
15
Writing Code in InfoPath

Getting Started

Welcome to the first chapter in Part II! The advanced chapters are the next
steps for form designers who are comfortable with creating complex
InfoPath forms without code. As we venture into the facets of program-
ming the InfoPath platform, you’ll learn how to create even more dynamic
and sophisticated form templates than the design-mode user interface
allows. But to really take advantage of the added value these advanced
topics offer, we highly recommend that you know the material presented
in the first part of this book.

In this chapter, we’ll start by showing you how to add code to a new or
existing InfoPath form template. InfoPath supports two classes of code:
script and managed code. In this chapter, we’ll use Visual Studio 2005
Tools for Applications (VSTA) and Microsoft Script Editor (MSE), which
are the default programming environments for writing form code. Given
the prevalence and ease of use of the .NET Framework, we’ll emphasize
managed code (specifically, C#) over scripting. We’ll also cover several
options that configure the code-authoring environment.

Then we’ll introduce the InfoPath object model (OM) and tell you how
using it can enhance your form templates. Once you understand the high-
level objectives of using the OM and its event-based model, we will then
look at how to start using it in a form template. Our discussion will show
the various ways to create event handlers through the InfoPath design

729

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 729

mode. We’ll also look at the EventManager object and how it hooks up the
different types of InfoPath events.

Three groups of events belong to the InfoPath platform: form, control,
and XML events. Form events include general form actions that aren’t spe-
cific to any controls or data. Signing, saving, and submitting are all examples
of form events. Control events allow your code to run when, for example, a
user clicks a Button control when filling out the form. The last type of event
is based on the XML data behind the form: XML data events (or just XML
events or data events). There are three distinct states of XML data when
form data is changed; each state has its own event to add custom code. We’ll
learn about these states and explain when you would want to use them.

After going over XML events, we’ll give some helpful advice on work-
ing with the XPathNavigator class. An XPathNavigator, part of the
.NET Framework, uses a cursor-based approach to access and modify the
data source. If you are accustomed to working with the XmlDocument and
XmlNode classes from .NET or Microsoft XML Core Services (MSXML), or if
you’re just getting started with programming XML, this section is for you.

We’ll also look at writing script (specifically JScript), instead of man-
aged code, with InfoPath. There are certain scenarios when using script is
advantageous, for example, when programming a custom task pane. We
take a look at the pros and cons of using script later in the chapter.

Next on the docket is a sampling of OM methods and properties com-
monly found in complex, real-world form templates. To show the OM in
action, we’ll dedicate the last third of this chapter to designing and filling
out a new MOI Consulting sample form. In parallel, we’ll learn some tips
and tricks for working with InfoPath form code.

Finally, if you’re migrating from InfoPath 2003 and are accustomed to
working with its OM, there is a short learning curve to jump onto the
InfoPath 2007 bandwagon. To help in this transition, we’ve sprinkled notes
throughout this chapter when an InfoPath 2003 OM method or property has
been renamed or removed or exhibits a different behavior in InfoPath 2007.

Writing Code Behind a Form

Adding code to a new or existing InfoPath form might be a big decision in
the design process. But the steps to start writing code behind a form template
are pretty easy. The only up-front decision concerns what programming

Chapter 15: Writing Code in InfoPath730

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 730

language you prefer. Table 15.1 shows the available programming languages.
Scripting languages, including JScript and VBScript, use the 2003 OM, while
managed code can use the updated InfoPath 2007 OM. Since this book is
focused on InfoPath 2007, we’ll concentrate on the new 2007 managed OM.

Writing Code Behind a Form 731

Language InfoPath OM Version

JScript 2003 SP1

VBScript 2003 SP1

C# 2007 managed

C# (InfoPath 2003) 2003 SP1 managed

Visual Basic 2007 managed

Visual Basic (InfoPath 2003) 2003 SP1 managed

Table 15.1: Programming Languages and Available InfoPath Object Model Versions

Forms Services
Browser-enabled form templates support only the 2007 managed OM in

C# or Visual Basic.

Terminology

Talking about code “behind” a form template isn’t always very clear.

That’s because there are many different ways to say the same thing; that

is, each way is interchangeable with another. The following terms, unless

otherwise noted in the book, refer to the code included in a form template

that runs when the form is filled out:

• Form code

• Form template code

• Business logic

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 731

Settings Related to Adding Code
Before adding code, let’s choose the language in which we’ll do our pro-
gramming. The default language is Visual Basic. But if you want to choose
another language, go to the Form Options item on the Tools menu and select
the Programming category. The Programming language section, at the bottom
of the dialog shown in Figure 15.1, lists various form template program-
ming options.

Chapter 15: Writing Code in InfoPath732

Figure 15.1: Programming category in the Form Options dialog

Options available in the Programming language section includes the Form
template code language drop-down, Remove Code and Upgrade OM buttons,
and a path for C# and Visual Basic .NET projects. When code already exists
in the form, the Form template code language drop-down is unavailable, but
the Remove Code button is enabled. Clicking Remove Code opens the dialog in
Figure 15.2 so you can confirm removal.

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 732

The Upgrade OM button is available when a form template with managed
code was created with a version of InfoPath older than 2007. Upgrading
your managed form code from an older version of InfoPath is highly recom-
mended so you can take advantage of the much improved OM (which is also
the programming focus of this book!). Since the InfoPath 2007 scripting OM
is the same as older versions of InfoPath, a pre-2007 form template with
script doesn’t need upgrading. Clicking the Upgrade OM button for a tem-
plate with managed code opens the dialog shown in Figure 15.3.

Writing Code Behind a Form 733

Figure 15.2: Confirmation dialog shown before removing code

WARNING Removing Code Is a One-Way Operation

You cannot undo the action of removing form code.

TIP Removing Managed Code

If the form template has managed code, only the assembly (.dll) and
debugger (.pdb) files are removed. The Visual Studio project itself
with the source code (which is not included in the form template .xsn
file) is not deleted.

Figure 15.3: Upgrading code from a form template compatible with InfoPath 2003

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 733

When upgrading the OM, InfoPath will ask you to save your form
template (to preserve your old template with the InfoPath 2003 form code)
and then upgrade your code. All project references will be automatically
updated to use the InfoPath 2007 object model. If you look at the form code
after an upgrade, you’ll notice most of it will be in gray text, instead of
black. This is because the upgrade process essentially comments out your
code by using #if/#endif compiler directive statements. First, the entire
file’s contents (within the namespace block) is essentially duplicated but
enclosed in one large #if/#endif at the end of the file. (InfoPath uses
the InfoPathManagedObjectModel symbol for the #if conditional direc-
tive.) Next, you’ll notice that a new method called InternalStartup
replaces the old _Startup and _Shutdown methods (there is no equivalent
_Shutdown method in the 2007 OM). The InternalStartup method is
automatically populated with hookups for all of the event handlers you
had in your old form template. You’ll also see that all of the event handlers
still exist but are defined with the updated event definitions (e.g.,
field3_OnAfterChange becomes field3_Changed—we’ll learn more about
this later in the chapter) and parameters types. The code you had in each of
the original event handlers is copied into the new event handler but is
enclosed in #if/#endif compiler directives. Listing 15.1 shows the
InfoPath 2003 code; Listing 15.2 shows the same code after being upgraded
to the version 2007 OM.

Listing 15.1: InfoPath 2003 C# Form Code Before Upgrading the OM Version

// The following function handler is created by Microsoft Office

// InfoPath. Do not modify the type or number of arguments.

[InfoPathEventHandler(MatchPath="/my:myFields/my:field1",

EventType=InfoPathEventType.OnValidate)]

public void field1_OnValidate(DataDOMEvent e)

{

// Write your code here.

IXMLDOMNode field1 =

thisXDocument.DOM.selectSingleNode("/my:myFields/my:field1");

thisXDocument.UI.Alert("My foo is " + field1.text);

}

Chapter 15: Writing Code in InfoPath734

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 734

Listing 15.2: Form Code from Listing 15.1 After Upgrading to the InfoPath 2007 OM Version

public void field1_Validating(object sender, XmlValidatingEventArgs e)

{

#if InfoPathManagedObjectModel

// Write your code here.

IXMLDOMNode field1 =

thisXDocument.DOM.selectSingleNode("/my:myFields/my:field1");

thisXDocument.UI.Alert("My foo is " + field1.text);

#endif

}

Writing Code Behind a Form 735

NOTE Legacy: Hooking Up Events in Form Code

InfoPath 2003 relied on a C# attribute (specifically, the InfoPath
EventHandler attribute) to decorate a method as an event handler.
This syntax was changed in InfoPath 2007 to conform to a more recog-
nizable .NET-standard style.

TIP Saving a Form Template with Managed Code

If a form template already has an associated project with managed
code, saving the template as a new name (not publishing) will copy
the associated project folder to a folder with the same name as the
newly saved form template. As a result, saving a template with a new
name essentially checkpoints your entire project.

NOTE Script Code Does Not Create a Project

Adding script code does not create a project. Instead, InfoPath adds a
JScript (.js) or VBScript (.vbs) file as a resource to the form template.

The final option shown in Figure 15.1 is the Project location for Visual
Basic and C# code text box. It defaults to the InfoPath Projects folder under
the current user’s My Documents folder, but any path can be used. The
Project location text box cannot be edited if a script language is chosen or if
managed code is already being used in the form template.

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 735

All of the settings shown in Figure 15.1 apply only to the current form
template. If, for example, you keep changing from Visual Basic to C# as the
language for your form templates, the Options dialog shown in Figure 15.4
offers relief. The Programming Defaults section contains some settings simi-
lar to those shown in Figure 15.1, but unlike those, these settings (in the Pro-
gramming Defaults section) persist as defaults for all new form templates.

Chapter 15: Writing Code in InfoPath736

Figure 15.4: Programming options, which are saved as defaults for all
new form templates

Forms Services
The Programming language when designing for InfoPath and InfoPath

Forms Services drop-down applies when you add code to a browser-enabled

form. Since Forms Services supports only the InfoPath 2007 managed code

OM, C# and Visual Basic are the only available options.

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 736

Adding Code to a Form Template
To add managed code to your new or existing form, simply choose a form
or data event that you want to sink. (Sinking an event means an event han-
dler is created in your code that will now be invoked to handle a specific
event.) You can find a list of prominent form and data events, such as Load-
ing Event and Changed Event, on the Programming fly-out menu from the
Tools menu. Alternatively, the Programming fly-out menu also has an entry
called Microsoft Visual Studio Tools for Applications (or Microsoft Script Editor
if you’re using script) that will open the code editor without creating an
event handler. Figure 15.5 shows the VSTA environment after we selected
Loading Event from the Programming submenu.

Writing Code Behind a Form 737

Figure 15.5: VSTA development environment

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 737

Chapter 15: Writing Code in InfoPath738

NOTE Save Before Adding Code

If you’re adding code to a new form template, the template must first
be saved. Attempting to add code to an unsaved template will result
in InfoPath prompting you to save before continuing. Remember that
saving is not publishing (see Chapter 9), so this is not the published
form name your users will see.

No IntelliSense Information in the Object
Browser or ToolTips

Selecting an InfoPath object model class, method, or property in the object

browser or hovering over an object in code may not show IntelliSense infor-

mation. This is because the files with information for IntelliSense are not in

the same directory as the Microsoft.Office.InfoPath.dll assembly.

To fix this problem, you need to copy two files. Start by navigating to the

%programfiles%\Microsoft Office\Office12 directory in Windows Explorer.

Next, copy the Microsoft.Office.InfoPath.xml file in the Office12 directory

to the following path: %systemdrive%\WINDOWS\assembly\GAC_MSIL\

Microsoft.Office.InfoPath\12.0.0.0_71e9bce111e9429c. From the same

Office12 directory, find the Microsoft.Office.Interop.InfoPath.SemiTrust.xml

file, but this time copy it to %systemdrive%\WINDOWS\assembly\GAC\

Microsoft.Office.Interop.InfoPath.SemiTrust\11.0.0.0_71e9bce111e9429c.

Filling Out and Debugging a Form with Code
While there’s nothing particularly special about filling out a form that has
code, it’s helpful to become familiar with the basics of the VSTA environ-
ment and how it integrates with InfoPath design mode. Considering that
we now have two development environments, InfoPath for designing the
form and VSTA for writing the form’s code, it makes sense to minimize the
number of times we switch from one application to another.

Before we fill out our blank form that simply sinks the Loading event,
let’s add a single line of code that runs when our form is loaded. Since

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 738

we’ve already asked InfoPath to create the method that sinks the Loading
event (called FormEvents_Loading in Figure 15.5), all we need to do is put
the code in the area with the comment // Write your code here. One of
the simplest operations we can do is to show a dialog box message. Let’s
add this single line of form code in the FormEvents_Loading method:

MessageBox.Show("Hello, InfoPath!");

Writing Code Behind a Form 739

NOTE Legacy: XDocument.UI.Alert

The InfoPath 2003 method XDocument.UI.Alert no longer exists in
the InfoPath OM. The .NET Framework method MessageBox.Show
(in the System.Windows.Forms namespace) is its replacement.

Now that we have some code that runs when the form loads, let’s look
at ways we can start filling out the form. (A sample named LoadingMes-
sageBox is included with the samples for this chapter on the book’s Web
site.) Since we just added code in VSTA, it would be nice to preview the
form without having to go back to InfoPath. This is possible if we select the
Start Debugging item from the Debug menu (the shortcut key is F5). VSTA
then performs the following actions:

1. Compiles the form code and builds the assembly

2. Opens the form in a preview window

3. Attaches the debugger to the preview process to facilitate debugging

Forms Services
Showing dialogs, such as message boxes, in forms running in the browser

is not supported. In fact, the System.Windows.Forms namespace is not

automatically referenced in the form code.

NOTE What Is an Assembly?

An assembly is .NET code compiled and built as Microsoft Instruc-
tion Language (MSIL) in an application extension (.dll) file.

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 739

If you wanted only to compile your code and build the assembly, you
can use the Build menu or hit the Ctrl+Shift+B keyboard shortcut. (You may
recognize this shortcut. It’s coincidently the same key combination used by
InfoPath for the Preview Form command.) Building the form code updates
the assembly that InfoPath uses when running the form. So the next time
you preview the form, it will use the last successfully built assembly.

Debugging Form Code

As you would expect from a full-fledged development environment, mod-
ern conveniences of debugging are at your disposal. Features such as
breakpoints, breaking on specific handled and unhandled exceptions, and
variable watches are just a few of the assorted debugging options in VSTA.

To see how debugging works with code running behind an InfoPath
form, let’s set a breakpoint on MessageBox.Show. A breakpoint is a debug-
ging mechanism used to pause execution of your code. One way to enable
a breakpoint is to put your cursor on the line of code you want to pause at
and hit F9. After setting your breakpoint, hit F5 to start debugging the form
in a preview window. After the window appears but before the form is ren-
dered, focus jumps to the VSTA window and highlights the line with your
breakpoint. The form is running but halted until you allow execution to
continue by hitting F5 or by stepping over code.

Chapter 15: Writing Code in InfoPath740

WARNING Understanding Failed Compilation

The first two steps could potentially fail for a few reasons. If compil-
ing fails, it’s likely that you have made a syntax error in your code.
Should the form fail to preview, it’s possible that the form template
itself has problems (such as a rule or data connection that fails when
the form opens) or that some code you wrote (e.g., in the Loading
event handler) encountered an error when executing.

Forms Services
Debugging a form running in the browser requires debugging on the server

itself (or remotely debugging to it) and attaching to the w3wp.exe process.

This is conceptually similar to debugging an ASP.NET Web application.

Since there is no concept of previewing a browser form, you must debug

while filling out a form.

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 740

Depending on your computer’s speed and the complexity of your form
code, previewing while debugging with VSTA might be a little slow some-
times. And we don’t blame you if you want to speed things up! However,
it’s not really possible to preview the form from VSTA without debugging
enabled. If you want to run the form without debugging, preview the form
from InfoPath instead.

The InfoPath Object Model 741

NOTE No Edit and Continue

Form code cannot be modified in VSTA while you’re actively debug-
ging a form.

TIP Building Is Automatic

There’s no need to build the project in VSTA when previewing from
InfoPath. InfoPath always asks VSTA to build the project, even if the
VSTA environment isn’t open!

Debugging code behind an InfoPath form is the same as debugging
other types of programs, such as a Windows application or an ASP.NET
Web site. With that said, we won’t cover the details of debugging strategy
in this book. MSDN has various articles on debugging. One such article
referenced in the Appendix discusses debugging in Visual Studio, while
another talks about debugging script code.

The InfoPath Object Model

From a high level, a form template is constructed in design mode by build-
ing the contents of its views and data sources. Besides static aspects of the
form (such as the color theme and number of views), many form and data-
specific features are dynamic. These dynamic features reveal themselves as
the user fills out the form. Examples of form features include those that
allow the user to switch a view or submit the form. Invoking these features
requires the user to initiate the action. Form features like changing views
or submitting, of course, shouldn’t affect the form’s data. On the other
hand, data-specific form features work directly from or on the XML data.

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 741

Some examples of data features include conditional formatting and data
validation, both of which are activated depending on various data in the
form. We’re making the clear distinction between form and data features
because this mirrors the InfoPath programming dichotomy.

Chapter 15: Writing Code in InfoPath742

Forms Services
There are actually two different object models available for writing code

behind a form template. This chapter concentrates primarily on the Microsoft.

Office.InfoPath.dll assembly for InfoPath forms. When you’re designing a

browser-enabled form template, an assembly of the same name but in a dif-

ferent location is used. This alternate assembly (in the InfoPathOM folder in

OFFICE12) defines the browser-enabled OM to be used with both InfoPath

and Forms Services. It restricts form code to a subset of the full OM normally

available to the InfoPath program.

We’re brushing over the concepts of form and data features because
they are two main classifications of features that define the InfoPath event
model. Having an event model for a programming platform means that
you write your code within event handlers. An event handler is simply a
method with a specific signature that is registered for a particular purpose
with InfoPath. We’ll learn about registering methods as event handlers
when we look at the EventManager object.

Form Events
When we called MessageBox.Show in the earlier sample form, we wrote
our code in the method sinking the Loading event. InfoPath fires this event
every time our form template is loaded. We can also sink other form events.
Table 15.2 presents a full list of form events, including where they are cre-
ated from design mode and when they fire when a user fills out the form.

TIP InfoPath Programming Paradigm

InfoPath offers a pure event-based programming platform where
your code runs only when something specific happens in the form.

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 742

Instead of providing details here about all the form events listed in
Table 15.2, we’ll use them in samples throughout this chapter. The events

The InfoPath Object Model 743

NOTE Test Form Events for Yourself

A sample form called FormEvents (included with the other samples
for this chapter) sinks all form events.

Form Event UI Entry Point When Is It Fired?

Context Changed Tools | Programming When control focus
changes the XML context

Loading Tools | Programming Every time the form
is opened

Merge Tools | Form Options | Advanced When forms are merged

Save Tools | Form Options | Open and When the user saves
Save the form

Sign Tools | Programming When the form is signed
(entirely or partially)

Submit Tools | Submit Options When the main submit
connection is invoked

Version Upgrade Tools | Form Options | Programming When an XML form
is being opened whose
version is earlier than
that of the form
template

View Switched Tools | Programming After switching to
a different view

Table 15.2: Form Events Exposed by InfoPath

Forms Services
The Context Changed, Merge, Save, and Sign events are not avail-

able in browser-enabled form templates.

