
89

3
Introduction to Managed Code

Technology is dominated by two types of people: those
who understand what they do not manage, and those

who manage what they do not understand.
—PUTT’S LAW

Topics Covered in This Chapter

What Is Managed Code?

Introduction to Object-Oriented Programming

Exploring the .NET Framework

VSTO and Managed Code

Summary

Review Questions

What Is Managed Code?

Code that runs within the .NET Framework is considered managed

code. This includes applications written in languages such as Visual C#

and Visual Basic 2005. Code that is not managed by the .NET Frame-

work is typically referred to as unmanaged code. This includes applica-

tions written in programming languages such as C++, Visual Basic 6.0,

and VBA.

All Office solutions created using VSTO are written in managed code.

VSTO supports both Visual Basic 2005 and Visual C#; however, we refer

only to Visual Basic 2005 in text and in code examples in this book

McGrath.book Page 89 Thursday, December 7, 2006 10:04 AM

90 Chapter 3 Introduction to Managed Code

because we believe it is easier to transition from VBA to Visual Basic

2005. Keep in mind that there is much to learn about the .NET Frame-

work and managed code; this chapter only scratches the surface.

Following are some benefits of using managed code:

• Improved security. Often, security permissions are enabled or

disabled by end users or determined by the identity of the user

who is attempting to run code. However, code managed by the

.NET Framework uses the security model code access security

(CAS), which is based on the code’s identity and location.

• Automatic resource management. Code managed by the .NET

Framework eliminates common programming errors such as

memory leaks and memory corruption. To eliminate memory

leaks, the .NET Framework releases all memory used by the pro-

gram when it closes.

• Verification of type safety. The .NET Framework ensures that

code is type safe before it is run. A programming language that is

type safe prevents operations from being performed that are not

appropriate for that type.

• Code reuse. The .NET Framework improves productivity by pro-

viding a class library that gives you thousands of classes you can

use in your code. You can also create your own custom class

library.

• Language interoperability. Applications that use managed code

can be written in multiple languages that are supported by the

.NET Framework. For VSTO, this includes Visual Basic and

Visual C#.

• Partial classes. Visual Basic 2005 supports the use of partial

classes, thereby separating designer-generated code from your

own code. The partial classes are merged into one unified class

when the code is compiled.

McGrath.book Page 90 Thursday, December 7, 2006 10:04 AM

Introduction to Object-Oriented Programming 91

For VBA developers moving to managed code, an additional advantage

is the ability to use all the coding and debugging tools in the Visual

Studio IDE and the ability to design solutions using a true object-

oriented programming language.

Introduction to Object-Oriented
Programming

Object-oriented programming is a type of programming that relates cod-

ing constructs to objects. The objects that are created in code can have

similar characteristics to objects in the real world. You define properties

for an object to define its characteristics. For example, light bulbs might

have a color property. The value of this property might differ for each

individual light bulb; some might be white, and others yellow.

You define methods for an object to describe the actions it can take.

Using our light bulb example, the methods might be TurnOn, Adjust-

Brightness, and TurnOff. You can define event handlers for an object so

that certain actions are performed when a particular event on the object

occurs. For example, if a BeforeTurnOff event is raised, it would enable

you to first decrease the brightness of the light bulb before turning it

off. You also define the type of data the object can contain and any logic

that is required to manipulate the data.

Understanding Classes and Objects

Classes contain methods, events, and properties that enable access to

data. These methods, events, and properties of a class are known as its

members. In VBA, you use procedural programming, writing most of

your code within a code module (although classes are available in VBA).

In object-oriented programming, most, if not all, of your code is con-

tained within classes.

A class is often described as being a sort of cookie cutter or blueprint for

an object. You can also think of a class as a template for an object.

McGrath.book Page 91 Thursday, December 7, 2006 10:04 AM

92 Chapter 3 Introduction to Managed Code

Think about how you would use a Word template. You can add boiler-

plate text and special formatting (styles) to the template. Then when a

document is created based on that template, the new document con-

tains the same characteristics that were applied to the template. The

document has access to all the styles defined in the template, but an

end user can make additional changes to the document and apply

styles to different sections of the document. In this same way, a class

contains the base functionality of an object, and yet you can later

change properties of each object to make them different. Although a

class contains a base set of functionality such as methods, properties,

and events, these class members can be used, and the data associated

with the object can be accessed, only when you’ve created an instance of

the class. An object is an instance of a class, and the process is known

as instantiation.

You learned in Chapter 1 about the extended objects that VSTO provides

for Word and Excel. One of these is a NamedRange. A NamedRange is

actually a class, and each time you add one to the worksheet, you are

creating an instance of that class, or a NamedRange object. VSTO gen-

erates a unique name for each instance by appending an incremental

number to the end of the class name: NamedRange1, NamedRange2,

and so on. If you want to provide a different name, you can make the

change in the Properties window. If you also change the value of the

properties of NamedRange1—such as setting a specific font or adding a

border—then the appearance of NamedRange1 will differ from that of

NamedRange2. Even though each NamedRange is unique, the two of

them share the same characteristics (properties) because both of them

were created from the same NamedRange class.

When you create a VSTO application using Visual Basic 2005, you have

numerous objects to work with. There are objects such as Windows

Forms and controls, and there are Word, Excel, and Outlook objects

such as documents, list objects, and e-mail items. Additionally, the

.NET Framework contains a class library that you can use to create

objects in your code.

McGrath.book Page 92 Thursday, December 7, 2006 10:04 AM

Introduction to Object-Oriented Programming 93

You use the New keyword to create an instance of a class. In the case of

a NamedRange, VSTO automatically creates the instance of the class in

the auto-generated code of the worksheet’s hidden partial class when-

ever you add a NamedRange (or any other control) to the worksheet.

When you create your own class, you can store data privately; to do

that, you create variables, known as private member variables, to store

data. Then you create public properties so that the data can be

accessed by other methods outside the class. This gives you complete

control over the access to this data.

Creating Properties

To create a property, you add a Property statement. Private member

variables are accessible only from outside the class when the Get and

Set property procedures are accessed. These private member variables

are also known as fields. The Get property procedure returns the value

of the field, and the Set property procedure enables you to assign a

value to the field. You can create a property in Visual Basic by typing

the Property statement, such as the following, and then pressing the

ENTER key.

