
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321440303
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321440303
https://plusone.google.com/share?url=http://www.informit.com/title/9780321440303
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321440303
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321440303/Free-Sample-Chapter

Praise for The Old New Thing

“Raymond Chen is the original raconteur of Windows.”

—Scott Hanselman, ComputerZen.com

“Raymond has been at Microsoft for many years and has seen many nuances
of Windows that others could only ever hope to get a glimpse of. With this

book, Raymond shares his knowledge, experience, and anecdotal stories,
allowing all of us to get a better understanding of the operating system that
affects millions of people every day. This book has something for everyone,

is a casual read, and I highly recommend it!”

—Jeffrey Richter, Author/Consultant, Cofounder of Wintellect

“Very interesting read. Raymond tells the inside story of why Windows
is the way it is.”

—Eric Gunnerson, Program Manager, Microsoft Corporation

“Absolutely essential reading for understanding the history of Windows,
its intricacies and quirks, and why they came about.”

—Matt Pietrek, MSDN Magazine’s Under the Hood Columnist

“Raymond Chen has become something of a legend in the software industry,
and in this book you’ll discover why. From his high-level reminiscences on

the design of the Windows Start button to his low-level discussions of
GlobalAlloc that only your inner-geek could love, The Old New Thing is a

captivating collection of anecdotes that will help you to truly appreciate the
difficulty inherent in designing and writing quality software.”

—Stephen Toub, Technical Editor, MSDN Magazine

This page intentionally left blank

THE OLD

NEW THING

This page intentionally left blank

T
THE OLD

NEW THING

Practical Development
Throughout the Evolution of Windows

Raymond Chen

�

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed
with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any
kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales, which may
include electronic versions and/or custom covers and content particular to your business, training goals, marketing focus, and
branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearsoned.com

This Book Is Safari Enabled
The Safari® Enabled icon on the cover of your favorite technology book means the book is available
through Safari Bookshelf. When you buy this book, you get free access to the online edition for 45 days.

Safari Bookshelf is an electronic reference library that lets you easily search thousands of technical books, find code samples,
download chapters, and access technical information whenever and wherever you need it.

To gain 45-day Safari Enabled access to this book:

• Go to http://www.awprofessional.com/safarienabled
• Complete the brief registration form
• Enter the coupon code X2R8-XJGQ-LQQB-BNQE-RGW8

If you have difficulty registering on Safari Bookshelf or accessing the online edition, please e-mail customer-service@
safaribooksonline.com.

Visit us on the Web: www.awprofessional.com

Library of Congress Cataloging-in-Publication Data

Chen, Raymond.
The old new thing. Practical development throughout the evolution of Windows / Raymond Chen.

p. cm.
Includes index.
ISBN 0-321-44030-7 (pbk. : alk. paper)
1. Microsoft Windows (Computer file) 2. Operating systems (Computers) 3. Computer software—Development. I. Title.

QA76.76.O63C45747 2007
005.4'46—dc22 2006028949

Copyright © 2007 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must
be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form
or by any means, electronic, mechanical, photocopying, recording, or likewise.

