
With more and more personal information being stored on the Web—credit card
data, social security numbers, maiden names, favorite pets—today’s PHP developer
cannot afford to be ignorant when it comes to security. Sadly, most beginning pro-
grammers fail to understand the truth about security: there is no such thing as
“secure” or “insecure.” The wise programmer knows that the real question is how
secure a site is. Once any piece of data is stored in a database, in a text file, or on a
Post-it note in your office, its security is compromised. The focus in this chapter is
therefore how to make your applications more secure.

This chapter will begin by rehashing the fundamentals of secure PHP programming.
These are the basic things that I hope/assume you’re already doing. After that a quick
example shows ways to validate different kinds of data that might come from an
HTML form. The third topic is the new-to-PHP 5 PECL library called Filter. Its usage
isn’t very programmer-friendly, but the way it wraps all of the customary data filter-
ing and sanitizing methods into one interface makes it worth knowing. After that,
two different uses of the PEAR Auth package show an alternative way to implement
authorization in your Web applications. The chapter will conclude with coverage of
the MCrypt library, demonstrating how to encrypt and decrypt data.

123

Security
Techniques

4
S

ecu
rity Tech

n
iq

u
es

04_PHP5VQP(123-168).qxd 02/14/2007 12:08 PM Page 123

Avoiding Mail Abuses

A security concern exists in any Web
application that uses the mail() func-
tion with form data. For starters, if
someone enters their “to” email address
as someone@example.com,someone.else
@example.com, you’ll now be sending
two emails. If a malicious user enters
500 addresses (perhaps by creating their
own form that submits to your same
page), you’re now sending out spam! You
can avoid this by using regular expres-
sions to guarantee that the submitted
value contains just one address. Or you
could search for a comma in the submit-
ted email address, which wouldn’t be
allowed. But that won’t solve the problem
entirely.

Although the mail() function takes sepa-
rate arguments for the “to” address,
“from” address (or other additional head-
ers), subject, and body, all four values are
put together to create the actual message.
By submitting specifically formatted text
through any of these inputs, bad people
can still use your form to send their
spam. To guard against this, you should
watch for newline (\n) and carriage
returns (\r) within the submitted data.
Either don’t send emails with these val-
ues or replace them with spaces to invali-
date the intended message format. You
should probably also make sure that you
(or someone involved with the site)
receives a copy of every email sent so that
close tabs can be kept on this area of the
server.

124

Chapter 4
R

em
em

be
ri

n
g

 t
h

e
B

as
ic

s

Remembering the Basics
Before getting into demonstrations of more
particular security techniques, I want to
take a moment to go over the basics: those
fundamental rules that every PHP program-
mer should abide by all of the time.

To ensure a basic level of security:

1. Do not rely upon register_globals.

The advent of register_globals once
made PHP so easy to use, while also
making it less secure (convenience often
weakens security). The recommendation
is to program as if register_globals is off.
This is particularly important because
register_globals will likely disappear in
future versions of PHP.

2. Initialize variables prior to using them.

If register_globals is still enabled—even
if you aren’t using them—a malicious
user could use holes created by nonini-
tialized variables to hack your system.
For example:

if (condition) {

$auth = TRUE;

}

If $auth is not preset to FALSE prior
to this code, then a user could easily
make themselves authorized by passing
$_GET[‘auth’], $_POST[‘auth’], or
$_COOKIE[‘auth’] to this script.

3. Verify and purify all incoming data.

How you verify and purify the data
depends greatly upon the type of data.
You’ll see many different techniques in
this chapter and the book.

04_PHP5VQP(123-168).qxd 02/14/2007 12:08 PM Page 124

8. Watch for HTML (and more important,
JavaScript) in submitted data if it will be
redisplayed in a Web page.

Use the strip_tags() or similar func-
tions to clear HTML and potential
JavaScript from submitted text.

9. Do not reveal PHP errors on live sites.

One of the most common ways to hack
a site is to try to “break” it—do some-
thing unexpected to cause errors—in
the hopes that the errors reveal impor-
tant behind-the-scenes information.

10. Nullify the possibility of SQL injection
attacks.

Use a language-specific database escap-
ing function, like mysqli_real_escape_
data(), to ensure that submitted values
will not break your queries.

11. Program with error reporting on its
highest level.

While not strictly a security issue, pro-
gramming with error reporting on its
highest level can often show potential
holes in your code.

12. Never keep phpinfo() scripts on the
server.

Although vital for developing and
debugging PHP applications, phpinfo()
scripts reveal too much information and
are too easily found if left on a live site.

125

Security Techniques
R

em
em

berin
g

 th
e B

asics

4. Be careful if you use variables for included
files.

If your code does something like

require($page);

then you should either make sure that
$page does not come from an outside
source (like $_GET) or, if it does, that
you’ve made certain that it has an
appropriate value. See the technique
in Chapter 2, “Developing Web
Applications.”

5. Be extra, extra careful when using any
function that runs commands on the
server.

This includes eval(), exec(), system(),
passthru(), popen(), and the backticks
(``). Because each of these runs com-
mands on the server itself, they should
never be used casually. And if you must
use a variable as part of the command to
execute, perform any and all security
checks on that variable first. Also use the
escapeshellarg() and escapeshellcmd()
functions as an extra precaution.

6. Consider changing the default session
directory or using a database to store
session data.

An example as to how you would do this
is discussed in Chapter 3, “Advanced
Database Concepts.”

7. Do not use browser-supplied filenames
for storing uploaded files on the server.

When you move a file onto your server,
rename it to something safe, preferably
something not guessable.

04_PHP5VQP(123-168).qxd 02/14/2007 12:08 PM Page 125

Validating Form Data
Handling form data is still far and away the
most common use of PHP (in this author’s
humble opinion, anyway). The security con-
cern lies in the fact that the PHP page han-
dling the form will do something with the
information the user enters: store it in a
database, pass it along to another page, or
use it in an email. If the information the
user enters is tainted, you could have a
major problem on your hands. As a rule,
do not trust the user! Mistakes can happen,
either on purpose or by accident, that could
reveal flaws in your code, cause the loss of
data, or bring your entire system to a crash-
ing halt.

Some good validation techniques are:

◆ Use the checkdate() function to confirm
that a given date is valid.

◆ Typecast numbers.

◆ Use regular expressions to check email
addresses, URLs, and other items with
definable patterns (see the sidebar).

126

Chapter 4
Va

li
da

ti
n

g
 F

o
rm

 D
at

a

When to Use Regular
Expressions

I often see what I would call an overuse
of regular expressions. You should under-
stand that regular expressions require
extra processing, so they shouldn’t be
used flippantly. Many types of data—
comments and addresses being just two
examples—really don’t have a definable
pattern. A regular expression that allows
for any valid comment or address would
allow for just about anything. So skip the
server-intensive regular expressions in
such cases.

As a guide, regular expressions may be
the most exacting security measure, but
they’re almost definitely the least effi-
cient and possibly the most problematic.
I’m not suggesting you shouldn’t use
them—just make sure they’re really the
best option for the data being validated.

04_PHP5VQP(123-168).qxd 02/14/2007 12:08 PM Page 126

Figure 4.1 When users first come to the registration
page, this is the form they will see.

As with the basic security techniques already
reviewed, the hope is that as a somewhat-
experienced PHP programmer, you already
know most of these things. To be certain,
this next example will present a sample reg-
istration form (Figure 4.1), taking various
types of information, which will then be pre-
cisely validated. In doing so, I’ll make use of
a couple of Character Type functions, added
to PHP in version 4.3. Listed in Table 4.1,
these functions test a given value against
certain constraints for the current locale
(established by the setlocale() function).

127

Security Techniques
Validatin

g
 Fo

rm
 D

ata

F u n c t i o n C h e c k s I f Va l u e C o n t a i n s

ctype_alnum() Letters and numbers
ctype_alpha() Letters only
ctype_cntrl() Control characters
ctype_digit() Numbers
ctype_graph() Printable characters, except spaces
ctype_lower() Lowercase letters
ctype_print() Printable characters
ctype_punct() Punctuation
ctype_space() White space characters
ctype_upper() Uppercase characters
ctype_xdigit() Hexadecimal numbers

Character Type Functions

Table 4.1 The Character Type functions provide
validation specific to the given environment
(i.e., the locale setting).

04_PHP5VQP(123-168).qxd 02/14/2007 12:08 PM Page 127

To validate a form:

1. Begin a new PHP script in your text edi-
tor or IDE, starting with the HTML
(Script 4.1).

<!DOCTYPE html PUBLIC “-//W3C//DTD

➝ XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/

➝ xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/

➝ xhtml” xml:lang=”en” lang=”en”>

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

2 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

3 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="content-type" content="text/html; charset=iso-8859-1" />

6 <title>Registration Form</title>

7 </head>

8 <body>

9 <?php # Script 4.1 - register.php

10

11 /* This page creates a registration form

12 * which is then validated using various functions.

13 */

14

15 if (isset($_POST['submitted'])) { // Handle the form.