Property Text() as String

Visual Basic automatically creates the Get and Set statements for you,

as the code example in Listing 3.1 shows.

Listing 3.1. Creating a property

Property Text() As String

 Get

 End Get

 Set(ByVal value As String)

 End Set

End Property

McGrath.book Page 93 Thursday, December 7, 2006 10:04 AM

94 Chapter 3 Introduction to Managed Code

Notice that the value field is created for you as a parameter of the Set

property procedure. To assign the value to the member variable in the

Set property procedure, you must create a member variable and write

code. You must also write code to return the member variable in the Get

property procedure. You can create a read-only property by using the

ReadOnly keyword before the property. In the case of a read-only prop-

erty, you need only provide a Get property procedure.

So far, the Text property you created lets you set and get a value for the

Text property. You cannot use these properties or store any data in the

class until you have actually created an instance of the class (an object).

Each object that you create can hold a different value for the Text

property.

Creating Classes

In this section you will create a simple Sentence class in a Word solution.

As in Chapter 1, you will save the VSTO solutions that are described in

this book in the Samples directory at the root of the C:\ drive.

1. Open Visual Studio 2005.

2. On the File menu, point to New and then click Project.

3. In the New Project dialog box, select Word Document in the

Templates pane.

4. Name the solution SampleDocument, and set the location to

C:\Samples.

5. In the Visual Studio Tools for Office Project Wizard, select Create a

New Document, and then click OK.

6. In Solution Explorer, right-click the solution node, point to Add,

and select New Item.

7. In the New Item dialog box, select Class, name the class

Sentence.vb, and click Add.

McGrath.book Page 94 Thursday, December 7, 2006 10:04 AM

Introduction to Object-Oriented Programming 95

Visual Studio creates the Sentence class and then opens the class

file in code view.

8. Add the code in Listing 3.2 to the Sentence class.

Listing 3.2. Creating a property named Text for the Sentence class

Public Class Sentence

 Private TextValue as String
 Property Text() As String

 Get
 Return TextValue
 End Get

 Set (ByVal value As String)
 TextValue = value
 End Set

 End Property
End Class

The variable TextValue is a private member variable. You can retrieve

and set its value only by using the public Text property.

Instantiating Objects

Now that you have a Sentence class, you will create two instances of the

class, assigning a different value to the Text property of each class.

Finally, you’ll retrieve the value of the Text property for each Sentence

object and insert it into your document. Follow these steps:

1. In Solution Explorer, right-click ThisDocument.vb and select View

Code.

2. The Code Editor opens, and two default event handlers are visible.

The first is the Startup event handler, and the second is the Shut-

down event handler for the document.

3. Add the code in Listing 3.3 to the Startup event handler of

ThisDocument.

McGrath.book Page 95 Thursday, December 7, 2006 10:04 AM

96 Chapter 3 Introduction to Managed Code

The code concatenates the text in Sentence1 and Sentence2 and

then uses the InsertAfter method to insert the text into the first

paragraph of the document. Because the code is added to the

ThisDocument class, the Me keyword is used to represent the

VSTO document (Microsoft.Office.Tools.Document, which wraps

the native Document class).

Listing 3.3. Creating two Sentence objects

Dim Sentence1 As New Sentence()
Dim Sentence2 As New Sentence()
Sentence1.Text = "This is my first sentence. "

Sentence2.Text = "This is my second sentence. "
Me.Paragraphs(1).Range.InsertAfter(_
 Sentence1.Text & Sentence2.Text)

4. Press F5 to run the solution.

When the solution runs and the Word document is created, the

Startup event handler is raised and two instances of the Sentence

class are created. The code then assigns a different string to each

Sentence object. Finally, the value of each Sentence object is

retrieved and inserted into the first paragraph of the document, as

shown in Figure 3.1.

5. Stop execution of the solution code by clicking Stop Debugging on

the Debug menu, and then close the solution.

Figure 3.1. Text inserted into the document using the Sentence class

McGrath.book Page 96 Thursday, December 7, 2006 10:04 AM

Introduction to Object-Oriented Programming 97

Creating and Calling Constructors

As you saw in the example in Listing 3.3, you use the New keyword to

create an instance of a class. The New keyword calls the constructor of

the class. A class constructor describes how to initialize the properties

and methods of the class. Every class has a default constructor that is

automatically generated for you as a method called Sub New.

You can override this default constructor by adding your own procedure

named Sub New. Constructors can take parameters and can also be

overloaded so that you can create an instance of the class in several

ways. Overloading means that there are multiple versions of the same

method, each with different parameters. Visual Basic 2005 enables you

to create constructors that take one or more parameters so that you can

pass data when you create an instance of the class. To overload the

constructor, you add multiple Sub New methods that take different

parameters.

1. Add the constructors in Listing 3.4 to your Sentence class.

Listing 3.4. Adding two constructors to a class

Public Sub New()
 TextValue = "Hello World! "
End Sub

Public Sub New(ByVal myText as String)

 TextValue = myText
End Sub

The first constructor overrides the default parameterless construc-

tor and assigns the text “Hello World” to the member variable,

TextValue. If you instantiate the class without passing any text,

“Hello World” will be the value of the Sentence class. The second

constructor takes a string as a parameter and assigns the string to

the member variable.

McGrath.book Page 97 Thursday, December 7, 2006 10:04 AM

98 Chapter 3 Introduction to Managed Code

2. Replace the code in the Startup event handler of ThisDocument

with the code in Listing 3.5.

Listing 3.5. Passing parameters to a constructor

Dim Sentence1 As New Sentence()

Dim Sentence2 As New Sentence("This is my second sentence.")
Me.Paragraphs(1).Range.InsertAfter(_
 Sentence1.Text & Sentence2.Text)

Notice that when you type the open parenthesis after the word

Sentence, IntelliSense lists the overloaded methods and displays

the required parameter (myText As String) in method 2 of 2, as

shown in Figure 3.2.

3. Press F5 to run the solution.

This time, when the solution runs, the value to be assigned to

Sentence2 is passed to the constructor of the Sentence class when the

class is instantiated. Although you could assign a value to the Text

property of Sentence2 after it’s instantiated (as shown in Listing 3.7),

this example (Listing 3.5) uses the default value “Hello World!”