For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN 0-321-44030-7

This product is printed digitally on demand.
First printing, December 2006

http://www.awprofessional.com/safarienabled
www.awprofessional.com

This page intentionally left blank

Preface xxiii

Acknowledgments xxvii

About the Author xxix

Initial Forays into User Interface Design

Why do you have to click the Start button to shut down? 1

Why doesn’t Windows have an “expert mode”? 2

The default answer to every dialog box is Cancel 3

The best setting is the one you don’t even sense, but it’s there,

and it works the way you expect 6

In order to demonstrate our superior intellect, we will now ask you

a question you cannot answer 7

Why doesn’t Setup ask you if you want to keep newer versions of

operating system files? 7

Thinking through a feature 9

When do you disable an option, and when do you remove it? 12

When do you put … after a button or menu? 13

User interface design for vending machines 13

CONTENTS

ix

User interface design for interior door locks 15

The evolution of mascara in Windows UI 16

Selected Reminiscences on Windows 95

Why isn’t my time zone highlighted on the world map? 19

Why didn’t Windows 95 boot with more than 1GB of memory? 20

Why did Windows 95 have functions called BEAR, BUNNY,

and PIGLET? 22

What about BOZOSLIVEHERE and

TABTHETEXTOUTFORWIMPS? 23

What was in the Windows 95 Special Edition box? 25

Windows brings out the Rorschach test in everyone 25

The martial arts logon picture 26

Why a really large dictionary is not a good thing 27

An insight into the Windows 95 startup sound 27

It’s a lot easier to write a column if you don’t care about accuracy 28

Why does the System Properties page round the memory size? 29

Why does my hard drive light flash every few seconds? 29

The hunt for a faster syscall trap 30

One byte used to cost a dollar 31

Each product-support call costs a sale 32

Why isn’t Tweak UI included on the Windows CD? 32

Turns out that you can’t install Windows via xcopy 34

Buying an entire Egghead Software store 35

The history of the Windows PowerToys 35

How did Windows choose its final build numbers? 38

Why doesn’t the build number increment for service packs? 39

x �

The Secret Life of GetWindowText

How windows manage their text 41

Enter GetWindowText 42

What if I don’t like these rules? 43

Can you give an example where this makes a difference? 44

Why are the rules for GetWindowText so weird? 44

The Taskbar and Notification Area

Why do some people call the taskbar the “tray”? 47

Why does the taskbar default to the bottom of the screen? 49

Why doesn’t the clock in the taskbar display seconds? 50

Why doesn’t the taskbar show an analog clock? 51

When I dock my taskbar vertically, why does the word

“Start” disappear? 51

Why don’t notification icons get a message when the user

clicks the “X” button? 52

Puzzling Interface Issues

What are those little overlay icons? 53

Why are these unwanted files/folders opening when I log on? 54

What do the text label colors mean for files? 56

Why does my advanced options dialog say ON and OFF after

every option? 57

What determines the order in which icons appear in the

Alt+Tab list? 58

Why is the read-only property for folders so strange? 59

 xi�

What’s with those blank taskbar buttons that go away when

I click on them? 59

What is the difference between Minimize All and Show Desktop? 60

What does boldface on a menu mean? 62

Where do those customized Web site icons come from? 62

Where did my task manager tabs and buttons go? 63

Will dragging a file result in a move or a copy? 64

Why does the Links folder keep re-creating itself? 65

Why are documents printed out of order when you

multiselect and choose Print? 66

Raymond spends the day doing product support 67

Blow the dust out of the connector 68

How much is that gigabyte in the window? 69

Why can't I remove the “For test/evaluation purposes only” tag? 70

A History of the GlobalAlloc Function

The early years 71

Selectors 73

Transitioning to Win32 75

A peek at the implementation 76

Short Topics in Windows Programming

The scratch program 79

Getting a custom right-click menu for the caption icon 85

What’s the difference between CreateMenu and CreatePopupMenu? 86

When does the window manager destroy menus automatically? 88

Painting only when your window is visible onscreen 89

Determining whether your window is covered 93

xii �

Using bitmap brushes for tiling effects 95

What is the DC brush good for? 98

Using ExtTextOut to draw solid rectangles 100

Using StretchBlt to draw solid rectangles 102

Displaying a string without those ugly boxes 103

Semaphores don’t have owners 110

An auto-reset event is just a stupid semaphore 112

Window Management

Why do I get spurious WM_MOUSEMOVE messages? 115

Why is there no WM_MOUSEENTER message? 118

The white flash 118

What is the hollow brush for? 119

What’s so special about the desktop window? 120

The correct order for disabling and enabling windows 121

A subtlety in restoring the previous window position 122

UI-modality versus code-modality 123

The WM_QUIT message and modality 126

The importance of setting the correct owner for modal UI 129

Interacting with a program that has gone modal 132

A timed MessageBox, the cheap version 133

The scratch window 135

The bonus window bytes at GWLP_USERDATA 136

A timed MessageBox, the better version 136

A timed context menu 138

Why does my window receive messages after it has been destroyed? 139

 xiii�

Reminiscences on Hardware

Hardware backward compatibility 141

The ghost CD-ROM drives 142

The Microsoft corporate network: 1.7 times worse than hell 143

When vendors insult themselves 144

Defrauding the WHQL driver certification process 145

A twenty-foot-long computer 146

The USB cart of death 147

New device detected: Boeing 747 147

There’s an awful lot of overclocking out there 148

The Inner Workings of the Dialog Manager

On the dialog procedure 151

The evolution of dialog templates 163

Why dialog templates, anyway? 196

How dialogs are created 197

The modal dialog loop 204

Nested dialogs and DS_CONTROL 216

Why do we need a dialog loop, anyway? 224

Why do dialog editors start assigning control IDs with 100? 225

What happens inside DefDlgProc? 226

Never leave focus on a disabled control 228

What happens inside IsDialogMessage? 229

Why is the X button disabled on my message box? 237

xiv �

General Software Issues

Why daylight saving time is nonintuitive 239

Why do timestamps change when I copy files to a floppy? 241

Don’t trust the return address 242

Writing a sort comparison function 243

You can read a contract from the other side 245

The battle between pragmatism and purity 249

Optimization is often counterintuitive 250

On a server, paging = death 253

Don’t save anything you can recalculate 254

Performance gains at the cost of other components 255

Performances consequences of polling 257

The poor man’s way of identifying memory leaks 258

A cache with a bad policy is another name for a memory leak 259

Digging into the Visual C++ Compiler

Do you know when your destructors run? 267

The layout of a COM object 272

Adjustor thunks 274

Pointers to member functions are very strange animals 276

What is __purecall? 280

Backward Compatibility

Sometimes an app just wants to crash 283

When programs grovel into undocumented structures 284

Why not just block the applications that rely on

undocumented behavior? 286

 xv�

Why 16-bit DOS and Windows are still with us 288

What’s the deal with those reserved filenames such

as NUL and CON? 290

Why is a drive letter permitted in front of UNC paths

(sometimes)? 292

Do not underestimate the power of the game Deer Hunter 293

Sometimes the bug isn’t apparent until late in the game 293

The long and sad story of the Shell Folders key 294

The importance of error code backward compatibility 297

Sure, we do that 298

When programs patch the operating system and mess up 299

The compatibility constraints of even your internal bookkeeping 300

Why does Windows keep your BIOS clock on local time? 301

Bad version number checks 302

The ways people mess up IUnknown::QueryInterface 303

When programs assume that the system will never change,

Episode 1 305

When programs assume that the system will never change,

Episode 2 306

The decoy Display Control Panel 308

The decoy visual style 309

Etymology and History

What do the letters W and L stand for in WPARAM

and LPARAM? 311

Why was nine the maximum number of monitors in

Windows 98? 312

Why is a registry file called a hive? 312

The management of memory for resources in 16-bit Windows 312

xvi �

What is the difference between HINSTANCE and

HMODULE? 313

What was the purpose of the hPrevInstance parameter to

WinMain? 316

Why is the GlobalWire function called GlobalWire? 317

What was the difference between LocalAlloc and GlobalAlloc? 318

What was the point of the GMEM_SHARE flag? 320

Why do I sometimes see redundant casts before casting to

LPARAM? 321

Why do the names of the registry functions randomly end in Ex? 322

What’s the difference between SHGetMalloc, SHAlloc,

CoGetMalloc, and CoTaskMemAlloc? 324

Why is Windows Error Reporting nicknamed Dr. Watson? 329

What happened to DirectX 4? 330

Why are HANDLE return values so inconsistent? 331

Why do text files end in Ctrl+Z? 333

Why is the line terminator CR+LF? 334

TEXT vs. _TEXT vs. _T, and UNICODE vs. _UNICODE 335

Why are dialog boxes initially created hidden? 335

When you change the insides, nobody notices 336

If FlushInstructionCache doesn’t do anything, why do you have

to call it? 337

If InitCommonControls doesn’t do anything, why do you have

to call it? 338

Why did InterlockedIncrement/Decrement only return the sign

of the result? 339

Why does the function WSASetLastError exist? 340

Why are there broadcast-based mechanisms in Windows? 340

Where did windows minimize to before the taskbar was invented? 341

Why didn’t the desktop window shrink to exclude the taskbar? 343

 xvii�

Why does the caret stop blinking when I tap the Alt key? 343

What is the deal with the ES_OEMCONVERT flag? 345

The story behind file system tunneling 346

Why do NTFS and Explorer disagree on filename sorting? 347

The Date/Time Control Panel is not a calendar 350

How did Windows 95 rebase DLLs? 351

What are SYSTEM_FONT and DEFAULT_GUI_FONT? 353

Why do up-down controls have the arrows backward? 354

A ticket to the Windows 95 launch 355

How Window Messages Are Delivered and Retrieved

Sent and posted messages 358

The life of a sent message 363

The life of a posted message 364

Generated posted messages 365

When does SendMessageCallback call you back? 368

What happens in SendMessageTimeout when a message times out? 369

Applying what you’ve learned to some message processing myths 370

How can you tell who sent or posted you a message? 371

You can’t simulate keyboard input with PostMessage 371

International Programming

Case mapping on Unicode is hard 373

An anecdote about improper case mapping 374

Why you can’t rotate text 375

What are these directories called 0409 and 1033? 379

Keep your eye on the code page 379

Why is the default 8-bit codepage called “ANSI”? 388

xviii �

Why is the default console codepage called “OEM”? 388

Why is the OEM code page often called ANSI? 389

Logical but perhaps surprising consequences of converting

between Unicode and ANSI 391

Security

World-writable files 393

Hiding files from Explorer 394

Stealing passwords 395

Silent install of uncertified drivers 396

Your debugging code can be a security hole 397

Why shared sections are a security hole 398

Internet Explorer’s Enhanced Security Configuration doesn’t

trust the intranet 402

Windows 2000 and Windows XP

Why doesn’t the new Start menu use Intellimenus in the All

Programs list? 403

Why is there no programmatic access to the Start menu pin list? 404

Why does Windows XP Service Pack 2 sometimes forget my

CD autoplay settings? 406

The unsafe device removal dialog 407

Two brief reminiscences on the Windows XP Comments? button 408

Why does Explorer eject the CD after you finish burning it? 408

Why does Windows setup lay down a new boot sector? 409

Psychic debugging: Why your expensive four-processor machine

is ignoring three of its processors 410

Psychic debugging: Why your CPU usage is hovering at 50% 411

 xix�

What’s the deal with the DS_SHELLFONT flag? 412

Why does DS_SHELLFONT = DS_FIXEDSYS |

DS_SETFONT? 413

What other effects does DS_SHELLFONT have on property

sheet pages? 414

Win32 Design Issues

Why does Win32 fail a module load if an import could not

be resolved? 417

Why are structure sizes checked strictly? 418

Why do I have to return this goofy value for

WM_DEVICECHANGE? 421

The arms race between programs and users 422

Why can’t you trap TerminateProcess? 424

Why do some processes stay in Task Manager after they’ve

been killed? 424

Understanding the consequences of WAIT_ABANDONED 425

Why can’t I put hyperlinks in notification icon balloon tips? 427

Why can’t I use the same tree item multiple times? 429

The kooky STRRET structure 429

Why can’t you set UTF-8 as your ANSI code page? 431

When should you use a sunken client area? 432

Why is there no all-encompassing superset version of Windows? 433

Why is it even possible to disable the desktop, anyway? 433

What are the window and menu nesting limits? 435

What’s the difference between HWND_TOP and

HWND_TOPMOST? 435

xx �

Taxes

Hierarchical Storage Management 438

Geopolitics 439

Remote Desktop Connection and Painting 440

Fast User Switching and Terminal Services 443

Multiple users 444

Roaming user profiles 445

Redirected folders 447

My Documents vs. Application Data 450

Large address spaces 451

Power management and detecting battery power 455

Intermittent network connectivity 457

Anti-aliased fonts and ClearType 459

High DPI displays 462

Multiple monitors 467

The work area 470

Displaying your pop-up windows in the right place 471

Accessibility 472

 -

Silliness

The much-misunderstood “nop” action 481

Don’t let Marketing mess with your slides 482

Whimsical bug reports 482

Watch out for those sample URLs 483

No code is an island 484

But I have Visual Basic Professional 485

It’s all about the translucent plastic 485

My first death threat 486

 xxi�

You can’t escape those AOL CDs 487

Giving fair warning before plugging in your computer 487

Spider Solitaire unseats the reigning champion 488

There’s something about Rat Poker 489

Be careful what you name your product group 490

The psychology of naming your internal distribution lists 490

Differences between managers and programmers 491

Using floppy disks as semaphore tokens 492

When a token changes its meaning midstream 492

Whimsical embarrassment as a gentle form of reprimand 493

Using a physical object as a reminder 494

The office disco party 495

The Halloween-themed lobby 495

Index 497

xxii �

Much ink is devoted to describing the “how” of using and developing soft-
ware for Windows, but few authors go into the “why.” What might appear at
first to be quirks often turn out to have entirely logical explanations, reflect-
ing the history, evolution, and philosophy of the Microsoft Windows operat-
ing system. This book attempts to provide knowledge not so much in the
form of telling what needs to be done (although there is certainly plenty of
that, too) but rather by helping to understand why things came to be that way.
Thus informed of the history and philosophy of Windows, you can become a
more effective Windows programmer.

The emphasis here, then, is on the rationale behind Windows. It is not a ref-
erence or even a tutorial, but rather a “practical history,” taking a conversational
rather than didactic approach in an attempt to give you an appreciation for the
philosophy of Windows through a series of brief, largely independent essays.You
can therefore skip freely to topics of momentary interest (or technical expertise).
Essays have been grouped into general themes, and there is the occasional
sequential pedagogical treatment when a topic is explored in depth; even in those
cases, however, the topic is confined to a single self-contained chapter.

Writer and commentator David Sedaris is often asked whether his stories
are true. He responds that they are “true enough.” Like David Sedaris’s stories,

PREFACE

xxiii

the material in this book is also “true enough.” The focus is on the big picture,
not on the minutiae; on making a single point without getting distracted by
nitpicking detail. Key details are highlighted, but unimportant ones are set
aside, and potentially interesting digressions may be neglected if they do not
serve the topic at hand.

The primary audience is technology-savvy readers with an interest in
Windows history. About half of the essays require no programming back-
ground. Most of the remaining topics assume a basic background in software
design and development, although nothing particularly advanced. Topics
specifically related to Windows programming assume reader familiarity with
Win32 user interface programming and COM. The table on page xxv provides
a breakdown of the chapters for nonprogrammers and for general program-
mers who do not have an interest in Win32 specifically. Of course, you are wel-
come to skim chapters not explicitly marked as of interest to you. Perhaps you
will find something interesting in them after all.

What will you get out of this book? As noted previously, the primary goal
is to convey the philosophy and rationale behind what might at first appear to
be an irrational design. You will also understand that when something can’t be
done in Windows, it’s often for a good reason; and you will gain an apprecia-
tion of the lengths to which Windows goes to preserve backward compatibil-
ity (and why it’s important that it do so). And if nothing else, you will be able
to tell amusing stories about Windows history at cocktail parties (that is,
cocktail parties thrown by other geeks).

Much of the short-essay material here has already appeared in one form or
another on the author’s Web site, The Old New Thing (http://blogs.msdn.
com/oldnewthing/), but is substantially supplemented by new material
better suited to book form.

Visit the Web page for this book (www.awprofessional.com/title/
0321440307) to download two bonus chapters, “Tales of Application
Compatibility” and “How to Ensure That Your Program Does Not Run
Under Windows 95.” Think of them if you like as the book version of a
movie’s unique and insightful deleted scenes. The Web page also contains the
code samples from the book as well as errata.

xxiv �

www.awprofessional.com/title/0321440307
www.awprofessional.com/title/0321440307
http://blogs.msdn.com/oldnewthing/
http://blogs.msdn.com/oldnewthing/

Breakdown of Chapters by Audience

Chapter Title General General Win32
Audience Programmer Programmer

Chapter 1 Initial Forays into User Interface Design x x x

Chapter 2 Selected Reminiscences on Windows 95 x x x

Chapter 3 The Secret Life of GetWindowText x

Chapter 4 The Taskbar and Notification Area x x x

Chapter 5 Puzzling Interface Issues x x x

Chapter 6 A History of the GlobalLock Function x

Chapter 7 Short Topics in Windows Programming x

Chapter 8 Window Management x

Chapter 9 Reminiscences on Hardware x x x

Chapter 10 The Inner Workings of the Dialog Manager x

Chapter 11 General Software Issues x x

Chapter 12 Digging into the Visual C++ Compiler x x

Chapter 13 Backward Compatibility x x x

Chapter 14 Etymology and History x x x

Chapter 15 How Window Messages Are Delivered x
and Retrieved

Chapter 16 International Programming First half x x

Chapter 17 Security x x

Chapter 18 Reminiscences on Windows 2000 First half First half x
and Windows XP

Chapter 19 Win32 Design Issues Part x

Chapter 20 Taxes x x

Chapter 21 Silliness x x x

* Tales of Application Compatibility x x x

* How to Ensure That Your Program x x
Doesn’t Run Under Windows 95

* These bonus chapters can be downloaded from www.awprofessional.com/title/0321440307.

 xxv�

www.awprofessional.com/title/0321440307

This page intentionally left blank

I want to begin by thanking Joan Murray at Addison-Wesley for believing
in a book as unusual as this one. Without her support, this project would
never have come together. Others at Addison-Wesley have also been of great
help, including Tyrrell Albaugh, Patty Boyd, Keith Cline, Curt Johnson, and
Chris Zahn. Ben Ryan deserves credit for suggesting to me back in the late
1990s that I should write a book on Win32 (sorry it took so long), and I
blame Brad Abrams for flat-out telling me to start a Web log in 2003.

Additional thanks to Betsy Aoki, Jeff Davis, Henry Gabryjelski, Jeffery
Galinovsky, Michael Grier, Mike Gunderloy, Eric Gunnerson, Chris Guzak,
Johnson M. Hart, Francis Hogle, Aleš Holecek, Michael Kaplan, KC
Lemson, Shelley McKinley, Rico Mariani, Joseph Newcomer, Adrian Oney,
Larry Osterman, Matt Pietrek, Jeffrey Richter, Mike Schmidt, Jan Shanahan,
Joel Spolsky, Stephen Toub, and Ed Wax for their assistance in various capac-
ities throughout this entire project (either intentional or unwitting).

Finally, I must acknowledge all the people who visit my Web site, which
serves as the title as well as the inspiration for this book. They’re the ones who
convinced me to give this book thing another try.

ACKNOWLEDGMENTS

xxvii

This page intentionally left blank

Raymond Chen is a programmer in the Windows division at Microsoft.
His Web site The Old New Thing deals with Windows history and Win32
programming. He also writes the Windows Confidential column for TechNet
Magazine.

ABOUT THE AUTHOR

xxix

This page intentionally left blank

I
If you ask ten people for their thoughts on user interface design, you will

get ten self-proclaimed expert opinions. Designing an interface for a single
user grants you the luxury of just asking your customer what they want and
doing it, but designing an interface for a large audience forces you to make
tough decisions. Here are some stories on the subject of user interface design,
starting with probably the most frequently asked question about the
Windows 95 user interface.

�
Why do you have to click

the Start button to shut down?
Back in the early days of what would eventually be named Windows 95, the
taskbar didn’t have a Start button. (Later, you’ll learn that back in the early
days of the project, the taskbar wasn’t called the taskbar.)

Instead of the Start button, three buttons were displayed in the lower-left
corner: the System button (icon: the Windows flag), the Find button (icon: an

INITIAL FORAYS INTO USER

INTERFACE DESIGN

eyeball), and the Help button (icon: a question mark). Find and Help are
self-explanatory. The System button gave you this menu:

Over time, the Find and Help buttons eventually joined the System button
menu, and the System button menu itself gradually turned into the Windows 95
Start menu. Some menu options such as Arrange Windows (which led to
options such as Cascade Windows and Tile Windows Horizontally) moved to
other parts of the user interface; others such as Task List vanished completely.

One thing kept showing up during usability tests as a major hurdle: People
turned on the computer and just sat there, unsure what to do next.

That’s when someone got the idea of labeling the System menu Start. It
says,“Psst. Click here.” With this simple change, the usability results improved
dramatically because, all of a sudden, people knew what to click when they
wanted to do something.

So why is Shut down on the Start menu?
When we asked people to shut down their computers, they clicked the

Start button. Because, after all, when you want to shut down, you have to start
somewhere.

�
Why doesn’t Windows have

an “expert mode”?
We often get requests like this:

There should be a slider bar somewhere, say on the Performance tab, that ranges from
Novice to Advanced. At the highest level, all the advanced settings are turned on. At
the Novice level, all the settings for beginners are turned on. In between, we can
gradually enable stuff.

 �

We’ve been trying to do something like this since even before Windows 95,
and it doesn’t work.

It doesn’t work because those who might be whizzes at Excel will rate
themselves as Advanced even though they can’t tell a page file from a box of
corn flakes. They’re not stupid. They really are advanced users. Just not
advanced at the skill we’re asking them about.

And before you go mocking the beginners: Even so-called advanced users don’t
know everything. I know a lot about GUI programming, but I only know a
little about disk partitioning, and I don’t know squat about Active Directory. So
am I an expert? When I need to format a hard drive, I don’t want to face a dialog
box filled with incomprehensible options. I just want to format the hard drive.

In the real world, people who are experts in one area are probably not
experts in other areas. It’s not something you can capture in a single number.

�
The default answer to every dialog box

is Cancel
The problem with displaying a dialog box is that people will take every
opportunity to ignore it. One system administrator related a story in a
Network World magazine online contest of a user who ignored a dozen virus
security warnings and repeatedly tried to open an infected email attachment,
complaining, “I keep trying to open it, but nothing happens.” When the
administrator asked why the user kept trying to open an attachment from a
stranger, the answer was,“It might have been from a friend! They might have
made up a new email address and didn’t tell me!”1 This story is a template for
how users treat any unexpected dialog: They try to get rid of it.

We see this time and time again. If you are trying to accomplish task A, and
in the process of doing it, an unexpected dialog box B appears, you aren’t going
to stop and read and consider B carefully. You’re going to try to find the quickest
path to getting rid of dialog B. For most people, this means minimizing it or
clicking Cancel or just plain ignoring it.

