


Many of the designations used by manufacturers and sellers to distinguish their prod-
ucts are claimed as trademarks. Where those designations appear in this book, and the 
publisher was aware of a trademark claim, the designations have been printed with ini-
tial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no 
expressed or implied warranty of any kind and assume no responsibility for errors or 
omissions. No liability is assumed for incidental or consequential damages in connec-
tion with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for 
bulk purchases or special sales, which may include electronic versions and/or custom 
covers and content particular to your business, training goals, marketing focus, and 
branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data
Eeles, Peter, 1962–

The process of software architecting / Peter Eeles, Peter Cripps.
p. cm.

Includes bibliographical references and index.
ISBN 0-321-35748-5 (pbk. : alk. paper)
1. Software architecture. 2. System design. I. Cripps, Peter, 1958– II. Title.

QA76.754.E35 2009
005.1'2—dc22

2009013890

Copyright © 2010 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is pro-
tected by copyright, and permission must be obtained from the publisher prior to any 
prohibited reproduction, storage in a retrieval system, or transmission in any form or by 
any means, electronic, mechanical, photocopying, recording, or likewise. For informa-
tion regarding permissions, write to:

Pearson Education, Inc
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-321-35748-9
ISBN-10: 0-321-35748-5 
Text printed in the United States on recycled paper at Courier in Stoughton, 
Massachusetts.
First printing, July 2009



xvii

Foreword
by Grady Booch

The study of the architecting of software-intensive systems is currently a vibrant
concern. Although a number of books and papers describing the concepts of
software architecture have emerged, far fewer address the practice of archi-
tecting. This is such a book.

Here, the authors offer their seasoned perspective on architecture: what it
is, how it manifests itself, who does it, how it relates to the other artifacts of a
software development project. Although this book covers all the important
fundamentals of representing a system’s architecture, the strength of this work
lies in its deep examination of a method for architecting. I say deep because
the authors explain their ways by using well-defined models, but happily, they
do so in a manner that is understandable and comprehensive, with particular
emphasis on attending to the various views that comprise a complete picture
of a system’s architecture. They also cover, in some detail, bridging the gap
between a system’s logical architecture and its physical one. I’m particularly
delighted by their inclusion of peopleware issues—namely, the roles of the
architect and the architecture team, and the connection of architectural arti-
facts to the activities of various team members.

Using a fairly complete case study, the authors bring their concepts to
practice. Their explanation of the pitfalls that one should avoid comes from
their practical experience in industry and, thus, is particularly useful. Indeed,
this is a most useful book, for it contains ideas that are immediately actionable
by any software development organization.



xix

Preface

Several years ago, the authors became aware of Grady Booch’s Handbook of
Software Architecture initiative (www.handbookofsoftwarearchitecture.com).
The purpose of Grady’s initiative is

To codify the architecture of a large collection of interesting software-intensive

systems, presenting them in a manner that exposes their essential patterns

and that permits comparisons across domains and architectural styles.

While Grady is focusing on the resulting architectures, we felt that it
would be equally interesting to understand the processes that successful archi-
tects follow when creating their architectures. Our ultimate objective was, of
course, to replicate their success. This journey has taken us several years to
complete. Many projects have been executed, many architects have been inter-
viewed, and many development methods have been teased apart—all contrib-
uting to our understanding of the essence of what works, and what doesn’t,
when architecting a software system. This book is the pinnacle of our journey.

A number of excellent books describe a particular aspect of the process of
software architecting, and we draw from these books where relevant. Some of
these books focus on documenting a software architecture, for example, and
others focus on evaluating a software architecture. Each of these aspects fits
into a bigger picture, because each represents an important element of the pro-
cess of software architecting. One objective of this book, therefore, is to

www.handbookofsoftwarearchitecture.com


xx | Preface

present this big picture by providing a consolidated look at all aspects of archi-
tecting in the context of a typical software development project.

It should be noted that this book does not prescribe a particular software
development method. Rather, it describes the key elements that one would
expect to encounter in any modern development method in supporting the
architecting process.

Who This Book Is For

Clearly, this book is aimed at software architects (or aspiring software archi-
tects) wanting to understand how their role fits into an overall software devel-
opment process. It is also applicable to specialist architect roles such as an
application architect and security architect. In more general terms, this book is
applicable to anyone who wants to gain a better appreciation of the role of the
software architect. As such, it will also be of some benefit to all members of a
software development team, including developers, testers, business analysts,
project managers, configuration managers, and process engineers. It is also of
particular relevance to undergraduates who want to gain insight into the
increasingly important role of the software architect in a software develop-
ment effort.

How to Read This Book

The book is roughly divided into three parts.
The first part, Chapters 1 through 5, summarizes the core concepts of

architecture, architect and architecting, documenting a software architecture,
and reusable architecture assets.

The second part, Chapters 6 through 9, contains the case study–related
chapters, which provide a guided tour through a typical software develop-
ment project based on an example application, with a focus on the role of the
architect. These chapters have been written to make them easy to read at a
glance and to permit you to find specific topics of interest easily. Each case
study–related chapter is organized primarily by tasks, and in these chapters
we have used a few styles and conventions. In particular, all references to pro-
cess elements, such as tasks, work products, and roles, are emphasized in
bold text, such as when we describe the Software Architecture Document
work product.

The third part, Chapter 10, contains additional discussion topics and con-
siders, in particular, how the concepts described in the preceding chapters
apply to architecting complex systems.



Preface | xxi

In this book, you’ll also find helpful sidebars that are categorized as follows:

■ Concept sidebars introduce ideas or sets of ideas that are relevant to the 
topics under discussion.

■ Checklist sidebars contain useful lists of items that can be checked when 
performing a particular task.

■ Best Practice sidebars introduce effective approaches that have been 
proved in practice.

■ Pitfall sidebars introduce approaches that are best avoided because they 
result in negative consequences.

We use the Unified Modeling Language (UML) to a large extent in this book
to describe certain aspects of the architecture. All UML diagrams have been
created with IBM Rational Software Architect.

Website

This book has an accompanying website, processofsoftwarearchitecting.com,
where readers can find additional information and also interact with the authors.



9

Chapter 2

Architecture, Architect, Architecting

This chapter provides an overview of three of the core concepts related to the
subject of this book and concludes with a discussion of the benefits of archi-
tecting. These concepts, as shown in Figure 2.1, are the role of the architect,
the characteristics of the architecting tasks they perform, and the architecture
that results.

Architecture

There is no shortage of definitions when it comes to architecture. Even some
websites maintain collections of definitions (SEI 2009). The definition used in
this book is that taken from IEEE 1471-2000, IEEE Recommended Practice for
Architectural Description of Software-Intensive Systems (IEEE 1471 2000). This
definition follows, with key characteristics highlighted:

[Architecture is] The fundamental organization of a system embodied in its

components, their relationships to each other, and to the environment, and

the principles guiding its design and evolution. (IEEE 1471 2000)



10 | Chapter 2 Architecture, Architect, Architecting

This standard also defines the following terms related to this definition: 

[A system is] a collection of components organized to accomplish a specific

function or set of functions. The term system encompasses individual applica-

tions, systems in the traditional sense, subsystems, systems of systems, product

lines, product families, whole enterprises, and other aggregations of interest. A

system exists to fulfill one or more missions in its environment. (IEEE 1471 2000)

The environment, or context, determines the setting and circumstances of

developmental, operational, political, and other influences upon that system.

(IEEE 1471 2000)

A mission is a use or operation for which a system is intended by one or more

stakeholders to meet some set of objectives. (IEEE 1471 2000)

[A system stakeholder is] an individual, team, or organization (or classes

thereof) with interests in, or concerns relative to, a system. (IEEE 1471 2000)

As you can see, the term component is used in this definition. Most defi-
nitions of architecture do not define the term component, however, and IEEE
1471 is no exception, choosing to leave it deliberately vague because the
term is intended to cover the many interpretations in the industry. A compo-
nent may be logical or physical, technology-independent or technology-spe-
cific, large-grained or small-grained. For the purposes of this book, we use
the definition of component from the Unified Modeling Language (UML) 2.2
specification:

A component represents a modular part of a system that encapsulates its con-

tents and whose manifestation is replaceable within its environment. A com-

ponent defines its behavior in terms of provided and required interfaces. As

Architecture

ArchitectingArchitect
- performs

- creates - results in

Figure 2.1 Core Concepts Used in This Book



Architecture | 11

such, a component serves as a type whose conformance is defined by these

provided and required interfaces (encompassing both their static as well as

dynamic semantics). One component may therefore be substituted by another

only if the two are type conformant. (UML 2.2 2009)

It is worth considering some other definitions of architecture so that you
can observe similarities among those definitions. Consider the following defini-
tions, in which some of the key characteristics are highlighted:

An architecture is the set of significant decisions about the organization of a

software system, the selection of structural elements and their interfaces by

which the system is composed, together with their behavior as specified in

the collaborations among those elements, the composition of these elements

into progressively larger subsystems, and the architectural style that guides

this organization—these elements and their interfaces, their collaborations,

and their composition. (Kruchten 2000)

The software architecture of a program or computing system is the structure

or structures of the system, which comprise software elements, the externally

visible properties of those elements, and the relationships among them. (Bass

2003)

The software architecture of a system or a collection of systems consists of all

the important design decisions about the software structures and the interac-

tions between those structures that comprise the systems. The design deci-

sions support a desired set of qualities that the system should support to be

successful. The design decisions provide a conceptual basis for system devel-

opment, support, and maintenance. (McGovern 2004)

You can see that although the definitions are somewhat different, they
have a large degree of commonality. Most definitions indicate that an architec-
ture is concerned with both structure and behavior, is concerned with signifi-
cant elements only, may conform to an architectural style, is influenced by its
stakeholders and its environment, and embodies decisions based on rationale.
All these themes and others are discussed in the following sections.

An Architecture Defines Structure

If you were to ask someone to describe architecture to you, nine times out of
ten, that person would make some reference to something related to structure,
quite often in relation to a building or some other civil-engineering structure,



12 | Chapter 2 Architecture, Architect, Architecting

such as a bridge. Although other characteristics of these items exist, such as
behavior, fitness for purpose, and even aesthetics, the structural characteristic
is the most familiar and the most often mentioned.

It should not surprise you, then, that if you ask someone to describe the
architecture of a software system that he or she is working on, you’ll probably
be shown a diagram that shows the structural aspects of the system, whether
these aspects are architectural layers, components, or distribution nodes. Struc-
ture is indeed an essential characteristic of an architecture.

The structural aspects of an architecture manifest themselves in many
ways, and most definitions of architecture are deliberately vague as a result. A
structural element could be a subsystem, a process, a library, a database, a com-
putational node, a legacy system, an off-the-shelf product, and so on.

Many definitions of architecture also acknowledge not only the structural
elements themselves, but also the composition of structural elements, their
relationships (and any connectors needed to support these relationships), their
interfaces, and their partitioning. Again, each of these elements can be pro-
vided in a variety of ways. A connector, for example, could be a socket, be syn-
chronous or asynchronous, be associated with a particular protocol, and so on.

Figure 2.2 shows an example of some structural elements. This figure
shows a UML component diagram containing some structural elements in an
order processing system. You see three components, named Order Entry, Cus-
tomer Management, and Account Management. The Order Entry component is
shown as depending on the Customer Management component and also on the
Account Management component, indicated by a UML dependency. 

An Architecture Defines Behavior

As well as defining structural elements, an architecture defines the interactions
among these structural elements. These interactions provide the desired system
behavior.

Figure 2.3 is a UML sequence diagram showing several interactions that,
together, allow the system to support the creation of an order in an order pro-

Order Entry

Customer Management Account Management

Figure 2.2 UML Component Diagram Showing Structural Elements



Architecture | 13

cessing system. The figure shows five interactions. First, a Sales Clerk actor cre-
ates an order by using an instance of the Order Entry component. The Order
Entry instance gets customer details by using an instance of the Customer Man-
agement component. Then the Order Entry instance uses an instance of the
Account Management component to create the order, populate the order with
order items, and place the order.

It should be noted that Figure 2.3 is consistent with Figure 2.2 in that you
can derive the dependencies shown in Figure 2.2 from the interactions defined
in Figure 2.3. An instance of Order Entry, for example, depends on an instance
of Customer Management during its execution, as shown by the interactions in
Figure 2.3. This dependency is reflected in a dependency relationship between
the corresponding Order Entry and Customer Management components, as
shown in Figure 2.2.

An Architecture Focuses on Significant Elements

Although an architecture defines structure and behavior, it is not concerned
with defining all the structure and all the behavior. It is concerned only with
those elements that are deemed to be significant. Significant elements are those

:Sales Clerk :Order Entry :Customer Management :Account Management

loop

[1,*]

1: create order

1.1: get customer details

1.2: create order

1: add order item

1.3: place order

Figure 2.3 UML Sequence Diagram Showing Behavioral Elements



14 | Chapter 2 Architecture, Architect, Architecting

that have a long and lasting effect, such as the major structural elements, those
elements associated with essential behavior, and those elements that address
significant qualities such as reliability and scalability. In general, the architec-
ture is not concerned with the fine-grained details of these elements. Architec-
tural significance can also be phrased as economical significance, because the
primary drivers for considering certain elements over others are the cost of cre-
ation and the cost of change.

Because an architecture focuses on significant elements only, it provides a
particular focus of the system under consideration—the focus that is most rele-
vant to the architect. In this sense, an architecture is an abstraction of the sys-
tem that helps an architect manage complexity.

It is also worth noting that the set of significant elements is not static and
may change over time. As a consequence of requirements being refined, risks
identified, executable software built, and lessons learned, the set of significant
elements may change. The relative stability of the architecture in the face of
change, however, is to some extent the sign of a good architecture, the sign of
a well-executed architecting process, and the sign of a good architect. Contin-
ual revision of the architecture due to relatively minor changes is not a good
sign. If the architecture is relatively stable, however, the converse is true.

An Architecture Balances Stakeholder Needs

An architecture is created ultimately to address a set of system stakeholder
needs, but often, meeting all the expressed needs is not possible. A stakeholder
may ask for some functionality within a specified time frame, for example, but
the two needs—functionality and time frame—are mutually exclusive. Either
the scope can be reduced to meet the schedule, or all the functionality can be
provided within an extended time frame. Similarly, different stakeholders may
express conflicting needs, and again, an appropriate balance must be achieved.
Making trade-offs, therefore, is an essential aspect of the architecting process,
and negotiation is an essential characteristic of the architect.

Just to give you an idea of the task at hand, consider the following needs of
a set of stakeholders:

■ The needs of the end user are associated with intuitive and correct behav-
ior, performance, reliability, usability, availability, and security.

■ The needs of the system administrator are associated with intuitive behav-
ior, administration, and tools to aid monitoring.

■ The needs of the marketer are associated with competitive features, time to 
market, positioning with other products, and cost.



Architecture | 15

■ The needs of the customer are associated with cost, stability, and schedule.

■ The needs of the developer are associated with clear requirements and a 
simple, consistent design approach.