Adding Methods

You can also add methods to your class to perform an operation on the

data. If you want the method to be accessible from the instance of the

class, you must declare the method as a public method; to make it

Figure 3.2. IntelliSense displays a parameter required by the constructor of the
Sentence class.

McGrath.book Page 98 Thursday, December 7, 2006 10:04 AM

Introduction to Object-Oriented Programming 99

accessible from instances of the class in the same assembly, declare it

as Friend. Private methods are available only to other members within

the class.

1. Add the method in Listing 3.6 to your Sentence class. This method

calls the ToUpper method of a String, which is provided by the

.NET Framework.

Listing 3.6. Creating a public method for a class

Public Sub UpperCase()
 TextValue = TextValue.ToUpper()
End Sub

2. Replace the code in the Startup event handler of ThisDocument

with the code in Listing 3.7 so that the UpperCase method is called

only on Sentence1.

Listing 3.7. Calling the UpperCase method of the Sentence class

Dim Sentence1 as New Sentence()
Dim Sentence2 As New Sentence("This is my first sentence.")
Sentence1.Text = "This is my first sentence. "

Sentence1.UpperCase()
Me.Paragraphs(1).Range.InsertAfter(_
 Sentence1.Text & Sentence2.Text)

3. Press F5 to run the solution.

When the solution runs, the code in Listing 3.6 passes text to the con-

structor for the second object, but it uses the default (parameterless)

constructor for the first object and then reassigns a value to the Text

property of Sentence1. After the call to the UpperCase method on the

first object, the first sentence that is inserted into the document

appears in uppercase, and the second sentence appears in sentence

case, as shown in Figure 3.3.

McGrath.book Page 99 Thursday, December 7, 2006 10:04 AM

100 Chapter 3 Introduction to Managed Code

Adding Events

You can add events to your class to indicate that objects created from

this class can raise the events you’ve added.

1. Add the code in Listing 3.8 to your Sentence class. This code adds

an event statement and replaces the UpperCase method.

Listing 3.8. Creating an event for a class

Public Event CaseChanged()

Public Sub UpperCase()

 TextValue = TextValue.ToUpper()

 RaiseEvent CaseChanged()

End Sub

2. Replace the code in the Startup event handler of ThisDocument

with the code in Listing 3.9 so that a message box is shown when

the event is raised.

You can create an event handler for the CaseChanged event

by declaring the variables for the Sentence objects with the

WithEvents keyword, as shown in Listing 3.9. This code also adds

a method that handles the OnChanged event for the Sentence1 and

Figure 3.3. Text inserted into the document using the Sentence class

McGrath.book Page 100 Thursday, December 7, 2006 10:04 AM

Introduction to Object-Oriented Programming 101

Sentence2 classes. Notice that the Sentence_ChangeCase method

lists both Sentence1.CaseChanged and Sentence2.CaseChanged in

the Handles clause.

Listing 3.9. Displaying a message box when an event is raised

WithEvents Sentence1 as New Sentence()

WithEvents Sentence2 As New Sentence(_
 "This is my first sentence.")

Private Sub ThisDocument_Startup(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Startup

 Sentence1.Text = "This is my first sentence. "
 Sentence1.UpperCase()

 Me.Paragraphs(1).Range.InsertAfter(_
 Sentence1.Text & Sentence2.Text)

End Sub

Sub Sentence_CaseChange() Handles Sentence1.CaseChanged, _

 Sentence2.CaseChanged

 MsgBox("Case changed.")

End Sub

3. Press F5 to run the code.

Only one message box is displayed because only Sentence1 called the

UpperCase method, which raised the CaseChange event. If you add

code to call UpperCase on Sentence2, the event will be raised on both

objects, and therefore two messages will be displayed.

Partial Classes

Partial classes are a new feature in .NET Framework 2.0 and are sup-

ported in Visual Basic 2005. The Partial keyword enables you to split a

McGrath.book Page 101 Thursday, December 7, 2006 10:04 AM

102 Chapter 3 Introduction to Managed Code

class into separate source files. You can also define partial structures

and interfaces.

You learned in Chapter 2 that there is a hidden code file behind the

ThisDocument.vb file in Word solutions (and behind ThisWorkbook.vb,

Sheet1.vb, Sheet2.vb, and Sheet3.vb in Excel solutions). These code

files are partial classes. VSTO uses partial classes as a way to separate

auto-generated code from the code that you write so that you can con-

centrate on your own code. Partial classes are also used in Windows

Forms to store auto-generated code when you add controls to a Win-

dows Form.

Figure 3.4 shows the partial class named MyForm, which contains the

code that is generated whenever you add a control to the form. This

code is stored in the MyForm.Designer.vb file; in contrast, the code you

Figure 3.4. Partial class for a Windows Form named MyForm, where auto-
generated code is stored

McGrath.book Page 102 Thursday, December 7, 2006 10:04 AM

Introduction to Object-Oriented Programming 103

write to set properties or handle the events of the control should be

written in MyForm.vb, as shown in Figure 3.5.

Notice that the class definition for MyForm.Designer.vb is Partial Class

MyForm. The class definition for MyForm.vb does not contain the Par-

tial keyword. Instead, it is simply Public Class MyForm.

The Partial keyword is not needed for the main class definition; it is

needed only for any additional class definitions that share the same class

name. When you compile the code, Visual Basic automatically merges

the code from the partial classes with the code for the main class.

Another way you might use partial classes is to divide a programming

task between two developers. If each developer writes code in a separate

class file, you can then add each class to the main project and Visual

Studio will automatically merge the classes during the build process as

if they were a single class file.

Generic Classes

Generic classes are a new feature in the .NET Framework and are sup-

ported in Visual Basic 2005. A generic class is a single class that pro-

vides functionality for different data types, without the need to write a

separate class definition for each data type. You can also define generic

methods, structures, and interfaces.

Figure 3.5. Partial class for a Windows Form named MyForm, where developer-
written code is stored

McGrath.book Page 103 Thursday, December 7, 2006 10:04 AM

104 Chapter 3 Introduction to Managed Code

A generic class uses type parameters as placeholders for the data types.

