
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321424778
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321424778
https://plusone.google.com/share?url=http://www.informit.com/title/9780321424778
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321424778
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321424778/Free-Sample-Chapter

Praise for Secure Programming with Static Analysis

“We designed Java so that it could be analyzed statically. This book shows you how to
apply advanced static analysis techniques to create more secure, more reliable software.”

—Bill Joy
Co-founder of Sun Microsystems, co-inventor of the Java programming language

“If you want to learn how promising new code-scanning tools can improve the security
of your software, then this is the book for you. The first of its kind, Secure Program-
ming with Static Analysis is well written and tells you what you need to know without
getting too bogged down in details. This book sets the standard.”

—David Wagner
Associate Professor, University of California, Berkeley

“Brian and Jacob can write about software security from the ‘been there. done that.’
perspective. Read what they’ve written - it’s chock full of good advice.”

—Marcus Ranum
Inventor of the firewall, Chief Scientist, Tenable Security

“Over the past few years, we’ve seen several books on software security hitting the
bookstores, including my own. While they’ve all provided their own views of good
software security practices, this book fills a void that none of the others have covered.
The authors have done a magnificent job at describing in detail how to do static source
code analysis using all the tools and technologies available today. Kudos for arming the
developer with a clear understanding of the topic as well as a wealth of practical guid-
ance on how to put that understanding into practice. It should be on the required read-
ing list for anyone and everyone developing software today.”

—Kenneth R. van Wyk
President and Principal Consultant, KRvW Associates, LLC.

“Software developers are the first and best line of defense for the security of their code. This
book gives them the security development knowledge and the tools they need in order to
eliminate vulnerabilities before they move into the final products that can be exploited.”

—Howard A. Schmidt
Former White House Cyber Security Advisor

“Modern artifacts are built with computer assistance. You would never think to build
bridges, tunnels, or airplanes without the most sophisticated, state of the art tools. And
yet, for some reason, many programmers develop their software without the aid of the
best static analysis tools. This is the primary reason that so many software systems are

replete with bugs that could have been avoided. In this exceptional book, Brian Chess
and Jacob West provide an invaluable resource to programmers. Armed with the
hands-on instruction provided in Secure Programming with Static Analysis, developers
will finally be in a position to fully utilize technological advances to produce better
code. Reading this book is a prerequisite for any serious programming.”

—Avi Rubin, Ph.D.
Professor of Computer Science, Johns Hopkins University
President and co-Founder, Independent Security Evaluators

“Once considered an optional afterthought, application security is now an absolute
requirement. Bad guys will discover how to abuse your software in ways you’ve yet to
imagine—costing your employer money and damaging its reputation. Brian Chess and
Jacob West offer timely and salient guidance to design security and resiliency into your
applications from the very beginning. Buy this book now and read it tonight.”

—Steve Riley
Senior Security Strategist, Trustworthy Computing, Microsoft Corporation

“Full of useful code examples, this book provides the concrete, technical details you
need to start writing secure software today. Security bugs can be difficult to find and
fix, so Chess and West show us how to use static analysis tools to reliably find bugs
and provide code examples demonstrating the best ways to fix them. Secure Program-
ming with Static Analysis is an excellent book for any software engineer and the ideal
code-oriented companion book for McGraw’s process-oriented Software Security in a
software security course.”

—James Walden
Assistant Professor of Computer Science, Northern Kentucky University

“Brian and Jacob describe the root cause of many of today’s most serious security issues
from a unique perspective: static source code analysis.

Using lots of real-world source code examples combined with easy-to-understand
theoretical analysis and assessment, this book is the best I’ve read that explains code
vulnerabilities in such a simple yet practical way for software developers.”

—Dr. Gang Cheng

“Based on their extensive experience in both the software industry and academic
research, the authors illustrate sound software security practices with solid principles.
This book distinguishes itself from its peers by advocating practical static analysis,
which I believe will have a big impact on improving software security.”

—Dr. Hao Chen
Assistant Professor of Computer Science, UC Davis

Secure Programming
with Static Analysis

Addison-Wesley Software Security Series
Gary McGraw, Consulting Editor

Titles in the Series

Exploiting Online Games: Cheating Massively Distributed Systems,
by Greg Hoglund and Gary McGraw
ISBN: 0-132-27191-5

Secure Programming with Static Analysis, by Brian Chess and Jacob West
ISBN: 0-321-42477-8

Software Security: Building Security In, by Gary McGraw
ISBN: 0-321-35670-5

Rootkits: Subverting the Windows Kernel, by Greg Hoglund and James Butler
ISBN: 0-321-29431-9

Exploiting Software: How to Break Code, by Greg Hoglund and Gary McGraw
ISBN: 0-201-78695-8

For more information about these titles, and to read sample chapters, please visit
the series web site at www.awprofessional.com/softwaresecurityseries

www.awprofessional.com/softwaresecurityseries

Secure Programming
with Static Analysis

Brian Chess
Jacob West

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Cape Town • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.
The authors and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.
The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales, which may include electronic versions and/or custom covers and content particular to your
business, training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:
International Sales
international@pearsoned.com

This Book Is Safari Enabled

The Safari® Enabled icon on the cover of your favorite technology book means the
book is available through Safari Bookshelf. When you buy this book, you get free
access to the online edition for 45 days.

Safari Bookshelf is an electronic reference library that lets you easily search thousands of technical
books, find code samples, download chapters, and access technical information whenever and wherever
you need it.

To gain 45-day Safari Enabled access to this book:

• Go to http://www.awprofessional.com/safarienabled

• Complete the brief registration form

• Enter the coupon code FLKR-HICJ-XEYS-XXJH-6617

If you have difficulty registering on Safari Bookshelf or accessing the online edition, please e-mail
customer-service@safaribooksonline.com.

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data:

Chess, Brian.
Secure programming with static analysis / Brian Chess.

p. cm.
Includes bibliographical references and index.
ISBN 0-321-42477-8
1. Computer security. 2. Debugging in computer science. 3. Computer software—Quality control. I.
Title.

QA76.9.A25C443 2007
005.8—dc22

2007010226

Copyright © 2007 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright,
and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-10: 0-321-42477-8
ISBN-13: 978-0-321-42477-8
Text printed in the United States on recycled paper at R. R. Donnelley in Crawfordsville, Indiana.
Third printing, August 2010
This product is printed digitally on demand.

http://www.awprofessional.com/safarienabled

To Sally and Simon, with love.
—Brian

In memory of the best teacher I ever had, my Dad.
—Jacob

This page intentionally left blank

Part I: Software Security and Static Analysis 1

1 The Software Security Problem 3

1.1 Defensive Programming Is Not Enough 4
1.2 Security Features != Secure Features 6
1.3 The Quality Fallacy 9
1.4 Static Analysis in the Big Picture 11
1.5 Classifying Vulnerabilities 14

The Seven Pernicious Kingdoms 15
1.6 Summary 19

2 Introduction to Static Analysis 21

2.1 Capabilities and Limitations of Static Analysis 22
2.2 Solving Problems with Static Analysis 24

Type Checking 24
Style Checking 26
Program Understanding 27
Program Verification and Property Checking 28
Bug Finding 32
Security Review 33

2.3 A Little Theory, a Little Reality 35
Success Criteria 36
Analyzing the Source vs. Analyzing Compiled Code 42

Summary 45

Contents

ix

3 Static Analysis as Part of the Code Review Process 47

3.1 Performing a Code Review 48
The Review Cycle 48
Steer Clear of the Exploitability Trap 54

3.2 Adding Security Review to an Existing Development Process 56
Adoption Anxiety 58
Start Small, Ratchet Up 62

3.3 Static Analysis Metrics 62
Summary 69

4 Static Analysis Internals 71

4.1 Building a Model 72
Lexical Analysis 72
Parsing 73
Abstract Syntax 74
Semantic Analysis 76
Tracking Control Flow 77
Tracking Dataflow 80
Taint Propagation 82
Pointer Aliasing 82

4.2 Analysis Algorithms 83
Checking Assertions 84
Naïve Local Analysis 85
Approaches to Local Analysis 89
Global Analysis 91
Research Tools 94

4.3 Rules 96
Rule Formats 97
Rules for Taint Propagation 101
Rules in Print 103

4.4 Reporting Results 105
Grouping and Sorting Results 106
Eliminating Unwanted Results 108
Explaining the Significance of the Results 109

Summary 113

x Contents

Part II: Pervasive Problems 115

5 Handling Input 117

5.1 What to Validate 119
Validate All Input 120
Validate Input from All Sources 121
Establish Trust Boundaries 130

5.2 How to Validate 132
Use Strong Input Validation 133
Avoid Blacklisting 137
Don’t Mistake Usability for Security 142
Reject Bad Data 143
Make Good Input Validation the Default 144
Check Input Length 153
Bound Numeric Input 157

5.3 Preventing Metacharacter Vulnerabilities 160
Use Parameterized Requests 161
Path Manipulation 167
Command Injection 168
Log Forging 169

Summary 172

6 Buffer Overflow 175

6.1 Introduction to Buffer Overflow 176
Exploiting Buffer Overflow Vulnerabilities 176
Buffer Allocation Strategies 179
Tracking Buffer Sizes 186

6.2 Strings 189
Inherently Dangerous Functions 189
Bounded String Operations 195
Common Pitfalls with Bounded Functions 203
Maintaining the Null Terminator 213
Character Sets, Representations, and Encodings 218
Format Strings 224
Better String Classes and Libraries 229

Summary 233

Contents xi

7 Bride of Buffer Overflow 235

7.1 Integers 236
Wrap-Around Errors 236
Truncation and Sign Extension 239
Conversion between Signed and Unsigned 241
Methods to Detect and Prevent Integer Overflow 242

7.2 Runtime Protection 251
Safer Programming Languages 251
Safer C Dialects 255
Dynamic Buffer Overflow Protections 258
Dynamic Protection Benchmark Results 263

Summary 263

8 Errors and Exceptions 265

8.1 Handling Errors with Return Codes 266
Checking Return Values in C 266
Checking Return Values in Java 269

8.2 Managing Exceptions 271
Catch Everything at the Top Level 272
The Vanishing Exception 273
Catch Only What You’re Prepared to Consume 274
Keep Checked Exceptions in Check 276

8.3 Preventing Resource Leaks 278
C and C++ 279
Java 283

8.4 Logging and Debugging 286
Centralize Logging 286
Keep Debugging Aids and Back-Door Access Code out of

Production 289
Clean Out Backup Files 292
Do Not Tolerate Easter Eggs 293

Summary 294

xii Contents

Part III: Features and Flavors 295

9 Web Applications 297

9.1 Input and Output Validation for the Web 298
Expect That the Browser Has Been Subverted 299
Assume That the Browser Is an Open Book 302
Protect the Browser from Malicious Content 303

9.2 HTTP Considerations 319
Use POST, Not GET 319
Request Ordering 322
Error Handling 322
Request Provenance 327

9.3 Maintaining Session State 328
Use Strong Session Identifiers 329
Enforce a Session Idle Timeout and a Maximum Session Lifetime 331
Begin a New Session upon Authentication 333

9.4 Using the Struts Framework for Input Validation 336
Setting Up the Struts Validator 338
Use the Struts Validator for All Actions 338
Validate Every Parameter 342
Maintain the Validation Logic 343

Summary 346

10 XML and Web Services 349

10.1 Working with XML 350
Use a Standards-Compliant XML Parser 350
Turn on Validation 352
Be Cautious about External References 358
Keep Control of Document Queries 362

10.2 Using Web Services 366
Input Validation 366
WSDL Worries 368
Over Exposure 369
New Opportunities for Old Errors 370
JavaScript Hijacking: A New Frontier 370

Summary 376

Contents xiii

11 Privacy and Secrets 379

11.1 Privacy and Regulation 380
Identifying Private Information 380
Handling Private Information 383

11.2 Outbound Passwords 388
Keep Passwords out of Source Code 389
Don’t Store Clear-Text Passwords 391

11.3 Random Numbers 397
Generating Random Numbers in Java 398
Generating Random Numbers in C and C++ 401

11.4 Cryptography 407
Choose a Good Algorithm 407
Don’t Roll Your Own 409

11.5 Secrets in Memory 412
Minimize Time Spent Holding Secrets 414
Share Secrets Sparingly 415
Erase Secrets Securely 416
Prevent Unnecessary Duplication of Secrets 418

Summary 420

12 Privileged Programs 421

12.1 Implications of Privilege 423
Principle of Least Privilege 423
This Time We Mean It: Distrust Everything 426

12.2 Managing Privilege 427
Putting Least Privilege into Practice 427
Restrict Privilege on the Filesystem 433
Beware of Unexpected Events 436

12.3 Privilege Escalation Attacks 439
File Access Race Conditions 440
Insecure Temporary Files 446
Command Injection 450
Standard File Descriptors 452

Summary 454

xiv Contents

Part IV: Static Analysis in Practice 457

13 Source Code Analysis Exercises for Java 459

Exercise 13.0 Installation 460
Exercise 13.1 Begin with the End in Mind 461
Exercise 13.2 Auditing Source Code Manually 469
Exercise 13.3 Running Fortify SCA 471
Exercise 13.4 Understanding Raw Analysis Results 472
Exercise 13.5 Analyzing a Full Application 478
Exercise 13.6 Tuning Results with Audit Workbench 479
Exercise 13.7 Auditing One Issue 483
Exercise 13.8 Performing a Complete Audit 487
Exercise 13.9 Writing Custom Rules 491
Answers to Questions in Exercise 13.2 499

14 Source Code Analysis Exercises for C 503

Exercise 14.0 Installation 504
Exercise 14.1 Begin with the End in Mind 505
Exercise 14.2 Auditing Source Code Manually 513
Exercise 14.3 Running Fortify SCA 514
Exercise 14.4 Understanding Raw Analysis Results 515
Exercise 14.5 Analyzing a Full Application 520
Exercise 14.6 Tuning Results with Audit Workbench 521
Exercise 14.7 Auditing One Issue 525
Exercise 14.8 Performing a Complete Audit 529
Exercise 14.9 Writing Custom Rules 531
Answers to Questions in Exercise 14.2 537

Epilogue 541

References 545

Index 559

Contents xv

This page intentionally left blank

Software Security and Code Review with a Static
Analysis Tool

On the first day of class, mechanical engineers learn a critical lesson: Pay
attention and learn this stuff, or the bridge you build could fall down. This
lesson is most powerfully illustrated by a video of the Tacoma Narrows
Bridge shaking itself to death (http://www.enm.bris.ac.uk/anm/tacoma/
tacoma.html). Figure 1 shows a 600-foot section of the bridge falling into
the water in 1940. By contrast, on the first day of software engineering
class, budding developers are taught that they can build anything that they
can dream of. They usually start with “hello world.”

Figure 1 A 600-foot section of the Tacoma Narrows bridge crashes into Puget Sound as
the bridge twists and torques itself to death. Mechanical engineers are warned early on
that this can happen if they don’t practice good engineering.