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 743

themselves aren’t interesting. For example, the Save event is called when
the form is saved. What is more exciting than the events is what code you
can write when handling each event. After talking about XML data events,
we’ll exhibit a sample form template from our friends at MOI Consulting
that shows off much of the InfoPath OM. The sample form will tie together
various form events listed in Table 15.2 with properties and methods
throughout the object model.

XML Data Events
Some of the most useful events to sink in a form template are those from
the XML data source. Given that InfoPath is a strongly data-driven plat-
form, it would make sense that changes in the data can be tracked at a
granular level of detail. We will see in a moment that sinking data events is
much more involved than one might think.

How Data Changes

Before you learn about the various events fired for XML data, you need to
know how data can actually get changed. If you don’t know how data gets
changed, events will be firing all over the place for your data source, and
such event notifications won’t really make sense. (For a preview of this
seemingly crazy behavior, see the XmlDataEvents sample form template.)
The classic case of changing data is a user simply typing something into a
Text Box control. Don’t forget about the binding mechanics behind controls
and the data source. When data is changed in a Text Box, it is not the Text
Box that is changing but rather the data source field in which the Text Box
is bound. Thus, the fact that some data is changing means that some item
was modified in the data source.

Let’s not limit ourselves to thinking only about element fields bound to
a Text Box. (It doesn’t matter what controls are bound to a data source
node.) Attribute fields exhibit behavior similar to that of elements. And
how about groups in the data source? A group can’t really change, but it
can be removed or inserted. Fields can be removed and inserted, too.

What about some other ways fields and groups can be changed? Here’s
a list of scenarios that is by no means complete:

• Inserting a row in a Repeating Table

• Removing an Optional Section

Chapter 15: Writing Code in InfoPath744

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 744

• Creating a rule action to set a field’s value

• Querying a data connection, such as a Web service

• Signing form data

• Merging forms

• Running form code (which can change the data source, too!)

Event Bubbling

Our last topic prior to learning about the actual XML events is to discuss
the phenomenon of event bubbling. You may be familiar with bubbling of
events if you have scripted Internet Explorer with DHTML. In case you’re
not, let us provide an analogy. Picture a construction crew with crew mem-
bers on each floor of a 100-story building. Their boss is on the top floor, and
crew members are responsible for reporting their status to him. If a crew
member on the 85th floor needs to relay a message to the boss, she’ll yell it
to a crew member on the 86th floor. In turn, that crew member will pass the
message to someone on the 87th floor, and so on, until the boss receives the
message. If someone on the 1st floor relays a message, it will need to bub-
ble its way up every floor until it reaches the top.

Let’s look at the sample form shown in Figure 15.6. The data source shows
three nodes: myFields, group1, and field1. (You could say myFields is the
boss of the construction crew.) To show the concept of event bubbling, we
designed our form by going through each node and setting up a Changing
event handler. InfoPath automatically creates the event handler when you
right-click an item in the data source and select Changing Event from the
Programming fly-out menu.

When VSTA opens, the // Write your code here text will be high-
lighted. Simply overwrite that highlighted comment by typing the code
snippet shown in Listing 15.3.

Listing 15.3: Showing a Message Box in the Changing XML Event

MessageBox.Show("Changing: Site is " + e.Site.Name + "; Source is

"+ ((XPathNavigator)sender).Name);

The InfoPath Object Model 745

Forms Services
The Changing event is not available in browser-enabled form templates.

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 745

This line of code shows a dialog box message with the text “Changing:”
and adds the node name of the site. The Site property on the e parameter
(which is of type XmlChangingEventArgs; Site is defined in the OM on
the XmlEventArgs parent object) yields the XPathNavigator of the node
where the event is handled. If field1 changes, the event handlers for
field1, group1, and myFields will all be fired (in that order) with the
Site being the node that’s currently bubbling the event. So the Site for
group1 will just be group1, and the Site values for other nodes will be
those same nodes. Alternatively, the Sender object tells an event handler
who originally caused the event; in our code, we label it as the Source. If
field1 is changing, the Sender for all event handlers is field1 no matter
which node’s event handler (group1_Changing or myFields_Changing)
is handling the event.

Chapter 15: Writing Code in InfoPath746

Figure 15.6: EventBubbling sample, which shows Site and Sender node names as events
bubble up the data source

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 746

The InfoPath Object Model 747

What Is an XPathNavigator?

An XPathNavigator is a cursor-based reader designed for XPath-based

queries to an underlying data source, such as XML. InfoPath 2007 exclu-

sively uses XPathNavigator objects to programmatically traverse its

data sources. The use of XmlDocument and XmlNode objects from

InfoPath 2003 is essentially deprecated. We dedicate a latter part of this

chapter to the XPathNavigator and show how to use it with the

InfoPath data source.

TIP Sender as an Object Parameter

Sender is an object because the event handler is made generic to
handle a notification from any object, not just an XPathNavigator.
This new paradigm for Sender complies with .NET standards. As a
result, we need to explicitly cast the object, which allows us to access
XPathNavigator members such as the Name property.

NOTE Legacy: Source

The Sender object was exposed as Source on the XmlEventArgs
object in the InfoPath 2003 OM.

As you play with the EventBubbling sample (included with this chap-
ter’s samples), some of the event notifications may surprise you. In partic-
ular, inserting or removing the Optional Section (group1) shows only one
notification: “Changing: Site is my:myFields; Source is my:group1”. This
is because XML notifications are fired only for the parent of the changing
node. You may ask, then, why the field1 event handler fires when the Text
Box, bound to field1, is changed. Isn’t group1 the parent of field1? Yes,
but there’s more to it.

To clear up the paradox, you must understand the way XML data is
stored. A field (element or attribute) doesn’t directly contain its own data.
The data itself is considered its own separate node—specifically, a text
node—contained within the field. It follows, then, that if the data (the text

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 747

node) in field1 is changing, the field1 node itself will fire its Changing
event. This upholds our assertion that the parent of the changing node fires
the notification.

Chapter 15: Writing Code in InfoPath748

Data Source Field Details

Data source fields consist of two separate XML nodes: the field node itself

and a text node that holds the field’s data. The World Wide Web Consortium

(W3C) sets the standard on node types. You can learn more about all types

of nodes, including text nodes, at the W3C Web site (as referenced in the

Appendix).

Sometimes event bubbling is an unwanted side effect. What if, for
example, we had most of our form within the Optional Section from our
EventBubbling sample? Do we really want the group1 event firing every
time some data changes? Maybe we just want to know when group1 is
inserted. Unfortunately, there’s no way to directly turn off the bubbling
behavior, but there is a way to circumvent it when sinking XML events on
data source groups. If you want to stop event bubbling when sinking a given
group notification, use the code in Listing 15.4 at the top of the event handler.

Listing 15.4: Code to Stop XML Events from Bubbling Above the Current Event Handler

XPathNavigator NavSender = (XPathNavigator)sender;

bool moveSuccess = NavSender.MoveToParent();

if (moveSuccess && !NavSender.IsSamePosition(e.Site))

return;

As you continue in the chapter and through the MOI Consulting
sample form toward the latter half, you’ll see other examples when we’ll
suppress the side effects of event bubbling.

NOTE No Nonprogrammatic Option to Cancel Bubbling

There’s no built-in concept of canceling bubbling in InfoPath, such as
the cancelBubble property serves in Internet Explorer.

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 748

Data States

Now that we’ve talked about the ways data can change and how event
bubbling works, we’re ready to tackle the three states of modified XML
data. Every field or group in the main data source supports the general
notions we’ll discuss, so there are no special cases to call out. It’s also con-
sistent that whenever a data source node is modified, it proceeds through
three states: Changing, Validating, and Changed.

However, just because these events fire when data changes doesn’t
mean that we need to concern ourselves with them. As the form template
author, you can decide which events you want to sink depending on what
you’re trying to accomplish. Let’s look at each event in turn and see when,
why, and how you can use them in your form template code.

The InfoPath Object Model 749

NOTE Legacy: OnBeforeChange, OnValidate, and
OnAfterChange

Changing, Validating, and Changed were OnBeforeChange,
OnValidate, and OnAfterChange, respectively.

Changing Event

The first event in the sequence is probably the least-used XML event, yet it
offers a powerful capability: the ability to reject and roll back the changing
node. Rejecting a node change in the Changing event will show an error
dialog to the user filling out the form and make the changed control appear
as if it was never modified.

Forms Services
The Changing event isn’t supported by Forms Services.

NOTE Cannot Hide a Rejected Change

Rejecting a node change in the Changing event always shows an error
dialog. There is no way to suppress it.

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 749

To exhibit the Changing event, we’ll use the MOI Consulting morale
event scheduler form. Figure 15.7 shows the form in design mode. (This
sample file’s name is MOIMoraleEventScheduler-Changing.)

To fill out the form, the user needs to make decisions about dates, times,
and the specific activity for the morale event. Only authorized employees
are allowed to fill out this form. We could just restrict access to the form
altogether, but we don’t want to manage the permissions at a file system
level. Similarly, we don’t want to just conditionally disable submit (e.g.,
through a rule) because someone could go through the trouble of filling
out the form and then become frustrated that submit is blocked. Instead,
we want to prompt for a password when someone tries to modify the
form. If the password is wrong, the modification is rejected; otherwise, we
grant access for the entire session. Thanks to the Changing event, we can
use an event handler to prompt for a password and gracefully disallow
changes in the form based on conditions that we include in our code.

To add a password prompt when someone tries to modify anything in
the form, we can leverage event-bubbling behavior to intercept all form
changes on the myFields document element. We begin by right-clicking
on myFields in the data source and choosing Changing Event from the Pro-
gramming submenu. Listing 15.5 shows the custom form code we use in the
myFields_Changing event handler to prompt for a password.

Chapter 15: Writing Code in InfoPath750

Figure 15.7: MOI Consulting morale event scheduler form in design mode

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 750

Listing 15.5: Prompting for a Password

public void myFields_Changing(object sender, XmlChangingEventArgs e)

{

// Once a user is validated we won’t prompt again

if (UserIsAuthorized)

return;

string password = new MyPasswordDialog().Prompt();

// This is poor security!

if (password == "InfoPath!")

{

// Allow access

e.CancelableArgs.Cancel = false;

// Remember that this user has access

UserIsAuthorized = true;

MessageBox.Show("Thank you. Access has been granted for "

+ "this session.", "Access Granted");

}

else

{

e.CancelableArgs.Cancel = true;

e.CancelableArgs.Message = "Authorized Users Only";

e.CancelableArgs.MessageDetails = "Only authorized users "

+ " can schedule morale events.";

}

}

Let’s analyze this form code and figure out what it does in the Changing
event for the document element. The first check, which we’ll discuss shortly
in more detail, determines whether the user has already been authorized by
entering the correct password. If not, then we continue in the event handler
by using the MyPasswordDialog class to prompt the user for a password.
The code in this class uses .NET Forms library controls that aren’t InfoPath-
specific, so we won’t discuss this code except to show what happens
(Figure 15.8) when calling the Prompt method. You can find the code in
the MyPasswordDialog class of the MoiEventScheduler-Changing form
template (included with the samples for this chapter).

The InfoPath Object Model 751

Figure 15.8: Password dialog prompt

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 751

After the dialog prompt appears, the user can click either the OK or
Cancel buttons to dismiss the dialog. If Cancel is clicked, an empty password
is assigned to the password string variable. If OK is clicked, password gets
whatever the user entered in the password text box. Once the password is
received, we compare it against the hard-coded password "InfoPath!" If
the password matches, access is granted for editing the form. To do so, we
set the CancelableArgs.Cancel Boolean (on XmlChangingEventArgs
variable e) property to false. This is the default value for the Cancel prop-
erty, but we set it explicitly for the sake of this sample. When the Cancel
property is false, InfoPath does not reject the underlying node change
(whatever the change might be).

Chapter 15: Writing Code in InfoPath752

WARNING Event Handlers in .NET versus InfoPath

The code in the MyPasswordDialog class has its own .NET form
event handlers. Do not confuse these event handlers with those in
InfoPath; they are different mechanisms (even though they look simi-
lar) and are not interchangeable. One such .NET form handler, for
example, is registered through this code:

okButton.Click += new EventHandler(okButton_Click);

We discuss the details of registering for InfoPath events in the “Regis-
tering Event Handlers” section later in this chapter.

WARNING Hard-Coded Passwords Are Not Recommended

In our sample, the password is hard coded as "InfoPath!", which is
not a recommended practice. This is not secure code and is used here
solely for demonstration.

The next line of code (UserIsAuthorized = true;) remembers, for the
duration of this form-filling session, that the user entered the right pass-
word. As a result, we don’t need to prompt the user for the password every
time data in the form is changed, even though the myFields Changing

event is fired. Checking whether the user is already authorized encom-
passes the first two lines of code in the myFields Changing event handler.
Let’s look at the code for the UserIsAuthorized property (Listing 15.6)
and see how it works.

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 752

Listing 15.6: Implementing the UserIsAuthorized Property Using FormState

private const string UserIsAuthorizedStr = "UserIsAuthorized";

/// <summary>

/// Remembers if this user is authorized.

/// </summary>

private bool UserIsAuthorized

{

get

{ return (bool)FormState[UserIsAuthorizedStr]; }

set

{ FormState[UserIsAuthorizedStr] = value; }

}

The UserIsAuthorized property uses InfoPath’s FormState object to
remember a Boolean value that is true if the user is authorized and false
otherwise. FormState is the preferred means to maintaining global state in
your form code. When a user enters the correct password in the morale
event form, we want to remember that the user is validated so he or she
doesn’t need to enter the password again.

FormState implements the IDictionary interface, meaning it holds
key-value pairs of any type. In the UserIsAuthorized property, we’re stor-
ing a string ("UserIsAuthorized") as the key name and a Boolean (true
or false) as the value. However, we could potentially use anything as the
key name despite unique strings or integers being the most common key
types. The value can also be any object, but unlike the name, the value is
typically a nonprimitive object such as a generic List (e.g., of type string),
DataConnection, or any other types, which need not be InfoPath objects.
To learn more about the FormState object as an IDictionary interface, see
the related MSDN article referenced in the Appendix.

To get FormState working as expected, it must first be initialized with
the name-value pair you want to use. The best place to initialize FormState
is in the Loading event handler of the form. Recall that you can sink the
Loading event by choosing Loading Event from the Programming fly-out
menu of the Tools menu. The code snippet in Listing 15.7 shows the initial-
ization of the UserIsAuthorized name (the UserIsAuthorizedStr vari-
able is the constant string value of "UserIsAuthorized") with a default
value of false.

The InfoPath Object Model 753

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 753

Listing 15.7: Initializing FormStatewith UserIsAuthorized as false

public void FormEvents_Loading(object sender, LoadingEventArgs e)

{

FormState.Add(UserIsAuthorizedStr, false);

}

An efficient and organized approach to use the FormState object is to
expose it by wrapping it as a property. This is exactly what we did with
UserIsAuthorized. As a property implementation, UserIsAuthorized
appears to be a simple class-wide variable when you use it throughout your
code. Another advantage is that the dictionary aspects of the FormState
object are abstracted away. As a result, we recommend using properties
(with set and get accessors) only to manage any name-value pairs stored in
FormState.

Chapter 15: Writing Code in InfoPath754

Forms Services
Why not just use class-wide variables to store state? Browser-enabled

form templates do not allow the use of class-scoped variables. Similar to

an ASP.NET page or Web service, Forms Services form code does not per-

sist state between client HTTP requests. The FormState object is the

only way for browser-enabled templates to persist data for the duration of

a given session.

Let’s continue to study the code behind the myFields Changing event.
After verifying the correct password and setting UserIsAuthorized to
true, the code calls MessageBox.Show as positive visual feedback to the
user that he or she is authorized. What happens if, instead, the user enters
the wrong password or clicks Cancel? The code that’s executed includes
the else block of the myFields_Changing event code shown earlier in
Listing 15.5.

This code represents the essence of the Changing event. Of the three
XML events, this is the only time when modification to node data can be
rejected. If we do not cancel the Changing event, the change to the data will
undoubtedly occur. Setting the CancelableArgs.Cancel property (from

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 754

the XmlChangingEventArgs variable e) to true will, after the Changing
event handler has finished, cause InfoPath to reject the change of node data.
Canceling the Changing event will kill all subsequent notifications for this
node, so the Validating and Changed events will not fire. If the Message
and/or MessageDetails properties are assigned, they are used in an error
dialog that signifies the change was rejected. If at least the Message property
is not set before the event handler returns, the default message is shown:
“Invalid update: A custom constraint has been violated.” As a courtesy to
your users, you should consider providing a more informative message,
such as we did for the MoiEventScheduler-Changing sample (Figure 15.9).

The InfoPath Object Model 755

Figure 15.9: Custom error message that appears when a Changing event handler
is canceled

Once an authorized user enters the correct password and fills out the
form, the last step is to click the Send to HR for Approval button, which sends
e-mail to the morale contacts in the human resources department.

NOTE Only Changing Is Cancelable

The Changing event is the only XML event that can be canceled. Cancel-
ing the Changing event suppresses the data change from propagating to
the Validating and Changed events. Many form events are also cance-
lable if the event’s argument inherits from the CancelEventArgs .NET
Framework class.

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 755

You now have a good understanding of the Changing event. Before we
move on to the next XML event, you should know about a couple of gen-
eral restrictions regarding the Changing event. First, not all OM calls can
be made from this event handler. For example, switching views program-
matically (which is covered later in this chapter) is disallowed. If an invalid
OM call is made in a Changing handler, InfoPath throws an exception,
which automatically cancels the event. This exception manifests itself to
the user as a visual error (Figure 15.10). A complete list of unsupported OM
calls during XML events appears in Table 15.3.

Another limitation of the Changing event is that the entire main data
source is read-only. Any changes to the data using an XPathNavigator (or
any other means) will also throw an exception similar to the one shown in
Figure 15.10. The reasoning behind a read-only main data source is that the

Chapter 15: Writing Code in InfoPath756

TIP Watch for Bugs That Circumvent Validation in Your Form

Clicking the Send to HR for Approval button will not fire the myFields
event handler, nor will it fire any event handler that we have set up.
As a result, the submission is allowed even though the user doesn’t
have access and the form is empty. To fix this bug with our form, we
can conditionally disable the button while the Event title field is empty.
(Event title is convenient to use, although any field or combination of
fields could have been used instead.) Later in this chapter, we’ll look
at how to sink a Button click event so we could handle this in code if
so desired.

Figure 15.10: Error that occurs when calling unsupported OM during the Changing event

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 756

Changing event is the first of three XML events that are fired for a node
change. If the data source could be changed during this time, it would follow
that two XML events may happen concurrently: Changing another node
would kick off its XML events while this node still hasn’t finished committing
its data. As a result of disallowing changes at this time, InfoPath handles all
XML operations in a synchronous, linear, and therefore predictable manner.

Validating Event

Should the Changing event not be canceled, next in the XML event order is
Validating. As its name suggests, this is the time to perform validation on
the new data. Once the Validating event handler is called to run your code,
the node’s new data has already been committed. This means that the under-
lying main data source has assumed the new node value. Consequently, there
is no way to roll back the change at this point. The role of the Validating
event is to evaluate the new data and report an error, if necessary. All of the
same restrictions from the Changing event apply to the Validating event
(main data source is read-only, some OM cannot be called, and so on).