■ The needs of the project manager are associated with predictability in the 
tracking of the project, schedule, productive use of resources, and budget.

■ The needs of the maintainer are associated with a comprehensible, consis-
tent, and documented design approach, as well as the ease with which 
modifications can be made.

Another challenge for the architect, as you can see from this list, is that the
stakeholders are not concerned only that the system provide the required func-
tionality. Many of the concerns that are listed are non-functional in nature (in
that they do not contribute to the functionality of the system). Such concerns
represent system qualities or constraints. Non-functional requirements are quite
often the most significant requirements as far as an architect is concerned; they
are discussed in detail in Chapter 7, “Defining the Requirements.”

An Architecture Embodies Decisions Based on Rationale

An important aspect of an architecture is not just the end result—the architec-
ture itself—but also the rationale that explains why it is the way it is. Thus, as
described in Chapter 4, “Documenting a Software Architecture,” important
considerations are the documenting of the decisions that led to this architec-
ture and the rationale for these decisions.

This information is relevant to many stakeholders, especially those who
must maintain the system. This information is often valuable to the architects
themselves when they need to revisit the rationale behind the decisions that
were made, so that they don’t end up having to retrace their steps unnecessar-
ily. This information is used when the architecture is reviewed and the archi-
tect needs to justify the decisions that have been made, for example.

Also, some of these decisions may have been imposed on the architect and,
in this sense, represent constraints on the solution. A companywide policy to
use particular technologies and products may exist, for example, and this pol-
icy needs to be accommodated in the solution.

An Architecture May Conform to an Architectural Style

Most architectures are derived from systems that have a similar set of concerns.
This similarity can be described as an architectural style, a term borrowed
from the styles used in building architectures. You can think of an architectural



16 | Chapter 2 Architecture, Architect, Architecting

style as being a particular kind of pattern, albeit an often complex and compos-
ite pattern (several patterns applied together).

Every well-structured software-intensive system is full of patterns. (Booch

2009)

An architectural style represents a codification of experience, and it is good
practice for architects to look for opportunities to reuse such experience.
Examples of architectural styles include a distributed style, a pipes-and-filters
style, a data-centered style, a rule-based style, service-oriented architecture, and
so on. Architectural styles are discussed further in Chapter 5, “Reusable Archi-
tecture Assets.” A given system may exhibit more than one architectural style.

[An architectural style] defines a family of systems in terms of a pattern of struc-

tural organization. More specifically, an architectural style defines a vocabulary

of components and connector types, and a set of constraints on how they can

be combined. (Shaw 1996)

The application of an architectural style (and reusable assets in general)
makes the life of an architect somewhat easier because such assets are already
proved, thereby reducing risk and, of course, effort. A style is normally docu-
mented in terms of the rationale for using it (so there is less thinking to be
done) and in terms of its key structures and behaviors (so there is less architec-
ture documentation to be produced because you can simply refer to the style
instead). Architecture assets are discussed in detail in Chapter 5, “Reusable
Architecture Assets.”

An Architecture Is Influenced by Its Environment

A system resides in an environment, and this environment influences the archi-
tecture. This is sometimes referred to as architecture in context. In essence, the
environment determines the boundaries within which the system must oper-
ate, which then influence the architecture. The environmental factors that
influence the architecture include the business mission that the architecture
will support, the system stakeholders, internal technical constraints (such as
the requirement to conform to organizational standards), and external techni-
cal constraints (such as the need to use a specified technology, interface to an
external system, or conform to external regulatory standards).

Conversely, as eloquently described in Software Architecture in Practice,
2nd ed. (Bass 2003), the architecture may also influence its environment. The



Architecture | 17

creation of an architecture may contribute reusable assets to the owning orga-
nization, for example, thereby making such assets available to the next develop-
ment effort. Another example is the selection of a software package that is used
within the architecture, such as a customer relationship management (CRM)
system, which subsequently requires users to change the processes they follow
to accommodate the way that the package works.

An Architecture Influences Development Team Structure

An architecture defines coherent groupings of related elements that address a
given set of concerns. An architecture for an order processing system, for exam-
ple, may have defined groupings of elements for order entry, account manage-
ment, customer management, fulfillment, integrations with external systems,
persistence, and security.

Each of these groupings may require different skill sets. Therefore, it makes
perfect sense to align the software development team structures with the archi-
tecture after it has been defined. Often, however, the architecture is influenced
by the initial team structure and not vice versa. This pitfall is best avoided,
because the result typically is a less-than-ideal architecture. Conway’s Law
states, “If you have four groups working on a compiler, you’ll get a four-pass
compiler.” In practice, architects often unintentionally create architectures that
reflect the organization creating the architecture.

Although organizing work in line with the architecture can be beneficial,
this somewhat idealized view is not always practical. For purely pragmatic
reasons, the current team structure and the skills available (both in the cur-
rent team and the maintenance teams) represent a very real constraint on
what is possible, and the architect must take this constraint into account.
The geographic distribution of the team is another constraint that needs to
be accommodated:

The architectural partitioning should reflect the geographic partitioning, and

vice versa. Architectural responsibilities should be assigned so decisions can

be made (geographically) locally. (Coplien 2005)

An Architecture Is Present in Every System

It is also worth noting that every system has an architecture, even if this archi-
tecture is not formally documented or if the system is extremely simple and,
say, consists of a single element. Documenting the architecture usually has



18 | Chapter 2 Architecture, Architect, Architecting

considerable value; this topic is discussed in detail in Chapter 4, “Document-
ing a Software Architecture.”

Ultimately, every software-intensive system has an architecture, be it inten-

tional or accidental. Every such architecture serves to hold back the forces

upon that system in a manner that is functional, economical and elegant.

(Booch 2009)

If an architecture is not documented, it is difficult (if not impossible) to
assess the architecture and prove that it meets the stated requirements in terms
of development-time qualities such as flexibility, accommodation of best prac-
tices, and so on. A lack of documentation can also make it extremely difficult to
maintain the system over time.

An Architecture Has a Particular Scope

Many kinds of architecture exist, the best known being the architecture associ-
ated with buildings and other civil-engineering structures. Even in the field of
software engineering, you often come across different forms of architecture. In
addition to the concept of software architecture, for example, you may encoun-
ter concepts such as enterprise architecture, system architecture, information
architecture, hardware architecture, application architecture, infrastructure
architecture, and data architecture. You also hear other terms mentioned. Each
of these terms defines a specific scope of the architecting activities.

Unfortunately, the industry has come to no agreement on the meanings of
all these terms or their relationships to one another, resulting in different mean-
ings for the same term (homonyms) and two or more terms that mean the same
thing (synonyms). You can infer the scope of some of these terms, as used in
this book, from Figure 2.4, in which we focus on the architecture of software-
intensive systems. As you consider this figure and the discussion that follows it,
you will almost certainly find elements that you disagree with or that you use
differently within your organization. Consider this example to be an acknowl-
edgment of (and one interpretation of) several possible scopes of architecting
activities.

Inspiration for the elements shown in Figure 2.4 came from various
sources. IEEE Std 12207-1995, the IEEE Standard for Information Technology—
Software Life Cycle Processes, defines a system as follows:

[A system is] an integrated composite that consists of one or more of the pro-

cesses, hardware, software, facilities and people, that provides a capability to

satisfy a stated need or objective. (IEEE 12207 1995)



Architecture | 19

A configuration of the Rational Unified Process for Systems Engineering
(RUP SE), also known as Model-Driven Systems Development (MDSD), contains
a similar definition:

[A system is] a set of resources that provide services that are used by an enter-

prise to carry out a business purpose or mission. System components typically

consist of hardware, software, data, and workers. (Cantor 2003)

The various elements shown in Figure 2.4 are

■ Software. This element is the main focus of this book and considers items 
such as components, relationships between components, and interactions 
between components.

■ Hardware. This element considers items such as CPUs, memory, hard 
disks, peripheral devices such as printers, and the elements used to con-
nect these elements.

■ Information. This element considers the information used within 
the system.

■ Workers. This element considers the people-related aspects of a system, 
such as business processes, organizational structures, roles and responsibil-
ities, and core competencies of the organization.

■ System. As described in the preceding definitions, a system comprises soft-
ware, hardware, information, and workers.

■ Enterprise. This element is similar to a system in that it, too, considers ele-
ments such as hardware, software, information, and workers. An enter-
prise, however may span multiple systems and place constraints on the 

Information

Hardware

System

Enterprise

Workers

Software

Figure 2.4 Different Architecting Scopes



20 | Chapter 2 Architecture, Architect, Architecting

systems that are part of the enterprise. An enterprise also has a stronger 
link to the business than a system does, in that an enterprise focuses on the 
attainment of the business objectives and is concerned with items such as 
business strategy, business agility, and organizational efficiency. Further, an 
enterprise may cross company boundaries.

Because we focus on software-intensive systems in this book, it is worth mak-
ing some additional observations. In particular, we should note that a software-
intensive system is a system. Therefore, you should understand the relationship
between the software and those elements with which it must coexist:

■ Software and workers. Although workers are not considered to be part 
of the systems considered by this book, a relationship exists in terms of the 
functionality that the system must provide to support any people who 
interact with the system. Ensuring that this functionality is provided is, in 
this book, the responsibility of the application architect.

■ Software and hardware. A particular aspect of the environment that 
must always be considered in software-intensive systems is the hardware 
on which the software executes. The resulting system, therefore, is a com-
bination of software and hardware, and this combination allows properties 
such as reliability and performance to be achieved. Software cannot 
achieve these properties in isolation from the hardware on which it exe-
cutes. Ensuring the appropriate consideration of hardware is, in this book, 
the responsibility of the infrastructure architect.

■ Software and information. Software elements may produce and con-
sume persistent information during their execution. Ensuring the appropri-
ate consideration of information is, in this book, the responsibility of the 
data architect.

For each specific type of architecture, a corresponding type of architect
exists (software architect, hardware architect, and so on), as well as a corre-
sponding type of architecting (software architecting, hardware architecting,
and so on).

Now that you’ve gotten through these definitions, you may have many
unanswered questions. What is the difference between an enterprise architec-
ture and a system architecture? Is an enterprise a system? Is an information
architecture the same as the data architecture found in some data-intensive soft-
ware applications? Unfortunately, no set of agreed-on answers to these ques-
tions exists. For now, be aware that these different terms exist but that the



Architect | 21

industry has no consistent definition of these terms and how they relate to one
another. We recommend, therefore, that you select the terms that are relevant
to your organization and define them appropriately. Then you will achieve
some consistency, at least, and reduce the potential for miscommunication.

Architect

Now that we have defined what we mean by architecture, we can turn our
attention to the role that is responsible for the creation of the architecture: the
architect. The role of the architect is arguably the most challenging in any soft-
ware development project. The architect is the technical lead on the project
and, from a technical perspective, ultimately carries responsibility for the tech-
nical success or failure of the project.

[An architect is] the person, team, or organization responsible for systems

architecture. (IEEE 1471 2000)

As the technical lead on the project, the architect must have skills that are
typically broad rather than deep (although architects should have deep skills in
particular areas).

The Architect Is a Technical Leader

First and foremost, the architect is a technical leader, which means that in addi-
tion to having technical skills, the architect exhibits leadership qualities. Lead-
ership can be characterized in terms of both position in the organization and
the qualities that the architect exhibits.

In terms of position in the organization, the architect (or lead architect, if
the architect role is fulfilled by a team) is the technical lead on the project and
should have the authority to make technical decisions. The project manager, on
the other hand, is more concerned with managing the project plan in terms of
resources, schedule, and cost. Using the film industry as an analogy, the project
manager is the producer (making sure that things get done), whereas the archi-
tect is the director (making sure that things get done correctly). As a result of
their positions, the architect and project manager represent the public persona
of the project and, as a team, are the main contact points as far as people out-
side the project are concerned. The architect in particular should be an advo-
cate of the investment made in creating an architecture and the value it brings
to the organization.



22 | Chapter 2 Architecture, Architect, Architecting

The architect should also be involved in determining how the team is
populated, because the architecture will imply the need for certain skills.
Dependencies among elements of the architecture influence the sequencing of
tasks and, therefore, when these skills are required, so the architect should con-
tribute actively to planning activities. On a related note, because the success of
the architect is closely linked to the quality of the team, participation in inter-
viewing new team members is also highly appropriate.

In terms of the qualities that the architect exhibits, leadership can also be
characterized in terms of interactions with other team members. Specifically,
the architect should lead by example and show confidence in setting direction.
Successful architects are people-oriented, and all architects take time to mentor
and train members of their team. This practice benefits the team members in
question, the project, and ultimately the organization itself, because some of its
most valuable assets (people) become better skilled.

Also, architects need to be very focused on the delivery of tangible results
and must act as the driving force for the project from a technical perspective.
Architects must be able to make decisions (often under pressure) and make
sure that those decisions are communicated, that they are understood, and that
they ultimately stick.

The Architect Role May Be Fulfilled by a Team

There is a difference between a role and a person. One person may fulfill many
roles (Mary is a developer and a tester), and a role may be fulfilled by many peo-
ple (Mary and John fulfill the role of tester). Given the requirement for a very
broad set of skills in an architect, it is often the case that the architect role is ful-
filled by more than one person. This practice allows the skills to be spread
across several people, each bringing his or her own experiences to bear. In par-
ticular, the skills required to understand both the business domain and various
aspects of technology are often best spread across several people. The resulting
team needs to be balanced, however.

Throughout this book, the term architect refers to the role, which may be
fulfilled by either an individual or a team.

[A team is] a small number of people with complementary skills who are com-

mitted to a common purpose, performance goals, and approach for which

they hold themselves mutually accountable. (Katzenbach 1993)

If the architect role is to be fulfilled by a team, it is important to have one
individual who is considered to be the lead architect, who is responsible for
owning the vision, and who can act as a single point of coordination across the



Architect | 23

architecture team. Without this point of coordination, there is a danger that
members of the architecture team will not produce a cohesive architecture or
that decisions will not be made.

For a team that is new to the concept of architecture, it has been suggested
that to achieve this common purpose, goals, and approach, the team should
create and publish a team charter (Kruchten 1999).

Good architects know their strengths and weaknesses. Whether or not the
architect role is fulfilled by a team, an architect is supported by several trusted
advisors. Such architects acknowledge where they are weak and compensate
for these weaknesses by obtaining the necessary skills or by working with other
people to fill the gaps in their knowledge. The best architectures usually are
created by a team rather than an individual, simply because there is greater
breadth and depth of knowledge when more than one person is involved.

One pitfall with the concept of an architecture team, especially on large
projects, is that it may be perceived as an ivory tower whose output is intellec-
tual rather than useful. This misconception can be minimized from the outset
by ensuring that all the stakeholders are actively consulted, that the architec-
ture and its value are communicated, and that any organizational politics in play
are considered.

The Architect Understands the Software Development Process

Most architects have been developers at some point and should have a good
appreciation of the need to define and endorse best practices used on the
project. More specifically, the architect should have an appreciation of the soft-
ware development process, because this process ensures that all the members
of the team work in a coordinated manner.

