

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trade-
mark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales, which may include electronic versions and/or custom covers and content particular to
your business, training goals, marketing focus, and branding interests. For more information, please
contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data:

EMF : Eclipse Modeling Framework / Dave Steinberg ... [et al.].
p. cm.

ISBN 0-321-33188-5 (pbk. : alk. paper) 1. Computer software--Development. 2. Java (Computer
program language) I. Steinberg, Dave.

QA76.76.D47E55 2008
005.13'3--dc22

2007049160

Copyright © 2009 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright,
and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671 3447

This material may be distributed only subject to the terms and conditions set forth in the Open
Publication License, v1.0 or later (the latest version is presently available at
http://www.opencontent.org/openpub/).

ISBN-13: 978-0-321-33188-5
ISBN-10: 0-321-33188-5
Text printed in the United States on recycled paper at Edwards Brothers in Ann Arbor, Michigan
First printing December 2008

http://www.opencontent.org/openpub/

Foreword
by Richard C. Gronback

Modeling can mean very different things to different people, even within the dis-
cipline of software engineering. Some will immediately think of the Unified
Modeling Language (UML), others will think of Model-Driven Architecture
(MDA), while others may remember the days of CASE tools. With increasing fre-
quency, those familiar with the Eclipse community think of the Eclipse Modeling
Framework (EMF), which provides a solid basis for application development
through the use of pragmatic modeling and code generation facilities.

From its beginnings within the Tools Project at Eclipse, EMF’s reputation for
high quality and unparalleled community support quickly led to several comple-
mentary modeling projects forming at Eclipse. Code generators, graphical dia-
gramming frameworks, model transformation, validation, and search are just a
few that have built upon EMF and now are contained within the Eclipse
Modeling Project. The growth and success of this top-level project is due in large
part to the strength of its core component, EMF.

In many ways, the EMF project is a model for other Eclipse projects (pun
intended). From the tireless efforts of its committers in answering questions on
the project’s newsgroup, to the professionalism and openness of its development
in terms of API, features, performance, and documentation, EMF is a tough act
to follow. The diversity of the Modeling community that has grown up around
EMF makes it a poster child for collaboration, including individual contributors,
commercial vendors, and academic institutions. Further evidence of EMF’s value
to Eclipse is its anticipated use in e4, the next Eclipse platform. At present, e4
developers have plans to leverage the capabilities of EMF to provide a consistent
model-based foundation and runtime; clearly, a step forward for model-driven
software development.

With so much technology built upon EMF, understanding its architecture
and capabilities are essential to using it successfully. For years, the first edition
of this book has been an important resource for many developers building their

xix

applications with EMF and extending EMF’s own capabilities. With the intro-
duction of this second edition, the many enhancements made to EMF in the
interim are now documented and able to be leveraged effectively. The API sec-
tion has been replaced by new chapters covering EMF persistence, client pro-
gramming, change recording, validation, and Rich Client Platform (RCP) devel-
opment. In addition to updating the original material, this new edition covers the
latest features of EMF versions 2.3 and 2.4, including generics, content types,
and REST APIs. It is a most welcome second edition.

I hope you find this second edition as valuable as I do.

Richard C. Gronback
Chief Scientist, Borland Software Corporation

November 2008

xx Foreword

The Eclipse Modeling Framework is an exemplary open source project in many
respects. We at the Eclipse Foundation have a number of ways to value the con-
tributions of any one project to our community. Our criteria include industry
adoption, robust technology, stability as an extensible platform, and open and
transparent project leadership. In all of these ways and more, EMF has for many
years been one of the very best of Eclipse.

With respect to industry adoption, I have often marveled at the amazing suc-
cess of EMF. A large part of my role at the Eclipse Foundation is to travel and
speak with adopters of Eclipse technology. Whether I am speaking to startups,
enterprises or established software vendors, everywhere I go EMF is on the list
of key Eclipse technologies being used. Its ability to simplify the development of
complex software applications and products has been widely recognized. Rarely
has a single framework driven so much developer productivity in so many
domains.

This adoption has largely been driven by a very simple value proposition:
EMF is great technology. Careful attention has been paid to EMF’s architecture,
the completeness of its APIs, its flexibility, and its performance. And perform-
ance is key for any technology that is going to be used in real world applications.

As a platform, EMF has transformed the modeling tools industry. Leading
model tools vendors such as Borland and IBM have based their products on
EMF, making a strategic decision that EMF is their core modeling framework of
the future. Almost every new modeling product that I have seen over the past
four years has been based on EMF.

So, EMF has clearly seen enormous adoption in the industry, but that is only
half the story. We look at EMF as a community success story as well. The EMF
team has always done an excellent job of interacting with community. Ed Merks,
the leader of the project and one of the authors of this book, is famous through-
out the Eclipse community for his prompt responses to any adopter’s inquiry

xxi

Foreword
by Mike Milinkovich

about EMF. That leadership-by-example has resulted in the entire EMF team
being one of the most community-focused at Eclipse.

EMF is an enormous Eclipse community success story and I am certain that
this book will help further that success.

Mike Milinkovich
Executive Director, Eclipse Foundation

November 2008

xxii Foreword

Preface

xxiii

This book is a comprehensive introduction and developer’s guide to the Eclipse
Modeling Framework (EMF). EMF is a powerful framework and code genera-
tion facility for building Java applications based on simple model definitions.
Designed to make modeling practical and useful to the mainstream Java pro-
grammer, EMF unifies three important technologies: Java, XML, and UML.
Models can be defined using a UML modeling tool or an XML Schema, or even
by specifying simple annotations on Java interfaces. In this last case, the devel-
oper writes just a subset of abstract interfaces that describe the model, and the
rest of the code is generated automatically and merged back in.