 Initial Forays into User Interface Design �

1.“Why Some People Shouldn’t Be Allowed Near Computers,” Network World, August 23, 2003,
http://napps.networkworld.com/compendium/archive/003362.html.

http://napps.networkworld.com/compendium/archive/003362.html

 �

This manifests itself in many ways, but the basic idea is, “That dialog box is
scary. I’m afraid to answer the question because I might answer it incorrectly and
lose all my data. So I’ll try to find a way to get rid of it as quickly as possible.”

Here are some specific examples, taken from conversations I have had with
real customers who called the Microsoft customer support line:

• “How do I make this error message go away? It appears every time I
start the computer.”

“What does this error message say?”

“It says, ‘Updates are ready to install.’ I’ve just been clicking the X to
make it go away, but it’s really annoying.”

• “Every time I start my computer, I get this message that says that
updates are ready to install. What does it mean?”

“It means that Microsoft has found a problem that may allow a computer
virus to get into your machine, and it’s asking for your permission to fix the
problem. You should click on it so the problem can be fixed.”

“Oh, that’s what it is? I thought it was a virus, so I just kept clicking
‘No.’ ”

• “When I start the computer I get this big dialog that talks about
automatic updates. I’ve just been hitting Cancel. How do I make it
stop popping up?”

“Did you read what the dialog said?”

“No. I just want it to go away.”

• “Sometimes I get the message saying that my program has crashed
and would I like to send an error report to Microsoft. Should I do it?”

“Yes, we study these error reports so we can see how we can fix the problem
that caused the crash.”

“Oh, I’ve just been hitting Cancel because that’s what I always do
when I see an error message.”

“Did you read the error message?”

“Why should I? It’s just an error message. All it’s going to say
is ‘Operation could not be performed because blah blah blah
blah blah.’ ”

When most people buy a car, they don’t expect to have to learn how an
engine works and how to change spark plugs. They buy a car so that they can
drive it to get from point A to point B. If the car makes a funny noise, they
will ignore it as long as possible. Eventually, it may bother them to the point
of taking it to a mechanic who will ask incredulously, “How long has it been
doing this?” And the answer will be something like,“Oh, about a year.”

The same goes for computers. People don’t want to learn about gigabytes
and dual-core processors and security zones. They just want to send email to
their friends and surf the Web.

I myself have thrown out a recall notice because I thought it was junk mail.
And computers are so filled with pop-up messages that any new pop-up message
is treated as just another piece of junk mail to be thrown away.

Those who work at an information desk encounter this constantly. People
ignore unexpected information. For example, even when a sign on a door says
that “XYZ is closed today,” you can bet that people will walk on in and ask,“Is
XYZ open today?”

“No, it’s closed today. Didn’t you see the sign on the door?”
“Hmm, yeah, now that you mention it, there was a sign on the door, but I

didn’t read it.”
Automobile manufacturers have learned to consolidate all their error mes-

sages into one message called “Check engine.” Most people are conditioned
to take the car in to a mechanic when the “Check engine” light goes on, and
let the mechanic figure out what is wrong. Is it even possible to have a “Check
engine” light for computers? Or would people just ignore that, too? How can
a computer even tell whether a particular change in behavior is normal or
unintended?

 Initial Forays into User Interface Design �

�
The best setting is the one you
don’t even sense, but it’s there,

and it works the way you expect
One solution that many people propose to the issue of “How should some-
thing be designed” is “Design it in every imaginable way, then let the end users
pick the one they want with an option setting somewhere.” This is a cop-out.

Computers need to be made simpler. This means fewer settings, not more.
One way to reduce the number of settings is to make them implicit. You’ll see
more of this trend as researchers work on ways to make computers simpler,
not more complicated.

Your toaster has a slider to set the darkness, which is remembered for your
next piece of toast. There is no Settings dialog where you set the default
darkness, but which you can override on a slice-by-slice basis.

Yes, this means that if you spent three weeks developing the perfect toast-
er slider position for Oroweat Honey Wheat Berry, and then you decide for a
change of pace to have a slice of rye bread instead, you’re going to have to move
the slider and lose your old setting. People seem not to be particularly upset
by this. The toaster works the way they expect.

Perhaps, you, the power-toaster-user, would want all toasters to let you save
up to ten favorite darkness settings. But I suspect most people don’t even
sense that there are “missing options.” If you started adding options to toast-
ers, people would start wishing for the old days when toasters were simpler
and easier to use.

“When I was a kid, you didn’t have to log on to your toaster to establish
your personal settings.”

 �

�
In order to demonstrate

our superior intellect, we will now ask you
a question you cannot answer

During the development of Windows 95, a placeholder dialog was added
with the title “In order to demonstrate our superior intellect, we will now ask
you a question you cannot answer.” The dialog itself asked a technical ques-
tion that you need a brain the size of a planet to answer. (Okay, your brain
didn’t need to be quite that big.)

Of course, there was no intention of shipping Windows 95 with such a
dialog. The dialog was there only until other infrastructure became available,
permitting the system to answer the question automatically.

But when I saw that dialog, I was enlightened. As programmers, we often
find ourselves unsure what to do next, and we say,“Well, to play it safe, I’ll just
ask users what they want to do. I’m sure they’ll make the right decision.”

Except that they don’t. As we saw earlier, the default answer to every dialog
box is Cancel. If you ask the user a technical question, odds are that they’re just
going to stare at it blankly for a while, then try to cancel out of it. The lesson
they’ve learned is this: Computers are hard to use.

So don’t ask questions the user can’t answer. It doesn’t get you anywhere,
and it just frustrates the user.

�
Why doesn’t Setup ask you if you want

to keep newer versions
of operating system files?

Windows 95 Setup would notice that a file it was installing was older than
the file already on the machine and would ask you whether you wanted to
keep the existing (newer) file or overwrite it with the older version.

 Initial Forays into User Interface Design �

Asking the user this question at all turned out to have been a bad idea. It’s
one of those dialogs that asks users a question they have no idea how to answer.

Suppose you’re installing Windows 95 and you get the file version conflict
dialog box. “The file Windows is attempting to install is older than the one
already on the system. Do you want to keep the newer file?” What do you do?

Well, if you’re like most people, you say, “Um, I guess I’ll keep the newer
one,” so you click Yes.

And then a few seconds later, you get the same prompt for some other file.
And you click Yes again.

And then a few seconds later, you get the same prompt for yet another file.
Now you’re getting nervous. Why is the system asking you all these questions?
Is it second-guessing your previous answers? Often when this happens, it’s
because you’re doing something bad and the computer is giving you one more
chance to change your mind before something horrible happens. Like in the
movies when you have to type Yes five times before you can launch the nuclear
weapons.

Maybe this is one of those times.
Now you start clicking No. Besides, it’s always safer to say “No,” isn’t it?
After a few more dialogs (clicking No this time), Setup finally completes.

The system reboots, and … it blue-screens.
Why?
Because those five files were part of a matched set of files that together

form your video driver. By saying “Yes” to some of them and “No” to others,
you ended up with a mishmash of files that don’t work together.

We learned our lesson. Setup doesn’t ask this question any more. It always
overwrites the files with the ones that come with the operating system. Sure,
you may lose functionality, but at least you will be able to boot. Afterward,
you can go to Windows Update and update that driver to the latest version.

Some have suggested that expanding the dialog with more explanatory text
would solve the problem, but this misses the fact that people don’t want to be
bothered with these dialogs to begin with, as well as the fact that more infor-
mation doesn’t help anyway because the user doesn’t have the background
knowledge necessary to make an informed decision in the first place.

 �

To a user, the dialog looks like this:

Making the dialog longer just increases the number of blahs. It’s like trying
to communicate with someone who doesn’t speak your language by repeating
yourself louder and more slowly. Users just want to surf the Web and send
email to their grandchildren. Whatever you put in the dialog, they simply
won’t read it. Giving the dialog more buttons merely increases the paralysis
factor.

Do you know the name of your printer driver? Or whether you should keep
version 4.12.5.101 or downgrade it to 4.12.4.8? I sure don’t.

�
Thinking through a feature

Everyone has a suggestion for a taskbar grouping feature. It’s just a little bit
of code; why not just do it?

Writing the code is the easy part.
Designing a feature is hard.
You have several audiences to consider. It’s not just about the alpha geeks;

you have to worry about the grandmothers, the office workers, the IT depart-
ments. They all have different needs. Sometimes a feature that pleases one
group offends another.

 Initial Forays into User Interface Design �

So let’s look at some of the issues surrounding the proposed feature of
allowing users to selectively ungroup items in the taskbar.

One issue with selective grouping is deciding the scope of the feature.
Suppose the user ungroups Internet Explorer, then closes all the Internet
Explorer windows, and then opens two new Internet Explorer windows: Do
the new ones group?

If so, you now have an invisible setting. How do you configure grouping for
programs that aren’t running? (How do you configure something that you
can’t see?)

Suppose you’ve figured that out. That’s fine for the alpha geeks, but what
about Grandma?

“The Internet is all disorganized.”
“What do you mean?”
“My Internet windows are all disorganized.”
“Can you explain a little more?”
“My taskbar used to be nice and organized, but now the Internet parts are

disorganized and spread out all over the place. It used to be nice and neat. I
don’t know how it happened. I hate the Internet. It’s always messing up my
computer.”

What is the user interface for selective ungrouping? Anything that is on a
context menu will be executed accidentally by tens of thousands of people due
to mouse twitching. Putting the regroup onto the context menu isn’t necessarily
good enough because those people don’t even realize it was a context menu
that did it. It was just a mouse twitch.

Mouse twitches cause all sorts of problems. Some people accidentally dock
their taskbar vertically; others accidentally resize their taskbar to half the size
of the screen. Do not underestimate the havoc that can be caused by mouse
twitching.

Soon people will want to do arbitrary grouping. “I want to group this
command prompt, that Notepad window, and this Calc window together.”

What about selective ungrouping? “I have this group of ten windows, but I
want to ungroup just two of them, leaving the other eight grouped together.”

 �

When you have selective/arbitrary grouping, how do you handle new
windows? What group do they go into?

Remember: If you decide, “No, that’s too much,” thousands of people will
be cursing you for not doing enough. Where do you draw the line? And also
remember that each feature you add will cost you another feature somewhere
else. Manpower isn’t free.

But wait, the job has just begun. Next, you get to sit down and do the
usability testing.

Soon you’ll discover that everything you assumed to be true is completely
wrong, and you have to go back to the drawing board. Eventually, you might
conclude that you overdesigned the feature and you should go back to the
simple on/off switch.

Wait, you’re still not done. Now you have to bounce this feature off corpo-
rate IT managers. They will probably tear it to shreds, too. In particular, they’re
going to demand things such as remote administration and the capability to
force the setting on or off across their entire company from a central location.
(And woe unto you if you chose something more complicated than an on/off
switch: Now you have to be able to deploy that complex setting across tens of
thousands of computers, some of which may be connected to the corporate
network via slow modems.)

Those are just some of the issues involved in designing a feature.
Sometimes I think it’s a miracle that features happen at all!

(Disclaimer: I’m not saying this is how the grouping feature actually came
to be. I just used it as an illustration.)

Curiously, when I bring up this issue, the reaction of most people is not to
consider the issue of trade-offs in feature design but rather to chip in with
their vision of how the taskbar should work. “All I want is for the taskbar to
do X. That other feature Y is useless.” The value of X and Y changes from
person to person; these people end up unwittingly proving my point rather
than refuting it.

 Initial Forays into User Interface Design �

�
When do you disable an option,

and when do you remove it?
When you’re displaying a menu item or a dialog option, and the option is
not available, you can either disable it or you can remove it. What is the rule
for deciding which one to do?

Experiments have shown that if something is shown but disabled, users
expect that they will be able to get it enabled if they tinker around enough.

Therefore, leave a menu item shown but disabled if there is something the
user can do to cause the operation to become available. For example, in a media
playback program, the option to stop playback is disabled if the media file is not
playing. When it starts playing, however, the option becomes available again.

On the other hand, if the option is not available for a reason the user has no
control over, remove it. Otherwise the user will go nuts looking for the magic
way to enable it. For example, if a printer is not capable of printing color, don’t
show any of the color management options, because there’s nothing the user
can do with your program to make that printer a color printer.

By analogy, consider a text adventure game. The player tries something
clever, such as “Take the torch from the wall,” and the computer replies, “You
can’t do that, yet.” This is the adventure game equivalent to graying out a menu
item. The user is now going to go nuts trying to figure out what’s happening:
“Hmm, maybe I need a chair, or the torch is too hot, or I’m carrying too much
stuff, or I have to find another character and ask him to do it for me.”

If it turns out that the torch is simply not removable, what you’ve done is
send the user down fruitless paths to accomplish something that simply can’t
be done. For an adventure game, this frustration is part of the fun. But for a
computer program, frustration is not something people tend to enjoy.

Note that this isn’t a hard-and-fast rule; it’s just a guideline. Other
considerations might override this principle. For example, you may believe
that a consistent menu structure is more desirable because it is less confusing.
(A media playback program, for example, might decide to leave the video-related
options visible but grayed when playing a music file.)

