behavior, 204
integer types, 205-206
macros, 288-289
numeric wrapping, 212
objects, 205
operands, order of evaluation, 282-283
operators, 233, 271-277

right shift, 272-277
size, 271-272

pointers, 277-282
arithmetic, 278-280
vunerabilities, 280-282

precedence, 287-288
preprocessor, 288-289
security, 1075
signed integers, boundaries, 220-223
standards, 204
stdio file interface, 547-557
string handling, 388-407
structure padding, 284-287
switch statements, 237
type conversions, 223-248

assignment operators, 231-232
comparisons, 265-270
conversion rules, 225-231
default type conversions, 224
explicit type conversions, 224
floating point types, 230-231
function prototypes, 232
implicit type conversions, 224
integer promotions, 233-238
narrowing, 227-228
sign extensions, 248-265
simple conversions, 231-232
typecasts, 231
usual arithmetic conversions, 238-245
value preservation, 225-226
vunerabilities, 246-270
widening, 226-227

types, 204-207
typos, 289-296
unary  operator, 236
unary + operator, 235
unary - operator, 235
undefined behavior, 204
unsigned integers, boundaries, 213-220

C Programming Language, The, 204
C Rationale document, 204
C++ programming language, EH (exception 

handling), 179
Cache-Control header field (HTTP), 1018
calling conventions, functions, 173
canary values, 190-191
candidate points, 111
canonicalization, files, Windows NT, 663-666
capabilities, Linux, 492-494
carry flags (CFs), 214
CAS (code access security), 6
case sensitivity, Windows NT filenames, 673
CBC (cipher block chaining) mode cipher, 42
CC (code comprehension) strategies, code audits, 

112-119
algorithm analysis, 116
black box hit traces, 117-119
class analysis, 116-117
module analysis, 114-116
object analysis, 116-117
trace malicious input, 113-114

CER (Canonical Encoding Rules), ASN.1 (Abstract
Syntax Notation), 976-979

Certificate Payload Integer Underflow in CheckPoint
ISAKMP listing (16-2), 954

certificate payloads, ISAKMP (Internet Security
Association and Key Management Protocol), 
963-964

certificate request payloads, ISAKMP (Internet
Security Association and Key Management
Protocol), 964

CFML (ColdFusion Markup Language), 1013
CFs (carry flags), 214
CGI (Common Gateway Interface), 1009-1010, 1086

environment variables, 1087-1093
indexed queries, 1086-1087

chain of trust relationships, 30-31
Challenge-Response Integer Overflow Example in

OpenSSH 3.1 listing (6-3), 216
change monitoring, 83
Character Black-List Filter listing (8-22), 435
character equivalence, Unicode, 456-457
character expansion, text strings, 401
Character Expansion Buffer Overflow listing (8-4), 401
character sets, 446
character stripping vulnerabilities, metacharacters, 

filtering, 437-439
character types, C programming language, 205
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Character White-List Filter listing (8-23), 436
Charge-To header field (HTTP), 1018
checked build application access, 95
checkForAnotherInstance( ) function, 776
checksum, IP (Internet Protocol), 843
child processes, UNIX processes, 560-563
chroot jails, 80
cipher block chaining (CBC) mode cipher, 42
circular linked lists, 322
clarity, software design, 32
Clarke, Arthur C., 3
class diagrams, UML (Unified Markup Language), 53
classes

analyzing, CC (code comprehension), 116-117
IP addresses, 832
vulnerabilities

design vunerabilities, 14-15
implementation vunerabilities, 15-16
operational vunerabilities, 16

vunerabilities, 14
cleanup( ) function, 792
cleanup_exit( ) function, 793
Cleaton, Nick, 538
client IP addresses, maintaining state with, 1029-1030
client tier (Web applications), 1042
clients

client control, 1047-1048
pipe squatting, 705
visibility, 1046-1047

close( ) function, 556-557
close-on-exec file descriptor, UNIX, 581-582
CloseHandle( ) function, 628
closing

files, studio file system, 556-557
TCP connections, 871-872

Clowes, Shaun, 1104
CLR (Common Language Runtime), 6
CLSIDs, mapping to applications, COM (Component

Object Model), 728
code

auditing, 111, 133, 147
binary navigation tools, 155-157
CC (code comprehension) strategies, 112-119
CP (candidate point) strategies, 112, 119-128
debuggers, 151-154
dependency alnalysis, 135-136
desk checking, 137-139
DG (design generalization) strategies, 112,

128-133
fuzz testing tools, 157-158
internal flow analysis, 133-135
OpenSSH case study, 158-164
rereading code, 136-137
running code, 567
scorecard, 112
SDLC (Systems Development Life Cycle), 13

source code navigators, 148-151
subsystem alnalysis, 135-136
test cases, 139-147

memory, finding in, 188-189
reuse, 52
source code, profiling, 52
typos, C programming language, 289-296

code access security (CAS). See CAS (code access
security), 6

code naigation, 109
external flow sensitivity, 109-110
tracing, 111

code page assumptions, Unicode, 455-456
Code Page Mismatch Example listing (8-31), 455
code paths, 135
code review, 92-93

application review phase, 93, 97-98, 103-105
bottom-up approach, 100
hybrid approach, 100-101
iterative process, 98-99
peer reviews, 106
planning, 101-103
reevaluation, 105
status checks, 105
top-down approach, 99
working papers, 103-104

code auditing, 111, 133, 147
binary navigation tools, 155-157
CC (code comprehension) strategies, 112-119
CP (candidate point) strategies, 112, 119-128
debuggers, 151-154
dependency alnalysis, 135-136
desk checking, 137-139
DG (design generalization) strategies, 112,

128-133
fuzz testing tools, 157-158
internal flow analysis, 133-135
OpenSSH case study, 158-164
rereading code, 136-137
scorecard, 112
source code navigators, 148-151
subsystem alnalysis, 135-136
test cases, 139-147

code navigation, 109
external flow sensitivity, 109-110
tracing, 111

documentation and analysis phase, 93, 106-108
findings summary, 106

preassessment phase, 93
application access, 95-96
information collection, 96
scoping, 94

process outline, 93
remediation support phase, 93, 108-109

Code Surfer, 150
code-auditing situations, 9
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CoInitializeEx( ) function, 729
ColdFusion, 75
ColdFusion Markup Language (CFML), 1013
ColdFusion MX, 1014
collecttimeout( ) function, 799
collisions, Windows NT object namespaces, 630-631
COM (Component Object Model), Windows NT

access controls, 734-736
Active X security, 749-754
application audits, 741-749
application identity, 728, 732-733
application registration, 741-743
ATL (Active Template Library), 740
automation objects, 729, 749
CLSID mapping, 728
components, 725-727
DCOM Configuration utility, 731-732
impersonation, 736-737
interface audits, 743-749
interfaces, 727-728
IPC (interprocess communications), 725-754
MIDL (Microsoft Interface Definition Language),

738-740
OLE (Object Linking and Embedding), 728
proxies, 730
stubs, 731
subsystem access permissions, 733-734
threading, 729-730
type libraries, 731

COMbust tool, 749
Common Gateway Interface. See CGI (Common

Gateway Interface)
Common Language Runtime (CLR), 6
common real types, 238
Communications of the ACM, 450
Comparison Vulnerability Example listing (6-20), 266
comparisons, type conversions, C programming 

language, 265-270
compensating controls, operational vunerabilities, 76
component diagrams, UML (Unified Markup

Language), 54
Component Object Model (COM). See COM

(Component Object Model)
Computer Security: Art and Science, 5
concurrent programming

APCs (asynchronous procedure calls), 765
deadlocks, 760-762
multithreaded programs, 810-825
process synchronization, 762

interprocess synchronization, 770-783
lock matching, 781-783
synchronization object scoreboard, 780-781
System V synchronization, 762-764
Windows NT synchronization, 765-770

race conditions, 759-760
reentrancy, 757-759

repetition, 806-809
shared memory segments, 763
signals, 783

asynchronous-safe function, 791-797, 
800-801, 804-809

default actions, 784-785
handling, 786-788
interruptions, 791-796, 806-809
jump locations, 788-791
non-returning signal handlers, 797-801, 

804, 806
sending, 786
signal handler scoreboard, 809-810
signal masks, 785
vunerabilities, 791-801, 804-809

starvation, 760
threads

deadlocks, 823-825
PThreads API, 811-813
race conditions, 816-823
starvation, 823-825
Windows API, 813-815

condition variables, PThreads API, 812-813
conditions, ACC logs, unanticipated conditions, 

364-365
confidentiality, 41

encryption
algorithms, 41-42
block ciphers, 42
common vunerabilities, 43-45
exchange algorithms, 43
IV (initialization vector), 42
stream ciphers, 42

expectations of, 7-8
configuration files

OpenSSH, 160
UNIX, 508-509

configuration settings
ASP, 1118
ASP.NET, 1121-1123
Java servlets, 1112-1113
PHP, 1104-1105

CONNECT method, 1021
Connection header field (HTTP), 1018
connection points, objects, 736
connections

RPCs (Remote Procedure Calls), 706
TCP (Transmission Control Protocol), 865, 869

blind connection spoofing, 876-879
connection tampering, 879
establishing, 871-872
fabrication, 875-876
flags, 870
resetting, 872
states, 869-870

ConnectNamedPipe( ) function, 704
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constraint establishment, test cases, code audits, 
144-145

Content-Encoding header field (HTTP), 1019
Content-Language header field (HTTP), 1019
Content-Length header field (HTTP), 1019
Content-Location header field (HTTP), 1019
Content-MD5 header field (HTTP), 1019
Content-Range header field (HTTP), 1019
Content-Transfer-Encoding header field (HTTP), 1019
Content-Type header field (HTTP), 1019
CONTENT_LENGTH (environment variable), 1088
CONTENT_TYPE (environment variable), 1088
context handles, RPCs (Remote Procedure Calls), 

718-721
contexts, Windows NT sessions, access tokens, 

644-645
control flow, auditing, 326-339

flow transfer statements, 336
looping constructs, 327-336
switch statements, 337-339

control-flow sensitive coide navigation, 109-110
Controller component (MVC), 1045
controlling terminals, UNIX, 574
conversion rules, type conversions, C programming

language, 225-231
ConvertSidToStringSid( ) function, 637
ConvertStringSidToSid( ) function, 637
cookies, 1036-1038

stack cookies, 190-191
COPY method, 1022
core files, 519
CoRegisterClassObject( ) function, 744
Correct Use of GetFullPathName( ) listing (8-13), 416
corruption (memory), 167

buffer overflows, 168-169
global overflows, 186
heap overflows, 183-186
off-by-one errors, 180-183
process memory layout, 169
SHE (structured exception handling) attacks,

178-180
stack overflows, 169-178
static overflows, 186

protection mechanisms, 189-190
ASLR (address space layout 

randomization), 194
assessing, 196-202
function pointer obfuscation, 195-196
heap hardening, 191-193
nonexecutable stack, 193
SafeSEH, 194-195
stack cookies, 190-191

shellcode, 187-189
Cost header field (HTTP), 1019
counter (CTR) mode cipher, 42

CP (candidate point), code audits, 112, 119-128
application-specific CPs, 128
automated source analysis tools, 120-122
black box generated CPs, 123-128
general approach, 119-120
simple binary CPs, 122
simple lexical CPs, 122

crackaddr( ) function, 303
CRC (cyclic redundancy check) routines, 46
Create*( ) functions, 631
CreateEvent( ) function, 768
CreateFile( ) function, 632, 661, 664-665, 667, 674-675,