Foreword

xvii

http://www.enm.bris.ac.uk/anm/tacoma/tacoma.html
http://www.enm.bris.ac.uk/anm/tacoma/tacoma.html

An overly optimistic approach to software development has certainly led
to the creation of some mind-boggling stuff, but it has likewise allowed us
to paint ourselves into the corner from a security perspective. Simply put,
we neglected to think about what would happen to our software if it were
intentionally and maliciously attacked.

Much of today’s software is so fragile that it barely functions properly
when its environment is pristine and predictable. If the environment in
which our fragile software runs turns out to be pugnacious and pernicious
(as much of the Internet environment turns out to be), software fails spec-
tacularly, splashing into the metaphorical Puget Sound.

The biggest problem in computer security today is that most systems
aren’t constructed with security in mind. Reactive network technologies
such as firewalls can help alleviate obvious script kiddie attacks on servers,
but they do nothing to address the real security problem: bad software. If
we want to solve the computer security problem, we need to do more to
build secure software.

Software security is the practice of building software to be secure and
function properly under malicious attack. This book is about one of software
security’s most important practices: code review with a static analysis tool.

As practitioners become aware of software security’s importance, they
are increasingly adopting and evolving a set of best practices to address the
problem. Microsoft has carried out a noteworthy effort under its Trustwor-
thy Computing Initiative. Many Cigital customers are in the midst of enter-
prise scale software security initiatives. Most approaches in practice today
encompass training for developers, testers, and architects; analysis and
auditing of software artifacts; and security engineering. There’s no substi-
tute for working software security as deeply into the development process
as possible and taking advantage of the engineering lessons software practi-
tioners have learned over the years.

In my book Software Security, I introduce a set of seven best practices
called touchpoints. Putting software security into practice requires making
some changes to the way most organizations build software. The good news
is that these changes don’t need to be fundamental, earth shattering, or cost-
prohibitive. In fact, adopting a straightforward set of engineering best prac-
tices, designed in such a way that security can be interleaved into existing
development processes, is often all it takes.

Figure 2 specifies the software security touchpoints and shows how
software practitioners can apply them to the various software artifacts pro-
duced during software development. This means understanding how to

xviii Foreword

work security engineering into requirements, architecture, design, coding,
testing, validation, measurement, and maintenance.

Figure 2 The software security touchpoints as introduced and fleshed out in Software
Security: Building Security In.

Some touchpoints are, by their very nature, more powerful than others.
Adopting the most powerful ones first is only prudent. The top two touch-
points are code review with a static analysis tool and architectural risk
analysis. This book is all about the first.

All software projects produce at least one artifact: code. This fact moves
code review to the number one slot on our list. At the code level, the focus is
on implementation bugs, especially those that static analysis tools that scan
source code for common vulnerabilities can discover. Several tools vendors
now address this space, including Fortify Software, the company that Brian
and Jacob work for.

Implementation bugs are both numerous and common (just like real bugs
in the Virginia countryside), and include nasty creatures such as the notorious
buffer overflow, which owes its existence to the use (or misuse) of vulnerable
APIs (e.g., gets(), strcpy(), and so on in C). Code review processes, both
manual and (even more important) automated with a static analysis tool,
attempt to identify security bugs prior to the software’s release.

REQUIREMENTS
AND USE CASES

ARCHITECTURE
AND DESIGN

TEST PLANS CODE TESTS AND
TEST RESULTS

FEEDBACK
FROM

THE FIELD

ABUSE
CASES

5

6

2
4

1

2

3

7

8

SECURITY
REQUIREMENTS

RISK
ANALYSIS

RISK
ANALYSIS

RISK-BASED
SECURITY

TESTS

EXTERNAL
REVIEW

CODE
REVIEW
(TOOLS)

PENETRATION
TESTING

SECURITY
OPERATIONS

Foreword xix

Of course, no single technique is a silver bullet. Code review is a neces-
sary but not sufficient practice for achieving secure software. Security bugs
(especially in C and C++) are a real problem, but architectural flaws are just
as big of a problem. Doing code review alone is an extremely useful activity,
but given that this kind of review can only identify bugs, the best a code
review can uncover is around 50% of the security problems. Architectural
problems are very difficult (and mostly impossible) to find by staring at
code. This is especially true for modern systems made of hundreds of thou-
sands of lines of code. A comprehensive approach to software security
involves holistically combining both code review and architectural analysis.

By its very nature, code review requires knowledge of code. An infosec
practitioner with little experience writing and compiling software will be of
little use during a code review. The code review step is best left in the hands
of the members of the development organization, especially if they are armed
with a modern source code analysis tool. With the exception of information
security people who are highly experienced in programming languages and
code-level vulnerability resolution, there is no natural fit for network security
expertise during the code review phase. This might come as a great surprise
to organizations currently attempting to impose software security on their
enterprises through the infosec division. Even though the idea of security
enforcement is solid, making enforcement at the code level successful when
it comes to code review requires real hands-on experience with code.

The problem is that most developers have little idea what bugs to look
for, or what to do about bugs if they do find them. That’s where this book,
Secure Programming with Static Analysis, comes in. The book that you have
in your hands is the most advanced work on static analysis and code review
for security ever released. It teaches you not only what the bugs are (what I
sometimes call the “bug parade” approach to software security), but how to
find them with modern static analysis tools and, more important, what to
do to correct them. By putting the lessons in this book into practice, you go
a long way toward helping to solve the software security problem.

Gary McGraw, Ph.D.
Berryville, Virginia
March 6, 2007

Company: www.cigital.com
Podcast: www.cigital.com/silverbullet
Blog: www.cigital.com/justiceleague
Book: www.swsec.com

xx Foreword

www.cigital.com
www.cigital.com/silverbullet
www.cigital.com/justiceleague
www.swsec.com

We live in a time of unprecedented economic growth, increasingly fueled
by computer and communications technology. We use software to

automate factories, streamline commerce, and put information into the
hands of people who can act upon it. We live in the information age, and
software is the primary means by which we tame information.

Without adequate security, we cannot realize the full potential of the
digital age. But oddly enough, much of the activity that takes place under
the guise of computer security isn’t really about solving security problems at
all; it’s about cleaning up the mess that security problems create. Virus scan-
ners, firewalls, patch management, and intrusion detection systems are all
means by which we make up for shortcomings in software security. The
software industry puts more effort into compensating for bad security than
it puts into creating secure software in the first place. Do not take this to
mean that we see no value in mechanisms that compensate for security fail-
ures. Just as every ship should have lifeboats, it is both good and healthy
that our industry creates ways to quickly compensate for a newly discovered
vulnerability. But the state of software security is poor. New vulnerabilities
are discovered every day. In a sense, we’ve come to expect that we will need
to use the lifeboats every time the ship sails.

Changing the state of software security requires changing the way soft-
ware is built. This is not an easy task. After all, there are a limitless number
of security mistakes that programmers could make! The potential for error
might be limitless, but in practice, the programming community tends to
repeat the same security mistakes. Almost two decades of buffer overflow
vulnerabilities serve as an excellent illustration of this point. In 1988, the
Morris worm made the Internet programming community aware that a
buffer overflow could lead to a security breach, but as recently as 2004,

Preface

Following the light of the sun, we left the Old World.

—Christopher Columbus

xxi

buffer overflow was the number one cause of security problems cataloged
by the Common Vulnerabilities and Exposures (CVE) Project [CWE, 2006].
This significant repetition of well-known mistakes suggests that many of the
security problems we encounter today are preventable and that the software
community possesses the experience necessary to avoid them.

We are thrilled to be building software at the beginning of the twenty-
first century. It must have felt this way to be building ships during the age
of exploration. When Columbus came to America, exploration was the
driving force behind economic expansion, and ships were the means by
which explorers traveled the world. In Columbus’s day, being a world eco-
nomic power required being a naval power because discovering a new land
didn’t pay off until ships could safely travel the new trade routes. Software
security has a similar role to play in today’s world. To make information
technology pay off, people must trust the computer systems they use. Some
pundits warn about an impending “cyber Armageddon,” but we don't fear
an electronic apocalypse nearly so much as we see software security as one
of the primary factors that control the amount of trust people are willing to
place in technology.

We believe that it is the responsibility of the people who create software
to make sure that their creations are secure. Software security cannot be
left to the system administrator or the end user. Network security, judicious
administration, and wise use are all important, but in the long run, these
endeavors cannot succeed if the software is inherently vulnerable. Although
security can sometimes appear to be a black art or a matter of luck, we hope
to show that it is neither. Making security sound impossible or mysterious
is giving it more than its due. With the right knowledge and the right tools,
good software security can be achieved by building security in to the soft-
ware development process.

We sometimes encounter programmers who question whether software
security is a worthy goal. After all, if no one hacked your software yesterday,
why would you believe they’ll hack it tomorrow? Security requires expending
some extra thought, attention, and effort. This extra work wasn’t nearly so
important in previous decades, and programmers who haven’t yet suffered
security problems use their good fortune to justify continuing to ignore secu-
rity. In his investigation of the loss of the space shuttle Challenger, Richard
Feynman found that NASA had based its risk assessment on the fact that
previous shuttle missions had been successful [Feynman, 1986]. They knew
anomalous behavior had taken place in the past, but they used the fact that

xxii Preface

no disaster had occurred yet as a reason to believe that no disaster would
ever occur. The resulting erosion of safety margins made failure almost
inevitable. Feynman writes, “When playing Russian roulette, the fact that
the first shot got off safely is little comfort for the next.”

Secure Programming with Static Analysis

Two threads are woven throughout the book: software security and static
source code analysis. We discuss a wide variety of common coding errors
that lead to security problems, explain the security ramifications of each,
and give advice for charting a safe course. Our most common piece of
advice eventually found its way into the title of the book: Use static analysis
tools to identify coding errors before they can be exploited. Our focus is on
commercial software for both businesses and consumers, but our emphasis
is on business systems. We won’t get into the details that are critical for
building software for purposes that imply special security needs. A lot could
be said about the specific security requirements for building an operating
system or an electronic voting machine, but we encounter many more pro-
grammers who need to know how to build a secure Web site or enterprise
application.

Above all else, we hope to offer practical and immediately practicable
advice for avoiding software security pitfalls. We use dozens of real-world
examples of vulnerable code to illustrate the pitfalls we discuss, and the
book includes a static source code analysis tool on a companion CD so that
readers can experiment with the detection techniques we describe.

The book is not a guide to using security features, frameworks, or APIs.
We do not discuss the Java Security Manager, advanced cryptographic tech-
niques, or the right approach to identity management. Clearly, these are
important topics. They are so important, in fact, that they warrant books
of their own. Our goal is to focus on things unrelated to security features
that put security at risk when they go wrong.

In many cases, the devil is in the details. Security principles (and viola-
tions of security principles) have to be mapped to their manifestation in
source code. We've chosen to focus on programs written in C and Java
because they are the languages we most frequently encounter today. We see
plenty of other languages, too. Security-sensitive work is being done in C#,
Visual Basic, PHP, Perl, Python, Ruby, and COBOL, but it would be diffi-
cult to write a single book that could even scratch the surface with all these
languages.

Preface xxiii

In any case, many of the problems we discuss are language independent,
and we hope that you will be able to look beyond the syntax of the
examples to understand the ramifications for the languages you use.

Who Should Read the Book

This book is written for people who have decided to make software security
a priority. We hope that programmers, managers, and software architects
will all benefit from reading it. Although we do not assume any detailed
knowledge about software security or static analysis, we cover the subject
matter in enough depth that we hope professional code reviewers and pene-
tration testers will benefit, too. We do assume that you are comfortable pro-
gramming in either C or Java, and that you won’t be too uncomfortable
reading short examples in either language. Some chapters are slanted more
toward one language than another. For instance, the examples in the chap-
ters on buffer overflow are written in C.

How the Book Is Organized

The book is divided into four parts. Part I, “Software Security and Static
Analysis,” describes the big picture: the software security problem, the way
static analysis can help, and options for integrating static analysis as part of
the software development process. Part II, “Pervasive Problems,” looks at
pervasive security problems that impact software, regardless of its function-
ality, while Part III, “Features and Flavors,” tackles security concerns that
affect common varieties of programs and specific software features. Part IV,
“Static Analysis in Practice,” brings together Parts I, II, and III with a set of
hands-on exercises that show how static analysis can improve software
security.

Chapter 1, “The Software Security Problem,” outlines the software
security dilemma from a programmer’s perspective: why security is easy to
get wrong and why typical methods for catching bugs aren’t very effective
when it comes to finding security problems.

Chapter 2, “Introduction to Static Analysis,” looks at the variety of
problems that static analysis can solve, including structure, quality, and, of
course, security. We take a quick tour of open source and commercial static
analysis tools.

Chapter 3, “Static Analysis as Part of Code Review,” looks at how static
analysis tools can be put to work as part of a security review process. We

xxiv Preface

examine the organizational decisions that are essential to making effective
use of the tools. We also look at metrics based on static analysis output.

Chapter 4, “Static Analysis Internals,” takes an in-depth look at how
static analysis tools work. We explore the essential components involved in
building a tool and consider the trade-offs that tools make to achieve good
precision and still scale to analyze millions of lines of code.

Part II outlines security problems that are pervasive in software. Through-
out the chapters in this section and the next, we give positive guidance for
secure programming and then use specific code examples (many of them from
real programs) to illustrate pitfalls to be avoided. Along the way, we point out
places where static analysis can help.

Chapter 5, “Handling Input,” addresses the most thorny software secu-
rity topic that programmers have faced in the past, and the one they are
most likely to face in the future: handling the many forms and flavors of
untrustworthy input.

Chapter 6, “Buffer Overflow,” and Chapter 7, “Bride of Buffer Over-
flow,” look at a single input-driven software security problem that has
been with us for decades: buffer overflow. Chapter 6 begins with a tactical
approach: how to spot the specific code constructs that are most likely to
lead to an exploitable buffer overflow. Chapter 7 examines indirect causes
of buffer overflow, such as integer wrap-around. We then step back and
take a more strategic look at buffer overflow and possible ways that the
problem can be tamed.

Chapter 8, “Errors and Exceptions,” addresses the way programmers
think about unusual circumstances. Although errors and exceptions are only
rarely the direct cause of security vulnerabilities, they are often related to
vulnerabilities in an indirect manner. The connection between unexpected
conditions and security problems is so strong that error handling and recov-
ery will always be a security topic. At the end, the chapter discusses general
approaches to logging and debugging, which is often integrally connected
with error handling.

Part III uses the same style of positive guidance and specific code examples
to tackle security concerns found in common types of programs and related to
specific software features.

Chapter 9, “Web Applications,” looks at the most popular security
topic of the day: the World Wide Web. We look at security problems that
are specific to the Web and to the HTTP protocol.

