Chapter 2

Introducing Continuous Integration

Commit Code

Frequently

Write Automated
Developer Tests

Avoid Getting
Broken Code

Don’t Commit
Broken Code

Fix Broken Builds

Immediately

All Tests and Run Privat
Inspections ug _Ir(ljva ©
Must Pass utias

Assumption is the mother of all screw-ups.

—WETHERN’S LAW oF SUSPENDED JUDGMENT

Early in my career, I learned that developing good software comes

down to consistently carrying out fundamental practices regardless of

the particular technology. In my experience, one of the most signifi-
cant problems in software development is assuming. If you assume a
method will be passed the right parameter value, the method will fail.
Assume that developers are following coding and design standards and
the software will be difficult to maintain. Assume configuration files



24

Chapter 2 Q Introducing Continuous Integration

haven’t changed, and you’ll spend precious development hours need-
lessly hunting down problems that don’t exist. When we make
assumptions in software development, we waste time and increase
risks.

Reducing Assumptions

Continuous Integration can help reduce assumptions on a
project by rebuilding software whenever a change occurs in a
version control system.

We may think that the latest, greatest technology will be the “silver
bullet” to solve all of our problems, but it will not. At one company,
one of my initial responsibilities was to incorporate good software
development practices into the company—by example. Over time, we
were able to implement many widely accepted practices for develop-
ing good software into the projects. Having worked on many different
projects that used different methodologies, I have found that, in gen-
eral, iterative projects—using the Rational Unified Process (RUP) and
eXtreme Programming (XP), in my case—work best, because risks are
mitigated all along the way. Developing software requires planning for
change, continuously observing the results, and incrementally course-
correcting based on the results. This is how CI operates. CI is the
embodiment of tactics that gives us, as software developers, the ability
to make changes in our code, knowing that if we break software, we’ll
receive immediate feedback. This immediate feedback gives us time to
course-correct and adjust to change more rapidly.

CI is about the fundamentals. It may not be the most glamorous
activity in software development, but integrating software is vitally
important in today’s complex projects. Seldom do the users of the soft-
ware say to me, “Wow, I really like the way you integrated the soft-
ware in the last release.” And since that doesn’t happen, it may seem
like it isn’t worthwhile to make these efforts behind the scenes. How-
ever, anyone who has developed software using a practice such as CI is
empowered by a consistent and repeatable build process kicked off
when a change occurs to the version control repository.



A Day in the Life of CI 25

Cl as a Centerpiece for Quality

Some see Cl as a process of simply putting software compo-
nents together. We see CI as the centerpiece of software devel-
opment, as it ensures the health of software through running a
build with every change. Determining the quality of software can
be as easy as checking the latest integration build.

Spending some time on the nonglamorous fundamental activities
in software development means there is more time to spend on the
challenging, thought-provoking activities that make our jobs interest-
ing and fun. If we don’t focus on the fundamentals, such as defining
the development environment and building the software, we’ll be
forced to perform low-level tasks later, usually at the most inconve-
nient times (immediately before software goes to production, for
example). This is when mistakes happen as well. The discipline
involved in keeping the build “in the green” frees you from worrying
about whether everything is still working. It’s like exercising—yes, it
takes self-discipline; yes, it can be painful work—but it keeps you in
shape to play in the big game, when it counts.

This chapter attempts to answer the questions that you may have
when making the decision to implement the practices of CI on a
project. It provides an overview of the advantages and disadvantages
of CI, and covers how CI complements other software development
practices. CI is not a practice that can be handed off to a project’s
“build master” and forgotten about. It affects every person on the soft-
ware development team, so we discuss CI in terms of what all team
members must practice to implement it.

What’s a day of work like using CI? Let’s examine Tim’s experiences.