699-700
CreateHardLink( ) function, 676
CreateMutex( ) function, 630, 766
CreateNamedPipe( ) function, 699-700, 704
CreateNewKey( ) function, 684
CreatePrivateNamespace( ) function, 631
CreateProcess( ) function, 426, 654
CreateRestrictedToken( ) function, 642
CreateSemaphore( ) function, 768
CreateWaitableTimer( ) function, 769
credentials, authorization, untrustworthy 

credentials, 37
critical sections, Windows API, 814
cross-site scripting

ASP, 1118
ASP.NET, 1121
Java servlets, 1110-1111
Perl, 1096
PHP, 1103
XSS, 1071-1074

cryogenic sleep attacks, 545-546
crypto subsystem, SSH server, code audits, 160
cryptographic hash functions, 46
cryptographic signatures, 47
cryptography, 41

cryptographic data integrity, 45
cryptographic signatures, 47
hash functions, 45-46
originator validation, 47
salt values, 46

encryption
algorithms, 41-42
block ciphers, 42
common vunerabilities, 43-45
exchange algorithms, 43
IV (initialization vector), 42
stream ciphers, 42

CRYPTO_realloc_clean( ) function, 380
Cscope source code navigator, 149
Ctags source code navigator, 149-150
CTR (counter) mode cipher, 42
Cutler, David, 626
cyclic redundancy check (CRC) routines, 46
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D
DACL (discretionary access control list), 632
daemons, UNIX, 467-468
Dangerous Data Type Use listing (7-41), 374
Dangerous Use of IsDBCSLeadByte( ) 

listing (8-30), 454
Dangerous Use of strncpy( ) listing (8-2), 396
data assumptions, ACC logs, 365-366
data buffers, OpenSSH, vunerabilities, 307-310
data flow, vunerabilities, 18-19
data flow diagrams (DFDs), 55-58
data hiding, 307
data integrity, 45

cryptographic signature, 47
hash functions, 45-46
originator validation, 47
salt values, 46

data link layer, network segmentation, 84-85
data ranges, lists, 324, 326
data storage, C programming language, 204-211
data tier (Web applications), 1042-1043
Data Truncation Vulnerability listing (8-11), 415
Data Truncation Vulnerability 2 listing (8-12), 415
data types, application protocols, matching, 927-934
data verification, application protocols, 935
data-flow sensitivee code navigation, 109-110
datagrams, IP datagrams, 834-836
data_xfer( ) function, 355
Date header field (HTTP), 1019
DCE (Distributed Computing Environment) RPCs,

618, 706
DCOM (Distributed Component Object Model), 328,

725-754, 829
access controls, 734-736
Active X security, 749-754
application audits, 741-749
application identity, 732-733
application registration, 741-743
ATL (Active Template Library), 740
automation objects, fuzz testing, 749
DCOM Configuration utility, 731-732
impersonation, 736-737
interface audits, 743-749
MIDL (Microsoft Interface Definition Language),

738-740
subsystem access permissions, 733-734

DCOM Configuration utility, 731-732
DDE (Dynamic Data Exchange), 658

Windows messaging, 697
DDE Management Library (DDEML) API, 697
de Weger, Benne, 48
deadlocks

concurrent programming, 760, 762
threading, 823-825

debuggers, code auditing, 151-154

DecodePointer( ) function, 195
DecodeSystemPointer( ) function, 195
decoding, Unicode, 449-450
Decoding Incorrect Byte Values listing (8-28), 443
decoding routines, RPCs (Remote Procedure Calls),

UNIX, 622-623
decomposition, software design, 27-28
default argument promotions, 232, 237
default settings, insecure defaults, 69
default site installations, Web-based applications, 75
Default Switch Case Omission Vulnerability 

listing (7-24), 338
default type conversions, 224
defense in depth, 31
definition files, RPCs (Remote Procedure Calls),

UNIX, 619-622
DELETE method, 1020
delete payloads, ISAKMP (Internet Security

Association and Key Management Protocol), 
969-971

delete_session( ) function, 201
Delivering Signals for Fun and Profitî, 806
demilitarized zones (DMZs), 86
denial-of-service (DoS) attacks. See DoS (denial of

service) attacks
dependency alnalysis, code audits, 135-136
DER (Distinguished Encoding Rules), ASN.1 (Abstract

Syntax Notation), 977-979
Derived-From header field (HTTP), 1019
descriptors, UNIX files, 512-513
design

SDLC (Systems Development Life Cycle), 13
software, 26

abstraction, 27
accuracy, 32
algorithms, 26-27
clarity, 32
decomposition, 27-28
failure handling, 35-36
loose coupling, 33
strong cohesion, 33
strong coupling exploitation, 34
threat modeling, 49-66
transitive trust exploitation, 35
trust relationships, 28-31
vunerabilities, 14-15

design conformity checks, DG (design generalization)
strategy, 131-133

desk checking, code audits, 137-139
desktop object, IPC (interprocess communications),

690-691
Detect_attack Small Packet Algorithm in SSH 

listing (6-18), 261
Detect_attack Truncation Vulnerability in SSH 

listing (6-19), 262
developer documentation, reviewing, 51
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developers, interviewing, 51
development protective measures, operational 

vulnerabilities, 76-79
ASLR (address space layout randomization), 78
heap protection, 77-78
nonexecutable stacks, 76
registered function pointers, 78
stack protection, 77
VMs (virtual machines), 79

device files
UNIX, 511
Windows NT, 666-668

DeviceIoControl( ) function, 677
DFDs (data flow diagrams), 55-58
DG (design generalization) strategies, code audits,

112, 128-133
design conformity check, 131-133
hypothesis testing, 130-131
system models, 129-130

Different Behavior of vsnprintf( ) on Windows and
UNIX listing (8-1), 394

Digital Encryption Standard (DES) encryption, 44
Digital Equipment Corporation (DEC) Virtual

Memory System (VMS), 626
dilimiters

embedded delimiters, metacharacters, 408-411
extraneous dilimiters, 598-601

direct program invocation, UNIX, 565-570
directionality, stateful firewalls, 906
directories, UNIX, 462-464, 514-516

creating, 500-503
entries, 514
Filesystem Hierarchy Standard, 463
mount points, 463
parent directories, 503
permissions, 498-499
public directories, 507-508
race conditions, 535-538
root directories, 574
safety, 503
working directories, 574

directory cleaners, UNIX temporary files, 546-547
directory indexing, Web servers, 74
Directory Traversal Vulnerability listing (8-15), 420
discretionary access control list (DACL), 632
Distributed Component Object Model (DCOM). See

DCOM (Distributed Component Object Model)
DCE (Distirbuted Computing Environment) RPCs,

618, 706
Division Vulnerability Example listing (6-27), 274
DllGetClassObject( ) function, 749
DLLs (dynamic link libraries), 70

loading, 656-658
redirection, 657

dlopen( ) function, 607-608
DMZs (demilitarized zones), 86

DNS (Domain Name System), 984, 989-990
headers, 991-992
length variables, 996, 998-1000, 1002
name servers, 986-987
names, 993-996
packets, 991
question structure, 992
request traffic, 989
resource records, 984-985, 993

conventions, 988
spoofing, 1002-1005
zones, 986-987

documentation
application protocols, collecting, 922-923
threat modeling, 62-65

documentation phase, code review, 93, 106-108
findings summary, 106

domain name caches, 986
Domain Name System (DNS). See DNS (Domain

Name System), 984
domain names, 985
domain sockets, UNIX, 615, 617-618
domains, 985

error domains, 378-379
DoS (denial-of-service) attacks, 48

name validation, 931-932
DOS 8.3 filenames, 673-674
Double-Free Vulnerability in OpenSSL 

listing (7-46), 380
Double-Free Vulnerability listing (7-45), 379
double-frees, auditing, 379-385
doubly linked lists, 322
Dowd, Mark, 895, 967
do_cleanup( ) function, 793
do_ip( ) function, 838
do_mremap( ) function, 342-343
Dragomirescu, Razvan, 1095
DREAD risk ratings, 63-64
Dubee, Nicholas, 478
duplicate elements, lists, 323
dynamic content, 1009
Dynamic Data Exchange (DDE). See DDE (Dynamic

Data Exchange)
dynamic link libraries (DLLs). See DLLs (dynamic

link libraries)

E
EBP (extended base pointer), 173
edit( ) function, 585
EDITOR environment variable (UNIX), 606
effective groups, UNIX, 465, 573
effective users, UNIX, 464, 573
EH (exception handling), 179
Einstein, Albert, 297
elements, lists, duplicate elements, 323
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Embedded Delimiter Example listing (8-8), 409
embedded delimiters, metacharacters, 408-411
embedded path information (HTTP), 1022-1023
embedding state in HTML and URLs, 1032-1033
Empty List Vulnerabilities listing (7-12), 322
empty lists, vunerabilities, 322-323
encapsulation, packets, 920
EncodePointer( ) function, 195
EncodeSystemPointer( ) function, 195
encoding

entities, 443
HTML encoding, 443-444
multiple encoding layers, 444-445
parameters, 1026
UTF-16 encoding, 449
UTF-8 encoding, 447-448
XML encoding, 443-444

encryption, 41, 1058-1059
algorithms, 41-42
asymmetric encryption, 42
block ciphers, 42
common vunerabilities, 43-45
Digital Encryption Standard (DES) 

encryption, 44
ISAKMP (Internet Security Association and Key

Management Protocol), vunerabilities, 971-972
IV (initialization vector), 42
key exchange algorithms, 43
stream ciphers, 42
symmetric encryption, 41

end user license agreements (EULAs), 9
endpoint mappers, 706
endpoints, RPC servers, binding to, 712-714
enforcing policies, 36-49
enhanced kernel protections, 82
enterprise firewalls, layer 7 inspection, 894
entities (encoded data), 443
entries, UNIX directories, 514
entry points, 50
ENV environment variable (UNIX), 605-606
environment arrays, UNIX file descriptors, 591-611
environment strings, Linux, 594
environment subsystems, 627
environment variables, 1087-1093

PATH_INFO, 1022
UNIX, 603-609

environmental attacks, 21-22
equality operators, 243
err( ) function, 425
error checking branches, code paths, 135
error domains, 378-379
error messages, overly verbose error messages, 

Web-based applications, 75

errors
lists, pointer updates, 323-324
loops, 335-336

escape_sql( ) function, 434
escaping metacharacters, 439-440
ESP (extended stack pointer), 170
Esser, Stefan, 1103
establishing TCP connections, 871
ETag header field (HTTP), 1019
/etc directory (UNIX), 463
EULAs (end user license agreements), 9
eval( ) function

Perl, 1095-1096
PHP, 1101-1103

evasion, metacharacter evasion, 441-445
event objects, Windows NT, 767
Example of Bad Counting with Structure Padding 

listing (6-34), 286
Example of Dangerous Program Use listing (8-19), 428
Example of Structure Padding Double Free 

listing (6-33), 286
exception handling (EH), C++, 179
exceptional conditions, 22
execl( ) function, 569
Execute( ) function, ASP, 1117-1118
execve( ) function, 187, 426, 566-567, 591-592
ExpandEnvironmentStrings( ) function, 418
Expect header field (HTTP), 1019
expectations, security, 7-9
Expert C Programming, 204
Expires header field (HTTP), 1019
explicit allow filters (white lists), metacharacters, 