The InfoPath Object Model 757

Event Invalid OM Comments

Changing SwitchView MainDataSource is read-only.
Changing the
MainDataSource object

Validating SwitchView MainDataSource is read-only.
Changing the
MainDataSource object

Changed None

Table 15.3: Invalid Object Model Calls During XML Events

TIP The Change Is Accepted in Validating

Our assumption in the Validating event is that the change in data
was allowed and supposed to occur. If the change in a node’s data is to
be rolled back, it should have happened in the Changing event.

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 757

Reporting an error does not actually affect the data. Instead, InfoPath
maintains a list of nodes with data validation errors. These errors may sur-
face visually on controls bound to the nodes with errors. Some controls, such
as Section controls, do not support displaying error visuals. See Chapter 5
for more on data validation.

Chapter 15: Writing Code in InfoPath758

TIP Iterating Through Validation Errors

You can go through all validation errors, even if they aren’t visible, by
using the Go to Next Error and Show Error Message items on the Tools
menu when filling out the form.

Forms Services
The Go to Next Error and Show Error Message features are also available

on forms filled out in the browser. Hit Ctrl+Alt+R to go to the next error. Use

Ctrl+Shift+I to show a message box with error details.

To put the Validating event into motion, we’ll use the MOI Consult-
ing morale event form that we used in the Changing event discussion.
(This sample is called MoiEventScheduler-Validating.) For this sample, we
want to check the dates and times of the proposed activity. We want to
apply some validation rules when these values change. Here’s what we
want to ensure.

1. The requested start date/time is later than the end date/time.

2. The start time is between 8 A.M. and 4 P.M.; the end time is between
9 A.M. and 10 P.M.

3. An event may not last longer than one day if a waiver is necessary.

Let’s begin by looking at the code that implements these validation rules
by sinking the StartDateTime Validating event (Listing 15.8).

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 758

Listing 15.8: Sinking the StartDateTime Validating Event

public void StartDateTime_Validating(

object sender, XmlValidatingEventArgs e)

{

// Get Start and End date-times

XPathNavigator root = MainDataSource.CreateNavigator();

XPathNavigator start = e.Site;

XPathNavigator end = root.SelectSingleNode(

"/my:myFields/my:EndDateTime", NamespaceManager);

DateTime startDT, endDT;

// Can we read the start?

if (!DateTime.TryParse(start.Value, out startDT))

return; // InfoPath handles invalid DateTime values

const string error2a = "Start time is between 8 AM and 4 PM";

if (startDT.Hour < 8 /*8am*/ || startDT.Hour > 12 + 4 /*4pm*/)

e.ReportError(start, false /*siteIndepedent*/, error2a);

// Can we read the end?

if (!DateTime.TryParse(end.Value, out endDT))

return; // InfoPath handles invalid DateTime values

CheckDateTimes(e, startDT, endDT);

}

The first line of code in the StartDateTime_Validating event handler
uses the MainDataSource and calls CreateNavigator, which returns
an XPathNavigator. (We discuss the XPathNavigator in detail later in
this chapter.) The root XPathNavigator is used to get the EndDateTime
node from the main data source. We conveniently use e.Site to get the
StartDateTime but could have instead used SelectSingleNode as we
did with the EndDateTime field.

The InfoPath Object Model 759

NOTE Legacy: thisXDocument.DOM

thisXDocument.DOM is now this.MainDataSource (or just Main
DataSource since this object is implicit). Many of the methods that
were under thisXDocument are now inherited from the Microsoft.
Office.InfoPath.XmlFormHostItem class and thus available as
inherited class members.

TIP Check Whether Changes Are Allowed

You could call MainDataSource.ReadOnly to check whether the
main data source currently allows changes.

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 759

To perform validation on the start date and time, we get the Start field
value into a .NET DateTime structure. The Validating event is called
before InfoPath performs schema data type validation, so when our code
runs we can’t assume that the user entered a valid date and time value. To
verify the value, we use the TryParse method of DateTime to determine
whether the Start field is a valid date and time. If it’s invalid, we simply
return from the method and let InfoPath do the work to report the appro-
priate data type validation error.

Chapter 15: Writing Code in InfoPath760

TIP Schema and .NET Data Type Correlation

All XML Schema data types have corresponding .NET data types.
Moreover, most .NET data types (except string, of course) have a
TryParse method. See MSDN for a table of XML Schema and corre-
sponding .NET data types (as referenced in the Appendix).

.NET DateTime Class

DateTime (see the Appendix for a reference to documentation on MSDN)

offers a safe and convenient way to accurately and reliably parse date/time,

date, or time values.

After verifying that the start date and time value is valid, we check the
first part of condition 2 in our list of validation requirements. If the hour is
before 8 A.M. or after 4 P.M., we call e.ReportError to report a data valida-
tion error. The default version of ReportError takes three arguments: an
XPathNavigator where the error occurs, whether or not the error is site
independent, and an error message that’s shown to the user.

The one parameter that’s not straightforward is the Boolean siteInde-
pendent flag. Its name is somewhat of a misnomer and, in our opinion, a
little confusing. You should always pass false to the siteIndependent
parameter unless the error node itself is repeating. If it’s repeating, passing
false means that the error is targeting a specific node. Passing true tells
InfoPath that all repeating instances of a node are involved in the error.
InfoPath uses this information to determine when to automatically delete

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 760

the error. When the error is site independent, a change in any of the nodes
that repeat will remove the error; a site-dependent error, on the other hand,
will not clear itself until that specific node is modified.

The InfoPath Object Model 761

NOTE ReportError Overloads

The other versions of ReportError are similar to the Errors.Add
method, which we’ll discuss in the “Form Errors” subsection.

Since the EndDateTime_Validating event is almost identical to the
StartDateTime_Validating form code in Listing 15.8, we’ll omit it for
brevity. You’ll notice, however, that there’s a call to a CheckDateTimes
method. This code was added because both the StartDateTime_
Validating and EndDateTime_Validating events call into it, thus elim-
inating the need for duplicate code. Listing 15.9 shows the form code for
CheckDateTimes.

Listing 15.9: Implementation of the CheckDateTimesMethod

private void CheckDateTimes(

XmlValidatingEventArgs e, DateTime startDT, DateTime endDT)

{

const string error1 =

"Requested Start date/time is later than the End date/time.";

const string error3 =

"An event may not last longer than 1 day if a waiver is "

+ "necessary.";

if (startDT > endDT)

e.ReportError(e.Site, false /*siteIndepedent*/, error1);

if (((TimeSpan)endDT.Subtract(startDT)).Days >= 1 && WaiverNeeded)

e.ReportError(e.Site, false /*siteIndependent*/, error3);

}

Remember that if a waiver is needed, the event may not last longer than
one day. (The Days member of the TimeSpan class returns the number of
whole days.) We use a WaiverNeeded property to check the WaiverNeeded
node. Listing 15.10 shows the code.

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 761

Listing 15.10: The WaiverNeeded Property

private bool WaiverNeeded

{

get

{

XPathNavigator root = MainDataSource.CreateNavigator();

XPathNavigator waiver = root.SelectSingleNode(

"/my:myFields/my:WaiverNeeded", NamespaceManager);

return waiver.ValueAsBoolean;

}

}

Let’s not forget to discuss what happens if someone chooses a morale
event to last more than one day and then checks the Waiver Needed
Check Box control! Checking Waiver Needed fires XML events on the
WaiverNeeded node and bubbles up to the root. So our Validating event
handlers aren’t run. The result is that the violation of an event lasting
longer than one day with a required waiver is not caught. While there
are a few remedies to this problem, we took the approach of sinking the
Validating event of the WaiverNeeded node, as shown in Listing 15.11.

Listing 15.11: Sinking the WaiverNeeded Validating Event to Handle Checking
of the Waiver Needed Check Box

public void WaiverNeeded_Validating(

object sender, XmlValidatingEventArgs e)

{

// Get Start and End date-times

XPathNavigator root = MainDataSource.CreateNavigator();

XPathNavigator start = root.SelectSingleNode(

"/my:myFields/my:StartDateTime", NamespaceManager);

XPathNavigator end = root.SelectSingleNode(

"/my:myFields/my:EndDateTime", NamespaceManager);

DateTime startDT, endDT;

// Can we parse the Start and End values?

if (!DateTime.TryParse(end.Value, out endDT)

|| !DateTime.TryParse(start.Value, out startDT))

return; // InfoPath handles invalid DateTime values

// Only do start and end common checks if date-times are both valid

if (DateTimesAreValid())

CheckDateTimes(e, startDT, endDT);

}

Chapter 15: Writing Code in InfoPath762

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 762

The code for DateTimesAreValid checks the Errors collection to see
if we’ve already reported errors (using ReportError). Listing 15.12 shows
the implementation.

Listing 15.12: Checking the Errors Collection for Reported Start or End Errors

private bool DateTimesAreValid()

{

// Are the Start and End date-times valid?

FormError[] errs = Errors.GetErrors(FormErrorType.SystemGenerated);

foreach (FormError err in errs)

{

if (err.Site.Name == "my:StartDateTime"

|| err.Site.Name == "my:EndDateTime")

{

return false;

}

}

return true;

}

The InfoPath Object Model 763

NOTE Validation Always Happens on Form Load

We mentioned that the Validating event is fired after Changing
but before Changed. While this is true, there is one exception. Only
Validating happens (without Changing or Changed) when the user
creates a new or opens an existing form. (See the FormCodeAndRules
sample for a demonstration.) If you report an error when the form is
first validating, the form will still open with the validation error as
expected. In previous versions of InfoPath, the form fails to load if a
Validating event was canceled or threw an unhandled exception in
its form code.

InfoPath allows for a maximum of one error per node at any given time,
so it’s not possible to report multiple errors on the same node simultane-
ously. If we report two errors on, say, the StartDateTime node, the first
would be overwritten. As you can see from the Validating event and the
CheckDateTimes shared method, our form code has the potential to report
more than one error on a given node. A case where multiple errors can be
reported on Start, for example, is when the start time is not between 8 A.M.
and 4 P.M. and the start date is later than the end date. Since errors are over-
written, only the last error will be reported and seen by the user. No ill effects

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 763

occur by reporting multiple errors; after the user corrects the error, the other
(formally overwritten error) will be exposed. (This obviously assumes that
conditions for reporting each error can be satisfied independently.)

Chapter 15: Writing Code in InfoPath764

TIP Accelerate Your Learning When Programming InfoPath

If you want to experiment with how this Validating code behaves,
you can use the debugger to step through the code and use the Imme-
diate debug window to run any code on-the-fly.

By the way, did you notice any bugs in our form code? If you played
a little with the sample form, you might have noticed some special cases.
One bug creeps in if the start time is after the end time and the valid field is
modified in order to trigger the XML events for that node. Here is one way
to reproduce the problem.

• Set Start to January 1, 2002.

• Set End to January 1, 2001.

• (Touch the Start field.) Set Start to January 2, 2002.

Now both Start and End have validation errors for Start being later
than End. Fixing either Start or End to be valid will not remove the other
error because that field was not edited. ReportError will remove the
reported error only when the node that has the error is modified. How can
we fix this case of a duplicate error? Since the main data source is read-only
during the Validating event, it’s not possible to touch the other node to
force the XML events to be called. Could we go through the Errors collec-
tion and use the Errors.Delete method to remove the troublesome form
error? Unfortunately, this isn’t possible either. To explain, we need to talk
more about InfoPath form errors as exposed via the OM.

NOTE “Duplicate Error” Bug

There’s a way to fix our form code bug to prevent the “duplicate
error” predicament. We’ll leave it as an exercise for you to implement
the fix. (Here’s a hint: Allow only one, but not both, of the DateTime
fields—either Start or End—to have a common error at any given
time. A common error is one that involves both Start and End and
could be reported on either node.)

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 764

Form Errors

From an end-user’s perspective, and even from the standpoint of the form
designer, a validation error is, well, just a validation error! But when you’re
programming InfoPath, the details of validation are essential when work-
ing with form errors. To address our question about going through the
Errors collection and using Errors.Delete to remove a form error, we
need to first discuss the three types of form errors.

When a validation error occurs when a user fills out a form, the error is
classified as one of the following types: SchemaValidation, SystemGen-
erated, or UserDefined. SchemaValidation errors are reported only by
the XML parsing engine (MSXML for InfoPath, System.Xml on Forms
Services). SystemGenerated errors are a result of calling ReportError.
A UserDefined error is generated when form code manually adds a new
FormError to the Errors collection. The three error types correspond with
the values of the FormErrorType enumeration.

Listing 15.13 shows an example of adding a UserDefined FormError.

Listing 15.13: Adding a UserDefined FormError to the Errors Collection

XPathNavigator NumPeopleNav = MainDataSource.CreateNavigator();

NumPeopleNav = NumPeopleNav.SelectSingleNode(

"/my:myFields/my:NumberOfPeople", NamespaceManager);

Errors.Add(NumPeopleNav, "TooManyPeople",

"No more than 10 people can attend.");

This code first gets the XPathNavigator to the main data source root.
Next, we select the NumberOfPeople node. Finally, an error is added by
Errors.Add. The first parameter is the XPathNavigator of the node in
which the error is associated, followed by the internal (unexposed to the
user) error name, and finally the short error message. Override versions of
this method add the following parameters: messageDetails, errorCode,
and errorMode. The messageDetails parameter provides additional
information to the user if he or she right-clicks the error visualization and
requests to see details. errorCode is an arbitrary integer for your internal
and personal use. Finally, the errorMode parameter takes a value from the
ErrorMode enumeration: Modal or Modeless. If Modal is used, an error is
immediately shown in an alert-style dialog that blocks the user until it’s
dismissed. Modeless, on the other hand, does not show a dialog and is the
default behavior.

The InfoPath Object Model 765

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 765

Calling the Errors.Add method can be used in any event handler
(including form events) without restrictions. This is unlike the ReportError
method, which is only available (and thus must be called) within the
ValidatingXML event handler. Why, then, would anyone use ReportError
versus Errors.Add? This brings us to the topic of deleting errors.

There are two ways to manually remove errors from the Errors collec-
tion. The first way is with the Deletemethod. An error is deleted by passing
in either a FormError (an item from the Errors collection) or an error name
(the internal name used in the Add method). Only UserDefined errors are
allowed to be deleted. So, reporting an error using ReportError cannot be
done easily this way. However, using the Errors.DeleteAll method will
obliterate all form errors, no matter what their type.

Chapter 15: Writing Code in InfoPath766

WARNING Don’t Use ReportError with an Arbitrary Node

When calling ReportError on the XmlValidatingEventArgs object,
be sure that the error is based on the node associated with the e.Site
XPathNavigator. If an error is reported on an arbitrary node with
e.ReportError, InfoPath will not know when to remove the error,
which results in it being “stuck” and your form in a bad state.

A useful mechanism for debugging form errors is to add a Button con-
trol to the view of your form that shows all errors when clicked. To set up
the ClickedEventHandler, go to the Button Properties dialog and click on
the Edit Form Code button. Listing 15.14 shows our Button event handler.

Listing 15.14: Showing All Errors on a Button Clicked Event

public void CTRL11_5_Clicked(object sender, ClickedEventArgs e)

{

MessageBox.Show("Number of errors: " + Errors.Count);

string errors = string.Empty;

foreach (FormError err in Errors)

{

errors += "(" + err.FormErrorType + ", "

+ err.Site.Name + ") " + err.Message

+ System.Environment.NewLine;

}

MessageBox.Show("Error messages: "

+ System.Environment.NewLine + errors);

}

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 766

Before we move on to the Changed event, we have a final word about
reporting custom validation errors using the OM. When using ReportError
or Errors.Add, ensure that the error node exists in a view or at least that the
user can sufficiently recognize the error and be able to fix it. In Figure 15.11,
an error has been added to MainDataSource.CreateNavigator() (the
root) that the user can never see. It can be seen only by using Go to Next Error
and then Show Error Message. The dialog shown in Figure 15.11 appears
when using the Show Error Message option.

This is clearly a contrived example because there is no reason to report
an error on the root, but the concept remains. The code in Listing 15.15 is
written behind a button Clicked event to reproduce the behavior shown
in Figure 15.11.

Listing 15.15: Adding an Error That the User Can Never See

Errors.Add(this.CreateNavigator(),

"Error", "This is a bad error because it can’t be seen!");

Changed Event

Last in the series of XML events fired on a modified node, and all of its par-
ents, is the Changed event. Its name is quite representative of the state
involving the modified node data: The change has already occurred. So
what’s the point of sinking and handling this event in custom form code?
That’s a good question, and we have a great answer. You can do pretty
much anything your heart desires! Unlike Changing and Validating, the

The InfoPath Object Model 767

Figure 15.11: Show Error Message dialog

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 767

Changed event can modify the main data source. You can also ask InfoPath
to switch to another view—something that was also disallowed during
Changing and Validating. Regard the Changed event as your instrument
to completely react to a change in form data in whatever way necessary.
That’s certainly powerful!

Like us, you might find yourself wanting to use form code for simple
things in the Changed event. Here are some examples: showing a dialog
box, setting a node’s value, querying a data source, or even switching to
another view. The Rules feature was designed to cater to these scenarios so
you wouldn’t have to use the Changed event. As a matter of fact, rules fire
at nearly the same time as the Changed event. With rules in mind, let’s take
another look at the order of “events” that occur when a node is modified:
Changing, Validating, rules, Changed. (See the FormCodeAndRules
sample form template.) So rules could be a direct substitution for the
Changed event in simple scenarios.

Our recommendation is to leverage the simplistic declarative nature of
rules when possible because code is harder and more expensive to maintain.
If rules won’t fully suffice for your needs, you can tack on a Changed event.
If it doesn’t help to split the work between rules and the Changed event, you
could try to put some logic in the Validating event to precede rules.
Should that not work, for example, because you need to modify the value of
a node (recall that the main data source during Validating is read-only)
before rules, you may need to reimplement the rule actions into your form
code. Even though the likelihood of reimplementing rules into code is low,
most rules constitute no more than about two or three lines of code.

To demonstrate the Changed event, we’ll add some final touches to the
MOI morale event scheduler form. (See the MoiEventScheduler-Changed
sample.) Say that we’ve received feedback from the managers that we need
to gather names of participants for an accurate head count. The names
should be sorted in alphabetical order by last name.

Let’s figure out what we need to do in our form to fulfill the managers’
requirements. First we need controls in the view to capture the names of
the participants. Since we’ll be sorting by last name, it’s easiest to separate
first and last names into their own Text Box controls. The Text Box controls
will be within a Repeating Table control so that multiple participant
instances can be inserted and filled out.

Chapter 15: Writing Code in InfoPath768

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 768

With the new controls in the view, our form now supports the entry of
many first and last names. Figure 15.12 shows how that part of the view
appears in design mode. Now that we have the controls bound to the data
source, how do we sort by the LastName field? Before we approach the
answer, let’s investigate and understand the problem.

First, there are two ways to sort data in InfoPath: in the view or in the
data. Sorting content in the view simply orders the visual presentation of
the data; it does not actually touch the data in the XML. With XSLT driving
the presentation layer of InfoPath, you could modify the view (.xsl file) to
include an xsl:sort directive. (See the W3Schools Web site referenced in
the Appendix for specifics.) Since this is a book about using InfoPath and
working with XML data, we’re taking the data approach to sorting. Some-
times sorting the data is a requirement because the form XML will be used
in another application that already expects the data to be sorted.

The InfoPath Object Model 769

Figure 15.12: Supporting entry of last and first names in a Repeating Table control

NOTE View-Based Sorting

Sorting in the XSL is almost always faster in terms of absolute perfor-
mance. Unfortunately, sorting in the view may not always yield the
results you expect. For example, if the data you’re sorting is bound to
more than one control, you’ll need to add sorting functionality to each
of the controls. Moreover, view-based sorting is not supported in
browser-enabled form templates because it requires manual hand-
editing of the view XSL file. Sorting the form data will work similarly
in client and browser-enabled form templates.