A Day in the Life of Cl

As Tim opens the door to his company’s suite, he views the wide-
screen monitor displaying real-time information for his project. The
monitor shows him that the last integration build ran successfully a
few minutes ago on the CI server. It shows a list of the latest quality



26

Chapter 2 Q Introducing Continuous Integration

FIGURE 2-1

metrics, including coding/design standard adherence, code duplica-
tion, and so on. Tim is one of 15 developers on a Java project creating
management software for an online brewery. See Figure 2-1 for a visu-
alization of some of the activities in Tim’s day.

Starting his day, Tim refactors a subsystem that was reported to
have too much duplicate code based on the latest reports from the CI
server. Prior to committing his changes to Subversion, he runs a pri-
vate build, which compiles and runs the unit tests against the newest
source code. After running this build on his machine, he commits his
changes to Subversion. All the while, the CruiseControl CI server is
polling the Subversion repository. A few minutes later, the CI server
discovers the changes that Tim committed and runs an integration
build. This integration build runs automated inspection tools to verify
that all code adheres to the coding standard. Tim receives an e-mail
about a coding standard violation, quickly makes the changes, and
checks the source code back into Subversion. The CI server runs
another build and it is successful. By reviewing the Web reports gener-
ated by the CI server, Tim finds that his recent code refactoring suc-
cessfully reduced the amount of duplicate code in his subsystem.

Feedback
Mechanism

Tim
Run Private Build
Commit Changes ~ Subversion Cl Server
Version Control Integration Build
1/ Repository Machine

Lisa
Run Private Build

A day in the life




A Day in the Life of CI 27

Later in the day, another developer on the project, Lisa, runs into
Tim’s office.

Lisa: 1 think the changes you made earlier today broke the last build!
Tim: Hmm...but, I ran the tests.
Lisa: Oh, I didn’t have time to write tests.

Tim: Are you following the code coverage metric we have established
for the project?

Because of this discussion, they decided to fail the integration build
if their code coverage was below 85%. Furthermore, Lisa wrote a test for
the defect and fixed the problem she discovered because of her conver-
sation with Tim. The integration build continued to stay “in the green.”

Terms of the Trade

automated—A “hands-off” process. Once a fully automated pro-
cess begins, no user intervention is required. Systems administra-
tors call this a “headless” process.

build—A set of activities performed to generate, test, inspect, and
deploy software.

continuous—Technically, continuous means something that, once
started, never stops. This would mean the build runs all the time;
however, this isn’t the case. Continuous, in the context of ClI, is
more like continual, and in the case of Cl servers, a process con-
tinually runs, polling for changes to the version control repository.
If the CI server discovers changes, it executes a build script.

Continuous Integration—“A software development practice where
members of a team integrate their work frequently, usually each
person integrates at least daily—leading to multiple integrations
per day. Each integration is verified by an automated build (includ-
ing test) to detect integration errors as quickly as possible. Many
teams find that this approach leads to significantly reduced inte-
gration problems and allows a team to develop cohesive software
more rapidly.”?

1. From www.martinfowler.com/articles/continuousIntegration.html.


www.martinfowler.com/articles/continuousIntegration.html

Chapter 2 Q Introducing Continuous Integration

development environment—The environment in which software
is written. This can include the IDE, build scripts, tools, third-party
libraries, servers, and configuration files.

inspection—Analysis of source code/bytecode for the internal
quality attributes. In the context of this book, we refer to the auto-
mated aspects (static and runtime analysis) as software inspection.

integration—The act of combining separate source code artifacts
together to determine how they work as a whole.

integration build—An integration build is the act of combining
software components (programs and files) into a software system.
This build includes multiple components on bigger projects or only
low-level compiled source files on smaller projects. In our every-
day life, we tend to use the terms build and integration build inter-
changeably, but for the purposes of this book we make the
distinction that an integration build is performed by a separate
integration build machine.

private (system) build—Running a build locally on your worksta-
tion before committing your changes to the version control reposi-
tory, to lessen the chances that your recent changes break the
integration build.2

quality—The Free On-Line Dictionary of Computing® defines
quality as “an essential and distinguishing attribute of some-
thing..” and “superior grade.” The term quality is often overused,
and some seem to think it is based on perception. In this book, we
take the stance that quality is a measurable specification just like
any other. This means you can identify specific metrics of quality,
such as maintainability, extensibility, security, performance, and
readability.

release build—Readies the software for release to users. It may
occur at the end of an iteration or some other milestone, and it
must include any acceptance tests and may include more exten-
sive performance and load tests.