435-436
explicit deny filters (black lists), metacharacters, 

435-436
explicit type conversions, 224
exploiting transitive trusts, 35
Exploiting Software, 168
export function tables, 52
extended base pointer (EBP), 173
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kernel files, 511
libraries, 510
links, 515, 517-525
log files, 510
named pipes, 511
pathnames, 462
paths, 503-507
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Hart, Johnson M., 654
hash functions, 45-46
hash payloads, ISAKMP (Internet Security

Association and Key Management Protocol), 
964-965

hash tables, auditing, 321-322, 326
hash-based message authentication code (HMAC), 47
hashing algorithms, 326
headers

DNS (Domain Name System), 991-992
HTTP (Hypertext Transport Protocol), 1018-1020

fields, 1018-1020
parsing, 937-938

IP (Internet Protocol), validation, 836-844
ISAKMP (Internet Security Association and Key

Management Protocol), 949-952
certificate payloads, 963-964
delete payloads, 969-971
hash payloads, 964-965
identification payloads, 961-963
key exchange payloads, 959, 961
nonce payloads, 965-966
notification payloads, 966-968
proposal payloads, 956-958
security association payloads, 956
signature payloads, 965
transform payloads, 959
vendor ID payloads, 971

TCP headers, 865
validation, 866-867

UDP headers, validation, 864
headers (HTTP), Referer, 1030-1031
heap hardening, 191-193
heap overflows, buffer overflows, 183-186
heap protection, operational vulnerabilities, 

preventing, 77-78
Henriksen, Inge, 1089
HERT (Hacker Emergency Response Team), 877
Hex-encoded Pathname Vulnerability 

listing (8-27), 441
hexadecimal encoding, pathnames, vunerabilities,

441-443
hidden fields, auditing, 1036
high-level attack vectors, OpenSSH, code auditing,

162-164
HKEY_CLASSES_ROOT key, 726
HMAC (hash-based message authentication code), 47
Hoglund, Greg, 168
home directories, UNIX users, 462
/home directory (UNIX), 463
HOME environment variable (UNIX), 604-605
homographic attacks, 1060

Unicode, 450
Host header field (HTTP), 1019
host-based firewalls, 82
host-based IDSs (intrusion detection systems), 83
host-based IPSs (intrusion prevention systems), 83
host-based measures, operational vulnerabilities, 

79-83
antimnalware applications, 82-83
change monitoring, 83
choot jails, 80
enhanced kernel protections, 82
file system persmissions, 79
host-based firewalls, 82
host-based IDSs (intrusion detection 

systems), 83
host-based IPSs (intrusion prevention 

systems), 83
object system persmissions, 79
restricted accounts, 80
system virtualization, 81

How to Survive a Robot Uprising, xvii
Howard, Michael, 50, 647-648, 736
HPUX, 460
HTML (Hypertext Markup Language), 1009

encoding, 443-444
HTTP (Hypertext Transport Protocol), 921, 

937-948, 1009
authentication, 1033-1036, 1056-1057
cookies, 1036-1038
embedded path information, 1022-1023
forms, 1024-1025

INDEX

1145



headers, 1018-1020
fields, 1018-1020
parsing, 937-938

methods, 1020
CONNECT, 1021
DELETE, 1020
GET, 1023, 1026
OPTIONS, 1021
parameter encoding, 1026
POST, 1025-1026
PUT, 1020
SPACEJUMP, 1021
TEXTSEARCH, 1021
TRACE, 1021
WebDAV (Web Distributed Authoring and

Versioning) methods, 1022
overview of, 1014
posting data, 942-948
query strings, 1023-1024
requests, 1014-1016, 1030-1031
resource access, 940-941
responses, 1016-1017
sessions, 1038-1039, 1049-1052

security vulnerabilities, 1051-1052
session management, 1052-1053
session tokens, 1053-1056

state maintenance, 1027-1029
client IP addresses, 1029-1030
cookies, 1036-1038
embedding state in HTML and URLs, 

1032-1033
HTTP authentication, 1033-1036, 1056-1057
Referer request headers, 1030-1031
sessions, 1038-1039, 1049, 1051-1056

utility functions, 941-942
versions, 1017-1018

HTTP request methods, 73
hybrid approach, application review, 100-101
Hypertext Markup Language (HTML). See HTML

(Hypertext Markup Language)
Hypertext Transfer Protocol (HTTP). See HTTP

(Hypertext Transport Protocol)
hypothesis testing, DG (design generalization) 

strategy, 130-131

I
IDA Pro binary navigation tool, 156
IDC (Internet Database Connection), 1013
identification payloads, ISAKMP (Internet Security

Association and Key Management Protocol), 
961-963

idioms, UNIX privileges, misuse of, 486-487
IDL files, RPCs (Remote Procedure Calls), 708-710
IDs, files, UNIX, 494-495

IDSs (intrusion detection systems), 88
host-based IDSs (intrusion detection 

systems), 83
If Header Processing Vulnerability in Apache’s

mod_dav Module listing (8-6), 404
If-Match header field (HTTP), 1019
If-Modified-Since header field (HTTP), 1019
If-None-Match header field (HTTP), 1019
If-Range header field (HTTP), 1019
If-Unmodified-Since header field (HTTP), 1019
Ignoring realloc( ) Return Value listing (7-25), 341
Ignoring Return Values listing (7-28), 345
ImpersonateNamedPipe( ) function, 700-703
impersonation, 1059-1060

DCOM (Distributed Component Object Model),
736-737

IPC (interprocess communications), 688-689
levels, 688-689
SelimpersonatePrivilege, 689

RPCs (Remote Procedure Calls), 716-717
Windows NT sessions, access tokens, 647

implementation
SDLC (Systems Development Life Cycle), 13
vunerabilities, 15-16

implementation analysis, OpenSSH, code auditing,
161-162

implementation defined behavior, C programming
language, 204

implicit type conversions, 224
import function tables, 52
imports, Windows binary layout, 70
in-band representation, metadata, 407
in-house software audits, 10
.inc files

ASP, 1118
PHP, 1105

include( ) method, Java servlets, 1108
Incorrect Temporary Privilege Relinquishment in

FreeBSD Inetd listing (9-2), 487
independent research, 10
indexed queries, 1024, 1086-1087
Indirect Memory Corruption listing (5-5), 199
indirect program invocation, UNIX, 570-572
information collection

application review, 96
threat modeling, 50-53

inheritance
ACLs (access control lists), Windows NT, 649
Windows NT object handles, 633-636

initgroups( ) function, 477
initialization, variables, auditing, 312-315
initialization vector (IV), 42
initialize_ipc( ) function, 777
initJobThreads( ) function, 773

INDEX

1146



inline evaluation
ASP, 1117-1118
ASP.NET, 1121
Java servlets, 1110
Perl, 1095-1096
PHP, 1101-1103

inodes (information nodes), UNIX files, 513-514
input

extraneous input thinning, 145-146
malicious input, tracing, 113-114
treating as hostile, 144
vulnerabilities, 18-19

input_userauth_info_response( ) function, 216
insecure defaults, 69
insufficient validation, authentication, 38
integer conversion rank, 233
integer overflow, 927-928
Integer Overflow Example listing (6-2), 215
Integer Overflow with 0-Byte Allocation Check 

listing (7-37), 370
Integer Sign Boundary Vulnerability Example in

OpenSSL 0.9.6l listing (6-6), 222
integer types, C programming language, 205-206
integer underflow, 928, 930-931
integers

promotions, 233-238
signed integers

boundaries, 220-223
vunerabilities, 246-248

type conversions, 228-229
narrowing, 227-228
sign extensions, 248-265
value preservation, 225-226
widening, 226-227

unsigned integers
boundaries, 213-218, 220
numeric overflow, 215-217
numeric underflow, 217-218
vunerabilities, 246-248

integration, SDLC (Systems Development Life 
Cycle), 13

integrity, 45
auditing, importance of, 9, 11
common vunerabilities, 47-48
cryptographic signatures, 47
expectations of, 8
hash functions, 45-46
originator validation, 47
salt values, 46

Intel architectures
carry flags (CFs), 214
multiplication overflows, 218, 220

interface proxies, COM (Component Object 
Model), 730

interfaces
COM (Component Object Model) applications,

727-728
auditing, 743-749

network interfaces, 832
RPC servers, registering, 711-712
vulnerabilities, 21

internal flow analysis, code auditing, 133-135
internal trusted sources, spoofing attacks, 

firewalls, 915
Internet Database Connection (IDC), 1013
Internet Server Application Programming Interface

(ISAPI), 1010
interprocess communication, UNIX, 611-618
interprocess communications (IPC). See IPC 

(interprocess communications)
interprocess synchronization, vulnerabilities, 770-783
interruptions, signals, 791-796, 806-809
interviewing developers, 51
intrusion prevention systems (IPSs). See IPSs 

(intrusion prevention systems)
INVALID_HANDLE_VALUE, NULL, compared, 

632-633
invocation

DCOM objects, 735-736
UNIX programs, 565-572

direct invocation, 565-570
indirect invocation, 570-572

IP (Internet Protocol), 831-832
addresses, 832-833

maintaining state with, 1029-1030
addressing, 833-834
checksum, 843
fragmentation, 853-863

overlapping fragments, 858-862
pathological fragment sets, 855-858
processing, 854-855

header validation, 836-844
IP packets, 834-836
options, 844-851
source routing, 851-853
subnet, 832

IPC (interprocess communications), 
Windows NT, 685

COM (Component Object Model), 725-754
DDE (Dynamic Data Exchange), 697
desktop object, 690-691
impersonation, 688-689
mailslots, 705-706
messaging, 689-698
pipes, 698-705
redirector, 686-688
RPCs (Remote Procedure Calls), 706-724
security, 686-689

INDEX

1147



shatter attacks, 694-697
window station, 690
WTS (Windows Terminal Services), 697-698

IPSs (intrusion prevention systems), 88
host-based IPSs (intrusion prevention 

systems), 83
IRIX, 460
ISAKMP (Internet Security Association and Key

Management Protocol), 948
encryption vunerabilities, 971-972
headers, 949-952
payloads, 952-956

certificate payloads, 963-964
certificate request payloads, 964
delete payloads, 969-971
hash payloads, 964-965
identification payloads, 961-963
key exchange payloads, 959, 961
nonce payloads, 965-966
notification payloads, 966-968
proposal payloads, 956-958
SA (security association) payloads, 956
signature payloads, 965
transform payloads, 959
vendor ID payloads, 971

ISAPI (Internet Server Application Programming
Interface), 1010

ISAPI filters, 71
IsDBCSLeadByte( ) function, 454
iterative process, application review, 98-99

J
Jaa, Tony, 685
Java Database Connectivity (JDBC), 1106
Java servlets, 1014, 1105-1106

configuration settings, 1112-1113
cross-site scripting, 1110-1111
file access, 1107-1108
file inclusion, 1108-1109
inline evaluation, 1110
JSP file inclusion, 1109-1110
shell invocation, 1108
SQL injection queries, 1106-1107
threading, 1111-1112
Web server APIs versus, 1106