To approach sorting the Repeating Table data containing participants,
we need to first determine what will trigger the sort. Given that we’re
sorting by last name, it seems appropriate to fire off the sort whenever the
LastName field is changed. Despite having LastName trigger the sort, we

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 769

don’t want to actually sort the LastName field. (If we did so, we’d move last
names without the rest of the row data!) We want to sort the Participant
repeating group under the Participants group. Consider the data source
bound to the controls in Figure 15.12. We can see that the parent node of
field LastName is a repeating group named Participant, and its parent
node is a group named Participants. The code snippet listening to the
LastName field is shown in Listing 15.16. To focus more on the scenario and
less on the sorting algorithm, we’ll use a simple bubble sort to order the
Participant groups based on the LastName field. In a real-world scenario,
you’d want to use the .NET Framework to efficiently sort the data.

Chapter 15: Writing Code in InfoPath770

NOTE Sinking Secondary Data Source Events

Secondary data sources allow sinking only the Changed event. With-
out any validation on secondary data sources, there are no equivalent
concepts of the Changing or Validating events to reject or report
validation errors, respectively.

Listing 15.16: Sorting Items in the Repeating Table When the LastName Field Is Changed

public void LastName_Changed(object sender, XmlEventArgs e)

{

if (e.UndoRedo)

return;

// resort the list

if (e.Operation == XmlOperation.ValueChange)

{

XPathNavigator senderNav = sender as XPathNavigator;

senderNav.MoveToParent(); // move to ’Participant’

senderNav.MoveToParent(); // move to ’Participants’

SortChildNodes(senderNav);

}

}

WARNING Sorting Every Time LastName_Changed Is Called

It’s very important to call SortChildNodes only when the value of
LastName actually changes. Removing the if statement that checks
for ValueChange will result in the LastName_Changed event firing
again (within itself) when nodes are moved for the sorting operation.

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 770

The Changed event starts with two comments generated by InfoPath.
These comments basically say that the main data source (i.e., OM property
MainDataSource) should not be modified yet. That’s because if the opera-
tion that caused the LastName field to change is an undo or redo, our code
shouldn’t handle it. InfoPath takes care of all undo and redo operations
automatically. If you still wanted some code to run during an undo or redo,
keep in mind that the main data source is read-only. Finally, after the check
for e.UndoRedo, we can write our code!

The InfoPath Object Model 771

Forms Services
Since there is no concept of undo or redo, the UndoRedo property is always

falsewhen a browser-enabled form template is running in the browser.

We begin by getting the Participants group. To get there, we could
have just used MainDataSource to get the root and then SelectSingleNode
with the XPath /my:myFields/my:Participants. Instead, we wanted to
show how the XPathNavigator can be used as a cursor to traverse the
data source. The sender object in all XML events will always be the
XPathNavigator behind the specific event handler. So in this case we know
that sender will be LastName. (Recall that e.Site is the XPathNavigator
that initiated the event; if the event handler is sinking group XML events,
e.Site can be any child node.) After we move to the Participants group,
we pass the navigator to the SortChildNodesmethod, which does the actual
bubble sort. Listing 15.17 shows the implementation of the sort.

The SortChildNodes method first needs to know the total number of
participant items to sort. To get the number of Participant groups, we
count the result of selecting all Participant children of the Partici-
pants group. The two for loops account for the bubble sort iterations. To
compare the last names of participant j and participant j+1, we select the
nodes by using XPath with a predicate filter. A predicate filter is signified
by square brackets within an XPath expression. Passing a simple numeri-
cal value like [1] is a shortcut for [position()=1]. (You can find more on
the XPath Language at the W3C site, as referenced in the Appendix.)
String.Compare performs a culture-specific string comparison that
returns 1 if child1’s value is lexicographically later than that of child2. If

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 771

Listing 15.17: Sorting Participants (by LastName) in the Data Source

public void SortChildNodes(XPathNavigator parent)

{

const string Prtpnt = "Participant";

XPathNodeIterator childNodes =

parent.SelectChildren(Prtpnt, parent.NamespaceURI);

int numberChildren = childNodes.Count;

for (int i = 1; i <= numberChildren; i++)

for (int j = 1; j <= numberChildren - i; j++)

{

XPathNavigator child1, child2;

child1 = parent.SelectSingleNode(

"my:" + Prtpnt + "[" + j + "]/my:LastName",

NamespaceManager);

child2 = parent.SelectSingleNode(

"my:" + Prtpnt + "[" + (j+1) + "]/my:LastName",

NamespaceManager);

if (string.Compare(child1.Value, child2.Value) > 0)

{

child1.MoveToParent();

child2.MoveToParent();

XPathNavigator temp = child1.Clone();

child1.ReplaceSelf(child2);

child2.ReplaceSelf(temp);

}

}

}

Chapter 15: Writing Code in InfoPath772

that’s the case, we want to swap the positions of the child1 and child2
parent nodes. (The parent nodes of child1 and child2 represent entire
rows in the Repeating Table.) Since XPathNavigator objects are simply
pointers to the underlying data source, we cannot assign new objects to
them. Instead, navigators expose methods such as Clone, to make a deep
copy, and ReplaceSelf, to swap out (and remove) the node for another.
We use a combination of these methods to swap the positions of child1
and child2 Participant groups.

NOTE XPath Is 1-Based

Are you wondering why the bubble sort loops start with 1 instead of
0? Repeating items are addressed in XPath by using a 1-based index.

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 772

Since the SortChildNodes method is called only from the LastName_
Changed event handler, it runs only when a LastName field is modified.
What if the form template is opened with an already existing form whose
underlying participants data is unsorted? Currently, it won’t be sorted.
However, by sinking the Loading form event, you could call
SortChildNodes to ensure the data is sorted from the start. If a form is
opened with a huge amount of data that’s sorted in descending (Z to A)
order (the worst case for the bubble sort algorithm), loading performance
could be lethargic. Consider showing the user a “Please wait” message if
this is a concern. However, we recommend using a more efficient algo-
rithm such as merge or binary tree sorting, which take less time to run in
their worst cases.

The InfoPath Object Model 773

Forms Services
When posting data back to the server takes a long time (which includes run-

ning custom form code), Forms Services automatically shows the “Sending

data to the server” busy dialog over the form in the browser.

TIP Concatenating Strings by Selecting Multiple Text Nodes

If you want to sort by last name and then by first name, you don’t
need to add any special code. A shortcut is to select the Participant
itself instead of the LastName node. The Value property of a group
node is the result of concatenating the Value of each child text node
under that group. Try removing the appropriate code in the sample to
see the values of child1 and child2. Remember that text nodes exist
between field nodes as white space to format the XML itself!

Multiple Event Notifications for XML Event Handlers

A single XML event handler can be fired multiple times during a data source
change. In the past few examples, we didn’t see this behavior because we’ve
been using string data types. Some other data types, however, require the
XML data to be decorated in particular ways. These so-called decorations
require managing hidden XML on the changing element itself to accommo-
date its behaviors. For example, for an integer field to be blank, the hidden

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 773

attribute node called xsi:nilmust be set to true. (This is an XML data type
requirement to which InfoPath must adhere for an integer field’s data to be
considered valid.) If the blank integer field is set to some value (which may
or may not be a numerical value), the xsi:nil attribute is removed. As a
result, any XML events on this integer node are fired twice: the first time for
removing xsi:nil, the second for changing the value of the field itself. The
order of notifications in this case, with the sender in parenthesis, is Chang-
ing (xsi:nil), Validating (xsi:nil), Changed (xsi:nil), Changing

(my:integer), Validating (my:integer), and Changed (my:integer).

Chapter 15: Writing Code in InfoPath774

TIP Integer and xsi:nil

To witness firsthand how xsi:nil is involved in field changes, you
can save a form with a blank integer field, and then save it again as
a different name when it has a value. Open the resulting .xml file in
a text editor such as Notepad to see the xsi:nil decoration. You can
use the MultipleNotifications sample (included with the samples for
this chapter) for this purpose as well as to explore other concepts
involving multiple notifications.

The MultipleNotifications sample form, shown in Figure 15.13, con-
tains several Text Box controls bound to different data types. The String
field is the standard case; it exists only for comparison. The Integer,
RichText, and DateTime fields all show various forms of multiple notifi-
cations. Integer and DateTime are similar in their use of xsi:nil, while
RichText is a little different. The RichText field fires not only regular
change notifications but also HTML element insertions and deletions. For
example, underlining in the Rich Text Box control will fire an event from an
HTML node named u. (The <u> tag in HTML represents markup for
underlined content.)

Multiple notifications may cause your code to run twice or more,
depending on the data source change. Running code in your XML event
handlers many times may not cause any problems. You might not even
know it’s running a few times! But in some cases, running code several
times could cause serious problems. One of the most common issues is poor
performance. In our Changed event sample, we used a sorting algorithm to

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 774

shuffle the main data source. If there were many items, the algorithm could
take a long time to run. But without handling multiple notifications prop-
erly, the wait time can double or worse! Can we do anything to handle only
the notifications we care about? Let’s take another look at the MultipleNoti-
fications sample to learn about OM that can help us make distinctions
between different operations.

As you fill out the sample MultipleNotifications form, you’ll notice that
a message box appears after each change (Figure 15.14).

The InfoPath Object Model 775

Figure 15.13: MultipleNotifications sample form in design mode

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 775

This dialog appears because a Changed event handler is listening to the
document element (myFields) group. Because it’s on the document ele-
ment, this handler receives all notifications throughout the data source by
the means of event bubbling. Let’s look at the call to the MessageBox class
in Listing 15.18 to see how we can get the operation by name.

Listing 15.18: Generating Visual Notifications for Data Source Events

string nodeName = ((XPathNavigator)sender).Name;

MessageBox.Show("document element; operation = "

+ e.Operation + " by node " + nodeName);

The e variable in the Changed event is of type XmlEventArgs, but the
same Operation property is also available on XmlChangingEventArgs
and XmlValidatingEventArgs. Operation is of the XmlOperation enu-
meration type. Its allowable values include Delete, Insert, None, or
ValueChange. By playing with the MultipleNotifications sample form,
you will see Delete, Insert, and ValueChange operations. None is used
in other cases where an event is fired for reasons other than inserts, deletes,
or changes in value. (In a moment, we’ll briefly look at one of the cases
when Operation is None.) When writing code for any of your XML event
handlers, one good approach is to handle only those Operation values
that your code is designed to handle. Alternatively, you can reuse the code
snippet shown in Listing 15.18 in your XML event handlers to show the
same MessageBox as Figure 15.14 whenever a notification occurs. Then
you can check for specific conditions and bail (by simply using return)
from a handler if it’s a multiple notification that you want to ignore.

Another out-of-band notification happens whenever a new or existing
form is opened: The Validating event is fired on every item in the data

Chapter 15: Writing Code in InfoPath776

Figure 15.14: One of the notifications when
adding underline to a rich text (XHTML) field

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 776

source. This occurs to ensure that the data is in a good state before the form
opens and even before the Loading form event fires. To handle this specific
case in your Validating event handler, e.Operation will always be set
to None.

Using XPathNavigatorObjects
If you’re aspiring to be an expert in writing form code behind InfoPath
forms, the XPathNavigator object is absolutely crucial to understand. It is
the only gateway to accessing, modifying, and working with the main and
secondary data sources. In the samples and code snippets we’ve looked at
thus far, you’ve learned how to do basic node selection and get a node’s
value. We now present advanced node selection and data modification tips
and tricks that are useful when designing some form templates.

The InfoPath Object Model 777

WARNING Watch for Infinite Change Loops

We’ll discuss how to add, replace, and remove nodes in the data
source. Remember that as these operations occur, the corresponding
XML event handlers will fire! If you modify a node in an event han-
dler that is also handling that node’s change, your code will be in an
infinite loop. Modifying a node in its own handler still fires the event
handler! Consider using OldValue and NewValue from the e parame-
ter to detect this case.

Finding the XPath of a Node

At a loss to figure out how to get the XPath of a node in a data source? Just
find the field or group in the Data Source task pane, right-click, and choose
Copy XPath. Now paste it inside double quotes as the xpath parameter to
an XPathNavigator Select method.

But what about more complicated XPaths that don’t represent a simple
data source binding? Try using an Expression Box control. Take your time
to fiddle with the XPath in design mode and see if it evaluates properly
when previewing the form. Once you settle on the correct XPath in the
Expression Box, you can copy and paste it into your code.

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 777

Using the NamespaceManager Parameter

Are you trying to use one of the various Select methods (such as
SelectSingleNode), only to get an XPathException with the details
“Namespace Manager or XsltContext needed”? This means the XPath
you’re passing uses at least one namespace prefix, such as my:, dfs:, ns1:,
or another “prefix:name” format. You need to pass a resolver parameter
(of type IXmlNamespaceResolver). If you aren’t very familiar with using
XPathManager and selecting nodes yet, don’t worry too much about
what a resolver does. This parameter is given to you by InfoPath as
NamespaceManager (available through IntelliSense on the this object).
It never hurts to simply pass it to node selection methods whenever it’s
listed as a parameter—you can still provide it even if you don’t have name-
space prefixes in your XPath.

Chapter 15: Writing Code in InfoPath778

TIP No Namespace? No NamespaceManager!

The NamespaceManager parameter is not necessary when you select
nodes that don’t have a namespace. They can appear as :FirstName
(with a semicolon but without a prefix) in the data source.

Some selection methods, such as SelectDescendants and
SelectAncestors, do not accept IXmlNamspaceResolver. Instead, they
require a namespaceURI parameter as a string. The namespaceURI is
the actual namespace behind the prefix. For example, the my prefix resolves
to a namespace such as http://schemas.microsoft.com/office/

infopath/2003/myXSD/2006-01-22T20:55:55. To figure out the name-
space string in your case, go to the Details tab of the Field or Group Properties
dialog for the node you want to select. If you have already selected a node
(e.g., the document element) that has the same namespace prefix as a node
you want to select, you can get the namespaceURI easily via the existing
node XPathNavigator NamespaceURI string property. If there’s no name-
space listed, the node is not in a namespace, and you won’t need to pass
namespaceURI. If you must pass namespaceURI, use String.Empty.

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 778

Selecting Multiple Nodes

There’s no need to use SelectSingleNode for every node you want to
select. If you’re working with a repeating field or group and using
SelectSingleNode, there’s no good way to determine how many of the
repeating item exist. To get a set of fields or groups that are repeating,
use the Select method of the XPathNavigator. In the code shown in
Listing 15.19 (and in the corresponding sample form template, called
SelectingMultipleNodes), we’re displaying the values of every field in a
Bulleted List control. The XPathNodeIterator object represents a collec-
tion of nodes that we can iterate through by using the MoveNext method
and the Current property. The Count and CurrentPosition properties
(not shown in this sample) on the iterator are useful in for loops.

Listing 15.19: Selecting Multiple Nodes Using XPathNodeIterator

string message = String.Empty;

XPathNavigator root = MainDataSource.CreateNavigator();

XPathNodeIterator nodes = root.Select("/my:myFields/my:group1/my:field1",

NamespaceManager);

while (nodes.MoveNext())

{

message += nodes.Current.Value + System.Environment.NewLine;

}

MessageBox.Show(message);

Deleting Nodes

You might think that you can use similar code shown in Listing 15.19 to
delete multiple nodes. Could you just call nodes.Current.DeleteSelf()
within the while loop? Yes, but you’ll delete only the first node. Why? Since

The InfoPath Object Model 779

TIP Don’t Hard-Code the Namespace URI

Writing robust form code that doesn’t hard-code the namespace URI is
preferred. Using literal namespace URI strings will break your code if
the underlying data source is converted to use a different namespace.

NOTE Secondary Data Sources Are Similar

All of the concepts discussed here also apply to secondary data sources.

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 779

nodes is an XPathNodeIterator, it does not support being modified while
used as an iterator. As soon as it detects itself being modified, the MoveNext
method prematurely returns false.

The proper approach to deleting a series of sibling nodes is to use the
DeleteRange method. By selecting the first and last nodes within a range,
the DeleteRange method will remove those two nodes and all nodes in
between. To determine which nodes are the first and last for a repeating
field or group, we’ll use a predicate filter. Recall that passing a simple num-
ber as a predicate filter indexes into the 1-based collection of nodes. The last
node is found by using the XPath functions position and last. The code
in Listing 15.20 shows the call to DeleteRange from the first node with the
last passed as a parameter. (The sample file is named DeletingNodes.)

Chapter 15: Writing Code in InfoPath780

TIP Using DeleteRange

DeleteRange is inclusive, that is, the first and last nodes are included
in the deletion.

Listing 15.20: Deleting Node Siblings by Using DeleteRange

const string f1 = "/my:myFields/my:group1/my:field1";

XPathNavigator root = MainDataSource.CreateNavigator();

XPathNavigator first =

root.SelectSingleNode(f1 + "[1]", NamespaceManager);

XPathNavigator last =

root.SelectSingleNode(f1 + "[position()=last()]",

NamespaceManager);

first.DeleteRange(last);

Learning More about XPathNavigator

Start with the article “Accessing XML Data Using XPathNavigator” on

MSDN (as referenced in the Appendix). You can also search the Web for

XPathNavigator to find more tutorials and references.

Registering Event Handlers
By now, we’ve seen that InfoPath automatically creates event handlers when
you’re designing a form template in design mode. Conveniently, they’re also

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 780

registered for us with the EventManager object in the InternalStartup
method. Listing 15.21 shows an example of registering an event handler
with an XML event.

Listing 15.21: Registering an XML Event Handler to the Changing Event of the
UseEmail Node

EventManager.XmlEvents[

"/my:myFields/my:LoginInfo/my:UseEmail"].Changing +=

new XmlChangingEventHandler(UseEmail_Changing);

The EventManager is a class-wide member whose purpose is limited to
tracking event registration. Its use is restricted to the InternalStartup
method where all registrations must occur. Any registrations outside of
InternalStartup will cause failures when a user fills out the form (specif-
ically, a SecurityException is thrown).

The InfoPath Object Model 781

TIP InternalStartup Is Restricted to Registration

The InternalStartup method is meant only for registering event
handlers with InfoPath. Any calls to the InfoPath OM (in the Startup
or Shutdown methods) will fail when a user fills out the form. Even
though you can write other code in this method, it’s strongly discour-
aged. The form may not be fully initialized, which could result in
intermittent issues and undefined behaviors.

During our discussions in this chapter, we’ve talked about each class of
event: form, XML, and control. We briefly discussed the various form
events (we’ll use form events extensively later). Afterward, we thoroughly

Form Code Is Separated into Partial Classes

The EventManager object is defined in the FormCode.Designer.cs file. This

file, in conjunction with FormCode.cs, completely defines the partial class

where your form code is written. To see FormCode.Designer.cs, enable the

Show All Files item on the Project menu. This file is auto-generated by

InfoPath, and manual editing of its contents is not supported.

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 781

examined each XML event. InfoPath 2007 supports a single control event:
ButtonEvent. We used a Button control event handler when discussing
form errors in the “Validating Event” subsection earlier in this chapter.

Registering events with the EventManager, for the most part, isn’t partic-
ularly interesting. There is a little flexibility, however, in defining XML event
handlers. InfoPath will generate the listener XPath (i.e., the string within the
square brackets) based on a field or group in the data source. This is fine for
most cases, but sometimes you’ll need a greater level of flexibility. Table 15.4
shows some examples of XPaths that still work as expected when a user fills
out the form, even though InfoPath will not generate them.