2. Based on Software Configuration Management Patterns by Stephen Berczuk and
Brad Appleton.

3. At www.thefreedictionary.com.


www.thefreedictionary.com

What Is the Value of CI? 29

risk—The potential for a problem to occur. A risk that has been
realized is known as a problem. We focus on the higher-priority
risks (damage to our interests and goals) that have the highest
likelihood of occurring.

testing—The general process of verifying that software works as
designed. Furthermore, we define developer tests into multiple
categories, such as unit tests, component tests, and system tests,
all of which verify that objects, packages, modules, and the soft-
ware system work as designed. There are many other types of
tests, such as functional and load tests, but from a CI perspective,
all unit tests written by developers, at a minimum, are executed as
a part of a build (although builds may be staged to run fast tests
first followed by slower tests).

What Is the Value of CI?

At a high level, the value of CI is to:

* Reduce risks
* Reduce repetitive manual processes

* Generate deployable software at any time and at any place

Enable better project visibility
* Establish greater confidence in the software product from the
development team

Let’s review what these principles mean and what value they offer.

Reduce Risks

By integrating many times a day, you can reduce risks on your project.
Doing so facilitates the detection of defects, the measurement of soft-
ware health, and a reduction of assumptions.

* Defects are detected and fixed sooner—Because CI integrates
and runs tests and inspections several times a day, there is a greater
chance that defects are discovered when they are introduced (i.e.,



30

Chapter 2 Q Introducing Continuous Integration

when the code is checked into the version control repository)
instead of during late-cycle testing.

* Health of software is measurable—By incorporating continu-
ous testing and inspection into the automated integration pro-
cess, the software product’s health attributes, such as complexity,
can be tracked over time.

* Reduce assumptions—By rebuilding and testing software in a
clean environment using the same process and scripts on a con-
tinual basis, you can reduce assumptions (e.g., whether you are
accounting for third-party libraries or environment variables).

CI provides a safety net to reduce the risk that defects will be intro-
duced into the code base. The following are some of the risks that CI
helps to mitigate. We discuss these and other risks in the next chapter.

* Lack of cohesive, deployable software

* Late defect discovery

* Low-quality software

* Lack of project visibility

Reduce Repetitive Processes

Reducing repetitive processes saves time, costs, and effort. This
sounds straightforward, doesn’t it? These repetitive processes can
occur across all project activities, including code compilation, data-
base integration, testing, inspection, deployment, and feedback. By
automating CI, you have a greater ability to ensure all of the following.

* The process runs the same way every time.

* An ordered process is followed. For example, you may run inspec-
tions (static analysis) before you run tests—in your build scripts.

* The processes will run every time a commit occurs in the version
control repository.

This facilitates

* The reduction of labor on repetitive processes, freeing people to
do more thought-provoking, higher-value work



What Is the Value of CI? 31

* The capability to overcome resistance (from other team members)
to implement improvements by using automated mechanisms for
important processes such as testing and database integration

Generate Deployable Software

CI can enable you to release deployable software at any point in time.
From an outside perspective, this is the most obvious benefit of CI. We
could talk endlessly about improved software quality and reduced
risks, but deployable software is the most tangible asset to “outsiders”
such as clients or users. The importance of this point cannot be over-
stated. With CI, you make small changes to the source code and inte-
grate these changes with the rest of the code base on a regular basis. If
there are any problems, the project members are informed and the
fixes are applied to the software immediately. Projects that do not
embrace this practice may wait until immediately prior to delivery to
integrate and test the software. This can delay a release, delay or pre-
vent fixing certain defects, cause new defects as you rush to complete,
and can ultimately spell the end of the project.