 �

�
When do you put ...

after a button or menu?
Save as… appears on some menus. You’ll also find plenty of Customize…

buttons. What is the rule for dots?
Many people believe that the rule for dots is this: “If it’s going to display a

dialog, you need dots.” This is a misapprehension.
The rules are spelled out in the Windows User Interface Design

Specifications and Guidelines (what a mouthful) in the section titled
“Ellipses.”

You should read the guidelines for the full story, but here’s the short ver-
sion: Use an ellipsis if the command requires additional information before it
can be performed. Sometimes the dialog box is the command itself, such as
About or Properties. Even though they display a dialog, the dialog is the result,
as opposed to commands such as Print, where the dialog is collecting additional
information prior to the result.

�
User interface design
for vending machines

How hard can it be to design the user interface of a vending machine? You
accept money, you have some buttons, users push the buttons, and they get
their product and their change.

At least in the United States, many vending machines arrange their product
in rows and columns. To select a product, you press the letter of the row and
the number of the column. Could it be any simpler?

It turns out that subtleties lurk even in something this simple.
If the vending machine contains ten items per row, and you number them 1

through 10, a person who wants to buy product C10 has to push the buttons
C and 10. But in our modern keyboard-based world, there is no 10 key.
Instead, people press 1 followed by 0.

 Initial Forays into User Interface Design �

What happens if you type C + 1 + 0? After you type the 1, product C1
drops. Then the user realizes that there is no 0 key. And he bought the wrong
product.

This is not a purely theoretical problem. I have seen this happen myself.
How would you fix this?
One solution is simply not to put so many items on a single row, considering

that people have difficulty making decisions if given too many options. On the
other hand, the vendor might not like that design; their goal might be to
maximize the number of products.

Another solution is to change the labels so that the number of button
presses needed always matches the number of characters in the label. In other
words, no buttons with two characters on them (for example, a 10 button).

You could switch the rows and columns so that the products are labeled 1A
through 1J across the top row and 9A through 9J across the bottom. This
assumes you don’t have more than nine rows, however. Some vending machines
have many more selections on display, resulting in a very large number of rows.

If you have exactly ten items per row, you can call the tenth column 0.
Notice, however that you also should remove rows I and O to avoid possible
confusion with 1 and 0.

Some vending machines use numeric codes for all items rather than a let-
ter and a digit. For example, if the cookies are product number 23, you punch
2 + 3. If you want the chewing gum (product code 71), you punch 7 + 1.
What are some problems with having your products numbered from 1 to 99?

Here are a few problems. You may have come up with others:

• Products with codes 11, 22, 33, and so on may be selected
accidentally. A faulty momentary switch might cause a single key-
press to register as two, or a user may press the button twice by
mistake or frustration.

• Product codes less than ten are ambiguous. Is a 3 a request for prod-
uct number 3, or is the user just being slow at entering 32? Solving
this by adding a leading zero will not work because people are in the
habit of ignoring leading zeros.

 �

• Product codes should not coincide with product prices. If there is a bag of
cookies that costs 75 cents, users are likely to press 75 when they want the
cookies, even though the product code for the cookies is 23.

�
User interface design

for interior door locks
How hard can it be to design the user interface of an interior door lock?

Locking or unlocking the door from the inside is typically done with a latch
that you turn. Often, the latch handle is in the shape of a bar that turns.

Now, there are two possible ways you can set up your lock. One is that a
horizontal bar represents the locked position, and a vertical bar represents the
unlocked position. The other is to have a horizontal bar represent the
unlocked position and a vertical bar represent the locked position.

For some reason, it seems that most lock designers went for the latter
interpretation. A horizontal bar means unlocked.

This is wrong.
Think about what the bar represents. When the deadbolt is locked, a hori-

zontal bar extends from the door into the door jamb. Clearly, the horizontal bar
position should reflect the horizontal position of the deadbolt. It also resonates
with the old-fashioned way of locking a door by placing a wooden or metal bar
horizontally across the face. (Does no one say “bar the door” any more?)

Car doors even followed this convention, back when car door locks were little
knobs that popped up and down.The up position represented the removal of the
imaginary deadbolt from the door/jamb interface. Pushing the button down was
conceptually the same as sliding the deadbolt into the locked position.

But now, many car door locks don’t use knobs. Instead, they use rocker
switches. (Forward means lock. Or is it backward? What is the intuition
there?) The visual indicator of the door lock is a red dot. But what does it
mean? Red clearly means danger, so is it more dangerous to have a locked door
or an unlocked door? I can never remember; I always have to tug on the door
handle.

 Initial Forays into User Interface Design �

(Horizontally mounted power window switches have the same problem.
Does pushing the switch forward raise the window or lower it?)

�
The evolution of mascara

in Windows UI
The look of the Windows user interface has gone through fashion cycles.

In the beginning, there was Windows 1.0, which looked very flat because
screen resolutions were rather low in those days, and color depth was practically
nonexistent. If you had 16 colors, you were doing pretty well. You couldn’t afford
to spend very many pixels on fluff such as borders, and shadows were out of the
question because of lack of color depth.

The flat look continued in Windows 2.0, but Windows 3.0 added a hint of
3D, with a touch of beveling in push buttons.

Other people decided that the 3D look was the hot new thing, and libraries
sprang up to add 3D shadow and outlining effects to nearly everything. The
library CTL3D.DLL started out as just an Excel thing, but it grew in popu-
larity until it became the standard way to make your dialog boxes even more 3D.

Come Windows 95, and even more of the system had a 3D look. For exam-
ple, beveling appeared along the inside edge of the panes in the Explorer window.
Furthermore, 3D-ness was turned on by default for all programs that marked
themselves as designed for Windows 95. For programs that wanted to run on
older versions of Windows as well, a new dialog style DS_3DLOOK was added, so
that they could indicate that they wanted 3D-ization if available.

And if the 3D provided by Windows 95 by default wasn’t enough, you could
use CTL3D32.DLL to make your controls even more 3D than ever before. By
this point, things started getting really ugly. Buttons on dialog boxes had so
many heavy black outlines that it started to look like a really bad mascara job.

Fortunately, like many fashions that get out of hand, people realized that
too much 3D is not a good thing. User interfaces got flatter. Instead of using
3D effects and bold outlines to separate items, subtler cues were used. Divider
lines became more subdued and sometimes disappeared entirely.

 �

Microsoft Office and Microsoft Money were two programs that embraced the
less-is-more approach. The beveling is gone, and there are no 3D effects. Buttons
are flat and unobtrusive. The task pane separates itself from the content pane by
a simple gray line and a change in background shade. Even the toolbar has gone
flat. Office 2000 also went largely flat, although some simple 3D effects linger (in
the grooves and in the scrollbars, for example).

Windows XP jumped on the flat-is-good bandwagon and even got rid of the
separator line between the tasks pane and the contents pane. The division is
merely implied by the change in color.“Separation through juxtaposition” has
become the new mantra.

Office XP and Outlook 2003 continue the trend and flatten nearly everything
aside from the scrollbar elements. Blocks of color are used to separate elements
onscreen, sometimes with the help of simple outlines.

So now the pendulum of fashion has swung away from 3D back toward
flatness. Who knows how long this school of visual expression will hold
the upper hand? Will 3D return with a vengeance when people tire of the
starkness of the flat look?

�

 Initial Forays into User Interface Design �

This page intentionally left blank

T
The GetWindowText function is more complicated than you think.

The documentation tries to explain its complexity with small words,
which is great if you don’t understand long words, but it also means that the
full story becomes obscured.

Here’s an attempt to give the full story.

�
How windows manage their text

There are two ways window classes can manage their text. They can do it
manually or they can let the system do it. The default is to let the system do it.

If a window class lets the system manage its text, the system will do the
following:

• Default handling of the WM_NCCREATE message takes the
lpWindowName parameter passed to CreateWindow/Ex and saves
the string in a “special place.”

• Default handling of the WM_GETTEXT message retrieves the string
from that special place.

THE SECRET LIFE

OF GETWINDOWTEXT

• Default handling of the WM_SETTEXT message copies the string to
that special place.

On the other hand, if a window class manages its window text manually,
the system does not do any special handling, and it is the window class’s
responsibility to respond to the WM_GETTEXT/WM_SETTEXTmessages and return/
save the strings explicitly.

Frame windows typically let the system manage their window text. Custom
controls typically manage their window text manually.

�
Enter GetWindowText

The GetWindowText function has a problem: Window text needs to be
readily available without hanging. FindWindow needs to get window text to
find a window. Task-switching applications need to get window text so that
they can display the window title in the switcher window. It should not be
possible for a hung application to clog up other applications. This is particularly
true of the task-switcher scenario.

This argues against sending WM_GETTEXT messages, because the target
window of the WM_GETTEXT might be hung. Instead, GetWindowText should
use the “special place” because that cannot be affected by hung applications.

On the other hand, GetWindowText is used to retrieve text from controls
on a dialog, and those controls frequently employ custom text management.
This argues for sending WM_GETTEXT messages, because that is the only way to
retrieve custom-managed text.
GetWindowText strikes a compromise:

• If you are trying to get the window text from a window in your own
process, GetWindowText will send the WM_GETTEXT message.

• If you are trying to get the window from a window in another
process, GetWindowText will use the string from the special place
and not send a message.

 �

According to the first rule, if you are trying to get text from a window in
your own process, and the window is hung, GetWindowText will also hang.
But because the window belongs to your process, it’s your own fault, and you
deserve to lose. Sending the WM_GETTEXT message ensures that text from
windows that do custom text management (typically, custom controls) are
properly retrieved.

According to the second rule, if you are trying to get text from a window in
another process, GetWindowText will not send a message; it just retrieves the
string from the special place. Because the most common reason for getting
text from a window in another process is to get the title of the frame, and
because frame windows typically do not do custom window text manipula-
tion, this usually gets the right string.

The documentation simplifies this as “GetWindowText cannot retrieve text
from a window from another application.”

�
What if I don’t like these rules?

If the second rule bothers you because you need to get text from a custom con-
trol in another process, you can send the WM_GETTEXT message manually.
Because you are not using GetWindowText, you are not subject to its rules.

Note, however, that if the target window is hung, your application will also
hang because SendMessage will not return until the target window responds.

Note also that because WM_GETTEXT is in the system message range (0 to
WM_USER-1), you do not need to take any special action to get your buffer
transferred into the target process and to get the result transferred back to the
calling process (a procedure known as marshalling). In fact, any special steps
you take to this end are in error. The window manager does the marshalling
for you.

 The Secret Life of GetWindowText �

�
Can you give an example

where this makes a difference?
Consider this control:

SampleWndProc(...)
{

case WM_GETTEXT:
lstrcpyn((LPTSTR)lParam, TEXT("Booga!"), (int)wParam);
return lstrlen((LPTSTR)lParam);

case WM_GETTEXTLENGTH: return 7; // lstrlen("Booga!") + null
...

}

And application A, which does this:

hwnd = CreateWindow("Sample", "Frappy", ...);

Now consider process B, which gets the handle to the window created by
application A (by whatever means):

TCHAR szBuf[80];
GetWindowText(hwnd, szBuf, 80);

This will return szBuf = "Frappy" because it is getting the window text
from the special place. However

SendMessage(hwnd, WM_GETTEXT, 80, (LPARAM)szBuf);

will return szBuf = "Booga!"

�
Why are the rules

for GetWindowText so weird?
Set the wayback machine to 1983. Your typical PC had an 8086 processor
running at a whopping 4.7MHz, two 360K 5¼-inch floppy drives (or if you

 �

were really loaded, one floppy drive and a 10MB hard drive), and 256KB of
memory

This was the world of Windows 1.0.
Windows 1.0 was a cooperatively multitasked system. No preemptive mul-

titasking here. When your program got control, it had control for as long as it
wanted it. Only when you called a function such as PeekMessage or GetMessage
did you release control to other applications.

This was important because in the absence of a hardware memory manager,
you really had to make sure that your memory didn’t get ripped out from
under you.

One important consequence of cooperative multitasking is that if your
program is running, not only do you know that no other program is running,
but you also know that every window is responding to messages. Why? Because if
they are hung, they won’t release control to you!

This means that it was always safe to send a message. You never had to
worry about the possibility of sending a message to a hung window, because
you knew that no windows were hung.

In this simpler world, GetWindowText was a straightforward function:

int WINAPI
GetWindowText(HWND hwnd, LPSTR pchBuf, int cch)
{

// ah for the simpler days
return SendMessage(hwnd, WM_GETTEXT, (WPARAM)cch, (LPARAM)pchBuf);

}

This worked for all windows, all the time. No special handling of windows
in a different process.

It was the transition to Win32 and preemptive multitasking that forced the
change in the rules, because for the first time, there was the possibility that
(gasp) the window you were trying to communicate with was not responding
to messages.

Now you have the backward-compatibility problem. As noted previously,
many parts of the system and many programs rely on the capability to
retrieve window text without hanging. So how do you make it possible

 The Secret Life of GetWindowText �

to retrieve window text without hanging, while still enabling controls such as
the edit control to do their own window text management?

The Win32 rules on GetWindowText are the result of this attempt to
reconcile conflicting goals.