Chapter 15: Writing Code in InfoPath782

XPath Description

/ Selects the XML root; parent of the document element

//my:field1 Selects all descendents (including self) named my:field1

//text() Selects all text nodes

Table 15.4: Examples of Advanced XPaths for Registering XML Event Handlers

WARNING Complex XPaths for XML Events Are Not
Supported

Some complex XPaths are unsupported when you register them for
XML events. InfoPath throws an ArgumentException when attempt-
ing to run the InternalStartup method that registers XML events
with unsupported XPaths.

Script and the Custom Task Pane
Talking about the InfoPath OM isn’t complete without discussing scripting
languages. In its Microsoft Office 2003 infancy, InfoPath supported scripting
only with JScript or VBScript. Its object model has changed very little since
then, so if you are a legacy InfoPath script writer, you’ll have no problem
scripting in InfoPath 2007. Not to disappoint those expert script writers,
however, the motivation to use scripting over managed code is dwindling.
With the InfoPath managed OM expanded and revamped in 2007, the script-
ing OM was kept constant. Nevertheless, one major advantage of using

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 782

script over managed code is its ability to easily interoperate with the custom
task pane. Communicating to and from the task pane from script code
doesn’t require any special permissions (besides domain trust) and is rela-
tively easy to do.

The InfoPath Object Model 783

NOTE Supported Script Languages

Our script samples will be in JScript. VBScript, however, is also sup-
ported as a scripting language for form code.

WARNING Form Code Language Must Be Homogeneous

Managed code and script cannot be mixed in an InfoPath form tem-
plate. In fact, even different languages within managed code (or script)
cannot be mixed.

Managed Form Code and Task Pane Script

It’s possible to use managed code to communicate to the custom task

pane, but it takes some .NET type trickery and a full trust assembly. (Recall

from Chapter 11 that a full trust form is different than a fully trusted .NET

assembly.) See the InfoPath team blog on the MSDN blogs site, referenced

in the Appendix, for details.

Forms Services
Browser-enabled form templates and Forms Services do not support script

code.

Custom Task Pane

In the same way InfoPath relies on its own task pane during design mode,
you can use your own custom task pane. The custom task pane behaves just
like any other task pane. It opens (by default) with your form to the right
side of the view but can be moved anywhere or even closed by the user
filling out your form. The content of the task pane, as you define it when

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 783

designing the form, is essentially a Web page in a restricted instance of Inter-
net Explorer. For example, some scripting objects, such as WScript.Shell,
cannot be created. The task pane, unless you write custom form code, is a
disconnected component of the form itself. In a moment we’ll see how to tie
together the form and the custom task pane.

Chapter 15: Writing Code in InfoPath784

Forms Services
A custom task pane is supported in a browser-enabled form template, but

not when running in the context of a Web browser.

NOTE Custom Task Pane Cannot Sink Data Source Events

You cannot bind HTML controls in the custom task pane to the
InfoPath data source.

WARNING Objects Unsafe for Scripting Are Restricted

Attempting to create restricted ActiveX objects such as WScript.Shell
results in a “Cannot create automation object” runtime script error.

To add a custom task pane to your form, go to the Programming category
on the Form Options dialog (Figure 15.15). Check the Enable custom task pane
checkbox to enable the Task pane name text box and Task pane location drop-
down. The name is used in the heading of the task pane. The task pane
location can be any Web site URL (e.g., http://www.moiconsulting.com/
taskpane.htm), local path (e.g., C:\taskpane.htm), UNC path (e.g., \\
mycomputer\myshare\taskpane.htm), or resource file that is included in
the form template. In our example, we’ve added a static HTML page to the
form by using the Resource Files button.

NOTE Custom Task Pane Is Not Shown in Design Mode

The custom task pane does not appear in design mode. In fact, you
might forget you have one until you fill out the form!

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 784

A very useful scenario is to use the custom task pane as an active help
reference when users fill out your form. We’ll show a sample later in this
chapter where we use the custom task pane with the ContextChanged
event to provide on-demand context-sensitive help.

The InfoPath Object Model 785

Figure 15.15: Setting up a custom task pane in the Form Options dialog

WARNING Use a Task Pane from Local Resource Files

It’s preferred to use a task pane that is included as part of the form
template. Referencing an external page, for example, may be prohib-
ited if the form trust level is not sufficient. Moreover, will your users
even have permission to access the external site?

Scripting the Custom Task Pane

Designing a form with script is as simple as selecting a scripting language
in the Form Options dialog’s Programming category before editing the code.

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 785

(See “Writing Code Behind a Form” at the beginning of this chapter for
details.) If you’ve already started writing managed code, you can use the
Remove Code button. Unlike managed code and the VSTA project that
comes with it, script is edited in the Microsoft Script Editor as a single file.
There is no compiling or building with script. Instead, it is interpreted by
the scripting engine when the form is opened. The biggest differences
between managed code and script include the following.

• The InfoPath 2007 OM does not carry over to scripting languages.

• No IntelliSense (code auto-complete) is available.

• There is no compiling, so code errors are not caught in design mode.

• Script errors reveal themselves when you fill out the form.

Let’s look at a simple sample form that uses script behind the form with
a custom task pane (which also includes its own script). As we mentioned,
the custom task pane is disconnected from the form itself. Using form code,
the task pane can become a more interactive component of the form. Our
sample form demonstrates data traveling from the form to the task pane, as
well as from the task pane to the form. While we don’t incorporate any spe-
cific scenario in the sample, you can picture the form populating a Drop-
Down List Box control with a list of articles from a secondary data source. A
click on an article in the List Box (handled by the Changed event) could fill in
a hidden field in the custom task pane HTML and post the data to a server to
get the corresponding article details. If you wanted to really tie in the interac-
tion between the task pane and the form, the task pane can directly call in to
execute and pass parameters to a method in the form’s script. Let’s look at
how the sample, shown in a preview window in Figure 15.16, works behind
the scenes. (The sample form template is named CustomTaskPaneInterop.)

The first Text Box control, labeled Field1 in Figure 15.16, is simply
bound to a field with the same name in the main data source. Nothing is
particularly special about this control. However, the Set Task Pane Text Box
Button control is hooked up to run some script when clicked. The script
essentially takes the value of the Field1 Text Box and sets the text box in the
custom task pane. The code in Listing 15.22 implements this functionality.

Chapter 15: Writing Code in InfoPath786

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 786

Listing 15.22: Setting a Value in the Form’s Data Source from the Custom Task Pane

function CTRL1_5::OnClick(eventObj)

{

// get the task pane

var taskPane = XDocument.View.Window.TaskPanes.Item(0);

// get the html document

var htmlDocument = taskPane.HTMLDocument;

var textbox1 = htmlDocument.getElementById("textbox1");

// get field1 from the main data source

var myField1 =

XDocument.DOM.selectSingleNode("/my:myFields/my:field1");

// assign the value of my:field1 to the task pane text box

textbox1.value = myField1.text;

}

Despite the inline comments, we’ll take a closer look at the script to deci-
pher exactly what it is doing. The first step to working with the custom task
pane is to get the task pane object. You can always assume the HTMLTaskPane
object is always the zeroth item in the TaskPanes collection.

The InfoPath Object Model 787

Figure 15.16: Filling out the CustomTaskPaneInterop sample form

NOTE Setting Up Events in Script

Sinking an event for a Button control, or any XML or form event for that
matter, is the same process as when working with managed form code.

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 787

The next step in the form script code is to get the HTMLDocument object.
This returns a reference to Internet Explorer’s HTMLDocument object, which
implements the IHTMLDocument2 interface. We use this object in the next
line of script to get the HTML element with ID textbox1. As you can prob-
ably guess, the HTMLDocument object exposes properties and methods that
are not part of InfoPath.

Chapter 15: Writing Code in InfoPath788

HTMLTaskPane Object

You can find more information about the HTMLTaskPane object on MSDN

(as referenced in the Appendix). Additionally, MSDN explains how to wait

for the custom task pane to completely load (if it takes a long time loading

a large page) and even call methods in the task pane HTML script from the

form script.

TIP Useful HTMLTaskPane OM

The HTMLTaskPane object has some other useful properties and
methods, including the Navigate method (accepts a URL), the
HTMLWindow property (returns IHTMLWindow2), the Type property
(enum XdTaskPaneType, which will always return 0, or xdTaskPane-
HTML, for the custom task pane), and the Visible property. The HTML-
Window property is level 3 OM, so it’s restricted to fully trusted form
templates.

The final steps include getting the data source node for my:field1 and
assigning its value to the textbox1 HTML element in the custom task
pane. The final result is that the text box in the task pane gets the value of
the Field1 Text Box control from the InfoPath form.

Programming Internet Explorer

We could write an entire book dedicated to programming Internet Explorer.

Actually, we already did! A former publication by coauthor Scott Roberts,

Programming Internet Explorer 5, was published in 1999 by Microsoft Press.

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 788

Let’s now look at the HTML behind our custom task pane page, as shown
in Listing 15.23. You can see the text box with id=textbox1 that we’re
assigning in the script from Listing 15.22.

Listing 15.23: Calling Form Script from the Custom Task Pane

<html>

<head>

<title>Custom Task Pane</title>

</head>

<body>

Text Box <input id=textbox1 type=text><p>

<input type=button id=runscript onclick="CallFormCode();"

value="Run form script">

</body>

<script>

function CallFormCode()

{

window.external.Window.XDocument.UI.Alert(

'Calling "SetField2" from the custom task pane.');

window.external.Window.XDocument.Extension.SetField2(

textbox1.value);

}

</script>

</html>

Now that we’ve witnessed InfoPath script code changing the HTML
content in the task pane, let’s see how the task pane can affect the form. In
the task pane HTML shown in Listing 15.23, we can see the CallFormCode
function that is executed when the user clicks the runscript button (visi-
ble as the Run form script button in the custom task pane shown earlier in
Figure 15.16). The first thing that the CallFormCode function does is call
into the InfoPath OM to show an alert dialog. If similar functionality
existed in the form script instead of the task pane HTML script, the form
script would simply be XDocument.UI.Alert. The next line of script uses
the XDocument.Extension object to access functions in the form script. In
this case, the task pane is calling function SetField2 and passing the
value of textbox1 (the text box in the custom task pane).

The InfoPath Object Model 789

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 789

Listing 15.24 shows how the SetField2 function looks. Remember that
this function lives in the form script. (Its simplicity may surprise you!)

Listing 15.24: Implementation of the SetField2Method in Form Script

function SetField2(val)

{

var field2 =

XDocument.DOM.selectSingleNode("/my:myFields/my:field2");

field2.text = val;

}

This JScript code snippet is pretty simple. Despite its plainness, it shows
off some of the more interesting capabilities of interacting with the task
pane. Since there are no plans to further develop JScript (as well as
VBScript) support in InfoPath, there’s no guarantee that the script code you
write today will work in the next wave of InfoPath programs. We can
already see this today: Browser-enabled form templates with script code
cannot be published to a server running Forms Services.

You can find more information about programming InfoPath with
script languages in any resource that discusses InfoPath 2003 or SP1 script-
ing. We recommend that you visit MSDN for further reading and research.

Programming InfoPath . . . in Action!

By now you are familiar with the various form events, have a thorough work-
ing knowledge of XML events, and know about the single control event
(ButtonClick). We’ve seen bits and pieces of the OM throughout this chap-
ter, but we still haven’t really used an overwhelming majority of what is
available. Those OM objects that appear more often in form events have par-
ticularly evaded our focus. The best way to show commonly used InfoPath
OM, as well as form events, is to tie everything into a real-world sample.

Chapter 15: Writing Code in InfoPath790

NOTE Not All OM Is Available Via window.external

Not all InfoPath OM is directly callable through the window.
external.Window.XDocument object. Access is denied to some
parts of the OM for security reasons. A workaround is to use the
XDocument.Extension object to call a function in the form script that
can, in turn, call into any InfoPath OM property or method as allowed
by the security level of the form.

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 790

The MOI Consulting Request Form
For the remainder of this chapter, we’ll demonstrate the MOI Consulting
request form. This is one of the primary forms used by MOI Consulting to
field requests from customers; as such, it is a complex form using a wide
variety of InfoPath features including, of course, a generous amount of C#
form code. Figure 15.17 shows the Welcome view. (This sample is named
MoiConsultingRequest.)

Programming InfoPath . . . in Action! 791

Forms Services
This sample form template is strictly tied to the full InfoPath object model.

In Chapter 17, we’ll discuss the shared InfoPath and Forms Services OM in a

little more detail.

Figure 15.17: Welcome view of the MOI Consulting request form

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 791

Filling Out the MOI Consulting Request Form
Let’s start learning about the request form by first filling it out. We’ll look at
the end-user experience and then, afterward, discuss how the form was
designed. Since the request sample requires full trust to fill out, we can open
the form template in design mode and then click Preview. (See Chapter 11 to
read more about previewing fully trusted forms.) We’ll soon see why the
form needs to be fully trusted in the first place.

Chapter 15: Writing Code in InfoPath792

NOTE Web Service Sample Dependency

For this form to run as expected, the GetSubAreas Web service must
exist at http://localhost:1369/MoiConsultingRequest/Service.asmx.
Web service code is included in the sample files for this chapter as
GetSubAreas. You can modify the service location of the sample form
template by using the Data Connections dialog in design mode.

When the form opens, you may notice a lot of red validation rectangles
and asterisks. The form doesn’t contain as much validation as it appears to
considering that, for example, the Option Button controls for selecting a
request type are all bound to the same node. As a result, once you select
one of those options, the red validation rectangles on all the Option Button
controls in that group disappear.

Let’s try toggling the various request type options. As you select differ-
ent options, two things occur in the form: Items suddenly appear in the
subarea List Box, and the custom task pane changes. The subarea List Box
changes relative to the request type selected. The custom task pane, on the
other hand, jumps to the “Request Type” help topic, which is constant for
any request type. (The text shown in the custom task pane changes when
you click on various controls in the view. As such, we’ll leave it out of
the immediate discussion to minimize distractions.) If you select the Time
sensitive/Critical option, the dialog shown in Figure 15.18 confirms the
high-priority request status. Clicking Yes in this dialog sets the Please con-
tact me control to Yes and disables the No option.

When the Please contact me control is set to Yes, the Phone number and Pre-
ferred date/time fields are both required to be filled in. Phone number requires
a particular format and will show a validation error dialog when it’s not

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 792

satisfied. Preferred date/time accepts both a date (in 1/2/2007 format) as well
as a time (e.g., 1:23 P.M.), with the default being two days from the current
date/time. This field also has many validation constraints. For example,
a date/time cannot be chosen in the past, nor can it be within five minutes
of the current time. The Now Check Box control, situated below the Preferred
date/time Date Picker, sets the date/time to five minutes from now while
emphasizing and disabling the date/time value.

The next set of fields appears under the Your Information region. It
includes Your Name, Company, and Customer ID Text Box controls. The only
requirement for these fields is that they cannot be blank. Following the
Your Information region are a couple of Button controls: click here and start
over. Clicking click here first causes InfoPath to check for validation errors,
but only in this view. If any errors are found, a dialog similar to the one
shown in Figure 15.19 appears.

Programming InfoPath . . . in Action! 793

Figure 15.18: Dialog that results when the Time-
sensitive/Critical request type is selected

Figure 15.19: Dialog that appears when form errors
exist in the current view

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 793

The start over Button control, as its name suggests, clears all form data
so you can fill out the form from blank. We’ll see this Button control again
as we continue filling out the form and progress through its different
views. When the current view isn’t the Welcome default view, start over car-
ries out the view switch automatically.

Toward the bottom of the form, we see some smaller font text, another
Button control, and finally a Click here to sign this section link. The text
reveals the form version and cache ID values of the form. The version cor-
responds to the version of the underlying form template. Cache ID, on the
other hand, gives the folder name containing the extracted form template
files kept on the user’s machine. If someone encounters a problem when
using the form, having the version readily available can help you deter-
mine whether the user is using the most recent template. The cache ID
might be useful in rare cases. For example, if the form template cache
somehow becomes corrupted, you could instruct the user to delete the
cache directory. This forces InfoPath to fetch and cache a fresh copy of
the original form template. The What’s this? Button control simply shows a
dialog telling the user that the form version and cache ID are helpful data
points for diagnosing problems. Finally, the Click here to sign this section link
is the standard (noncustomizable) entry point provided by InfoPath when
a signable section exists in the view. Clicking it does not sign the form but
instead opens the dialog shown in Figure 15.21.

Chapter 15: Writing Code in InfoPath794

Figure 15.20: Informing the user that signing is required
to continue

If there are no validation errors, the Signatures dialog appears, asking the
user to sign the form data. Successfully signing the form switches to the
Request Details view; otherwise, the user is informed that the data must be
signed to continue (Figure 15.20). Since the views aren’t listed on the View
menu, it is impossible to continue to the next view without signing the form.

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 794

Once there are no errors, the click here Button control has been clicked,
and signing has been successful, the view switches to Request Details and
the task pane disappears (Figure 15.22).

The Request Details view contains two input fields: a Rich Text Box for the
request description and a Bulleted List for additional details. The Bulleted
List is included inside an Optional Section that does not exist by default.
Clicking the Add Additional Details Button control inserts the Optional
Section. Subsequent clicks on the same Button control insert new Bulleted
List items. After completing this part of the form, we can click Continue to
move forward. Clicking Back, however, takes you back to the Welcome view.

Programming InfoPath . . . in Action! 795

Figure 15.21: Dialog that appears after using the Click
here to sign this section link in the MOI request form

Figure 15.22: Request Details view of the MOI Consulting request form

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 795

No data on the Welcome view can change because it has been signed and, as a
result, is read-only. The only options are to use the click here or start over But-
ton controls.

After clicking Continue on the Request Details view, a dialog appears ask-
ing us to confirm the data we’ve entered. This is the (appropriately named)
Confirm read-only view. Figure 15.23 shows the Confirm view, which sum-
marizes the data we’ve entered thus far. Nothing can be changed unless we
click Back to change the data through the Welcome or Request Details views.

Clicking Submit takes us to the final view (Figure 15.24). The form was
“submitted” by being saved to the location shown in the link. From here,
we can click either Close this Form or Create a New Request. The form-filling
session is complete.

Unfortunately, we can’t cover every possible scenario in this form. But
we suggest that you spend some time playing with this sample and getting
accustomed to its behavior. Having a better understanding of the details in

Chapter 15: Writing Code in InfoPath796

Figure 15.23: Confirm view of the MOI Consulting request form

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 796

this form will benefit you when we discuss its detailed design and under-
lying form code implementation.

Designing the MOI Consulting Request Form
Are you anxious to learn how to design this form template? For the remain-
der of the chapter, we’ll go through many lines of form code as well as rele-
vant thought processes used to develop and refine the form’s behavior.
We’ll introduce new OM objects, including their properties and methods, as
we encounter their use in the code behind the form.

Programming InfoPath . . . in Action! 797

Figure 15.24: Thank You view of the MOI Consulting request form

NOTE Taking a Scenario-Based Focus

It’s not our intention to cover the precise steps of designing this form.
Our goal is to focus on the scenario and higher-level operatives that
contribute to a complex template. Since this chapter is about program-
ming InfoPath, we’ll obviously dedicate more time to form code.