This coordination is achieved by defining the roles involved, the tasks
undertaken, the work products created, and the handoff points among the dif-
ferent roles. Because architects are involved with many of the team members
on a daily basis, it is important for them to understand the team members’ roles
and responsibilities, as well as what they are producing and using. In essence,
team members look to the architect for guidance on how to fulfill their respon-
sibilities, and the architect must be able to respond in a manner that is consis-
tent with the development process being followed by the team.

The Architect Has Knowledge of the Business Domain

As well as having a grasp of software development, it is also highly desirable
(some would say essential) for architects to have an understanding of the busi-
ness domain so that they can act as intermediaries between stakeholders and



24 | Chapter 2 Architecture, Architect, Architecting

users, who understand the business, and the members of the development
team, who may be more familiar with technology.

[A domain is] an area of knowledge or activity characterized by a set of con-

cepts and terminology understood by practitioners in that area. (UML User

Guide 1999)

Knowledge of the business domain also allows the architect to better
understand and contribute to the requirements on the system, as well as to be
in a position to ensure that likely requirements are captured. Also, a particular
domain often is associated with a particular set of architectural patterns (and
other assets) that can be applied in the solution, and knowing this mapping can
greatly assist the architect.

Therefore, a good architect has a good balance of software development
knowledge and business domain knowledge. When architects understand soft-
ware development but not the business domain, a solution may be developed
that does not fit the problem, but instead reflects the comfort zone of things
that the architect is familiar with.

Familiarity with the business domain also allows architects to anticipate
likely changes in their architecture. Given that the architecture is heavily influ-
enced by the environment in which it will be deployed, which includes the
business domain, an appreciation of the business domain allows the architect
to make better-informed decisions in terms of likely areas of change and the
areas of stability. If the architect is aware that new regulatory standards will
need to be adhered to at some point in the future, this requirement should be
accommodated in the architecture, for example.

The Architect Has Technology Knowledge

Certain aspects of architecting clearly require knowledge of technology, so an
architect should have a certain level of technology skills. An architect does not
need to be a technology expert as such, however, and needs to be concerned
only with the significant elements of a technology, not the detail. The architect
may understand the key frameworks available in a platform such as Java EE or
.NET, but not necessarily the detail of every application programming interface
(API) that is available to access these platforms. Because technology changes
fairly frequently, it is essential that the architect keep abreast of these changes.

The Architect Has Design Skills

Although architecting is not confined solely to design (as you have seen, the
architect is also involved in requirements tasks), design clearly is the core



Architect | 25

aspect of architecting. The architecture embodies key design decisions, so the
architect should possess strong design skills. Such decisions could represent
key structural design decisions, the selection of particular patterns, the specifi-
cation of guidelines, and so on. To ensure the architectural integrity of the sys-
tem, these elements are typically applied across the board and can have far-
reaching effects in terms of the success of the system. Therefore, such elements
need to be identified by someone who has the appropriate skills.

One does not acquire design prowess overnight; instead, such skill is the

result of years of experience. Even expert designers look back on their early

work and shudder at how bad it was. As with every other skill, one must prac-

tice design in order to obtain proficiency. (Coplien 2005)

The Architect Has Programming Skills

The developers on the project represent one of the most important groups
that the architect must interact with. After all, their work products ultimately
deliver the working executable software. The communication between the
architect and the developers can be effective only if the architect is apprecia-
tive of the developers’ work. Therefore, architects should have a certain level
of programming skills, even if they do not necessarily write code on the
project, and those skills need to be kept up to date with the technologies
being used.

The Architect should be organizationally engaged with Developers and should

write code. If the architect implements, the development organization per-

ceives buy-in from the guiding architects, and that perception can directly

avail itself of architectural expertise. The architects also learn by seeing the

first-hand results of their decisions and designs, thus giving them feedback on

the development process. (Coplien 2005)

Most successful software architects have, at some stage, been hard-core
programmers. To some extent, this experience is how they learned certain
aspects of their trade. Even as technologies evolve and new programming lan-
guages are introduced, good architects can abstract out the concepts in any
programming language and apply this knowledge to learning a new program-
ming language to the depth required. Without this knowledge, the architect
will be unable to make decisions with respect to the architecturally significant
elements of the implementation, such as the organization of the source code
and the adoption of programming standards, and a communication barrier will
exist between the architect and the developers.



26 | Chapter 2 Architecture, Architect, Architecting

The Architect Is a Good Communicator

Of all of the soft skills associated with the architect, communication is the most
important. Effective communication involves several dimensions, and the archi-
tect needs to be proficient in all of them. Specifically, the architect should have
effective verbal, written, and presentation skills. Also, the communication should
be two-way. The architect should be a good listener and a good observer also.

Being able to communicate effectively is a skill that is fundamental to the
success of the project for many reasons. Clearly, communication with stake-
holders is particularly important to understand their needs and also to commu-
nicate the architecture in a way that gains (and maintains) agreement with all
stakeholders. Communication with the project team is particularly important,
because the architect is not responsible simply for conveying information to
the team, but also for motivating the team. Specifically, the architect is respon-
sible for communicating (and reinforcing the communication of) the vision for
the system so that the vision becomes shared, not something that only the
architect understands and believes in.

The Architect Makes Decisions

An architect who is unable to make decisions in an environment where much is
unknown, where insufficient time to explore all alternatives is available, and
where pressure to deliver exists is unlikely to survive. Unfortunately, such envi-
ronments are the norm rather than the exception, and successful architects
acknowledge the situation rather than try to change it. Even though the archi-
tect may consult others when making decisions and foster an environment in
which others are included in decision-making, it is still the architect’s responsi-
bility to make the appropriate decisions, which do not always prove to be right.
Thus, architects need to be thick-skinned, because they may need to correct
their decisions and backtrack.

An inability to make decisions will slowly undermine the project. The
project team will lose confidence in the architect, and the project manager will
be concerned because those waiting for the architecture cannot make the
required progress. The very real danger is that if the architect does not make
and document decisions about the architecture, team members will start to
make their own, possibly incorrect, decisions.

The Architect Is Aware of Organizational Politics

Successful architects are not only concerned with technology. They also are
politically astute and conscious of where the power in an organization resides.
They use this knowledge to ensure that the right people are communicated



Architecting | 27

with and that support for a project is aired in the right circles. Ignoring organi-
zational politics is, quite simply, naïve.

Politics involves a great deal of ambiguity, which makes many technical people

nervous. It forces them to play on “someone else’s court,” as it were, a place

where they feel they are at a disadvantage because their technical prowess

doesn’t count for much. (Marasco 2004)

The reality is that many forces at work in organizations lie outside the
project delivering the system, and these forces need to be accounted for.

Human beings tend not to all think alike; in order to resolve differences of

opinion, a political process is unavoidable. So, rather than condemn it, it is

better to understand politics as an effective means of dealing with the inevita-

ble need to resolve differences of opinion. (Marasco 2004)

The Architect Is a Negotiator

Given the many dimensions of architecting, the architect interacts with many
stakeholders. Some of these interactions require negotiation skills. A particular
focus for the architect is minimizing risk as early as possible in the project,
because minimizing risk has a direct correspondence to the time it takes to sta-
bilize the architecture. Because risks are associated with requirements (and
changes in requirements), one way to remove a risk is to refine the require-
ments so that the risk is no longer present—hence, the need to push back on
such requirements so that stakeholders and architect can reach a mutually
agreeable position. This situation requires the architect to be an effective nego-
tiator who is able to articulate the consequences of different trade-offs.

Architecting

Having described what an architecture is, and having defined the characteris-
tics of the architect role, now we can look at some of the themes, or character-
istics, that underlie the process of architecting. We will not go into the detail of
each task, because this detail is covered throughout the remainder of this book.
Also, those characteristics of architecting that can be described in terms of ben-
efits are described later in this chapter.

[Software architecting represents] the activities of defining, documenting,

maintaining, improving, and certifying proper implementation of an architec-

ture. (IEEE 1471 2000)



28 | Chapter 2 Architecture, Architect, Architecting

The scope of architecting is fairly broad. Figure 2.5 shows a metamodel
that defines various aspects of the process of software architecting. This meta-
model is derived from that given in the IEEE 1471 standard and can be consid-
ered to be a road map through the various aspects of architecting that an
architect is concerned with. Additional elements of the metamodel will be con-
sidered throughout this book. We elaborate on the Architectural Description
element, for example, in Chapter 4, “Documenting a Software Architecture,”

System

Architecture Architectural Description

Mission

Concern

Environment

RationaleArchitectingArchitect

Stakeholder

Development ProcessTeam

Development Project

Architecture Decision

1..*
- fulfills

- influences

- inhabits

1..*
- has

1..*

- is important to

1..*

- has
1..*
- identifies

1..*
- identifies

1

- described by

- follows- is staffed by

- includes - includes

- has an

- creates

- performs

- results in

- provides

- develops

1..* 1..*

- justifies

1..*

1..*

- addresses

Figure 2.5 A Metamodel of Architecting-Related Terms



Architecting | 29

where we consider how an architecture is documented. We provide a com-
plete description of the metamodel used in this book in Appendix A, “Software
Architecture Metamodel.”

The relationships in this metamodel that are taken directly from the IEEE
1471 standard, in words, are

■ A system has an architecture.

■ A system fulfills one or more missions.

■ A system has one or more stakeholders.

■ A system inhabits an environment.

■ An environment influences a system.

■ An architecture is described by an architectural description.

■ An architectural description identifies one or more stakeholders.

■ An architectural description identifies one or more concerns.

■ An architectural description provides rationale.

■ A stakeholder has one or more concerns.

■ A concern is important to one or more stakeholders.

A side benefit of the IEEE 1471 standard is that it not only applies to docu-
menting a software architecture, but also can be thought of as being a reason-
ing framework for concepts that architects need to be concerned with in their
work. Additional relationships in the figure that are not part of the IEEE 1471
standard are

■ A development project is staffed by a team.

■ A development project follows a development process.

■ A development project develops a system.

■ The development process includes architecting.

■ The team includes an architect.

■ The architect performs architecting

■ The architect creates an architecture.

■ The architect is a kind of stakeholder.

■ Architecting results in an architecture.

■ Rationale justifies one or more architecture decisions.

■ An architecture decision addresses one or more concerns.



30 | Chapter 2 Architecture, Architect, Architecting

Architecting Is a Science

Architecting is a recognized discipline, albeit one that is still emerging. With
this recognition comes an emphasis on techniques, processes, and assets that
focus on improving the maturity of the process of architecting. One way to
advance this maturity is to draw on an existing body of knowledge. In general
terms, architects look for proven solutions when developing an architecture
rather than reinventing the wheel, thereby avoiding unnecessary creativity.
Codified experience in terms of reference architectures, architectural and
design patterns, and other reusable assets also has a part to play. 

There is still some way to go, however, before the process of software
architecting is anywhere near as mature as, for example, the processes in civil
engineering. This maturity can be considered in many dimensions, including
the use of standards and an understanding of best practices, techniques, and
processes.

Architecting Is an Art

Although architecting can be seen as a science, there is always a need to pro-
vide some level of creativity, particularly true when dealing with novel and
unprecedented systems. In such cases, no codified experience may be available
to draw on. Just as painters look for inspiration when faced with a blank can-
vas, architects may on occasion see their work as being more like an art than a
science. For the most part, however, the artistic side of architecting is minimal.
Even in the most novel of systems, it normally is possible to copy solutions
from elsewhere and then adapt them to the system under consideration.

As the process of software architecting becomes more mainstream, it is
likely that it will no longer be seen as some mysterious set of practices that only
the chosen few are able to comprehend, but as a broadly accessible set of well-
defined and proven practices that have some scientific basis and are widely
accepted.

Architecting Spans Many Disciplines

The architect is involved in many aspects of the software development process
beyond architecting:

■ The architect assists in the requirements discipline, for example, ensuring 
that those requirements of particular interest to the architect are captured.

■ The architect is involved in prioritizing requirements.



Architecting | 31

■ The architect participates in implementation, defining the implementation 
structures that will be used to organize the source code as well as execut-
able work products.

■ The architect participates in the test discipline, ensuring that the architec-
ture is both testable and tested.

■ The architect is responsible for certain elements of the development envi-
ronment, in terms of defining certain project standards and guidelines.

■ The architect assists in defining the configuration management strategy, 
because the configuration management structures (which support version 
control) often reflect the architecture that has been defined.

■ The architect and project manager work closely together, and the architect 
has input in the project planning activities.

All these elements are described further later in this book.

Architecting Is an Ongoing Activity

Experience shows that architecting is not something that’s performed once,
early in a project. Rather, architecting is applied over the life of the project; the
architecture is grown through the delivery of a series of incremental and itera-
tive deliveries of executable software. At each delivery, the architecture
becomes more complete and stable, which raises the obvious question of what
the focus of the architect is through the life of the project.

Successful software architecting efforts are results-driven. Thus, the focus
of the architect changes over time as the desired results change over time. This
profile is indicated in Figure 2.6, which is attributed to Bran Selic.

Figure 2.6 shows that early in the project, the architect focuses on discov-
ery. The emphasis is on understanding the scope of the system and identifying
the critical features and any associated risks. These elements clearly have an
impact on the architecture. Then the emphasis changes to invention; the archi-
tect’s primary concern is developing a stable architecture that can provide the
foundation for full-scale implementation. Finally, the emphasis changes to
implementation when the majority of discovery and invention has taken place.

It should be noted that the concerns of discovery, invention, and imple-
mentation are not strictly sequential. Some implementation occurs early in the
project as architectural prototypes are constructed, and some discovery occurs
late in the project as lessons are learned and different strategies for implement-
ing certain elements of the architecture are put in place. This changing empha-
sis of architecting over time is discussed in more detail in Chapter 3, “Method
Fundamentals.”



32 | Architecture, Architect, Architecting

The process of architecting is not complete until the system is delivered;
therefore, the architect must be involved until the end of the project. An orga-
nization often has a strong desire to remove the architect from a project when
the architecture has stabilized so as to use this precious resource on other
projects. However, architectural decisions may still need to be made late in
the project. In practice, a middle ground is often found: After the major deci-
sions that affect the architecture have been made, the architect becomes a
part-time member of the team. The architect should not disengage com-
pletely, however. A much more flexible situation exists when the role of the
architect is fulfilled by a team, because some of the members may be used on
other projects, whereas those who remain continue to ensure the architec-
tural integrity of the system.

Architecting Is Driven by Many Stakeholders

An architecture fulfills the needs of a number of stakeholders. The process of
architecting, therefore, must accommodate all these stakeholders to ensure
that their concerns—specifically, those that are likely to have an impact on
the architecture—are captured, clarified, reconciled, and managed. It is also
necessary to involve the relevant stakeholders in any reviews of the solution
to these concerns.

Involving all the stakeholders is critical to ensuring a successful outcome in
terms of the resulting architecture. The stakeholders influence many aspects of
the process, as discussed further in this book, including the manner in which

Time

Focus

Discovery ImplementationInvention

Figure 2.6 Project Emphasis over Time



Architecting | 33

the requirements are gathered, the form in which the architecture is docu-
mented, and the way in which the architecture is assessed.