Java Virtual Machine (JVM), 6
JavaScript Object Notation (JSON), 1085
JavaServer Pages (JSP), 1013-1014, 1106

file inclusion, 1109-1110
JDBC (Java Database Connectivity), 1106
Johanson, Eric, 1060
Johnson, Nick, 459
JSON (JavaScript Object Notation), 1085
JSP (JavaServer Pages), 1013, 1106

file inclusion, 1109-1110

jump locations, signals, 788-791
junction points, Windows NT files, 676-680

arbitrary file accesses, 678-680
race conditions, 680
TOCTTOU (time of check to time of use), 680

JVM (Java Virtual Machine), 6

K
kernel

Linux, probing, 569
UNIX, 461

kernel files, UNIX, 511
Kernel Object Manager (KOM), 627
Kernel Probe Vulnerability in Linux 2.2 

listing (10-1), 569
key exchange payloads, ISAKMP (Internet Security

Association and Key Management Protocol), 
959, 961

keys, Windows NT registry
key squatting, 682-684
permissions, 681-682
predefined keys, 681

kill bit, Active X controls, 752
kill( ) function, 786
Kirch, Olaf, 545
Klima, Vlastimil, 48
KOM (Kernel Object Manager), 627
Koziol, Jack, 168
Krahmer, Sebastian, 606, 877
Kuhn, Juan Pablo Martinez, 885

L
Lai, Xuejia, 48
languages (programming), C, 203-204

arithmetic boundary conditions, 211-223
binary encoding, 207-208
bit fields, 205
bitwise shift operators, 236-237
byte order, 209
character types, 205
data storage, 204-211
floating types, 205
function invocations, 237-238
implementation defined behavior, 204
integer types, 205-206
macros, 288-289
objects, 205
operators, 271-277
order of evaluation, 282-283
pointers, 277-282
precedence, 287-288
preprocessor, 288-289
signed integer boundaries, 220-223
standards, 204
structure padding, 284-287

INDEX

1148



switch statements, 237
type conversion vunerabilities, 246-270
type conversions, 223-246
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embedded path information, 1022-1023
forms, 1024-1025
GET method, 1023, 1026
parameter encoding, 1026
POST method, 1025-1026
query strings, 1023-1024

parent directories, UNIX, 503
parent functions, vunerabilities, 318
parroted request variables, 1089
parse_rrecord( ) function, 998
parsing HTTP headers, 937-938
passive FTP, 901
password files, UNIX, 461
PATH environment variable (UNIX), 603-604
path information (HTTP), 1022-1023
path metacharcters, 418-422

file canonicalization, 419-420
Windows registry, 420-422

path traversal, 1067-1068
pathnames

hexadecimal encoding, 441-443
UNIX, 462

pathological code paths, 135
pathological fragment sets, IP (Internet Protocol), 

855-858
paths

files, UNIX, 503-507
path traversal, 1067-1068

PATH_INFO environment variable, 1022, 1090-1093
PATH_TRANSLATED environment variable, 

1090-1093
Payloads, ISAKMP (Internet Security Association and

Key Management Protocol), 952-956
certificate payloads, 963-964
certificate request payloads, 964
delete payloads, 969-971
hash payloads, 964-965
identification payloads, 961-963
key exchange payloads, 959, 961
nonce payloads, 965-966
notification payloads, 966-968
proposal payloads, 956-958
SA (security association) payloads, 956
signature payloads, 965
transform payloads, 959
vendor ID payloads, 971

PCI (Payment Card Industry) 1.0 Data Security
Requirement, 45

peer reviews, application review, 106
PER (Packed Encoding Rules), ASN.1 (Abstract

Syntax Notation), 979-983
Perl, 1093

cross-site scripting, 1096
file access, 1094
file inclusion, 1095
inline evaluation, 1095-1096
open( ) function, 429-431
shell invocation, 1095
SQL injection queries, 1093-1094
taint mode, 1096

permission bitmasks, 495-497
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permissions
DCOM (Distributed Component Object Model),

subsystem access permissions, 733-734
Directories, UNIX, 498-499
file access, Windows NT, 659, 661
file systems, 79
files, UNIX, 495-497
mailsots, 705
object systems, 79
registry keys, Windows NT, 681-682
UNIX files, race conditions, 533-534
Windows NT pipes, 698-699

personal user files, UNIX, 509
phishing, 1059-1060
PHP (PHP Hypertext Preprocessor), 1013, 1096-1097

configuration settings, 1104-1105
cross-site scripting, 1103
file access, 1098-1099
file inclusion, 1101
inline evaluation, 1101-1103
shell invocation, 1099, 1101
SQL injection queries, 1097-1098

php_error_docref( ) function, 332
phrack magazine, 168
physical layer, network segmentation, 84
PIDs (process IDs), UNIX, 464
pipe squatting, Windows NT, 703-705
pipe( ) system call, 612
pipes

UNIX, 612, named pipes, 612-614
Windows NT

anonymous pipes, 698
creating, 699-700
impersonation, 700-703
IPC (interprocess communications), 698-705
named pipes, 698-699
permissions, 698-699
pipe squatting, 703-705

PKI (Public Key Infrastructure), 43
point-of-sale (PoS) system, 49
Pointer Arithmetic Vulnerability Example 

listing (6-29), 281
pointer updates, lists, errors, 323-324
pointers, 225

arithmetic, 278-280
C programming language, 277-282
EBP (extended base pointer), 173
ESP (extended stack pointer), 170
function pointers, obfuscation, 195-196
outdated pointers, 351, 353

ProFTPD, 354-355
text strings, incrementing incorrectly, 401-406
vunerabilities, 280-282

Pol, Joost, 588

policies (security), 5-7
access control policy, 38
breaches, 132
enforcing, 36-49

pop( ) function, 170
popen( ) function, 426, 429-431
Portable Operating System Interface for UNIX

(POSIX), 627
PoS (point-of-sale) system, 49
positive decimal integers, binary notation, converting

to, 207
positive numbers, decimal conversion from binary

notation, 207
POSIX (Portable Operating System Interface for

UNIX), 460, 627
signals, handling, 784

POST method, 1025-1026
Postincrement Loop Vulnerability listing (7-21), 334
posting data, HTTP (Hypertext Transfer Protocol),

942, 944-946, 948
posttest loops, pretest loops, compared, 334-335
Practical Cryptography, 41
Pragma header field (HTTP), 1019
preassessment phase, code review, 93

application access, 95-96
information collection, 96
scoping, 94

precedence, C programming language, 287-288
precision, integer types, 206
predefined registry keys, Windows NT, 681
prepared statements, 1062
preprocessors, C programming language, 288-289
Prescan Sign Extension Vulnerability in Sendmail 

listing (6-13), 256
prescan( ) function, 256, 356
presentation layer, network segmentation, 87
presentation logic, 1040-1041
preshared keys (PSKs), discovery of, 972
Pretest Loop Vulnerability listing (7-22), 335
pretest loops, posttest loops, compared, 334-335
primary groups, UNIX, 461
printf( ) function, 425, 555-556
Privilege Misuse in XFree86 SVGA Server 

listing (9-1), 478
privilege separation, SSH server, code audits, 160
privileges, 28

UNIX, 464-465
capabilities, 492-494
directory permissions, 498-499
dropping permanently, 479-486, 489
dropping temporarily, 486-490
extensions, 491-494
file IDs, 494-495
file permissions, 495-497
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file security, 494-512
files, 512-557
group ID functions, 475-477
management code audits, 488-490
programs, 466-468
user ID functions, 468-475
vunerabilities, 477-494

Windows NT sessions, access tokens, 640-641
XF86_SVGA servers, misuse of, 478

problem domain logic, 26-27
Problems with 64-bit Systems listing (7-42), 375
proc file system (UNIX), 511
procedures, stored, 1063-1064
Process Explorer, 636
process memory layout, buffer overflows, 169
process outline, code review, 93
processes

multiple process, shared memory, 756
process synchronization, 762

interprocess synchronization, 770-783
lock matching, 781-783
synchronization object scoreboard, 780-781
System V synchronization, 762-764
Windows NT, 765-770

signals, 783
asynchronous-safe function, 791-797, 

800-801, 804-809
default actions, 784-785
handling, 786-788
interruptions, 791-796, 806-809
jump locations, 788-791
non-returning signal handlers, 797-801, 

804-806
repetition, 806-809
sending, 786
signal handler scoreboard, 809-810
signal masks, 785
vunerabilities, 791-801, 804-809

UNIX, 464, 560
attributes, 572-611
child processes, 563
children, 560
creating, 560-562
environment arrays, 591-611
fork( ) system call, 563-565
groups, 609-611
interprocess communication, 611-618
open( ) function, 563-565
program invocation, 565-572
RPCs (Remote Procedure Calls, 618-624
sessions, 609-611
system file table, 563
terminals, 609-611
termination, 562

Windows NT, 654
DLL loading, 656-658
IPC (interprocess communications), 685-689

loading, 654-655
services, 658-659
ShellExecute( ) function, 655
ShellExecuteEx( ) function, 655

processing
IP fragmentation, 854-855
TCP (Transmission Control Protocol), 880

options, 867-869
sequence number boundary condition, 888
sequence number representation, 884-888
state processing, 880-885
URG pointer processing, 889-890
window scale option, 889

processJob( ), 773
processNetwork( ) function, 773
processThread( ) function, 783
process_file( ) function, 792
process_login( ) function, 385
process_string( ) function, 181
process_tcp_packet( ) function, 841
process_token_string( ) function, 353
profiling source code, 52-53
ProFTPD, outdated pointers, 354-355
program configuration files, UNIX, 510
program files, UNIX, 510
program invocation, UNIX, 565-572

direct invocation, 565-570
indirect invocation, 570-572

programmatic SSI, 1068
programming interfaces, Windows NT, security

descriptors, 649-652
programming languages, 203

C, 204
arithmetic boundary conditions, 211-223
binary encoding, 207-208
bit fields, 205
bitwise shift operators, 236-237
byte order, 209
character types, 205
data storage, 204-211
floating types, 205
format strings, 422-425
function invocations, 237-238
implementation definied behavior, 204
integer types, 205-206
macros, 288-289
objects, 205
operators, 271-277
order of evaluation, 282-283
pointers, 277-282
precedence, 287-288
preprocessor, 288-289
signed integer boundaries, 220-223
standards, 204
stdio file interface, 547-557
structure padding, 284-287
switch statements, 237
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type conversion vunerabilities, 246-270
type conversions, 223-246
types, 204-207
typos, 289-296
unary  operator, 236
unary + operator, 235
unary - operator, 235
undefinied behavior, 204
unsigned integer boundaries, 213-220

Perl, open( ) function, 429-431
Programming Windows Security, 637
programs, UNIX, privileged programs, 466-468
promotions, integers, 233-238
PROPFIND method, 1022
ProPolice, stack cookies, 190
proposal payloads, ISAKMP (Internet Security

Association and Key Management Protocol), 
956-958

PROPPATCH method, 1022
proprietary state mechanisms, RPCs (Remote

Procedure Calls), 721
protocol quirks, 163
protocol state, 163
protocols

application protocols, 921
ASN.1 (Abstract Syntax Notation), 972-984
auditing, 922-928, 930-937
DNS (Domain Name System), 984-996, 