Preface xxv

Chapter 10, “XML and Web Services,” examines a security challenge
on the rise: the use of XML and Web Services to build applications out of
distributed components.

Although security features are not our primary focus, some security
features are so error prone that they deserve special treatment. Chapter 11,
“Privacy and Secrets,” looks at programs that need to protect private infor-
mation and, more generally, the need to maintain secrets. Chapter 12, “Priv-
ileged Programs,” looks at the special security requirements that must be
taken into account when writing a program that operates with a different
set of privileges than the user who invokes it.

Part IV is about gaining experience with static analysis. This book’s
companion CD includes a static analysis tool, courtesy of our company,
Fortify Software, and source code for a number of sample projects. Chap-
ter 13, “Source Code Analysis Exercises for Java,” is a tutorial that covers
static analysis from a Java perspective; Chapter 14, “Source Code Analysis
Exercises for C,” does the same thing, but with examples and exercises
written in C.

Conventions Used in the Book

Discussing security errors makes it easy to slip into a negative state of mind
or to take a pessimistic outlook. We try to stay positive by focusing on what
needs to be done to get security right. Specifics are important, though, so
when we discuss programming errors, we try to give a working example
that demonstrates the programming mistake under scrutiny. When the
solution to a particular problem is far removed from our original example,
we also include a rewritten version that corrects the problem. To keep the
examples straight, we use an icon to denote code that intentionally con-
tains a weakness:

We use a different icon to denote code where the weakness has been
corrected:

Other conventions used in the book include a monospaced font for
code, both in the text and in examples.

xxvi Preface

Our editor at Addison-Wesley, Jessica Goldstein, has done more than
just help us navigate the publishing process; a conversation with her at

RSA 2005 got this project started. The rest of the crew at Addison-Wesley
has been a great help (and very patient), too: Kristin Weinberger, Chris
Zahn, Romny French, and Karen Gettman among others.

Portions of Chapters 1, 2, and 3 have their roots in technical papers and
journal articles we’ve written in the last few years. We are grateful to our
coauthors on those projects: Gary McGraw, Yekaterina Tsipenyuk O’Neil,
Pravir Chandra, and John Steven.

Our reviewers suffered through some really rough rough drafts and always
came back with constructive feedback. Many thanks to Gary McGraw,
David Wagner, Geoff Morrison, Gary Hardy, Sean Fay, Richard Bejtlich,
James Walden, Gang Cheng, Fredrick Lee, Steve Riley, and Hao Chen. We
also received much-needed encouragement from Fortify’s technical advisory
board, including Gary McGraw, Marcus Ranum, Avi Rubin, Fred Schneider,
Matt Bishop, Li Gong, David Wagner, Greg Morrisett, Bill Pugh, and Bill Joy.

Everyone at Fortify Software has been highly supportive of our work,
and a significant amount of their work appears on the book’s companion
CD. We are enormously grateful for the support we’ve received. We also
owe a huge debit of gratitude to Greg Nelson, who has shaped our views
on static analysis.

Most of all, we give thanks to our families: Sally and Simon at Brian’s
house, and Jonathan at Jacob’s house. It takes a lot of forbearance to live
with someone who’s working at a Silicon Valley software company, and
putting up with someone who’s writing software and writing a book at the
same time is more than saintly. Finally, thanks to our parents. You set us
down this road, and we wouldn’t want to be headed anywhere else.

Acknowledgments

xxvii

This page intentionally left blank

Brian Chess is a founder of Fortify Software. He currently serves as
Fortify’s Chief Scientist, where his work focuses on practical methods

for creating secure systems. Brian holds a Ph.D. in Computer Engineering
from the University of California at Santa Cruz, where he studied the appli-
cation of static analysis to the problem of finding security-relevant defects in
source code. Before settling on security, Brian spent a decade in Silicon Val-
ley working at huge companies and small startups. He has done research on
a broad set of topics, ranging from integrated circuit design all the way to
delivering software as a service. He lives in Mountain View, California.

Jacob West manages Fortify Software’s Security Research Group, which
is responsible for building security knowledge into Fortify’s products.

Jacob brings expertise in numerous programming languages, frameworks,
and styles together with knowledge about how real-world systems can fail.
Before joining Fortify, Jacob worked with Professor David Wagner at the
University of California at Berkeley to develop MOPS (MOdel Checking
Programs for Security properties), a static analysis tool used to discover
security vulnerabilities in C programs. When he is away from the keyboard,
Jacob spends time speaking at conferences and working with customers to
advance their understanding of software security. He lives in San Francisco,
California.

About the Authors

xxix

This page intentionally left blank

There’s a lot to know about how static analysis tools work. There’s
probably just as much to know about making static analysis tools work

as part of a secure development process. In this respect, tools that assist
with security review are fundamentally different than most other kinds of
software development tools. A debugger, for example, doesn’t require any
organization-wide planning to be effective. An individual programmer can
run it when it’s needed, obtain results, and move on to another program-
ming task. But the need for software security rarely creates the kind of
urgency that leads a programmer to run a debugger. For this reason, an
organization needs a plan for who will conduct security reviews, when the
reviews will take place, and how to act on the results. Static analysis tools
should be part of the plan because they can make the review process signifi-
cantly more efficient.

Code review is a skill. In the first part of this chapter, we look at what
that skill entails and outline the steps involved in performing a code review.
We pay special attention to the most common snag that review teams get
hung up on: debates about exploitability. In the second part of the chapter,
we look at who needs to develop the code review skill and when they need
to apply it. Finally, we look at metrics that can be derived from static analy-
sis results.

Static Analysis as Part of the Code
Review Process

In preparing for battle, plans are useless
but planning is indispensable.

—Dwight Eisenhower

3

47

3.1 Performing a Code Review

A security-focused code review happens for a number of different reasons:

• Some reviewers start out with the need to find a few exploitable vulnera-
bilities to prove that additional security investment is justified.

• For every large project that didn’t begin with security in mind, the team
eventually has to make an initial pass through the code to do a security
retrofit.

• At least once in every release period, every project should receive a secu-
rity review to account for new features and ongoing maintenance work.

Of the three, the second requires by far the largest amount of time and
energy. Retrofitting a program that wasn’t written to be secure can be a con-
siderable amount of work. Subsequent reviews of the same piece of code
will be easier. The initial review likely will turn up many problems that need
to be addressed. Subsequent reviews should find fewer problems because
programmers will be building on a stronger foundation.

Steve Lipner estimates that at Microsoft security activities consume
roughly 20% of the release schedule the first time a product goes through
Microsoft’s Security Development Lifecycle. In subsequent iterations, secu-
rity requires less than 10% of the schedule [Lipner, 2006]. Our experience
with the code review phase of the security process is similar—after the back-
log of security problems is cleared out, keeping pace with new development
requires much less effort.

The Review Cycle

We begin with an overview of the code review cycle and then talk about
each phase in detail. The four major phases in the cycle are:

1. Establish goals
2. Run the static analysis tool
3. Review code (using output from the tool)
4. Make fixes

Figure 3.1 shows a few potential back edges that make the cycle a little
more complicated than a basic box step. The frequency with which the cycle
is repeated depends largely upon the goals established in the first phase, but
our experience is that if a first iteration identifies more than a handful of
security problems, a second iteration likely will identify problems too.

48 Chapter 3 Static Analysis as Part of the Code Review Process

Figure 3.1 The code review cycle.

Later in the chapter, we discuss when to perform code review and who
should do the reviewing, but we put forth a typical scenario here to set the
stage. Imagine the first iteration of the cycle being carried out midway
through the time period allocated for coding. Assume that the reviewers are
programmers who have received security training.

1. Establish Goals

A well-defined set of security goals will help prioritize the code that should
be reviewed and criteria that should be used to review it. Your goals should
come from an assessment of the software risks you face. We sometimes hear
sweeping high-level objectives along these lines:

• “If it can be reached from the Internet, it has to be reviewed before it’s
released.”

or

• “If it handles money, it has to be reviewed at least once a year.”

We also talk to people who have more specific tactical objectives in mind. A
short-term focus might come from a declaration:

• “We can’t fail our next compliance audit. Make sure the auditor gives us
a clean bill of health.”

or

• “We’ve been embarrassed by a series of cross-site scripting vulnerabili-
ties. Make it stop.”

3. Review Code

4. Make Fixes 2. Run Tools

1. Establish
Goals

3.1 Performing a Code Review 49

You need to have enough high-level guidance to prioritize your potential
code review targets. Set review priorities down to the level of individual pro-
grams. When you’ve gotten down to that granularity, don’t subdivide any
further; run static analysis on at least a whole program at a time. You might
choose to review results in more detail or with greater frequency for parts of
the program if you believe they pose more risk, but allow the tool’s results
to guide your attention, at least to some extent. At Fortify, we conduct line-
by-line peer review for components that we deem to be high risk, but we
always run tools against all of the code.

When we ask people what they’re looking for when they do code review,
the most common thing we hear is, “Uh, err, the OWASP Top Ten?” Bad
answer. The biggest problem is the “?” at the end. If you’re not too sure
about what you’re looking for, chances are good that you’re not going to
find it. The “OWASP Top Ten” part isn’t so hot, either. Checking for the
OWASP Top Ten is part of complying with the Payment Card Industry (PCI)
Data Security Standard, but that doesn’t make it the beginning and end of
the kinds of problems you should be looking for. If you need inspiration,
examine the results of previous code reviews for either the program you’re
planning to review or similar programs. Previously discovered errors have
an uncanny way of slipping back in. Reviewing past results also gives you
the opportunity to learn about what has changed since the previous review.

Make sure reviewers understand the purpose and function of the code
being reviewed. A high-level description of the design helps a lot. It’s also
the right time to review the risk analysis results relevant to the code. If
reviewers don’t understand the risks before they begin, the relevant risks
will inevitably be determined in an ad-hoc fashion as the review proceeds.
The results will be less than ideal because the collective opinion about what
is acceptable and what is unacceptable will evolve as the review progresses.
The “I’ll know a security problem when I see it” approach doesn’t yield
optimal results.

2. Run Static Analysis Tools

Run static analysis tools with the goals of the review in mind. To get started,
you need to gather the target code, configure the tool to report the kinds of
problems that pose the greatest risks, and disable checks that aren’t relevant.
The output from this phase will be a set of raw results for use during code
review. Figure 3.2 illustrates the flow through phases 2 and 3.

50 Chapter 3 Static Analysis as Part of the Code Review Process

Figure 3.2 Steps 2 and 3: running the tool and reviewing the code.

To get good results, you should be able to compile the code being ana-
lyzed. For development groups operating in their own build environment,
this is not much of an issue, but for security teams who’ve had the code
thrown over the wall to them, it can be a really big deal. Where are all the
header files? Which version of that library are you using? The list of snags
and roadblocks can be lengthy. You might be tempted to take some short-
cuts here. A static analysis tool can often produce at least some results even
if the code doesn’t compile. Don’t cave. Get the code into a compilable state
before you analyze it. If you get into the habit of ignoring parse errors and
resolution warnings from the static analysis tool, you’ll eventually miss out
on important results.

This is also the right time to add custom rules to detect errors that are
specific to the program being analyzed. If your organization has a set of
secure coding guidelines, go through them and look for things you can
encode as custom rules. A static analysis tool won’t, by default, know what
constitutes a security violation in the context of your code. Chances are
good that you can dramatically improve the quality of the tool’s results by
customizing it for your environment.

Errors found during previous manual code reviews are particularly use-
ful here, too. If a previously identified error can be phrased as a violation of
some program invariant (never do X, or always do Y), write a rule to detect

Human Review

Static Analysis

Perform Analysis

Raw
Results

Findings

Rules

2. Run Tools 3. Review Code

if (fgets (buf ,

sizeof(buf)

stdin) == buf) {

strcpy (othr , buf);

system (othr);

Source
Code

3.1 Performing a Code Review 51

similar situations. Over time, this set of rules will serve as a form of institu-
tional memory that prevents previous security slip-ups from being repeated.

3. Review Code

Now it’s time to review the code with your own eyes. Go through the static
analysis results, but don’t limit yourself to just analysis results. Allow the
tool to point out potential problems, but don’t allow it to blind you to other
problems that you can find through your own inspection of the code. We
routinely find other bugs right next door to a tool-reported issue. This
“neighborhood effect” results from the fact that static analysis tools often
report a problem when they become confused in the vicinity of a sensitive
operation. Code that is confusing to tools is often confusing to program-
mers, too, although not always for the same reasons. Go through all the
static analysis results; don’t stop with just the high-priority warnings. If the
list is long, partition it so that multiple reviewers can share the work.

Reviewing a single issue is a matter of verifying the assumptions that the
tool made when it reported the issue. Do mitigating factors prevent the code
from being vulnerable? Is the source of untrusted data actually untrusted? Is
the scenario hypothesized by the tool actually feasible?1 If you are reviewing
someone else’s code, it might be impossible for you to answer all these ques-
tions, and you should collaborate with the author or owner of the code.
Some static analysis tools make it easy to share results (for instance, by pub-
lishing an issue on an internal Web site), which simplifies this process.

Collaborative auditing is a form of peer review. Structured peer reviews
are a proven technique for identifying all sorts of defects [Wiegers, 2002;
Fagan, 1976]. For security-focused peer review, it’s best to have a security
specialist as part of the review team. Peer review and static analysis are com-
plimentary techniques. When we perform peer reviews, we usually put one
reviewer in charge of going through tool output.

If, during the review process, you identify a problem that wasn’t found
using static analysis, return to step 2: Write custom rules to detect other
instances of the same problem and rerun the tools. Human eyes are great for
spotting new varieties of defects, and static analysis excels at making sure
that every instance of those new problems has been found. The back edge
from step 3 to step 2 in Figure 3.1 represents this work.

52 Chapter 3 Static Analysis as Part of the Code Review Process

1. Michael Howard outlines a structured process for answering questions such as these in
a security and privacy article entitled “A Process for Performing Security Code Reviews”
[Howard, 2006].

Code review results can take a number of forms: bugs entered into the
bug database, a formal report suitable for consumption by both program-
mers and management, entries into a software security tracking system, or
an informal task list for programmers. No matter what the form is, make
sure the results have a permanent home so that they’ll be useful during the
next code review. Feedback about each issue should include a detailed
explanation of the problem, an estimate of the risk it brings, and references
to relevant portions of the security policy and risk assessment documents.
This permanent collection of review results is good for another purpose,
too: input for security training. You can use review results to focus training
on real problems and topics that are most relevant to your code.

4. Make Fixes

Two factors control the way programmers respond to the feedback from a
security review:

• Does security matter to them? If getting security right is a prerequisite
for releasing their code, it matters. Anything less is shaky ground
because it competes with adding new functionality, fixing bugs, and
making the release date.

• Do they understand the feedback? Understanding security issues
requires security training. It also requires the feedback to be written in
an intelligible manner. Results stemming from code review are not con-
crete the way a failing test case is, so they require a more complete
explanation of the risk involved.