By relating modeling concepts to the simple Java representations of those
concepts, EMF has successfully bridged the gap between modelers and Java pro-
grammers. It serves as a gentle introduction to modeling for Java programmers
and at the same time as a reinforcement of the modeler’s theory that a great deal
of coding can be automated, given an appropriate tool. This book shows how
EMF is such a tool. It also shows how using EMF lets you do more with your
models that you might have thought possible.

EMF provides a runtime framework that allows any modeled data to be eas-
ily validated, persisted, and edited in a UI. Change notification and recording are
supported automatically. Metadata is available to enable generic processing of
any data using a uniform, reflective API. With all of these features and more,
EMF is the foundation for data sharing and fine-grained interoperability among
tools and applications in Eclipse, in much the same way that Eclipse is itself a
platform for integration at the component and UI level. Numerous organizations
are currently using Eclipse, EMF, and the growing number of EMF-based tech-
nologies in the Eclipse Modeling Project as the foundation for their own com-
mercial and open source offerings.

This book assumes the reader is familiar with object-oriented programming
concepts and specifically with the Java programming language. Previous expo-
sure to modeling technologies such as UML, although helpful, is not required.
Part I (Chapters 1 to 4) provides a basic overview of the most important concepts

in EMF and modeling. This part teaches someone with basic Java programming
skills everything needed to start using EMF to model and build an application.
Part II (Chapters 5 to 9) presents a thorough overview of EMF’s metamodel,
Ecore, followed by details of the mappings between Ecore and the other sup-
ported model-definition forms: UML, annotated Java, and XML Schema. Part III
(Chapters 10 to 13) includes detailed analyses of EMF’s code generator patterns
and tools, followed by an end-to-end example of a non-trivial EMF application.
Finally, Part IV (Chapters 14 to 21) takes a close look at EMF’s runtime frame-
work and discusses important EMF programming techniques.

The bulk of this book is based on EMF 2.2, the last version to support the
venerable Java 1.4 language. In version 2.3, EMF adopted key language features
of Java 5.0, making it incompatible with previous Java runtimes. EMF 2.2,
which was current while much of this book was written, is therefore still popu-
lar and an excellent base for learning about the framework. The code in Chapters
1 to 20 is based on that version, but due to EMF’s backward compatibility, all
examples run without change on version 2.4, the latest at the time of this book’s
release. Chapter 21 focuses specifically on changes in EMF 2.3 and 2.4 and, as
such, uses 2.4 as the basis for its examples.

Conventions Used in This Book

The following formatting conventions are used throughout this book:

Bold—Used for the names of model elements, such as packages, classes,
attributes, and references; and of user-interface elements, including menus,
buttons, tabs, and text boxes.

Italic—Used for filenames and URIs, as well as for placeholder text that is
meant to be replaced by a particular name. New terms are often italicized
for emphasis. Also, in Chapter 9’s example mappings, items shown pure-
ly to provide context appear in italics.

Courier—Used for all code samples and for in-text references to code
elements, including the names of Java packages, classes, interfaces, meth-
ods, fields, variables, and keywords. Plug-in names, command lines, and
elements of non-Java files, including XML, also appear in this font.

Courier Bold—Used to emphasize portions of code samples, usually
new insertions or changes.

Courier Strikethrough—Used in code samples to indicate that text
should be deleted.

xxiv Preface

Online Examples

The Web site for this book is located at http://www.informit.com/
title/9780321331885. All of the example models and code used throughout this
book can be downloaded from there. The site will also provide an errata list, and
other news related to the book.

Eclipse and EMF are required to use the examples. You can download one
of several Eclipse packages (we recommend Eclipse Classic) at
http://www.eclipse.org/downloads/ and the all-in-one EMF SDK at
http://www.eclipse.org/modeling/emf/downloads/.

Preface xxv

http://www.informit.com/title/9780321331885
http://www.informit.com/title/9780321331885
http://www.eclipse.org/downloads/
http://www.eclipse.org/modeling/emf/downloads/

CHAPTER 2

Introducing EMF

Simply put, the Eclipse Modeling Framework (EMF) is a modeling framework
that exploits the facilities provided by Eclipse. By now, you probably know what
Eclipse is, given that you either just read Chapter 1, or you skipped it, presum-
ably because you already knew what it was. You also probably know what a
framework is, because you know what Eclipse is, and Eclipse is itself a frame-
work. So, to understand what EMF really is, all you need to know is one more
thing: What is a model? Or better yet, what do we mean by a model?

If you’re familiar with things like class diagrams, collaboration diagrams,
state diagrams, and so on, you’re probably thinking that a model is a set of those
things, probably defined using Unified Modeling Language (UML), the standard
notation for them. You might be imagining a higher level description of an appli-
cation from which some, or all, of the implementation can be generated. Well,
you’re right about what a model is, but not exactly about EMF’s spin on it.

Although the idea is the same, a model in EMF is less general and not quite
as high level as the commonly accepted interpretation. EMF doesn’t require a
completely different methodology or any sophisticated modeling tools. All you
need to get started with EMF are the Eclipse Java Development Tools. As you’ll
see in the following sections, EMF relates modeling concepts directly to their
implementations, thereby bringing to Eclipse—and Java developers in general—
the benefits of modeling with a low cost of entry.