Architecting Often Involves Making Trade-Offs

Given the many factors that influence an architecture, it is clear that the pro-
cess of architecting involves making trade-offs. Quite often, the trade-off is
between conflicting requirements, and the stakeholders may need to be con-
sulted to assist in making the correct trade-off. An example of a trade-off is
between cost and performance; throwing more processing power at the prob-
lem will improve performance, but at a cost. This may be a conflict in require-
ments and, assuming that the architect has been diligent in his or her work by
exploring all options, is a matter that needs to be resolved with the stakehold-
ers whose needs are in conflict.

Other trade-offs occur in the solution space. The use of one technology
over another, one third-party component over another, or even the use of one
set of patterns over another are all trade-offs concerned with the solution rather
than the requirements. Making trade-offs is not something that the architect can
or should avoid. The architect is expected to consider alternatives, and making
trade-offs among them is an essential aspect of the process of architecting.

Figure 2.7 provides a simple classification of some of the forces at work in
architecting a solution. In addition to the function provided by the system, you
must be concerned with nonfunctional requirements that include run-time

Functional
Requirements

Run-Time
Qualities

Non-Run-Time
Qualities

Business
Constraints

Technical
Constraints

Figure 2.7 Making Trade-Offs Addresses Opposing Forces



34 | Chapter 2 Architecture, Architect, Architecting

qualities (such as performance and usability), non-run-time qualities (such as
maintainability and portability), business constraints (such as regulatory and
resource constraints), and technical constraints (such as mandated technology
standards and mandated solution components).

Architecting Acknowledges Experience

Architects rarely work from a blank sheet of paper. As noted earlier, they
actively seek experience that may be codified in architectural patterns, design
patterns, off-the-shelf components, and so on. In other words, the architect
seeks out reusable assets. Only the most ignorant architect does not consider
what has gone before.

A reusable asset is a solution to a recurring problem. A reusable asset is an

asset that has been developed with reuse in mind. (RAS 2004)

Although it is true that elements of an architecture are reusable in the con-
text of the current system, architects may also look upon their architecture, or
elements of it, as reusable assets that can be used outside the current system.
The subject of reuse is discussed later in this chapter and in Chapter 5, “Reus-
able Architecture Assets.”

Architecting Is Both Top-Down and Bottom-Up

Many architectures are often considered in a top-down manner, where stake-
holder needs are captured and requirements developed before the architecture
is defined, architectural elements are designed, and these elements are imple-
mented. Architectures rarely are driven totally from the top down, however.
The primary reason is that most systems do not start from a blank sheet of
paper. Some heritage usually exists, in the form of existing solution elements
that need to be accommodated and that influence the architecture. Such ele-
ments range from complete applications that are to be reengineered to man-
dated design or implementation elements that constraint the architecture. An
example might be a constraint that the design will use a relational database or
interface to an existing system.

An architecture may also be driven from the bottom up as a result of les-
sons being learned from any executable software that has been created, such as



The Benefits of Architecting | 35

an architecture proof of concept, where these lessons result in the architecture
being refined accordingly.

Successful architects acknowledge that both approaches to architecting
are necessary and that their architectures are created both top-down and
bottom-up, which could be referred to as the “meet-in-the-middle” approach
to architecting.

The Benefits of Architecting

In general terms, architecting is a key factor in reducing cost, improving quality,
supporting timely delivery against schedule, supporting delivery against require-
ments, and reducing risk. In this section, we focus on more specific benefits
that contribute to meeting these objectives.

Also, because architects sometimes have to justify their existence, this sec-
tion provides some useful ammunition for treating architecting as a critical part
of the software development process.

Architecting Addresses System Qualities

The functionality of the system is supported by the architecture through the
interactions that occur among the various elements that comprise the architec-
ture. One of the key characteristics of architecting, however, is that it is the
vehicle through which system qualities are achieved. Qualities such as perfor-
mance, security, and maintainability cannot be achieved in the absence of a
unifying architectural vision; these qualities are not confined to a single archi-
tectural element but permeate the entire architecture.

To address performance requirements, for example, it may be necessary to
consider the time for each component of the architecture to execute and also
the time spent in intercomponent communication. Similarly, to address secu-
rity requirements, it may be necessary to consider the nature of the communi-
cation among components and introduce specific security-aware components
where necessary. All these concerns are architectural and, in these examples,
concern themselves with the individual components and the connections
among them.

A related benefit of architecting is that it is possible to assess such qualities
early in the project life cycle. Architectural proofs of concept are often created
to specifically ensure that such qualities are addressed. Demonstrating that such



36 | Chapter 2 Architecture, Architect, Architecting

qualities are met through an actual implementation (in this case, an architectural
proof of concept) is important because no matter how good an architecture
looks on paper, executable software is the only true measure of whether the
architecture has addressed such qualities.

Architecting Drives Consensus

The process of architecting drives consensus among the various stakeholders
because it provides a vehicle for enabling debate about the system solution. To
support such debate, the process of architecting needs to ensure that the archi-
tecture is clearly communicated and proved.

An architecture that is communicated effectively allows decisions and
trade-offs to be debated, facilitates reviews, and allows agreement to be reached.
Conversely, an architecture that is poorly communicated does not allow such
debate to occur. Without such input, the resulting architecture is likely to be
of lower quality. Clearly, an important aspect of communicating the architec-
ture effectively is documenting it appropriately. This topic is a primary con-
cern for the architect and is the subject of Chapter 4, “Documenting a Software
Architecture.”

On a related note, the architecture can drive consensus between architects
(and their vision) and new or existing team members as part of training. Again,
the architecture must be communicated effectively for this benefit to be
achieved. Development teams with a good vision of what they are implement-
ing have a better chance of implementing the product as desired.

Driving consensus is also achieved by validating that the architecture meets
the stated requirements. As mentioned in the preceding section, the creation of
an executable proof of concept is an excellent way of demonstrating that the
architecture meets certain run-time qualities.

Architecting Supports the Planning Process

The process of architecting supports several disciplines. Clearly, it supports the
detailed design and implementation activities, because the architecture is a
direct input to these activities. In terms of the benefits that the process of archi-
tecting brings, however, arguably the major benefits are those related to the
support provided to project planning and project management activities in gen-
eral—specifically scheduling, work allocation, cost analysis, risk management,
and skills development. The process of architecting can support all these con-
cerns, which is one of the main reasons why the architect and the project man-
ager should have such a close relationship.



The Benefits of Architecting | 37

Much of this support is derived from the fact that the architecture identifies
the significant components in the system and the relationships among them.
Consider the UML component diagram in Figure 2.8, which has been kept
deliberately simple for the purposes of this discussion. This figure shows four
components with dependencies among them. 

For the purposes of this discussion, consider a simple case in which each
component is always implemented in its entirety (that is, we do not create par-
tial implementations of each element, and no separation of interface from
implementation exists). In terms of scheduling, the dependencies imply an
order in which each of these elements should be considered. From an imple-
mentation perspective, for example, the dependencies tell you that the Error
Log component must be implemented before anything else, because all the
other components use this component. Next, the Customer Management and
Fulfillment components can be implemented in parallel because they do not
depend on each other. Finally, when these two components have been imple-
mented, the Account Management component can be implemented. From this
information, you can derive the Gantt chart (one of the conventional planning
techniques used by a project manager) shown in Figure 2.9. The duration of
each of the tasks shown does require some thought but can be derived partially
from the complexity of each of the architectural elements.

The architect can also assist in the cost estimation for the project. The costs
associated with a project come from many areas. Clearly, the duration of the
tasks and the resources allocated to the task allow the cost of labor to be

Account
Management

Customer
Management

Fulfillment

Error Log

Figure 2.8 UML Component Diagram Showing Architecturally Significant Elements



38 | Chapter 2 Architecture, Architect, Architecting

determined. The architecture can also help determine costs related to the use
of third-party components to be used in the delivered system. Another cost is
derived from the use of particular tools that are required to support the cre-
ation of the architectural elements. Architecting also involves prioritizing risks
and identifying appropriate risk mitigation strategies, both of which are pro-
vided as input to the project manager.

Finally, the architecture identifies discrete components of the solution that
can provide input in terms of the skills required on the project. If appropriately
skilled resources are not available within the project or within the organization,
the architecture clearly helps identify areas in which skills acquisition is
required. This acquisition may be achieved by developing existing personnel,
outsourcing, or hiring new personnel.

Architecting Drives Architectural Integrity

One of the primary objectives of the process of architecting is making sure that
the architecture provides a solid framework for the work undertaken by the
designers and implementers. Clearly, this objective is more than simply convey-
ing an architectural vision. To ensure the integrity of the resulting architecture,
the architect must clearly define the architecture itself, which identifies the
architecturally significant elements, such as the components of the system,
their interfaces, and their interactions.

The architect must also define the appropriate practices, standards, and
guidelines that will guide the designers and implementers in their work.
Another objective of architecting is eliminating unnecessary creativity on the
part of the designers and implementers, and this objective is achieved by impos-
ing the necessary constraints on what designers and implementers can do,
because deviation from the constraints may cause breakage of the architecture.
Still another aspect of architecting that helps ensure architectural integrity is the
adoption of appropriate review and assessment activities that confirm adher-
ence to architectural standards and guidelines by designers and implementers.

Implement Error Log

Implement Customer Management

Implement Fulfillment

Implement Account Management

Figure 2.9 Gantt Chart Based on Dependencies among Architecturally Significant 
Elements



The Benefits of Architecting | 39

We discuss architecture assessment further in Chapter 8, “Creating the Logical
Architecture,” and Chapter 9, “Creating the Physical Architecture.”

Architecting Helps Manage Complexity

Systems today are more complex than ever, and this complexity needs to be
managed. As mentioned earlier in this chapter, because an architecture focuses
on only those elements that are significant, it provides an abstraction of the sys-
tem and therefore provides a means of managing complexity. Also, the process
of architecting considers the recursive decomposition of components, which is
clearly a good way of taking a large problem and breaking it down into a series
of smaller problems.

Finally, another aspect of managing complexity is using techniques that
allow abstractions of the architecture to be communicated. You might choose
to group components into subsystems or to separate interfaces from implemen-
tation, for example. The adoption of industry standards that allow abstractions
to be expressed, such as UML, is commonplace in the industry today for docu-
menting the architecture of software-intensive systems.

Architecting Provides a Basis for Reuse

The process of architecting can support both the production and consumption
of reusable assets. Reusable assets are beneficial to an organization because they
can reduce the overall cost of a system and also improve its quality, given that a
reusable asset has already been proved (because it has already been used).

In terms of asset consumption, the creation of an architecture supports the
identification of possible reuse opportunities. The identification of the architec-
turally significant components and their associated interfaces and qualities sup-
ports the selection of off-the-shelf components, existing systems, packaged
applications, and so on that may be used to implement these components.

In terms of asset production, the architecture may contain elements that
are, by their very nature, applicable outside the current system. The architec-
ture may contain an error logging mechanism that could be reused in several
other contexts. Such reuse generally is opportunistic, whereas a strategic reuse
initiative considers candidate assets ahead of time. We touch on this topic in
Chapter 10, “Beyond the Basics.”

Architecting Reduces Maintenance Costs

The process of architecting can help reduce maintenance costs in several ways.
First and foremost, the process of architecting should always ensure that the



40 | Chapter 2 Architecture, Architect, Architecting

maintainer of the system is a key stakeholder and that the maintainer’s needs
are addressed as a primary concern, not as an afterthought. The result should
be an architecture that is appropriately documented to ease the maintainability
of the system; the architect also ensures that appropriate mechanisms for main-
taining the system are incorporated and considers the adaptability and extensi-
bility of the system when creating the architecture. In addition, the architect
considers the skills available to maintain the system, which may be different
from those of the team members who created the system.

The architect should consider the areas of the system that are most likely to
require change and then isolate them. This process can be fairly straightfor-
ward if the change affects a single component or a small number of compo-
nents. Some changes, however, such as those relating to system qualities such
as performance or reliability, cannot be isolated in this way. For this reason, the
architect must consider any likely future requirements when architecting the
current system. Scaling up a system to support thousands of users rather than
the tens of users for which the system was originally designed may not be pos-
sible without changing the architecture in fundamental ways, for example.

The issue of maintainability is a primary concern only for those systems
that will evolve over time, not for systems whose purpose is to provide a tacti-
cal solution and whose life is limited.

Architecting Supports Impact Analysis

An important benefit of architecting is that it allows architects to reason about
the impact of making a change before it is undertaken. An architecture identi-
fies the major components and their interactions, the dependencies among
components, and traceability from these components to the requirements that
they realize.

Given this information, a change to a requirement can be analyzed in terms
of the impact on the components that collaborate to realize this requirement.
Similarly, the impact of changing a component can be analyzed in terms of the
other components that depend upon it. Such analyses can greatly assist in
determining the cost of a change, the impact that a change has on the system,
and the risk associated with making the change.

Summary

This chapter defined and explained the core concepts used throughout this
book: architecture, architect, and architecting. The benefits of taking an archi-
tecturecentric approach to the software development process were also dis-



Summary | 41

cussed. Many issues remain unresolved, however, such as what the architect
actually does on a software development project, what the architect produces,
and how the role of the architect relates to other project roles.

Having defined these core concepts, we turn our attention to the applica-
tion of these concepts within the overall software development process in
Chapter 3, “Method Fundamentals.”



385

Index

A
Abstraction levels, modeling, 74
Abstractions, 78. See also Views.
Acceptance testing, 306
Accessibility perspective, 81
Activities. See also specific activities.

definition, 49–50, 356–357
in the development process, 44–45
involved in architecture. See specific activities.