If security review happens early enough in the development lifecycle,
there will be time to respond to the feedback from the security review. Is
there a large clump of issues around a particular module or a particular fea-
ture? It might be time to step back and look for design alternatives that could
alleviate the problem. Alternatively, you might find that the best and most
lasting fix comes in the form of additional security training.

When programmers have fixed the problems identified by the review,
the fixes must be verified. The form that verification takes depends on the
nature of the changes. If the risks involved are not small and the changes
are nontrivial, return to the review phase and take another look at the code.
The back edge from step 4 to step 3 in Figure 3.1 represents this work.

3.1 Performing a Code Review 53

Steer Clear of the Exploitability Trap

Security review should not be about creating flashy exploits, but all too
often, review teams get pulled down into exploit development. To under-
stand why, consider the three possible verdicts that a piece of code might
receive during a security review:

• Obviously exploitable
• Ambiguous
• Obviously secure

No clear dividing line exists between these cases; they form a spectrum.
The endpoints on the spectrum are less trouble than the middle; obviously
exploitable code needs to be fixed, and obviously secure code can be left
alone. The middle case, ambiguous code, is the difficult one. Code might be
ambiguous because its logic is hard to follow, because it’s difficult to deter-
mine the cases in which the code will be called, or because it’s hard to see
how an attacker might be able to take advantage of the problem.

The danger lies in the way reviewers treat the ambiguous code. If the
onus is on the reviewer to prove that a piece of code is exploitable before it
will be fixed, the reviewer will eventually make a mistake and overlook an
exploitable bug. When a programmer says, “I won’t fix that unless you can
prove it’s exploitable,” you’re looking at the exploitability trap. (For more
ways programmers try to squirm out of making security fixes, see the side-
bar “Five Lame Excuses for Not Fixing Bad Code.”)

The exploitability trap is dangerous for two reasons. First, developing
exploits is time consuming. The time you put into developing an exploit
would almost always be better spent looking for more problems. Second,
developing exploits is a skill unto itself. What happens if you can’t develop
an exploit? Does it mean the defect is not exploitable, or that you simply
don’t know the right set of tricks for exploiting it?

Don’t fall into the exploitability trap: Get the bugs fixed!
If a piece of code isn’t obviously secure, make it obviously secure. Some-

times this approach leads to a redundant safety check. Sometimes it leads to a
comment that provides a verifiable way to determine that the code is okay.
And sometimes it plugs an exploitable hole. Programmers aren’t always wild
about the idea of changing a piece of code when no error can be demon-
strated because any change brings with it the possibility of introducing a new
bug. But the alternative—shipping vulnerabilities—is even less attractive.

Beyond the risk that an overlooked bug might eventually lead to a new
exploit is the possibility that the bug might not even need to be exploitable

54 Chapter 3 Static Analysis as Part of the Code Review Process

to cause damage to a company’s reputation. For example, a “security
researcher” who finds a new buffer overflow might be able to garner fame
and glory by publishing the details, even if it is not possible to build an
attack around the bug [Wheeler, 2005]. Software companies sometimes find
themselves issuing security patches even though all indications are that a
defect isn’t exploitable.

Five Lame Excuses for Not Fixing Bad Code

Programmers who haven’t figured out software security come up with some inspired rea-

sons for not fixing bugs found during security review. “I don't think that's exploitable” is

the all-time winner. All the code reviewers we know have their own favorite runners-up,

but here are our favorite specious arguments for ignoring security problems:

1. “I trust system administrators.”

Even though I know they’ve misconfigured the software before, I know they’re

going to get it right this time, so I don’t need code that verifies that my program is con-

figured reasonably.

2. “You have to authenticate before you can access that page.”

How on earth would an attacker ever get a username and a password? If you have

a username and a password, you are, by definition, a good guy, so you won’t attack the

system.

3. “No one would ever think to do that!”

The user manual very clearly states that names can be no longer than 26 charac-

ters, and the GUI prevents you from entering any more than 26 characters. Why would

I need to perform a bounds check when I read a saved file?

4. “That function call can never fail.”

I’ve run it a million times on my Windows desktop. Why would it fail when it runs

on the 128 processor Sun server?

5. “We didn’t intend for that to be production-ready code.”

Yes, we know it’s been part of the shipping product for several years now, but when

it was written, we didn’t expect it to be production ready, so you should review it with

that in mind.

3.1 Performing a Code Review 55

3.2 Adding Security Review to an Existing
Development Process2

It’s easy to talk about integrating security into the software development
process, but it can be a tough transition to make if programmers are in the
habit of ignoring security. Evaluating and selecting a static analysis tool can
be the easiest part of a software security initiative. Tools can make program-
mers more efficient at tackling the software security problem, but tools
alone cannot solve the problem. In other words, static analysis should be
used as part of a secure development lifecycle, not as a replacement for a
secure development lifecycle.

Any successful security initiative requires that programmers buy into the
idea that security is important. In traditional hierarchical organizations, that
usually means a dictum from management on the importance of security, fol-
lowed by one or more signals from management that security really should be
taken seriously. The famous 2002 memo from Bill Gates titled “Trustworthy
Computing” is a perfect example of the former. In the memo, Gates wrote:

So now, when we face a choice between adding features and resolving
security issues, we need to choose security.

Microsoft signaled that it really was serious about security when it
called a halt to Windows development in 2002 and had the entire Windows
division (upward of 8,000 engineers) participate in a security push that
lasted for more than two months [Howard and Lipner, 2006].

Increasingly, the arrival of a static analysis tool is part of a security push.
For that reason, adoption of static analysis and adoption of an improved
process for security are often intertwined. In this section, we address the
hurdles related to tool adoption. Before you dive in, read the adoption suc-
cess stories in the sidebar “Security Review Times Two.”

Security Review Times Two

Static analysis security tools are new enough that, to our knowledge, no formal studies

have been done to measure their impact on the software built by large organizations.

But as part of our work at Fortify, we’ve watched closely as our customers have rolled

out our tools to their development teams and security organizations. Here we describe

56 Chapter 3 Static Analysis as Part of the Code Review Process

2. This section began as an article in IEEE Security & Privacy Magazine, co-authored with
Pravir Chandra and John Steven [Chandra, Chess, Steven, 2006].

3.2 Adding Security Review to an Existing Development Process 57

the results we’ve seen at two large financial services companies. Because the companies

don't want their names to be used, we'll call them “East Coast” and “West Coast.”

East Coast

A central security team is charged with doing code review. Before adopting a tool, the

team reviewed 10 million lines of code per year. With Fortify, they are now reviewing

20 million lines of code per year. As they have gained familiarity with static analysis,

they have written custom rules to enforce larger portions of their security policy. The

result is that, as the tools do more of the review work, the human reviewers continue to

become more efficient. In the coming year, they plan to increase the rate of review to

30 million lines of code per year without growing the size of the security team.

Development groups at the company are starting to adopt the tool, too; more than

100 programmers use the tool as part of the development process, but the organization

has not yet measured the impact of developer adoption on the review process.

West Coast

A central security team is charged with reviewing all Internet-facing applications before

they go to production. In the past, it took the security team three to four weeks to perform

a review. Using static analysis, the security team now conducts reviews in one to two weeks.

The security team expects to further reduce the review cycle time by implementing a

process wherein the development team can run the tool and submit the results to the secu-

rity team. (This requires implementing safeguards to ensure that the development team runs

the analysis correctly.) The target is to perform code review for most projects in one week.

The security team is confident that, with the addition of source code analysis to the

review process, they are now finding 100% of the issues in the categories they deem

critical (such as cross-site scripting). The previous manual inspection process did not

allow them to review every line of code, leaving open the possibility that some critical

defects were being overlooked.

Development teams are also using static analysis to perform periodic checks before

submitting their code to the security team. Several hundred programmers have been

equipped with the tool. The result is that the security team now finds critical defects

only rarely. (In the past, finding critical defects was the norm.) This has reduced the

number of schedule slips and the number of “risk-managed deployments” in which the

organization is forced to field an application with known vulnerabilities. The reduction

in critical defects also significantly improves policy enforcement because when a secu-

rity problem does surface, it now receives appropriate attention.

As a side benefit, development teams report that they routinely find non-security

defects as a result of their code review efforts.

Adoption Anxiety

All the software development organizations we’ve ever seen are at least a
little bit chaotic, and changing the behavior of a chaotic system is no mean
feat. At first blush, adopting a static analysis tool might not seem like much
of a problem. Get the tool, run the tool, fix the problems, and you’re done.
Right? Wrong. It’s unrealistic to expect attitudes about security to change
just because you drop off a new tool. Adoption is not as easy as leaving a
screaming baby on the doorstep. Dropping off the tool and waving goodbye
will lead to objections like the ones in Table 3.1.

Table 3.1 Commonly voiced objections to static analysis and their true meaning.

Objection Translation

"It takes too long to run." "I think security is optional, and since it requires
effort, I don't want to do it."

"It has too many false positives." "I think security is optional, and since it requires
effort, I don't want to do it."

"It doesn't fit in to the way I work." "I think security is optional, and since it requires
effort, I don't want to do it."

In our experience, three big questions must be answered to adopt a tool
successfully. An organization’s size, along with the style and maturity of its
development processes, all play heavily into the answers to these questions.
None of them has a one-size-fits-all answer, so we consider the range of
likely answers to each. The three questions are:

• Who runs the tool?
• When is the tool run?
• What happens to the results?

Who Runs the Tool?

Ideally, it wouldn’t matter who actually runs the tool, but a number of prac-
tical considerations make it an important question, such as access to the
code. Many organizations have two obvious choices: the security team or
the programmers.

58 Chapter 3 Static Analysis as Part of the Code Review Process

The Security Team
For this to work, you must ensure that your security team has the right skill
set—in short, you want security folks with software development chops.
Even if you plan to target programmers as the main consumers of the infor-
mation generated by the tool, having the security team participate is a huge
asset. The team brings risk management experience to the table and can
often look at big-picture security concerns, too. But the security team didn’t
write the code, so team members won’t have as much insight into it as the
developers who did. It’s tough for the security team to go through the code
alone. In fact, it can be tricky to even get the security team set up so that
they can compile the code. (If the security team isn’t comfortable compiling
other people’s code, you’re barking up the wrong tree.) It helps if you
already have a process in place for the security team to give code-level feed-
back to programmers.

The Programmers
Programmers possess the best knowledge about how their code works.
Combine this with the vulnerability details provided by a tool, and you’ve
got a good reason to allow development to run the operation. On the flip
side, programmers are always under pressure to build a product on a dead-
line. It’s also likely that, even with training, they won’t have the same level
of security knowledge or expertise as members of the security team. If the
programmers will run the tool, make sure they have time built into their
schedule for it, and make sure they have been through enough security
training that they’ll be effective at the job. In our experience, not all pro-
grammers will become tool jockeys. Designate a senior member of each
team to be responsible for running the tool, making sure the results are
used appropriately, and answering tool-related questions from the rest of
the team.

All of the Above
A third option is to have programmers run the tools in a mode that pro-
duces only high-confidence results, and use the security team to conduct
more thorough but less frequent reviews. This imposes less of a burden on
the programmers, while still allowing them to catch some of their own mis-
takes. It also encourages interaction between the security team and the
development team. No question about it, joint teams work best. Every so

3.2 Adding Security Review to an Existing Development Process 59

often, buy some pizzas and have the development team and the security
team sit down and run the tool together. Call it eXtreme Security, if you like.

When Is the Tool Run?

More than anything else, deciding when the tool will be run determines the
way the organization approaches security review. Many possible answers
exist, but the three we see most often are these: while the code is being writ-
ten, at build time, and at major milestones. The right answer depends on
how the analysis results will be consumed and how much time it takes to
run the tool.

While the Code Is Being Written
Studies too numerous to mention have shown that the cost of fixing a bug
increases over time, so it makes sense to check new code promptly. One way
to accomplish this is to integrate the source code analysis tool into the pro-
grammer’s development environment so that the programmer can run on-
demand analysis and gain expertise with the tool over time. An alternate
method is to integrate scanning into the code check-in process, thereby cen-
tralizing control of the analysis. (This approach costs the programmers in
terms of analysis freedom, but it’s useful when desktop integration isn’t fea-
sible.) If programmers will run the tool a lot, the tool needs to be fast and
easy to use. For large projects, that might mean asking each developer to
analyze only his or her portion of the code and then running an analysis of
the full program at build time or at major milestones.

At Build Time
For most organizations, software projects have a well-defined build process,
usually with regularly scheduled builds. Performing analysis at build time
gives code reviewers a reliable report to use for direct remediation, as well
as a baseline for further manual code inspection. Also, by using builds as a
timeline for source analysis, you create a recurring, consistent measure of
the entire project, which provides perfect input for analysis-driven metrics.
This is a great way to get information to feed a training program.

At Major Milestones
Organizations that rely on heavier-weight processes have checkpoints at
project milestones, generally near the end of a development cycle or at some
large interval during development. These checkpoints sometimes include

60 Chapter 3 Static Analysis as Part of the Code Review Process

security-related tasks such as a design review or a penetration test. Logically
extending this concept, checkpoints seem like a natural place to use a static
analysis tool. The down side to this approach is that programmers might
put off thinking about security until the milestone is upon them, at which
point other milestone obligations can push security off to the sidelines. If
you’re going to wait for milestones to use static analysis, make sure you
build some teeth into the process. The consequences for ignoring security
need to be immediately obvious and known to all ahead of time.

What Happens to the Results?

When people think through the tool adoption process, they sometimes for-
get that most of the work comes after the tool is run. It’s important to decide
ahead of time how the actual code review will be performed.

Output Feeds a Release Gate
The security team processes and prioritizes the tool’s output as part of a
checkpoint at a project milestone. The development team receives the priori-
tized results along with the security team’s recommendations about what
needs to be fixed. The development team then makes decisions about which
problems to fix and which to classify as “accepted risks.” (Development
teams sometimes use the results from a penetration test the same way.) The
security team should review the development team’s decisions and escalate
cases where it appears that the development team is taking on more risk
than it should. If this type of review can block a project from reaching a
milestone, the release gate has real teeth. If programmers can simply ignore
the results, they will have no motivation to make changes.

The gate model is a weak approach to security for the same reason that
penetration testing is a weak approach to security: It’s reactive. Even though
the release gate is not a good long-term solution, it can be an effective step-
ping stone. The hope is that the programmers will eventually get tired of
having their releases waylaid by the security team and decide to take a more
proactive approach.

A Central Authority Doles Out Individual Results
A core group of tool users can look at the reported problems for one or
more projects and pick the individual issues to send to the programmers
responsible for the code in question. In such cases, the static analysis tools
should report everything it can; the objective is to leave no stone unturned.

3.2 Adding Security Review to an Existing Development Process 61

False positives are less of a concern because a skilled analyst processes the
results prior to the final report. With this model, the core group of tool users
becomes skilled with the tools in short order and becomes adept at going
through large numbers of results.