11

2.1 Unifying Java, XML, and UML

To help understand what EMF is about, let’s start with a simple Java program-
ming example. Say that you’ve been given the job of writing a program to man-
age purchase orders for some store or supplier.1 You’ve been told that a purchase
order includes a “bill to” and “ship to” address, and a collection of (purchase)
items. An item includes a product name, a quantity, and a price. “No problem,”
you say, and you proceed to create the following Java interfaces:

public interface PurchaseOrder
{
String getShipTo();
void setShipTo(String value);

String getBillTo();
void setBillTo(String value);

List getItems(); // List of Item
}

public interface Item
{
String getProductName();
void setProductName(String value);

int getQuantity();
void setQuantity(int value);

float getPrice();
void setPrice(float value);

}

Starting with these interfaces, you’ve got what you need to begin writing the
application UI, persistence, and so on.

Before you start to write the implementation code, your boss asks you,
“Shouldn’t you create a ‘model’ first?” If you’re like other Java programmers
we’ve talked to, who didn’t think that modeling was relevant to them, then you’d
probably claim that the Java code is the model. “Describing the model using
some formal notation would have no added value,” you say. Maybe a class dia-
gram or two would fill out the documentation a bit, but other than that it

12 CHAPTER 2 • Introducing EMF

1. If you’ve read much about XML Schema, you’ll probably find this example quite familiar, as it’s based
on the well-known example from the World Wide Web Consortium’s XML Schema primer [2]. We’ve sim-
plified it here, but in Chapter 4 we’ll step up to the real thing.

Figure 2.1 UML diagram of interfaces.

Then you tell the boss to go away so you can get down to business. (As you’ll
see later, if you had been using EMF, you would already have avoided this
unpleasant little incident with the boss.)

Next, you start to think about how to persist this “model.” You decide that
storing the model in an XML file would be a good solution. Priding yourself on
being a bit of an XML expert, you decide to write an XML Schema to define the
structure of your XML document:

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:po="http://www.example.com/SimplePO"
targetNamespace="http://www.example.com/SimplePO">

<xsd:complexType name="PurchaseOrder">
<xsd:sequence>
<xsd:element name="shipTo" type="xsd:string"/>
<xsd:element name="billTo" type="xsd:string"/>
<xsd:element name="items" type="po:Item"

minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="Item">
<xsd:sequence>
<xsd:element name="productName" type="xsd:string"/>
<xsd:element name="quantity" type="xsd:int"/>
<xsd:element name="price" type="xsd:float"/>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

2.1 Unifying Java, XML, and UML 13

PurchaseOrder

0..*

itemsshipTo : String
billTo : String

Item
productName : String
quantity : int
price : float

2. If you’re unfamiliar with UML and are wondering what things like the little black diamond mean,
Appendix A provides a brief overview of the notation.

simply doesn’t help. So, to appease the boss, you produce the UML diagram
shown in Figure 2.1.2

Before going any further, you notice that you now have three different rep-
resentations of what appears to be pretty much (actually, exactly) the same thing:
the “data model” of your application. Looking at it, you start to wonder if you
could have written only one of the three (i.e., Java interfaces, UML diagram, or
XML Schema), and generated the others from it. Even better, you start to won-
der if maybe there’s even enough information in this “model” to generate the
Java implementation of the interfaces.

This is where EMF comes in. EMF is a framework and code generation facil-
ity that lets you define a model in any of these forms, from which you can then
generate the others and also the corresponding implementation classes. Figure
2.2 shows how EMF unifies the three important technologies: Java, XML, and
UML. Regardless of which one is used to define it, an EMF model is the com-
mon high-level representation that “glues” them all together.

14 CHAPTER 2 • Introducing EMF

EMF

Model

XML UML

Java

Figure 2.2 EMF unifies Java, XML, and UML.

Imagine that you want to build an application to manipulate some specific
XML message structure. You would probably be starting with a message schema,
wouldn’t you? Wouldn’t it be nice to be able to take the schema, press a button
or two, and get a UML class diagram for it? Press another button, and you have
a set of Java implementation classes for manipulating the XML. Finally, press
one more button, and you can even generate a working editor for your messages.
All this is possible with EMF, as you’ll see when we walk through an example
similar to this in Chapter 4.

If, on the other hand, you’re not an XML Schema expert, you might choose
to start with a UML diagram, or simply a set of Java interfaces representing the
message structure. The EMF model can just as easily be defined using either of
them. If you want, you can then have an XML Schema generated for you, in
addition to the implementation code. Regardless of how the EMF model is pro-
vided, the power of the framework and generator will be the same.

2.2 Modeling vs. Programming

So is EMF simply a framework for describing a model and then generating other
things from it? Well, basically yes, but there’s an important difference. Unlike
most tools of this type, EMF is truly integrated with and tuned for efficient pro-
gramming. It answers the often-asked question, “Should I model or should I pro-
gram?” with a resounding, “Both.”

“To model or to program, that is not the question.”

How’s that for a quote? With EMF, modeling and programming can be con-
sidered the same thing. Instead of forcing a separation of the high-level engi-
neering and modeling work from the low-level implementation programming, it
brings them together as two well-integrated parts of the same job. Often, espe-
cially with large applications, this kind of separation is still desirable, but with
EMF the degree to which it is done is entirely up to you.