�

 �

This page intentionally left blank

Abstract functions, 281
Accelerators, 215–216
Accessibility, 57, 472–480
Active Accessibility feature, 480
AddRef method, 274
Address spaces, large, 451–455
Adjustor thunks, 274–275
Advanced Options dialog, 2–3, 57
All Programs list, 403–404
Alt key for blinking caret, 343–344
Alt+Esc hotkey, 58
Alt+Tab order, 58–59
Always on top, 58, 436
Analog clocks, 51
Animal-named functions, 22–23
Animations, stealing, 305
ANSI code page, 379–390

converting with Unicode, 391–392
UTF-8 as, 431–432

ANSI strings, 164
Anti-aliased fonts, 459–462
Anti-piracy holograms, 25–26
Anti-symmetry rule, 243
AOL CDs, 487

Application Compatibility Toolkit, 287–288
Application Data vs. My Documents, 450–451
Application Verifier, 288
Arithmetic library for Calc, 337
Arrows, up-down controls, 354–355
Auto-reset events, 112–114

Background operations in power management,
455–457

Backward compatibility, 283
16-bit DOS and Windows, 288–290
BIOS clock, 301–302
bugs in, 293–294
Deer Hunter, 293
DirectX video driver, 298–299
Display Control Panel, 308–309
drive letters, 292–293
error code, 297–298
GetWindowText, 45–46
hardware, 141–142
intentional crashes, 283
listview controls, 300–301
operating system patches, 299–300
Printers Control Panel, 306–307

Index

Backward compatibility (Continued)
QueryInterface, 303–305
reserved filenames, 290–292
Shell Folders key, 294–296
undocumented behavior, 286–288
undocumented functions, 23–24
undocumented resources, 305
undocumented structures, 284–286
version numbers, 302–303
visual style, 309

Balloon tips, 4, 427–428
Base addresses, DLL, 351–353
Based pointers, 401
Battery power detection, 455–457
BEAR function, 22–23
Behavior, undocumented, 286–288
Beta release numbers, 38–39
Betamax format, 249
BIOS clock, 301–302
BitBlt function, 442
Bitmap brushes, 95–98
Bitmaps on high DPI displays, 464–465
Black clock icon, 54
Blank taskbar buttons, 59–60
Blaster worm, 67
Blinking caret, 343–344
Blue-screen crashes, 396–397
Blue swirling arrows icon, 53
BN_CLICKED notification, 236
Boeing 747, modems on, 147
Boldface on menus, 62
Boot sectors, Windows setup for, 409–410
Booting in Windows 95, 20–22
Border wars, 20
BOZOSLIVEHERE function, 24
Brady Bunch, The, 312
Brickell, Edie, 28
BROADCAST_QUERY_DENY value, 421
Broadcasting messages, 340–341
Brushes

DC, 98–100
hollow, 119
for tiling effects, 95–98

BS_* button styles, 232, 234
“Bug Bunny,” 494
Bug reports, whimsical, 482–483
Bugs

debugging as security hole, 397–398
identifying, 293–294

Build numbers
service pack, 39–40
Windows 95, 38–39

BUNNY function, 22–23

CabView PowerToy, 36
Caches, memory leaks from, 259–266
Calc tool, unnoticed changes to, 336–337
Callback functions, 23–24
Cancel button

as default, 3–5
and X buttons, 237

Caption icon, 85–86
Caret, blinking, 343–344
Carriage return (CR) in line terminators,

334–335
Cars

check engine lights, 5
door locks, 15–16
electric, 249

Case mapping, 373–375
Casts to LPARAM, 321–322
CComPtr template, 267–269
CD AutoPlay PowerToy, 36
CD-ROM ghost drives, 142–143
CDs

AOL, 487
autoplay settings, 406–407
ejecting, 408–409

Certification process for drivers, 145–146, 397
Changes

nonlocal effects of, 484–485
timestamp, 241–242
unnoticed, 336–337

Check engine lights, 5
CheckDlgRecursion macro, 156
Class brush, 118–119, 96–97

 �

Classic templates
16-bit, 164–172
32-bit, 172–181

ClearType technique, 459–462
Client areas

in frame windows, 199–200
sunken, 432

Clocks
BIOS, 301–302
black, 54
on taskbar, 50–51
painting, 89–93

Clocks chips, overclocking, 148–150
CloseHandle function, 425
CoCreateGuid function, 298–299
Code bloat, 31
Code-modality vs. UI-modality, 123–126
Code pages, 379–388

ANSI, 388
OEM, 388–390

Code segments, 72
CoGetMalloc function, 324–329
Color displays, monochrome text on, 459–462
Color, icon label, 56–57
COLOR_WINDOW, 119
Columnists, 28, 34–35, 76
COM objects

layout, 272–274
teardown, 268

COMCTL32.DLL file, 338
Command Prompt Here PowerToy, 36
Comments? button, 408
Commutative diagrams, 187–188
comp.unix.wizards problem, 490–491
Compaction process, 72
Compatibility. See Backward compatibility
Compatibility subsystems, 289
Compilers

code pages with, 383
Visual C++. See Visual C++ compiler

CON filename, 290–292
Connectivity, network, 457–459
Connectors, blowing dust out of, 68–69

Content Watson, 329
Context menus

boldface on, 62
for caption icon, 85–86
timed, 138–139

Contracts, interface, 245–248
Control Panel applications, 245–248

and Tweak UI, 33
and Windows 95 installation, 34

Controls
for dialogs, 202–204
focus on, 227–229
IDs for, 225–227

Converting
DLUs to pixels, 199, 202–203
nonmodal dialog boxes to modal, 207–211
between Unicode and ANSI, 391–392

Cooperative multitasking, 45
Coordinated universal time (UTC)

and BIOS clock, 301–302
and daylight saving time, 239–240

Copying
timestamps changes in, 241–242
when dragging files, 64–65

Costs, product-support, 32
CoTaskMemAlloc function, 324–329
CoUninitialize function, 268–269
Countries in geopolitics, 20, 439
Covered windows, determining, 93–95
CP/M operating system, 333–334
CPU meter, 63
CPU usage, 411–412
CR (carriage return) in line terminators,

334–335
Crashes

intentional, 283
from uncertified drivers, 396–397

CreateActCtx function, 248
CreateDialog function, 197, 222
CreateDialogIndirectParam function,

197–198, 206
CreateDialogParam function, 197–198,

213, 221

 �

CreateEvent function, 112
CreateFile function, 331
CreateFileMapping function, 398
CreateMenu function, 86–88
CreateMutex function, 332
CreatePatternBrush function, 96–97
CreatePopupMenu function, 86–88
CreateProcess function, 249
CreateStdAccessibleObject function, 478
CreateThread function, 332
CreateWindowEx function, 166, 201, 203
Critical sections, 110–111
CSIDL_APPDATA directory, 451
CSIDL_LOCAL_APPDATA directory, 451
CSIDL_MYDOCUMENTS directory, 450
CSRSS.EXE program, 423
CTL3D.DLL library, 16
Ctrl+Z, 333–334
Custom right-click menus, 85–86
Customers, death threats from, 486–487
Customized Web site icons, 62–63

DAD (Desktop Applications Division), 490
Data tampering attacks, 393
Date/Time Control Panel, 350–351
Davis, Jeff, 493
Daylight saving time, 239–241
DBCS (double byte character sets), 431
DC brush, 98–100
DDE (Dynamic Data Exchange)

messages, 371
ddeexec key, 66
Death threats, 486–487
Deaths from improper case mapping, 374–375
Debugging

as security hole, 397–398
psychic, 410–412
vtables in, 401

Decoys, 306–309
Deer Hunter game, 293
DEFAULT_GUI_FONT font, 353–354
Defaults

dialog box answers, 3–5, 151–159

dialog box IDs, 232–233
menu commands, 62
selectors, 319
shell font, 412–415
Taskbar position, 49–50

DefDlgProc function, 152–159, 226–227
DefDlgProcEx macro, 156
Defect tracking system, 289
DeferWindowPos function, 435–436
Defragmenting undefragmentable structures, 284
Defrauding WHQL, 145–146
DefWindowProc function, 85

for accessibility, 479
for default colors, 99

Delay-load feature, 418
DeleteObject function, 96–97
Deleting

Device Manager, 65–66
options, 12

DeliverIncomingSentMessages
pseudo-function, 360, 368, 370

DeliverMessage pseudo-function, 359–360
Denial-of-service attacks, 393
Descriptors, 73–75
DeskMenu PowerToy, 36
Desktop

disabling, 433–434
Remote Desktop Connection, 440–443
taskbar on, 343
window, 120–121

Desktop Applications Division (DAD), 490
Desktop composition, 95, 466–467
desktop.ini file

opening at logon, 55–56
for folders, 59

Desktop Window Manager (DWM), 95,
466–467

Destroyed windows, messages for, 139–140
Destroying

menus, 88–89
modal dialogs, 121–122

DestroyWindow function, 203
Destructors, 267–272

 �

Dev O’Day hat, 494–495
Device Manager, deleting, 65–66
Dialog boxes, 151

accelerators in, 215–216
alternative designs, 154–163
controls for, 202–204

focus on, 227–229
IDs for, 225–227

converting nonmodal to modal, 207–211
creating, 197–198
default answers to, 3–5, 151–159
default IDs for, 232–233
DefDlgProc for, 226–227
destroying, 121–122
frame windows for, 198–202
hidden, 335–336
IsDialogMessage for, 229–236
loops, 204

basic, 204–207
need for, 224–225
structure, 207
subtleties in, 211–214

navigation in, 214–215
nested, 216–224
procedures, 151–163
resizing, 222–224
with unanswerable questions, 7, 8–9
unexpected, 3–5, 489

Dialog templates, 163–164
16-bit

classic, 164–172
extended, 181–187

32-bit
classic, 172–181
extended, 187–194

purpose, 195
summary, 195, 196

Dialog units (DLUs), 165
converting to pixels, 199
for dialog templates, 414–415
in high DPI displays, 462

DialogBox function, 129, 208
DialogBoxIndirectParam function, 205

DIALOGEX resource, 187, 194, 412, 415
Dictionaries, spell-checking, 27
Direct Annotation feature, 480
DirectX

DirectX 4, 330–331
video driver interface, 298–299

Disabled controls
focus on, 228
X buttons, 237

Disabling
desktops, 433–434
vs. removing, 12
windows, 120–122

Discardable resources, 313
Discarding code, 72
Disco parties, 495
Disk quotas, 394
DispatchMessage function,

130–131, 214, 224–225, 365
Display Control Panel, 308–309
Displaying

pop-up windows, 471–472
strings, 103–110

Displays
high DPI, 462–467
monochrome text on, 459–462

Distribution list names, 490–491
DLGC_* flags, 232, 233–236
DLLs. See Dynamic link libraries (DLLs)
DLUs (dialog units), 165

converting to pixels, 199, 202–203
for dialog templates, 414–415
in high DPI displays, 462

DM_GETDEFID message, 229, 232–233
DM_SETDEFID message, 227–229, 232–233
Documents, printing order, 66–67
DoesDriverSupport function, 298
DoModal function, 157, 208–212
Dongle rumor, 28
Door locks, 15–16
DOS

backward compatibility for, 288–290
code page in, 389

 �

Double byte character sets (DBCS), 431
Downward-pointing blue arrow icon, 53
DPI in high DPI displays, 462–467
Dr. Watson feature, 329–330
Dragging files, 64–65
DragQueryFile function, 76
Drawing

with Remote Desktop Connection, 440–443
solid rectangles

with ExtTextOut, 100–102
with StretchBlt, 102–103

DRAWITEMSTRUCT structure, 462
DrawSolidRect function, 100–102, 300
Drive letters in UNC paths, 292–293
Driver Verifier, 145, 147
Drivers

Direct X, 298–299
uncertified, 70, 396–397
versions, 8
WHQL certification process, 145–146
In Visual Basic, 485

Drives in dragging files, 64–65
DropTarget key, 67
DS_3DLOOK style, 16
DS_ABSALIGN style, 200
DS_CONTROL style, 198, 216–224
DS_FIXEDSYS style, 199, 413–414
DS_NOFAILCREATE style, 203
DS_SETFONT style

for 16-bit templates
classic, 165, 167, 172
extended, 181

for 32-bit templates
classic, 173, 176, 180
extended, 191

and DS_SHELLFONT, 413–414
for frame windows, 199

DS_SHELLFONT style, 412–415
Dual-booting, BIOS clock in, 301–302
Dust in connectors, 68–69
DWLP_MSGRESULT, 152–153, 156
DWM (Desktop Window Manager), 466–467

Dynamic Data Exchange (DDE) messages, 371
Dynamic link libraries (DLLs)

16-bit Windows resources, 314
calling functions in, 338
in large address spaces, 451–453
rebasing, 254, 351–353
with Visual C++ compiler, 268

Easter egg music, 28
EditWndProc function, 24
Egghead Software, 35
8-bit characters, 390
Ejecting CDs, 408–409
Electric cars, 249
Ellipses (...) on menus, 13
Embarrassment, whimsical, 493–494
“Enable Dubious Optimizations” switch, 146
EnableWindow function, 206, 211
Enabling windows, 121–122
Encoding integers as pointers, 452
EndDialog function, 129, 210–212
Eno, Brian, 27–28
EnumDisplayMonitors function, 468
Error code backward compatibility, 297–298
Error reporting, Dr. Watson,