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 797

Gathering Requirements and Designing the Visual Layout

To begin designing the MOI Consulting request form, we first gather our
data requirements. The correlation between the form and our data require-
ments is reflected in each control in the Welcome and Request Details views.
Each control essentially maps to one of our data-gathering requirements.
Note that the data requirements do not yet involve creating the data source
or even designing the form. When sitting down to design this form, we com-
pile a list of data to collect from users. This list is essentially reflected in the
main data source and bound to controls in the view; so for this purpose, you
can infer our data requirements by browsing the form views and data source
in design mode. We’ll create a first draft of the data source in the next step.

After realizing what data we need to collect, we begin laying out the
Welcome view. InfoPath uses two-dimensional flow layout, so we insert
Table with Title and Three-Column Table layout tables (found on the Layout
task pane) as the foundation for allowing us to accurately position our con-
tent. Then we choose a color scheme to spice up the boring black-and-
white form. However, we could choose the color scheme later since it can
be applied at any time.

The next step in our design approach is to insert various controls from
the Controls task pane to satisfy our data requirements. At this point, we
don’t necessarily care about the data source. Our goal is to visually lay out
controls that correspond with our data requirements; we’ll deal with the
details of the data source later. As we insert controls, we try to logically
group them within adjacent table cells. Some crafty work with the Merge
Cells and Split Cells toolbar buttons as well as changes to the height and
width of individual cells eventually give us a pleasing visual layout. To
help identify controls, we type labels adjacent to them.

At this point you might realize that there are too many controls on the
view, or that it’s just too busy. This is where multiple views come in handy.
We decide to use a wizard style of form (with Next and Back buttons)
because the user should confirm the data entered across more than one
view. Finally, we add a terminating view (Thank You) to make it very clear
that the form had been filled out and submitted successfully.

Organizing the Data Source

Once we have hashed out the visual layout and end-user form-filling sce-
narios, the form looks like it’s 90% ready for production. Truth be told, we

Chapter 15: Writing Code in InfoPath798

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 798

have barely scratched the surface in terms of the total amount of work that
needs to be done! The next step is determining the structure of the main
data source and the names of its fields and groups. Since we’ve already cre-
ated an unstructured version of the data source by dragging all of the con-
trols into the view, this step is mostly a matter of moving and renaming
fields. However, we need to consider some other data source changes to
support the visual design of the form.

One such change in the data source, for example, is related to having a
wizard-like form. We want the user to continue to the next view only if the
current view is free of validation errors. (We’ll see how to check for form
errors in the “Adding Form Code” section later in this chapter.) The easiest
way to achieve such behavior is to gather all data source fields and groups
that you want to validate under a common parent. This is easiest to do by
creating groups that map to the views in the form. In our case, only the
Welcome and Request Details views collect data from users. Once we create
groups that correspond with these views, we can move each node into its
appropriate group.

Another task of data source editing involves renaming the generic node
names (field1, group1, and so on) to something meaningful. Remember
the text labels we created for the newly inserted controls when visually set-
ting up the form? We’ve found it easiest to mimic those names in the field
or group name with PascalCasing. Many benefits are realized by properly
naming data source nodes. One benefit that we didn’t realize until it “just
worked” is displaying the raw field names to the user to identify specific
errors (as shown earlier in Figure 15.19). Another big win is hooking up the
context-sensitive help in the custom task pane. As you can see, naming
your nodes properly can make form development easier when you add
advanced form features.

Programming InfoPath . . . in Action! 799

TIP Modifying Other Data Source Properties

While you’re renaming data source nodes, also consider whether they
cannot be blank and whether the data type should be more restrictive.
For data types such as integer, you can click the Format button to
define a display format. If you’re not sure, you can always change the
properties later, but it’s quicker to make changes in a single pass.

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 799

What if you want to use some data in your form but really don’t have
anywhere to put it (such as the form version or cache ID)? Consider adding
that data node under the document element. In our case, let’s add FormVer-
sion, CacheId, and SavedFileLocation as attribute fields to the docu-
ment element. These fields aren’t edited by the user, yet they’re set through
form code and are displayed to the user.

Chapter 15: Writing Code in InfoPath800

WARNING Do Not Store Sensitive Information in the Main
Data Source

Storing sensitive data in the main data source is not recommended,
even if you are not displaying the fields in the view. Simply saving the
form and viewing the content in a text editor (unless the form uses
Information Rights Management) will reveal all form data in plain text.

This form also contains a data connection (and corresponding second-
ary data source) for populating the subarea List Box items. We can create a
very simple Web service (whose code is available in the GetSubAreas
sample file) that takes a request type as a parameter and returns an array of
subarea strings. The data connection that we create to query this Web service
does not have the Automatically retrieve data when form is opened checkbox
checked. This is because we’re going to set the parameter value and per-
form the query manually in form code.

Finally, we want to make sure that the data entered by the user on the
Welcome view is digitally signed for proof that this person, indeed, filled
out the request. We enable signing the Welcome group by inserting it into
the view as a Section control, essentially dragging the entire view (except
for the Table with Title at the top) into the Section, and turning on the
option that allows the Section to be signed. Alternatively, we could have
added the Welcome group to the set of signable data in the Form Options
dialog. However, we want the user to get visual feedback that the data is
digitally signed with his or her own certificate. The fallout from showing
the digital signature in the view leads to having the Click here to sign this
section link available for users to click. Since we want to check for form
errors in the Welcome view before a user can sign the data and switch to the
Request Details view, we want to block this link from doing any signing.
We’ll see how to handle this in the “Adding Form Code” section.

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 800

Figure 15.25 shows the main data source for the MOI Consulting request
form template.

Adding Logic without Code

The next major step after getting most of the data source in place is to add
logic to our form. We could implement all of our form’s logic by just writing
code, but that’s not the best approach. You might not expect us to recom-
mend this (especially in this chapter), but you should consider using rules
before form code when adding logic. Form code not only takes longer for
you to implement but also is more difficult to maintain. It is prone to errors
and security flaws, despite how good we think we are at programming.
Rules, on the other hand, can be maintained by almost anyone and have
been well tested for use in countless situations. Moreover, rules are declar-
atively defined as part of the form definition, so there is neither code to
compile nor an assembly to build.

Programming InfoPath . . . in Action! 801

Figure 15.25: Main data source for the MOI Consulting request form template

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 801

Here is a sampling of the rules used in the MOI Consulting request form.

• When ContactMe is changed, set Now to false.

• When Now is checked, set PreferredDate to now() plus five
minutes.

• When RequestType is SensitiveCritical, set ContactMe to yes.

• Clicking the What’s this? Button control on the Welcome view shows a
dialog box message.

• Clicking the Next or Back Button controls takes the user to the next
view or the previous view, respectively.

As you can see, rules define an “if X then do Y” behavior that can easily
replace a few lines of form code. Rules can also have multiple conditions
and multiple actions that may be tedious to implement using code. Writing
the code isn’t the only burden—there’s also the need to handle special
cases, for example, whether a field node exists or is just empty. If you’re
skeptical that rules save time and energy, we leave it as an exercise for you
to reimplement all rules as form code in the MOI request form.

More logic that we can’t forget to add to our form involves data valida-
tion and conditional formatting. Using InfoPath’s built-in pattern builder
to define data validation constraints basically defeats the purpose of doing
any basic regular expression matching in the Validating event handler.
We also use extensive data validation on the PreferredDate field; errors
will be reported under any of these conditions:

• If ContactMe is yes and PreferredDate is blank

• If PreferredDate is within an hour of now and RequestType is not
SensitiveCritical and ContactMe is yes

• If PreferredDate is less than five minutes from now and
ContactMe is yes

Conditional formatting in this sample form makes controls read-only or
hidden under certain conditions in the data. For example, we use conditional
formatting to hide the OtherType Text Box when RequestType is not set to
Other. Condition disabling is used for both the Please contact me (bound to
field ContactMe) Option Button controls as well as the PhoneNumber and
PreferredDate fields under certain circumstances. We didn’t conditionally

Chapter 15: Writing Code in InfoPath802

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 802

disable the click here Button control, but we could have done so by checking
some field (perhaps enableClickHere) in the data source that does not exist
in the view. In the right circumstances, we could set this field to a specific
value through form code, which would allow the user to click the Button
control. We won’t take this approach because we believe that having a dis-
abled control would frustrate users. Keeping the Button control enabled
might tempt some users to click it too early, but we offer feedback (in this
case) through data validation. That’s where we show the error dialog shown
earlier in Figure 15.19.

Adding Form Code

When making the decision to add code, it shouldn’t only be a question of
whether you already tried using rules and data validation. You should also
be sure to solidify names and the structure of the data source, as we men-
tioned earlier. As we start to add form code, we should have already con-
vinced ourselves that between rules and data validation we still cannot get
the desired form behavior. Although this is the guidance we give to our
readers, we do not completely adhere to this practice in the MOI request
form. We’ll call out when we’re violating our own principles, but keep in
mind that it’s only to show the breadth of writing form code with the
InfoPath OM.

Naming Your Nodes and Buttons Besides assigning real names to data
source fields and groups, giving real ID values to all Button controls (in the
Button Properties dialog) is worth the small time investment. This seem-
ingly tedious task is important, if, of course, you want your form code to be
readable and maintainable! But how do data source names, structure, and
Button ID values correlate with code behind the form? Take a look at our
InternalStartup method in Listing 15.25 and see for yourself.

Programming InfoPath . . . in Action! 803

Without proper field and group names in the data source, the XPath
expressions used for hooking up any XML events would be meaningless.
Moreover, the event handler method names are also based on the nodes
whose events they’re sinking. It’s possible to change the names of nodes in
the data source after creating XML event handlers, but InfoPath will update
only the XPath expression. The method name does not change unless you
do it manually. Furthermore, any code you already wrote that depends on a

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 803

Listing 15.25: InternalStartup Definition for the MOI Consulting Request Form
Template

public void InternalStartup()

{

EventManager.XmlEvents[

"/my:Request/my:Welcome/my:RequestType"].Changing +=

new XmlChangingEventHandler(RequestType_Changing);

EventManager.FormEvents.Loading +=

new LoadingEventHandler(FormEvents_Loading);

((ButtonEvent)EventManager.ControlEvents["Start_Over"]).Clicked +=

new ClickedEventHandler(Start_Over_Clicked);

((ButtonEvent)EventManager.ControlEvents[

"click_here_to_sign"]).Clicked +=

new ClickedEventHandler(click_here_to_sign_Clicked);

EventManager.FormEvents.ContextChanged +=

new ContextChangedEventHandler(FormEvents_ContextChanged);

EventManager.XmlEvents[

"/my:Request/my:Welcome/my:RequestType"].Changed +=

new XmlChangedEventHandler(RequestType_Changed);

EventManager.FormEvents.ViewSwitched +=

new ViewSwitchedEventHandler(FormEvents_ViewSwitched);

((ButtonEvent)EventManager.ControlEvents[

"Add_Additional_Details"]).Clicked +=

new ClickedEventHandler(Add_Additional_Details_Clicked);

EventManager.FormEvents.Submit +=

new SubmitEventHandler(FormEvents_Submit);

EventManager.FormEvents.Sign +=

new SignEventHandler(FormEvents_Sign);

}

Chapter 15: Writing Code in InfoPath804

particular data source structure (e.g., using XPathNavigator objects to
select nodes) could break. It’s easy to see that getting your data source right
the first time saves time and problems in the long run!

Unlike XPath expressions that automatically update when the data source
changes, Button ID values do not enjoy the same luxury. If the Button ID is
changed when a Clicked event handler is already set up, that particular
Button control will no longer fire the event handler. With default Button IDs
such as CTRL1_5 (and whatever other senseless IDs Button controls can
have), looking at a method in form code such as CTRL1_5_Clicked is frus-
trating. Furthermore, if your form has many Button controls, it’s not easy to
determine which ID maps to a given Button. The best way to understand
which Clicked event handlers listen to which Button controls is to give each

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 804

Button’s ID value a meaningful name. We visit each Button’s properties
dialog in the MOI request form, copy the display label, paste it into the ID
box, and then replace spaces with underscore characters. (A Button control
ID must begin with a letter and contain only alphanumeric characters and
underscores.) This practice, as you can see in Listing 15.25, makes the
Clicked event handler methods easily recognizable.

Showing a Custom Dialog with Buttons One of the first form behaviors
you may have noticed is a confirmation dialog (shown earlier in Figure 15.18)
that appears when you select the Time-sensitive/Critical request type. The code
that implements this behavior (Listing 15.26) shouldn’t introduce anything
new in terms of the ChangingXML event. However, it does show how to use
the MessageBox.Show static method to show buttons and get back the user’s
selection. The Rules feature can only show a dialog with an OK button. In this
case, we want user feedback, which requires the use of form code.

Listing 15.26: Using MessageBox.Show to Get User Feedback

public void RequestType_Changing(object sender, XmlChangingEventArgs e)

{

if (e.NewValue == "SensitiveCritical"

&& e.Operation == XmlOperation.ValueChange)

{

DialogResult result = MessageBox.Show(

"You will be contacted within 5 minutes. Are you sure?",

"High Priority Request", MessageBoxButtons.YesNo);

if (result != DialogResult.Yes)

e.CancelableArgs.Cancel = true;

}

}

Showing Read-Only Properties from the OM Another interesting form
feature you may have noticed is the use of dynamic, read-only data in parts
of the view. Specifically, we show the user name in the upper right, and in
the lower right we show the form version and, in parentheses, the cache ID
(refer back to Figure 15.17). How did we get this data? It comes straight from
various InfoPath OM properties. But to show this data in the view, we need
to set values of fields in the data source that are bound to Expression Box
controls. We could use read-only Text Box controls, but Text Box controls

Programming InfoPath . . . in Action! 805

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 805

have an opaque white background, which makes them stand out (and beg
to be filled out) against the soft peach view background. Since these controls
are not to be filled out by the user yet still need to exist in the data source, we
add FormVersion and CacheId nodes under the document element as
attribute fields and put CurrentUser within the Welcome group as an ele-
ment field. (Refer back to Figure 15.25 for the main Data Source task pane.)

Since setting the FormVersion, CacheId, and CurrentUser fields is a
one-time occurrence when the form opens, the code seems to fit nicely in
the Loading event. We also have some other code that must be run either
when the form first opens or during other one-time operations. The code
that needs to run when the form opens does a check to see if the form that’s
opening is new from the template or an existing .xml file. In the MOI
request form, we don’t want existing forms to be reopened. In fact, let’s
disable the Save and Save As options (through the Open and Save category of
the Form Options dialog) to ensure that the form can’t be saved.

A Form to Be Filled Out in One Sitting Why do we go through the trouble
to discourage saving and prevent opening an existing form? The request
form isn’t meant to be saved. Its purpose is to allow a user to quickly fill
out one request during a single sitting. We can check to see whether the
form is new or not by looking at the New property. In the form code shown
in Listing 15.27, if the form is not new (i.e., it is an existing saved form—
and who knows how the user got it?), we cancel the Loading event.
Similar to canceling the Changing event, which we discussed earlier in
this chapter, canceling the Loading event forces InfoPath to fail loading
the form.

Chapter 15: Writing Code in InfoPath806

NOTE UserName versus LoginName

Getting the user’s name with Application.User.UserName returns
the Active Directory (AD) display name. If AD is unavailable, the
nondomain portion of the login name is returned. Alternatively,
Application.User.LoginName always returns the DOMAIN\
LoginName identity of the user. Note that using Application.User.
LoginName requires a fully trusted form.

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 806

Listing 15.27: The Loading Event Handler for the MOI Consulting Request Form

const string _startOverOuterXml = "startOverOuterXml";

const string _startOverGetSubAreas = "startOverGetSubAreas";

/* . . . */

public void FormEvents_Loading(object sender, LoadingEventArgs e)

{

// Only allow new forms (i.e., no saved forms can be opened).

// We could add more logic to check the user role or specific data

// in the form before rejecting it.

if (!this.New)

{

e.CancelableArgs.Cancel = true;

e.CancelableArgs.Message = "I’m sorry, you must fill out a "

+ " new request. Previous requests cannot be honored.";

return;

}

XPathNavigator root = MainDataSource.CreateNavigator();

XPathNavigator user = root.SelectSingleNode(

"/my:Request/my:Welcome/my:CurrentUser", NamespaceManager);

user.SetValue(Application.User.UserName);

XPathNavigator uri = root.SelectSingleNode(

"/my:Request/@my:CacheId", NamespaceManager);

uri.SetValue(this.Template.CacheId);

XPathNavigator version = root.SelectSingleNode(

"/my:Request/@my:FormVersion", NamespaceManager);

version.SetValue(this.Template.Version);

// Cache the Entire data source for the "Start Over" feature.

// The StartOverOuterXml property will return this saved data.

XPathNavigator docElem = root.SelectSingleNode("*");

FormState.Add(_startOverOuterXml, docElem.OuterXml);

// Cache secondary data source.

XPathNavigator getSubAreasRoot =

DataSources["GetSubAreas"].CreateNavigator();

XPathNavigator getSubAreasDomElem =

getSubAreasRoot.SelectSingleNode("*");

FormState.Add(_startOverGetSubAreas, getSubAreasDomElem.OuterXml);

// Set the default view.

ViewInfos.Initial = ViewInfos["Welcome"];

}

Programming InfoPath . . . in Action! 807

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 807

If a user tries to open an existing form, an error dialog appears
(Figure 15.26), and then InfoPath closes the form-filling session.

“Start Over” Feature and Setting a Default View Another nifty form fea-
ture in this form is the ability to start over when filling out the form. You can
find Button controls labeled start over or Create a New Request in three of the
four views. All of these Button controls call into the same clicked event han-
dler. But before we look at that particular event handler, we need to first con-
sider a couple other one-time operations that are included in the Loading
event. The comments in Listing 15.27 (labeled with comments Cache the

Entire data source for the "Start Over" feature and Cache second-

ary data source) show caching of both the main and GetSubAreas data
sources. We store the data by getting the document element’s outer XML and
saving it in the FormState object. Without doing these prerequisites, the
“start over” feature would not work. This will become clearer in a moment
as we see the code behind starting over. The last line in the Loading event
sets the view that appears when the form opens. Despite setting the Welcome
view as the default in design mode, this setting is a little redundant. But
since calling the SwitchView method (a member of ViewInfos) is not sup-
ported and will throw an exception in the context of the Loading event, it’s
helpful to know how to set a default view as the form opens. (Calling
SwitchView within the Merge form event is also disallowed.)

Chapter 15: Writing Code in InfoPath808

Figure 15.26: Error dialog that appears when user attempts to open an existing MOI
request form

TIP Setting the Default View Dynamically

You could add additional logic (e.g., using if statements) to go to a
specific view based on criteria in the form (such as a field value) or
other factors (such as the user’s name or role).

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 808

The “start again” feature we added to our form came out of our feeling
that it’s easier to start over by clicking a button than it is to manually close
and reopen a form. To facilitate starting again, we should think about the
various states of the form at the time it’s invoked.

• We can be on any view.

• There could be validation errors.

• The form could be blank to begin with.

• The data may be digitally signed.

Since we could be on any view, starting again means we should go back to
the Welcome view. As a result, the first OM call is to SwitchView. If we’re
already on the Welcome view, this code has no effect. So there’s no need to
check what view you’re on with this.CurrentView before switching. We
threw the next two bullet points regarding validation errors and a blank form
as curve balls! These form states do not affect the ability for our “start again”
code to perform as expected. Neither validation errors nor the blank form
(which still has validation errors) hinders us in modifying the data source.