A Central Authority Sets Pinpoint Focus
Because of the large number of projects that might exist in an organization,
a central distribution approach to results management can become con-
strained by the number of people reviewing results, even if reviewers are
quite efficient. However, it is not unusual for a large fraction of the acute
security pain to be clustered tightly around just a small number of types of
issues. With this scenario, the project team will limit the tool to a small
number of specific problem types, which can grow or change over time
according to the risks the organization faces. Ultimately, defining a set of in-
scope problem types works well as a centrally managed policy, standard, or
set of guidelines. It should change only as fast as the development team can
adapt and account for all the problems already in scope. On the whole, this
approach gives people the opportunity to become experts incrementally
through hands-on experience with the tool over time.

Start Small, Ratchet Up

Security tools tend to come preconfigured to detect as much as they possibly
can. This is really good if you’re trying to figure out what a tool is capable
of detecting, but it can be overwhelming if you’re assigned the task of going
through every issue. No matter how you answer the adoption questions, our
advice here is the same: Start small. Turn off most of the things the tool
detects and concentrate on a narrow range of important and well-under-
stood problems. Broaden out only when there’s a process in place for using
the tool and the initial batch of problems is under control. No matter what
you do, a large body of existing code won’t become perfect overnight. The
people in your organization will thank you for helping them make some pri-
oritization decisions.

3.3 Static Analysis Metrics

Metrics derived from static analysis results are useful for prioritizing reme-
diation efforts, allocating resources among multiple projects, and getting
feedback on the effectiveness of the security process. Ideally, one could use

62 Chapter 3 Static Analysis as Part of the Code Review Process

metrics derived from static analysis results to help quantify the amount of
risk associated with a piece of code, but using tools to measure risk is tricky.
The most obvious problem is the unshakable presence of false positives and
false negatives, but it is possible to compensate for them. By manually audit-
ing enough results, a security team can predict the rate at which false posi-
tives and false negatives occur for a given project and extrapolate the
number of true positives from a set of raw results. A deeper problem with
using static analysis to quantify risk is that there is no good way to sum up
the risk posed by a set of vulnerabilities. Are two buffer overflows twice as
risky as a single buffer overflow? What about ten? Code-level vulnerabilities
identified by tools simply do not sum into an accurate portrayal of risk. See
the sidebar “The Density Deception” to understand why.

Instead of trying to use static analysis output to directly quantify risk,
use it as a tactical way to focus security efforts and as an indirect measure of
the process used to create the code.

The Density Deception

In the quality assurance realm, it’s normal to compute the defect density for a piece of

code by dividing the number of known bugs by the number of lines of code. Defect

density is often used as a measure of quality. It might seem intuitive that one could use

static analysis output to compute a “vulnerability density” to measure the amount of

risk posed by the code. It doesn’t work. We use two short example programs with some

blatant vulnerabilities to explain why. First up is a straight-line program:

1 /* This program computes Body Mass Index (BMI). */
2 int main(int argc, char** argv)
3 {
4 char heightString[12];
5 char weightString[12];
6 int height, weight;
7 float bmi;
8
9 printf("Enter your height in inches: ");
10 gets(heightString);
11 printf("Enter your weight in pounds: ");
12 gets(weightString);
13 height = atoi(heightString);
14 weight = atoi(weightString);
15 bmi = ((float)weight/((float)height*height)) * 703.0;
16
17 printf("\nBody mass index is %2.2f\n\n", bmi);
18 }

3.3 Static Analysis Metrics 63

Continues

64 Chapter 3 Static Analysis as Part of the Code Review Process

The program has 18 lines, and any static analysis tool will point out two glaring

buffer overflow vulnerabilities: the calls to gets() on lines 10 and 12. Divide 2 by 18

for a vulnerability density of 0.111. Now consider another program that performs

exactly the same computation:

1 /* This program computes Body Mass Index (BMI). */
2 int main(int argc, char** argv)
3 {
4 int height, weight;
5 float bmi;
6
7 height = getNumber("Enter your height in inches");
8 weight = getNumber("Enter your weight in pounds");
9 bmi = ((float)weight/((float)height*height)) * 703.0;
10
11 printf("\nBody mass index is %2.2f\n\n", bmi);
12 }
13
14 int getNumber(char* prompt) {
15 char buf[12];
16 printf("%s: ", prompt);
17 return atoi(gets(buf));
18 }

This program calls gets(), too, but it uses a separate function to do it. The result

is that a static analysis tool will report only one vulnerability (the call to gets() on line

17). Divide 1 by 18 for a vulnerability density of 0.056. Whoa. The second program is

just as vulnerable as the first, but its vulnerability density is 50% smaller! The moral to

the story is that the way the program is written has a big impact on the vulnerability

density. This makes vulnerability density completely meaningless when it comes to

quantifying risk. (Stay tuned. Even though vulnerability density is terrible in this context,

the next section describes a legitimate use for it.)

Metrics for Tactical Focus

Many simple metrics can be derived from static analysis results. Here we
look at the following:

• Measuring vulnerability density
• Comparing projects by severity
• Breaking down results by category
• Monitoring trends

Continued

Measuring Vulnerability Density
We’ve already thrown vulnerability density under the bus, so what more
is there to talk about? Dividing the number of static analysis results by the
number of lines of code is an awful way to measure risk, but it’s a good way
to measure the amount of work required to do a complete review. Compar-
ing vulnerability density across different modules or different projects helps
formulate review priorities. Track issue density over time to gain insight into
whether tool output is being taken into consideration.

Comparing Projects by Severity
Static analysis results can be applied for project comparison purposes.
Figure 3.3 shows a comparison between two modules, with the source code
analysis results grouped by severity. The graph suggests a plan of action:
Check out the critical issues for the first module, and then move on to the
high-severity issues for the second.

Comparing projects side by side can help people understand how much
work they have in front of them and how they compare to their peers.
When you present project comparisons, name names. Point fingers. Some-
times programmers need a little help accepting responsibility for their code.
Help them.

Figure 3.3 Source code analysis results broken down by severity for two subprojects.

0

10

20

30

40

50

Critical High Medium Low

Orion Project
Tilde Project

Is
su

es

Severity

3.3 Static Analysis Metrics 65

Breaking Down Results by Category
Figure 3.4 presents results for a single project grouped by category. The pie
chart gives a rough idea about the amount of remediation effort required
to address each type of issue. It also suggests that log forging and cross-site
scripting are good topics for an upcoming training class.

Figure 3.4 Source code analysis results broken down by category.

Source code analysis results can also point out trends over time. Teams
that are focused on security will decrease the number of static analysis find-
ings in their code. A sharp increase in the number of issues found deserves
attention. Figure 3.5 shows the number of issues found during a series of
nightly builds. For this particular project, the number of issues found on
February 2 spikes because the development group has just taken over a
module from a group that has not been focused on security.

Figure 3.5 Source code analysis results from a series of nightly builds. The spike in issues
on February 2 reflects the incorporation of a module originally written by a different team.

29-Jan 30-Jan 31-Jan 1-Feb 2-Feb 3-Feb 4-Feb
0

10

20

30

40

50

Is
su

es

Date

Cross-Site Scripting (12)

Race Condition (2)
Privacy Violation (3)

Log Forging (12)

Password Management (1)

66 Chapter 3 Static Analysis as Part of the Code Review Process

Process Metrics

The very presence of some types of issues can serve as an early indicator of
more widespread security shortcomings [Epstein, 2006]. Determining the
kinds of issues that serve as bellwether indicators requires some experience
with the particular kind of software being examined. In our experience, a
large number of string-related buffer overflow issues is a sign of trouble for
programs written in C.

More sophisticated metrics leverage the capacity of the source code
analyzer to give the same issue the same identifier across different builds.
(See Chapter 4, “Static Analysis Internals,” for more information on issue
identifiers.) By following the same issue over time and associating it with
the feedback provided by a human auditor, the source code analyzer can
provide insight into the evolution of the project. For example, static analy-
sis results can reveal the way a development team responds to security
vulnerabilities. After an auditor identifies a vulnerability, how long, on
average, does it take for the programmers to make a fix? We call this vul-
nerability dwell. Figure 3.6 shows a project in which the programmers fix
critical vulnerabilities within two days and take progressively longer to
address less severe problems.

Figure 3.6 Vulnerability dwell as a function of severity. When a vulnerability is identified,
vulnerability dwell measures how long it remains in the code. (The x-axis uses a log scale.)

Vulnerability Dwell

60

25

4

2

100101

Low

Medium

High

Critical

S
ev

er
it

y

Days

3.3 Static Analysis Metrics 67

Static analysis results can also help a security team decide when it’s time
to audit a piece of code. The rate of auditing should keep pace with the rate
of development. Better yet, it should keep pace with the rate at which poten-
tial security issues are introduced into the code. By tracking individual issues
over time, static analysis results can show a security team how many unre-
viewed issues a project contains. Figure 3.7 presents a typical graph. At the
point the project is first reviewed, audit coverage goes to 100%. Then, as
the code continues to evolve, the audit coverage decays until the project is
audited again.

Another view of this same data gives a more comprehensive view of
the project. An audit history shows the total number of results, number of
results reviewed, and number of vulnerabilities identified in each build.
This view takes into account not just the work of the code reviewers, but
the effect the programmers have on the project. Figure 3.8 shows results
over roughly one month of nightly builds. At the same time the code
review is taking place, development is in full swing, so the issues in the
code continue to change. As the auditors work, they report vulnerabilities
(shown in black).

Figure 3.7 Audit coverage over time. After all static analysis results are reviewed, the
code continues to evolve and the percentage of reviewed issues begins to decline.

1-
Feb

1-
M

ar

1-
Apr

0%

50%

100%

1-
Ja

n

Date

P
er

ce
n

t
Is

su
es

 R
ev

ie
w

ed

68 Chapter 3 Static Analysis as Part of the Code Review Process

Figure 3.8 Audit history: the total number of static analysis results, the number of
reviewed results, and the number of identified vulnerabilities present in the project.

Around build 14, the auditors have looked at all the results, so the total
number of results is the same as the number reviewed. Development work is
not yet complete, though, and soon the project again contains unreviewed
results. As the programmers respond to some of the vulnerabilities identified
by the audit team, the number of results begins to decrease and some of the
identified vulnerabilities are fixed. At the far-right side of the graph, the
growth in the number of reviewed results indicates that reviewers are begin-
ning to look at the project again.

Summary

Building secure systems takes effort, especially for organizations that aren’t
used to paying much attention to security. Code review should be part of the
software security process. When used as part of code review, static analysis
tools can help codify best practices, catch common mistakes, and generally
make the security process more efficient and consistent. But to achieve these
benefits, an organization must have a well-defined code review process. At a
high level, the process consists of four steps: defining goals, running tools,
reviewing the code, and making fixes. One symptom of an ineffective
process is a frequent descent into a debate about exploitability.

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Total Issues Found

Issues Reviewed

Vulnerabilities

Build Number

Is
su

es
Summary 69

To incorporate static analysis into the existing development process, an
organization needs a tool adoption plan. The plan should lay out who will
run the tool, when they’ll run it, and what will happen to the results. Static
analysis tools are process agnostic, but the path to tool adoption is not.
Take style and culture into account as you develop an adoption plan.

By tracking and measuring the security activities adopted in the devel-
opment process, an organization can begin to sharpen its software security
focus. The data produced by source code analysis tools can be useful for
this purpose, giving insight into the kinds of problems present in the code,
whether code review is taking place, and whether the results of the review
are being acted upon in a timely fashion.

70 Chapter 3 Static Analysis as Part of the Code Review Process

Symbols

& (AND) operator, 412
- - (pair of hyphens), 162
/dev/random, 403
| (OR) operator, 412

A

A1 certification, 31
ABM (Analyzer Benchmark), 41
abstract interpretation, local

analysis, 89
abstract syntax, building program

models, 74-75
access

back-door code, debugging, 290
files, race conditions, 440-446
passwords, exposing in source

code, 389-391
Action class, 337
ActionForm objects, 337, 340
actions

logging, 288
mapping, 337

adding security reviews to existing
development processes,
56-62

Address Space Layout Random-
ization (ASLR), 259

Adobe Reader, external entity
attacks, 359-360

adoption anxiety, adding security
reviews to existing develop-
ment processes, 58-62

programmers, 59
security team, 59

AES (Advanced Encryption
Stanard), 408

Ajax programming, JavaScript
hijacking. See JavaScript
hijacking

algorithms
AES, 408
analysis algorithms. See analysis

algorithms, 83
cryptography, 407
implementing, 409-412

selecting, 407-409
passwords, encryption, 392-395
RSA, 408
SHA, 408
SHA1PRNG, 399
work-queue algorithm, 92

alias analysis, 82

Index

559

_alloca() function, 271
allocation, buffer-allocation

strategies, 179-180
dynamic, 182-185
static, 180-181

ALWAYS_TERMINATE flag, 217
analysis

algorithms
identifying home-grown, 412
selecting, 409

compilers, optimizing, 418
cookies, 301-302
cross-site scripting, input/output

validation, 318
debugging code, 290
enforcing NULL after free(),

186
entrophy, 405-407
error messages, auditing, 326
exception handling, 275
exceptions, catching, 278
Fortify Source Code Analyzer

(SCA)
applications, 478-479,

520-521
Audit Workbench, 479-487,

521-529
auditing, 487-491, 529-531
C, 514-515
customizing rules, 491-499,

531-537
installing, 460-461, 504-505
Java, 471-472
results, 472-473, 475-478,

515-516, 518-520
functions, banning, 201-203
logging, 287
passwords

formatting strong, 396

hard-coding, 390-391
managing, 395-396

privacy violations, 387-388
privileged programs, 452

open() method, 455
PRNGs, 404
random numbers, seeding

SecureRandom, 400
resources, managing, 285
session identifiers, formatting,

331
sessions, logout links, 333
strings, libraries, 232-233
taint propagation, 217
unchecked return values, 268
Validators, 345

analysis algorithms, 83
checking assertions, 84-85
global analysis, 91-93
local analysis, 89

abstract interpretation, 89
model checking, 90
predicate transformers, 89-90

naïve local analysis, 85-89
research tools, 94-95

analysis—repost under static
analysis, 268

Analyzer Benchmark (ABM), 41
analyze_function(), 93
analyze_program(), 93
analyzing source code versus

compiled code, 42-45
AND, 88
AND (&) operator, 412
Anderson, Ross, 389
annotations, rules, 99-100
answers to exercises

C, 537-539
Java, 499-501

560 Index

Apache
configuration files, validating,

122
fix for buffer overflow, 123

API, security-enhanced API, 144
API abuse, 16
Apple, OS X (software updates

that trust too much), 129
applications

Fortify Source Code Analyzer
(SCA)