Why is modeling interesting in the first place? Well, for starters it gives you
the ability to describe what your application is supposed to do (presumably)
more easily than with code. This in turn can give you a solid, high-level way
both to communicate the design and to generate part, if not all, of the imple-
mentation code. If you’re a hard-core programmer without a lot of faith in the
idea of high-level modeling, you should think of EMF as a gentle introduction
to modeling, and the benefits it implies. You don’t need to step up to a whole
new methodology, but you can enjoy some of the benefits of modeling. Once
you see the power of EMF and its generator, who knows, we might even make
a modeler out of you yet!

If, on the other hand, you have already bought into the idea of modeling,
and even the Model Driven Architecture (MDA) big picture,3 you should think
of EMF as a technology that is moving in that direction, but more slowly than
immediate widespread adoption. You can think of EMF as MDA on training
wheels. We’re definitely riding the bike, but we don’t want to fall down and hurt
ourselves by moving too fast. The problem is that high-level modeling languages
need to be learned, and because we’re going to need to work with (e.g., debug)
generated Java code anyway, we now need to understand the mapping between
them. Except for specific applications where things like state diagrams, for
example, can be the most effective way to convey the behavior, in the general
case, good old-fashioned Java programming is the simplest and most direct way
to do the job.

2.2 Modeling vs. Programming 15

3. MDA is described in Section 2.6.4.

From the last two paragraphs, you’ve probably surmised that EMF stands in
the middle between two extreme views of modeling: the “I don’t need modeling”
crowd, and the “Modeling rules!” crowd. You might be thinking that being in
the middle implies that EMF is a compromise and is reduced to the lowest com-
mon denominator. You’re right about EMF being in the middle and requiring a
bit of compromise from those with extreme views. However, as the designers of
EMF, we truly feel that its exact position in the middle represents the right level
of modeling at this point in the evolution of software development technology.
We believe that EMF mixes just the right amount of modeling with programming
to maximize the effectiveness of both. We must admit, though, that standing in
the middle and arguing out of both sides of our mouths can get tiring!

What is this right balance between modeling and programming? An EMF
model is essentially the Class Diagram subset of UML; that is, a simple model of
the classes, or data, of the application. From that, a surprisingly large portion of
the benefits of modeling can be had within a standard Java development envi-
ronment. With EMF, there’s no need for the user, or other development tools
(e.g., a debugger), to understand the mapping between a high-level modeling lan-
guage and the generated Java code. The mapping between an EMF model and
Java is natural and simple for Java programmers to understand. At the same
time, it’s enough to support fine-grained data integration between applications;
next to the productivity gain resulting from code generation, this is one of the
most important benefits of modeling.

2.3 Defining the Model

Let’s put aside the philosophy for now and take a closer look at what we’re real-
ly describing with an EMF model. We saw in Section 2.1 that our conceptual
model could be defined in several different ways; that is, in Java, UML, or XML
Schema. But, what exactly are the common concepts we’re talking about when
describing a model? Let’s look at our purchase order example again. Recall that
our simple model included the following:

1. PurchaseOrder and Item, which in UML and Java map to class defini-
tions, but in XML Schema map to complex type definitions.

2. shipTo, billTo, productName, quantity, and price, which map to attrib-
utes in UML, get()/set() method pairs (or bean properties, if you want
to look at it that way) in Java, and in the XML Schema are nested ele-
ment declarations.

3. items, which is a UML association end or reference, a get() method in
Java, and in XML Schema, a nested element declaration of another com-
plex type.

16 CHAPTER 2 • Introducing EMF

As you can see, a model is described using concepts that are at a higher level
than simple classes and methods. Attributes, for example, represent pairs of
methods, and as you’ll see when we look deeper into the EMF implementation,
they also have the ability to notify observers (e.g., UI views) and be saved to, and
loaded from, persistent storage. References are more powerful yet, because they
can be bidirectional, in which case referential integrity is maintained. References
can also be persisted across multiple resources (documents), where demand load
and proxy resolution come into play.

To define a model using these kinds of “model parts” we need a common ter-
minology to describe them. More important, to implement the EMF tools and
generator, we also need a model for the information. We need a model for
describing EMF models; that is, a metamodel.

2.3.1 The Ecore (Meta) Model

The model used to represent models in EMF is called Ecore. Ecore is itself an
EMF model, and thus is its own metamodel. You could say that makes it a meta-
metamodel. People often get confused when talking about meta-metamodels
(metamodels in general, for that matter), but the concept is actually quite simple.
A metamodel is simply the model of a model, and if that model is itself a meta-
model, then the metamodel is in fact a meta-metamodel.4 Got it? If not, don’t
worry about it, as it’s really just an academic issue anyway.

A simplified subset of the Ecore metamodel is shown in Figure 2.3. This dia-
gram only shows the parts of Ecore needed to describe our purchase order exam-
ple, and we’ve taken the liberty of simplifying it a bit to avoid showing base
classes. For example, in the real Ecore metamodel the classes EClass, EAttribute,
and EReference share a common base class, ENamedElement, which defines the
name attribute that here we’ve shown explicitly in the classes themselves.

2.3 Defining the Model 17

4. This concept can recurse into meta-meta-metamodels, and so on, but we won’t go there.

EClass

1 eReferenceType

eAttributes

name : String

name : String

EReference

name : String
containment : boolean

0..*

eReferences
0..*

EAttribute
eAttributeType

1

EDataType

Figure 2.3 A simplified subset of the Ecore metamodel.

As you can see, there are four Ecore classes needed to represent our model:

1. EClass is used to represent a modeled class. It has a name, zero or more
attributes, and zero or more references.

2. EAttribute is used to represent a modeled attribute. Attributes have a
name and a type.

3. EReference is used to represent one end of an association between classes.
It has a name, a boolean flag to indicate if it represents containment, and
a reference (target) type, which is another class.