When we first wrote the Start_Over_Clicked Button handler (see
Listing 15.28), we didn’t check to see if the form was digitally signed. If the
form is signed, clearing the main data source fails. Remember that a signed
data block is always read-only after a signature is applied. Seeing as it
could be a potential security issue if form code were allowed to remove a
signature, we cannot do it programmatically. To accommodate this sce-
nario, we still switch to the Welcome view but bail out by asking the user to
manually remove the signature and try again. That’s exactly what we do
within the first if statement in Listing 15.28.

If the form isn’t digitally signed, we have the green light for clearing the
data sources. Remember how we cached the main and secondary data
sources in the Loading event? Specifically, we took the document element
outer XML strings and added them to the FormState object. As you can see
in Listing 15.28, we call ReplaceSelf on the document element node (of both
the main and GetSubAreas data sources) and pass our cached copy of the
outer XML. Since our cached copies of the data sources are snapshots of the
initial form’s data sources, we can rest assured that they’re valid according to
the schema and that the form will appear similar to a newly created form. The

Programming InfoPath . . . in Action! 809

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 809

code in Listing 15.29 supports the Start_Over_Clicked method by expos-
ing our FormState data wrapped in properties for consistent data access.

Chapter 15: Writing Code in InfoPath810

NOTE Using FormState to Persist Session Data

To recall an earlier discussion in this chapter, the FormState object
holds name-value pairs of any serializable types. Its purpose is to
maintain state in form code from the time a specific form is opened for
filling until it is closed. The Loading event is well suited for initializ-
ing FormState objects.

Listing 15.28: Implementation of the Start Over Button Click Event

public void Start_Over_Clicked(object sender, ClickedEventArgs e)

{

// Every button ID called "Start_Over" calls into this handler

ViewInfos.SwitchView("Welcome");

// Tell the user to remove his or her digital signature

if (this.Signed)

{

MessageBox.Show("Cannot start over because the form "

+ "data is signed. Please go to the Digital Signatures "

+ "dialog and remove your signature. Then click this "

+ "button again to continue.");

return;

}

// Clear the main data source

XPathNavigator docElem =

MainDataSource.CreateNavigator().SelectSingleNode("*");

docElem.ReplaceSelf(StartOverOuterXml);

// Clear any secondary data sources

XPathNavigator subAreasRoot =

DataSources["GetSubAreas"].CreateNavigator();

XPathNavigator subDocElem = subAreasRoot.SelectSingleNode("*");

subDocElem.ReplaceSelf(StartOverGetSubAreas);

}

Listing 15.29: Persisting the Default State of XML for Main and Secondary Data Sources

const string _startOverOuterXml = "startOverOuterXml";

const string _startOverGetSubAreas = "startOverGetSubAreas";

/* ... */

private string StartOverOuterXml

{

get

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 810

{

if (FormState.Contains(_startOverOuterXml))

return FormState[_startOverOuterXml] as string;

throw new Exception(

"Form load did not load properly before Starting Over!");

}

}

private string StartOverGetSubAreas

{

get

{

if (FormState.Contains(_startOverGetSubAreas))

return FormState[_startOverGetSubAreas] as string;

throw new Exception(

"Form load did not load properly before Starting Over!");

}

}

Checking for Errors and Adding a Digital Signature Now that we’ve
seen how the form can start over, we should learn about the click here But-
ton control. As its surrounding text hints, clicking this Button will “sign
this part of the form and continue.” But that’s not all. Earlier we made it a
requirement that before the user can sign and switch to the next view,
there must be no pending form errors within the Welcome group. That
means all required or invalid fields with validation errors in the Welcome
view must be fixed. To determine whether a form error exists on an item
within the Welcome group, we use the XPathNavigator IsDescendent
method. As you’ll see in the code, we ask the Welcome node whether a
specific node is a descendent; if so, we’ve found a node of interest. If
errors are found, we show a dialog listing the exact errors with a corre-
sponding corrective action. Figure 15.27 shows the dialog (which also

Programming InfoPath . . . in Action! 811

Figure 15.27: Dialog for clearly presenting
to the user any form errors

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 811

appeared earlier as Figure 15.19). Generating such a detailed dialog is very
easy. But ultimately, to make the dialog helpful for users, you must rely on
field names that closely resemble any text labels adjacent to the correspon-
ding controls.

As you look at the code snippet shown in Listing 15.30, you’ll see that
we first check whether the form data is signed. This will be true, by the way,
if the form is partially or wholly signed. If signing has already occurred, we
don’t need to check for form errors. For signing to occur in the first place,
we must have already validated that there are no errors through this same
code path! Since we’re also sinking and special-casing the Signing event
(as you’ll soon see), there’s no other way for the form to get signed.

Listing 15.30: Code for the Button That Starts Validation on the Default View of the MOI
Consulting Request Form

public void click_here_to_sign_Clicked(

object sender, ClickedEventArgs e)

{

if (this.Signed)

{

ViewInfos.SwitchView("RequestDetails");

return;

}

// 1. Check for errors

XPathNavigator root = MainDataSource.CreateNavigator();

XPathNavigator welcome = root.SelectSingleNode(

"/my:Request/my:Welcome", NamespaceManager);

string welcomeErrors = string.Empty;

foreach (FormError error in Errors)

{

// Is this error under the "Welcome" group?

if (welcome.IsDescendant(error.Site))

welcomeErrors += error.Site.LocalName + ": "

+ error.Message + System.Environment.NewLine;

}

// If there are errors, report them and stop

if (!string.IsNullOrEmpty(welcomeErrors))

{

MessageBox.Show("Please fix these errors: "

+ System.Environment.NewLine + System.Environment.NewLine

+ welcomeErrors, "Please Fill or Fix Some Data");

return;

}

// Tell the Signed event it’s okay to allow signing

SigningAllowed = true;

Chapter 15: Writing Code in InfoPath812

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 812

// Continue with signing

foreach (SignedDataBlock sig in SignedDataBlocks)

// Sign only this block

if (sig.XPath.Expression.EndsWith("my:Welcome"))

{

// Calling Sign requires a full trust form

sig.Sign();

// Was it actually signed or canceled?

if (sig.Signatures.Count > 0)

ViewInfos.SwitchView("RequestDetails");

else

MessageBox.Show("You must sign the form "

+ "before continuing. Please try again.");

break;

}

SigningAllowed = false;

}

The code for going through errors is quite easy. First, the Form-
ErrorsCollection object is exposed by the this.Errors (or just
Errors) property. Since FormErrorsCollection inherits from the ICol-
lection interface, iterating through each FormError object is performed
by a foreach loop. Of the properties on the FormError object, the most
interesting to us are Site (yielding the XPathNavigator of the node with
the error) and Message. Error will always provides a nonempty short
error message, while MessageDetails might be more verbose. Mes-
sageDetails is often empty unless a specific data validation constraint
provides details. In this sample, MessageDetails is empty for all errors
except for a few that we defined through InfoPath design mode, such as
the PhoneNumber and PreferredDate fields. To detect whether there are
any errors to show, we start with an empty welcomeErrors string. If it’s
still empty after looping through any form errors, the code skips over
showing a dialog because there are no errors.

A moment ago, we said that we’re sinking the Signing event to pro-
grammatically determine when signing is permitted. Essentially, we want
the code from Listing 15.30 (but nothing else) to initiate signing the form.
Other ways to add a signature include clicking the Click here to sign this sec-
tion link in the view as well as using the Digital Signatures dialog accessed
from the Tools menu. No matter how signing is instigated, the Signing event
is always fired, which takes over the entire signing process. For our scenario

Programming InfoPath . . . in Action! 813

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 813

to work properly, we need to essentially block all attempts to sign the form
unless the click here Button control is the initiator. The SigningAllowed
Boolean property facilitates our scenario by allowing signing in the Signing
event only when the property is set to true. We’ll look at the Signing event
shortly.

To sign the Welcome group in the form, the code iterates through the
SignedDataBlocks collection. We look for the signed data block whose
XPath ends with my:Welcome for brevity. The full XPath is /my:Request/
my:Welcome. Calling the Sign method tells InfoPath to show the signing
dialog for this specific signed data block. It is not possible to block this dia-
log and silently sign the form. This is for security reasons. Despite our call
to Sign, it’s up to the user to follow through with signing. Since the dialog
could be closed or canceled without signing, the code must check whether a
signature really exists. To perform this check, we use the Count property of
the Signatures object. Instead, since there is only one signature, we could
have used the this.Signed property as we did earlier in this method.

Chapter 15: Writing Code in InfoPath814

WARNING Determine Which Data Block Is Signed

The this.Signed property will return true if the form has a signa-
ture. If you have multiple signed data blocks, the Count property on
the Signatures object of the SignedDataBlock itself is sure evi-
dence that the specific block in question was signed.

The Signing event is fired immediately before the Signatures dialog,
which signs the data, appears. We mentioned before that we need to block
signing unless the user clicks the click here Button control. Since we just
reviewed the click_here_to_sign_Clicked event handler sinking that
Button control, we can see how to arrange this. Let’s also look at the
SigningAllowed property that maintains its Boolean status through the
FormState object. Listing 15.31 shows the code from the sample form
template.

NOTE Signing Event Requires Full Trust

Only fully trusted forms can sink the Signing event. As a result,
you’ll need to set the form template’s security level to full trust.

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 814

Listing 15.31: Code for the Sign Form Event

const string _signingAllowed = "signingAllowed";

/* . . . */

private bool SigningAllowed

{

get

{

if (FormState.Contains(_signingAllowed))

return (bool)FormState[_signingAllowed];

return false;

}

set

{

if (!FormState.Contains(_signingAllowed))

FormState.Add(_signingAllowed, value);

else

FormState[_signingAllowed] = value;

}

}

/* . . . */

public void FormEvents_Sign(object sender, SignEventArgs e)

{

if (SigningAllowed)

{

Signature thisSignature =

e.SignedDataBlock.Signatures.CreateSignature();

thisSignature.Sign();

e.SignatureWizard = true;

}

else

{

e.SignatureWizard = false;

MessageBox.Show("Please use the 'click here' "

+ "button (in the form) to proceed.");

return;

}

}

If the SigningAllowed property is true, we first create a new signa-
ture by using the CreateSignature() method of the Signatures object
(which returns a SignatureCollection). Calling Sign on the newly cre-
ated Signature shows the Signatures dialog, which the user can fill out.
The code won’t continue past Sign until the dialog is dismissed. In the
case when the user tries to sign the form in an alternate way (such as using
the Digital Signatures dialog), we show a dialog explaining how our form
expects the user to sign the form data. Whether or not the user applied a

Programming InfoPath . . . in Action! 815

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 815

signature or just closed the dialog is handled by the Button Clicked event
handler we looked at in Listing 15.30.

Context-Sensitive Help in the Custom Task Pane Another major feature
in the MOI request form is the context-sensitive help in the custom task
pane. Before we see how the task pane is involved in the code, it’s impor-
tant to learn about the underlying mechanism that causes the task pane to
change. The ContextChanged event is a form event fired whenever XML
context in the current view is changed. The “context” portion of “XML con-
text” is determined by what control in the view has focus. The “XML” part
is the specific data source field or group bound to that control. So when-
ever control focus changes from control A to B, XML context changes if and
only if controls A and B are bound to different data source nodes.

To give a concrete example, let’s look at the MOI request form. As you
click through the Option Button controls for the request type, you’ll notice
that the task pane does not change; it just stays on the “Request Type” help
topic. Even though we’re clicking on different controls, the data source
(RequestType) behind those controls is the same. Now try clicking on any
other control in the view; as expected, the control in which you clicked is
not bound to RequestType, and the task pane changes its content.

Chapter 15: Writing Code in InfoPath816

WARNING Context Changed Event Behavior

The ContextChanged event is called for all sorts of contexts that you
may not expect. For example, clicking in white space in the view (not
on a control) results in the document element getting context! We rec-
ommend that you try repeating controls as well. The best way to see
when the event is called is to put this code into the Context Changed
event handler: MessageBox.Show(e.Context.Name);.

Now that we understand how the ContextChanged event works, let’s
apply it to our context-sensitive help system in the task pane. For starters,
the task pane content is a single HTML file authored in Word. We used
Word’s Bookmarks feature to place bookmarks throughout the document.
These bookmarks are simply HTML anchor tags with unique names. We’re
leveraging Internet Explorer’s ability to jump to an anchor on an HTML

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 816

page by using the # character at the end of the URL, followed by the anchor’s
name. Thanks to the effort we gave when properly naming the fields and
groups in the data source, it’s really easy to hook up the ContextChanged
event handler to the task pane. Assuming that we use the field and group
names (such as RequestType for the “Request Type” help topic) to book-
mark content in the HTML file, the anchor name is given automatically in
the ContextChanged event! See the implementation of the Context-
Changed form event in Listing 15.32.

Programming InfoPath . . . in Action! 817

NOTE Custom Task Pane HTML

The HTML file included in the sample includes only simple text.
InfoPath does not impose any artificial boundaries in terms of the
complexity of the HTML file. A lightweight HTML file was used for
the sake of this sample.

TIP Custom Task Pane Navigation and Pane Visibility

We use an optimization to skip navigation if the task pane is not visible.
It is not a requirement to have a visible task pane to perform navigation.

Listing 15.32: Wiring Up the ContextChanged Form Event for Context-Sensitive Help
in the Task Pane

public void FormEvents_ContextChanged(object sender,

ContextChangedEventArgs e)

{

if (e.ChangeType == "ContextNode")

{

HtmlTaskPane htmlTaskPane =

(HtmlTaskPane)this.TaskPanes[TaskPaneType.Html];

if (htmlTaskPane.Visible)

htmlTaskPane.Navigate("MoiConsultingRequest.htm#"

+ e.Context.LocalName);

return;

}

}

Before we move on to the Request Details view that appears after the
user clicks the click here Button control, let’s talk about another data-rich

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 817

feature you may have noticed. Selecting an Option Button in the Request
Type region of the form automatically populates the subarea List Box. This
happens via a Changed event handler on the RequestType field. We chose
the Changed event for several reasons. First, the data in the RequestType
field has been confirmed because it made it past the Changing and
Validating XML events. Second, even though we’re not doing it, the
main data source can be modified. This gives us flexibility in the future if
we decide to add functionality that could change other data in the form. In
this particular case with the RequestType field, we also have a Changing
event. (We showed this Changing event toward the beginning of explain-
ing the MOI request sample form.) In the case where the Changing event
rejects the user’s selection (which is a possibility if he or she chooses the
Time-sensitive/Critical option), our Changed event is never called. Listing
15.33 shows the Changed event handler.

Chapter 15: Writing Code in InfoPath818

NOTE Querying Via a Rule Instead of Form Code

In reality, we would have chosen to use a rule on the RequestType
node. It would set the requestType query parameter on the second-
ary data source (using the Set a Field’s Value action); then query the
Web service connection. We wrote this code to demonstrate form code
involving data connections, as well as some other OM properties and
methods.

Listing 15.33: Dynamically Populating the RequestType List Box Using a Data Connection

public void RequestType_Changed (object sender, XmlEventArgs e)

{

// Process value changes only for the RequestType field.

// This code also should not run when filling the OtherType field.

if (e.UndoRedo

|| e.Operation != XmlOperation.ValueChange

|| e.Site.Name != ((XPathNavigator)sender).Name)

{

return;

}

// Request Type changed, get an updated list of Sub Areas

DataSource getSubAreasDS = DataSources["GetSubAreas"];

// We could have also used DataConnections["GetSubAreas"], below

WebServiceConnection getSubAreasWSC =

(WebServiceConnection)getSubAreasDS.QueryConnection;

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 818

// Get the navigator for the GetSubAreas secondary data source

XPathNavigator getSubAreasNav = getSubAreasDS.CreateNavigator();

// Get the requestType param that will be sent to the Web service

XPathNavigator requestTypeNav = getSubAreasNav.SelectSingleNode(

+ "/dfs:myFields/dfs:queryFields/tns:GetSubAreas"

+ "/tns:requestType", NamespaceManager);

// Get the Request Type from the main data source

requestTypeNav.SetValue(e.NewValue);

// Web service timeout is 30s, increase to 60 for slow connections

getSubAreasWSC.Timeout = 60;

// Create a new navigator to capture errors, if any

XmlDocument errorsXmlDoc = new XmlDocument();

XPathNavigator errorsNav = errorsXmlDoc.CreateNavigator();

try

{

// Query the Web service

getSubAreasWSC.Execute(

null /*input*/, null /*output*/, errorsNav /*errors*/);

}

// Silently fail and we’ll show the message box in a moment.

// If we didn't do this, InfoPath would show the exception.

catch (Exception) { }

if (errorsNav.HasChildren)

MessageBox.Show("I’m sorry, an error occurred accessing " +

getSubAreasWSC.ServiceUrl

+ ". Please select a Request Type again.");

}

The Changed event handler for RequestType (Listing 15.33) at first
may appear to be a long and complicated method. But most of it merely
involves comments or data source operations, which happen to take up
more lines of code. Let’s parse through this source code to understand
what purposes it serves. We left most of the comments in the code to offer a
more development-centric viewpoint (since, of course, we added them
while writing the code). See the MoiConsultingRequest sample code for
the entirety of comments.

As we know from studying behaviors of XML events, event bubbling is
both our friend and our enemy. It’s convenient to use at a higher level in the
data source to handle a specific event on a variety of nodes. However, in a
case like ours where we want to query via a Web service connection, it is
best to restrict this code to running only when necessary. Querying an exter-
nal data source is a relatively slow ordeal and should be minimized when
possible. To adhere to this best practice, we are selective about whether or

Programming InfoPath . . . in Action! 819

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 819

not our event handler continues processing. Three conditions must hold
true for the event to continue with querying the Web service.

1. The user must not have incurred an undo or redo.

2. The operation must be a change in value.

3. The site (where we’re listening) and sender (what actually changed)
nodes must be the same.

As the comments in the code suggest, the last two conditions are very
important in our effort to filter irrelevant event notifications. If the second
condition ceased to exist, our code would query the Web service when the
user clicks the start over Button control. This is because the RequestType
node would be deleted and then inserted. Surely we wouldn’t want to query
because the GetSubAreas secondary data source will be cleared anyway in
the “start over” handler. If the last condition were not in place, our code
would still run because of event bubbling. This happens when the user
selects the Other Option Button control in the Request Type region and thus
changes the OtherType attribute field (bound to the associated Text Box).

In the cases where the user successfully changes the RequestType node
by clicking on one of the Option Button controls, we want to proceed and
query the Web service. The Web service method for getting the list of subar-
eas (called GetSubAreas) accepts a string value that matches a Request-
Type enumeration. This enumeration is defined in the Web service itself. If
a nonenumerated value is used, the query will fail. The Web service imple-
mentation is succinct for the purpose of this sample; it maps the Option
Button values to an array of hard-coded strings.

Chapter 15: Writing Code in InfoPath820

NOTE GetSubAreas Web Service Sample

You can find the Web service code, GetSubAreas.cs, with the samples
for this chapter.

Before we do the query, however, we have to take care of a few prequery
setup steps. As we know from Chapter 7, secondary query data connections
use corresponding secondary data sources to get data to and from the

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 820

external source. In this case, the secondary data source (called GetSubAreas,
which corresponds with its connection counterpart with the same name) is
used to populate the List Box bound to the SubAreas secondary data
source. When we query GetSubAreas, the content of queryFields is sent
to the Web service. The result of the query is returned in the dataFields
group. If you look in the queryFields group (Figure 15.28) of the second-
ary data source in the Data Source task pane, you will see the requestType
field, which is sent as the parameter to the Web service. RequestType node
values (such as AccountQuestion, ConsultantRequest, and so on) are
mimicked in the Web service enumeration. As a result, we simply need to
copy the value of the RequestType node from the main data source to the
GetSubAreas requestType parameter.