16

17 // Store errors in an array:

18 $errors = array();

19

20 // Check for non-empty name:

21 if (!isset($_POST['name']) OR empty($_POST['name'])) {

22 $errors[] = 'name';

23 }

24

25 // Validate the email address using eregi():

26 if (!eregi('^[_a-z0-9-]+(\.[_a-z0-9-]+)*@[a-z0-9-]+(\.[a-z0-9-]+)*(\.[a-z]{2,4})$',
$_POST['email'])) {

27 $errors[] = 'email address';

28 }

29

30 // Validate the password using ctype_alnum():

31 if (!ctype_alnum($_POST['pass'])) {

32 $errors[] = 'password';

33 }

(script continues on next page)

Script 4.1 This page both displays a registration form and processes it. The script validates the submitted data using
various functions, and then reports any errors.

128

Chapter 4
Va

li
da

ti
n

g
 F

o
rm

 D
at

a

<head>

<meta http-equiv=”content-type”

➝ content=”text/html; charset=

➝ iso-8859-1” />

<title>Registration Form</title>

</head>

<body>

<?php # Script 4.1 - register.php

continues on page 131

04_PHP5VQP(123-168).qxd 02/14/2007 12:08 PM Page 128

34

35 // Validate the date of birth using check_date():

36 if (isset($_POST['dob']) AND

37 (strlen($_POST['dob']) >= 8) AND

38 (strlen($_POST['dob']) <= 10)) {

39

40 // Break up the string:

41 $dob = explode('/', $_POST['dob']);

42

43 // Were three parts returned?

44 if (count($dob) == 3) {

45

46 // Is it a valid date?

47 if (!checkdate((int) $dob[0], (int) $dob[1], (int) $dob[2])) {

48 $errors[] = 'date of birth';

49 }

50

51 } else { // Invalid format.

52 $errors[] = 'date of birth';

53 }

54

55 } else { // Empty or not the right length.

56 $errors[] = 'date of birth';

57 }

58

59 // Validate the ICQ number using ctype_digit():

60 if (!ctype_digit($_POST['icq'])) {

61 $errors[] = 'ICQ number';

62 }

63

64 // Check for non-empty comments:

65 if (!isset($_POST['comments']) OR empty($_POST['comments'])) {

66 $errors[] = 'comments';

67 }

68

69 if (empty($errors)) { // Success!

70

71 // Print a message and quit the script:

72 echo '<p>You have successfully registered (but not really).</p></body></html>';

73 exit();

74

75 } else { // Report the errors.

76

77 echo '<p>Problems exist with the following field(s):';

78

79 foreach ($errors as $error) {

80 echo "$error\n";

81 }

82

(script continues on next page)

Script 4.1 continued

129

Security Techniques
Validatin

g
 Fo

rm
 D

ata

04_PHP5VQP(123-168).qxd 02/14/2007 12:08 PM Page 129

83 echo '</p>';

84

85 }

86

87 } // End of $_POST['submitted'] IF.

88

89 // Show the form.

90 ?>

91 <form method="post">

92 <fieldset>

93 <legend>Registration Form</legend>

94 <p>Name: <input type="text" name="name" /></p>

95 <p>Email Address: <input type="text" name="email" /></p>

96 <p>Password: <input type="password" name="pass" /> (Letters and numbers only.)</p>

97 <p>Date of Birth: <input type="text" name="dob" value="MM/DD/YYYY" /></p>

98 <p>ICQ Number: <input type="text" name="icq" /></p>

99 <p>Comments: <textarea name="comments" rows="5" cols="40"></textarea></p>

100

101 <input type="hidden" name="submitted" value="true" />

102 <input type="submit" name="submit" value="Submit" />

103 </fieldset>

104 </form>

105

106 </body>

107 </html>

Script 4.1 continued

130

Chapter 4
Va

li
da

ti
n

g
 F

o
rm

 D
at

a

04_PHP5VQP(123-168).qxd 02/14/2007 12:08 PM Page 130

2. Create the section of the script that han-
dles the submitted form.

if (isset($_POST[‘submitted’])) {

$errors = array();

Your script should always handle the
form before it could possibly redisplay it
(on errors found). I like to use a hidden
form input to check if a form was sub-
mitted. The hidden form input will
always be passed to the page upon sub-
mission, unlike any other input (on
Internet Explorer, if a user submits a but-
ton by pressing Enter, then the submit
button won’t be set).

One way I like to validate forms is to use
an array that stores the errors as they
occur. By checking if this array is empty,
the script can tell if all validation tests
have been passed. If the array isn’t empty,
its values can be used to print the error
messages.

3. Check for a name.

if (!isset($_POST[‘name’]) OR

➝ empty($_POST[‘name’])) {

$errors[] = ‘name’;

}

A person’s name is one of those things
that you can use regular expressions on,
but it may not be worthwhile. A valid
name can contain letters, spaces, peri-
ods, hyphens, and apostrophes. Under
most circumstances, just checking for a
nonempty name is sufficient.

131

Security Techniques
Validatin

g
 Fo

rm
 D

ata

4. Validate the submitted email address.

if (!eregi(‘^[_a-z0-9-]+(\.[_a-z0-

➝ 9-]+)*@[a-z0-9-]+(\.[a-z0-9-]

➝ +)*(\.[a-z]{2,4})$’,

➝ $_POST[‘email’])) {

$errors[] = ‘email address’;

}

There are any number of patterns you
can use to validate an email address,
depending on how strict or liberal you
want to be. This one is commonly seen.
Certainly some invalid email addresses
could slip through this expression, but it
does add a sufficient level of security.
Feel free to use a different pattern if you
have one to your liking. Keep in mind
that a user could enter a valid e-mail
address that does not actually exist. Only
some sort of activation process (sending
the user an email containing a link back
to the Web site) can confirm a real
address.

5. Validate the submitted password.

if (!ctype_alnum($_POST[‘pass’])) {

$errors[] = ‘password’;

}

The form indicates that the password
must contain only letters and numbers.
To validate such values, the function
ctype_alnum() works perfectly.

In a real registration form, I would also
recommend confirming the password
with a second password input, then mak-
ing sure both values match. I’m skipping
that step here for brevity’s sake.

continues on next page

04_PHP5VQP(123-168).qxd 02/14/2007 12:08 PM Page 131

6. Begin checking to see if the user entered
a valid date of birth.

if (isset($_POST[‘dob’]) AND

(strlen($_POST[‘dob’]) >= 8) AND

(strlen($_POST[‘dob’]) <= 10)) {

$dob = explode(‘/’,

➝ $_POST[‘dob’]);

if (count($dob) == 3) {

There is really no way of knowing if the
information users enter is in fact their
birthday, but PHP’s built-in checkdate()
function can confirm whether or not
that date existed. Since the form takes
the date of birth as a simple string in the
format MM/DD/YYYY, the script must
first confirm that something was entered.
I also check if the string’s length is at least
eight characters long (e.g., 1/1/1900) but
no more than ten characters long (e.g.,
12/31/2000).

This string is then exploded on the slash-
es to theoretically retrieve the month,
day, and year values. Next, a conditional
checks that exactly three parts were cre-
ated by the explosion.

7. Check if the date of birth is a valid date.

if (!checkdate((int) $dob[0], (int)

➝ $dob[1], (int) $dob[2])) {

$errors[] = ‘date of birth’;

}

The checkdate() function confirms that
a date is valid. You might want to also
check that a user didn’t enter a date of
birth that’s in the future or the too-
recent past. Each value is typecast as
an integer as an extra precaution.

132

Chapter 4
Va

li
da

ti
n

g
 F

o
rm

 D
at

a

8. Complete the date of birth conditionals.

} else {

$errors[] = ‘date of

➝ birth’;

}

} else {

$errors[] = ‘date of birth’;

}

The first else applies if the submitted
value cannot be exploded into three
parts. The second else applies if the
value isn’t of the right length.

9. Validate the ICQ number.

if (!ctype_digit($_POST[‘icq’])) {

$errors[] = ‘ICQ number’;

}

The ICQ number can only contain dig-
its, so it makes sense to use the
ctype_digit() function.

10. Check for some comments.

if (!isset($_POST[‘comments’]) OR

➝ empty($_POST[‘comments’])) {

$errors[] = ‘comments’;

}

Comments really cannot be run through
a regular expression pattern because any
valid pattern would allow just about
anything. Instead, a check for some
value is made.

04_PHP5VQP(123-168).qxd 02/14/2007 12:08 PM Page 132

Figure 4.3 A lot of mistakes were made in this
registration attempt, each reported back to the user.

Figure 4.2 If all of the data passed through the
various checks, this message is displayed.

11. If there were no errors, report upon the
success.

if (empty($errors)) {

echo ‘<p>You have successfully

➝ registered (but not

➝ really).</p></body></html>’;

exit();

If no errors occurred, then $errors
would still be empty. The script could
then register the user (probably in a
database). Here it just prints a message
and terminates the script (so that
the form isn’t redisplayed) instead
(Figure 4.2).