Actors
checklist of, 144
identifying, 144–146
locations, identifying, 146–147
overlooking, 144
refactoring, 154–155
use cases, 165

ADD (Attribute-Driven Design) method, 182–183
Agile processes, 58–59
Alexander, Christopher, 97
Antipatterns, 97
Application Architect, 47, 113, 352
Application architecture

architectural scope, 18
influence on architects, 315
roles related to, 47

Application framework assets, 102–103
Application integration

architecting complex systems, 329
case study, 116

Application maintenance provider, influence on 
architects, 318

Application viewpoint, 344

Architecting
accommodating diverse stakeholders, 32–33
complex systems. See Complex systems, 

architecting.
definition, 27, 335
disciplines involved, 30–31
making trade-offs, 33–34
as ongoing activity, 31–32
process metamodel, 28–29
project emphasis, over time, 31–32
reusing assets, 34
science versus art, 30
top-down versus bottom-up, 34–35

Architecting, benefits of
addressing system qualities, 34–35
architectural integrity, 38–39
cost estimation, 37–38
impact analysis, 40
managing complexity, 39
performance requirements, 35
in the planning process, 36–38
reducing maintenance costs, 39–40
reusing assets, 39
risk management, 38
scheduling, 37
security requirements, 35
stakeholder consensus, 36

Architects
application, 20
business domain knowledge, 23–24
communication skills, 26
data, 20



386 | Index

Architects, continued
decision making, 26
definition, 21, 335
design skills, 24–25
disciplines involved, 30–31
infrastructure, 20
negotiating skills, 27
organizational politics, 26–27
programming skills, 25
software development knowledge, 23
in teams, 22
technical leadership, 21–22
technology knowledge, 24

Architects, external influences
application architecture, 315
application maintenance provider, 318
Architecture Assessment, 317
Architecture Decisions, 317
business architecture, 315
Business Entity Model, 316
Business Process Model, 316
Business Rules, 316
design authority, 316–317
enterprise architecture, 315–316
Enterprise Architecture Principles, 316, 317
Existing IT Environments, 316
information architecture, 315
infrastructure providers, 317–318
overview, 313–315
technology architecture, 315

Architects, roles
avoiding technical details, 306
business analysis, 312–313
change management, 310–311
configuration management, 308–310
development, 304–306
development environment, 311–312
versus individuals, 22
organizational blueprint, 313
project management, 307–309
requirements, 304
standards versus guidelines, 311–312
testing, 306–307
TOM (Target Operating Model), 313

Architectural
integrity, 38–39
mechanism assets, 96
partitioning, 17
patterns, 97
perspectives. See Perspectives.
significance, 129
style assets, 95–96
styles, 15–16

Architectural description
definition, 335
elements of, 64–65
standards. See IEEE 1471-2000, IEEE Recommended 

Practice for Architectural Description...
Architecture

activities involved in. See specific activities.
application, 18
constraints, 369–370
data, 18
definition, 335
definitions, 9, 11
versus design, 4
development team structure, 17
documenting. See Documentation.
enterprise, 18
environmental influences, 16–17
forms of, 18
hardware, 18
information, 18
infrastructure, 18
logical. See Create Logical Architecture.
metamodel diagram, 333–335
physical. See Create Physical Architecture.
scope of activities, 18–21
system, 18

Architecture, purpose of
balancing stakeholder needs, 14–15
behavioral definition, 12–13
documenting decision rationales, 15
focus on significant elements, 13–14
structural definition, 11–12

Architecture Assessment
influence on architects, 317
output of Create Logical Architecture, 181
as work product, 354

Architecture Decisions
assets, 100–101
definition, 335
documenting. See Document Architecture 

Decisions.
influence on architects, 317
Outline Deployment Elements, identifying locations, 

224
Outline Deployment Elements, identifying nodes, 

227
output of Create Logical Architecture, 181
as work product, 354

Architecture description, packaging, 63
Architecture description framework

abstractions, 78. See also Views.
accessibility perspective, 81
availability perspective, 80



Index | 387

business model perspective, 79
characteristics, 76
detailed representation perspective, 79
development resource perspective, 81
development view, 77
evolution perspective, 80
functioning enterprise perspective, 79
internationalization perspective, 81
levels of realization, 78–79, 85–86
location perspective, 81
logical view, 77
performance perspective, 80
perspectives, 78–79.
physical view, 77
process view, 77
regulation perspective, 81
resilience perspective, 80
scalability perspective, 80
scenarios view, 77
scope perspective, 79
security perspective, 80
starting from scratch, 76
system model perspective, 79
technology model perspective, 79
usability perspective, 81
Zachman Framework, 77–79

Architecture description framework, viewpoints
application, 83
availability, 83
concurrency, 79
data, 78
deployment, 80, 83
development, 79
functional, 78, 79, 83
information, 79
infrastructure, 83
motivation, 79
network, 78
operational, 80
people, 78
performance, 83
requirements, 83
security, 84
stakeholders, summary of, 81–82
summary of, 83–84
systems management, 83
time, 79
validation, 83
Zachman Framework, 78–79

Architecture discipline, 46
Architecture Overview, 182, 354
Architecture Proof-of-Concept, 182, 354. See also

Build Architecture Proof-of-Concept.

Art versus science of architecting, 30
Articulation, asset attribute, 103, 104
Artifact stimulated, in scenarios, 173
Artifacts, definition, 48
Assets

consumption, over time, 57
existing, identifying, 6
name attribute, 105
reusing. See Reusing assets; Survey Architecture Assets.
type attribute, 105

Asynchronous communication, Java EE, 283
ATAM (Architecture Tradeoff Analysis Method), 253–254
AtP (authorization to proceed) points, 301
Attribute-Driven Design (ADD) method, 182–183
Audience identification, 66
Author, asset attribute, 104
Availability perspective, 80
Availability viewpoint

architecting complex systems, 326–327
description, 83, 345–346

B
Basic viewpoints, 341–344
Best practices

architecture as a system of systems, 328
Capture Common Vocabulary, 143
componentizing architecture, 320
documentation, 64
establishing standards, 321
Outline Non-Functional Requirements, 157
quality-driven architecture definition, 327
reconciling synonyms and homonyms, 143
selecting viewpoints, 110
surveying existing IT environment, 115
tracing solutions to requirements, 214
understanding the environment, 115

Bottom-up architecting, 34–35
Boundary components, 206
Brownfield development, 111
Build Architecture Proof-of-Concept, logical architec-

ture. See also Create Logical Architecture.
Architecture Proof-of-Concept, definition, 182
creating the proof of concept, 233–234
documenting findings, 234
purpose, 6–7, 190
task description, 232–233
task inputs, 233–234

Build Architecture Proof-of-Concept, physical architec-
ture, 293–294

Business analysis, architect’s role, 312–313
Business Analyst

refactoring actors and use cases, 155
roles and responsibilities, 112, 352



388 | Index

Business architecture, influence on architects, 315
Business behavior expected. See Business Process 

Model.
Business constraints, 369
Business domain, asset attribute, 105
Business domain knowledge, architects, 23–24
Business Entity Model

case study, 114, 117–118
definition, 125–126
identifying components, 207–208
influence on architects, 316
input to Create Logical Architecture, 181
as work product, 355

Business model perspective, 79
Business policies. See Business Rules.
Business Process Model

case study, 114
definition, 125–126
influence on architects, 316
as work product, 355

Business Rules
categories of, 158
constraints provided by, 122–123
definition, 158
identifying components, 217–219
identifying Non-Functional Requirements, 157
influence on architects, 316
input, 114, 125–126
input to Create Logical Architecture, 181
placement on components, 217–219
representation on components, 217–219
as work product, 355

Buying versus building, physical architecture, 278–279

C
Cantor, Murray, 330
Capture Common Vocabulary. See also Glossary.

best practices, 143
case study, 117–118
creating a Glossary, 141–143
in the design process, 4–5
different words, same meaning, 143
homonyms, 143
purpose of, 134–135
same words, different meaning, 143
synonyms, 143
task description, 141–142

Case study
inputs and outputs, 133.
logical architecture. See Create Logical Architecture.
physical architecture. See Create Physical 

Architecture.
requirements definition. See Define Requirements.

role of the architect, 133
roles, primary and secondary, 133
task descriptions, 133

Case study, application overview
application integration, 116
Business Entity Model, 117–118
business terminology, identifying, 117–118
common challenges, 116
constraints, 116
core functional requirements, 116
development-time qualities, 116
key business concepts, 117–118
physical distribution, 116
reusable assets, 116
run-time qualities, 116

Case study, scope of
Application Architect, responsibilities, 113
brownfield versus greenfield development, 111
Business Analyst, responsibilities, 112
Business Entity Model, 114
Business Process Model, 114
Business Rules, 114
Data Architect, responsibilities, 113
Developer, responsibilities, 113
Enterprise Architecture Principles, 114
Existing IT Environment, 114–115
external influences, 113–115
Infrastructure Architect, responsibilities, 113
Lead Architect, responsibilities, 113
overview, 110–111
Project Manager, responsibilities, 112
project team, individual responsibilities, 112–113
Tester, responsibilities, 113
work products, input, 114

Change cases, 152
Change management. See also Impact analysis.

architect’s role, 310–311
impact modeling, 75

Change Requests
Create Logical Architecture, 182
Define Requirements, 125–127
as work product, 355

Chunking the architecture, 320
CIM (Computation Independent Model), 322
Cohesion, components, 215
Collect Stakeholder Requests

checklist of stakeholders, 137
collecting the requests, 138–141
in the design process, 4–5
identifying stakeholders, 136–137
objective measurements, 140
pitfalls, 138–141
prioritizing requests, 141



Index | 389

purpose, 4–5, 134–135
requests versus requirements, 136, 138–139
shopping-cart mentality, 139
talking to the wrong people, 140
task description, 136
technical questionnaires, 139–140
vague requests, 140

Combining patterns, 100
Commercial products, physical architecture, 263
Commercial-off-the-shelf (COTS) products, 101–102, 

265
Communication skills, architects, 26
Complete implementation assets, 104
Complex systems, architecting

application integration, 329
availability viewpoint, 326–327
broad system distribution, 324
chunking the architecture, 320
componentizing the architecture, 320
crossing organizational boundaries, 324
decomposing into subsystems, 328–329
enterprise architecture, 328
establishing standards, 321–323
geographically distributed teams, 325
many people involved, 320–323
multiple distinct functions, 319–320
operational quality challenges, 326–327
overview, 318–319
packaged application development, 329
performance viewpoint, 326
recursion, 328
security viewpoint, 327
SOA (service-oriented architecture), 328
software product lines, 329
strategic reuse, 328–329
subordinate systems, 328
superordinate systems, 328
system, definition, 330
systems engineering, 328
systems of systems, 327–330
usability viewpoint, 326
viewpoints, selecting, 326–327

Complexity, managing
benefits of architecting, 39
with viewpoints, 71–72

Component identification, Outline Functional Elements
from Business Entity Model, 207–208
from Business Rules, 217–219
from Functional Requirements, 208–212
from Non-Functional Requirements, 212–217
overview, 206
from Prioritized Requirements List, 208–212
quality metrics, 215

requirement realizations, 214
size of function, 215
strength of associations, 215
traceability, 212, 214
use cases, examples, 209, 211, 213
use cases, UML sequence diagram, 213

Component library assets, 103
Componentizing the architecture, 320
Components

as assets, 103
boundary, 206
control, 206–207
data, 207
Define Architecture Overview, 197
definition, 10
description, example, 271
Detail Deployment Elements, 245–246, 248
entity, 207
execution components, 206–207
logical architecture, 204–207
placing Business Rules, 217–219
presentation, 206
representing Business Rules, 217–219
UML representations, 207

Components, Detail Functional Elements
contracts, defining, 242
interfaces, defining, 235–237
interfaces, definition, 235–236
operation names, specifying, 237
provided interfaces, 235
required interfaces, 235
signature names, specifying, 237
specification diagram, 239
specification diagrams, 237
use case, UML sequence diagram, 238

Components, Outline Functional Elements
allocating to subsystems, 211–212
characteristics of, 206
cohesion, 215
coupling, 215
definition, 204
granularity, 215

Computation Independent Model (CIM), 322
Concerns, definition, 336
Concerns addressed, asset attribute, 104
Concurrency viewpoint, 79
Configuration management, architect’s role, 308–310
Constraints

application overview, 116
Business Rules, 122–123
case study, 116, 122–123
client Vision, 122–123
on Non-Functional Requirements, 130



390 | Index

Constraints, continued
OCL (Object Constraint Language), 243
Vision, 122–123

Constraints, on requirements
architecture, 369–370
business, 369
definition, 368
development, 370
physical, 370–371

Construction phase, 55–57, 363–364
Contained artifacts, asset attribute, 104
Containers, Java EE, 282
Context. See Environment; Scenarios; Use cases.
Contracts, components, 242
Control components, 206–207
Conversational state, data flow, 239
Conway’s Law, 17
Core functional requirements, 116
Correspondence views, 87
Cost

estimation, benefits of architecting, 37–38
of maintenance, reducing, 39–40

COTS (commercial-off-the-shelf) products, 101–102, 
265

Coupling, components, 215
Create Logical Architecture

activity overview, 188–191, 360. See also specific
activities.

ADD (Attribute-Driven Design) method, 182–183
architectural overview. See Define Architecture 

Overview.
Architecture Assessment, 181
Architecture Decisions, 181, 202–203. See also

Document Architecture Decisions; Update 
Software Architecture Document.

Architecture Overview, 182
Architecture Proof-of-Concept, 182. See also Build 

Architecture Proof-of-Concept.
Build Architecture Proof-of-Concept, 6–7
Business Entity Model, 181
Business Rules, 181
Change Requests, 182
Create Logical Detailed Design, 3
Data Model, 182
Define Architecture Overview, 6
deployment elements. See Detail Deployment 

Elements; Outline Deployment Elements.
Deployment Model, 182, 183
description, 3
Detail Functional Elements, 6–7
Document Architecture Decisions, 6. See also Archi-

tecture Decisions.

documenting decisions. See Document Architecture 
Decisions.

documenting findings. See Update Software Archi-
tecture Document.

Enterprise Architecture Principles, 181
Existing IT Environments, 181
flow diagrams, 6, 189
functional elements. See Detail Functional Elements; 

Functional Requirements; Outline Functional 
Elements.

Functional Model, 182, 183
Glossary, 181
inputs/outputs, 180–182
as an investment, 186–187
logical architecture versus physical, 179
Non-Functional Requirements, 181, 182–183
Outline Functional Elements, 6–7
outline tasks versus detail tasks, 191
proof of concept. See Build Architecture 

Proof-of-Concept.
RAID Logs, 181–182
from requirements to solutions, 182–185
reusing assets. See Survey Architecture Assets.
Review Architecture with Stakeholders, 6–7
Review Records, 182
reviewing results with stakeholders. See Review 

Architecture with Stakeholders.
rightsizing, 185–186
RUP (Rational Unified Process), 184
S4V (Siemen’s 4 Views) method, 184
Software Architecture Document, 182
Survey Architecture Assets, 6
system context. See Define System Context; System 

Context.
tactics, 185
task summary, 361
tasks involved, 6
traceability, 186–187
Update Software Architecture Document, 6–7
validating results. See Validate Architecture; Verify 

Architecture.
verifying results. See Validate Architecture; Verify 

Architecture.
Create Logical Architecture, components

boundary components, 206
characteristics of, 206
control components, 206–207
data components, 207
definition, 204
entity components, 207
execution components, 206–207
identifying, 206



Index | 391

presentation components, 206
UML representations, 207

Create Logical Architecture, process overview
Build Architecture Proof-of-Concept, 6–7
Create Logical Detailed Design, 3
Define Architecture Overview, 6
description, 3
Detail Deployment Elements, 6–7
Detail Functional Elements, 6–7
Document Architecture Decisions, 6
flow chart, 6
Outline Deployment Elements, 6
Outline Functional Elements, 6–7
Review Architecture with Stakeholders, 6–7
Survey Architecture Assets, 6
tasks involved, 6
Update Software Architecture Document, 6–7
Validate Architecture, 6–7
Verify Architecture, 6

Create Logical Detailed Design, 3
Create Physical Architecture

activity overview, 266–269, 362. See also specific
activities.