998-1000, 1002-1005
HTTP (Hypertext Transfer Protocol), 937-938,

940-942, 944-946, 948
ISAKMP (Internet Security Association and

Key Management Protocol), 948-959, 
961-972

binary protocols, data type matching, 927-928,
930-932

FTP (File Transfer Protocol), 899-901
HTTP (Hypertext Transport Protocol), 1009

authentication, 1033-1036, 1056-1057
cookies, 1036-1038
embedded path information, 1022-1023
forms, 1024-1025
headers, 1018-1020
methods, 1020-1022, 1025-1026
overview of, 1014
parameter encoding, 1026
query strings, 1023-1024
requests, 1014-1016
responses, 1016-1017
sessions, 1038-1039, 1049-1056
state maintenance, 1027-1039
versions, 1017-1018

network protocols, 829-831
IP (Internet Protocol), 831-863
TCP (Transmission Control Protocol), 

864-890

TCP/IP, 830
UDP (User Datagram Protocol), 863-864

REST (Representational State Transfer), 1085
SOAP (Simple Object Access Protocol), 1085
SSL/TLS (Secure Sockets Layer/Transport Layer

Security), 1058-1059
text-based protocols, data type matching, 

932-934
proxies, COM (Component Object Model), 730
proxy firewalls, 895-896

packet-filtering firewalls, compared, 893-894
Proxy-Authorization header field (HTTP), 1019
pseudo-objects, Windows NT, 629
PSKs (preshared keys), discovery of, 972
PThreads API, 811-813

condition variables, 812-813
mutexes, 811-812

public directories, UNIX, 507-508
Public header field (HTTP), 1019
public key encryption, 42
Public Key Infrastructure (PKI), 43
public-facing administrative interfaces, Web-based

applications, 76
punctuation errors, loops, 335-336
punycode, 1060
Purczynski, Wojciech, 494
push( ) function, 170
PUT method, 1020
putenv( ) function, 594, 596-598
pw_lock( ) function, 585

Q
QA testing, 118
queries

indexed queries, 1024
parameterized queries, 1062-1063
query strings, 1023-1024
SQL queries, metacharacters, 431-434

query strings
HTTP, 1023-1024
indexed queries, 1086-1087

QueryInterface( ) function, 744-747
QUERY_STRING (environment variable), 1091-1093
question mark operators, 243
question structure, DNS (Domain Name System), 992
queues, message queues, 614

R
Race Condition from Kerberos 4 in lstat( ) and open( )

listing (9-4), 529
Race Condition in access( ) and open( ) 

listing (9-3), 526
Race Condition in open( ) and lstat( ) listing (9-5), 529
Race Condition in the Linux Kernel’s Uselib( ) 

listing (13-3), 821
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race conditions
junction points, 680
synchroniciy, 759-760
threading, 816-817, 819, 821-823
UNIX file system, 526-538

directory races, 535-538
ownership races, 534
permission races, 533-534
TOCTOU (time to check to time of use), 

527-531
Rain Forest Puppy (RFP), 1094
Range header field (HTTP), 1019
raw memory devices, 511
raw sockets, 467
Raymond, Eric, 541
RDBMS (relational database management 

system), 431
read( ) function, 315
reading files, stdio file system, 550-555
read_data( ) function, 314
read_line( ) function, 358
real groups, UNIX, 465
real users (UNIX), 464, 574
realloc( ) function, 341-342
Reallocation Double-Free Vulnerability 

listing (7-47), 383
Reallocation Integer Overflow listing (7-40), 373
recursive name servers (DNS), 986
redirector, Windows NT, 686-688

session credentials, 687
SMB relay attacks, 688
UNC (Universal Naming Convention) paths, 686

redundancy in Web applications, 1040
reentrancy

functions, 757-759
multithreaded programs, 810

referentially opaque side effects, functions, 351
referentially transparent side effects, functions, 351
Referer header field (HTTP), 1019
Referer request header, 1030-1031
RegCloseKey( ) function, 628
RegCreateKey( ) function, 420
RegCreateKeyEx( ) function, 420, 683
RegDeleteKey( ) function, 421
RegDeleteKeyEx( ) function, 421
RegDeleteValue( ) function, 421
registered function pointers, operational 

vulnerabilities, preventing, 78
registering interfaces, RPC servers, 711-712
register_globals option (PHP), 1104-1105
registration, COM (Component Object Model) 

applications, 741-743
registry, Windows NT, 680

key permissions, 681-682
key squatting, 682-684
predefined keys, 681
value squatting, 682-684

RegOpenKey( ), 420
RegOpenKey( ) function, 422
RegOpenKeyEx( ), 420
RegOpenKeyEx( ) function, 422
RegQueryValue( ) function, 420
RegQueryValueEx( ) function, 420
relational database management system 

(RDBMS), 431
relational operators, 243
relationships, variables, 298-307
relinquishing UNIX privileges

permanently, 479-486, 489
temporarily, 486-490

remediation support phase, code review, 93, 108-109
remote client socket, OpenSSH, 161
Remote Procedure Call (RPC) endpoints, 50
REMOTE_ADDR (environment variable), 1088
REMOTE_HOST (environment variable), 1088
REMOTE_IDENT (environment variable), 1088
REMOTE_USER (environment variable), 1088
Reopening a Temporary File listing (9-6), 542
repetition, signals, 806-809
Representational State Transfer (REST), 1085
request traffic, DNS (Domain Name System), 989
request variables, 1088

parroted request variables, 1089
synthesized request variables, 1089-1091

requests
HTTP, 1014-1016

Referer request header, 1030-1031
RPC servers, listening to, 714

REQUEST_METHOD (environment variable), 1088
require( ) function, 1095
requirements, software, 15
requirements definitions, SDLC (Systems

Development Life Cycle), 13
rereading code, code audits, 136-137
resetting TCP connections, 872
resolvers, DNS (Domain Name System), 986-987
resource limits, UNIX, 574-580
resource records, DNS (Domain Name System), 

984-985, 993
conventions, 988

responses (HTTP), 1016-1017
spoofing for, 916

REST (Representational State Transfer), 1085
restricted accounts, operational vulnerabilities, 

preventing, 80
restricted tokens, Windows NT sessions, access

tokens, 642-644
retention, process attributes, UNIX, 573-574
retrieve_data( ) function, 758
Retry-After header field (HTTP), 1019
Return Value Checking of MultiByteToWideChar( )

listing (8-29), 452
return value testing, functions, 340-350
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return values, functions
finding, 344
ignoring, 341-346
misinterpreting, 346-350

reuse
code, 52
UNIX temporary files, 544-546

reverse-engineering applications, 924-927
reviewing code, 92-93

application review phase, 91-93, 97-98, 103-105
bottom-up approach, 100
hybrid approach, 100-101
iterative process, 98-99
peer reviews, 106
planning, 101-103
reevaluation, 105
status checks, 105
top-down approach, 99
working papers, 103-104

code auditing, 111, 133, 147
binary navigation tools, 155-157
CC (code comprehension) strategies, 

112-117, 119
CP (candidate point) strategies, 112, 119-120,

122-128
debuggers, 151-154
dependency alnalysis, 135-136
desk checking, 137-139
DG (design generalization) strategies, 112,

128-133
fuzz testing tools, 157-158
internal flow analysis, 133-135
OpenSSH case study, 158-164
rereading code, 136-137
scorecard, 112
source code navigators, 148-151
subsystem alnalysis, 135-136
test cases, 139-140, 142-147

code navigation, 109
external flow sensitivity, 109-110
tracing, 111

documentation and analysis phase, 93, 106-108
findings summary, 106

preassessment phase, 93
application access, 95-96
information collection, 96
scoping, 94

process outline, 93
remediation support phase, 93, 108-109

Rey, Enno, 972
rfork( ) function, 562
RFP (Rain Forest Puppy), 1094
right shift, operators, 272-275, 277
Right Shift Vulnerability Example listing (6-26), 273
risks, DREAD risk ratings, 63-64
root directories, UNIX, 574

routers, 834
RPC (Remote Procedure Calls) servers, 711-716

authentication, 714-716
endpoints, 50

binding to, 712-714
interfaces, registering, 711-712
requests, listening to, 714

RpcBindingInqAuthClient( ) function, 715
RPCs (Remote Procedure Calls)

UNIX, 618-624
authentication, 623-624
decoding routines, 622-623
definition files, 619-622

Windows NT
ACFs (application configuration files), 710
application audits, 722-724
connections, 706
context handles, 718-721
DCE (Distributed Computing Environment)

RPCs, 706
IDL file structure, 708-710
impersonation, 716-717
IPC (interprocess communications), 706-724
MIDL (Microsoft Interface Definition

Language), 708
ONC (Open Network Computing) RPCs, 706
proprietary state mechanisms, 721
RPC servers, 711-716
threading, 721
transports, 707-708

RpcServerListen( ) function, 714
RpcServerRegisterAuthInfo( ) function, 715
RpcServerRegisterIf( ) function, 711-712
RpcServerRegisterIfEx( ) function, 711-712
RpcServerUseProtseq( ) function, 712
RpcServerUseProtseqEx( ) function, 713
running code, auditing, 567
runtime stack, activation records, 170
Russinovich, Mark E., 628-629, 654

S
Sacerdote, David, 567
SAFER (Software Restriction Policies) API, 

Windows NT sessions, access tokens, 644
SafeSEH, 194-195
salt values, 46
sandboxing, 53
SAPI_POST_READER_FUNC( ) function, 332
saved set groups (UNIX), 465
saved set users (UNIX), 465
saved set-user-IDs (UNIX), 574
saved-set-group-IDs (UNIX), 574
sa_handler, 788
/sbin directory (UNIX), 463
scanf( ) functions, 388-389
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scanning, 53
TCP packets, 897-898

Schneier, Bruce, 41
SCM (Services Control Manager), 658-659
SCO, 460
scoping, code review, 94
scorecards, code audits, 112
script URI, 1089
scripts

server-side scripting, 1013-1014
XSS (cross-site scripting), 1071-1074

SCRIPT_NAME (environment variable), 1091-1093
SDLC (Systems Development Life Cycle), 

code audits, 13
SEARCH method, 1022
search_orders( ) function, 434
second order injection, 1064-1065
second-order injection attacks, 409
secondary groups, UNIX, 461
securable objects, Windows NT, 628
secure channels, 71-72
Secure Programming, 647
Secure Socket Layer/Transport Layer Security

(SSL/TLS), 87, 1058-1059
Secure Sockets Layer (SSL). See SSL (Secure Sockets

Layer)
securelevels (BSD), 492
security

access control, 1057-1058
C/C++ problems, 1075
expectations, 7-9
OS and file system interaction, 1066

execution, 1067
file uploading, 1068-1069
null bytes, 1068
path traversal, 1067-1068
programmatic SSI, 1068

phishing and impersonation, 1059-1060
policies, enforcing, 36-49
SQL injection, 1061-1062

parameterized queries, 1062-1063
prepared statements, 1062
second order injection, 1064-1065
stored procedures, 1063-1064
testing for, 1065-1066

threading issues, 1074
Web environments, 1075-1078
XML injection, 1069-1070
XPath injection, 1070-1071
XSS (cross-site scripting), 1071-1074

security association (SA) payloads, ISAKMP (Internet
Security Association and Key Management
Protocol), 956