12. Report the errors.

} else {

echo ‘<p>Problems exist with

➝ the following field(s):’;

foreach ($errors as $error) {

echo

➝ “$error\n”;

}

echo ‘</p>’;

}

If $errors isn’t empty, it contains all
of the fields that failed a validation
test. These can be printed in a list
(Figure 4.3).

13. Complete the main conditional and the
PHP code.

} // End of $_POST[‘submitted’] IF.

?>

continues on next page

133

Security Techniques
Validatin

g
 Fo

rm
 D

ata

04_PHP5VQP(123-168).qxd 02/14/2007 12:08 PM Page 133

14. Create the HTML form.

<form method=”post”>

<fieldset>

<legend>Registration Form</legend>

<p>Name: <input type=”text”

➝ name=”name” /></p>

<p>Email Address: <input type=”text”

➝ name=”email” /></p>

<p>Password: <input type=”password”

➝ name=”pass” /> (Letters and

➝ numbers only.)</p>

<p>Date of Birth: <input type=”text”

➝ name=”dob” value=”MM/DD/YYYY” />

➝ </p>

<p>ICQ Number: <input type=”text”

➝ name=”icq” /></p>

<p>Comments: <textarea

➝ name=”comments” rows=”5”

➝ cols=”40”></textarea></p>

<input type=”hidden”

➝ name=”submitted” value=”true” />

<input type=”submit” name=”submit”

➝ value=”Submit” />

</fieldset>

</form>

There’s not much to say about the form
except to point out that it does indicate
the proper format for the password and
date of birth fields. If you are validating
data to a specification, it’s important
that the end user be made aware of the
requirements as well, prior to submit-
ting the form.

15. Complete the page.

</body>

</html>

16. Save the file as register.php, place it
in your Web directory, and test in your
Web browser.

134

Chapter 4
Va

li
da

ti
n

g
 F

o
rm

 D
at

a

04_PHP5VQP(123-168).qxd 02/14/2007 12:08 PM Page 134

Using Captcha

Popular in many of today’s forms is
captcha, short for “completely automated
public Turing test to tell computers and
humans apart” (now that’s an acronym!).
A captcha test displays an image with a
word or some letters written in it, nor-
mally in a nonlinear fashion. In order to
successfully complete the form, the text
from the image has to be typed into a
box. This is something a human user
could do but a bot could not.

If you do want to add this feature to your
own sites, using the PEAR Text_CAPTCHA
package would be the easiest route.
Otherwise, you could generate the images
yourself using the GD library. The word
on the image should be stored in a ses-
sion so that it can be compared against
what the user typed.

The main caveat with captcha tests is
that they do restrict the visually impaired
from completing that form. You should
be aware of this, and provide alternatives.
Personally, I think that bots can be effec-
tively stopped by just adding another
input to your form, with an easy-to-answer
question (like “What is 2 + 2?”). Humans
can submit the answer, whereas bots
could not.

✔ Tips

■ If possible, use the POST method in your
forms. POST has a limitation in that the
resulting page cannot be bookmarked,
but it is far more secure and does not
have the limit on transmittable data size
that GET does. If a user is entering pass-
words, you really must use the POST
method lest the password be visible.

■ Placing hidden values in HTML forms
can be a great way to pass information
from page to page without using cookies
or sessions. But be careful what you hide
in your HTML code, because those hid-
den values can be seen by viewing a page’s
source. This technique is a convenience,
not a security measure.

■ Similarly, you should not be too
obvious or reliant upon information
PHP passes via the URL. For example, if a
homepage.php page requires receipt of a
user ID—and that is the only mandatory
information for access to the account—
someone else could easily break in (e.g.,
www.example.com/userhome.php?user=2

could quickly be turned into www.example.
com/userhome.php?user=3, granting access
to someone else’s information).

135

Security Techniques
Validatin

g
 Fo

rm
 D

ata

04_PHP5VQP(123-168).qxd 02/14/2007 12:08 PM Page 135

Using PECL Filter
New in PHP 5 and quite promising is the
Filter library of PECL code. Being developed
by PHP’s creator and other major contribu-
tors, the future of Filter looks bright, even
though it’s still in beta form (at the time of
this writing). The Filter package provides
two types of security:

◆ Data validation by type

◆ Data sanitization

What Filter offers is a unified interface for
performing common types of validation and
sanitization. For example, I might common-
ly use code like this:

if (isset($_GET[‘id’])) {

if (is_numeric($_GET[‘id’])) {

$id = (int) $_GET[‘id’];

if ($id > 0) {

// Do whatever.

}

}

}

I could instead do this:

$id = filter_input(INPUT_GET, ‘id’,

➝ FILTER_VALIDATE_INT, array(‘options’

➝ =>array(‘min_range’=>1)));

if ($id) { …

That might look like jabberwocky, but once
you get the hang of Filter, the amount of
work you can do in just a line of code will be
worth the learning curve.

136

Chapter 4
U

si
n

g
 P

EC
L

Fi
lt

er

04_PHP5VQP(123-168).qxd 02/14/2007 12:08 PM Page 136

Figure 4.4 This new registration form lacks the
password and date of birth inputs.

To filter individual variables, there are two
functions you’ll use: filter_input() and
filter_var(). The first one is for working
with variables coming from an outside
source, like forms, cookies, sessions, and the
server. The second is for variables within
your own code. I’ll focus on filter_input()
here. Its syntax is:

$var = filter_input($variable_source,

➝ $variable_name, $filter, $options);

The sources, which the PHP manual calls
“types,” are: INPUT_GET, INPUT_POST,
INPUT_COOKIE, INPUT_SERVER, INPUT_ENV,
INPUT_SESSION, and INPUT_REQUEST. As you
can probably guess, each of these corre-
sponds to a global variable ($_GET, $_POST,
etc.). For example, if a page receives data in
the URL, you’d use INPUT_GET (not $_GET).

The second argument—the variable name—
is the specific variable within the source
that should be addressed. The $filter argu-
ment indicates the filter to apply, using the
constants in Table 4.2. This argument is
optional, as a default filter will be used if
none is specified. Some filters also take
options, like the FILTER_VALIDATE_INT in the
preceding example (which can take a range).

The filter_input() function will return the
filtered variable if the filtration or validation
was successful, the Boolean FALSE if the fil-
ter didn’t apply to the data, or the value NULL
if the named variable didn’t exist in the
given input. Thus you have multiple levels
of validation in just one step.

There’s really a lot of information packed
into just a few functions here, but I want to
present a sample of how you would use the
Filter library. To do so, I’ll create a modified
version of the registration form (Figure 4.4).
Note that as of PHP 5.2, Filter is built into
PHP. If you’re using an earlier version, you
may need to install it using the pecl installer
(see the PHP manual for more).

137

Security Techniques
U

sin
g

 P
ECL

Filter

C o n s t a n t N a m e A c t i o n

FILTER_VALIDATE_INT Confirms an integer,
optionally in a range

FILTER_VALIDATE_FLOAT Confirms a float
FILTER_ VALIDATE_REGEXP Matches a PCRE pattern
FILTER_ VALIDATE_URL Matches a URL
FILTER_ VALIDATE_EMAIL Matches an email

address
FILTER_SANITIZE_STRING Strips tags
FILTER_SANITIZE_ENCODED URL-encodes a string

Filters by Name

Table 4.2 These constants represent some of the
filters that can be applied to data. For a complete list,
see the PHP manual or invoke the filter_list()
function.

04_PHP5VQP(123-168).qxd 02/14/2007 12:08 PM Page 137

To use PECL Filter:

1. Begin a new PHP script in your text edi-
tor or IDE, starting with the HTML
(Script 4.2).

<!DOCTYPE html PUBLIC “-//W3C//DTD

➝ XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/

➝ xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/

➝ xhtml” xml:lang=”en” lang=”en”>

<head>

<meta http-equiv=”content-type”

➝ content=”text/html; charset=iso-

➝ 8859-1” />

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

2 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

3 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="content-type" content="text/html; charset=iso-8859-1" />

6 <title>Filter</title>

7 <style type="text/css" title="text/css" media="all">

8 .error {

9 color: #F30;

10 }

11 </style>

12 </head>

13 <body>

14 <?php # Script 4.2 - filter.php

15

16 /* This page uses the Filter functions

17 * to validate form data.

18 * This page will print out the filtered data.

19 */

20

21 if (isset($_POST['submitted'])) { // Handle the form.

22

23 // Sanitize the name:

24 $name = filter_input(INPUT_POST, 'name', FILTER_SANITIZE_STRING,
FILTER_FLAG_NO_ENCODE_QUOTES);

25 if ($name) {

(script continues on next page)

Script 4.2 With this minimalist registration form, the Filter library is used to perform data validation and sanitization.