Build Architecture Proof-of-Concept, 293–294
commercial products, 265
component description, example, 271
COTS (commercial-off-the-shelf) products, 265
Create Physical Detailed Design, 3, 7
custom development, 263
Define Architecture Overview, 270–273
description, 3
Detail Functional Elements, 294–296
Document Architecture Decisions, 273
documenting architectural decisions, 301
flow diagrams, 264, 267, 272
inputs and outputs, 262
iterative development, 265–266
mixing logical and physical concepts, 266
Non-Functional Requirements, 273
operations signatures, 295
physical architecture versus logical, 179
postconditions, 295
preconditions, 295
products, choosing, 263
reusing assets, 263, 269–270
Review Architecture with Stakeholders, 301–302
software products, 265
stakeholder signoff, 301
Survey Architecture Assets, 269–270
system elements, identifying and describing, 

270–273
task summary, 362

tasks involved, 7
technological platform, choosing, 263
transition from logical architecture, 263–265
Update Software Architecture Document, 301
Validate Architecture, 267–268, 300–301
Verify Architecture, 267–268, 292–293
view overloading, 266

Create Physical Architecture, Detail Deployment 
Elements

data migration, 299–300
horizontal scalability, 300
mapping components to deployment units, 297–299
overview, 296
post-deployment concerns, 299–300
scalability, 300
software packaging, 299
vertical scalability, 300

Create Physical Architecture, Outline Deployment 
Elements

hardware procurement, 292
many-to-one mapping, 290
mapping logical elements to physical, 289–290
one-to-many mapping, 289
one-to-one mapping, 289
physical elements, identifying, 290–292

Create Physical Architecture, Outline Functional 
Elements

buying versus building, 278–279
Java EE, 281–283
many-to-one mapping, 275–276
mapping logical elements to physical, 274–276
one-to-many mapping, 274–275
one-to-one mapping, 274, 275
physical elements, identifying, 277, 279
product procurement, 279–280
requirements realization, 286–287
software products, selecting, 280
technology independence, 276–277
technology-specific patterns, 280–289

Create Physical Architecture, process overview
Create Physical Detailed Design, 3, 7
description, 3
tasks involved, 7

Create Physical Detailed Design, 3, 7
Cross-cutting viewpoints, 68–70, 79–81, 344–347
Custom development, physical architecture, 263

D
Data Architect, roles and responsibilities

description, 353
software and information, 20
system data elements, 47, 113



392 | Index

Data architecture, 18, 47
Data components, 207
Data flows

conversational state, 239
identifying, 147–149
persisted data, 240
transient data, 239
use cases, 170

Data migration, 299–300
Data Models, 182, 355
Data viewpoint, 78
Decision making, by architects, 26
Declaring victory too soon, 55
Decomposing systems into subsystems, 328–329
Define Architecture Overview, logical architecture. See

also Create Logical Architecture.
components, 197
defining the overview, 195–199
Enterprise Architecture Principles, 195–196
flow diagram, 196
layers, 198–199
notational styles, 195
purpose, 6, 188
subsystems, 197
task description, 194
tiers, 198–199

Define Architecture Overview, physical architecture, 
270–273

Define Requirements
activities, overview, 134–135, 358–359. See also

specific activities.
architectural significance, 129
Business Entity Model, 125–126
Business Process Model, 125–126
Business Rules, 125–126
Capture Common Vocabulary, 4–5
Change Requests, 125–127
description, 3
documenting requirements, 131–132
Enterprise Architecture Principles, 126–127
Existing IT Environments, 126–127
flow chart, 5
functional requirements. See Detail Functional 

Requirements; Functional Requirements; 
Outline Functional Requirements.

Glossary, 126–127
inputs, 125–127
iterative development, 132–133
non-functional requirements. See Detail Non-Func-

tional Requirements; Non-Functional Require-
ments; Outline Non-Functional Requirements.

outlining requirements. See Outline Functional Require-
ments; Outline Non-Functional Requirements.

outputs, 126–128
Prioritize Requirements, 4–5
Prioritized Requirements List, 126–127
prioritizing requirements. See Prioritize 

Requirements.
RAID Log, 126–127
refining requirements, 133
relationship to architecture, 128–129
requirements management, 132–133
Review Records, 126–127
Software Architecture Document, 126–127
Stakeholder Requests, 126, 128, 157
stakeholder requests, collecting. See Collect Stake-

holder Requests.
stakeholder review. See Review Requirements with 

Stakeholders.
system context. See Define System Context; System 

Context.
task summary, 359
tasks involved, 5
Update Software Architecture Document, 5, 

134–135, 174
user terminology. See Capture Common 

Vocabulary.
Vision, 126–127

Define Requirements, process overview. See also
Define System Context.

Capture Common Vocabulary, 4–5
Collect Stakeholder Requests, 4–5
description, 3
Detail Functional Requirements, 5
Detail Non-Functional Requirements, 5
flow chart, 5
Outline Functional Requirements, 4–5
Outline Non-Functional Requirements, 4–5
Prioritize Requirements, 4–5
Review Requirements with Stakeholders, 5
tasks involved, 5
Update Software Architecture Document, 5

Define System Context
in the design process, 4–5
identifying actor locations, 146–147
identifying data flows, 147–149
identifying Non-Functional Requirements, 157
purpose of, 134–135
sample diagram, 145
task description, 143–144

Define System Context, actors
checklist of, 144
identifying, 144–146
refactoring, 154–155

Definitions. See Glossary; specific terms.
Deliverables, definition, 48



Index | 393

Deployment. See also Detail Deployment Elements; 
Outline Deployment Elements.

elements, 6–7
logical deployment units, 248
view, 68–70, 85
viewpoint

Deployment Model, 182, 183, 355
Design authority, influence on architects, 316–317
Design patterns, 97
Design skills, architects, 24–25
Detail Deployment Elements, logical architecture. 

See also Create Logical Architecture; Outline 
Deployment Elements.

purpose, 6–7, 190
task description, 245

Detail Deployment Elements, logical architecture 
components

assigning to nodes, 245–246
logical deployment units, 248

Detail Deployment Elements, logical architecture loca-
tion connection definitions, 250

Detail Deployment Elements, logical architecture 
nodes

assigning components to, 245–246, 247
connections between, defining, 246, 249
deployment units, 246, 248
links to components, 246

Detail Deployment Elements, physical architecture
data migration, 299–300
horizontal scalability, 300
mapping components to deployment units, 297–299
overview, 296
post-deployment concerns, 299–300
scalability, 300
software packaging, 299
vertical scalability, 300

Detail Functional Elements, logical architecture. See
also Create Logical Architecture; Outline 
Functional Elements.

interface responsibility diagram, 240–242
interfaces, mapping to business types, 240–242
logical Data Model, 240
postconditions, 242–244
preconditions, 242–244
purpose, 6–7, 190
task description, 234–235

Detail Functional Elements, logical architecture 
components

contracts, defining, 242
interfaces, defining, 235–237
interfaces, definition, 235–236
operation names, specifying, 237
provided interfaces, 235

required interfaces, 235
signature names, specifying, 237
specification diagram, 239
specification diagrams, 237
use case, UML sequence diagram, 238

Detail Functional Elements, logical architecture data 
flows

conversational state, 239
persisted data, 240
transient data, 239

Detail Functional Elements, physical architecture, 
294–296

Detail Functional Requirements. See also Functional 
Requirements; Outline Functional Requirements.

in the design process, 5
input from Outline Functional Requirements, 

165–169
purpose of, 134–135
scenarios, 170–171
system-wide, 170
task description, 164–165

Detail Functional Requirements, use cases
actors, 165
context, 166
data flows, 170
detailed data items, 170
event flows, alternative, 165, 168
event flows, main, 165, 168
event flows, required information, 167–168
input from Define System Context, 170
postconditions, 166, 169
preconditions, 166, 169
special requirements, 165, 168–169

Detail Non-Functional Requirements
in the design process, 5
Glossary, consistency, 172
purpose of, 134–135
scenarios, parts of, 172–173
SMART (specific, measurable, achievable, realistic, 

time-based), criteria, 172
task description, 171

Detail tasks versus outline tasks, 191
Detailed data items, use cases, 170
Detailed design. See also Create Logical Architecture; 

Create Physical Architecture.
Create Logical Detailed Design, 3
Create Physical Detailed Design, 3, 7

Detailed representation perspective, 79
Developer, roles and responsibilities, 113, 353
Development

architect’s role, 304–306
constraints, 370
discipline, 46



394 | Index

Development, continued
discipline, asset attribute, 105
environment, architect’s role, 311–312
method, asset attribute, 105
method assets, 94–95
phase, asset attribute, 105
process, definition, 336
projects, definition, 336
resource perspective, 81
scope, asset attribute, 105
view, 77
viewpoint, 79

Development-time assets, 92, 93
Development-time qualities, 116
Diagrams

with models and views, 72–73
views as, 70–71

Disciplines. See also specific disciplines.
definition, 45
summary of, 46

Document Architecture Decisions, logical architecture. 
See also Create Logical Architecture; Software 
Architecture Document; Update Software Archi-
tecture Document.

capturing issues or problems, 201
document decisions, 202–203
options, assessing, 201–202
options, selecting, 202
purpose, 6, 190
RAID Logs, 201
task description, 200–201

Document Architecture Decisions, physical architec-
ture, 273. See also Architecture description frame-
work; Create Physical Architecture; Software 
Architecture Document; Update Software Archi-
tecture Document.

Documentation. See also Architecture description 
framework; Document Architecture Decisions; 
Modeling; Software Architecture Document; 
Update Software Architecture Document; View-
points; Views.

agile processes, 59
architectural decisions, 6–7. See also Document 

Architecture Decisions; Software Architecture 
Document; Update Software Architecture 
Document.

architecture description, packaging, 63
benefits of, 61–62
best practices, 64
decision rationales, 15
Functional Requirements, case study, 131–132
importance of, 17–18
minimal but sufficient, 64
process description, 62–64

role of architecture, 15
Software Architecture Document, creating, 63–64
stakeholders, identifying, 63
work products, creating, 63

Document-driven versus results-driven architecture, 
160–161

Domain, 24. See also Business domain.

E
EJB interfaces, 282–283
EJBs (Enterprise JavaBeans), 282–283
Elaboration phase, 55–57, 363
Enterprise, system element, 19–20
Enterprise architecture

architecting complex systems, 328
influence on architects, 315–316
scope of activities, 18

Enterprise Architecture Principles
case study, 126–127
Define Architecture Overview, 195–196
description, 114
identifying Non-Functional Requirements, 157
influence on architects, 316, 317
input to Create Logical Architecture, 181
Outline Deployment Elements, identifying locations, 

224
Survey Architecture Assets, 193–194
as work product, 355

Entity beans, 283
Entity components, 207
Environment

architectural influences, 16–17
definition, 10, 336
geographical partitioning, 17
IT, surveying existing, 115
in scenarios, 173
understanding, 115

Error detection, modeling, 75
Event flows, in use cases

alternative, 165, 168
main, 165, 168
required information, 167–168

Event-based architecture assets, 95–96
Evolution perspective, 80
Execution components, 206–207
Existing applications, reusing, 101
Existing IT Environments

case study, 114–115, 126–127
influence on architects, 316
input to Create Logical Architecture, 181
Outline Deployment Elements, identifying locations, 

224
Outline Deployment Elements, identifying nodes, 226
as work product, 355



Index | 395

External influences, on architects
application architecture, 315
application maintenance provider, 318
Architecture Assessment, 317
Architecture Decisions, 317
business architecture, 315
Business Entity Model, 316
Business Process Model, 316
Business Rules, 316
design authority, 316–317
enterprise architecture, 315–316
Enterprise Architecture Principles, 316, 317
Existing IT Environments, 316
information architecture, 315
infrastructure providers, 317–318
overview, 313–315
technology architecture, 315

External influences, overview, 113–115
External interactions, identifying. See Define System 

Context.

F
Features, proposing, 121–122
Framework. See Application framework.
Functional, usability, reliability, performance, support-

ability (FURPS), 365
Functional elements, 6–7
Functional Model

non-functional requirements, influence of, 183
Outline Deployment Elements, identifying nodes, 

226
output of Create Logical Architecture, 182
as work product, 355

Functional Requirements. See also Non-Functional 
Requirements.

definition, 130
description, 366
details. See Detail Functional Requirements.
documenting, 131–132
identifying components, 208–212
input to Create Logical Architecture, 181
Outline Deployment Elements, identifying nodes, 

226
outlining. See Outline Functional Requirements.
output work product, 126–127
Prioritize Requirements, 161
from requirements to solutions, 182–183
roles related to, 46–47
system-wide, 131
use-case models, 132
as work product, 355

Functional view
intersecting, 68–69
related work products, 84–85

Functional viewpoint
description, 83, 342
purpose of, 63
Rozanski and Woods, 79
Zachman Framework, 78

Functioning enterprise perspective, 79
FURPS (functional, usability, reliability, performance, 

supportability), 365

G
Geographical partitioning, 17
Geographically distributed teams, complex systems, 325
Glossary (architectural terms), 28, 335–337
Glossary (business domain)

capturing, 4–5. See also Capture Common 
Vocabulary.

consistency, 172
creating, 141–143
different words, same meaning, 143
homonyms, 143
input to Create Logical Architecture, 181
output, 126–127
Prioritize Requirements, 161
same words, different meaning, 143
synonyms, 143
as work product, 355

Granularity
asset attribute, 103, 105
components, 215

Greenfield development, 111
Guidelines versus standards, 311–312. See also

Standards.

H
Hardware. See also Create Physical Architecture.

architecture, 18
system element, 19, 20

Horizontal scalability, 300

I
IBM Rational, 184
Idioms (programming patterns), 97
IEEE 1471-2000, IEEE Recommended Practice for 

Architectural Description...
architect, definition, 21
architecting, definition, 27
architecting, process metamodel, 28–29
architectural description, elements of, 64–65
architecture, definition, 9
documentation, key concepts, 64–65
environment, definition, 10
mission, definition, 10
stakeholder, definition, 10
systems, definition, 10



396 | Index

IEEE 12207-1995, IEEE Standard for Information 
Technology, 18

Impact analysis, benefits of architecting, 40. See also
Change management.