4. EDataType is used to represent the type of an attribute. A data type can
be a primitive type like int or float or an object type like
java.util.Date.

Notice that the names of the classes correspond most closely to the UML
terms. This is not surprising because UML stands for Unified Modeling Language.
In fact, you might be wondering why UML isn’t “the” EMF model. Why does
EMF need its own model? Well, the answer is quite simply that Ecore is a small
and simplified subset of full UML. Full UML supports much more ambitious
modeling than the core support in EMF. UML, for example, allows you to model
the behavior of an application, as well as its class structure. We’ll talk more about
the relationship of EMF to UML and other standards in Section 2.6.

We can now use instances of the classes defined in Ecore to describe the class
structure of our application models. For example, we describe the purchase order
class as an instance of EClass named “PurchaseOrder”. It contains two attributes
(instances of EAttribute that are accessed via eAttributes) named “shipTo” and
“billTo”, and one reference (an instance of EReference that is accessed via
eReferences) named “items”, for which eReferenceType (its target type) is equal to
another EClass instance named “Item”. These instances are shown in Figure 2.4.

18 CHAPTER 2 • Introducing EMF

EClass
(name="PurchaseOrder")

EAttribute
(name="shipTo")

EAttribute
(name="billTo")

EReference
(name="items")

EClass
(name="Item")

EAttribute
(name="productName")

eReferenceType

. . .

Figure 2.4 The purchase order Ecore instances.

When we instantiate the classes defined in the Ecore metamodel to define the
model for our own application, we are creating what we call an Ecore model.

2.3.2 Creating and Editing the Model

Now that we have these Ecore objects to represent a model in memory, EMF can
read from them to, among other things, generate implementation code. You
might be wondering, though, how do you create the model in the first place? The
answer is that you need to build it from whatever input form you start with. If
you start with Java interfaces, EMF will introspect them and build the Ecore
model. If, instead, you start with an XML Schema, then the model will be built
from that. If you start with UML, there are three possibilities:

1. Direct Ecore editing. EMF includes a simple tree-based sample editor for
Ecore. If you’d rather use a graphical tool, the Ecore Tools project5 pro-
vides a graphical Ecore editor based on UML notation. Third-party
options are also available, including Topcased’s Ecore Editor
(http://www.topcased.org/), Omondo’s EclipseUML
(http://www.omondo.com/) and Soyatec’s eUML (http://www.soyatec.com/).

2. Import from UML. The EMF Project and EMF Model wizards provide an
extensible framework, into which model importers can be plugged, sup-
porting different model formats. EMF provides support for Rational Rose
(.mdl files) only. The reason Rose has this special status is because it’s the
tool that was used to “bootstrap” the implementation of EMF itself. The
UML2 project6 also provides a model importer for standard UML 2.x
models.

3. Export from UML. This is similar to the second option, but the conver-
sion support is provided exclusively by the UML tool. It is invoked from
within the UML tool, instead of from an EMF wizard.

As you might imagine, the first option is the most desirable. With it, there is
no import or export step in the development process. You simply edit the model
and then generate. Also, unlike the other options, you don’t need to worry about
the Ecore model being out of sync with the tool’s own native model. The other

2.3 Defining the Model 19

5. Ecore Tools is a component of the EMF Technology (EMFT) project, which is itself a subproject of the
Eclipse Modeling Project. EMFT is an incubator project for new technologies that extend or complement
EMF. The Web site for Ecore Tools is http://www.eclipse.org/modeling/emft/?project=ecoretools.

6. UML2 is another component in the Eclipse Modeling Project. It provides an EMF-based implementa-
tion of the UML 2.x metamodel and can be found at http://www.eclipse.org/modeling/mdt/?project=uml2.

http://www.topcased.org/
http://www.omondo.com/
http://www.soyatec.com/
http://www.eclipse.org/modeling/emft/?project=ecoretools
http://www.eclipse.org/modeling/mdt/?project=uml2

two approaches require an explicit reimport or reexport step whenever the UML
model changes.

The advantage of the second and third options is that you can use the UML
tool to do more than just your EMF modeling. You can use the full power of
UML and whatever fancy features the particular tool has to offer. If it supports
its own code generation, for example, you can use the tool to define your Ecore
model, and also to both define and generate other parts of your application. As
long as a mechanism for conversion to Ecore is provided, that tool will also be
usable as an input source for EMF and its generator.

2.3.3 XMI Serialization

By now you might be wondering what the serialized form of an Ecore model is.
Previously, we’ve observed that the “conceptual” model is represented in at least
three physical places: Java code, XML Schema, or a UML diagram. Should there
be just one form that we use as the primary, or standard, representation? If so,
which one should it be?

Believe it or not, we actually have yet another (i.e., a fourth) persistent form
that we use as the canonical representation: XML Metadata Interchange (XMI).
Why did we need another one? We weren’t exactly short of ways to represent the
model persistently.

For starters, Java code, XML Schema, and UML all carry additional infor-
mation beyond what is captured in an Ecore model. Moreover, none of these
forms is required in every scenario in which EMF can be used. Java code was the
only one required in our running example, but as we will soon see, even it is
optional in some cases. So, what we need is a direct serialization of Ecore, which
doesn’t add any extra information. XMI fits the bill here, as it is a standard for
serializing metadata concisely using XML.