Security Association and Key Management Protocol
(ISAKMP). See ISAKMP (Internet Security
Association and Key Management Protocol)

security breaches, policy breaches, compared, 132
security descriptors, Windows NT, 647-648

access masks, 648-649
ACL inheritance, 649
ACL permissions, 652-653
programming interfaces, 649-652
strings, 651-652

segmentation (network), 84-88
layer 1 (physical), 84
layer 2 (data link), 84-85
layer 3 (network), 85
layer 4 (transport), 85-87
layer 5 (session), 87
layer 6 (presentation), 87
layer 7 (application), 87-88

segments, TCP (Transmission Control Protocol), 865
SEH (structured exception handling) attacks, 178-180,

194-195
SelimpersonatePrivilege, IPC (interprocess 

communications), 689
semaphore sets, 614
semaphores

System V IPC, 763-764
Windows NT, 768

semget( ) function, 777
sending signals, 786
Sendmail

crackaddr( ) function, vunerabilities, 303
prescan sign extension vunerability, 256-257
return values, update vunerability, 356

Sendmail crackaddr( ) Related Variables Vulnerability
listing (7-3), 304

Sendmail Return Value Update Vulnerability 
listing (7-32), 356

sentinel nodes, 323
sequence numbers, TCP (Transmission Control

Protocol), 884-888
Server header field (HTTP), 1019
Server Message Blocks (SMBs), 73, 688
server-side includes (SSIs), 1011
server-side scripting, 1013-1014
server-side transformation, 1012
servers

automation servers, 729
name servers, DNS (Domain Name System),

986-987
pipe squatting, 704-705
Web servers

APIs, 1010-1011
server-side scripting, 1013-1014
server-side transformation, 1012
SSIs (server-side includes), 1011

SERVER_NAME (environment variable), 1089-1090
SERVER_PORT (environment variable), 1090
SERVER_PROTOCOL (environment variable), 1090
SERVER_SOFTWARE (environment variable), 1088
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service image paths, 659
service-oriented architecture (SOA), 1084
services, Windows NT, 658-659
servlets. See Java servlets
session credentials, redirector, 687
session layer, network segmentation, 87
session tokens, 1039, 1053-1056
sessions

HTTP, 1038-1039, 1049-1052
security vulnerabilities, 1051-1052
session management, 1052-1053
session tokens, 1053-1056

UNIX, process sessions, 609-611
Windows NT, 636-645, 647

access tokens, 639-645, 647
logon rights, 638
SIDs (security IDs), 637-638

setegid( ) function, 476
setenv( ) function, 576-577, 596-598
Setenv( ) Vulnerabilty in BSD listing (10-2), 576
seteuid( ) function, 468-470
setgid (set-group-id), UNIX, 464
setgid programs (UNIX), 466
setgid( ) function, 476
setgroups( ) function, 477
setjump( ) function, 788-791
setregid( ) function, 476
setresgid( ) function, 476
setresuid( ) function, 472-473
setreuid( ) function, 473-475
setrlimit( ) function, 574
SetThreadToken( ) function, 647
settings, default settings, insecure defaults, 69
setuid (set-user-id), UNIX, 464
setuid programs (UNIX), 466
setuid root programs (UNIX), 466-467
setuid( ) function, 468, 470-472
SGML (Standard Generalized Markup 

Language), 1009
shadow password files, UNIX, 461
shared key encryption, 41
shared libraries, 499-500
shared memory, multiple processes, 756
shared memory blocks, 201-202
shared memory segments, 614

synchronization, 763
sharing files, UNIX, 564-565
shatter attacks, Windows messaging, 694-697
SHELL environment variable (UNIX), 606
shell environment variables, UNIX, 603
shell histories, UNIX, 509
shell invocation

ASP, 1115
ASP.NET, 1120
Java servlets, 1108
Perl, 1095
PHP, 1099, 1101

shell login scripts, UNIX, 509
shell logout scripts, UNIX, 509
Shell Metacharacter Injection Vulnerability 

listing (8-18), 426
shell metacharacters, 425-429
shellcode, 178, 187-189
Shellcoder’s Handbook, The, 118, 168
ShellExecute( ) function, 655
ShellExecuteEx( ) function, 655
shells, UNIX users, 462
side-effects, functions

auditing, 351-359
referentially opaque side effects, 351
referentially transparent side effects, 351

SIDs (security IDs), Windows NT, 637-638
siglongjump( ) function, 788-791
sign bit

arithmetic schemes, 207
signed integer types, 206

Sign Extension Vulnerability Example 
listing (6-12), 254

sign extensions, 226
type conversions, 248-265

truncation, 259-265
Sign-Extension Example listing (6-14), 258
Sign-Preserving Right Shift listing (6-25), 273
signal handler scoreboard, 809-810
Signal Interruption listing (13-1), 791
signal marks, 573
signal masks, 785
Signal Race Vulnerability in WU-FTPD 

listing (13-2), 802
signal( ) function, 786-788, 807
signals, 783

asynchronous-safe function, 791-797, 800-801,
804-809

default actions, 784-785
handling, 786-788
interruptions, 791-796, 806-809
jump locations, 788-791
non-returning signal handlers, 797-801, 804-806
repetition, 806-809
sending, 786
signal handler scoreboard, 809-810
signal masks, 785
vunerabilities, 791-801, 804-809

signature payloads, ISAKMP (Internet Security
Association and Key Management Protocol), 965

signatures, cryptographic signatures, 47
Signed Comparison Example in PHP 

listing (6-23), 269
Signed Comparison Vulnerability Example 

listing (6-7), 247
Signed Comparison Vulnerability listing (6-21), 267
signed integer types, C programming language, 206
Signed Integer Vulnerability Example listing (6-5), 221
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signed integers
boundaries, 220-223
conversions, 228-229

vunerabilities, 246-248
narrowing, 227-228
sign bit, arithmetic schemes, 207
widening, 226-227

signing Active X controls, 750
sigsetjump( ) function, 788-791
SIGSTOP default action, 787
simple binary CPs (candidate points), 122
simple lexical CPs (candidate points), 122
Simple Mail Transfer Protocol (SMTP), 921
Simple Nonterminating Buffer Overflow Loop 

listing (7-15), 328
Simple Object Access Protocol (SOAP), 1085
simple type conversions, C programming language,

231-232
single sign-on (SSO) system, 75
single-threaded apartment (STA), COM (Component

Object Model), 729
singly linked lists, 322
site-restricted controls, Active X, 752
size, operators, vunerabilities, 271-272
Sizeof Misuse Vulnerability Example 

listing (6-24), 271
sizeof( ) function, 181, 272
SMB relay attacks, 688
SMBs (Server Message Blocks), 73, 688
SMTP (Simple Mail Transfer Protocol), 921
sniffing attacks, 162
snort reassembly vunerability, TCP (Transmission

Control Protocol), 885-890
snprintf( ) function, 394-395, 414, 416
Snyder, Window, 50
SOA (service-oriented architecture), 1084
SOAP (Simple Object Access Protocol), 1085
socketpair( ) function, 615, 617-618
soft links, UNIX files, 515, 517-522
software, 3

requirements, 15
security expectations, 7-9
specifications, 15
vulnerabilities, 4-5, 18

bugs, 4-5
classifying, 14-17
data flow, 18-19
design vunerabilities, 14-15
environmental attacks, 21-22
exceptional conditions, 22
implementation vunerabilities, 15-16
input, 18-19
interfaces, 21
operational vunerabilities, 16
security policies, 5-7
trust relationships, 19-20

software design, 26
abstraction, 27
accuracy, 32
algorithms, 26-27
application architecture modeling, 53-66
clarity, 32
decomposition, 27-28
failure handling, 35-36
loose coupling, 33
strong cohesion, 33
strong coupling exploitation, 34
threat modeling, 49-50

information collection, 50-53
transitive trust exploitation, 35
trust relationships, 28-31

chain of trust relationships, 30-31
complex trust boundaries, 30
defense in depth, 31
simple trust boundaries, 28-30

Software Restriction Policies (SAFER) API. See SAFER
(Software Restriction Policies) API

Solaris, 460
Solomon, David A., 628, 654
Song, Dug, 907
source code, profiling, 52
source code audits, COM (Component Object 

Model), 743
source code navigators, code audits, 148-151

Code Surfer, 150
Cscope, 149
Ctags, 149-150
Source Navigator, 150
Understand, 151

Source Navigator, 150
source routing

IP (Internet Protocol), 851-853
packets, 920

source-only application access, 95
SPACEJUMP method, 1021
specialization approach, application review, 99
specifications, software, 15
SPIKE fuzz testing tool, 158
spoofing, 72

DNS (Domain Name System), 1002-1005
TCP streams, 874-875

blind connection spoofing, 876-879
spoofing attacks, firewalls, 914, 919

close spoofing, 917-919
distant spoofing, 914-917
encapsulation, 920
source routing, 920

sprintf( ) functions, 177, 389-391, 414
SQL (Structured Query Langauge)

queries, metacharacters, 431-434
SQL injection, 1061-1062

ASP, 1113, 1115
ASP.NET, 1118-1119
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Java servlets, 1106-1107
parameterized queries, 1062-1063
Perl, 1093-1094
PHP, 1097-1098
prepared statements, 1062
second order injection, 1064-1065
stored procedures, 1063-1064
testing for, 1065-1066

SQL Injection Vulnerability listing (8-20), 431
SQL Truncation Vulnerability listing (8-21), 433
SSIs (server-side includes), 1011
SSL (Secure Sockets Layer), 71
SSL/TLS (Secure Socket Layer/Transport Layer

Security), 87
SSL/TLS (Secure Sockets Layer/Transport Layer

Security), 1058-1059
SSO (single sign-on) system, 75
STA (single-threaded apartment), COM (Component

Object Model), 729
stack cookies, 190-191
stack overflows, 169-178
stack protection, operational vulnerabilities, 

preventing, 77
Stackguard, stack cookies, 190
stacks

ADT (abstract data type), 169
EBP (extended base pointer), 173
ESP (extended stack pointer), 170
nonexecutable stacks, 76
stack protection, 77

Standard Generalized Markup Language 
(SGML), 1009

standards, C programming language, 204
standards documentation, 52
starvation, threads, 760, 823-825
Starzetz, Paul, 821, 898
stat( ) function, 527-531
state mechanisms, RPCs (Remote Procedure 