283–284, 329–330
ES_OEMCONVERT style, 345–346
ETO_OPAQUE flag, 92, 101
Event, auto-reset, 112–113
“Ex” suffix for registry function

names, 322–324
ExitThread function, 271
Expert mode, requests for, 2–3
Explore From Here PowerToy, 36
Explorer

CD ejection by, 408
filename sorting in, 347–350
hiding files from, 394–395
parsing, 285

Extended templates
16-bit, 181–187
32-bit, 187–194

 �

ExtTextOut function
patched version, 299
for solid rectangles, 100–102

Face-saving aspect in product support, 68–69
Fast task switching, 58
Fast User Switching, 443–444
FAT file system, times and dates in, 241–242
favicon.ico icon, 62–63
Features, thinking through, 9–11
FILE_ATTRIBUTE_HIDDEN flag,

394–395
FILE_ATTRIBUTE_OFFLINE flag, 54,

438–439
FILE_ATTRIBUTE_SYSTEM flag, 395
File system tunneling, 346–347
Filenames

reserved, 290–292
sorting, 347–350

Files
Ctrl-Z in, 333–334
dragging, 64–65
hiding, 394–395
Hierarchical Storage Management, 438–439
text label colors for, 56–57
timestamp changes in, 241–242
unwanted, opened at logon, 54–56
world-writable, 393–394

FILETIME structure, 239–240
FileTimeToLocalFileTime function, 239–240
Filling shapes, 98
FillRect function, 100
FindFirstFile function, 347, 391
FindResource function, 312
FindWindow function, 42
Fixed memory, 72
Flashing hard drive lights, 29–30
Flat look, 16–17
FlexiCD PowerToy, 36
Floating-point library for Calc, 337
Floppy disks as semaphore tokens, 492
Floppy drives

file copies to, 241–242
USB, 485–486

FlushInstructionCache function, 337
Focus in dialog boxes, 227–229
Folders

opened at logon, 54–56
read-only property for, 59
redirected, 447–450

Fonts
and ClearType, 459–462
default shell, 412–415
for dialogs, 202
on high DPI displays, 462
linking, 104–110
support for, 103–104

“For test/evaluation purposes only,” 70
Frame windows, 198–202
FreeLibraryAndExitThread

function, 271
FreeResource function, 313
Function pointer tables, 273
Functions

memory management, 324–329
registry, 322–324
return addresses of, 242–243
strangely named, 22–24
virtual, 280–282

Games
Deer Hunter, 293
Rat Poker, 489–490
Spider Solitaire, 488

Garbage collector, 282
Generated posted messages, 365–367
Geopolitics, 20, 439
GetAsyncKeyState function, 372
GetClientRect function, 95
GetClipboardData function, 78
GetClipBox function, 93–94
GetClipRgn function, 95
GetCurrentProcess function, 333
GetDC function, 93

 �

GetDesktopWindow function, 120, 132
GetDisplayNameOf method, 429
GetDlgCtrlID function, 189
GetFileAttributes function, 54
GetInstanceData function, 316
GetKeyState function, 372
GetMenuDefaultItem function, 62
GetMessage function, 359, 361, 363–364

for cooperative multitasking, 45, 340
information on, 357
in message loops, 211–214
for mouse move messages, 116
WM_QUIT with, 127

GetModuleHandleEx function, 242, 271
GetMonitorInfo function, 469–470
GetNextDlgTabItem function, 221
GetProcAddress function, 418
GetQueueState function, 372
GetRegionData function, 95
GetStockObject function, 98, 100, 353–354
GetStrCodePages method, 104–106
GetSubMenu function, 87
GetSysColorBrush function, 98
GetSystemMetrics function, 468
GetVersion function, 302–303
GetWindowContextHelpId function, 181
GetWindowLong function, 24, 136, 152
GetWindowLongPtr function, 24, 136, 152
GetWindowPlacement function, 50, 122, 471
GetWindowText function, 41–42

operation, 42–43
rules in, 43–46

Ghost CD-ROM drives, 142–143
Gigabytes, 69–70
Glasser, Danny, 356
GlobalAlloc function, 71

16-bit, 71–75
32-bit 75–78
vs. LocalAlloc, 318–320

GlobalFlags function, 76
GlobalLock function, 72–73, 77
GlobalReAlloc function, 73, 75–76
GlobalWire function, 317

GMEM_FIXED flag, 77
GMEM_MOVEABLE flag, 73, 77–78
GMEM_SHARE flag, 76, 320–321
Grier, Michael, 431
Group Policy, 33
Grouping on taskbar, 9–11
GUID generation, 298–299
GWLP_USERDATA constant, 136

Halloween-themed lobby, 495–496
Hand, palm up icon, 53
Handle table in hardware, 74
HANDLE_WM_CONTEXTMENU

macro, 86
Handles

memory, 77
return values, 331–333

Hangs from error code compatibility, 297
Hard drive flashing lights, 29–30
Hardware, 141

backward compatibility, 141–142
ghost CD-ROM drives, 142–143
overclocking, 148–150
Plug and Play tests, 146
USB Cart of Death, 147
vendor misspellings, 144–145
WHQL tests, 143–146

HDROP handle, 76
Height of dialog controls, 202
Hell test, 143–146
HGLOBAL handle, 72, 77–78, 319
Hidden attribute, 55–56
Hidden dialog boxes, 335–336
Hidden variables, 251
Hiding files, 394–395
Hierarchical Storage Management, 438–439
High DPI displays, 462–467
HINSTANCE handle vs. HMODULE,

313–316
Historical topics, 311

blinking caret, 343–344
broadcast-based mechanisms, 340–341
changes unnoticed, 336–337

 �

Ctrl+Z, 333–334
Date/Time Control Panel, 350–351
dialog boxes, 335–336
DirectX 4, 330–331
DLL rebase, 254, 351–353
Dr. Watson, 329–330
ES_OEMCONVERT flag, 345–346
file system tunneling, 346–347
filename sorting, 347–350
FlushInstructionCache, 337
GlobalWire, 317
GMEM_SHARE flag, 320–321
HANDLE return values, 331–333
HINSTANCE vs. HMODULE, 313–316
InitCommonControls, 338
InterlockedIncrement and

InterlockedDecrement, 339–340
line terminators, 334–335
LocalAlloc vs. GlobalAlloc, 318–320
LPARAM redundant casts, 321–322
memory management functions, 324–329
monitors, 312
registry file names, 312
registry functions, 322–324
resource management, 312–313
spinners, 354–355
SYSTEM_FONT and

DEFAULT_GUI_FONT, 353–354
taskbar on desktop, 343
text macros, 335
Windows 95 launch, 355–356
windows minimized, 341–343
WinMain hPrevInstance parameter,

316–317
WPARAM and LPARAM, 311–312
WSASetLastError, 340

“Hives,” derivation of, 312
HKEY_CURRENT_USER hive, 444
HKEY_LOCAL_MACHINE hive, 444, 446
HLT instruction, 141–142
HMODULE handle vs. HINSTANCE,

313–316
HMONITOR handle, 468

Holistic view of performance, 255–256
Hollow brush, 119
Holograms, anti-piracy, 25–26
Howard, Michael, 67
hPrevInstance parameter, 316–317
HRESULTs, 453–454
HWND_TOP handle vs. HWND_TOP-

MOST, 435–436
Hyperlinks in notification icon balloon

tips, 427–428

IAccessible interface, 477–480
Icons

Alt+Tab order for, 58–59
caption, 85–86
notification, 427–428
overlay, 53–54, 256
Web site, 62–63

IDCANCEL button, 236–237
Idea kernel, 104
IDNO button, 237
IDs

dialog box controls, 225–227
dialog boxes, 232–233

IDYES button, 237
IMLangFontLink2 interface, 104–105
Imports, optional, 418
InitCommonControls function, 83, 338
InitCommonControlsEx function, 203, 338
Inkblot test, 25–26
Input messages for dialogs, 207
Input simulation, 371–372
Installation

boot sectors for, 409–410
Windows 95, 34–35

Intellimenus, 403–404
Intellivision, 249
Intentional crashes, 283
Inter-thread sent messages, 363
Interface contracts, 245–248
InterlockedDecrement function, 339–340
InterlockedIncrement function, 339–340
Intermittent network connectivity, 457–459

 �

Internal distribution list names, 490–491
International programming, 373

0409 and 1033 directories, 379
case mapping, 373–375
code pages, 379–388

ANSI, 388
OEM, 388–390

converting between Unicode and ANSI,
391–392

grammar, 379
rotating text, 375–379

Internet Explorer security, 402
Intranet security, 402
INVALID_HANDLE_VALUE, 331–333
Invalid instruction exceptions, 30–31
Invalidation in painting, 91
IsDialogMessage function, 207

in message loops, 125, 224, 365
for navigation, 214–215, 226, 229–233
operation, 235–236
WM_GETDLGCODE with, 233–235

Itanium computers, power surges from,
487–488

ITaskbarList interface, 60
IUnknown interface, 273–274, 303–305

Juxtaposition, separation through, 17

Kaplan, Michael, 373
Kernel Toys, 36–37
Keyboard input simulation, 371–372
Killed processes in Task Manager, 424–425
Killing programs, 422–423
Kilo prefix, 69
Klondike Solitaire, 488

L in LPARAM, 311–312
Label colors for files, 56–57
Languages in keyboard

input simulation, 372
Large address spaces, 451–455
LARGEADDRESSAWARE flag, 451
LastWriteTime function, 240

Leno, Jay, 19, 355
Less-is-more interface approach, 17
LF (line feed) in line terminators, 334–335
Line-of-business (LOB) applications,

289–290
Line terminators, 334–335
Linking fonts, 104–110
Links folder, re-created, 65–66
Listview controls, 300–301
Load failures, module, 417–418
LoadMenu function, 86
LoadResource function, 313
LOB (line-of-business) applications, 289–290
LocalAlloc function, 76, 318–320
LocalFileTimeToFileTime function, 240
LocalInit function, 318
Localization, dialog templates for, 195, 196
Locked memory, 72–73
Locks, car door, 15–16
Logon, picture, 26–27
Logon, unwanted files/folders opened at,

54–56
Loops, dialog, 204

basic, 204–207
need for, 224–225
structure, 207
subtleties in, 211–214

LPARAM
redundant casts to, 321–322
vs. WPARAM, 311–312

LresultFromObject function, 479
Luna visual style, 309

M3 Beta, 294–295
MAKEINTRESOURCE macro, 453–454
Mallard visual style, 309
Managers vs. programmers, 491–492
MapFont method, 104–105
Mapping

case, 373–375
Unicode and ANSI, 391

Maps, geopolitical issues in, 20, 439
Mariani, Rico, 266

 �

Marketing, problems caused by, 482
Marshalling, 43
Martial arts logon picture, 26–27
Mascara, 16–17
Matched set of files in setup, 8
Maximum number of monitors, 312
MBCS (multi-byte character set), 431
Mega prefix, 69
Member functions, pointers to, 276–280
Memory and memory management

16-bit Windows resources, 312–313
for COM objects, 273–274
dialog templates for, 195
exception handling in, 74–75
fixed memory, 72
functions for, 324–329
GlobalAlloc for. See GlobalAlloc function
leaks

from caches, 259–266
identifying, 258–259
on servers, 253–254

reports, 29, 69–70
shared, 398–402, 426
in Windows 95, 20–22

Menus
boldface on, 62
for capture icon, 85–86
creating, 86–88
destroying, 88–89
disabling vs. removing, 12
ellipses on, 13
nesting limits, 435
Start

Intellimenus on, 403–404
pin list, 404–406

timed, 138–139
Message boxes

timed, 133–134, 136–138
X buttons disabled in, 237

MessageBeep function, 91, 130
MessageBox function, 132, 224, 382–384
Messages

dialog loop

basic, 204–207
need for, 224–225
structure, 207
subtleties in, 211–214

window. See Window messages
MFU (most frequently used) programs list,

403–404
Milk carton bug report, 482–483
Minimize All feature, 60–61
Minimized windows, 341–343
Modal dialog boxes

converting nonmodal to, 207–211
destroying, 121–122
loops, 204

basic, 204–207
need for, 224–225
structure, 207
subtleties in, 211–214

Modality
dialog loops for, 224
disabling owner, 120–122, 206, 211
interacting with, 132
UI vs. code, 123–126
UI owners, 129–132
and WM_QUIT messages, 126–129,

206, 211, 213
Modems on Boeing 747, 147
Module load failures, 417–418
MonitorFromWindow function, 468
MONITORINFO structure, 470
Monitors

maximum number of, 312
multiple, 308–309, 467–470

Monochrome text on color displays, 459–462
Most frequently used (MFU) programs list,

403–404
Mouse twitches, taskbar changes from, 10
Movable memory, 72–73
MoveToEx function, 105
Moving in dragging files, 64–65
MS-DOS

backward compatibility for, 288–290
code page in, 389

 �

MsgWaitForMultipleObjects function,
359, 372

Multi-byte character set (MBCS), 431
Multi-select documents printing order,

66–67
MultiLanguage object, 106–107
Multilingual User Interface, 305
Multiple monitors, 308–309, 312, 467–470
Multiple users, 444–445
Multitasking

broadcast-based mechanisms with, 341
in Windows 1.0, 45

Mutexes, 110–111
My Documents vs. Application Data, 450–451
Myths, message processing, 370–371