138

Chapter 4
U

si
n

g
 P

EC
L

Fi
lt

er

<title>Filter</title>

<style type=”text/css”

➝ title=”text/css” media=”all”>

.error {

color: #F30;

}

</style>

</head>

<body>

<?php # Script 4.2 - filter.php

The script has one CSS class for printing
errors in a different color.

continues on page 140

04_PHP5VQP(123-168).qxd 02/14/2007 12:08 PM Page 138

26 echo "<p>Name: $name
\$_POST['name']: {$_POST['name']}</p>\n";

27 } else {

28 echo '<p class="error">Please enter your name.</p>';

29 }

30

31 // Validate the email address using FILTER_VALIDATE_EMAIL:

32 $email = filter_input(INPUT_POST, 'email', FILTER_VALIDATE_EMAIL);

33 if ($email) {

34 echo "<p>Email Address: $email</p>\n";

35 } else {

36 echo '<p class="error">Please enter your email address.</p>';

37 }

38

39 // Validate the ICQ number using FILTER_VALIDATE_INT:

40 $icq = filter_input(INPUT_POST, 'icq', FILTER_VALIDATE_INT);

41 if ($icq) {

42 echo "<p>ICQ Number: $icq</p>\n";

43 } else {

44 echo '<p class="error">Please enter your ICQ number.</p>';

45 }

46

47 // Strip tags but don't encode quotes:

48 $comments = filter_input(INPUT_POST, 'comments', FILTER_SANITIZE_STRING);

49 if ($comments) {

50 echo "<p>Comments: $comments
\$_POST['comments']: {$_POST['comments']}</p>\n";

51 } else {

52 echo '<p class="error">Please enter your comments.</p>';

53 }

54

55 } // End of $_POST['submitted'] IF.

56

57 // Show the form.

58 ?>

59 <form method="post" action="filter.php">

60 <fieldset>

61 <legend>Registration Form</legend>

62 <p>Name: <input type="text" name="name" /></p>

63 <p>Email Address: <input type="text" name="email" /></p>

64 <p>ICQ Number: <input type="text" name="icq" /></p>

65 <p>Comments: <textarea name="comments" rows="5" cols="40"></textarea></p>

66

67 <input type="hidden" name="submitted" value="true" />

68 <input type="submit" name="submit" value="Submit" />

69 </fieldset>

70 </form>

71

72 </body>

73 </html>

Script 4.2 continued

139

Security Techniques
U

sin
g

 P
ECL

Filter

04_PHP5VQP(123-168).qxd 02/14/2007 12:08 PM Page 139

2. Check for the form submission.

if (isset($_POST[‘submitted’])) {

3. Filter the name data.

$name = filter_input(INPUT_POST,

➝ ‘name’, FILTER_SANITIZE_STRING,

➝ FILTER_FLAG_NO_ENCODE_QUOTES);

For the name field, there’s no type to
validate against, but it can be filtered
to remove any HTML tags. The FILTER_
SANITIZE_STRING filter will accomplish
that. The last argument, FILTER_FLAG_
NO_ENCODE_QUOTES, says that any quota-
tion marks in the name (e.g., O’Toole)
shouldn’t be turned into an HTML
entity equivalent.

4. Print the name value or an error.

if ($name) {

echo “<p>Name: $name<br

➝ />\$_POST[‘name’]:

➝ {$_POST[‘name’]}</p>\n”;

} else {

echo ‘<p class=”error”>Please

➝ enter your name.</p>’;

}

The conditional if ($name) will be true
if the $_POST[‘name’] variable was set
and passed the filter. In that case, I’ll
print the filtered version and the original
version, just for comparison.

5. Validate the email address.

$email = filter_input(INPUT_POST,

➝ ‘email’, FILTER_VALIDATE_EMAIL);

if ($email) {

echo “<p>Email Address:

➝ $email</p>\n”;

} else {

echo ‘<p class=”error”>Please

➝ enter your email address.</p>’;

}

140

Chapter 4
U

si
n

g
 P

EC
L

Fi
lt

er

The FILTER_VALIDATE_EMAIL filter is per-
fect here. If the submitted email address
has a valid format, it will be returned.
Otherwise, $email will equal either FALSE
or NULL.

6. Validate the ICQ number.

$icq = filter_input(INPUT_POST,

➝ ‘icq’, FILTER_VALIDATE_INT);

if ($icq) {

echo “<p>ICQ Number:

➝ $icq</p>\n”;

} else {

echo ‘<p class=”error”>Please

➝ enter your ICQ number.</p>’;

}

This is validated as an integer.

7. Filter the comments field.

$comments = filter_input(INPUT_POST,

➝ ‘comments’, FILTER_SANITIZE_

➝ STRING);

if ($comments) {

echo “<p>Comments: $comments<br

➝ />\$_POST[‘comments’]:

{$_POST[‘comments’]}</p>\n”;

} else {

echo ‘<p class=”error”>Please

➝ enter your comments.</p>’;

}

For the comments, any tags will be
stripped (as with the name), but the quo-
tation marks will also be encoded.

8. Complete the main conditional and the
PHP code.

} // End of $_POST[‘submitted’] IF.

?>

04_PHP5VQP(123-168).qxd 02/14/2007 12:08 PM Page 140

Figure 4.6 At the top of the form the filtered values
are displayed.

Figure 4.5 These values will be submitted, then
filtered, resulting in Figure 4.6.

9. Create the HTML form.

<form method=”post”

➝ action=”filter.php”>

<fieldset>

<legend>Registration Form</legend>

<p>Name: <input type=”text”

➝ name=”name” /></p>

<p>Email Address: <input type=”text”

➝ name=”email” /></p>

<p>ICQ Number: <input type=”text”

➝ name=”icq” /></p>

<p>Comments: <textarea

➝ name=”comments” rows=”5”

➝ cols=”40”></textarea></p>

<input type=”hidden”

➝ name=”submitted” value=”true” />

<input type=”submit” name=”submit”

➝ value=”Submit” />

</fieldset>

</form>

10. Complete the page.

</body>

</html>

11. Save the file as filter.php, place it in
your Web directory, and test in your
Web browser (Figures 4.5 and 4.6).

12. View the HTML source of the page to
see how the name and comments fields
were treated (Figure 4.7).

continues on next page

141

Security Techniques
U

sin
g

 P
ECL

Filter

Figure 4.7 The HTML source code shows how all tags are stripped from the name and comments fields, plus how
quotation marks in the comments are encoded.

04_PHP5VQP(123-168).qxd 02/14/2007 12:08 PM Page 141

✔ Tips

■ The filter_has_var() function checks
to see if a variable with a given name
exists within a greater array of variables.
In this script, you could use this code to
see if the form has been submitted:

if (filter_has_var(INPUT_POST,

➝ ‘submitted’)) {

■ To filter an array of variables, use filter_
input_array(). In filter.php, you could
just do this:

$filters = array(

‘name’ => FILTER_SANITIZE_STRING,

‘email’ => FILTER_VALIDATE_EMAIL,

‘icq’ => FILTER_VALIDATE_INT,

‘comments’ => array(‘filter’ =>

➝ FILTER_SANITIZE_STRING, ‘flags’ =>

➝ FILTER_FLAG_NO_ENCODE_QUOTES)

);

$data = filter_input_array

➝ (INPUT_POST, $filters);

From that point, you could just refer to
$data[‘name’], etc.

■ The filter_var_array() applies a filter,
or an array of filters, to an array of data.

142

Chapter 4
U

si
n

g
 P

EC
L

Fi
lt

er

04_PHP5VQP(123-168).qxd 02/14/2007 12:08 PM Page 142

Authentication with
PEAR Auth
One of the more common elements in
today’s Web sites is an authentication sys-
tem: users register with a site, they log in to
gain access to some parts, and restricted
pages allow or deny access accordingly. Such
systems aren’t hard to implement—I’ve done
so in some of my other books—but here I’d
like to look at what PEAR has to offer.

The PEAR Auth package provides a really
easy, yet customizable authentication sys-
tem. To show it off, I’ll start with one very
simple example. This will mostly demon-
strate its basic usage. Then I’ll show how to
customize the authentication system to fit
it into a larger application. For both exam-
ples, you’ll need to install the PEAR Auth
package. Because the authentication infor-
mation is stored in a database, the PEAR DB
package must also be installed. If you’re not
familiar with PEAR and its installation, see
Chapter 12, “Using PEAR,” or
http://pear.php.net.

✔ Tip

■ For these examples I will put both the
authentication code and the restricted
page data in the same file. In a larger
Web site, you’ll likely want to separate
the authentication code into its own file,
which is then included by any file that
requires authentication.

143

Security Techniques
A

u
th

en
ticatio

n
 w

ith
 P

EA
R

 A
u

th

04_PHP5VQP(123-168).qxd 02/14/2007 12:08 PM Page 143

Simple authentication
This first, simple authentication example
shows how easily you can implement authen-
tication in a page. I’ll run through the syntax
and concepts first, and then create a script
that executes it all.

To begin, require the Auth class:

require_once (‘Auth.php’);

Next, you’ll need to define a function that
creates a login form. This function will be
called when an unauthorized user is trying
to access a page. The form should use the
POST method and have inputs called user-
name and password.