Enable Better Project Visibility

CI provides the ability to notice trends and make effective decisions,
and it helps provide the courage to innovate new improvements.
Projects suffer when there is no real or recent data to support deci-
sions, so everyone offers their best guesses. Typically, project mem-
bers collect this information manually, making the effort burdensome
and untimely. The result is that often the information is never gathered.
CI has the following positive effects.

* Effective decisions—A CI system can provide just-in-time infor-
mation on the recent build status and quality metrics. Some CI
systems can also show defect rates and feature completion statuses.

* Noticing trends—Since integrations occur frequently with a CI
system, the ability to notice trends in build success or failure,
overall quality, and other pertinent project information becomes
possible.



32

Chapter 2 Q Introducing Continuous Integration

Establish Greater Product Confidence

Overall, effective application of CI practices can provide greater confi-
dence in producing a software product. With every build, your team
knows that tests are run against the software to verify behavior, that
project coding and design standards are met, and that the result is a
functionally testable product.

Without frequent integrations, some teams may feel stifled
because they don’t know the impacts of their code changes. Since a CI
system can inform you when something goes wrong, developers and
other team members have more confidence in making changes.
Because CI encourages a single-source point from which all software
assets are built, there is greater confidence in its accuracy.

What Prevents Teams from Using CI?

If CI has so many benefits, then what would prevent a development
team from continuously integrating software on its projects? Often, it
is a combination of concerns.

* Increased overhead in maintaining the CI system—This is
usually a misguided perception, because the need to integrate,
test, inspect, and deploy exists regardless of whether you are
using CI. Managing a robust CI system is better than managing
manual processes. Manage the CI system or be controlled by the
manual processes. Ironically, complicated multiplatform
projects are the ones that need CI the most, yet these projects
often resist the practice as being “too much extra work.”

* Too much change—Some may feel there are too many pro-
cesses that need to change to achieve CI for their legacy project.
An incremental approach to CI is most effective; first add builds
and tests with a lower occurrence (for example, a daily build),
then increase the frequency as everyone gets comfortable with
the results.

* Too many failed builds—Typically, this occurs when develop-
ers are not performing a private build prior to committing their
code to the version control repository. It could be that a devel-



How Do | Get to “Continuous” Integration? 33

oper forgot to check in a file or had some failed tests. Rapid
response is imperative when using CI because of the frequency
of changes.

* Additional hardware/software costs—To effectively use CI, a
separate integration machine should be acquired, which is a
nominal expense when compared to the more expensive costs of
finding problems later in the development lifecycle.

* Developers should be performing these activities—Some-
times management feels like CI is just duplicating the activities
that developers should be performing anyway. Yes, developers
should be performing some of these activities, but they need to
perform them more effectively and reliably in a separate envi-
ronment. Leveraging automated tools can improve the efficiency
and frequency of these activities. Additionally, it ensures that
these activities are performed in a clean environment, which will
reduce assumptions and lead to better decision making.

How Do | Get to “Continuous” Integration?

It’s often surprising to learn the level of automation of most develop-
ment organizations. Developers spend most of their time automating
processes for their users, yet don’t always see ways to automate their
own development processes. Sometimes teams believe their automation
is sufficient because they’ve written a few scripts to eliminate some
steps in the development process. The following is a typical scenario.

Joan (Developer): ...1 already automated that. I wrote some batch
scripts that drop and recreate the database tables.

Sue (Technical Lead): That’s great. Did you apply it to the CVS
repository?

Joan: No.
Sue: Did you make it a part of the build script?
Joan: No.

Sue: So, if it’s not a part of the CI system then it’s not really auto-
mated yet... right?



34 Chapter 2 Q Introducing Continuous Integration

CI is not just the process of gathering a few scripts together and
running them all the time. In the preceding scenario, it’s great that Joan
wrote those automation scripts, but in order for them to actually add
value to the end product, they must be added to the version control
repository and made a working part of the build process. Figure 2-2
illustrates the steps to making a process continuous.

These steps can be applied one by one to virtually every activity
you conduct on a project.