C, 520-521
Java, 478-479

privacy
managing, 380-383
violations, 383-388

Web
Struts Web Application

Framework, 336-346
validating input/output,

298-308, 310-318
applying

Audit Workbench
C, 529-531
Java, 487-491

POST requests, 319-321
secrets, 416
statistical PRNGs, 398-407
Validators, 338-341

arc injection, 179
Arce, Ivan, 10
ARCHER, 94
architectural risk analysis, 13
architecture, JCA, 410
arguments, command-line, 426
ASLR (Address Space Layout

Randomization), 259
assertions, checking with analysis

algorithms, 84-85

assumptions, detecting and
preventing integer overflow,
243

attack surfaces, identifying, 120
attacks

buffer overflow, 175. See also
buffer overflow

cross-site request forging, 327
cryogenic sleep, 443
external entity attacks, Adobe

Reader, 359-360
format string, 228
horizontal privilege escalation,

421
privilege-escalation, 439-446,

449-452, 454-455
session fixation, 334
vertical privilege escalation, 421

Audit Workbench, 106
C

applying, 529-531
reviewing audits, 505-512

Java
applying, 487-491
Fortify Source Code Analyzer

(SCA), 479-487, 521-529
WebGoat Version 3.7, reviewing

audits, 461-468
auditing

C
reviewing, 505-512
source code manually, 513-514

cookies, hidden fields, 301-302
error messages, 326
Java, source code manually,

469, 471
security

C, 529-531
Java, 487-491

Index 561

audits, 67-69
authentication, sessions, 333-336
avoiding blacklisting, input vali-

dation, 137-139

B

back-door access code, debugging,
290

backup files, debugging, 293
Baker, Jeffrey, 303
banks, phishing schemes, 316-318
banning dangerous functions,

201-203
Basic Multilingual Plane (BMP),

220
benchmarks for static analysis

tools, 40-41
Berkeley fingerd daemon, 190
black-box texts, 10
blacklisting, 133

input validation, 137-139
blacklisting, preventing cross-site

scripting, 312
Blaster virus, 176
blocks, managing exceptions,

273-274
BMP (Basic Multilingual Plane),

220
BOON, 94
bound numeric input, 157-160
bounded operations, functions,

195-201, 203, 205-213
browsers. See interfaces, Web

browsers
buffer overflow

allocation strategies, 179-185
Apache fix, 123

interger overflows, 235
Java, JNI (Java Native Inter-

face), 254-255
overview of, 176-178
runtime protection, 251

dynamic buffer overflow
protections, 258-263

dynamic protection bench-
mark results, 263

safe programming languages,
251-253

safer c dialects, 255-257
sizes, tracking, 186-188
strings, 189

character sets, 218-224
format errors, 224-228
functions, 189-201, 203,

205-213
libraries, 229-233
managing null terminators,

213-218
bug finding, problem solving with

static analysis, 32-33
Building Secure Software, 444

C

C
answers to exercises, 537-539
Audit Workbench, 521-529

reviewing audits, 505-512
buffer overflow, 176-178

allocation strategies, 179-185
tracking sizes, 186-188

Fortify SCA
applications, 520-521
customizing rules, 531-537
results, 515-520

562 Index

running, 514-515
Fortify Source Code Analysis,

installing, 504-505
gets(), 155
memory, unlocking values, 415
random numbers, 401-407
regular expressions, 136-137
resource leaks, preventing,

278-282
return values, checking, 266-267
runtime protection, buffer over-

flows, 255-257
secrets, deleting, 416
security, auditing, 529-531
source code, auditing manually,

513-514
strings, 189

character sets, 218-224
format errors, 224-228
functions, 189-201, 203,

205-213
libraries, 229-233
managing null terminators,

213-218
temporary files, security,

446-451
C++

buffer overflow, 176-178
allocation strategies, 179-185
tracking sizes, 186-188

gets(), 156
parameterized SQL, 164-167
random numbers, 401-407
regular expressions, 136-137
resource leaks, preventing,

278-282
secrets, deleting, 416

strings, 190. See also strings
cache, poisoning, 314
Carmargo, Luiz, 199
Cashdollar, 200
catching, exceptions, 274-275
CCured, 255
centralized logging, 286-289

time-stamp log entries, 287
CFG (context-free grammar), 73
characters, 218, 220

buffer overflow vulnerabilities,
222-224

cross-site scripting, 312
checked exceptions, 271. See also

exceptions
maintaning, 276-278

checking returned values
in C, 266-267
in Java, 269-270

Children’s Online Protection Act
(COPPA), 382

chroot() function, 433-434
CL, compiler warnings (integer

overflow), 244
ClassCastException, 274
classes

Action, 337
Exception, 276
File_handle, 281
java.io.File, 446
strings, 229-233

classifying vulnerabilities, 14-15
cleanse rules, 102
clear-text passwords, storing,

391-396
clear-text passwords. See also

passwords, 391

Index 563

code
coupon, 399
debugging, 286, 289-292

backup files, 293
Easter eggs, 293

logging, 286
centralized, 286-289
time-stamp log entries, 287

principle of least privilege,
423-432

random numbers, 397
C/C++, 401-407
Java, 398-400

code points, 218
code quality, Seven Pernicious

Kingdoms, 18
Code Red virus, 176
code review, performing, 48

review cycle, 48-53
steering clear of exploitability

debates, 54-55
code values, 219
codes

exceptions
catching, 274-275
maintaining checked, 276-278
managing, 271
top levels, 272-273
try/finally syntax, 273-274

return, handling errors with,
266-270

collaborative auditing, 52
Comair Airlines, integer overflow,

238-239
command injection

preventing metacharacter
vulnerabilities, 168-169

vulnerabilties, 450

command-line arguments, 426
command-line parameters, input

validation, 124-125
Common Vulnerabilities and

Exposures (CVE), 176
comparing projects by severity, 65
compile-time instrumentation,

runtime protection (buffer
overflows), 259-261

compiled code, analyzing (versus
analyzing source code),
42-45

compiler warnings, detecting and
preventing integer overflow,
244-245

compilers, optimizing, 417-418
condientiality, loggers (creating to

identify), 386
conditions

privileged programs, handling
unexpected, 436-438

race, file access, 440-446
confidence, 107
confidentiality, 380. See also

privacy
configuration

files, storing clear-text pass-
words, 391-396

Validators, 338
configuration files, input valida-

tion, 122-123
configuration information, 38
configuration rules, print, 104
connections, databases (hard-

coding passwords), 389
constraint solvers, 96
context sensitivity, 83
context-free grammar (CFG), 73
context-specific defects, 14

564 Index

control flow, building program
models, 77-80

control flow graphs, 77
cookies

auditing, 301-302
session identifiers, 328-331
sessions, 327-328

COPPA (Children’s Online Protec-
tion Act), 382

copying secrets, preventing,
418-419

counterexample, 29
coupon codes, 399, 402
random numbers, 403
Coverity, 33
CQual, 94
cross-site request forging attacks,

327
cross-site scripting vulnerabilties,

303-308, 310-318
cryogenic sleep attacks, 443
CryptGenRandom() method, 401
Crypto++, 411
CryptoAPI, 402, 411
cryptographic PRNGs, 397. See

also PRNGs
cryptography

algorithms, 407
implementing, 409-412
selecting, 407, 409

random numbers, 397
C/C++, 401-407
Java, 398-400

custom rules, 40
customization, rules (Fortify

SCA), 491-499, 531-537
CVE (Common Vulnerabilities

and Exposures), 176
Cyclone, 256

D

daemons, Berkeley fingerd, 190
data, input validation (rejecting

bad data), 143-144
dataflow, building program

models, 80-81
database queries, input validation,

125-127
databases, passwords (hard-

coding), 389
debit cards, 384
debugging, 286, 289-292

backup files, 293
Easter eggs, 293

decodeFile() function, 281
decryption, passwords, 392-395
decryptPassword() method, 396
defect density, 63-64
defensive programming, 4-6
deleting secrets, 416-418
density, 63-64

vulnerability density, measuring,
65

descriptors, standard file, 452-454
detecting integer overflow

bad assumptions, 243
compiler warnings, 244-245
integer conversion rules, 245
restricting numeric user input,

243
sanity checks, 244
unsigned types, 242-243
verifying conditions for opera-

tors that can overflow,
246-249

development processes, adding
security reviews to, 56, 62

adoption anxiety, 58-62

Index 565

Direct Web Remoting (DWR),
369

disabling signals, 437-438
doAlloc(), 159
document queries, XML, 362-366
doGet() method, 272
doPost() method, 272
double-free errors, 185
duplication, secrets (preventing),

418-419
DWR (Direct Web Remoting),

369
dynamic buffer allocation,

182-185
dynamic buffer overflow protec-

tions, runtime protection
(buffer overflows), 258-263

dynamic protection benchmark
results, runtime protection
(buffer overflows), 263

E

E*Trade, 303
e-commerce

random numbers, 402-403
SecureRandom, 399

e-commerce Web sites, phishing
schemes, 316-318

Easter eggs, 293
Eau Claire tool, 94
effective group IDs, 428
effective user IDs, 427
EJBs (Enterprise Java Beans),

385
elevating privileges, disabling

signals, 437-438
eliminating unwanted results,

108-109

encapsulation, Seven Pernicious
Kingdoms, 18

encoding
characters, 218-220

buffer overflow vulnerabili-
ties, 222-224

preventing cross-site scripting,
312

UTF, 220
encryption

algorithms, implementing,
409-412

passwords, 392-395
enforcing

session idle timeouts, 331-333
trust boundaries, 131-132

enforcing NULL after free(), 186
EnterCriticalSection() function,

272
Enterprise Java Beans (EJBs),

385
entrophy, 405-407
entropy, 397
entry points, finding, 370
entry-point rules, 102
environments

privileged programs, 426
Seven Pernicious Kingdoms, 18

Epstein, Jeremy, 388
equivalence checking, 28
erasing passwords, 416
erasing secrets, 416-418
error handling, Seven Pernicious

Kingdoms, 18
errors

double-free, 185
HTTP, handling, 322, 325-326
messages, auditing, 326

566 Index

privileged programs, checking,
436

recovering from, 437
with return codes, handling,

266-270
sign extension errors, integer

overflow, 239-241
signed-to-unsigned conversions,

integer overflow, 241-242
strings, format, 224-228
truncation, 210-213

integer overflow, 239-241
Web Services, opportunities for

old errors, 370
wrap-around errors, integer

overflow, 236-238
escalating privilege-escalation

attacks, 439-446, 449-452,
454-455

establishing trust boundaries. See
trust boundaries

events, handling unexpected
events, 436-438

exception, IndexOutOfBoundsEx-
ception, 274

Exception class, 276
exceptions

catching, 274-275
checked, maintaining, 276-278
ClassCastException, 274
InterruptedException, 277
java.lang.Exception, 271, 274
java.lang.Throwable, 325
managing, 271

top levels, 272-273
try/finally syntax, 273-274

NullPointerException, 274
RareException, 276

RuntimeException, 276
SQLException, 388
UnknownHostException, 272

execSQL() method, 386-388
executeQuery() method, 388
exercises

Audit Workbench
reviewing WebGoat Version

3.7 audits, 461-468
C

answers to, 537-539
auditing source manually,

513-514
Fortify Source Code Analyzer

(SCA), 514-515
installing Fortify Source Code

Analysis, 504-505
reviewing audits, 505-512

Fortify Source Code Analyzer
(SCA)

applications, 478-479,
520-521

Audit Workbench, 479-487,
521-529

auditing, 487-491, 529-531
customizing rules, 491-499,

531-537
results, 472-473, 475-478,

515-520
Java

answers to, 499-501
auditing source manually,

469-471
Fortify Source Code Analyzer

(SCA), 471-472
installing Fortify Source Code

Analysis, 460-461
Exploiting Software, 176

Index 567

exploits. See also attacks
arc injection, 179
buffer overflow, 176-178

allocation strategies, 179-185
tracking sizes, 186-188

format string, 228
return-into-libc, 179

exposing passwords in source
code, 389-391

exploitability debates, steering
clear of, 54-55

ext, 88
external references, XML,

358-362

F

fake Web sites, 316. See also
phishing

false alarms, 23
false negatives, 23
false paths, 88
false positives, 23, 105
Federal Information Security

Management Act (FISMA),
382

fgets() function, 266
file systems, privileged programs,

427
filenames, unique, 447-448
files

access, race conditions, 440-446
backup, debugging, 293
configuration, storing clear-text

passwords, 391-396
standard file descriptors,

452-454
temporary, security, 446-451
unique, 448-449

filesystems
functions, TOCTOU vulnerabil-

ties, 442
privileges, restricting on,

433-435
File_handle class, 281
finally blocks, managing excep-

tions, 273-274
FindBugs, 33, 100
finding entry points, Web Services,

370
FISMA (Federal Information Secu-

rity Management Act), 382
fixation, limiting session, 334
flag functions, security-enhanced

API, 152
flags

ALWAYS_TERMINATE, 217
hard-coded passwords, 391
privayc violations, 386

flow-insensitive analysis, 89
form bean mapping, 337
formal verification, 31
formatting

session identifiers, 329-331
strings, errors, 224-228
unique filenames, 447-448

forms, validator, 337
Fortify rule, 98
Fortify Software, 34
Fortify Source Code Analyzer

(SCA)
C

applications, 520-521
Audit Workbench, 521-529
auditing, 529-531
customizing rules, 531-537
installing, 504-505
results, 515-520
running, 514-515

568 Index

Java
applications, 478-479
Audit Workbench, 479-487
auditing, 487-491
customizing rules, 491-499
installing, 460-461
results, 472-478
running, 471-472

Foundations of AJAX, 304
free() function, 185

enforcing NULL after, 186
Fujaba, 27
Fujitsu, 384
function summaries, 92
functions

banning dangerous, 201-203
chroot(), 433-434
decodeFile(), 281
EnterCriticalSection(), 272
fgets(), 266
filesystems, TOCTOU vulnera-

bilities, 442
free(), 185

enforcing NULL after, 186
GetTempFileName(), 447
Helper, sizing buffers, 188
malloc(), 185
mkstemp(), 449
read(), 269
strings

bounded operations, 195-201,
203, 205-213

gets(), 189
reimplementation, 194
scanf(), 190-191
sprintf(), 193
strcpy(), 192

strlcat(), 196
strlcpy(), 196
strncat(), 200, 208

strncpy(), 204
temporary files, security, 446,

448-449
Thread.sleep(), 277
tmpfile(), 449
_alloca(), 271

fuzzing, 11

G

Gaim instant-messaging client,
205

GCC, compiler warnings (integer
overflow), 245

generateSeed() method, 400
generating random numbers

C/C++, 401-407
Java, 398-400

generic defects, 14
Get requests, 319-321
getConnection() method, 390-391
gets() function, 155, 189
GetTempFileName() function, 447
GLBA (Gramm-Leach-Bliley Act),