The code example in Listing 3.10 shows the declaration of a generic

class using t to represent the type parameter. You can specify more than

one parameter by separating the parameters with commas. When you

want to instantiate the class, you must specify the data type, rather

than the type parameter, in the declaration, as shown in Listing 3.10.

Listing 3.10. Creating a Generic class

Public Class MySampleClass(Of t)

 ' Implementation code for the class goes here.

End Class

Sub CreateGenericClasses()

 Dim myStringClass As New mySampleClass(Of String)
 Dim myIntegerClass As New mySampleClass(Of Integer)

End Sub

In the System.Collections.Generic namespace, the .NET Framework pro-

vides a number of generic collection classes that correspond to existing

(nongeneric) collection classes. For example, you can use a Dictionary

class to specify the data type for a key-value pair (rather than use a

Hashtable), and a List is the generic class that corresponds to an

ArrayList.

Interfaces

Like classes, interfaces define properties, methods, and events of an

object. Unlike classes, interfaces do not provide any implementation,

and you cannot create an instance of an interface. A class can imple-

ment one or more interfaces.

McGrath.book Page 104 Thursday, December 7, 2006 10:04 AM

Introduction to Object-Oriented Programming 105

Any class that implements an interface must implement all the mem-

bers of the interface as they are defined. An interface should not change

after it has been deployed in your solution, because any such change

could possibly break existing code.

You declare interfaces using the Interface statement. For example, the

code in Listing 3.11 defines an interface that must be implemented with

a method that takes an Integer argument and returns an Integer. When

you implement this interface in a class, the data type for the arguments

and the return value of the method must match those of the method

defined (in this case, Integer). You can implement this interface within a

class by using the Implements keyword, as shown in Listing 3.11.

Listing 3.11. Creating and implementing an interface

Public Interface ISampleInterface
 Function SampleFunction(ByVal Count As Integer) As Integer
End Interface

Public Class SampleClass

 Implements ISampleInterface

 Function SampleFunction(ByVal Count As Integer) As Integer _

 Implements ISampleInterface.SampleFunction

 ' Add code to perform the function here.

 End Function

End Class

Code Modules

Code modules in Visual Basic work in the same way as they do in VBA.

A code module is a container for global methods and properties that can

be used by other parts of your application. Unlike classes, you do not

need to create a new instance of a module in order to call the methods.

McGrath.book Page 105 Thursday, December 7, 2006 10:04 AM

106 Chapter 3 Introduction to Managed Code

Nor do you need to fully qualify your call unless the same method exists

in multiple modules. To fully qualify the method name you would use

moduleName.methodName().

Modules are a simple way to create code that can be accessed from any-

where in your application, but in general it is better to use classes and

object-oriented techniques. In the next section you will learn about the

benefits of object-oriented programming.

Object Orientation

To be considered a true object-oriented language, a language should

support the following features:

• Encapsulation

• Inheritance

• Polymorphism

All these features were available in VBA except inheritance. This is one

reason many people never considered VBA a true object-oriented pro-

gramming language. This isn’t to say, however, that Visual Basic 2005

is merely VBA plus inheritance. Many more capabilities and enhance-

ments have been made to Visual Basic 2005.

In this section we look at these encapsulation, inheritance, and poly-

morphism requirements of object-oriented programming.

Encapsulation

Encapsulation enables you to control the access to data within a class.

For example, suppose your class has a number of methods that work on

some data. Code that calls into the instantiated class (the object) need

not know how a particular operation functions. To perform an action,

the calling code need know only that the functionality exists and that it

needs to call it. By not allowing direct external access to those methods

McGrath.book Page 106 Thursday, December 7, 2006 10:04 AM

Introduction to Object-Oriented Programming 107

and by hiding the logic used in the class, you are following the principle

of encapsulation.

You can hide the implementation of your class by using access modifi-

ers that prevent code outside the class from modifying data within the

class or calling its methods. For example, you can use the Private key-

word with a property or method that you don’t want outside code to

access. However, if you want to manipulate data from outside the class,

you must provide public properties or methods. This was illustrated in

the Sentence class you created earlier in this chapter. The Text property

of the Sentence class had a Get property procedure and a Set property

procedure that enabled you to write code to assign values to and

retrieve values from the property. The actual data, however, was stored

in a private member variable that was not directly accessible from out-

side the class.

The value of this feature becomes clearer if we add logic along with set-

ting the internal value, such as checking the spelling of the sentence.

The developer who sets the text property doesn’t have to know how the

Sentence object is checking the spelling, only that it does check the

spelling when it sets the value.

Inheritance

Using inheritance, you can create a class that is based on an existing

class, giving your new class all the behavior and functionality of the

existing class. The class that you inherit from is known as the base

class, and the class that is inheriting the functionality is known as the

derived class. You can extend the functionality of the derived class by

adding properties or methods that did not exist in the base class, or you

can override inherited properties or methods so that they behave differ-

ently in the derived class.

Visual Basic 2005 supports inheritance, although it doesn’t support

multiple inheritance. A derived class can have only one base class.

McGrath.book Page 107 Thursday, December 7, 2006 10:04 AM

108 Chapter 3 Introduction to Managed Code

Using inheritance, you can reuse existing code that performs most of

the functionality you require. You modify only a portion of the code to

meet your needs, instead of having to reinvent the wheel. Whenever you

need functionality in your application, you should look at the .NET

Framework class library to see whether the functionality exists or

whether you can inherit the base functionality from one of the classes.

For example, if you want to extend an existing Textbox control, you can

create a new class that derives from the Windows Forms Textbox con-

trol, as shown in Listing 3.12.

Listing 3.12. Inheriting from an existing Windows Forms control

Public Class MyTextBox

 Inherits System.Windows.Forms.TextBox

 ' Add code to override existing TextBox functionality.

End Class

Polymorphism

Polymorphism is the ability to create identically named methods or

properties within a number of derived classes that perform different

functions. You can implement polymorphism by using interfaces or

inheritance. For inheritance-based polymorphism, you override meth-

ods in a base class with new implementations of the methods in the

derived class. For interface-based polymorphism, you implement an

interface differently in multiple classes. You saw an example of this

when you created multiple constructors for your Sentence class.