* Identify—Identify a process that requires automation. The pro-
cess may be in the areas of compilation, test, inspection, deploy-
ment, database integration, and so on.

* Build—Creating a build script makes the automation repeatable
and consistent. Build scripts can be constructed in NAnt for the
.NET platform, Ant for the Java platform, and Rake for Ruby,
just to name a few.

» Share—By using a version control system such as Subversion,
you make it possible for others to use these scripts/programs.
Now the value is being spread consistently across the project.

* Make it continuous—Ensure that the automated process is run
with every change applied, using a CI server. If your team has
the discipline, you can also choose to manually run the build
with every change applied to the version control system.

Here is an acrostic to help you remember and communicate this: “I
Build So Consistently”—for Identify, Build, Share, and Continuous.

Aim for incremental growth in your CI system. This is simple to
implement, the team gets more motivated as each new item is added,
and you can better plan what you need next based on what’s working

Identify l Build I Share | Continuous l

FIGURE 2-2 Getting to Cl— “I Build So Consistently”




When and How Should a Project Implement CI? 35

Is It Continuous Compilation or Continuous Integration?

I've worked with a number of organizations on implementing CI,
and on several occasions I've heard the reply, “Yes, we do CI.” Of
course, | think, “Great!” and then ask a few questions. How much
code coverage do you have with your tests? How long does it take
to run your builds? What is your average code complexity? How
much code duplication do you have? Are you labeling your builds
in your version control repository? Where do you store your
deployed software?

| discover that what they’ve been doing all along is more like a
“continuous compilation,” in which they’ve set up a tool like Cruise-
Control to poll their version control repository (e.g., CVS) for
changes. When it detects changes, it retrieves the source code
from CVS, compiles the code, and sends an e-mail if anything
goes wrong. Automatically compiling the software system on a
separate machine is better than nothing at all, but doing that isn’t
going to provide all of the benefits of a full-featured Cl system.

so far. Often, attempting to throw everything into a CI system immedi-
ately can be a bad move, just like refactoring a lot of code at once isn’t
the best approach when writing software. Get it to work first, get
developers using it, and then add other automated processes as needed
based on the project risks.

When and How Should a Project Implement CI?

It is best to implement CI early in the project. Although possible, it is
more difficult to implement CI late in a project, as people will be under
pressure and more likely to resist change. If you do implement CI later
in a project, it is especially important to start small and add more as
time permits.

There are different approaches to setting up the CI system. Though
you eventually want a build to run on every change to the system, you



36

Chapter 2 Q Introducing Continuous Integration

can start by running a build on a daily basis to get the practice going in
your organization. Remember: CI is not just a technical implementa-
tion; it is also an organizational and cultural implementation. People
often resist change, and the best approach for an organization may be
to add these automated mechanisms to the process piece by piece.

At first the build can just compile the source code and package the
binaries without executing the automated regression tests. This can be
effective, initially, if the developers are unfamiliar with an automated
testing tool. Once this is in place and developers have learned the test-
ing tool, you can move closer to the benefits of CI: running these tests
(and inspections) with every change.

The Evolution of Integration

Is CI the newest, latest, “whiz-bang” approach to software develop-
ment? Hardly. CI is simply an advance in the evolution of integrating
software. When software programs consisted of a few small files, inte-
grating them into a system was not much of a problem. The practice of
performing nightly builds has been described as a best practice for
years. Similar practices have been discussed in other books and arti-
cles. In the book Microsoft Secrets, Michael A. Cusumano and Richard
W. Selby discuss the practice of daily builds at Microsoft. Steve
McConnell, in Software Project Survival Guide, discusses the practice
of the “Daily Build and Smoke Test” as part of a software development
project.

In Object Solutions: Managing the Object-Oriented Project,
Grady Booch writes, “The macro process of object-oriented develop-
ment is one of ‘continuous integration’... At regular intervals, the pro-
cess of ‘continuous integration’ yields executable releases that grow in
functionality at every release... It is through these milestones that man-
agement can measure progress and quality, and hence anticipate, iden-
tify, and then actively attack risks on an ongoing basis.” With the
advent of XP and other Agile methodologies, and with the recom-
mended practice of CI, people began to take notice of the concept of
not just daily, but “continuous,” builds.