382
global analysis, 83, 91-93
goals, establishing for code review,

49-50
Gramm-Leach-Bliley Act (GLBA),

382
grouping results, 106-108

H

halting problem, 35
handling

errors
HTTP, 322, 325-326
with return code, 266-270

unexpected events, 436-438

Index 569

hard-coding passwords, 389
hardened system libraries, runtime

protection (buffer over-
flows), 262

headers
HTTP, 301-302
referer, 327
User-Agent, input validation,

299-302
Health Insurance Portability and

Accountability Act
(HIPAA), 382

helper functions, sizing buffers,
188

hidden fields, Show Source option,
302

hijacking Web pages, 314
HIPAA (Health Insurance Porta-

bility and Accountability
Act), 382

holding secrets, minimizing time,
414-415

horizontal privilege escalation
attacks, 421

Howard, Michael, 13, 52
HTTP

headers, 301-302
requests, validating, 298-299,

301-308, 310-318
responses, splitting, 314-315
security, 319

applying POST, 319-321
handling errors, 322, 325-326
maintaining session state,

328-336
ordering requests, 322-323
request provenance, 327-328

traffic sniffers, 302
Huseby, Sverre H., 359-360

I

identifiers
random request, 328
session, 328-331

identifying attack surfaces, 120
identities, phishing, 316-318
IDEs (integrated development

environments), 27
idle timeouts, enforcing session,

331-333
image-display software, vulnera-

bilities, 8
impersonating servers, 129
implementation, algorithms,

409-412
inbound passwords, 388
IndexOutOfBoundsException,

274
indirect selection, 133

input validation, 133-134
injection, command vulnerabili-

ties, 450-452
input

Struts Web Application Frame-
work, 336

analyzing Validators, 345
applying Validators, 338-341
configuring Validators, 338
maintaining validation logic,

343-346
validating parameters, 342

transforming, 140-141
validating, 298-299, 301-308,

310-318
input length, checking, 153-156
input validation, 119

blacklisting, 137-139
bound numeric input, 157-160

570 Index

check input length, 153-156
establishing trust boundaries,

130-131
good input validation as the

default, 144-152
mistaking usability for security,

142
rejecting bad data, 143-144
strong input validation,

133-134
validating all input, 120
validating input from all

sources, 121-122
command-line parameters,

124-125
configuration files, 122-123
database queries, 125-127
network services, 127-128

Web Services, 366-368
whitelisting, 135-136

input validation and representa-
tion, 16

installation, Fortify Source Code
Analysis

C, 504-505
Java, 460-461

integer conversion rules, detecting
and preventing integer over-
flow, 245

integer overflow, 236-237
Comair Airlines, 238-239
conversion between signed and

unsigned data types,
241-242

detecting and preventing
bad assumptions, 243
compiler warnings, 244-245
integer conversion rules, 245

restricting numberic user
input, 243

sanity checks, 244
unsigned types, 242-243
verifying conditions for opera-

tors that can overflow,
246-249

Java, 157-158
sign extension errors, 239-241
truncation errors, 239-241
user input, 250
wrap-around errors, 236-238

integer overflows, 235
integers, 236
integral user input, interger over-

flow vulnerabilities, 250
integrated development environ-

ments (IDEs), 27
interfaces, SingleThreadModel,

385
International Organization for

Standardization (ISO), 220
Internet Explorer High Encryption

Pack, 411
interprocedural analysis, 83
InterruptedException, 277
intraprocedural analysis, 83
IntSafe, 246-248
ISO (International Organization

for Standardization), 220

J

Java
answers to exercises, 499-501
Audit Workbench, 479, 481,

483-487
bounds checking, 156

Index 571

Java, continued
buffer overflows, JNI (Java

Native Interface), 254-255
cryptography, 393
Fortify SCA

applications, 478-479
customizing rules, 491-499
results, 472-478
running, 471-472

Fortify Source Code Analysis,
installing, 460-461

gets(), 156
hard-coding passwords, 389
integer overflow, 157-158
passwords, storing clear-text

passwords, 392
random numbers, 398-400
resource leaks, preventing,

283-285
return values, checking,

269-270
security, auditing, 487-491
source code, auditing manually,

469-471
Web applications

HTTP, 319-328
input/output validation, 298-

299, 301-308, 310-318
maintaining session state,

328-336
Java Cryptography Architecture

(JCA), 410
Java Cryptography Extension

(JCE), 409-410
Java Modeling Language (JML),

99
Java Native Interface (JNI),

254-255
java.io.File class, 446
java.lang.Exception, 271, 274

java.lang.Throwable, 325
java.util.logging package, 286
java.util.Random, 274
JavaScript hijacking, Web

Services, 370-375
preventing direct execution of

responses, 375-376
JavaScript Object Notation

(JSON), 371
JavaServer Pages (JSP), 43
JCA (Java Cryptography Architec-

ture), 410
JCE (Java Cryptography Exten-

sion), 409-410
JML (Java Modeling Language),

99
JNI (Java Native Interface),

254-255
JSON (JavaScript Object Nota-

tion), 371

K

keys, secret, 393-395
Klockwork, 33

L

LAPSE (Lightweight Analysis for
Program Security in
Eclipse), 94

leaks, resource (preventing),
278-285

least privilege, principle of, 423-432
lexical analysis, 72-73
libraries

hardened system libraries,
runtime protection (buffer
overflows), 262

strings, 229-233
Libsafe, 262

572 Index

Libverify, 262
lifetimes, maximum session,

331-333
limitations of static analysis, 23
limiting session fixation, 334
links, logout, 333
Linux, privileges, 423, 427-432
Lipner, Steve, 13, 48
Livshits, Benjamin, 40
local analysis, 83, 89

abstract interpretation, 89
model checking, 90
predicate transformers, 89-90

log forging, preventing meta-
character vulnerabilities,
169-172

loggers, 388
creating, 386

logging, 286
centralized, 286-289

time-stamp log entries, 287
queries, 384-385

logic, validation, 343-346
login, privileges, 428
logout links, 333
lowering, 75

M

malloc(), 159, 185
management

exceptions, 271
catching, 274-275
maintaining checked, 276-278
top levels, 272-273
try/finally syntax, 273-274

null terminators, 213-218
passwords, 395-396

formatting strong, 396
privacy, 380-383

violations, 383-385, 387-388
privileged programs, 427

applying principle of least
privilege, 427-432

handling unexpected events,
436-438

privilege-escalation attacks,
439-446, 449-452, 454-455

restricting on filesysytems,
433-435

requests, ordering, 322-323
resources, preventing leaks,

278-285
session state, 328-336
validation logic, 343-346

manual bounded operation
checks, 199

manual null-terminate, bounded
operations, 207

maps
ActionForm objects, 340
actions, 337
form bean mapping, 337

maximum session lifetimes,
331-333

McGraw, Gary, 13
measuring vulernability density, 65
memory

buffer overflow, 176-178
allocation strategies, 179-185
tracking sizes, 186-188

nonexecutable memory
segments, 258-259

secrets, 412-413
applying, 416
deleting, 416-418
minimizing time holding,

414-415
preventing duplication,

418-419

Index 573

memory safety, 251
memset() method, 417-418
messages, auditing errors, 326
metacharacters, preventing

vulnerabilities, 160-161
command injection, 168-169
log forging, 169-172
parametereized requests,

161-166
path manipulation, 167-168

methods
CryptGenRandom(), 401
decryptPassword(), 396
execSQL(), 386, 388
executeQuery(), 388
generateSeed(), 400
getConnection(), 391
memset(), 417-418
open(), 455
Random.nextInt(), 398
rand_s(), 402
realloc(), 419
RtlGenRandom(), 402
Utils.processHost(), 272

methods,doGet(), 272
methods,doPost(), 272
metrics

process metrics, 67-69
static analysis metrics, 62

breaking down results by
category, 66

comparing projects by
severity, 65

measuring vulnerability
density, 65

monitoring trends, 66
process metrics, 67-69

Microsoft Passport, debugging,
291-292

Microsoft CryptoAPI, 411
mkstemp() function, 449
model checking, local analysis, 90
model-checking rules, print, 104
Model-View-Controller (MVC)

pattern, 336
modifying memory, buffer over-

flow, 176-178
MOPS (Model Checking

Programs for Security prop-
erties), 95

Morris Worm, 176, 190
MVC (Model-View-Controller)

pattern, 336
MySpace, cross-site scripting,

309-312

N

naïve local analysis, analysis algo-
rithms, 85-89

names, unique filenames, 447-448
Nettle, 411
network services, input validation,

127-128
Nimda virus, 176
nonexecutable memory segments,

runtime protection (buffer
overflows), 258-259

NOT, 88
notation, 88
NULL, free() function (enforcing

after), 186
null terminators, managing,

213-218
NullPointerException, 274
numbers, random, 274, 397

C/C++, 401-407
Java, 398-400

574 Index

numeric user input, detecting and
preventing integer overflow,
243

O

objects, ActionForm, 337, 340
open redirects, 316-318
Open Web Application Security

Project (OWASP), 19, 461
open() method, 455
operators

AND (&), 412
OR (|), 412
sizeof, 186

optimization, compilers, 417-418
options, Show Source, 302
OR, 88
OR (|) operator, 412
Orange Book, 31
ordering requests, 322-323
Ounce Labs, 34
outbound passwords, 388

clear-text passwords, storing,
391-396

source code, exposing in,
389-391

output, validating, 298-299,
301-308, 310-318

over exposure, Web Services, 369
OWASP (Open Web Application

Security Project), 19, 461
OWASP Guide to Building Secure

Web Applications, 312

P

packages, java.util.logging, 286

parameterized requests,
preventing metacharacter
vulnerabilities, 161-166

parameters, validating, 342
parse trees, 73
parsers, standards-compliant

XML parsers, 350-352
parsing, building program models,

73-74
partial specification, 29
pass-through rules, 102
Passport, debugging, 291-292
passwords

decryption, 392-395
encryption, 392-395
erasing, 416
formatting, 396
inbound, 388
managing, 395-396
outbound, 388

exposing in source code,
389-391

storing clear-text passwords,
391-396

patches, updating passwords, 389
path manipulation, preventing

metacharacter vulnerabili-
ties, 167-168

patterns, MVC, 336
Payment Card Industry (PCI)

Data Security Standard,
382-384, 392

PCI (Payment Card Industry)
Data Security Standard,
382-384, 392

penetration tests, 10
performing code review, 48

review cycle, 48-53

Index 575

steering clear of exploitability
debates, 54-55

personal identification numbers
(PINs), 384

Petroski, Henry, 3
phishing, 304, 316-318
Phishing and Countermeasures,

316
PID (process ID), 403
PINs (personal identification

numbers), 384
Pixy, 95
pointer aliasing, building program

models, 82-83
pointers, volatile, 417
POST requests, applying, 319-321
postcondition, 105
PQL (Program Query Language),

101
Practical Cryptography, 407
precondition, 104
predicate transformers, local

analysis, 89-90
preventing

direct execution of responses,
JavaScript hijacking,
375-376

integer overflow
bad assumptions, 243
compiler warnings, 244-245
integer conversion rules, 245
restricting numeric user input,

243
sanity checks, 244
unsigned types, 242-243
verifying conditions for opera-

tors that can overflow,
246-249

metacharacter vulnerabilities,
160-161

command injection, 168-169
log forging, 169-172
parameterized requests,

161-166
path manipulation, 167-168

secret duplication, 418-419
prevention

buffer overflow
allocation strategies, 179-185
overview of, 176-178
tracking sizes, 186-188

cross-site scripting, 312-314
resource leaks, 278-285

principle of least privilege,
423-432

print, rules, 103
configuration rules, 104
model-checking rules, 104
structural rules, 104
taint-propagation rules,

104-105
privacy, 380

managing, 380-383
violations, 383-388

Privilege Separated OpenSSH
project, 433

privilege-escalation attacks,
439-440, 442-444, 446,
449-452, 454-455

privileged programs, 421-423
command-line arguments, 426
environments, 426
file systems, 427
managing, 427

applying principle of least
privilege, 427-432

576 Index

handling unexpected events,
436-438

restricting on filesystems,
433-435

principle of least privilege,
423-432

privilege-escalation attacks,
439-440, 442-444, 446,
449-452, 454-455

PRNGs (pseudo-random number
generators), 397

C/C++, generating, 401-407
Java, generating, 398-400

process ID (PID), 403
process metrics, 67-69
profiles, privileges, 424
program models, building, 72

abstract syntax, 74-75
lexical analysis, 72-73
parsing, 73-74
pointer aliasing, 82-83
semantic analysis, 76
taint propagation, 82
tracking control flow, 77-80
tracking data flow, 80-81

Program Query Language (PQL),
101

program slicing, 88
program understanding, problem

solving with static analysis,
27

program verification, problem
solving with static analysis,
28-31

programmers, adoption anxiety
(adding security reviews to
existing development
processes), 59

Programming Jakarta Struts, 2nd
Edition (italics), 336

programming languages, runtime
protection (buffer over-
flows), 251-253

programs
privacy

managing, 380-383
violations, 383-388

privleged, 421-423
applying principle of least

privilege, 427-432
command-line arguments,

426
environments, 426
file systems, 427
handling unexpected events,

436-438
managing, 427
principle of least privilege,

423-432
privilege-escalation attacks,

439-440, 442-444, 446,
449-452, 454-455

restricting on filesystems,
433-435

projects, comparing by severity,
65

propagation, taint, 387-388
property checking, problem

solving with static analysis,
28-31

ProPolice, 259
protecting private data, 382. See

also privacy
protection, Web browsers,

303-308, 310-318

Index 577

provenance, requests, 327-328
pseudo-random number genera-

tors. See PRNGs
publicy vetted algorithms, imple-

menting, 409-412

Q

quality, 9
testing, 9-11

queries
database queries, input valida-

tion, 125-127
document queries, XML,

362-366
logging, 384-385
privacy violations, 388

R

race conditions, file access,
440-446

RAII (Resource Acquisition Is
Initialization), 281

random numbers, 274, 397
C/C++, 401-407
Java, 398-400

random request identifiers, 328
Random.nextInt() method, 398
rand_s() method, 402
RareException, 276
read() function, 269
readlink(), 146-149
real group IDs, 428
real user IDs, 427
realloc() method, 419
reasons for not fixing bad code,

55
recovering from errors, 437

recovering passwords, 389
references, external references

(XML), 358-362
referer headers, 327
reflected cross-site scripting. 306.