Serialized as an Ecore XMI file, our purchase order model looks something
like this:

<?xml version="1.0" encoding="UTF-8"?>
<ecore:EPackage xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:ecore="http://www.eclipse.org/emf/2002/Ecore" name="po"
nsURI="http://www.example.com/SimplePO" nsPrefix="po">

<eClassifiers xsi:type="ecore:EClass" name="PurchaseOrder">
<eStructuralFeatures xsi:type="ecore:EAttribute" name="shipTo"

eType="ecore:EDataType
http://www.eclipse.org/emf/2002/Ecore#//EString"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="billTo"
eType="ecore:EDataType

20 CHAPTER 2 • Introducing EMF

http://www.eclipse.org/emf/2002/Ecore#//EString"/>
<eStructuralFeatures xsi:type="ecore:EReference" name="items"

upperBound="-1" eType="#//Item" containment="true"/>
</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="Item">
<eStructuralFeatures xsi:type="ecore:EAttribute"

name="productName"
eType="ecore:EDataType

http://www.eclipse.org/emf/2002/Ecore#//EString"/>
<eStructuralFeatures xsi:type="ecore:EAttribute" name="quantity"

eType="ecore:EDataType
http://www.eclipse.org/emf/2002/Ecore#//EInt"/>

<eStructuralFeatures xsi:type="ecore:EAttribute" name="price"
eType="ecore:EDataType

http://www.eclipse.org/emf/2002/Ecore#//EFloat"/>
</eClassifiers>

</ecore:EPackage>

Notice that the XML elements correspond directly to the Ecore instances
back in Figure 2.4, which makes perfect sense because this is a serialization of
exactly those objects. Here we’ve hit an important point: because Ecore meta-
data is not the same as, for example, UML metadata, XMI serializations of the
two are not the same either.7

2.3.4 Java Annotations

Let’s revisit the issue of defining an Ecore model using Java interfaces. Previously
we implied that when provided with ordinary Java interfaces, EMF “would”
introspect them and deduce the model properties. That’s not exactly the case. The
truth is that given interfaces containing standard get() methods,8 EMF could
deduce the model attributes and references. EMF does not, however, blindly
assume that every interface and method in it is part of the model. The reason for
this is that the EMF generator is a code-merging generator. It generates code that
not only is capable of being merged with user-written code, it’s expected to be.

Because of this, our PurchaseOrder interface isn’t quite right for use as a
model definition. First of all, the parts of the interface that correspond to model
elements whose implementation should be generated need to be indicated. Unless
explicitly marked with an @model annotation in the Javadoc comment, a method

2.3 Defining the Model 21

7. When we spoke of exporting a model for use with EMF in the previous section, we were really talking
about exporting to Ecore XMI, specifically.

8. EMF uses a subset of the JavaBeans simple property accessor naming patterns. For more information,
see Section 7.1 of the specification at http://java.sun.com/products/javabeans/docs/spec.html.

http://java.sun.com/products/javabeans/docs/spec.html

is not considered to be part of the model definition. For example, interface
PurchaseOrder needs the following annotations:

/**
* @model
*/
public interface PurchaseOrder
{
/**
* @model
*/
String getShipTo();

/**
* @model
*/
String getBillTo();

/**
* @model type="Item" containment="true"
*/
List getItems();

}

Here, the @model tags identify PurhaseOrder as a modeled class, with two
attributes, shipTo and billTo, and a single reference, items. Notice that both
attributes, shipTo and billTo, have all their model information available through
Java introspection; that is, they are simple attributes of type String. No addi-
tional model information appears after their @model tags, because only informa-
tion that is different from the default needs to be specified.

There is some non-default model information needed for the items refer-
ence. Because the reference is multiplicity-many, indicated by the fact that
getItems() returns a List, we need to specify the target type of the reference
as type="Item".9 We also need to specify containment="true" to indicate
that we want purchase orders to be a container for their items and serialize them
as children.

Notice that the setShipTo() and setBillTo() methods are not required in
the annotated interface. With the annotations present on the get() method, we
don’t need to include them; once we’ve identified the attributes (which are set-
table by default), the set() methods will be generated and merged into the inter-
face if they’re not already there.

22 CHAPTER 2 • Introducing EMF

9. Note that beginning with Java 5.0, generics can be used to specify a list’s item type. Generics have only
been supported in EMF since version 2.3. You’ll see the older form, with a raw list type, throughout most
of this book, both as the Java specification for a multiplicity-many reference and in the code generated
from it. Chapter 21, which focuses specifically on EMF 2.3 and 2.4, details the new generics-based form.

2.3.5 The Ecore “Big Picture”

Let’s recap what we’ve covered so far.

1. Ecore, and its XMI serialization, is the center of the EMF world.

2. An Ecore model can be created from any of at least three sources: a UML
model, an XML Schema, or annotated Java interfaces.

3. Java implementation code and, optionally, other forms of the model can
be generated from an Ecore model.

We haven’t talked about it yet, but there is one important advantage to using
XML Schema to define a model: given the schema, instances of the model can be
serialized to conform to it. Not surprisingly, in addition to simply defining the
model, the XML Schema approach is also specifying something about the per-
sistent form of the instances.

One question that comes to mind is whether there are other persistent model
forms possible. Couldn’t we, for example, provide a relational database (RDB)
Schema and produce an Ecore model from it? Couldn’t this RDB Schema also be
used to specify the persistent format, similar to the way XML Schema does? The
answer is, quite simply, yes. This is one type of function that EMF is intended to
support, and certainly not the only kind. The “big picture” is shown in Figure 2.5.

2.4 Generating Code 23

Ecore Model

Java Code

Annotations

UML Model

XML Schema

RDB Schema

Other . . .