Naked baby hologram, 25–26
Names

internal distribution lists, 490–491
function, strangely named, 22–24
product groups, 490
registry functions, 322–324

Navigation
in dialog boxes, 214–215
Tab key for, 229–232

Near pointers, 318
Negative coordinates for monitors, 467–468
Nesting

dialog boxes, 216–224
menus, 435

NetBEUI protocol, 144
Network card packet stress test, 143–144
Network connectivity, 457–459
Newline character, 335
NIF_PARSELINKS flag, 427–428
NMHDR structure, 371
“No action required” action items, 481
Nonlocal effects of changes, 484–485
Nonmodal dialog boxes, converting

to modal, 207–211
Notepad

copies of, 315
unnoticed changes to, 336–337

Notification icons
hyperlinks in, 427–428
for X button clicks, 52

NotifyAddrChange function, 458–459
novtable optimization, 281–282
NTFS system

alternate data stream, 394
filename sorting in, 347–350
times and dates in, 241–242

NUL filename, 290–292
NULL pointers, 304–305
Null-terminated ANSI strings, 164

ODA_FOCUS flag, 462
OEM code page, 379–388
Office disco parties, 495
Office redecoration, 495–496
Offline files, 53–54, 438–439, 450
OLE Chicken, 326–327
Operating systems

program patches to, 299–300
setup file versions, 7–9
size, 31

Optimization, 250–253
Optional imports, 418
Options, disabling vs. removing, 12
Order

Alt+Tab, 58–59
dialog box tabs, 221
disabling and enabling windows, 121–122
printing, 66–67

Orr, Brian, 28
Overclocking, 148–150
Overlay icons, 53–54, 256
Owner-draw and overprinting, 462
Owners

modal UI, 129–132
semaphore, 110–112

Page boundaries, 352
Paging

performance with, 254
on servers, 253–254

 �

Painting
with Remote Desktop Connection,

440–443
visible windows only, 89–93

PAINTSTRUCT structure, 81–82
Parsing Explorer view data structures, 285
Passwords, stealing, 395–396
Patches to operating systems, 299–300
PathMakeSystemFolder function, 59
Paths, drive letters in front of, 292–293
PBT_APMBATTERYLOW

notification, 457
PBT_APMPOWERSTATUSCHANGE

notification, 457
PeekMessage function, 357

for cooperative multitasking, 45, 340
vs. GetMessage, 213–214
for sent and posted messages, 359–361, 364,

366–367
for timed message boxes, 134
WM_QUIT with, 127

Pens, DC, 100
Performance

holistic view of, 255–256
paging, 254
polling, 257

PIGLET function, 22–23
Pin list, 404–406
Plug and Play tests, 146
Plympton, Bill, 28
PM_NOREMOVE flag, 367
Pointers

to member functions, 276–280
near, 318
NULL, 304–305

Political issues, 20, 439
Polling performance, 257
Pop-up windows display, 471–472
Position

dialog controls, 202
pop-up windows, 471–472
Taskbar, 49–50
window, restoring, 122–123

Posted messages, 358–362
generated, 365–367
life of, 364–365

PostMessage function, 358, 370–372
PostQuitMessage function, 127–129
PostThreadMessage function, 358
Power management, 437, 455–457
Power outage, 487–488
PowerPoint presentations, 491–492
PowerToys, 35–37

calculator, 337
Pragmatism vs. purity, 249–250
Preemptive multitasking, 341
Prefixes, memory, 69
PRINTDLG structure, 78
Printers Control Panel compatibility, 306–307
Printing order, 66–67
printit function, 399
PRN filename, 291
Processors

affinity, 410–411
and CPU usage, 411–412
hidden variables in, 251

Product group names, 490
Product support

costs, 32
for developers, 67–69

Profiles, roaming user
handling, 445–447
redirected folders for, 447–450

Programmatic access to Start menu pin list,
404–406

Programmers vs. managers, 491–492
Programming, 79

bitmap brushes, 95–98
CreateMenu vs. CreatePopupMenu, 86–88
DC brushes in, 98–100
displaying strings, 103–110
international. See International

programming
menu destruction in, 88–89
painting in, 89–93
right-click menus for caption icon, 85–86

 �

Programming (Continued)
scratch program, 79–84
semaphores in, 110–114
solid rectangles

with ExtTextOut, 100–102
with StretchBlt, 102–103

window coverage determination, 93–95
Programs

supporting data for, 451
unkillable, 422–423

Property sheet pages, 414–415
Protected mode, 73
Psychic debugging, 410–412
Pure virtual functions, 281
__purecall symbol, 280–282
Purity vs. pragmatism, 249–250
Puzzle Collection, 489–490

Quarks, 347
QueryInterface method, 274–275, 303–305
Questions, unanswerable, 7, 8–9
Queued messages, 358
QuickRes PowerToy, 36

Rat Poker, 489–490
Read-only folder property, 59
ReadProcessMemory function, 316
Rebasing DLLs, 254, 351–353
Recalculating vs. saving, 254
Rectangles, solid

ExtTextOut for, 100–102
StretchBlt for, 102–103

Red dot on car door locks, 15
Red Moon Desert, 26
Redirected folders, 447–450
Redundant casts to LPARAM, 321–322
Reflexivity rule, 243
Regions in geopolitics, 439
Registering dialog classes, 160
Registry

for blocked applications, 286
for document printing order, 66–67
function names for, 322–324

“hive” name for, 312
Run key, 54–55
Shell Folders key, 294–295

regsvr32 program, 451
Relative pointers, 318
Release method, 274
ReleaseSemaphore function, 110–112
Remote Desktop Connection, 440–443
Removing options vs. disabling, 12
ReplyMessage function, 363
Reprimands, whimsical embarrassment for,

493–494
Reserved filenames, 290–292
Resizing dialog boxes, 222–224
Resources

in 16-bit Windows, 312–313
undocumented, 305

Restoring window position, 122–123
Return address prediction, 251–253
Return addresses, 242–243
Return values

dialog procedures, 151–153
HANDLE, 331–333

_ReturnAddress intrinsic, 242–243
Right-click menus

boldface on, 62
for capture icon, 85–86
timed, 138–139

Roaming user profiles
handling, 445–447
redirected folders for, 447–450

Rorschach test, 25–26
Rotating text, 375–379
Round Clock PowerToy, 36
Rumors columns, 28–29
Run registry key, 54–55

Sample URLs, 483–484
Saving vs. recalculating, 254
SBCS (single byte character sets), 431
Schedule Chicken, 327
Scratch program, 79–84
Scratch windows, 135

 �

ScratchAccessible class, 477–480
Screen reader, 57
ScriptStringAnalyse function, 110
Secondary monitors, 467–470
Seconds display on taskbar clock, 50–51
Sections, shared, 398–402
Security, 393

debugging, 397–398
file hiding, 394–395
intranet, 402
passwords, 395–396
shared sections, 398–402
uncertified drivers, 396–397
world-writable files, 393–394

Selectors, 73–75, 318–319, 321–322
Selvin, Joel, 27
Semaphores

auto-reset events as, 112–114
floppy disks as, 492
owners for, 110–112

SendInput function, 358, 372
SendMessage function, 358, 361–363
SendMessageCallback function, 362, 368–369
SendMessageTimeout function, 362, 369
SendNotifyMessage function, 370–371
Sent messages

generated, 358–362
life of, 363–364

Separation through juxtaposition, 17
Servers, paging on, 253–254
Service packs

build numbers for, 39–40
and CD autoplay settings, 406–407

Services, 394
SetDCBrushColor function, 98
SetDialogFocus function, 204, 227
SetDlgMsgResult macro, 156
SetFileAPIsToOEM function, 390
SetFileAttributes function, 54
SetFocus function, 227–228
SetLastError function, 340
setlocale directive, 383, 385
SetMenuDefaultItem function, 62

SetProcessAffinityMask function, 411
SetProcessDPIAware function, 467
SetTextAlign function, 105–106
SetTimer function

for clock painting, 89
for timed message boxes, 134
for timed context menus, 139

Settings, 3–4, 6
Setup

for boot sectors, 409–410
operating system file versions in, 7–9

SetWindow Placement function, 122
SetWindowContextHelpId function,

188, 203
SetWindowFont macro, 202–203
SetWindowLongPtr function, 136,

152–153, 201
SetWindowPlacement function, 471
SetWindowPos function, 50, 471
SHAlloc function, 324–329
Shared memory, 398–402, 426
Shared resources, 394
Shared sections, 398–402
Shell Folders key, 294–296
Shell verbs, 66–67
Shell32.dll file, 305
ShellExecute function, 315
Sherlock tool, 329–330
SHGetFolderPath function, 296
SHGetMalloc function, 324–329
SHGetSpecialFolderLocation function, 295
SHLoadOLE function, 329
Shortcut Target Menu PowerToy, 36
Show Desktop feature, 60–61
SHSetLocalizedName function, 56
Shutdown, Start button for, 1–2
Sibling windows, 436
Silent driver installs, 396–397
Simulation, keyboard input, 371–372
Single byte character sets (SBCS), 431
16-bit DOS and Windows

backward compatibility for, 288–290
resource memory management, 312–313

 �

16-bit templates
classic, 164–172
extended, 181–187

Size
dialog boxes, 222–224
dialog controls, 202
operating system, 31
structures, 418–421

sizeof operator, 279–280
Small arrow icon, 53
Smuggling integers inside pointers, 453
Software issues, 239

daylight saving time, 239–241
interface contracts, 245–248
memory leaks

from caches, 259–266
identifying, 258–259

optimization, 250–253
performance

holistic view, 255–256
polling, 257

pragmatism vs. purity, 249–250
return addresses, 242–243
saving vs. recalculating, 254
server paging, 253–254
sort comparisons, 243–245
tests, 35
timestamp changes, 241–242

Solid rectangles, drawing
with ExtTextOut, 100–102
with StretchBlt, 102–103

Solitaire, Spider, 488
Sorting

filenames, 347–350
rules for, 243–245

Sorting It All Out, 373
Special Edition box, 25
Spell checkers

complaints about, 26–27
dictionaries, 27

SPI_SETFASTTASKSWITCH setting, 58
Spider Solitaire, 488
Spinner controls, 354–355

SS_CENTERIMAGE style, 102, 466
SS_NOPREFIX style, 236
SS_REALSIZECONTROL style, 465
Stacks

in backward compatibility, 285–286
return address, 251–253
structures allocated on, 420

Start button, 1–2, 51
Start menu

Intellimenus on, 403–404
pin list, 404–406

Startup sound, 27–28
Stealing

animations, 305
passwords, 395–396

Stealth overclocked computers, 149
STGMEDIUM structure, 78, 319
Strangely named functions, 22–24
Stress testing, 258
StretchBlt function

for solid rectangles, 102–103
working with, 465

Strings
displaying, 103–110
null-terminated, 164

STRRET structure, 429–430
Structures

size checks, 418–421
undocumented, 284–286

Substitution principle, 244
Subsystems, compatibility, 289
Sunken client areas, 432
__super keyword, 158
Superset versions of Windows, 433
Supporting data for programs, 451
Syscall traps, 30–31
System attribute, 55–56
System button, 1–2
SYSTEM font, 104, 353–354
System menu, 344
System policies, 33, 405–406
System Properties memory report, 29
SystemParametersInfo function, 354

 �

systray.exe program, 48
_T macro, 335
TA_UPDATECP mode, 105
Tab key for navigation, 229–232
Tab order in dialog boxes, 221
Tables of function pointers, 273
TABTHETEXTOUTFORWIMPS

function, 24
Tag bits, 452
Task Manager, killed processes in, 424–425
Taskbar

blank buttons on, 59–60
clocks on, 50–51
default position, 49–50
on desktop, 343
grouping on, 9–11
pre-history, 342
Start indicator on, 51
in tiny footprint mode, 63–64
vs. tray, 47–49
in work area, 470

Taxes
accessibility, 472–480
anti-aliased fonts and ClearType, 459–462
Fast User Switching and terminal services,

443–444
geopolitics, 439
Hierarchical Storage Management, 438–439
high DPI displays, 462–467
intermittent network connectivity, 457–459
large address spaces, 451–455
multiple monitors, 467–470
multiple users, 444–445
My Documents vs. Application Data,

450–451
pop-up windows, 471–472
power management, 437, 455–457
redirected folders, 447–450
Remote Desktop Connection and painting,

440–443
roaming user profiles, 445–447
work area, 470–471

TCP/IP protocol, 144

Teletypewriters, 334
%TEMP% directory, 451
Templates, dialog. See Dialog templates
Temporary Internet Files directory, 451
1033 directory, 379
Terminal services, 443–444
TerminateProcess function, 424
Terminators, line, 334–335
Text