Exploring the .NET Framework

The .NET Framework is made up of the common language runtime and

a set of code libraries called the Framework Class Library. This frame-

work is a platform for building .NET applications such as Windows

McGrath.book Page 108 Thursday, December 7, 2006 10:04 AM

Exploring the .NET Framework 109

applications, Web-based applications, and VSTO customizations. Before

delving into the common language runtime, we briefly cover three con-

cepts that are important to programming in managed code: assemblies,

namespaces, and application domains.

Assemblies

An assembly is a collection of classes and functionality that is stored as

an executable file (.exe) or a library (.dll). When you compile a .NET lan-

guage such as Visual Basic 2005, your code is not compiled directly into

machine language, or binary code. Instead, it is compiled into an

assembly-like language known as Intermediate Language (IL). No matter

which language you use (Visual Basic 2005 or C#) to create a VSTO

solution, the build process compiles the code into IL. The assembly con-

tains both IL and metadata that describes each class and its members,

along with information about the assembly itself, such as the assembly

name, version, and any dependencies it has.

Assemblies can be private or shared. A private assembly normally con-

tains code that is intended to be used by only one application. These

assemblies can reside in the same folder as the application that uses

them, or in a subfolder of the application. For example, when you create

and build a VSTO solution, the compiled code is saved in a subfolder of

your solution.

Shared assemblies, on the other hand, are designed to be shared among

many applications. Because any software can access these assemblies,

they should be stored in a special directory known as the global assem-

bly cache (GAC). An example of a shared assembly is an Office primary

interop assembly (PIA) described later in this chapter.

Namespaces

Namespaces help you organize the objects in an assembly, such as

classes, interfaces, structures, enumerations, and other namespaces.

McGrath.book Page 109 Thursday, December 7, 2006 10:04 AM

110 Chapter 3 Introduction to Managed Code

Using namespaces helps you avoid problems such as naming collisions

or conflicts within your code. For example, let’s say you have a class

named Math that contains functionality to add or subtract the value of

Excel ranges. You could add a reference to an assembly that contains a

class also named Math but having different functionality. When you run

your application, there would be no way for the .NET Framework to dis-

tinguish between your Math class and the referenced Math class.

Creating namespaces for your classes gives you another level of naming

that helps disambiguate your classes. In the same way that using peo-

ple’s last names can help distinguish them from others who share the

same first name, using a namespace along with a class name (also

known as fully qualifying a class) helps the .NET Framework runtime

distinguish one class from a like-named class. Often a company name is

used as an alias of a namespace, so, for example, MyCompany.Employees

can be easily distinguished from YourCompany.Employees.

To fully qualify the name of an object, you simply prefix the object with

the namespace. For example, the Button class that you add to a Word

document is in the Microsoft.Office.Tools.Word.Controls namespace

and is referenced as Microsoft.Office.Tools.Word.Controls.Button.

In contrast, the Button class you add to a Windows Form is in the

System.Windows.Forms namespace and is referenced as

System.Windows.Forms.Button.

You can include a namespace in your project by using the Imports

statement, and you can optionally provide an alias to be used in place of

the namespace. For example, you could add the following line to the top

of your code file:

Imports Microsoft.Office.Tools.Word

Or, to disambiguate this namespace from the

Microsoft.Office.Interop.Word namespace, you might use an alias:

Imports Tools = Microsoft.Office.Tools.Word

McGrath.book Page 110 Thursday, December 7, 2006 10:04 AM

Exploring the .NET Framework 111

In this way, you can refer to an object within that namespace

by using the alias. So instead of declaring myBookmark as a

Microsoft.Office.Tools.Word.Bookmark, you could declare it as a

Tools.Bookmark.

Application Domains

Application domains give the .NET Framework a way to isolate applica-

tions that are running in the same process. For example, if you’re run-

ning multiple add-ins for your application and if one of them needs to

be reloaded, you would want to ensure that the other add-ins are not

affected. Loading the add-ins into a separate application domain guar-

antees this isolation. You can run several application domains in a sin-

gle process and achieve the same level of isolation that exists when you

run the applications in separate processes.

You can also set security permissions on an application domain. For

example, when an application domain is created for a VSTO solution,

the VSTO runtime sets policy for the application domain so that it does

not trust the My Computer Zone. This practice ensures that the code in

the My Computer Zone has been granted trust explicitly rather than

allowing all code to run by default. You’ll learn more about security in

Chapter 11, Security and Deployment.

Common Language Runtime

The common language runtime is a runtime environment that supports

multiple .NET Framework programming languages, such as Visual

Basic 2005 and Visual C#. The common language runtime manages

your code and provides compilation services, exception handling ser-

vices, reflection services, memory management services, and a security

mechanism for running secure code.

McGrath.book Page 111 Thursday, December 7, 2006 10:04 AM

112 Chapter 3 Introduction to Managed Code

Compilation

At run time, the common language runtime compiles IL code into

machine code (binary) that is specific to the hardware and operating

system the code is currently running on. The common language run-

time compiler is known as the Just-In-Time (JIT) compiler because it

doesn’t go through and compile all the code in the assembly at one time

but rather compiles code only as it is being called. If the same method is

called again while the solution is running, the common language run-

time runs the binary that is already in memory rather than rerun it

through JIT compilation. One benefit of this arrangement is that only

the code that needs to be run is compiled, saving time and memory

compared with compiling it all at once.

Additionally, the common language runtime can read the metadata of

the IL stored in the assembly and can verify that the code is type safe

before attempting to access memory locations. Note also that the verifi-

cation process can be skipped if security policy is set to do so.

Exception Handling

The common language runtime provides an exception notification ser-

vice so that it’s easy to determine that an error has occurred. The .NET

Framework provides a number of exception classes that describe the

most common types of exceptions. With managed code, you should use

structured exception handling—such as Try Catch Finally (Try Catch)

statements—to check whether an exception is thrown within your code

and handle the exception accordingly. Rather than use the method of

error handling used in VBA code (On Error GoTo statements), you should

instead favor the more robust exception handling of a Try Catch statement.

A Try Catch statement is made up of a Try block, a Catch block, and an

End Try statement. You add the code that can possibly cause an excep-

tion in the Try block as a way to “try out” the code. Then you “catch”

any exceptions that are thrown by handling the exception in the

Catch block.