Programming InfoPath . . . in Action! 821

Figure 15.28: GetSubAreas secondary data source

To set the value of the requestType parameter, we need to get an
XPathNavigator to the GetSubAreas secondary data source. We use the
DataSources collection to get the secondary data source by name, and
similar to the main data source, we call CreateNavigator. Selecting the
requestType field and setting its value is no different than working with
the main data source. If you have trouble finding the correct XPath, we
suggest reviewing Chapter 3. We also discuss how to find XPaths in the

WARNING No Validation in Secondary Data Sources

GetSubAreas is a secondary data source, so there is no data valida-
tion. As a result, neither the requirement that the field cannot be blank
nor the enumerated data type of the requestType field is enforced.

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 821

“Using XPathNavigator Objects” section earlier in this chapter. The
relevant code corresponds to the code starting where we use a Data-
Source object to the line of code where we set the value of the request type.
This code is in the RequestType_Changed method shown in Listing 15.33.

Chapter 15: Writing Code in InfoPath822

TIP DataSources (and DataConnections) Collections

The main data source is included in the DataSources collection as the
empty string (String.Empty). Likewise, a main data connection is also
included in the DataConnections collection. This is important to
remember if you’re iterating through these collections or using the
Count property.

Subjacent to the secondary data source lines of code are the lines for
getting the corresponding data connection. (See where we get the WebSer-
viceConnection object within the RequestType_Changed method.) The
easiest way to get the connection is to get it from the DataSource object that
we used to create the XPathNavigator. Remember that every secondary
data source, by definition, must have an associated query data connection,
so the QueryConnection property should always be available. Alterna-
tively, a reference to the Web service connection could be attained through
the DataConnections collection. This happens in the same fashion in
which the secondary data source was found in the DataSources collection.
Getting a data connection from the collection returns a DataSource object
that exposes only two useful items: the Name property and the Execute
method. Since we know it’s a Web service connection and we need to access
some Web service–specific properties and methods, we need to cast the
generic DataSource to a WebServiceConnection.

The InfoPath OM defines a specific data connection object for each con-
nection type, as shown in Table 15.5. Some commonly used properties and
methods are also listed in this table.

TIP Execute Override Behavior

Passing null for an XPathNavigator parameter in an Execute over-
ride method tells InfoPath to use the default XPathNavigator that it
would have used without the override.

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 822

823

Co
nn

ec
ti

on
 T

yp
e

Co
m

m
on

ly
 U

se
d

O
M

Co
m

m
en

ts

A
d
o
Q
u
e
r
y
C
o
n
n
e
c
t
i
o
n

C
o
m
m
a
n
d

C
o
m
m
a
n
d

ca
n

ch
an

ge
 th

e
SQ

L
qu

er
y

st
at

em
en

t;

A
d
o
S
u
b
m
i
t
C
o
n
n
e
c
t
i
o
n

C
o
n
n
e
c
t
i
o
n

C
o
n
n
e
c
t
i
o
n

m
od

ifi
es

 th
e

co
nn

ec
ti

on
 s

tr
in

g.
T
i
m
e
o
u
t

E
m
a
i
l
S
u
b
m
i
t
C
o
n
n
e
c
t
i
o
n

A
t
t
a
c
h
m
e
n
t
F
i
l
e
N
a
m
e

Th
e
E
x
e
c
u
t
e

ov
er

ri
de

 m
et

ho
d

ac
ce

pt
s

an
y

da
ta

I
n
t
r
o
d
u
c
t
i
o
n

so
ur

ce
, i

nc
lu

di
ng

 m
ai

n
or

 s
ec

on
da

ry
, t

o
at

ta
ch

S
u
b
j
e
c
t

to
 th

e
m

ai
l m

es
sa

ge
.

E
x
e
c
u
t
e
(
X
P
a
t
h
N
a
v
i
g
a
t
o
r

i
n
p
u
t
)

F
i
l
e
Q
u
e
r
y
C
o
n
n
e
c
t
i
o
n

F
i
l
e
L
o
c
a
t
i
o
n

Re
ce

iv
e

da
ta

 fr
om

 X
M

L
do

cu
m

en
t.

F
i
l
e
S
u
b
m
i
t
C
o
n
n
e
c
t
i
o
n

F
i
l
e
n
a
m
e

Su
bm

it
 d

at
a

to
 a

 S
ha

re
Po

in
t d

oc
um

en
t l

ib
ra

ry
.

F
o
l
d
e
r
U
r
l

Se
ts

 th
e

na
m

e
of

 th
e

fil
e

an
d

fo
ld

er
 lo

ca
ti

on

w
he

n
us

in
g

Sh
ar

eP
oi

nt
 D

AV
 s

ub
m

it
.

S
h
a
r
e
P
o
i
n
t
L
i
s
t
Q
u
e
r
y
C
o
n
n
e
c
t
i
o
n

S
i
t
e
U
r
l

Th
e
E
x
e
c
u
t
e

ov
er

ri
de

 m
et

ho
d

re
tu

rn
s

th
e

E
x
e
c
u
t
e
(
X
P
a
t
h
N
a
v
i
g
a
t
o
r

qu
er

ie
d

da
ta

 to
 th

e
ou

tp
ut

 X
P
a
t
h
N
a
v
i
g
a
t
o
r

o
u
t
p
u
t
)

pr
ov

id
ed

 b
y

fo
rm

 c
od

e.

W
e
b
S
e
r
v
i
c
e
C
o
n
n
e
c
t
i
o
n

S
e
r
v
i
c
e
U
r
l

Th
e
E
x
e
c
u
t
e

ov
er

ri
de

 m
et

ho
d

al
lo

w
s

fo
rm

 c
od

e
S
o
a
p
A
c
t
i
o
n

to
 s

pe
ci

fy
 o

pt
io

na
l X
P
a
t
h
N
a
v
i
g
a
t
o
r

ob
je

ct
s

T
i
m
e
o
u
t

fo
r p

ro
vi

di
ng

 in
pu

t w
he

n
se

nd
in

g
da

ta
, g

et
ti

ng

E
x
e
c
u
t
e
(
X
P
a
t
h
N
a
v
i
g
a
t
o
r

ou
tp

ut
 w

he
n

re
ce

iv
in

g,
 o

r r
et

ri
ev

in
g

SO
A

P
fa

ul
t

i
n
p
u
t
,
X
P
a
t
h
N
a
v
i
g
a
t
o
r

er
ro

r o
ut

pu
t.

 T
he

 E
x
e
c
u
t
e

ov
er

ri
de

 b
eh

av
es

o
u
t
p
u
t
,
X
P
a
t
h
N
a
v
i
g
a
t
o
r

si
m

ila
rl

y
fo

r b
ot

h
qu

er
y

an
d

su
bm

it
 c

on
ne

ct
io

ns
.

e
r
r
o
r
s
)

Ta
bl

e
15

.5
:

Ty
pe

s
of

 D
at

a
Co

nn
ec

ti
on

s
an

d
Th

ei
r C

om
m

on
ly

 U
se

d
Pr

op
er

ti
es

 a
nd

 M
et

ho
ds

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 823

Now that we’ve set the requestType query parameter and have the
Web service connection object, it’s almost time to perform the query. How-
ever, we have noticed that the server hosting the Web service can some-
times get bogged down from many requests. Sometimes the server can
take some time to respond. InfoPath’s default 30-second timeout on data
connections may not be enough time. Once the timeout is changed, it will
be persisted for the life of that connection. So we could have increased the
timeout in the Loading event instead of immediately before querying the
connection. Listing 15.34 shows how to set the Timeout property.

Listing 15.34: Setting the Web Service Connection Timeout Property

// Web service timeout is 30s, increase it to 60 for slow connections

getSubAreasWSC.Timeout = 60;

The Web service server has turned out to be quite the unreliable
machine. Even with the extended timeout, we see occasional spurious
errors when performing queries. InfoPath handles a data connection error
by showing a dialog with server details that may not make sense to the
user. To make the error case a little less confusing for our users, we want to
detect errors when querying the Web service and handle the errors in our
form code. We use a try-catch block around the Web service connection’s
Execute override method (see Table 15.5) because an exception is thrown
when an error occurs. You could put any error-handling logic in the catch
block; however, we’ve decided to just check the resulting errors navigator
that will be nonempty when an error happens on the server. Listing 15.35
shows the code.

Chapter 15: Writing Code in InfoPath824

TIP Handling Web Service Connection Failures

When a Web service (or other data connection) fails to execute, the
resulting server-side error message may reveal implementation
details about your external data source. Using a try-catch and han-
dling the error in your form code allows you to choose what error
messages the user can see.

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 824

Listing 15.35: Capturing Errors from Executing a Web Service Data Connection

// Create a new navigator to capture errors, if any

XmlDocument errorsXmlDoc = new XmlDocument();

XPathNavigator errorsNav = errorsXmlDoc.CreateNavigator();

try

{

// Query the Web service

getSubAreasWSC.Execute(

null /*input*/, null /*output*/, errorsNav /*errors*/);

}

catch (Exception)

{

// Silently fail for now

// If we didn’t do this, InfoPath would show the exception

}

// Did an error occur?

if (errorsNav.HasChildren)

{

MessageBox.Show("I’m sorry, an error occurred accessing "

+ getSubAreasWSC.ServiceUrl

+ ". Please select a Request Type again.");

}

Programming InfoPath . . . in Action! 825

TIP Benefits of Using Execute Overrides

Atry-catch could have been used with the no-argument Execute()
(instead of the override version) and would have achieved the same
effect as in Listing 15.35. The advantages of using the override for get-
ting errors is to perform your own logging or send an administrative
alert to track how many errors your users encounter with this particular
data connection.

The Request Details view, shown in Figure 15.29, gives the user an
opportunity to enter specifics of the request.

Figure 15.29: Request Details view

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 825

Did you notice that the task pane disappeared? We want our help task
pane to be visible only on the Welcome view. Instead of adding logic behind
Button clicks that change views, it’s much easier to just get notified when
the view is actually changed. To do so, we can sink and handle the
ViewSwitched event. We can also use this event handler (shown in
Listing 15.36) for other purposes, such as showing a dialog message on the
Confirm view.

Chapter 15: Writing Code in InfoPath826

WARNING Hiding Does Not Disable the Task Pane

Hiding the task pane by using the Visible property does not block
the user from deciding to show it again.

Listing 15.36: Handling the ViewSwitched Form Event When Switching to Specific Views

public void FormEvents_ViewSwitched(

object sender, ViewSwitchedEventArgs e)

{

switch(this.CurrentView.ViewInfo.Name)

{

case "Confirm":

MessageBox.Show("Please confirm the data and click "

+ "Submit to continue.", "Confirm Data");

break;

case "Welcome":

Application.ActiveWindow.TaskPanes[

TaskPaneType.Html].Visible = true;

break;

default:

Application.ActiveWindow.TaskPanes[

TaskPaneType.Html].Visible = false;

break;

}

}

NOTE Restricted OM Available During the SwitchView
Form Event

Some OM cannot be called during the ViewSwitched event, such as
SwitchView, of course.

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 826

The RequestDescription field is a Rich Text Box control, which
allows unrestricted HTML input. We did not add any special logic behind
this field. However, the Add Additional Details Button control offers a list-
item approach for more structured request details. By default, the Addi-
tionalDetails Bulleted List control does not exist. As we saw earlier
when filling out this form, clicking the Button control inserts an Optional
Section that contains the Bulleted List. Subsequent clicks on the same But-
ton control insert another item in the Bulleted List. Keep in mind that these
are two different controls bound to separate data source items.

The logic behind the Add Additional Details Button control is as follows: If
the Optional Section (bound to AdditionalDetails) exists, then insert
it; otherwise, insert another item at the end of the Bulleted List (bound
to AdditionalDetail). We use two different approaches to facilitate the
insertion of these controls. Since the Optional Section is a container control,
it can benefit from view-based structural editing operations. Other struc-
turally enabled controls include (but are not limited to) Repeating Table,
Repeating Section, File Attachment, and Choice Group and Repeating
Choice Group controls. View-based structural editing through the OM uses
the ExecuteActionmethod of the CurrentView object. The nicety in using
ExecuteAction over pure data source operations (as we’ll use in a moment
to insert an item in the Bulleted List) is not needing to concern ourselves (or
our code for that matter) with inserting an entire XML subtree in the correct
context. For example, if the Optional Section contained many nodes below
it, either immediately below or through many depths, the ExecuteAction
method will take care of inserting all necessary fields and groups. In fact,
the ExecuteAction method is exactly what InfoPath uses behind the
scenes when a user clicks the Click here to insert link. Of course, the link
doesn’t need to exist in the view for form code to successfully call it.

The first argument to ExecuteAction is an ActionType. This is an
enumeration type, and through IntelliSense, you can find all of its enumer-
ated values. In the case of an Optional Section, we use the XOptionalIn-
sert ActionType. The second parameter is the xmlToEdit string. This
value identifies on which control to perform the ActionType. To find the
xmlToEdit string for a structurally editable control, go to the Advanced tab
of the control’s properties dialog. The Code region, shown in Figure 15.30,
reveals the XmlToEdit value as well as the control’s xOptional capability.

Programming InfoPath . . . in Action! 827

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 827

The code snippet in Listing 15.37 shows how we use ExecuteAction()
to insert the Optional Section if it does not already exist in the data source.

Listing 15.37: Using ExecuteAction to Insert an Optional Section

public void Add_Additional_Details_Clicked(

object sender, ClickedEventArgs e)

{

// Is AdditionalDetails already inserted?

XPathNavigator root = MainDataSource.CreateNavigator();

XPathNavigator additionalDetails = root.SelectSingleNode(

"/my:Request/my:RequestDetails/my:AdditionalDetails",

NamespaceManager);

// If it doesn’t exist, we’ll insert it

if (additionalDetails == null)

// XmlToEdit for xOptional: AdditionalDetailsSection_2

this.CurrentView.ExecuteAction(

ActionType.XOptionalInsert, "AdditionalDetailsSection_2");

// If it already exists, insert an AdditionalDetail

else

// Bulleted List doesn’t support ExecuteAction since

// there’s no XmlToEdit.

Chapter 15: Writing Code in InfoPath828

Figure 15.30: Finding the xmlToEdit and ActionType
capability of a structurally editable control

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 828

// We’ll insert it using the data source instead.

additionalDetails.AppendChildElement(

additionalDetails.Prefix, "AdditionalDetail",

additionalDetails.NamespaceURI, string.Empty);

}

If the Optional Section control, bound to AdditionalDetails, already
exists, the Button control will insert an AdditionalDetail node. Adding
this node to the data source will, in turn, add an item to the Bulleted List
control. Since the AdditionalDetail repeating field is a child of the
AdditionalDetails group and we already have a reference to Addi-
tionalDetails, we can easily use the XPathNavigator method Append-
ChildElement. The AppendChildElement method creates a new data
source node and adds it to the end of children nodes relative to the context
(AdditionalDetails) XPathNavigator. If you wanted to assign a value
to the newly inserted item, you could pass it instead of the empty string as
the last argument to AppendChildElement.

Programming InfoPath . . . in Action! 829

TIP Using the XPathNavigator’s AppendChildElement
Method

AppendChildElement requires the namespace prefix and URI as
parameters. Since the node in which we’re appending has the same
prefix and URI, we can just reference their values. This lessens the
chance of mistyping and is more robust if, say, the namespace or pre-
fix change.

After the user completes the Request Details view, the read-only Confirm
view (refer back to Figure 15.23) displays a summary of gathered form
data. Of the three Button controls at the bottom of the view (Start Over, Go
Back, and Submit), we haven’t yet discussed Submit. As its name implies,
clicking this control submits the form. You learned all about submitting
forms in Chapter 8, but the MOI request form does not implement a tradi-
tional-style submit to a data connection. Instead, via the Submit Options
dialog shown in Figure 15.31, we have chosen to submit using our own
code. Clicking on the Edit Code button in this dialog opens VSTA, hooks up
the event in InternalStartup, and creates the event handler method
called FormEvents_Submit.

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 829

The MOI request form defines the Submit event as saving the form to
the user’s computer. Listing 15.38 shows the implementation for Submit.
Before doing the save, however, we want to check whether the current
form was recovered. We can detect a recovered form by checking the
this.Recovered Boolean flag. A form’s data is recovered if InfoPath sud-
denly and unexpectedly closed while the form was being filled out. This
could happen, for example, if the computer turned off due to a power out-
age. Because InfoPath quit unexpectedly, the form could be in an indeter-
minate state. We’d rather be safe and ask the user if he or she wants to
continue submitting recovered data. The user may choose to go back and
finish filling out parts of the form that weren’t completed.

Listing 15.38: Sinking the Submit Form Event

public void FormEvents_Submit(object sender, SubmitEventArgs e)

{

// NOTE: There are no errors if InfoPath allows submit to happen.

// If this is recovered data, ask the user if we should continue.

DialogResult result = DialogResult.Yes;

if (this.Recovered)

result = MessageBox.Show("This data is recovered. "

+ "Still continue?", "Submitting Recovered Data",

MessageBoxButtons.YesNo);

if (result == DialogResult.Yes)

Chapter 15: Writing Code in InfoPath830

Figure 15.31: Setting up the form’s main submit to use code

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 830

{

// Save the form

string tempFileName = System.IO.Path.GetTempFileName()

+ ".xml";

this.SaveAs(tempFileName);

// Fills a link to see where it saved

XPathNavigator root = MainDataSource.CreateNavigator();

XPathNavigator savedFileLocation = root.SelectSingleNode(

"/my:Request/@my:SavedFileLocation", NamespaceManager);

savedFileLocation.SetValue(tempFileName);

// Go to the Thank You view

ViewInfos.SwitchView("ThankYou");

}

else

{

e.CancelableArgs.Cancel = true;

e.CancelableArgs.Message = "Submit was canceled.";

e.CancelableArgs.MessageDetails =

"Submit again whenever you are ready.";

}

}

Programming InfoPath . . . in Action! 831

TIP Accounting for Performance in Form Code

When a single event handler changes both the data source and
switches the view, the view switch should be the last operation.
Switching the view first is more expensive if the controls bound to the
changing data are only visible in the new view.

When submit proceeds successfully, a file is created on the local com-
puter with the .xml extension. The form data is saved by calling SaveAs
and passing the full path with file name. After saving the file, the user goes
to the final Thank You view. A hyperlink in this view (bound to SavedFile-
Location) shows the actual location of the saved form. If calling SaveAs
failed, say, because the disk is full or read-only, the Submit event would
also fail. A try-catch block could be used around SaveAs if you wanted
to handle the failure in a special way, such as trying again or asking for an
alternate save location.

TIP Save Requires Full Trust

Calling Save or SaveAs requires a fully trusted form template.

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 831

What’s Next?

Now that you’ve been introduced to the InfoPath OM and learned about
writing code behind forms, we are positioned to move forward with more
advanced programming features. The OM knowledge you’ve garnered
thus far will be used and further developed in the coming chapters. Areas
such as hosting, leveraging browser-enabled form templates with Forms
Services, and building custom controls using ActiveX all incorporate vari-
ous aspects of the OM. In the meantime, we encourage you to have fun
programming your own advanced InfoPath form templates.

Chapter 15: Writing Code in InfoPath832

34629 15 727-832 r2 kj 1/11/07 4:52 PM Page 832