See also cross-site scripting
regular expressions in C and C++,

136-137
regulation, 380
reimplementation, functions, 194
rejecting bad data, input valida-

tion, 143-144
Remote Procedure Call (RPC),

349
reporting results, 105-106

eliminating unwanted results,
108-109

grouping and sorting, 106-108
significance of results, 109-113

requests
GET, 319-321
HTTP, validating, 298-299,

301-308, 310-318
ordering, 322-323
POST, applying, 319-321
provenance, 327-328
random identifiers, 328

requirements
privacy, 380

managing, 380-383
violations, 383-388

privileges, 424
research tools, analysis algo-

rithms, 94-95
resizing buffers, 187
Resource Acquisition Is Initializa-

tion (RAII), 281

578 Index

resources, preventing leaks,
278-285

responses, HTTP (splitting),
314-315

restrictions, privileges on filesys-
tems, 433-435

results
breaking down by categories, 66
Fortify Source Code Analyzer

(SCA)
Audit Workbench, 479-487,

521-529
C, 515-520
Java, 472-478

reporting, 105-106
elmininating unwanted

results, 108-109
grouping and sorting,

106-108
significance of results,

109-113
return codes, handling errors,

266-270
return-into-libc, 179
review cycle, performing code

review, 48-53
establishing goals, 49-50
making fixes, 53
running static analysis tools,

50-51
reviewing audits, C, 505-512
Rice’s theorem, 35
Rice, Henry, 35
Rivest, Shamir, and Adleman. See

RSA algorithm
RPC (Remote Procedure Call),

349
RSA (Rivest, Shamir, and

Adleman) algorithm, 408

RtlGenRandom() method,
401-402

rule formats, 97, 100-101
annotations, 99-100
specialized rule files, 97-98

rule sets, 40
rules, 96-97

Fortify, 98
Fortify SCA, customizing,

491-497, 499, 531-537
Functions, banning, 201-203
print, 103

configuration rules, 104
model-checking rules, 104
structural rules, 104
taint-propagation rules,

104-105
rule formats, 97, 100-101

annotations, 99-100
specialized rule files, 97-98

taint propagation, 101-103
running Fortify SCA

C, 514-515
Java, 471-472

runtime protection, buffer over-
flows, 251

dynamic buffer overflow protec-
tions, 258-263

dynamic protection benchmark
results, 263

safe programming languages,
251-253

safer C dialects, 255-257
RuntimeException, 276

S

Safe Harbor Privacy Framework,
382

Index 579

SafeInt, 246
safety, bounded operations,

205-206
SAL (Standard Annotation

Language), 100
SAMATE group, 41
sanity checks, detecting and

preventing integer overflow,
244

Sasser virus, 176
SATURN, 95
saved group IDs, 428
saved user IDs, 427
SCA (Fortify Source Code

Analyzer), 98
C

applications, 520-521
Audit Workbench, 521-529
auditing, 529-531
customizing rules, 531-537
results, 515-520
running, 514-515

Java
applications, 478-479
Audit Workbench, 479-487
auditing, 487-491
customizing rules, 491-497,

499
results, 472-478
running, 471-472

scanf() function, 190-191
scripting cross-site, 303-308,

310-318
secret keys, 393-395
secrets

decryption, 392-395
encryption, 392-395

memory, 412-413
applying, 416
deleting, 416-418
minimizing time holding,

414-415
preventing duplication,

418-419
random numbers, 397

C/C++, 401-407
Java, 398-400

Secure Hash Algorithm (SHA),
408

SecureRandom, 399
security

auditing
C, 529-531
Java, 487-491

HTTP, 319
applying POST requests,

319-321
handling errors, 322-326
maintaining session state,

328-336
ordering requests, 322-323
request provenance, 327-328

input validation, 142
passwords

exposing in source code,
389-391

outbound, 388
storing clear-text passwords,

391-396
random numbers, 397

C/C++, 401-407
Java, 398-400

temporary files, 446-451
Security Engineering, 389
security features, 6-9

Seven Pernicious Kingdoms, 17

580 Index

security reviews
adding to existing development

processes, 56, 62
adoption anxiety, 58-62

examples of, 56-57
problem solving with static

analysis, 33-35
security teams, adoption anxiety

(adding security reviews to
existing development
processes), 59

security-enhanced API, 144
flag functions, 152

selection, algorithms, 407-409
semantic analysis, building

program models, 76
semantic checks, 120
Sendmail 8.10.1, privileges, 436
servers, impersonating, 129
Service-Oriented Architecture

(SOA), 349
services, network services (input

validation), 127-128
Servlet

privacy violations, 385-386
SingleThreadModel interface,

385
session fixation attacks, 334
sessions

authentication, 333-336
cookies, 327-328
maximum lifetimes, 331-333
random numbers, 397

C/C++, 401-407
Java, 398-400

state, maintaining, 328-336
setuid root, 424-426
Seven Pernicious Kingdoms,

15-16

API abuse, 16
code quality, 18
encapsulation, 18
environment, 18
error handling, 18
input validation and representa-

tion, 16
security features, 17
time and state, 17
vulnerabilities, 19

severity, 107
rules, 105

SHA (Secure Hash Algorithm),
408

SHA1PRNG algorithm, 399
The Shellcoder’s Handbook, 176
Show Source option, 302
Siegel, Aaron, 77
sign extension errors, integer over-

flow, 239-241
signals, disabling, 437-438
signed data types, integer over-

flow, 241-242
Simplify, 96
SingleThreadModel interface, 385
sink rules, 101
sizeof operator, 186
sizes, buffer (tracking), 186-188
Slammer virus, 176
SMTP daemon qwik-smtpd,

reviewing audit of, 505-512
sniffers, traffic, 302
SOA (Service-Oriented Architec-

ture), 349
software security, 4
software-development methodolo-

gies, steps of, 11-13
solving problems with static

analysis, 24

Index 581

bug finding, 32-33
program understanding, 27
program verification, 28-31
property checking, 28-31
security review, 33-35
style checking, 26-27
type checking, 24-25

sorting results, 106-108
source code, 460. See also code

analyzing, versus compiled
code, 42-45

C, auditing manually, 513-514
Fortify Source Code Analyzer

(SCA)
applications, 478-479,

520-521
Audit Workbench, 479-487,

521-529
auditing, 487-491, 529-531
C, 514-515
customizing rules, 491-499,

531-537
installing, 460-461, 504-505
Java, 471-472
results, 472-478, 515-520

Java, auditing manually,
469-471

passwords, exposing in,
389-391

Source Code Analyzer (SCA)
C

applications, 520-521
Audit Workbench, 521-529
auditing, 529-531
customizing rules, 531-537
results, 515-520
running, 514-515

Java
applications, 478-479

Audit Workbench, 479-487
auditing, 487-491
customizing rules, 491-497,

499
results, 472-478
running, 471-472

source rules, 101
specialized rule files, 97-98
Splint, 95
splitting, HTTP response,

314-315
sprintf() function, 193
SQL, parameterized SQL in C++,

164-167
SQLException, 388
SSP (Stack Smashing Protection),

259
StackGuard, 260
stacks, buffer overflow, 178
StackShield, 261
Standard Annotation Language

(SAL), 100
standard file descriptors, 452-454
starting sessions upon authentica-

tion, 333-336
state, maintaining sessions,

328-336
static analysis, 3

benchmarks, 40-41
capabilities of, 22-23
limitations of, 23
methodologies, 11-13
solving problems with, 24

bug finding, 32-33
program understanding, 27
program verification, 28-31
property checking, 28-31
security review, 33-35
style checking, 26-27

582 Index

type checking, 24-25
success criteria, 36-37

ease of use, 41-42
finding the right stuff, 40
programs, understanding,

37-38
trade-offs, 38-39

static analysis metrics, 63
breaking down results by cate-

gories, 66
comparing projects by severity,

65
measuring vulnerability density,

65
monitoring trends, 66
process metrics, 67-69

static buffer allocation, 180-181
statistical PRNGs, applying,

398-407. See also PRNGs
std::string class, 229
storage, clear-text passwords,

391-396
stored cross-site scripting, 308.

See also cross-site scripting
strategies, buffer-allocation,

179-180
dynamic, 182-185
static, 180-181

strcpy() function, 192
strcpy(), 34
string passwords, formatting, 396
strings, 189

buffer overflow, 175
functions

bounded operations, 195-203,
205-213

character sets, 218-224
format errors, 224-228
gets(), 189

managing null terminators,
213-218

reimplementation, 194
scanf(), 190-191
sprintf(), 193
strcpy(), 192

libraries, 229-233
strlcat() function, 196
strlcpy() function, 196
strncat() function, 200, 208
strncpy() function, 204
structural analysis, 76
structural rules

checking, 77
print, 104

Struts in Action, 336
Struts Web Application Frame-

work, 336
logic, maintainig validation,

343-346
parameters, validating, 342
Validator

applying, 338-341
configuring, 338
static analysis, 345

style checking, problem solving
with static analysis, 26-27

success criteria, 36-37
ease of use, 41-42
finding the right stuff, 40
programs, understanding, 37-38
trade-offs, 38-39

surrogate pairs, 219
symbolic simulation, 87
syntax checks, 120
system identifiers, 358

Index 583

T

taint flags, 103
taint propagation, 217, 387-388

building program models, 82
rules, 101-105

TCSEC (Trusted Computer
System Evaluation Criteria),
31

temporal safety properties, 29
temporary files, security, 446-451
termination, null (managing),

213-218
test, penetration tests, 10
testing, 9-11

fuzzing, 11
tests, black-box texts, 10
The Unicode Standard, 218
Thread.sleep() function, 277
throwing exceptions, checked,

276-278
time and state, Seven Pernicious

Kingdoms, 17
time-of-check, time-of-use

(TOCTOU) race conditions,
440-446

time-stamp log entires, 287
timeouts, sessions (enforcing idle),

331-333
tmpfile() function, 449
TOCTOU (time-of-check, time-

of-use) race conditions,
440-446

Tomcat Servlet Container, 274
top levels, managing exceptions,

272-273
tracking

buffer sizes, 186-188
control flow, building program

models, 77-80

data flow, building program
models, 80-81

privacy violations, 387-388
traffic, sniffers, 302
transforming input, 140-141
transitions, privilege profiles, 424
trends, monitoring, 66
truncation

errors, 210-213
integer overflow, 239-241

static buffer allocation strate-
gies, 181

trust
Apple OS X, software updates

that trust too much, 129
privileged programs, 426-427

trust boundaries
enforcing, 131-132
input validation, 130-131

TRUSTe, 387
Trusted Computer System Evalua-

tion Criteria (TCSEC), 31
try blocks, managing exceptions,

273-274
Turing, Alan, 35
type checking, problem solving

with static analysis, 24-25
type safety, 251
types, buffer overflow, 176-178

allocation strategies, 179-185
tracking sizes, 186-188

U

UAC (User Account Control), 423
UCS (Universal Character Set),

220
unchecked exceptions, 271. See

also exceptions

584 Index

undecidability, 35
unexpected events, handling,

436-438
Unicode Transformation Format

(UTF), 220
unique filenames, 447-448
unique files, 448-449
Universal Character Set (UCS),

220
UNIX, privileges, 423, 427-432
UnknownHostException, 272
unlocking values in memory, 415
unsigned data types

detecting and preventing integer
overflow, 242-243

integer overflow, 241-242
unterminated strings, 217
updating passwords, 389
usability, input validation, 142
User Account Control (UAC), 423
user input, integer overflow, 250
User-Agent headers, input valida-

tion, 299-302
UTF (Unicode Transformation

Format), 220
Utils.processHost() method, 272

V

validation
bounded string operations,

197-198
input validation

blacklisting, 137-139
bound numeric input,

157-160
check input length, 153-156
establishing trust boundaries,

130-131

good input validation as the
default, 144-152

mistaking usability for secu-
rity, 142

rejecting bad data, 143-144
strong input validation,

133-134
logic, 343-346
parameters, 342
XML, 352-357

validator forms, 337
Validators

applying, 338-341
configuring, 338
static analysis, 345

values
code, 219
memory, unlocking, 415
return

checking in C, 266-267
checking in Java, 269-270

verifying conditions for operators
that can overflow, 246-249

vertical privilege escalation
attacks, 421

viewing
filesystems, 433
hard-coded passwords, 390-391
Show Source option, 302

violations, privacy, 383-388
virtual execution environments,

runtime protection (buffer
overflows), 262

viruses, buffer overflow, 176. See
also buffer overflow

volatile pointers, 417
Von Neumann, John, 397
Vstr library, 230

Index 585

vulnerabilities
buffer overflow. See buffer over-

flow
classifying, 14-15
context-specific defects, 14
cross-site scripting, 303-308,

310-318
Easter eggs, 293
generic defects, 14
in image-display software, 8
preventing metacharacter

vulnerabilities, 160-161
command injection, 168-169
log forging, 169-172
parameterized requests,

161-166
path manipulation, 167-168

Seven Pernicious Kingdoms
API abuse, 16
code quality, 18
encapsulation, 18
environment, 18
error handling, 18
input validation and represen-

tation, 16
security features, 17
time and state, 17
vulnerabilities, 19

strings, 189
character sets, 218-224
format errors, 224-228
functions, 189-201, 203,

205-213
libraries, 229-233
managing null terminators,

213-218
temporary files, 446, 448-449

vulnerability density, measuring,
65

vulnerability dwell, 67
vulnerabilities. See also attacks

command injection, 450-452
TOCTOU, 440-446

W

Wagner, David, 176, 397
Wall Street Journal, 384
weak session identifiers, 331
weakest precondition (WP), 89
Web applications

Java
HTTP, 319-328
input/output validation,

298-299, 301-308, 310-318
maintaining session state,

328-336
Struts Web Application Frame-

work, 336
analyzing Validators, 345
applying Validators, 338-341
configuring Validators, 338
maintaining validation logic,

343-346
validating parameters, 342

Web browsers
input validation, 299-302
protecting, 303-308, 310-318
Sow Source option, 302

Web pages, hijacking, 314
Web Services, 349, 366

DWR, 369
entry points, finding, 370
input validation, 366-368
JavaScript hijacking, 371-375

586 Index

preventing direct execution of
responses, 375-376

opportunities for old errors, 370
over exposure, 369
WSDL, 368-369

Web Services Description
Language (WSDL), 368-369

Web sites, phishing, 316-318
WebGoat Version 3.7, reviewing

audits, 461-468
WebMethods, 388
WebSphere Application Server

(version 6.1), 392
whitelisting, input validation,

135-136
whole-program analysis, 92
Wilander, John, 263
Windows Vista, UAC, 423
work-queue algorithm, 92
worms

cross-site scripting, 309-312
Morris Worm, 176, 190

WP (weakest precondition), 89

wrap-around errors, integer over-
flow, 236-238

WSDL (Web Services Description
Language), 368-369

X

xg++, 95
XML (Extensible Markup

Language), 349-350
document queries, 362-366
external references, 358-362
standards-compliant XML

parsers, 350-352
validation, 352-357

XML injection, 354
XML Schema, 355
XPath injection, 362
XySSL, 411

Z

Zotob virus, 176

Index 587

	Contents
	3 Static Analysis as Part of the Code Review Process
	3.1 Performing a Code Review
	3.2 Adding Security Review to an Existing Development Process
	3.3 Static Analysis Metrics
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