McGrath.book Page 112 Thursday, December 7, 2006 10:04 AM

Exploring the .NET Framework 113

If needed, you can break out of a Try Catch statement by using the Exit

Try keyword. The Finally block is always executed, whether or not an

error is raised and handled.

You end a Try Catch statement with End Try. For example, the code in

Listing 3.13 shows how you can check whether a folder exists. The code

sets a folder named Personnel as the current Outlook folder in a Try

block and displays an error in the Catch block if an exception is raised.

An exception is raised if inbox.Folders does not contain an entry for

“Personnel.” Note, however, that it is better to specify the type of excep-

tion in the Catch statement (if it is known) than to catch all exceptions

as in this example.

Listing 3.13. Try Catch statement

Try
 Me.ActiveExplorer().CurrentFolder = inBox.Folders(_
 "Personnel")

Catch Ex As Exception
 MsgBox(Ex.Message)
End Try

Reflection

Using reflection, you can discover which types exist in an assembly at

run time, as well as examine its methods, properties and events, and

attributes. Attributes are metadata tags that you can apply to your code.

The common language runtime uses classes within the .NET Frame-

work class library that are part of the System.Reflection namespace to

programmatically inspect an assembly.

The .NET Framework 2.0 SDK contains a tool named ILDASM that uses

reflection to display all the types and members of an assembly. You can

also view the assembly’s IL. There are other tools that use reflection on

an assembly that do not ship with the .NET Framework, such as .NET

Reflector.

McGrath.book Page 113 Thursday, December 7, 2006 10:04 AM

114 Chapter 3 Introduction to Managed Code

Garbage Collection

The common language runtime provides automatic memory manage-

ment known as garbage collection. Garbage collection is a process of

releasing memory used to store an object or object reference when it is

no longer being used. The garbage collector examines variables and

objects and checks whether there are any existing references. If the

objects are not being referenced, they are not destroyed; rather, they are

flagged for garbage collection. The .NET Framework determines the time

frame in which the garbage collection actually occurs.

The garbage collector reclaims any memory that is no longer being used.

The garbage collector functionality is exposed through the GC class. At

times, you should mark an object as being eligible for garbage collection

(for example, setting the object variable to Nothing); at other times, you

might want to force a garbage collection to free up memory (for example,

calling GC.Collect()). Under normal circumstances you shouldn’t force

garbage collection.

Security

The common language runtime offers code-based security, in which

permissions are based on the identity of the code, rather than role-

based security, which is based on the identity, or role, of the user trying

to run the code. This security model is known as code access security

(CAS), and the security policy set determines what the code can do and

how much the code is trusted. Security is covered in more detail in

Chapter 11.

Common Language Specification

For code to interact with objects implemented in any language, the

objects must expose common features to the common language run-

time. The Common Language Specification (CLS) defines the rules that

must be adhered to. For example, it specifies that arrays must have a

lower bound of zero.

McGrath.book Page 114 Thursday, December 7, 2006 10:04 AM

Exploring the .NET Framework 115

The common type system, which defines how types are declared and

used, is defined in the CLS. The common type system ensures that

objects written in different languages can interact. All types derive from

System.Object, and they are typically classified into value types and ref-

erence types.

Value Types and Reference Types

There are two main categories of types that are managed by the com-

mon language runtime: value types and reference types. The difference

between them is that reference types, such as objects, are stored on a

portion of memory in the computer called the heap, whereas value

types, such as numeric data types, are stored on another portion of

memory called the stack.

Value types include structures, the numeric data types (Byte, Short,

Integer, Long, Single, Double), enumerations, Boolean, Char, and Date.

Reference types include classes, delegates, arrays, and Strings, and

they can be accessed only through a reference to their location. When

you create a variable for a value type without assigning it a value, the

type is automatically initialized to a default value.

Table 3.1 lists some common data types, shows how they map to the

System namespace in the .NET class library, and lists their default val-

ues. When you create a reference type variable, however, its value

defaults to Nothing.

Table 3.1. Default Value for Data Types

Data Type Namespace Map Default Value

Byte System.Byte 0

Short System.Int16 0

Integer System.Int32 0

Long System.Int64 0

(continues)

McGrath.book Page 115 Thursday, December 7, 2006 10:04 AM

116 Chapter 3 Introduction to Managed Code

.NET Framework Class Library

As the name suggests, the .NET Framework class library is a library of

classes that contains popular functionality for use in your code. For

example, an XMLReader class in the System.XML namespace gives you

quick access to XML data. Instead of writing your own classes or func-

tionality, you can use any of the thousands of classes and interfaces—

such as Windows Forms controls and input/output (IO) functions—that

are included in the .NET Framework class library. You can also derive

your own classes from classes in the .NET Framework. When you’re

working with the Framework class library, it’s important to understand

that these classes are organized within the context of namespaces.

The .NET Framework class library is organized into hierarchical

namespaces according to their functionality. This arrangement makes it

easier to locate functionality within the library and provides a way to

disambiguate class names. A number of namespaces are automatically

imported, or referenced, when you create a project in Visual Studio. For

example, in a Windows Forms application, you do not need to fully qual-

ify the Button class as Microsoft.Windows.Forms.Button, because the

Microsoft.Windows.Forms namespace is automatically imported into

your project. Instead, you can refer to the Button class directly. When

you’re using Visual Studio Tools for Office, however, there is a Button

Single System.Single 0

Double System.Double 0

Decimal System.Decimal 0D

Boolean System.Boolean False

Date System.DateTime 01/01/0001 12:00:00AM

String System.String Nothing

Table 3.1. Default Value for Data Types (Continued)

Data Type Namespace Map Default Value

McGrath.book Page 116 Thursday, December 7, 2006 10:04 AM

Exploring the .NET Framework 117

class in Excel and Word that differs from the Windows Forms Button

class. In this case, you must fully qualify any references to the VSTO

Button. The code example in Listing 3.14 illustrates.

Listing 3.14. Fully qualifying an object

' Declare a variable for a Windows Forms button.

Dim myButton As Button

' Declare a variable for a button to be used on a Word document.
Dim myWordButton As Microsoft.Office.Tools.Word.Button

In Visual Basic, you can use an Imports statement at the top of your

code file to include a namespace in your project. In this way, you do not

have to type the fully qualified namespace every time you reference the

classes within that namespace. You can also create an alias for the

namespace, as shown in Listing 3.15.