How Does Cl Complement Other Development Practices? 37

The practice of CI continues to evolve. You’ll find the practice in
almost every XP book. Often, when people discuss the practice of CI,
they refer to Martin Fowler’s seminal “‘Continuous Integration” article.*

As hardware and software resources continue to increase, you’ll find
that more processes will become a part of what is considered to be CI.

How Does Cl Complement Other Development
Practices?

The practice of CI complements other software development practices,
such as developer testing, adherence to coding standards, refactoring,
and small releases. It doesn’t matter if you are using RUP, XP, RUP
with XP, SCRUM, Crystal, or any other methodology. The following
list identifies how the practice of CI works with and improves these
practices.

* Developer testing—Developers who write tests most often use
some xUnit-based framework such as JUnit or NUnit. These
tests can be automatically executed from the build scripts. Since
the practice of CI advocates that builds be run any time a change
is made to the software, and that the automated tests are a part of
these builds, CI enables automated regression tests to be run on
the entire code base whenever a change is applied to the software.

* Coding standard adherence—A coding standard is the set of
guidelines that developers must adhere to on a project. On many
projects, ensuring adherence is largely a manual process that is
performed by a code review. CI can run a build script to report
on adherence to the coding standards by running a suite of auto-
mated static analysis tools that inspect the source code against
the established standard whenever a change is applied.

» Refactoring—As Fowler states, refactoring is “the process of
changing the software system in such a way that it does not alter

4. See www.martinfowler.com/articles/continuousIntegration.html.


www.martinfowler.com/articles/continuousIntegration.html

38

Chapter 2 Q Introducing Continuous Integration

the external behavior of the code yet improves its internal
structure.”> Among other benefits, this makes the code easier to
maintain. CI can assist with refactoring by running inspection
tools that identify potential problem areas at every build.

* Small releases—This practice allows testers and users to get
working software to use and review as often as required. CI
works very well with this practice, because software integration
is occurring many times a day and a release is available at virtu-
ally any time. Once a CI system is in place, a release can be gen-
erated with minimal effort.

* Collective ownership—Any developer can work on any part of
the software system. This prevents “knowledge silos,” where
there is only one person who has knowledge of a particular area
of the system. The practice of CI can help with collective owner-
ship by ensuring adherence to coding standards and the running
of regression tests on a continual basis.

How Long Does Cl Take to Set Up?

Implementing a basic CI system along with simple build scripts for a
new project may take you a few hours to set up and configure (more if
you don’t have any existing build scripts). As you expand your knowl-
edge of the CI system, it will grow with the addition of inspection
tools, deployments that are more complex, more thorough testing, and
many other processes. These additional features tend to be added a lit-
tle at a time.

For a project already in progress, it can take days, weeks, or even
months to set up a CI system. It also depends upon whether people
have been dedicated to work on the project. Usually you must com-
plete many tasks when moving to a continuous, automated, and head-
less system such as when using a CI server. In some cases, you may be
moving from batch or shell scripts to a build scripting tool such as Ant

5. Fowler, et al. Refactoring: Improving the Design of Existing Code (Reading,
MA: Addison-Wesley, 1999).



Commit Code Frequently 39

or managing all of the project’s binary dependencies. In other cases,
you may have previously used your IDE for “integration” and deploy-
ment. Either way, the road map to full CI adoption could be quite a bit
longer.

Cl and You

In order for CI to work effectively on a project, developers must
change their typical day-to-day software development habits. Developers
must commit code more frequently, make it a priority to fix broken builds,
write automated builds with tests that pass 100% of the time, and not
get or commit broken code from/to the version control repository.

The practices we recommend take some discipline, yet provide the
benefits stated throughout this chapter. The best situation is one where
most project members agree that there is an exponential payback to the
time and attention they pay to the practices of CI.