Then, for database-driven authentication,
which is the norm, you’ll need to create a
“DSN” within an options array. DSN stands
for data source name. It’s just a string of
information that indicates the type of data-
base application being used, the username,
password, and hostname to connect as, and
the database to select. That code might be:

$options = array(‘dsn’ =>

➝ ‘mysql://username:password@localhost/

➝ databasename’);

Now that those two things have been
defined—the function that makes the login
form and the DSN—you can create an object
of Auth type. Provide this object three argu-
ments: the type of authentication back end
to use (e.g., database or file), the options
(that correspond to the authentication type),
and the name of the login function:

$auth = new Auth(‘DB’, $options,

➝ ‘login_form_function_name’);

144

Chapter 4
A

u
th

en
ti

ca
ti

o
n

 w
it

h
 P

EA
R

 A
u

th

04_PHP5VQP(123-168).qxd 02/14/2007 12:08 PM Page 144

Figure 4.8 Creating the database and table required
by the simple authentication example.

The DB option tells Auth to use the PEAR
DB package. If you wanted to use a file sys-
tem instead, you would use File as the first
argument and the name of the file as the
second.

Now, start the authentication process:

$auth->start();

From there, you can check if a user is
authenticated by calling the checkAuth()
method:

if ($auth->checkAuth()) {

// Do whatever.

And that’s simple authentication in a nut-
shell! This next example will implement all
this. It will also invoke the addUser()
method to add a new authenticated user,
which can then be used for logging in. One
last note: this example will make use of a
database called auth, which must be created
prior to writing this script. It should have a
table called auth, defined like so:

CREATE TABLE auth (

username VARCHAR(50) NOT NULL,

password VARCHAR(32) NOT NULL,

PRIMARY KEY (username),

KEY (password)

)

Be certain that you’ve created this database
and table (Figure 4.8), and that you have
created a MySQL user that has access to
them, prior to going any further.

145

Security Techniques
A

u
th

en
ticatio

n
 w

ith
 P

EA
R

 A
u

th

04_PHP5VQP(123-168).qxd 02/14/2007 12:08 PM Page 145

To perform simple authentication:

1. Begin a new PHP script in your text edi-
tor or IDE (Script 4.3).

<?php # Script 4.3 - login.php

Because Auth relies on sessions (it’ll
start the sessions for you), it’s best to do
as much as you can before sending any
HTML to the Web browser. So I’ll write
most of the authentication code, and
only then begin the HTML page.

continues on page 148

1 <?php # Script 4.3 - login.php

2

3 /* This page uses PEAR Auth to control access.

4 * This assumes a database called "auth",

5 * accessible to a MySQL user of "username@localhost"

6 * with a password of "password".

7 * Table definition:

8

9 CREATE TABLE auth (

10 username VARCHAR(50) default '' NOT NULL,

11 password VARCHAR(32) default '' NOT NULL,

12 PRIMARY KEY (username),

13 KEY (password)

14)

15 * MD5() is used to encrypt the passwords.

16 */

17

18 // Need the PEAR class:

19 require_once ('Auth.php');

20

21 // Function for showing a login form:

22 function show_login_form() {

23

24 echo '<form method="post" action="login.php">

25 <p>Username <input type="text" name="username" /></p>

26 <p>Password <input type="password" name="password" /></p>

(script continues on next page)

Script 4.3 Using PEAR Auth and a MySQL table, this script enforces authentication.

146

Chapter 4
A

u
th

en
ti

ca
ti

o
n

 w
it

h
 P

EA
R

 A
u

th

04_PHP5VQP(123-168).qxd 02/14/2007 12:08 PM Page 146

27 <input type="submit" value="Login" />

28 </form>

29 ';

30

31 } // End of show_login_form() function.

32

33 // Connect to the database:

34 $options = array('dsn' => 'mysql://username:password@localhost/auth');

35

36 // Create the Auth object:

37 $auth = new Auth('DB', $options, 'show_login_form');

38

39 // Add a new user:

40 $auth->addUser('me', 'mypass');

41

42 ?><!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

43 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

44 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

45 <head>

46 <meta http-equiv="content-type" content="text/html; charset=iso-8859-1" />

47 <title>Restricted Page</title>

48 </head>

49 <body>

50 <?php

51

52 // Start the authorization:

53 $auth->start();

54

55 // Confirm authorization:

56 if ($auth->checkAuth()) {

57

58 echo '<p>You are logged in and can read this. How cool is that?</p>';

59

60 } else { // Unauthorized.

61

62 echo '<p>You must be logged in to access this page.</p>';

63

64 }

65

66 ?>

67 </body>

68 </html>

Script 4.3 continued

147

Security Techniques
A

u
th

en
ticatio

n
 w

ith
 P

EA
R

 A
u

th

04_PHP5VQP(123-168).qxd 02/14/2007 12:08 PM Page 147

2. Include the Auth class.

require_once (‘Auth.php’);

If you haven’t installed PEAR Auth yet,
do so now. See the PEAR manual for
instructions.

3. Define the function that creates the login
form.

function show_login_form() {

echo ‘<form method=”post”

➝ action=”login.php”>

<p>Username <input type=”text”

➝ name=”username” /></p>

<p>Password <input type=”password”

➝ name=”password” /></p>

<input type=”submit” value=”Login” />

</form>

‘;

}

The only requirements are that this form
has one input called username and
another called password.

4. Create the options array.

$options = array(‘dsn’ =>

➝ ‘mysql://username:password@

➝ localhost/auth’);

This code says that a connection should
be made to a MySQL database called
auth, using username as the username,
password as the password, and localhost
as the host.

5. Create the Auth object.

$auth = new Auth(‘DB’, $options,

➝ ‘show_login_form’);

148

Chapter 4
A

u
th

en
ti

ca
ti

o
n

 w
it

h
 P

EA
R

 A
u

th

04_PHP5VQP(123-168).qxd 02/14/2007 12:08 PM Page 148

Figure 4.9 One user has been added to the table. The
password is encrypted using the MD5() function.

6. Add a new user and complete the PHP
section.

$auth->addUser(‘me’, ‘mypass’);

?>

The addUser() functions takes the user-
name as its first argument and the pass-
word as the second. This record will be
added to the database as soon as the
script is first run (Figure 4.9). Because
the username column in the table is
defined as a primary key, MySQL will
never allow a second user with the name
of me to be added.

In a real application, you’d have a regis-
tration process that would just end up
calling this function in the end.

7. Add the initial HTML code.

<!DOCTYPE html PUBLIC “-//W3C//DTD

➝ XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/

➝ xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/

➝ xhtml” xml:lang=”en” lang=”en”>

<head>

<meta http-equiv=”content-type”

➝ content=”text/html; charset=iso-

➝ 8859-1” />

<title>Restricted Page</title>

</head>

<body>

8. Start the authentication.

<?php

$auth->start();

continues on next page

149

Security Techniques
A

u
th

en
ticatio

n
 w

ith
 P

EA
R

 A
u

th

04_PHP5VQP(123-168).qxd 02/14/2007 12:08 PM Page 149

9. Display different messages based upon
the authentication status.

if ($auth->checkAuth()) {

echo ‘<p>You are logged in and

➝ can read this. How cool is

➝ that?</p>’;

} else {

echo ‘<p>You must be logged in

➝ to access this page.</p>’;

}

When a user first comes to this page,
and $auth->checkAuth() is false, they’ll
see the login form plus this second mes-
sage (Figure 4.10). After logging
in with a valid username/password com-
bination, they’ll see this first message
(Figure 4.11).

10. Complete the page.

?>

</body>

</html>

11. Save the file as login.php, place it in
your Web directory, and test in your
Web browser.

Use me as the username and mypass as
the password.

Figure 4.11 The result after successfully logging in.

Figure 4.10 When first arriving at this page, or after an
unsuccessful login attempt, a user sees this.

150

Chapter 4
A

u
th

en
ti

ca
ti

o
n

 w
it

h
 P

EA
R

 A
u

th Implementing Optional
Authentication

If some of your Web site’s pages do not
require authentication but could still
acknowledge logged-in users, that’s an
option with Auth, too. To make authenti-
cation optional, add a fourth parameter
when creating the Auth object:

$auth = new Auth(‘DB’, $options,

➝ ‘show_login_form’, true);

To limit aspects of a page to authenticat-
ed users, invoke the getAuth() method:

if ($auth->getAuth()) {

// Restricted access content.

}

04_PHP5VQP(123-168).qxd 02/14/2007 12:08 PM Page 150

O p t i o n I n d i c a t e s

dsn The Data Source Name
table The database table to use
usernamecol The name of the username column
passwordcol The name of the password column
db_fields What other table fields should be

selected
cryptType The function used to encrypt the

password

DB Container Options

Table 4.3 These are some of the parameters you can
set when creating a new Auth object that uses DB.

Three other functions you can use to cus-
tomize the authentication are setExpire(),
setIdle(), and setSessionName(). The first
takes a value, in seconds, when the session
should be set to expire. The second takes a
value, in seconds, when a user should be
considered idle (because it’s been too long
since their last activity). The third function
changes the name of the session (which is
PHPSESSID, by default).