Figure 2.5 An Ecore model and its sources.

2.4 Generating Code

The most important benefit of EMF, as with modeling in general, is the boost in
productivity that results from automatic code generation. Let’s say that you’ve
defined a model, for example the purchase order Ecore model shown in Section
2.3.3, and are ready to turn it into Java code. What do you do now? In Chapter
4, we’ll walk through this scenario and others where you start with other forms

of the model (e.g., Java interfaces). For now, suffice to say that it only involves a
few mouse clicks. All you need to do is create a project using the EMF Project
wizard, which automatically launches the generator, and select Generate Model
Code from a menu.

2.4.1 Generated Model Classes

So what kind of code does EMF generate? The first thing to notice is that an
Ecore class (i.e., an EClass) actually corresponds to two things in Java: an inter-
face and a corresponding implementation class. For example, the EClass for
PurchaseOrder maps to a Java interface:

public interface PurchaseOrder ...

and a corresponding implementation class:

public class PurchaseOrderImpl extends ... implements PurchaseOrder {

This interface–implementation separation is a design choice favored by EMF.
Why do we advocate this approach? The reason is simply that we believe it’s the
best pattern for any model-like API. For example, the Document Object Model
(DOM) is like this and so is much of Eclipse. It’s also a necessary pattern to sup-
port multiple inheritance in Java.

The next thing to notice about each generated interface is that it extends
directly or indirectly from the base interface EObject like this:

public interface PurchaseOrder extends EObject {

EObject is the EMF equivalent of java.lang.Object; that is, it’s the base of all
modeled objects. Extending EObject introduces three main behaviors:

1. eClass() returns the object’s metaobject (an EClass).

2. eContainer() and eResource() return the object’s containing object
and resource.

3. eGet(), eSet(), eIsSet(), and eUnset() provide an API for accessing
the objects reflectively.

The first and third items are interesting only if you want to generically access
the objects instead of, or in addition to, using the type-safe generated accessors.
We’ll look at how this works in Sections 2.5.3 and 2.5.4. The second item is an
integral part of the persistence API that we will describe in Section 2.5.2.

24 CHAPTER 2 • Introducing EMF

Other than that, EObject has only a few convenience methods. How-
ever, there is one more important thing to notice; EObject extends yet another
interface:

public interface EObject extends Notifier {

The Notifier interface is also quite small, but it introduces an important
characteristic to every modeled object; model change notification as in the
Observer design pattern [3]. Like object persistence, notification is an important
feature of an EMF object. We’ll look at EMF notification in more detail in
Section 2.5.1.

Let’s move on to the generated methods. The exact pattern that is used for
any given feature (i.e., attribute or reference) implementation depends on the
type and other user-settable properties. In general, the features are implemented
as you’d expect. For example, the get() method for the shipTo attribute simply
returns an instance variable like this:

public String getShipTo()
{
return shipTo;

}

The corresponding set() method sets the same variable, but it also sends a
notification to any observers that might be interested in the state change:

public void setShipTo(String newShipTo)
{
String oldShipTo = shipTo;
shipTo = newShipTo;
if (eNotificationRequired())
eNotify(new ENotificationImpl(this,

Notification.SET,
POPackage.PURCHASE_ORDER__SHIP_TO,
oldShipTo, shipTo));

}

Notice that, to make this method more efficient when the object has no
observers, the relatively expensive call to eNotify() is avoided by the
eNotificationRequired() guard.

More complicated patterns are generated for other types of features, espe-
cially bidirectional references where referential integrity is maintained. In all
cases, however, the code is generally as efficient as possible, given the intended
semantic. We’ll cover the complete set of generator patterns in Chapter 10.

2.4 Generating Code 25

The main message you should go away with is that the generated code is
clean, simple, and efficient. EMF does not pull in large base classes, or generate
inefficient code. EMF’s runtime framework is lightweight, as are the objects gen-
erated for your model. The idea is that the code that’s generated should look
pretty much like what you would have written, had you done it by hand.
However, because it’s generated, you know it’s correct. It’s a big time saver, espe-
cially for some of the more complicated bidirectional reference handshaking
code, which might otherwise be fairly difficult to get right.

Before moving on, we should mention two other important classes that are
generated for a model: a factory and a package. The generated factory (e.g.,
POFactory) includes a create method for each class in the model. The EMF
programming model strongly encourages, but doesn’t require, the use of facto-
ries for creating objects. Instead of simply using the new operator to create a pur-
chase order, you should do this:

PurchaseOrder aPurchaseOrder =
POFactory.eINSTANCE.createPurchaseOrder();

The generated package (e.g., POPackage) provides convenient accessors
for all the Ecore metadata for the model. You might already have noticed, in the
implementation of setShipTo() shown earlier, the use of POPackage.
PURCHASE_ORDER__SHIP_TO, a static int constant representing the shipTo
attribute. The generated package also includes convenient accessors for the
EClasses, EAttributes, and EReferences. We’ll look at the use of these accessors
in Section 2.5.3.

2.4.2 Other Generated “Stuff”

In addition to the interfaces and classes described in the previous section, the
EMF generator can optionally generate the following:

1. A skeleton adapter factory10 class (e.g., POAdapterFactory) for the
model. This convenient base class can be used to implement adapter fac-
tories that need to create type-specific adapters; for example, a
PurchaseOrderAdapter for PurchaseOrders, an ItemAdapter for Items,
and so on.