Calls), 721
state processing, TCP (Transmission Control

Protocol), 880-885
state tables, 896

spoofing, 916-917
state, maintaining, 1027-1029

client IP addresses, 1029-1030
cookies, 1036-1038
embedding state in HTML and URLs, 1032-1033
HTTP authentication, 1033-1036, 1056-1057
Referer request headers, 1030-1031
sessions, 1038-1039, 1049-1052

security vulnerabilities, 1051-1052
session management, 1052-1053
session tokens, 1053-1056

stateful versus stateless systems, 1027
stateful firewalls, 905

directionality, 906
fragmentation, 907-909

stateful inspection firewalls, 909-913
TCP (Transport Control Protocol), 905-906
UDP (User Datagram Protocol), 906

stateful inspection firewalls, 909-911
layering, 911-913

stateful packet filters, 896
stateful systems, 1027
stateless firewalls, 896

fragmentation, 902-905
FTP (File Transfer Protocol), 901
TCP (Transmission Control Protocol), 896-898
UDP (User Datagram Protocol), 899-901

stateless packet filters, 896
stateless systems, 1027
statements

break statements, omissions, 337-338
flow transfer statements, auditing, 336
out-of-order statements, 366-367
prepared statements, 1062
switch statements, auditing, 337-339

states, TCP connections, 869-870
static content, 1009
static variables, 1088
status checks, application review, 105
stdio file system, files

closing, 556-557
opening, 548-549
reading, 550-555
writing to, 555-556

Stevens, Ted, 829
Stevens, W. Richard, 832
Stickley, Jim, 896
storage, C programming language, 204-211
stored procedures, 1063-1064
strcat( ) function, 392-393
strcpy( ) functions, 391-392, 400
Strcpy( )-like Loop listing (8-3), 400
stream ciphers, encryption, 42
streams, TCP (Transmission Control Protocol), 865,

872-874
blind connection spoofing, 876-879
blind data injection attacks, 880
blind reset attacks, 879-880
connection fabrication, 875-876
connection tampering, 879
spoofing, 874-875

streams (file), Windows NT, 668-670
strict black box application access, 95
strict context handles, RPCs (Remote Procedure

Calls), 719-721
strings, 387

bounded string functions, 393-395, 397-400
character expansion, 401
format strings, 422-425
handling, C programming language, 388-407
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pointers
incorrect increments, 401-406
typos, 406-407

unbounded copies, 400
unbounded string functions, 388-393
Windows NT security descriptors, 651-652

strlcat( ) function, 399-400
strlcpy( ) function, 398-399
strlen( ) function, 181
strncat( ) function, 397-398
strncpy( ) function, 395, 397
strong cohesion, software design, 33
strong coupling, software design exploitation, 34
strongly coupled modules, 33
structure padding, C programming language, 284-287
Structure Padding in a Network Protocol 

listing (6-32), 284
structured exception handling (SHE) attacks, 178-180
structures, variables, management, 307-312
Struts framework, 1008
stub resolvers (DNS), 986
stubs, COM (Component Object Model), 731
subdomains, 985
subnet addresses, 832-834
subsystem access permissions, DCOM (Distributed

Component Object Model), 733-734
subsystem alnalysis, code audits, 135-136
superusers, UNIX, 461
supplemental group privileges, UNIX, dropping 

permanently, 480-481
supplemental groups, UNIX, 461, 465, 574
Swiderski, Frank, 50
switch statements

auditing, 337-339
C programming language, 237

switching, 84
symbolic links, UNIX files, 515, 517-522
SymbolicLink objects, 629
symmetric encryption, 41

block ciphers, 42
synchronization, 756-757

APCs (asynchronous procedure calls), 765
deadlocks, 760, 762
multithreaded programs, 810-825
process synchronization, 762

interprocess synchronization, 770-783
lock matching, 781-783
synchronization object scoreboard, 780-781
System V synchronization, 762-764
Windows NT synchronization, 765-770

race conditions, 759-760
reentrancy, 757-759
shared memory segments, 763
signals, 783

asynchronous-safe function, 791-797, 800-
801, 804-809

default actions, 784-785

handling, 786-788
interruptions, 791-796, 806-809
jump locations, 788-791
non-returning signal handlers, 797-801, 

804-806
repetition, 806-809
sending, 786
signal handler scoreboard, 809-810
signal masks, 785
vunerabilities, 791-801, 804-809

starvation, 760
threads

deadlocks, 823-825
PThreads API, 811-813
race conditions, 816-823
starvation, 823-825
Windows API, 813-815

synchronization object scoreboard, 780-781
syntax highlighting, 148
synthesized request variables, 1089-1091
SysInternals, 636
syslog( ) function, 425
system call gateways, 82
system configuration files, UNIX, 508-509
system file table, UNIX, 563
system objects, Windows NT, 628
system profiling, 52-53
system resources, access, auditing, 935-937
System V-IPC mechanisms

process synchronization, 762-764
semaphores, 763-764
UNIX, 614-615

system virtualization, 81
system( ) function, 426

T
tables, auditing, 321-322, 326
taint mode, Perl, 1096
tampering TCP connections, 879
TCP (Transmission Control Protocol), 35, 864-866

connections, 865, 869
closing, 871-872
establishing, 871
flags, 870
resetting, 872
states, 869-870

header validation, 866-867
headers, 865
options, processing, 867-869
processing, 880

sequence number boundary condition, 888
sequence number representation, 884-888
state processing, 880-885
URG pointer processing, 889-890
window scale option, 889

segments, 865
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stateful firewalls, 905-906
stateless firewalls, 896-898
streams, 865, 872-874

blind connection spoofing, 876-879
blind data injection attacks, 880
blind reset attacks, 879-880
connection fabrication, 875-876
connection tampering, 879
spoofing, 874-875

TCP/IP, 830
TCP/IP Illustrated, Volume 1, 832, 866
TE header field (HTTP), 1020
teardrop vunerability, Linux, 325
tempnam( ) function, 541-542
temporary files, UNIX, 538-547

directory cleaners, 546-547
file reuse, 544-546
unique creation, 538-544

terminal devices, 511
terminal emulation software, 609-610
terminals, UNIX, process terminals, 609-611
TerminateThread( ) function, 782
terminating conditions, loops, 327-334
termination, UNIX processes, 562
test cases, code audits, 139-147

constraint establishment, 144-145
extraneous input thinning, 145-146
multiple inputs, 143
unconstrained data types, 146-147

testing
black box testing, 1079
for SQL injection, 1065-1066
SDLC (Systems Development Life Cycle), 13
Web applications, 1080-1081

text
character sets, 446
metacharacters, 387, 407-408

embedded dilimiters, 408-411
filtering, 434-445
format strings, 422-425
formats, 418
NUL-byte injection, 411-414
path metacharacters, 418-422
Perl open( ) function, 429-431
shell metacharacters, 425-429
SQL queries, 431-434
truncation, 414-418

Unicode, 446-447
character equivalence, 456-457
code page assumptions, 455-456
decoding, 449-450
homographic attacks, 450
NUL-termination, 452-453
UTF-8 encoding, 447-448
UTF-16 encoding, 449
Windows functions, 450-457

text strings, 387
bounded string functions, 393-395, 397-400
character expansion, 401
format strings, 422-425
handling, C programming language, 388-407
pointers, incorrect increments, 401-406
typos, 406-407
unbounded copies, 400
unbounded string functions, 388-393

text-based protocols, data types, matching, 932-934
Text-Processing Error in Apache mod_mime 

listing (8-7), 406
TEXTSEARCH method, 1021
tgetent( ) function, 609
third-party evaluations, 10
third-party preliminary evaluations, 10
third-party product range comparisons, 10
Thompson, Hunter S., 387, 921
Thompson, Ken, 460
threading, 1074

Active X, 753
COM (Component Object Model), 729-730
Java servlets, 1111-1112
RPCs (Remote Procedure Calls), 721

threads
multithreaded programs, synchronicity, 810-825
starvation, 760
synchronicity

deadlocks, 823-825
PThreads API, 811-813
race conditions, 816-823
starvation, 823-825
Windows API, 813-815

Windows NT, 654
threat identification, 59-62
threat mitigation, 61
threat modeling, 49-50

application architecture modeling, 53-66
automatic threat modeling, 65
code audits, DG (design generalization) strategy,

129-130
findings, documenting, 62-65
information collection, 50-53
threat identification, 59-62

Threat Modeling, 50
three-way handshakes, TCP connections, 871
Thumann, Michael, 972
time( ) functions, 1005
tmpfile( ) function, 543
tmpnam( ) function, 541-542
TOCTOU (time to check to time of use)

junction points, 680
UNIX file system, 527-531

tokens
creating, password requirements, 645
session tokens, 1039, 1053-1056
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tools
code audits, 147

binary navigation tools, 155-157
debuggers, 151-154
fuzz testing tools, 157-158
OpenSSH case study, 158-164
source code navigators, 148-151

UNIX, 461
top-down approach, application review, 99
top-down progression, 28
toupper( ) function, 255
TRACE method, 1021
tracing

black box hits, 117-119
code, 111
malicious input, 113-114

Trailer header field (HTTP), 1020
transformations, XSLT (Extensible Stylesheet

Language Transformation), 1012
Transfer-Encoding header field (HTTP), 1020
transform payloads, ISAKMP (Internet Security

Association and Key Management Protocol), 959
transitive trusts, exploiting, 35
Transmission Control Protocol (TCP), 35
transport layer, network segmentation, 85-87
transports, RPCs (Remote Procedure Calls), 707-708
truncation

file paths, 415
integer types, 227-228
metacharacters, 414-418
NFS, 260
sign extensions, 259-265

Truncation Vulnerability Example in NFS 
listing (6-16), 260

Truncation Vulnerabilty Example listing (6-17), 260
trust boundaries, 28

complex trust boundaries, 30
simple trust boundaries, 28-30

trust domains, 28
trust models, 28
trust relationships

software design, 28-31
chain of trust rleationships, 30-31
complex trust boudaries, 30
defense in depth, 31
simple trust boudaries, 28-30

vulnerabilities, 19-20
trusted authorities, 29
trusts, transitive trusts, exploiting, 35
try_lib( ) function, 578
Twos Complement Representation of -15 

listing (6-1), 209
type coercions. See type conversions
type confusion, 319, 321
Type Confusion listing (7-11), 320

type conversions, C programming language, 223-248
assignment operators, 231-232
comparisons, 265-270
conversion rules, 225-231
default type conversions, 224
explicit type conversions, 224
floating point types, 230-231
function prototypes, 232
implicit type conversions, 224
integer promotions, 233-238
narrowing, 227-228
sign extensions, 248-265
simple conversions, 231-232
typecasts, 231
usual arithmetic conversions, 238-245
value preservation, 225-226
vunerabilities, 246-270
widening, 226-227

type libraries, COM (Component Object Model), 
731, 743

typecasts, C programming language, 231
types, C programming language, 204-207
typos

C programming language, 289-296
loops, 335-336
text strings, 406-407

U
UDP (User Datagram Protocol), 35, 863-864

header validation, 864
stateful firewalls, 906
stateless firewalls, 899-901

UIDs (user IDs), UNIX, 461, 464-465
UML (Unified Markup Language), 53

class diagrams, 53-54
component diagrams, 54
use cases, 54

UN*X, 459
unary operator, C programming language, 236
unary + operator, C programming language, 235
unary – operator, C programming language, 235
unbounded copies, strings, 400
unbounded string functions, 388-393
UNC (Universal Naming Convetion), redirector, 686
unconstrained data types, test cases, code audits, 

146-147
undefined behavior, C programming language, 204
underflow, unsigned integers, 217-218
Understand source code navigator, 151
Unexpected Return Values listing (7-29), 347
Unicode, 446-447

character equivalence, 456-457
code page assumptions, 455-456
decoding, 449-450
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homographic attacks, 450
NUL-termination, 452-453
UTF-16 encoding, 449
UTF-8 encoding, 447-448
Windows functions, 450-457