Inception phase, 55–57, 362
Industry vertical models, 193
Information, system element, 19, 20
Information architecture, 18, 315. See also

Documentation.
Information viewpoint, 79
Infrastructure Architects

description, 353
hardware responsibilities, 20
roles and responsibilities, 47, 113

Infrastructure architecture, 18, 47
Infrastructure providers, influence on architects, 

317–318
Infrastructure viewpoint, 83, 345
Integration testing, 306
Interface responsibility diagrams, 240–242
Interfaces, Detail Functional Elements

defining, 235–237
definition, 235–236
mapping to business types, 240–242
operation names, specifying, 237
provided interfaces, 235
required interfaces, 235
signature names, specifying, 237

Internationalization perspective, 81
Intersecting views. See Cross-cutting viewpoints; 

Views, intersecting.
IT environment, surveying existing, 115
Iterative processes

agile development, 59
characteristics of, 54
Construction phase, 55–57
declaring victory too soon, 55
definition, 44, 52–53
Elaboration phase, 55–57
Inception phase, 55–57
milestones, 54
OpenUP phases, 55–58
phases, 54
resource consumption, over time, 57
Sprints, 59
stability, over time, 56
Transition phase, 55–58
versus waterfall, 58

J
Java EE

asynchronous communication, 283
containers, 282
EJB interfaces, 282–283

EJBs (Enterprise JavaBeans), 282–283
entity beans, 283
Java servlets, 281
JAX-WS (Java API for XML Web Services), 282
JCA (Java EE Connector Architecture), 282
JDBC (Java DataBase Connectivity), 282
JMS (Java Message Service), 282
JPA (Java Persistence API), 282
JSPs (Java Server Pages), 282
markup language, 281
message-driven beans, 283
Outline Functional Elements, physical architecture, 

281–283
overview, 281
session beans, 283
stateful session beans, 283
stateless session beans, 283

Java servlets, 281
JAX-WS (Java API for XML Web Services), 282
JCA (Java EE Connector Architecture), 282
JDBC (Java DataBase Connectivity), 282
JMS (Java Message Service), 282
JPA (Java Persistence API), 282
JSPs (Java Server Pages), 282

K
Key business concepts, 117–118
Kruchten, Philippe, 76–77

L
Layers, Define Architecture Overview, 198–199
Lead Architect

description, 353
roles and responsibilities, 47, 113

Legacy applications, reusing, 101
Level of ceremony, 49
Levels of abstraction, modeling, 74
Levels of realization. See also Perspectives.

definition, 73
versus levels of abstraction, 74
logical versus physical, 85–86
modeling, 73–74, 85–86
Zachman Framework, 78–79

Location perspective, 81
Locations, defining connections between, 250
Logical architecture, 3. See also Create Logical 

Architecture.
Logical Data Model, 240
Logical deployment units, 248
Logical versus physical

architecture, 179
elements, modeling, 74
levels of realization, 85–86

Logical view, 77



Index | 397

M
Maintenance cost reduction, benefits of architecting, 

39–40
Managing complexity. See Complex systems, architect-

ing; Complexity, managing.
Mapping components to deployment units, 297–299
Mapping logical elements to physical, 274–276, 289–290
Markup language, Java EE, 281
MDSD (Model-Driven Systems Development). See

RUP SE (Rational Unified Process for Systems 
Engineering).

Message-driven beans, 283
Method content. See also Roles; Work products.

activities, 49–50
definition, 45
rightsizing, 108
tasks, 50, 51

Method processes. See also Agile processes; Iterative 
processes.

definition, 45
types of, 50. See also specific types.
waterfall, 51–52, 58

Methods. See also Disciplines.
activities, 45
application architecture, 47
data architecture, 47
functional requirements, 46–47
infrastructure architecture, 47
iterations, 44
key concept relationships, 44
phases, 44
SPEM standard, 43–44
tasks, 45
who, what, how, and when, 44

Meyer, Bertrand, 242
Milestones, 54
Mission, definition, 10, 336
Mockups. See Modeling.
Model, definition, 336
Model-Driven Systems Development (MDSD). See

RUP SE (Rational Unified Process for Systems 
Engineering).

Modeling. See also Architecture description frame-
work; Documentation.

abstraction levels, 74
analyzing change impact, 75
benefits of, 75
CIM (Computation Independent Model), 322
definition, 72
early error detection, 75
evaluating options, 75
levels of abstraction, 74
levels of realization, 73–74, 85–86. See also Perspec-

tives; Zachman Framework.

logical versus physical elements, 74
multiple aspects of, 73–74
PIM (Platform-Independent Model), 322
in project planning, 75
PSM (Platform-Specific Model), 322
refining, 73–74
sharing across views, 72
source code, 323
with views and diagrams, 72–73

Motivation viewpoint, 79

N
Negotiating skills, architects, 27
Network viewpoint, 78
Nodes

assigning components to, 245–246, 247
connections between, defining, 246, 249
deployment units, 246, 248
links to components, 246

Non-Functional Requirements. See also Functional 
Requirements.

definition, 130
details. See Detail Non-Functional Requirements.
documenting, 131–132
identifying components, 212–217
input to Create Logical Architecture, 181
Outline Deployment Elements, identifying locations, 

224–225
Outline Deployment Elements, identifying nodes, 

226
outlining. See Outline Non-Functional 

Requirements.
output work product, 126–127
physical architecture, 273
Prioritize Requirements, 161
from requirements to solutions, 182–183
as work product, 355

Non-negotiable requirements, 152
Notational styles, Define Architecture Overview, 195

O
OCL (Object Constraint Language), 243
Online resources. See Web sites.
OpenUP, 45–46, 55–58
Operation names, specifying, 237
Operational quality challenges, complex systems, 

326–327
Operational viewpoint, 80
Operations signatures, physical architecture, 295
Organizational blueprints, 313
Organizational boundaries, complex systems, 324
Organizational politics, influence on architects, 

26–27
Outcomes, definition, 48



398 | Index

Outline Deployment Elements, logical architecture. See
also Create Logical Architecture; Detail Deploy-
ment Elements.

in the design process, 6
identifying locations, 224–225
identifying nodes, 226–227
purpose, 190
software engineering versus systems engineering, 

223–224
task description, 222–223

Outline Deployment Elements, physical architecture
hardware procurement, 292
many-to-one mapping, 290
mapping logical elements to physical, 289–290
one-to-many mapping, 289
one-to-one mapping, 289
physical elements, identifying, 290–292

Outline Functional Elements, component identification
from Business Entity Model, 207–208
from Business Rules, 217–219
from Functional Requirements, 208–212
from Non-Functional Requirements, 212–217
overview, 206
from Prioritized Requirements List, 208–212
use cases, examples, 209, 211, 213
use cases, UML sequence diagram, 213

Outline Functional Elements, components
allocating to subsystems, 211–212
characteristics of, 206
cohesion, 215
coupling, 215
definition, 204
granularity, 215
quality metrics, 215
requirement realizations, 214
size of function, 215
strength of associations, 215
traceability, 212, 214

Outline Functional Elements, logical architecture. See
also Create Logical Architecture; Detail Func-
tional Elements.

naming, 204
purpose, 6–7, 190
subsystems, identifying, 205
task description, 204

Outline Functional Elements, physical architecture. See
also Create Physical Architecture.

buying versus building, 278–279
Java EE, 281–283
many-to-one mapping, 275–276
mapping logical elements to physical, 274–276
one-to-many mapping, 274–275
one-to-one mapping, 274, 275

physical elements, identifying, 277, 279
product procurement, 279–280
requirements realization, 286–287
software products, selecting, 280
technology independence, 276–277
technology-specific patterns, 280–289

Outline Functional Requirements. See also Detail Func-
tional Requirements; Functional Requirements.

change cases, 152
creating the outline, 153–155
Functional Requirements, descriptions, 153in the 

design process, 4–5
identifying Functional Requirements, 150–152
non-negotiable requirements, 152
pitfalls, 152
potential changes, 152
purpose of, 134–135
refactoring actors, 154–155
refactoring use cases, 154–155
task description, 149–150
use case model, 151
use cases, 150–152

Outline Non-Functional Requirements. See also Detail 
Non-Functional Requirements; Non-Functional 
Requirements.

best practices, 157
creating the outline, 158–160
in the design process, 4–5
example, 159
identifying Non-Functional Requirements, 157–158
purpose of, 134–135
stating what is not required, 160
task description, 156

Outline tasks versus detail tasks, 191

P
Packaged applications

developing systems, 329
reusing, 101–102

Partial implementation assets, 104
Partitioning, 17
Pattern languages, 100
Patterns. See also Reusing assets.

antipatterns, 97
architectural, 97
behavioral representation, 99
combining, 100
common contents, 98
defining software elements, 98
definition, 96
design, 97
programming (idioms), 97
reusing software elements. See Reusing assets.



Index | 399

structural representation, 99
transforming inputs to outputs, 100
UML modeling, 99–100
visual representation, 98–100

People viewpoint, 78
Performance perspective, 80
Performance requirements, 35, 367–368
Performance view, 68–69
Performance viewpoint, 83, 326, 346
Persisted data, data flow, 240
Perspectives. See also Levels of realization.

accessibility, 81
availability, 80
business model, 79
definition, 68
detailed representation, 79
development resource, 81
evolution, 80
functioning enterprise, 79
internationalization, 81
location, 81
performance, 80
regulation, 81
resilience, 80
Rozanski and Woods, 79
scalability, 80
scope, 79
security, 80
system model, 79
technology model, 79
usability, 81
Zachman Framework, 78–79

Phases
Construction, 363–364
definition, 54, 362
in the development process, 44
Elaboration, 363
Inception, 362
Transition, 363–364

Physical
architecture, in the design process, 3. See also

Create Physical Architecture.
constraints, 370–371
distribution, 116
elements, identifying, 277, 279, 290–292
view, 77

PIM (Platform-Independent Model), 322
Pipes-and-filters architecture assets, 96
Pitfalls

architects bog down in technical details, 306
architectural influence on team structure, 17
assuming requirements are equal, 144
combining architect and project manager, 309

configuration management ignores the architect, 
310

declaring victory too soon, 55
misconceptions about the team, 23
overlooking actors or stakeholders, 144
requests are not measurable, 140
shopping-cart mentality, 139
talking to the wrong people, 140
technical questionnaires, 139–140
treating requests as requirements, 138–139
unequal treatment of hardware and software, 223
vague requests, 140

Planning process, benefits of architecting, 36–38
Policies of the business. See Business Rules.
Postconditions

definition, 166
Detail Functional Elements, 242–244
physical architecture, 295
use cases, 166, 169

Potential changes, 152
Practice, 2, 108
Preconditions

definition, 166
Detail Functional Elements, 242–244
physical architecture, 295
use cases, 166, 169

Prerequisites, asset attribute, 105
Presentation components, 206
Primary roles, 47–48
Prioritize Requirements

in the design process, 4–5
Functional Requirements, 161
Glossary, 161
Non-Functional Requirements, 161
pitfalls, 164
prioritization process, 161–164
Prioritized Requirements List, 162
purpose of, 134–135
RAID Logs, 161–162
results-driven versus document-driven, 160–161
Stakeholder Requests, 161
stakeholder requests, 141
task description, 160–161
unequal requirements, 164
use cases, 162–163
Vision document, 161

Prioritized Requirements List
identifying components, 208–212
output of Define Requirements, 126–127
Prioritize Requirements, 162
as work product, 355

Problem statement, 118
Process description, documenting, 62–64



400 | Index

Process elements, rightsizing, 108
Process view, 77
Product procurement, 279–280
Products, choosing for physical architecture, 263
Programming patterns (idioms), 97
Programming skills, architects, 25
Project emphasis, change over time, 31–32
Project management

architect’s role, 307–308
description, 46

Project Managers
combining with architects, 309
description, 353
roles and responsibilities, 47, 112

Project planning, modeling, 75
Project teams

architectural influences on structure of, 17
case study, 112–113
definition, 22, 337
geographical distribution, 325

Project teams, responsibilities
Application Architect, 113
Business Analyst, 112
Data Architect, 113
Developer, 113
Infrastructure Architect, 113
Lead Architect, 113
Project Manager, 112
Tester, 113

Proof-of-concept. See Build Architecture Proof-of-
Concept.

Prototypes. See Modeling.
Provided interfaces, 235
PSM (Platform-Specific Model), 322

Q
Qualities

in Non-Functional Requirements, 130
overview, 122

Quality
attributes, 131
metrics for components, 215
of software, 131

Questionnaires, collecting stakeholder requests, 
139–140

R
RAID Logs

Document Architecture Decisions, 201
output from Create Logical Architecture, 181–182
output of Define Requirements, 126–127
Prioritize Requirements, 161–162
as work product, 355

RAS (Reusable Asset Specification), 106
RAS repository service, 106
Rational Unified Process (RUP), 184
Rational Unified Process for Systems Engineering (RUP 

SE), 19
Rationale, definition, 336
Recursion, complex systems, 328
Refactoring, 154–155. See also Refining.
Reference architecture assets, 94
Reference model assets, 96
Refining. See also Refactoring.

models, 73–74
requirements, 133
views. See Levels of realization.

Regulation perspective, 81
Related assets, asset attribute, 105
Reliability requirements, 367
Requests versus requirements, 136, 138–139
Required interfaces, 235
Requirements. See also Functional Requirements.

architect’s role, 304
defining. See Define Requirements.
discipline, 46
FURPS (functional, usability, reliability, perfor-

mance, supportability), 365
managing, 132–133
performance, 367–368
realizations, 214, 286–287
reliability, 367
versus requests, 136
supportability, 368
transforming to solutions, 182–185
types of, 365
usability, 366–367
view, 68–69, 84–85
viewpoint, 67–68, 83, 341–342

Requirements, constraints
architecture, 369–370
business, 369
definition, 368
development, 370
physical, 370–371

Resilience perspective, 80
Resources. See Assets.
Response, in scenarios, 173
Response measure, in scenarios, 173
Results-driven versus document-driven architecture, 

160–161
Reusable Asset Specification (RAS), 106
Reusing assets. See also Existing IT Environments; 

Survey Architecture Assets.
during architecting, 34
benefits of architecting, 39



Index | 401

case study, 116
physical architecture, 265, 269–270
RAS (Reusable Asset Specification), 106
RAS repository service, 106
sources for, 89–90

Reusing assets, a metamodel
development-time assets, 92, 93
diagram, 91
run-time assets, 92–93

Reusing assets, asset attributes
articulation, 103, 104
asset name, 105
asset type, 105
author, 104
brownfield development, 105
business domain, 105
complete implementation, 104
concerns addressed, 104
contained artifacts, 104
context-sensitive, 105
current state, 105
development discipline, 105
development method, 105
development phase, 105
development scope, 105
granularity, 103, 105
partial implementation, 104
prerequisites, 105
related assets, 105
specification, 103
technical domain, 105
use instructions, 105
variability, 105
version number, 105

Reusing assets, asset types. See also Patterns.
application framework, 102–103
architectural mechanisms, 96
architectural styles, 95–96
architecture decisions, 100–101
client-server architecture, 95
component libraries, 103
components, 103
COTS (commercial-off-the-shelf) products, 101–102
development method, 94–95
event-based architecture, 95–96
existing applications, 101
legacy applications, 101
packaged applications, 101–102
pipes-and-filters architecture, 96
reference architecture, 94
reference models, 96
SaaS (Software as a Service), 102
viewpoint catalogs, 95

Review Architecture with Stakeholders, logical 
architecture. See also Create Logical 
Architecture.

assembling work products, 259
baseline work products, 259
purpose, 190
reviewing, 260
SARA (Software Architecture Review and 

Assessment) Report, 259
task description, 258–259

Review Architecture with Stakeholders, physical 
architecture, 301–302. See also Create 
Physical Architecture.