For this next example, a new table will be
used, still in the auth database. To create it,
use this SQL command (Figure 4.12):

CREATE TABLE users (

user_id INT UNSIGNED NOT NULL

➝ AUTO_INCREMENT,

email VARCHAR(60) NOT NULL,

pass CHAR(40) NOT NULL,

first_name VARCHAR (20) NOT NULL,

last_name VARCHAR(40) NOT NULL,

PRIMARY KEY (user_id),

UNIQUE (email),

KEY (email, pass)

)

This table represents how you might already
have some sort of user table, with its own
columns, that you’d want to use with Auth.

151

Security Techniques
A

u
th

en
ticatio

n
 w

ith
 P

EA
R

 A
u

th

Custom authentication
The preceding example does a fine job of
showing how easy it is to use PEAR Auth,
but it doesn’t demonstrate how you would
actually use it in a more full-fledged applica-
tion. By this I mean a site that has a table
with more than two columns and needs to
store, and retrieve, other information as well.

The first change you’ll need to make is to
the options array used when creating the
Auth object. Different storage types (“con-
tainers” in Auth parlance) have different
options. Table 4.3 lists some of the other
options you can use with DB.

For example, the DB container will use a
combination of the usernamecol and pass-
wordcol (encrypted using cryptType) to
authenticate the user against the submitted
values. The preceding example used the
defaults, but you can change this informa-
tion easily. Just as important, you can speci-
fy what other database columns should be
retrieved. These will then be available in the
session data and can be retrieved in your
script through the getAuthData() function:

echo $auth->getAuthData(‘column_name’);

Figure 4.12 Creating the table used by the custom
authentication system.

04_PHP5VQP(123-168).qxd 02/14/2007 12:08 PM Page 151

To use custom authentication:

1. Begin a new PHP script in your text edi-
tor or IDE, starting with the HTML
(Script 4.4).

<?php # Script 4.4 - custom_auth.php

require_once (‘Auth.php’);

continues on page 154

1 <?php # Script 4.4 - custom_auth.php

2

3 /* This page uses PEAR Auth to control access.

4 * This assumes a database called "auth",

5 * accessible to a MySQL user of "username@localhost"

6 * with a password of "password".

7 * Table definition:

8

9 CREATE TABLE users (

10 user_id INT UNSIGNED NOT NULL AUTO_INCREMENT,

11 email VARCHAR(60) NOT NULL,

12 pass CHAR(40) NOT NULL,

13 first_name VARCHAR (20) NOT NULL,

14 last_name VARCHAR(40) NOT NULL,

15 PRIMARY KEY (user_id),

16 UNIQUE (email),

17 KEY (email, pass)

18)

19

20 * SHA1() is used to encrypt the passwords.

21 */

22

23 // Need the PEAR class:

24 require_once ('Auth.php');

25

26 // Function for showing a login form:

27 function show_login_form() {

28

29 echo '<form method="post" action="custom_auth.php">

30 <p>Email <input type="text" name="username" /></p>

31 <p>Password <input type="password" name="password" /></p>

32 <input type="submit" value="Login" />

33 </form>

34 ';

35

(script continues on next page)

Script 4.4 In this script, Auth uses a different table, different column names, and a different encryption function for
the password. It selects every column from the table, making all the previously stored data available to the page.

152

Chapter 4
A

u
th

en
ti

ca
ti

o
n

 w
it

h
 P

EA
R

 A
u

th

04_PHP5VQP(123-168).qxd 02/14/2007 12:08 PM Page 152

36 } // End of show_login_form() function.

37

38 // All options:

39 // Use specific username and password columns.

40 // Use SHA1() to encrypt the passwords.

41 // Retrieve all fields.

42 $options = array(

43 'dsn' => 'mysql://username:password@localhost/auth',

44 'table' => 'users',

45 'usernamecol' => 'email',

46 'passwordcol' => 'pass',

47 'cryptType' => 'sha1',

48 'db_fields' => '*'

49);

50

51 // Create the Auth object:

52 $auth = new Auth('DB', $options, 'show_login_form');

53

54 // Add a new user:

55 $auth->addUser('me@example.com', 'mypass', array('first_name' => 'Larry', 'last_name' =>
'Ullman'));

56

57 ?><!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

58 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

59 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

60 <head>

61 <meta http-equiv="content-type" content="text/html; charset=iso-8859-1" />

62 <title>Restricted Page</title>

63 </head>

64 <body>

65 <?php

66

67 // Start the authorization:

68 $auth->start();

69

70 // Confirm authorization:

71 if ($auth->checkAuth()) {

72

73 // Print the user's name:

74 echo "<p>You, {$auth->getAuthData('first_name')} {$auth->getAuthData('last_name')}, are
logged in and can read this. How cool is that?</p>";

75

76 } else { // Unauthorized.

77

78 echo '<p>You must be logged in to access this page.</p>';

79

80 }

81

82 ?>

83 </body>

84 </html>

Script 4.4 continued

153

Security Techniques
A

u
th

en
ticatio

n
 w

ith
 P

EA
R

 A
u

th

04_PHP5VQP(123-168).qxd 02/14/2007 12:08 PM Page 153

2. Define the show_login_form() function.
function show_login_form() {

echo ‘<form method=”post”

➝ action=”custom_auth.php”>

<p>Email <input type=”text”

➝ name=”username” /></p>

<p>Password <input type=”password”

➝ name=”password” /></p>

<input type=”submit” value=”Login” />

</form>

‘;

}

The function is mostly the same as it
was before, except this time the action
points to this script, custom_auth.php.
The form also labels the one input as
Email (Figure 4.13), even though it’s
named username (as required).

3. Establish the authorization options and
create the object.
$options = array(

‘dsn’ => ‘mysql://username:password@

➝ localhost/auth’,

‘table’ => ‘users’,

‘usernamecol’ => ‘email’,

‘passwordcol’ => ‘pass’,

‘cryptType’ => ‘sha1’,

‘db_fields’ => ‘*’

);

$auth = new Auth(‘DB’, $options,

➝ ‘show_login_form’);

The DSN is the same as it was before.
Next, the table, usernamecol, and pass-
wordcol values are all specified. These
match the table already created (Figure
4.12). The cryptType value says that the
passwords should be encoded using
SHA1(), instead of the default MD5(). The
final element in the $options array says
that every column from the table should
be retrieved. In this particular script, this
will allow the page to refer to the logged-
in user by name.

Figure 4.13 The customized login form.

154

Chapter 4
A

u
th

en
ti

ca
ti

o
n

 w
it

h
 P

EA
R

 A
u

th

Creating a Logout Feature

To add a logout to your authentication
system, place this code on a logout page:

$auth = new Auth(‘DB’, $options,

➝ ‘show_login_form’);

$auth->start();

if ($auth->checkAuth()) {

$auth->logout();

$auth->start();

}

Just as when using sessions, you need to
start the authentication in order to destroy
it. You should then confirm that the user
is authenticated, using checkAuth(), prior
to logging out. Then call the logout()
method to de-authenticate the user.
Calling the start() method again will
redisplay the login form.

04_PHP5VQP(123-168).qxd 02/14/2007 12:08 PM Page 154

Figure 4.14 A sample user has been added to the users table.

4. Add a new user and complete the initial
PHP section (Figure 4.14).
$auth->addUser(‘me@example.com’,

➝ ‘mypass’, array(‘first_name’ =>

➝ ‘Larry’, ‘last_name’ => ‘Ullman’));

?>

Because the table has more than just the
two columns, the extra columns and val-
ues have to be provided, as an array, as
the third argument to the addUser()
method. This call of the function is the
equivalent of running this query:
INSERT INTO users (email, pass,

➝ first_name, last_name) VALUES

➝ (‘me@example.com’, SHA1(‘mypass’),

➝ ‘Larry’, ‘Ullman’)

155

Security Techniques
A

u
th

en
ticatio

n
 w

ith
 P

EA
R

 A
u

th

5. Create the initial HTML code.
<!DOCTYPE html PUBLIC “-//W3C//DTD

➝ XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/

➝ xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/

➝ xhtml” xml:lang=”en” lang=”en”>

<head>

<meta http-equiv=”content-type”

➝ content=”text/html; charset=iso-

➝ 8859-1” />

<title>Restricted Page</title>

</head>

<body>

continues on next page

04_PHP5VQP(123-168).qxd 02/14/2007 12:08 PM Page 155

6. Start the authorization.
<?php

$auth->start();

7. Print the authorization status.
if ($auth->checkAuth()) {

echo “<p>You, {$auth->get

➝ AuthData(‘first_name’)}

➝ {$auth->getAuthData(‘last_name’)},

➝ are logged in and can read this.

➝ How cool is that?</p>”;

} else {

echo ‘<p>You must be logged in

➝ to access this page.</p>’;

}

The result if the user isn’t logged in
looks like Figure 4.13. When the user
does log in, they are greeted by name
(Figure 4.15). The getAuthData() func-
tion can access the values selected from
the table and stored in the authentica-
tion session.