Unicos, 460
Unified Markup Language (UML). See UML (Unified

Markup Language)
Uniform Resource Identifiers (URIs), 1009
Uninformed magazine, 168
Uninitialized Memory Buffer listing (7-7), 314
Uninitialized Object Attributes listing (7-8), 314
Uninitialized Variable Usage listing (7-6), 313
unique creation, UNIX temporary files, 538-544
unititialized memory buffers, 314
unititialized object attributes, 314-315
unititialized variable usage, 313
UNIX, 459

BSD, 459
securelevels, 492

controlling terminals, 574
daemons, 467-468
directories, 462-464

creating, 500-503
entries, 514
Filesystem Hierarchy Standard, 463
mount points, 463
parent directories, 503
permissions, 498-499
public directories, 507-508
root directories, 574
safety, 503
working directories, 574

domain sockets, 615, 617-618
environment variables, 603-609
file descriptors, 580-588, 590-591
file IDs, 494-495
file security, 494-512
files, 462-464, 508, 512

boot files, 511
creating, 500-503
desciprtors, 512-513
device files, 511
directories, 514-516
filenames, 503-507
inodes, 513-514
kernel files, 511
libraries, 510
links, 515-517-525
log files, 510
named pipes, 511
pathnames, 462
paths, 503-507
permissions, 495-497
personal user files, 509
proc file system, 511

program configuration files, 510
program files, 510
race conditions, 526-538
sharing, 564-565
stdio file interface, 547-557
system configuration files, 508-509
temporary files, 538-547

GECOS field, 462
groups, 461-462

effective groups, 465
GIDs, 465
GIDs (group IDs), 461
login groups, 461
primary groups, 461
real groups, 465
saved set groups, 465
secondary groups, 461
setgid (set-group-id), 464
supplemental groups, 461, 465

kernel, 461
Linux, 459

capabilities, 492-494
file system IDs, 491

mail spools, 509
naming of, 460
open( ) system call, 501
origins of, 459-460
O_EXCL flag, 501
password files, 461
pipes, 612-614
POSIX standards, 460
privileges, 464-465

dropping permanently, 479-486, 489
dropping temporarily, 486-490
extensions, 491-494
group ID functions, 475-477
management code audits, 488-490
programs, 466-468
user ID functions, 468-475
vunerabilities, 477-494

processes, 464, 560
attributes, 572-611
child processes, 563
children, 560
creating, 560-562
environment arrays, 591-611
fork( ) system call, 563-565
groups, 609-611
interprocess communication, 611-618
open( ) function, 563-565
program invocation, 565-572
RPCs (Remote Procedure Calls), 618-624
sessions, 609-611
system file table, 563
terminals, 609-611
termination, 562
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program invocation, 565-572
direct invocation, 565-570
indirect invocation, 570-572

resource limits, 574-580
RPCs (Remote Procedure Calls)

authentication, 623-624
decoding routines, 622-623
definition files, 619-622

shadow password files, 461
shell histories, 509
shell login scripts, 509
shell logon scripts, 509
System V-IPC mechanisms, 614-615
tools, 461
UN*X, 459
users, 461-462

effective users, 464-465
home directories, 462
real users, 464
saved set users, 465
setuid (set-user-id), 464
shells, 462
superusers, 461
UIDs (user IDs), 461, 464-465

unlink( ) function, 535-537, 618
UNLOCK method, 1022
unmask file permissions, 497
unmask attribute, UNIX, 574
unnecessary services, 70-71
Unsigned Comparison Vulnerability listing (6-22), 267
unsigned integer types, C programming 

language, 206
Unsigned Integer Underflow Example 

listing (6-4), 217
unsigned integers

boundaries, 213-218, 220
conversions, 228-229

vunerabilities, 246-248
narrowing, 227-228
numeric overflow, 215-217
numeric underflow, 217-218
widening, 226-227

unsigned-preserving promotions, 234
untrustworthy credentials, authentication, 37
Upgrade header field (HTTP), 1020
uploading files, security, 1068-1069
URG flags, TCP (Transmission Control Protocol), 

889-890
URI header field (HTTP), 1020
URIs (Uniform Resource Identifiers), 1009

script URI, 1089
URLs, embedding state in, 1032-1033
use cases, UML (Unified Markup Language), 54
use scenarios, 51
uselib( ) function, 578
User Datagram Protocol (UDP), 35

user IDs (UIDs), UNIX, 461
functions, 468-475

User-Agent header field (HTTP), 1020
users, UNIX, 461-462

effective users, 464-465
file security, 494-512
home directories, 462
privilege vunerabilities, 477-494
real users, 464
saved set users, 465
setuid (set-user-id), 464
shells, 462
superusers, 461
UIDs (userIDs), 464-465
user ID functions, 468-475
user IDs (UIDs), 461

usual arithmetic conversions, 233, 238-243, 245
UTF-8 encoding, 447-448
UTF-16 encoding, 449
utilitiy functions, HTTP (Hypertext Transfer Protocol),

941-942

V
validation

authorization, insufficient validation, 38
IP headers, 836-844
name validation, DoS (denial of service) attacks,

931-932
originator validation, 47
TCP headers, 866-867
UDP headers, 864

value bits, unsigned integer types, 206
value preservation, C programming language, 225-226
value-preserving promotions, 234
values, Windows NT registry, value squatting, 

682-684
Van der Linden, Peter, 204
/var directory (UNIX), 463
variables

auditing, 298-326
arithmetic boundaries, 316-319
initialization, 312-315
lists, 321-326
object management, 307-312
structure management, 307-312
tables, 321-322, 326
type confusion, 319, 321

environment variables, 1087-1093
PATH_INFO, 1022
PThread API, condition variables, 812-813
relationships, 298-303, 305-307

Vary header field (HTTP), 1020
VBScript, 1117-1118
vendor ID payloads, ISAKMP (Internet Security

Association and Key Management Protocol), 971
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Version header field (HTTP), 1020
versions of HTTP (Hypertext Transport Protocol),

1017-1018
vfork( ) function, 562
Via header field (HTTP), 1020
View component (MVC), 1045
ViewState, ASP.NET, 1121
virtual device drivers, 511
virtual memory areas (VMAs), 343
Virtual Memory System (VMS), 626
virtual private machines (VPNs), 88
virtualization, 81
visibility of clients, 1046-1047
Vista objects, namespaces, 631
VMAs (virtual memory areas), 343
VMs (virtual machines), operational vulnerabilities,

preventing, 79
VMS (Virtual Memory System), 626
VPNs (virtual private networks), 88
vreply( ) function, 424
vsnprintf( ) function, 424
Vulnerability in Filtering a Character Sequence 

listing (8-25), 437
Vulnerability in Filtering a Character Sequence #2 

listing (8-26), 438
Vulnerable Hex-Decoding Routine for URIs 

listing (8-5), 404
vunerabilities

accountability, 40-41
authentication, 36

insuffiecient validation, 38
untrustworthy credentials, 37

authorization, 39
availability, 48-49
encryption, 43-45
integrity, 47-48
operational vulnerabilities, 76

access control, 69-70
attack surfaces, 68
authentication, 75
default site installations, 75
development protective measures, 76-79
directory indexing, 74
exposure, 68-73
file handlers, 74
host-based measures, 79-83
HTTP request methods, 73
insecure defaults, 69
network profiles, 73
network-based measures, 83-89
overly verbose error messages, 75
public-facing administrative interfaces, 76
secure channels, 71-72
spoofing, 72
unnecessary services, 70-71
Web-specific vunerabilities, 73-76

operational vunerabilities, 67-68
operators

right shift, 272-275, 277
size, 271-272

pointers, 280-282
software, 4-5, 18

bugs, 4-5
classifying, 14-17
data flow, 18-19
design vunerabilities, 14-15
environmental attacks, 21-22
exceptional conditions, 22
implementation vunerabilities, 15-16
input, 18-19
interfaces, 21
operational vunerabilities, 16
security policies, 5-7
trust relationships, 19-20

type conversions, 246-248
C programming language, 246-270
sign extensions, 248-265

vunerability classes, 14-16

W
wait functions, 765
waitable timer, Windows NT, 769-770
Wang, Xiaoyun, 48
Warning header field (HTTP), 1020
waterfall models, 13
wcsncpy( ) function, 453
Web 2.0, 1083
Web applications

access control, 1057-1058
ASP (Active Server Pages), 1113

configuration settings, 1118
cross-site scripting, 1118
file access, 1115
file inclusion, 1116-1117
inline evaluation, 1117-1118
shell invocation, 1115
SQL injection queries, 1113, 1115

ASP.NET, 1118
configuration settings, 1121-1123
cross-site scripting, 1121
file access, 1119-1120
file inclusion, 1120
inline evaluation, 1121
shell invocation, 1120
SQL injection queries, 1118-1119

auditing, 1078-1081
activities to isolate, 1079
avoiding assumptions, 1080
black box testing, 1079
enumerating functionality, 1081
goals, 1081
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multiple approaches, 1080
reverse-engineering, 1081
testing and experimentation, 1080-1081

authentication, 1056-1057
authorization, 1057-1058
business logic, 1041
C/C++ problems, 1075
CGI (Common Gateway Interface), 

1009-1010, 1086
environment variables, 1087-1093
indexed queries, 1086-1087

client control, 1047-1048
client visibility, 1046-1047
dynamic content, 1009
ecryption, 1058-1059
HTML (Hypertext Markup Langage), 1009
HTTP (Hypertext Transport Protocol), 1009

authentication, 1033-1036, 1056-1057
cookies, 1036-1038
embedded path information, 1022-1023
forms, 1024-1025
headers, 1018-1020
methods, 1020-1022, 1025-1026
overview of, 1014
parameter encoding, 1026
query strings, 1023-1024
requests, 1014-1016
responses, 1016-1017
sessions, 1038-1039, 1049-1056
state maintenance, 1027-1039
versions, 1017-1018

IDC (Internet Database Connection), 1013
Java servlets, 1105-1106

configuration settings, 1112-1113
cross-site scripting, 1110-1111
file access, 1107-1108
file inclusion, 1108-1109
inline evaluation, 1110
JSP file inclusion, 1109-1110
shell invocation, 1108
SQL injection queries, 1106-1107
threading, 1111-1112
Web server APIs versus, 1106

N-tier architectures, 1041, 1043
business tier, 1042-1044
client tier, 1042
data tier, 1042-1043
MVC (Model-View-Controller), 1044-1045
Web tier, 1042, 1044-1045

OS and file system interaction, 1066
execution, 1067
file uploading, 1068-1069
null bytes, 1068
path traversal, 1067-1068
programmatic SSI, 1068

overview of, 1007-1008

page flow, 1048-1049
parameters, transmitting, 1022

embedded path information, 1022-1023
forms, 1024-1025
GET method, 1023, 1026
parameter encoding, 1026
POST method, 1025-1026
query strings, 1023-1024

Perl, 1093
cross-site scripting, 1096
file access, 1094
file inclusion, 1095
inline evaluation, 1095-1096
shell invocation, 1095
SQL injection queries, 1093-1094
taint mode, 1096

phishing and impersonation, 1059-1060
PHP (PHP Hypertext Preprocessor), 1096-1097

configuration settings, 1104-1105
cross-site scripting, 1103
file access, 1098-1099
file inclusion, 1101
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