Review Records, 126–127, 182, 356
Review Requirements with Stakeholders

assembling work products, 176
baseline work products, 175–176
in the design process, 5
purpose of, 134–135
reviewing work products, 176
task description, 175

Rightsizing
Create Logical Architecture, 185–186
examples, 109
method content, 108
process elements, 108

Risk management, 38, 255–256
Roles

Application Architect, 47, 352
architects. See Architects, roles.
assigning individuals to, 47
Business Analyst, 46–47, 352
Data Architect, 47, 353
definition, 46–47
Developer, 353
versus individuals, 22, 47
Infrastructure Architect, 47, 353
Lead Architect, 47, 353
primary, 47–48
Project Manager, 47, 353
responsibilities of, 46–47
secondary, 47–48
Tester, 354

Rozanski, Nick, 68, 79–81
Run-time assets, 92–93
Run-time qualities, 116
RUP (Rational Unified Process), 184
RUP SE (Rational Unified Process for Systems 

Engineering), 19

S
S4V (Siemen’s 4 Views) method, 184
SaaS (Software as a Service), 102



402 | Index

SARA (Software Architecture Review and Assessment) 
Report, 259

Scalability, 300
Scalability perspective, 80
Scenario-based architecture validation, 253–254
Scenarios. See also Use cases.

artifact stimulated, 173
Detail Functional Requirements, 170–171
environment, 173
parts of, 172–173
response, 173
response measure, 173
source of the stimulus, 173
stimulus, 173

Scenarios view, 77
Scheduling, benefits of architecting, 37
Science versus art of architecting, 30
Scope of architectural activities, 18–21
Scope perspective, 79
Scrum, definition, 59
Secondary roles, 47–48
Security perspective, 80
Security requirements, benefits of architecting, 35
Security view, 69–70
Security viewpoint, 84, 327, 346–347
Selic, Bran, 31–32
Separation, Trace, Externalize, Position (STEP) 

principles, 219
Service-oriented architecture (SOA), 328
Session beans, 283
Sharing models across views, 72
Shopping-cart mentality, 139
Siemen’s 4 Views (S4V) method, 184
Signature names, specifying, 237
SMART (specific, measurable, achievable, realistic, 

time-based), criteria, 172
SOA (service-oriented architecture), 328
Software

architecting. See Architecting.
architects. See Architects.
architecture. See Architecture.
development knowledge, architects, 23
development methods. See Methods.
packaging for deployment, 299
product lines, complex systems, 329
products, physical architecture, 263, 280
requirements, defining. See Define Requirements.
system element, 19, 20

Software and Systems Project Engineering Metamodel 
Specification (SPEM), 43–44, 48–49

Software Architecture Document. See also
Documentation.

creating, 63–64
outline for, 87–88

output of Create Logical Architecture, 182
output of Define Requirements, 126–127
purpose of, 87
updating, 5–7
as work product, 356

Software Architecture Review and Assessment (SARA) 
Report, 259

Software as a Service (SaaS), 102
Software engineering versus systems engineering, 

223–224
Source code, as model, 323
Source of the stimulus, in scenarios, 173
Special requirements for use cases, 165, 168–169
Specific, measurable, achievable, realistic, time-based 

(SMART), criteria, 172
Specification assets, 103
SPEM (Software and Systems Project Engineering 

Metamodel Specification), 43–44, 48–49
Sprint Backlog, 59
Sprints, 59. See also Iterative processes.
Stability, over time, 56
Stakeholder Requests

collecting. See Collect Stakeholder Requests.
identifying Non-Functional Requirements, 157
output of Define Requirements, 126, 128
Prioritize Requirements, 161
as work product, 356

Stakeholders
accommodating diversity, 32–33
building consensus, 36
case study, summary of, 119–120
collecting requests from, 4–5
communication through viewpoints, 72
definition, 10, 119, 336
identifying, 63, 136–137
needs, addressing, 118
needs, balancing, 14–15
requests, collecting. See Collect Stakeholder 

Requests.
reviewing architecture with. See Review Architec-

ture with Stakeholders.
reviewing requirements with. See Review Require-

ments with Stakeholders.
signoff on physical architecture, 301
types of, summary, 340–341
view of the new system. See Vision.
viewpoints, summary of, 81–82

Standards. See also IEEE.
architecting complex systems, 321–323
CIM (Computation Independent Model), 322
for complex systems, 321–323
enforcing consistency, 323
establishing, 321–323
MDA (Model Driven Architecture), 321–323



Index | 403

models, 322–323
OMG (Object Management Group), 321–323
PIM (Platform-Independent Model), 322
PSM (Platform-Specific Model), 322
SPEM (Software and Systems Project Engineering 

Metamodel Specification), 43–44, 48–49
transformations, 323

Standards versus guidelines, 311–312
Stateful session beans, 283
Stateless session beans, 283
Status meetings, agile processes. See Scrum.
Stevens, W. P., 215
Stimulus, in scenarios, 173
Strategic design, 4
Strategic reuse, complex systems, 328–329
Stroustrup, Bjarne, 1
Subordinate systems, complex systems, 328
Subsystems, 197, 211–212
Superordinate systems, complex systems, 328
Supportability requirements, 368
Survey Architecture Assets, logical architecture. See

also Create Logical Architecture; Reusing assets.
Enterprise Architecture Principles, 193–194
industry vertical models, 193
purpose of, 6, 188
reusing assets, 192–194
surveying the assets, 192–194
task description, 192

Survey Architecture Assets, physical architecture, 
269–270. See also Create Physical Architecture; 
Reusing assets.

System Context
input to Create Logical Architecture, 181
Outline Deployment Elements, identifying locations, 

225
output from Define Requirements, 126, 128
as work product, 356

System model perspective, 79
System qualities, benefits of architecting, 34–35
System testing, 306
Systems

architecture. See Architecture.
complex. See Complex systems, architecting.
constraints. See Constraints.
decomposing into subsystems, 328–329
distribution, complex systems, 324
elements, identifying and describing. See Create Log-

ical Architecture; Create Physical Architecture; 
Functional Requirements; Non-Functional 
Requirements.

elements of, 19–20
physical architecture, identifying and describing 

elements, 270–273
software intensive, 20

subordinate, 328
subsystems, 197, 211–212
superordinate, 328
of systems, 327–330

Systems, definitions
IEEE 1471-2000, IEEE Recommended Practice for 

Architectural Description..., 10, 336
IEEE 12207-1995, IEEE Standard for Information 

Technology, 18
RUP SE (Rational Unified Process for Systems 

Engineering), 19
systems of systems, 330

Systems engineering
architecting complex systems, 328
versus software engineering, 223–224

Systems management viewpoint, 83, 345
System-wide Functional Requirements, 131, 170

T
Tactical design, 4
Tactics, Create Logical Architecture, 185
Talking to the wrong people, 140
Target Operating Model (TOM), 313
Tasks. See also specific tasks.

definition, 50, 51, 356, 358
in the development process, 44–45

Teams. See Project teams.
Technical details, avoiding, 306
Technical domain, asset attribute, 105
Technical leadership, architects, 21–22
Technological knowledge, architects, 24
Technological platform, choosing, 263
Technology architecture, influence on architects, 315
Technology independence, 276–277
Technology model perspective, 79
Technology-specific patterns, 280–289
Templates for views, 66–67
Terminology. See Capture Common Vocabulary; 

Glossary.
Test discipline, 46
Testers, 113, 354
Testing

acceptance, 306
architect’s role, 306–307
integration, 306
system, 306

Tiers, 198–199
Time viewpoint, 79
TOM (Target Operating Model), 313
Top-down architecting, 34–35
Traceability

components, 212, 214
Create Logical Architecture, 186–187

Trade-offs during architecting, 33–34



404 | Index

Transient data, data flow, 239
Transition phase, 55–58, 363–364

U
UML (unified modeling language), examples

component, definition, 10
component diagram, 12
sequence diagram, 13

UML (unified modeling language), modeling patterns, 
99–100

Update Software Architecture Document. See also
Document Architecture Decisions; Documenta-
tion; Software Architecture Document.

aligning document sections with work products, 257
Create Logical Architecture, 6–7
Create Physical Architecture, 301
Define Requirements, 5, 134–135, 174
purpose, 190
purpose of, 134–135
task description, 174, 256
updating the document, 174, 257–258

Usability perspective, 81
Usability requirements, 366–367
Usability viewpoint, complex systems, 326
Use case models, 151
Use cases. See also Scenarios.

actors, 165
context, 166
data flows, 170
detailed data items, 170
identifying Functional Requirements, 150–152
input from Define System Context, 170
postconditions, 166, 169
preconditions, 166, 169
Prioritize Requirements, 162–163
refactoring, 155
special requirements, 165, 168–169

Use cases, event flows
alternative, 165, 168
main, 165, 168
required information, 167–168

Use instructions, asset attribute, 105
Users’ needs, addressing, 118

V
Validate Architecture, logical architecture. See also

Create Logical Architecture; Verify Architecture.
ATAM (Architecture Tradeoff Analysis Method), 253–254
considerations, 252
documenting findings, 255
planning for validation, 254
purpose, 6–7, 190
reviewing architecture, 254–255
risk assessment and recommendations, 255–256

scenario-based validation, 253–254
task description, 251–252

Validate Architecture, physical architecture, 267–268, 
300–301. See also Create Physical Architecture.

Validation view
intersecting, 69–70
related work products, 85

Validation viewpoint, 67–68, 83, 343–344
Variability, asset attribute, 105
Verify Architecture, logical architecture. See also Cre-

ate Logical Architecture; Validate Architecture.
follow-up, 232
individual verifications, 231
kickoff meeting, 231
plan verification, 230
purpose, 6, 190
rework, 231
task description, 228–230
verification meeting, 231
verification versus validation, 229

Verify Architecture, physical architecture, 267–268, 
292–293. See also Create Physical Architecture; 
Validate Architecture.

Version number, asset attribute, 105
Vertical scalability, 300
Viewpoint application, 83
Viewpoint catalogs

application viewpoint, 344
architecture description framework, 340
availability viewpoint, 345–346
basic viewpoints, 341–344
cross-cutting viewpoints, 344–347
definition, 67, 95
deployment viewpoint, 343
functional viewpoint, 342
infrastructure viewpoint, 345
performance viewpoint, 346
requirements viewpoint, 341–342
reusing assets, 95
security viewpoint, 346–347
selecting viewpoints, 76
stakeholder summary, 340–341
systems management viewpoint, 345
validation viewpoint, 343–344
view correspondence, 347–349

Viewpoints. See also Architecture description frame-
work; Documentation; Views.

architectural perspectives, 68
audience identification, 66
availability, 326–327
basic types, 67–68
benefits of, 71–72
characteristics, 66–67
in complex systems, 326–327



Index | 405

cross-cutting, 68–70, 79–81
definition, 66, 337
deployment, 62, 63, 67
focusing on system subsets, 71–72
functional, 62, 63, 67
intersecting. See Cross-cutting viewpoints.
managing complexity, 71–72
multipurpose, 66
performance, 326
requirements, 67–68
security, 327
selecting, 63, 67, 110
selecting, best practices, 110
stakeholder communications, 72
a templates for views, 66–67
usability, 326
validation, 67–68
and work products, 357

Views. See also Abstraction; Architecture description 
framework; Documentation; Viewpoints.

benefits of, 71–72
correspondence, 87, 347–349
creating from viewpoints, 66–67
definition, 66, 337
deployment, 85
as diagrams, 70–71
focusing on system subsets, 71–72
functional, 84–85
managing complexity, 71–72
with models and diagrams, 72–73
overloading, 266
refining. See Levels of realization.
related work products, 84–85
requirements, 84–85
stakeholder communications, 72

Views, intersectingvalidation, 85
deployment, 68–70
functional, 68–69
performance, 68–69
requirements, 68–69
security, 69–70
validation, 69–70

Vision
business behavior expected. See Business Process 

Model.
business policies, adhering to. See Business Rules.
Business Rules, 122–123
constraints, 122–123
Define Requirements, 126–127
features proposed, 121–122
functionality, determining, 120–122
identifying Non-Functional Requirements, 157
problem statement, 118
qualities, 122

stakeholder needs, addressing, 118–120
user needs, addressing, 118
as work product, 356

Vision document, 161
Vocabulary. See Glossary.

W
Waterfall process, 51–52, 58
Web sites, companion to this book, xxi
Woods, Eoin, 68
Work products. See also specific work products.

artifacts, 48
case study, input, 114
creating, 63
definition, 48
deliverables, 48
level of ceremony, 49
outcomes, 48
ownership, 49
related viewpoints, 84–85, 357
types of, 48

Work products, descriptions of
Architecture Assessment, 354
Architecture Decisions, 354
Architecture Overview, 354
Architecture Proof-Of-Concept, 354
Business Entity Model, 355
Business Process Model, 355
Business Rules, 355
Change Requests, 355
Data Models, 355
Deployment Model, 355
Enterprise Architecture Principles, 355
Existing IT Environments, 355
Functional Model, 355
Functional Requirements, 355
Glossary, 355
Non-Functional Requirements, 355
Prioritized Requirements List, 355
RAID Logs, 355
Review Record, 356
Software Architecture Document, 356
Stakeholder Requests, 356
System Context, 356
Vision, 356

Workers, system element, 19, 20

Y
YourTour. See Case study.

Z
Zachman, John, 77–79
Zachman Framework, 77–79. See also Levels of 

realization.


	Foreword
	Preface
	Chapter 2 Architecture, Architect, Architecting
	Architecture
	An Architecture Defines Structure
	An Architecture Defines Behavior
	An Architecture Focuses on Significant Elements
	An Architecture Balances Stakeholder Needs
	An Architecture Embodies Decisions Based on Rationale
	An Architecture May Conform to an Architectural Style
	An Architecture Is Influenced by Its Environment
	An Architecture Influences Development Team Structure
	An Architecture Is Present in Every System
	An Architecture Has a Particular Scope

	Architect
	The Architect Is a Technical Leader
	The Architect Role May Be Fulfilled by a Team
	The Architect Understands the Software Development Process
	The Architect Has Knowledge of the Business Domain
	The Architect Has Technology Knowledge
	The Architect Has Design Skills
	The Architect Has Programming Skills
	The Architect Is a Good Communicator
	The Architect Makes Decisions
	The Architect Is Aware of Organizational Politics
	The Architect Is a Negotiator

	Architecting
	Architecting Is a Science
	Architecting Is an Art
	Architecting Spans Many Disciplines
	Architecting Is an Ongoing Activity
	Architecting Is Driven by Many Stakeholders
	Architecting Often Involves Making Trade-Offs
	Architecting Acknowledges Experience
	Architecting Is Both Top-Down and Bottom-Up

	The Benefits of Architecting
	Architecting Addresses System Qualities
	Architecting Drives Consensus
	Architecting Supports the Planning Process
	Architecting Drives Architectural Integrity
	Architecting Helps Manage Complexity
	Architecting Provides a Basis for Reuse
	Architecting Reduces Maintenance Costs
	Architecting Supports Impact Analysis

	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z