8. Complete the page.
?>

</body>

</html>

9. Save the file as custom_auth.php, place it
in your Web directory, and test in your
Web browser.

✔ Tips

■ You can add, on the fly, other data to the
authentication session using
setAuthData():

setAuthData($name, $value);

■ You can also improve authentication
security via the setAdvancedSecurity()
method. It uses both cookies and
JavaScript to lessen the possibility of
someone hacking an authenticated
session.

Figure 4.15 After successfully logging in, the user is
greeted by name. The name was pulled from the table
and stored in the session.

156

Chapter 4
A

u
th

en
ti

ca
ti

o
n

 w
it

h
 P

EA
R

 A
u

th

Using Auth_HTTP

One of the potential problems with
Auth is that it relies upon sessions, which
can introduce some security concerns.
A more secure option is to use HTTP
authentication via Auth_HTTP. HTTP
authentication uses a pop-up window,
separate from the HTML page, that takes
a username and password.

The benefits of HTTP authentication are
these:

◆ The entered username and password
are remembered without needing to
send cookies or establish sessions.

◆ The clean interface will not interfere
with your page design.

The downsides are:

◆ Inability to create a logout feature

◆ Inability to establish user groups or
specify access levels

◆ Inability to set an expiration time

04_PHP5VQP(123-168).qxd 02/14/2007 12:08 PM Page 156

Figure 4.16 Run a phpinfo() script to confirm your
server’s support for MCrypt.

Using MCrypt
Frequently Web applications will encrypt and
decrypt data stored in a database, using the
database-supplied functions. This is appro-
priate, as you want the database to do the
bulk of the work whenever possible. But what
if you want to encrypt and decrypt data
that’s not being stored in a database? In that
situation, MCrypt is the best solution. To
use MCrypt with PHP, you’ll need to install
the MCrypt library (libmcrypt, available
from http://mcrypt.sourceforge.net) and
configure PHP to support it (Figure 4.16).

For this example, I’ll show you how to
encrypt data stored in a cookie, making it
that much more secure. Because the encryp-
tion process creates binary data, the
base64_encode() function will be applied to
the encrypted data prior to storing it in a
cookie. Therefore, the base64_decode() func-
tion needs to be used prior to decoding the
data. Other than that little tidbit, the focus
in the next two scripts is entirely on
MCrypt.

Do keep in mind that in the next several
pages I’ll be introducing and teaching con-
cepts to which people have dedicated entire
careers. The information covered here will
be secure, useful, and valid, but it’s just the
tip of the proverbial iceberg.

157

Security Techniques
U

sin
g

 M
Crypt

04_PHP5VQP(123-168).qxd 02/14/2007 12:08 PM Page 157

Encrypting data
With MCrypt libraries 2.4.x and higher,
you start by identifying which algorithm
and mode to use by invoking the mcrypt_
module_open() function:

$m = mcrypt_module_open (algorithm,

➝ algorithm_directory, mode,

➝ mode_directory);

MCrypt comes with dozens of different algo-
rithms, or ciphers, each of which encrypts
data differently. If you are interested in how
each works, see the MCrypt home page or
search the Web. In my examples, I’ll be using
the Rijndael algorithm, also known as the
Advanced Encryption Standard (AES). It’s a
very popular and secure encryption algo-
rithm, even up to United States government
standards. I’ll be using it with 256-bit keys,
for extra security.

As for the mode, there are four main modes:
ECB (electronic codebook), CBC (cipher
block chaining), CFB (cipher feedback), and
OFB (output feedback). CBC will suit most
of your needs, especially when encrypting
blocks of text as in this example. So to indi-
cate that you want to use Rijndael 256 in
CBC mode, you would code:

$m = mcrypt_module_open(‘rijndael-

➝ 256’, ‘’, ‘cbc’, ‘’);

The second and fourth arguments fed to the
mcrypt_module_open() function are for
explicitly stating where PHP can find the
algorithm and mode files. These are not
required unless PHP is unable to find a
cipher and you know for certain it is
installed.

158

Chapter 4
U

si
n

g
 M

Cr
yp

t

Once the module is open, you create an IV
(initialization vector). This may be required,
optional, or unnecessary depending upon
the mode being used. I’ll use it with CBC, to
increase the security. Here’s how the PHP
manual recommends an IV be created:

$iv = mcrypt_create_iv

➝ (mcrypt_enc_get_iv_size ($m),

➝ MCRYPT_DEV_RANDOM);

By using the mcrypt_enc_get_iv_size()
function, a properly sized IV will be created
for the cipher being used. Note that on
Windows, you should use MCRYPT_RAND
instead of MCRYPT_DEV_RANDOM, and call the
srand() function before this line to ensure
the random generation.

The final step before you are ready to
encrypt data is to create the buffers that
MCrypt needs to perform encryption:

mcrypt_generic_init ($m, $key, $iv);

The second argument is a key, which should
be a hard-to-guess string. The key must be
of a particular length, corresponding to the
cipher you use. The Rijndael cipher I’m using
takes a 256-bit key. Divide 256 by 8 (because
there are 8 bits in a byte and each character
in the key string takes one byte) and you’ll
see that the key needs to be exactly 32 char-
acters long. To accomplish that, and to ran-
domize the key even more, I’ll run it through
MD5(), which always returns a 32-character
string:

$key = MD5(‘some string’);

Once you have gone through these steps,
you are ready to encrypt data:

$encrypted_data = mcrypt_generic ($m,

➝ $data);

04_PHP5VQP(123-168).qxd 02/14/2007 12:08 PM Page 158

Finally, after you have finished encrypting
everything, you should close all the buffers
and modules:

mcrypt_generic_denit ($m);

mcrypt_module_close($m);

For this example, I’m going to create a cook-
ie whose value is encrypted. The cookie data
will be decrypted in the next example. The
key and data to be encrypted will be hard-
coded into this script, but I’ll mention alter-
natives in the following steps. Also, because
the same key and IV are needed to decrypt
the data, the IV will also be sent in a cookie.
Surprisingly, doing so doesn’t hurt the secu-
rity of the application.

159

Security Techniques
U

sin
g

 M
Crypt

04_PHP5VQP(123-168).qxd 02/14/2007 12:08 PM Page 159

To encrypt data:

1. Begin a new PHP script in your text edi-
tor or IDE (Script 4.5).

<?php # Script 4.5 -

➝ set_mcrypt_cookie.php

Because the script will send two cookies,
most of the PHP code will come before
any HTML.

2. Define the key and the data.

$key = md5(‘77 public drop-shadow

➝ Java’);

$data = ‘rosebud’;

For the key, some random words and
numbers are run through the MD5() func-
tion, creating a 32-character-long string.
Ideally, the key should be stored in a safe
place, such as a configuration file located
outside of the Web document root. Or it
could be retrieved from a database.

The data being encrypted is the word
rosebud, although in real applications
this data might come from the database
or another source (and be something
more worth protecting).

3. Open the cipher.

$m = mcrypt_module_open(‘rijndael-

➝ 256’, ‘’, ‘cbc’, ‘’);

This is the same code outlined in the
text before these steps.

continues on page 162

160

Chapter 4
U

si
n

g
 M

Cr
yp

t

04_PHP5VQP(123-168).qxd 02/14/2007 12:08 PM Page 160

1 <?php # Script 4.5 - set_mcrypt_cookie.php

2

3 /* This page uses the MCrypt library

4 * to encrypt some data.

5 * The data will then be stored in a cookie,

6 * as will the encryption IV.

7 */

8

9 // Create the key:

10 $key = md5('77 public drop-shadow Java');

11

12 // Data to be encrypted:

13 $data = 'rosebud';

14

15 // Open the cipher:

16 // Using Rijndael 256 in CBC mode.

17 $m = mcrypt_module_open('rijndael-256', '', 'cbc', '');

18

19 // Create the IV:

20 // Use MCRYPT_RAND on Windows instead of MCRYPT_DEV_RANDOM.

21 $iv = mcrypt_create_iv(mcrypt_enc_get_iv_size($m), MCRYPT_DEV_RANDOM);

22

23 // Initialize the encryption:

24 mcrypt_generic_init($m, $key, $iv);

25

26 // Encrypt the data:

27 $data = mcrypt_generic($m, $data);

28

29 // Close the encryption handler:

30 mcrypt_generic_deinit($m);

31

32 // Close the cipher:

33 mcrypt_module_close($m);

34

35 // Set the cookies:

36 setcookie('thing1', base64_encode($data));

37 setcookie('thing2', base64_encode($iv));

38 ?><!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

39 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

40 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

41 <head>

42 <meta http-equiv="content-type" content="text/html; charset=iso-8859-1" />

43 <title>A More Secure Cookie</title>

44 </head>

45 <body>

46 <p>The cookie has been sent. Its value is '<?php echo base64_encode($data); ?>'.</p>

47 </body>

48 </html>

Script 4.5 This script uses MCrypt to encrypt some data to be stored in a cookie.