There are seven practices that we’ve found work well for individu-
als and teams running CI on a project.

* Commit code frequently
* Don’t commit broken code
* Fix broken builds immediately

* Write automated developer tests

All tests and inspections must pass

* Run private builds

Avoid getting broken code

The following sections cover each practice in greater detail.

Commit Code Frequently

One of the central tenets of CI is integrating early and often. Develop-
ers must commit code frequently in order to realize the benefits of CI.



40

Chapter 2 Q Introducing Continuous Integration

Waiting more than a day or so to commit code to the version control
repository makes integration time-consuming and may prevent devel-
opers from being able to use the latest changes. Try one or both of
these techniques to commit code more frequently.

* Make small changes—Try not to change many components all
at once. Instead, choose a small task, write the tests and source
code, run your tests, and then commit your code to the version
control repository.

* Commit after each task—Assuming tasks/work items have
been broken up so that they can be finished in a few hours, some
development shops require developers to commit their code as
they complete each task.

Try to avoid having everyone commit at the same time every day.
You’ll find that there are usually many more build errors to manage
because of the collisions between changes. This is especially trouble-
some at the end of the day, when people are ready to leave. The longer
you wait to integrate with others, the more difficult your integration
will prove to be.

| Just Can’t Commit

A friend runs a 25-developer project and he’d like to incorporate
many ClI practices, but he is experiencing challenges in getting the
developers to commit code frequently. I've found that the main rea-
son that changes are not committed frequently is because of the
project culture. Sometimes developers do not want to commit their
code until it is “perfect” This usually happens because their
changes affect too many components. Committing code frequently
to the version control repository is the only effective way to imple-
ment Cl, and this means that all developers need to embrace this
development practice by grabbing smaller chunks of code and
breaking up their tasks into smaller work items.




Write Automated Developer Tests 11

Don’t Commit Broken Code

A dangerous assumption on a project is that everyone knows not to
commit code that doesn’t work to the version control repository. The
ultimate mitigation for this risk is having a well-factored build script
that compiles and tests the code in a repeatable manner. Make it part of
the team’s accepted development practice to always run a private build
(which closely resembles the integration build process) before com-
mitting code to the version control repository. See the later section,
Run Private Builds, for additional recommendations before commit-
ting your code.

Fix Broken Builds Immediately

A broken build is anything that prevents the build from reporting suc-
cess. This may be a compilation error, a failed test or inspection, a
problem with the database, or a failed deployment. When operating in
a CI environment, these problems must be fixed immediately; fortu-
nately, in a CI environment, each error is discovered incrementally and
therefore is likely very small. Some projects have a penalty for break-
ing the build, such as throwing some money in a jar or placing the pic-
ture of the last developer to break the build on the company’s large-
screen monitor (just kidding; hopefully no one is doing this). The
project culture should convey that fixing a broken build is a top project
priority. That way, not just some but every team member can then get
back to what they were doing.

Write Automated Developer Tests

A build should be fully automated. In order to run tests for a CI sys-
tem, the tests must be automated. Writing your tests in an xUnit frame-
work such as NUnit or JUnit will provide the capability of running
these tests in an automated fashion. Chapter 6 provides details on writ-
ing automated tests.



42 Chapter 2 Q Introducing Continuous Integration

All Tests and Inspections Must Pass

In a CI environment, 100% of a project’s automated tests must pass for
your build to pass (this is a technical criterion, not an expectation that
all workers or all work should be perfect). Automated tests are as
important as the compilation. Everyone accepts that code that does not
compile will not work; therefore, code that has test errors will not
work either. Accepting code that does not pass the tests can lead to
lower-quality software.

An unscrupulous developer may simply comment out the failing
test. Of course, this defeats the purpose. Coverage tools assist in pin-
pointing source code that does not have a corresponding test. You can
run a code coverage tool as part of an integration build.

The same goes for running automated software inspectors. Use a
general rule set of coding and design standards that all code must pass.
More advanced inspections may be added that don’t fail the build, but
identify areas of the code that should be investigated.