Listing 3.15. Creating an alias for a namespace

Imports Tools = Microsoft.Office.Tools.Word

Sub Test()
 ' Declare a variable for a Windows Forms button.

 Dim myButton As Button

 ' Declare a variable for a button to be used on a

 ' Word document.
 Dim MyWordButton As Tools.Button

End Sub

Table 3.2 lists some of the popular namespaces in the .NET Framework

class library that you might use in your VSTO solutions.

To use a .NET Framework class in your code, you must first set a refer-

ence to the assembly that contains the class. To set a reference, you

click Add Reference from the Project menu. When the Add Reference

dialog box appears, you select the component name from the .NET tab

McGrath.book Page 117 Thursday, December 7, 2006 10:04 AM

118 Chapter 3 Introduction to Managed Code

Table 3.2. Popular Namespaces in the .NET Framework Class Library

Namespace Description

System Contains the base data types, such as String,
Boolean, and Object. This namespace is auto-
matically included in your project, so you need
not qualify any of the types in this namespace.
Most languages, including Visual Basic 2005,
define their own data types, which typically map
to the types in this namespace. This is one rea-
son for some of the language changes (data type
changes) between VBA and Visual Basic 2005.
For example, a Short in Visual Basic 2005 is
equivalent to an Integer in VBA, and the Variant
data type in VBA is no longer supported. These
types were updated in Visual Basic 2005 to con-
form to the types in the System namespace.

In addition to providing the base data types, the
System namespace has classes such as exception
classes and the Math class (for computations).

System.Collections Contains classes and interfaces used to define
collections of objects, such as the ArrayList,
CollectionBase, and SortedList classes. This
namespace is typically used to create collection
classes and also contains many generic collec-
tion classes.

System.Data Contains the classes for ADO.NET. You need ref-
erences to this namespace when creating data
binding in VSTO objects. Defined types in this
namespace include the IDbConnection interface,
IDataAdapter interface, and DataSet class.

System.IO Contains the classes for reading and writing files
synchronously or asynchronously. Objects
defined in this namespace include the File,
Directory, and Stream classes.

(continues)

McGrath.book Page 118 Thursday, December 7, 2006 10:04 AM

Exploring the .NET Framework 119

and then click OK to add the reference and close the dialog box. Figure

3.6 shows the Add Reference dialog box in Visual Studio. You can also

set references to component object model (COM) type libraries or browse

to a particular assembly on your system. All references to your project

System.Text Contains the StringBuilder class and supports
various String manipulation functions, such as
insert or remove text and others. You do not
need to create a new String object, which the
concatenation operator (&) implicitly does, in
order to modify a string.

System.Windows.Forms Contains a number of control classes that can be
added to a form to create rich GUI applications.
The controls include DateTimePicker, Textbox,
Button, and ListBox.

System.Xml Used for processing XML. This namespace
includes a reader for parsing XML and classes
such as XmlDocument and XmlNode.

Figure 3.6. The Add Reference dialog box in Visual Studio

Table 3.2. Popular Namespaces in the .NET Framework Class Library (Continued)

Namespace Description

McGrath.book Page 119 Thursday, December 7, 2006 10:04 AM

120 Chapter 3 Introduction to Managed Code

are displayed in the References node in Solution Explorer. You might

have to click Show All Files to view the references.

After setting the reference, you can add an Imports statement at the top

of your code file so that you don’t have to fully qualify an object in the

namespace. You can optionally create an alias for the namespace as

was shown in Listing 3.15. Some namespaces, such as the System

namespace, are automatically included in your solution; therefore, it is

not necessary to add a reference or create an alias for these

namespaces.

VSTO and Managed Code

When you create VBA solutions for Word and Excel, your code typically

is stored in the document or in an attached or global template. To

access code in a template separate from your solution, you set a refer-

ence from your document to the template.

However, when you create VSTO solutions, your code is stored in an

assembly. You can set references in your project to other assemblies,

such as .NET Framework assemblies and interop assemblies, but you

cannot set a reference to other VSTO solution assemblies. Only one

VSTO solution assembly can be associated with a document or work-

book. However, multiple documents can reference the same solution

assembly. This is the case when you create multiple documents based

on a VSTO-customized template. Note that because Outlook solutions

are application-level, you can load multiple add-ins into Outlook. The

same is true for add-ins created with VSTO 2005 SE.

Primary Interop Assemblies

Office applications, such as Word and Excel, are written in unmanaged

code. For your VSTO solution (managed code) to interoperate with the

unmanaged COM objects in the Office application, it must use an

McGrath.book Page 120 Thursday, December 7, 2006 10:04 AM

VSTO and Managed Code 121

interoperability assembly. Visual Studio can create an interoperability

assembly for you when you set a reference to a COM type library, but

generating an interoperability assembly in this way is not recom-

mended. Instead, you should use the official interoperability assembly

that is provided by the publisher of the type library. This is known as

the primary interop assembly (PIA). If the PIAs are installed on your

computer and you set a reference to the type library, Visual Studio

automatically loads the PIA instead of generating a new interop assembly.

Microsoft provides PIAs for its Office applications. The name of the Excel

PIA is Microsoft.Office.Interop.Excel.dll. Word and Outlook follow the same

naming convention for their PIAs: Microsoft.Office.Interop.Word.dll and

Microsoft.Office.Interop.Outlook.dll.

The PIAs get installed in your computer’s GAC when you run a complete

installation of Office 2003. Whenever you create a new VSTO solution,

Visual Studio automatically adds to your solution a reference to the

appropriate Office PIA and any of its dependent assemblies. You can

view the contents of the GAC by opening the Windows\assembly direc-

tory of your root drive. Figure 3.7 shows the Microsoft PIAs.

The namespace for these PIAs is determined by the name of the assem-

bly. VSTO automatically creates an alias for these namespaces, as

shown in Table 3.3.

If the PIAs have not been correctly installed on your development

machine because a complete installation of Office 2003 was not per-

formed, you can run a reinstall or repair of Office 2003, assuming that

.NET Framework 1.1 or later is already installed on your computer.