161

Security Techniques
U

sin
g

 M
Crypt

04_PHP5VQP(123-168).qxd 02/14/2007 12:08 PM Page 161

4. Create the IV.

$iv = mcrypt_create_iv

➝ (mcrypt_enc_get_iv_size($m),

➝ MCRYPT_DEV_RANDOM);

Again, this is the same code outlined ear-
lier. Remember that if you are running
this script on Windows, you’ll need to
change this line to:

srand();

$iv = mcrypt_create_iv

➝ (mcrypt_enc_get_iv_size($m),

➝ MCRYPT_RAND);

5. Initialize the encryption.

mcrypt_generic_init($m, $key, $iv);

6. Encrypt the data.

$data = mcrypt_generic($m, $data);

If you were to print the value of
$data now, you’d see something like
Figure 4.17.

7. Perform the necessary cleanup.

mcrypt_generic_deinit($m);

mcrypt_module_close($m);

8. Send the two cookies.

setcookie(‘thing1’,

➝ base64_encode($data));

setcookie(‘thing2’,

➝ base64_encode($iv));

For the cookie names, I’m using mean-
ingless values. You certainly wouldn’t
want to use, say, IV, as a cookie name!
For the cookie data itself, you have to
run it through base64_encode() to make
it safe to store in a cookie. This applies to
both the encrypted data and the IV
(which is also in binary format).

If the data were going to be stored in a
binary file or in a database (in a BLOB col-
umn), you wouldn’t need to use
base64_encode().

Figure 4.17 This gibberish is the encrypted data in
binary form.

162

Chapter 4
U

si
n

g
 M

Cr
yp

t

04_PHP5VQP(123-168).qxd 02/14/2007 12:08 PM Page 162

Figure 4.20 The second cookie stores the
base64_encode() version of the IV.

Figure 4.19 The first cookie stores the actual data.

Figure 4.18 The result of running the page.

9. Add the HTML head.

?><!DOCTYPE html PUBLIC “-//W3C//DTD

➝ XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/

➝ xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/

➝ xhtml” xml:lang=”en” lang=”en”>

<head>

<meta http-equiv=”content-type”

➝ content=”text/html; charset=iso-

➝ 8859-1” />

<title>A More Secure

➝ Cookie</title>

</head>

<body>

10. Print a message, including the encoded,
encrypted version of the data.

<p>The cookie has been sent. Its

➝ value is ‘<?php echo

➝ base64_encode($data); ?>’.</p>

I’m doing this mostly so that the page
shows something (Figure 4.18), but
also so that you can see the value stored
in the cookie.

11. Complete the page.

</body>

</html>

12. Save the file as set_mcrypt_cookie.php,
place it in your Web directory, and test
in your Web browser.

If you set your browser to show cookies
being sent, you’ll see the values when you
run the page (Figures 4.19 and 4.20).

✔ Tips

■ There’s an argument to be made that
you shouldn’t apply the MD5() function
to the key because it actually decreases
the security of the key. I’ve used it here
regardless, but it’s the kind of issue that
legitimate cryptographers think about.

163

Security Techniques
U

sin
g

 M
Crypt

■ If you want to determine the length of
the key on the fly, use the mcrypt_end_
get_key_size() function:

$ks = mcrypt_end_get_key_size($m);

04_PHP5VQP(123-168).qxd 02/14/2007 12:08 PM Page 163

Decrypting data
When it’s time to decrypt encrypted data,
most of the process is the same as it is for
encryption. To start:

$m = mcrypt_module_open(‘rijndael-

➝ 256’, ‘’, ‘cbc’, ‘’);

mcrypt_generic_init($m, $key, $iv);

At this point, instead of using mcrypt_
generic(), you’ll use mdecrypt_generic():

$data = mdecrypt_generic($m,

➝ $encrypted_data);

Note, and this is very important, that to suc-
cessfully decrypt the data, you’ll need the
exact same key and IV used to encrypt it.

Once decryption has taken place, you can
close up your resources:

mcrypt_generic_deinit($m);

mcrypt_module_close($m);

Finally, you’ll likely want to apply the
rtrim() function to the decrypted data, as
the encryption process may add white space
as padding to the end of the data.

164

Chapter 4
U

si
n

g
 M

Cr
yp

t

To decrypt data:

1. Begin a new PHP script in your text edi-
tor or IDE, starting with the HTML
(Script 4.6).

<!DOCTYPE html PUBLIC “-//W3C//DTD

➝ XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/

➝ xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/

➝ xhtml” xml:lang=”en” lang=”en”>

<head>

<meta http-equiv=”content-type”

➝ content=”text/html; charset=iso-

➝ 8859-1” />

<title>A More Secure

➝ Cookie</title>

</head>

<body>

<?php # Script 4.6 -

➝ read_mcrypt_cookie.php

continues on page 166

04_PHP5VQP(123-168).qxd 02/14/2007 12:08 PM Page 164

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

2 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

3 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="content-type" content="text/html; charset=iso-8859-1" />

6 <title>A More Secure Cookie</title>

7 </head>

8 <body>

9 <?php # Script 4.6 - read_mcrypt_cookie.php

10

11 /* This page uses the MCrypt library

12 * to decrypt data stored in a cookie.

13 */

14

15 // Make sure the cookies exist:

16 if (isset($_COOKIE['thing1']) && isset($_COOKIE['thing2'])) {

17

18 // Create the key:

19 $key = md5('77 public drop-shadow Java');

20

21 // Open the cipher:

22 // Using Rijndael 256 in CBC mode.

23 $m = mcrypt_module_open('rijndael-256', '', 'cbc', '');

24

25 // Decode the IV:

26 $iv = base64_decode($_COOKIE['thing2']);

27

28 // Initialize the encryption:

29 mcrypt_generic_init($m, $key, $iv);

30

31 // Decrypt the data:

32 $data = mdecrypt_generic($m, base64_decode($_COOKIE['thing1']));

33

34 // Close the encryption handler:

35 mcrypt_generic_deinit($m);

36

37 // Close the cipher:

38 mcrypt_module_close($m);

39

40 // Print the data.

41 echo '<p>The cookie has been received. Its value is "' . trim($data) . '".</p>';

42

43 } else { // No cookies!

44 echo '<p>There\'s nothing to see here.</p>';

45 }

46 ?>

47 </body>

48 </html>

Script 4.6 This script reads in a cookie with encrypted data (plus a second cookie that stores an important piece for
decryption); then it decrypts and prints the data.

165

Security Techniques
U

sin
g

 M
Crypt

04_PHP5VQP(123-168).qxd 02/14/2007 12:08 PM Page 165

2. Check that the cookies exist.

if (isset($_COOKIE[‘thing1’]) &&

➝ isset($_COOKIE[‘thing2’])) {

There’s no point in trying to decrypt
the data if the page can’t read the two
cookies.

3. Create the key.

$key = md5(‘77 public drop-shadow

➝ Java’);

Not to belabor the point, but again, this
must be the exact same key used to
encrypt the data. This is another reason
why you might want to store the key out-
side of these scripts.

4. Open the cipher.

$m = mcrypt_module_open(‘rijndael-

➝ 256’, ‘’, ‘cbc’, ‘’);

This should also match the encryption
code (you have to use the same cipher
and mode for both encryption and
decryption).

5. Decode the IV.

$iv = base64_decode

➝ ($_COOKIE[‘thing2’]);

The IV isn’t being generated here; it’s
being retrieved from the cookie (because
it has to be the same IV as was used to
encrypt the data). The base64_decode()
function will return the IV to its binary
form.

6. Initialize the decryption.

mcrypt_generic_init($m, $key, $iv);

7. Decrypt the data.

$data = mdecrypt_generic($m,

➝ base64_decode($_COOKIE[‘thing1’]));

The mdecrypt_generic() function will
decrypt the data. The data is coming
from the cookie and must be decoded
first.

166

Chapter 4
U

si
n

g
 M

Cr
yp

t

04_PHP5VQP(123-168).qxd 02/14/2007 12:08 PM Page 166

Figure 4.21 The cookie data has been successfully
decrypted.

8. Wrap up the MCrypt code.

mcrypt_generic_deinit($m);

mcrypt_module_close($m);

9. Print the data.

echo ‘<p>The cookie has been

➝ received. Its value is “‘ .

➝ trim($data) . ‘“.</p>’;

10. Complete the page.

} else {

echo ‘<p>There\’s nothing to

➝ see here.</p>’;

}

?>

</body>

</html>

The else clause applies if the two cook-
ies were not accessible to the script.

11. Save the file as read_mcrypt_cookie.php,
place it in your Web directory, and test
in your Web browser (Figure 4.21).

✔ Tip

■ If you rerun the first script, you’ll see
that the encrypted version of the data is
actually different each time, even though
the data itself is always the same. This is
because the IV will be different each
time. Still, the decryption will always
work, as the IV is stored in a cookie.

167

Security Techniques
U

sin
g

 M
Crypt

04_PHP5VQP(123-168).qxd 02/14/2007 12:08 PM Page 167