GetWindowText for, 41–42
operation, 42–43
rules in, 43–46

managing, 41–42
monochrome, 459–462
multilingual, 103–110
rotating, 375–379

Text files, Ctrl+Z in, 333–334
Text label colors for files, 56–57
TEXT macro, 335
_TEXT macro, 335
TextOut function

font-linked-enabled version, 104–110
with Remote Desktop Connection, 442

this pointer, 276–278
Threads and messages, 368
Threats, death, 486–487
3D shadow and outlining, 16–17
32-bit templates

classic, 172–181
extended, 187–194

Thunks, adjustor, 274–275
Tickets to Windows 95 launch, 355–356
Tiling effects, brushes for, 95–98
Time bomb, 70
Time zones, 19–20, 240
Timed context menus, 138–139
Timed message boxes, 133–134, 136–138
Timeouts for window messages, 369
Timers in painting, 89–92
Timestamp changes, 241–242
Tiny footprint mode, 63–64
Toasters, 6
Tokens, changing meanings of, 492–493

 �

Topmost windows, 58, 436
Transitivity rule, 243–244
TranslateAccelerator function, 216
Translucent plastic floppy drives, 485–486
Traps

syscall, 30–31
TerminateProcess function, 424

Tray vs. taskbar, 47–49
See also Notification icons

Tree view control, 429
Tunneling, file system, 346–347
Tweak UI, 32–33, 37
TYPE command, 380
Typeahead, 335–336, 343–344
Typographical errors, 27, 326

UAE (Unrecoverable Application Error), 74
Ugly boxes in string display, 103–110
UI-modality vs. code-modality, 123–126
UMA (Unified Memory Architecture)

machine, 29
Unanswerable questions in dialogs, 7, 8–9
UNC paths, 292–293
Uncertified drivers, 70, 396–397
Undocumented behavior, 286–288
Undocumented resources, 305
Undocumented structures, 284–286
Unexpected dialogs, 3–5, 489
ungetch function, 431–432
Ungrouping on taskbar, 9–11
Unicode

case mapping in, 373–375
and code pages, 380, 383–384, 390
converting with ANSI, 391–392

UNICODE macro, 335
_UNICODE macro, 335
Unified Memory Architecture (UMA)

machine, 29
Uniscribe library, 109–110
Unkillable programs, 422–423
UnlockResource function, 313
Unnoticed changes, 336–337
Unrecoverable Application Error (UAE), 74

Unsafe device removal dialog, 407–408
Unwanted files/folders opened at logon, 54–56
Up-down controls, 354–355
URLs, sample, 483–484
Usability sessions, 67
USB Cart of Death, 147
USB devices

floppy drives, 485–486
removing, 407–408

User interface, 1
Advanced Options dialog, 57
best settings, 6
boldface on menus, 62
dialog box default answers, 3–5
document printing order, 66–67
dragging files, 64–65
ellipses on menus, 13
evolution of, 16–17
expert mode, 2–3
“For test/evaluation purposes only,” 70
icon order, 58–59
interior door locks, 15–16
Links folder, 65–66
memory reporting in, 69–70
Minimize All vs. Show Desktop, 60–61
operating system file versions, 7–9
options, disabling vs. removing, 12
overlay icons, 53–54, 256
product support for, 67–69
read-only property for folders, 59
Start button, 1–2
taskbar

blank buttons on, 59–60
grouping on, 9–11

text label colors for files, 56–57
tiny footprint mode, 63–64
unwanted files/folders, 54–56
vending machines, 13–15
Web site icons, 62–63

User profiles, roaming
handling, 445–447
redirected folders for, 447–450

User Shell Folders key, 296

 �

User switching, 443–444
%USERPROFILE% directory, 446
Users

death threats from, 486–487
multiple, 444–445
vs. programs, 422–423

UTC (coordinated universal time)
and BIOS clock, 301–302
and daylight saving time, 239–240

UTF-8 characters, 431–432

Vending machine user interface, 13–15
Vendors, misspellings by, 144–145
Verbs, shell, 66–67
Versions

checking, 302–303
operating system files, 7–9
Windows superset, 433

Vertical taskbar, 51
Vertical text, 376–379
Video displays, high DPI, 462–467
Video drivers

certification process, 145
DirectX, 298–299

Virtual functions, 280–282
Virtual memory, 71–72
Visible windows, painting, 89–93
Visual C++ compiler, 267

adjustor thunks in, 274–275
COM object layout in, 272–274
destructors in, 267–272
pointers to member functions in, 276–280
__purecall in, 280–282

Visual Studio compiler, 383
Visual style backward compatibility, 309
vtables, 273, 281–282, 401

W in WPARAM, 311–312
WAIT_ABANDONED status code,

425–427
WaitForSingleObject function, 111, 333
WaitMessage function, 213, 359
Waking receivers, 359

Wallpaper, Red Moon Desert, 26
Web site icons, 62–63
Whimsical bug reports, 482–483
Whimsical embarrassment, 493–494
White windows, 118–119
WHQL (Windows Hardware Quality Labs),

143–146
WideCharToMultiByte function, 385
Width of dialog controls, 202
Win32 design issues, 417

desktop disabling, 433–434
HWND_TOP vs. HWND_TOPMOST,

435–436
hyperlinks in notification icon balloon tips,

427–428
menu nesting limits, 435
module load failures, 417–418
programs vs. users, 422–423
STRRET structure, 429–430
structure size checks, 418–421
sunken client areas, 432
Task Manager and killed processes, 424–425
TerminateProcess, 424
transitioning to, 75–76
tree items, 429
UTF-8 code page, 431–432
WAIT_ABANDONED, 425–427
Windows superset versions, 433
WM_DEVICECHANGE, 421–422

Window management, 115
coverage determination, 93–95
desktop window, 120–121
disabling and enabling windows, 121–122
GWLP_USERDATA in, 136
hollow brush, 119
menu destruction, 88–89
messages for destroyed windows, 139–140
minimized, 341–343
modal program interaction, 132
modal UI owners, 129–132
restoring position, 122–123
scratch windows, 135
timed context menu, 138–139

 �

Window management (Cotinued)
timed message boxes, 133–134, 136–138
UI-modality vs. code-modality, 123–126
white windows, 118–119
WM_MOUSEENTER messages, 118
WM_MOUSEMOVE messages, 115–118
WM_QUIT messages, 126–129, 206,

211, 213
Window messages, 357

keyboard input simulation, 371–372
myths, 370–371
sender and poster identification, 371
SendMessageCallback function, 368–369
SendMessageTimeout function, 369
sent and posted, 358–362

generated, 365–367
life of, 363–365

WINDOWPLACEMENT structure, 471
Windows operating systems

broadcast-based mechanisms in, 340–341
superset versions of, 433

Windows 2000, 403
boot sectors, 409–410
CPU usage, 411–412
DS_SHELLFONT style, 412–415
processor affinity, 410–411
Start menu Intellimenus, 403–404
unsafe device removal dialog, 407–408

Windows 95
anti-piracy hologram, 25–26
booting in, 20–22
build numbers, 38–40
code bloat, 31
hard drive light flashes, 29–30
hardware, 141–143
installing, 34–35
launch, 19, 355–356
M3 beta release, 294
martial arts logon picture, 26–27
memory size report, 29
PowerToys, 35–37
product-support call costs, 32
Rumors columns, 28–29

service packs, 39–40
software tests, 35
Special Edition box, 25
startup sound, 27–28
strangely named functions, 22–24
syscall traps, 30–31
time zones, 19–20
Tweak UI, 32–33

Windows Hardware Quality Labs (WHQL),
143–146

Windows Presentation Foundation, 225
Windows XP, 403

CD autoplay settings, 406–407
CD ejection, 408–409
Comments? button, 408
Start menu pin list, 404–406
unsafe device removal dialog, 407–408

windowsx.h header file, 80
WinExec function, 315
WINLOGON.EXE program, 423
WinMain function

hPrevInstance parameter, 316–317
in scratch program, 84

Winsock functions, 340
WINVER setting, 419
Wissink, Kathy, 388
WM_ACTIVATE message, 230, 232
WM_CANCELMODE message, 138–139
WM_COMMAND message, 216, 364
WM_CONTEXTMENU message, 85–86
WM_CREATE message, 81, 83
WM_CTLCOLOR messages, 98, 99, 119
WM_DESTROY message, 81, 83
WM_DEVICECHANGE message, 421–422
WM_DRAWITEM message, 462
WM_ERASEBKGND message, 462
WM_FONTCHANGE message, 340
WM_GETDLGCODE message, 232–235
WM_GETOBJECT message, 478–479
WM_GETTEXT message, 41–44
WM_INITDIALOG message, 156, 161, 219
WM_KEYDOWN message, 224
WM_MOUSEENTER message, 118

 �

WM_MOUSEMOVE message, 115–118,
366–367

WM_NCCREATE message, 41
WM_NEXTDLGCTL message, 227–228
WM_NOTIFY message, 222, 371
WM_NULL message, 212
WM_PAINT message, 81–82, 89–91,

254, 366
WM_POWERBROADCAST message,

456–457
WM_PRINTCLIENT message, 82, 91
WM_QUERYENDSESSION message, 421
WM_QUIT message

generated on the fly, 366
in message loops, 206, 211, 213–214
and modality, 126–129
for timed message boxes, 133–134

WM_SETCURSOR message, 118, 158
WM_SETFOCUS message, 232
WM_SETFONT message, 202
WM_SETTEXT message, 42
WM_SIZE message, 81, 83
WM_TABSTOP message, 229
WM_TIMER message, 365–367
WM_USER message, 229
WM_WTSSESSIONCHANGE message,

443–444
Work area, 343, 470–471

World-writable files, 393–394
WPARAM, 311–312
wprintf function, 383–385
WriteConsole function, 385
WS_CAPTION style, 198
WS_CHILD style, 198, 220
WS_EX_APPWINDOW style, 59
WS_EX_CLIENTEDGE style, 432
WS_EX_CONTROLPARENT style, 198,

220–221
WS_EX_NOPARENTNOTIFY

style, 203
WS_GROUP style, 229, 236
WS_SYSMENU style, 198
WS_TABSTOP style, 229, 236
WS_VISIBLE style, 220
WSASetLastError function, 340

X buttons
disabled, 237
in notification balloons, 52

XADD instruction, 339
xcopy

death threat, 486–487
for Windows 95 installation, 34–35

Z-order, 58, 121, 436
0409 directory, 379

 �

www.informit.com

YOUR GUIDE TO IT REFERENCE

Articles

Keep your edge with thousands of free articles, in-

depth features, interviews, and IT reference recommen-

dations – all written by experts you know and trust.

Online Books

Answers in an instant from InformIT Online Book’s 600+

fully searchable on line books. For a limited time, you can

get your first 14 days free.

Catalog

Review online sample chapters, author biographies

and customer rankings and choose exactly the right book

from a selection of over 5,000 titles.

www.informit.com

Wouldn’t it be great
if the world’s leading technical

publishers joined forces to deliver
their best tech books in a common

digital reference platform?

They have. Introducing
InformIT Online Books

powered by Safari.

■ Specific answers to specific questions.
InformIT Online Books’ powerful search engine gives you
relevance-ranked results in a matter of seconds.

■ Immediate results.
With InformIT Online Books, you can select the book
you want and view the chapter or section you need
immediately.

■ Cut, paste and annotate.
Paste code to save time and eliminate typographical
errors. Make notes on the material you find useful and
choose whether or not to share them with your work
group.

■ Customized for your enterprise.
Customize a library for you, your department or your entire
organization. You only pay for what you need.

in
fo

rm
it

.c
o
m

/
o
n
li

n
e
b
o
o
k
s

Get your first 14 days FREE!
For a limited time, InformIT Online Books is offering

its members a 10 book subscription risk-free for

14 days. Visit http://www.informit.com/online-

books for details.

On
lin

e
Bo

ok
s

http://www.informit.com/onlinebooks
http://www.informit.com/onlinebooks

If you are interested in writing a book or reviewing
manuscripts prior to publication, please write to us at:

Editorial Department
Addison-Wesley Professional
75 Arlington Street, Suite 300
Boston, MA 02116 USA
Email: AWPro@aw.com

Visit us on the Web: http://www.awprofessional.com

You may be eligible to receive:

• Advance notice of forthcoming editions of the book

• Related book recommendations

• Chapter excerpts and supplements of forthcoming titles

• Information about special contests and promotions

throughout the year

• Notices and reminders about author appearances,

tradeshows, and online chats with special guests

at www.awprofessional.com/register

www.awprofessional.com/register
http://www.awprofessional.com

	Contents
	Preface
	Acknowledgments
	About the Author
	CHAPTER ONE: Initial Forays into User Interface Design
	Why do you have to click the Start button to shut down?
	Why doesn’t Windows have an “expert mode”?
	The default answer to every dialog box is Cancel
	The best setting is the one you don’t even sense, but it’s there, and it works the way you expect
	In order to demonstrate our superior intellect, we will now ask you a question you cannot answer
	Why doesn’t Setup ask you if you want to keep newer versions of operating system files?
	Thinking through a feature
	When do you disable an option, and when do you remove it?
	When do you put … after a button or menu?
	User interface design for vending machines
	User interface design for interior door locks
	The evolution of mascara in Windows UI

	CHAPTER THREE: The Secret Life of GetWindowText
	How windows manage their text
	Enter GetWindowText
	What if I don’t like these rules?
	Can you give an example where this makes a difference?
	Why are the rules for GetWindowText so weird?

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