Alternatively, you can use Add or Remove Features in the Maintenance

Mode Options section of the Microsoft Office 2003 Setup, and click Next

(see Figure 3.8). For information on redistributing the PIAs when you

deploy your solutions, see Chapter 11.

On the next page of the Setup wizard, select Choose Advanced Custom-

ization of Applications, and then click Next.

McGrath.book Page 121 Thursday, December 7, 2006 10:04 AM

122 Chapter 3 Introduction to Managed Code

Set each of the following components to Run from My Computer. See

Figure 3.9 for an example.

• Microsoft Office Excel | .NET Programmability Support

• Microsoft Office Outlook | .NET Programmability Support

Figure 3.7. Microsoft Office PIAs displayed in the GAC

Table 3.3. Excel, Word, and Outlook PIAs, Namespaces, and Aliases

PIA Namespace Alias

Microsoft.Office.Interop.Excel.dll Microsoft.Office.Interop.Excel Excel

Microsoft.Office.Interop.Word.dll Microsoft.Office.Interop.Word Word

Microsoft.Office.Interop.Outlook.dll Microsoft.Office.Interop.Outlook Outlook

McGrath.book Page 122 Thursday, December 7, 2006 10:04 AM

VSTO and Managed Code 123

• Microsoft Office Word | .NET Programmability Support

• Office Tools | Microsoft Forms 2.0 .NET Programmability Support

• Office Tools | Smart Tag .NET Programmability Support

• Office Tools | Microsoft Graph, .NET Programmability Support

Figure 3.8. Maintenance Mode Options in Microsoft Office 2003 Setup

Figure 3.9. Advanced Customization in Microsoft Office 2003 Setup

McGrath.book Page 123 Thursday, December 7, 2006 10:04 AM

124 Chapter 3 Introduction to Managed Code

Solution Assemblies

As you learned earlier in this chapter, an assembly is a collection of

classes and functionality that is stored as an executable file (.exe) or a

library (.dll). When you build a VSTO solution, the code is compiled and

stored in a single assembly (DLL file) located in the \bin\debug (or

\bin\release) directory of your solution. The assembly isn’t stored

inside the document, but the document does include an application

manifest, which contains information about the name and location of

the assembly. There are two manifests: an application manifest (which is

stored in the document via an embedded control called the Runtime

Storage Control) and a deployment manifest, which is located in the

same directory where the assembly is deployed.

Even though you can associate a VSTO solution assembly only with a

particular document (you can have only one solution assembly associ-

ated with a document), your solution assembly can reference other

assemblies. For example, to add a common group of user controls to the

actions pane, you can save a library of user controls in an assembly and

then reference that assembly from multiple VSTO solutions.

How do you determine which VSTO assembly is associated with a par-

ticular document? You look at the document properties. You can view

the document properties of a Word document or Excel workbook by

clicking Properties in the File menu. A VSTO-enabled document has two

custom document properties that indicate that the document is a VSTO

solution. The first custom property is named _AssemblyName. If the

value of _AssemblyName is an asterisk (*), it means that the document

has an associated VSTO customization (assembly). The second custom

property, _AssemblyLocation, stores the globally unique identifier

(GUID) of the Runtime Storage Control (which contains the application

manifest and information about where to locate the associated assem-

bly). Figure 3.10 shows the custom document properties of a Word

solution.

McGrath.book Page 124 Thursday, December 7, 2006 10:04 AM

VSTO and Managed Code 125

Adding Customization to Existing Documents

You can attach an existing solution assembly to an uncustomized

document or worksheet in one of two ways. The first is to add the

_AssemblyName property with a value of asterisk (*), add the

_AssemblyLocation custom property with the location of the deployment

manifest as its value, and then save, close, and reopen the document.

The second approach involves using the AddCustomization method of

the ServerDocument class. These techniques are described in more

detail in Chapter 13, Advanced Topics in VSTO 2005.

Running VSTO Solutions

For a VSTO solution to run, the assemblies must have full trust permis-

sions. On the development machine, full trust is automatically granted

to your solution’s assembly and any referenced assemblies whenever

you build the project. The evidence used for this trust is based on loca-

tion (the URL of the assembly). When you deploy your solution, you

need to grant full trust to the document and the assembly by using a

Figure 3.10. Custom document properties of a Word solution

McGrath.book Page 125 Thursday, December 7, 2006 10:04 AM

126 Chapter 3 Introduction to Managed Code

strong name or by digitally signing the assembly. This procedure is dis-

cussed in greater detail in Chapter 11.

As a developer, you can run your customization by pressing F5 or by

clicking Start Debugging from the Debug menu in Visual Studio. You

can also open the document or workbook that is stored in the /debug/

bin directory of the location in which you saved your solution, or press

Ctrl+F5 to run the solution without debugging it.

An end user can run a solution in one of two ways.

1. To run a document-level customization, the user opens the docu-

ment or workbook that has an associated customization assembly.

Alternatively, the user can create a new document or workbook

that is based on a template that has an associated customization

assembly.

2. To run an application-level customization (add-in), users have two

options. They can open the application, which contains instruc-

tions to load an add-in when the application starts. Or they can

manually enable the add-in in the COM Add-ins dialog box of the

application.

Summary

We began this chapter with an introduction to managed code and

object-oriented programming. You looked at classes and learned how

you can instantiate a class to create an object and then create proper-

ties, methods, and events for your class. You then learned how to create

partial classes, generic classes, and interfaces. Next, you looked at the

.NET Framework and learned that the common language runtime pro-

vides a framework for running managed code that includes compilation

services, exception handling, reflection, and memory management. We

looked at some common namespaces in the .NET Framework class

library. Finally, we put this all together by looking at how a VSTO solu-

McGrath.book Page 126 Thursday, December 7, 2006 10:04 AM

Review Questions 127

tion uses primary interop assemblies and how solution assemblies are

created and run.

Review Questions

1. How do objects differ from classes?

2. What is the default constructor of any class in Visual Basic 2005?

How can you override and overload a constructor?

3. How do Windows Forms and VSTO use partial classes in their pro-

gramming models?

4. Define the three features that an object-oriented language must

support.

5. What is IL? Why is it important to .NET programming?

6. Name three services provided by the common language runtime.

McGrath.book Page 127 Thursday, December 7, 2006 10:04 AM