Run Private Builds

To prevent broken builds, developers should emulate an integration
build on their local workstation IDE after completing their unit tests.
This build allows you to integrate your new working software with the
working software from all the other developers,® obtaining the changes
from the version control repository and successfully building locally
with the recent changes. Thus, the code each developer commits has
contributed to the greater good, with code that is less likely to fail on
the integration build server.

6. Some configuration management tools, such as ClearCase, have an option to
automatically update your local environment with the changes from the version
control repository (called “dynamic views” in ClearCase).



Avoid Getting Broken Code 43

Keep Builds in the “Green”

| find that there are two measures of using Cl effectively: number
of commits and build status. Each developer (or pair) should have
at least one commit to the repository per day, and the number of
checkins usually demonstrates the size of the changes (more
commits usually means smaller changes—and this is good). Your
build status should be “green” (pass) a large percentage of the
day; set this value for the team. We all get a “red” build status
sometimes, but what’s important is that it's changed back to green
as soon as possible. Never let your team get used to waiting in the
red status until this or that other project task is done. The willing-
ness to leave the status at red for other criteria defeats much of
the strength of CI.

Avoid Getting Broken Code

When the build is broken, don’t check out the latest code from the ver-
sion control repository. Otherwise, you must spend time developing a
workaround to the error known to have failed the build, just so you can
compile and test your code. Ultimately, it’s the responsibility of the
team, but the developers responsible for breaking the build should
already be working on fixing their code and committing it back to the
version control repository. Sometimes a developer may not have seen
the e-mail on the broken build. This is when a passive feedback mech-
anism such as a light or sound can be useful for colocated developers.
We consider it critical that all developers know the state of the code in
the version control repository. For more information on continuous
feedback mechanisms, see Chapter 9. An alternative, but not preferable,
approach to avoiding a checkout is to use the version control system to
roll back any changes since the most recent commit.

aguouaoaaaann



44

Chapter 2 Q Introducing Continuous Integration

Summary

Now you have the ammunition to go talk to others about CI. This chap-
ter covered some of the basics of Cl, discussed how to get to a contin-
uous process, and pointed out all the other areas that get explored in
detail in subsequent chapters. Table 2-1 summarizes seven practices
to follow when using Cl. The next chapter delves into the software
risks that CI can help mitigate to improve quality.

TABLE 2-1 CI Practices Discussed in This Chapter

Practice

Description

Commit code frequently

Don’t commit broken
code

Fix broken builds
immediately

Write automated
developer tests

All tests and inspections
must pass

Run private builds

Avoid getting broken
code

Commit code to your version control repository
at least once a day.

Don’t commit code that does not compile with
other code or fails a test.

Although it’s the team’s responsibility, the devel-
oper who recently committed code must be
involved in fixing the failed build.

Verify that your software works using automated
developer tests. Run these tests with your auto-
mated build and run them often with CI.

Not 90% or 95% of tests, but all tests must pass
prior to committing code to the version control
repository.

To prevent integration failures, get changes from
other developers by getting the latest changes
from the repository and run a full integration
build locally, known as a private system build.

If the build has failed, you will lose time if you get
code from the repository. Wait for the change or
help the developer(s) fix the build failure and
then get the latest code.

Questions

Practicing Cl is more than installing and configuring some tools. How
many of the following items are you consistently performing on your
project? How many of the other Cl practices can improve your devel-
opment capabilities?



Questions

45

On average, is everyone on your team committing code at least
once a day? Are you employing techniques to make it easier to
commit code often?

What percentage of each day’s integration builds is successful (that
is, the most recent build run has passed)?

Is everyone on your team running a private build before committing
to the repository so that integration errors are reduced?

Have you scripted your builds to fail if any of your tests or inspec-
tions fail?

Is a broken integration build a priority to fix on your projects?

Do you avoid getting the latest code from the version control sys-
tem when there is a broken build?

How often do you consider adding automated processes to your
build and Cl system—on a continuous or even periodic basis?