2. A convenience switch class (e.g., POSwitch) that implements a “switch
statement”-like callback mechanism for dispatching based on an object’s

26 CHAPTER 2 • Introducing EMF

10. Adapters and adapter factories are described in Section 2.5.1.

type (i.e., its EClass). The adapter factory class, as just described, uses this
switch class in its implementation.

3. Plug-in manifest files and property files, so that the model can be used as
an Eclipse plug-in.

If all you’re interested in is generating a model, this is the end of the story.
However, as we’ll see in Chapters 3 and 4, the EMF generator can, using the
EMF.Edit extensions to the EMF core, generate adapter classes that enable view-
ing and command-based, undoable editing of a model. It can even generate a
complete working editor for your model. We will talk more about EMF.Edit and
its capabilities in the following chapter. For now, we just stick to the basic mod-
eling framework itself.

2.4.3 Regeneration and Merge

The EMF generator produces files that are intended to be a combination of
generated pieces and handwritten pieces. You are expected to edit the genera-
ted classes to add methods and instance variables. You can always regenerate
from the model as needed and your additions will be preserved during the
regeneration.

EMF uses @generated markers in the Javadoc comments of generated inter-
faces, classes, methods, and fields to identify the generated parts. For example,
getShipTo() actually looks like this:

/**
* @generated
*/
public String getShipTo() { ...

Any method that doesn’t have this @generated tag (i.e., anything you add
by hand) will be left alone during regeneration. If you already have a method in
a class that conflicts with a generated method, your version will take precedence
and the generated one will be discarded. You can, however, redirect a generated
method if you want to override it but still call the generated version. If, for exam-
ple, you rename the getShipTo() method with a Gen suffix:

/**
* @generated
*/
public String getShipToGen() { ...

2.4 Generating Code 27

Then if you add your own getShipTo() method without an @generated
tag, the generator will, on detecting the conflict, check for the corresponding Gen
version and, if it finds one, redirect the generated method body there.

The merge behavior for other things is generally reasonable. For example,
you can add extra interfaces to the extends clause of a generated interface (or
the implements clause of a generated class) and specify that they should be
retained during regeneration. The single extends class of a generated class, how-
ever, will always be overwritten by the model’s choice. We’ll look at code merg-
ing in more detail in Chapter 10.

2.4.4 The Generator Model

Most of the data needed by the EMF generator is stored in the Ecore model. As
we saw in Section 2.3.1, the classes to be generated and their names, attributes,
and references are all there. There is, however, more information that needs to
be provided to the generator, such as where to put the generated code and what
prefix to use for the generated factory and package class names, that isn’t stored
in the Ecore model. All this user-settable data also needs to be saved somewhere
so that it will be available if we regenerate the model in the future.

The EMF code generator uses a generator model to store this information.
Like Ecore, the generator model is itself an EMF model. Actually, a generator
model provides access to all of the data needed for generation, including the
Ecore part, by wrapping the corresponding Ecore model. That is, generator
model classes are decorators [3] of Ecore classes. For example, GenClass deco-
rates EClass, GenFeature decorates EAttribute and EReference, and so on.

The significance of all this is that the EMF generator runs off of a generator
model instead of an Ecore model; it’s actually a generator model editor.11 When
you use the generator, you’ll be editing a generator model, which in turn indi-
rectly accesses the Ecore model from which you’re generating. As you’ll see in
Chapter 4 when we walk through an example of using the generator, there are
two model resources (files) in the project: an .ecore file and a .genmodel file. The
.ecore file is an XMI serialization of the Ecore model, as we saw in Section 2.3.3.
The .genmodel file is a serialized generator model with cross-document refer-
ences to the .ecore file. Figure 2.6 shows the conceptual picture.

28 CHAPTER 2 • Introducing EMF

11. It is, in fact, an editor generated by EMF, like the ones we’ll be looking at in Chapter 4 and later in
the book.

Figure 2.6 The .genmodel and .ecore files.

Separating the generator model from the Ecore model like this has the advan-
tage that the actual Ecore metamodel can remain pure and independent of any
information that is only relevant for code generation. The disadvantage of not
storing all the information right in the Ecore model is that a generator model might
get out of sync if the referenced Ecore model changes. To handle this, the genera-
tor model elements are able to automatically reconcile themselves with changes to
their corresponding Ecore elements. Users don’t need to worry about it.

2.5 The Runtime Framework

In addition to simply increasing your productivity, building your application
using EMF provides several other benefits, such as model change notification,
persistence support including default XMI serialization, and an efficient reflec-
tive API for manipulating EMF objects generically. Most importantly, EMF pro-
vides the foundation for interoperability with other EMF-based tools and appli-
cations.

2.5.1 Notification and Adapters

In Section 2.4.1, we saw that every generated EMF class is also a Notifier; that
is, it can send notification whenever an attribute or reference is changed. This is
an important property, allowing EMF objects to be observed, for example, to
update views or other dependent objects.

Notification observers (or listeners) in EMF are called adapters because in
addition to their observer status, they are often used to extend the behavior (i.e.,
support additional interfaces without subclassing) of the object they’re attached
to. An adapter, as a simple observer, can be attached to any EObject (e.g., a
PurchaseOrder) by adding to its adapter list like this:

2.5 The Runtime Framework 29

EAttribute
(shipTo)

EAttribute
(billTo)

EClass
(PurchaseOrder)

GenFeature GenFeature

GenClass

simplepo.ecoresimplepo.genmodel

Adapter poObserver = ...
aPurchaseOrder.eAdapters().add(poObserver);

After doing this, the notifyChanged() method will be called, on
poObserver, whenever a state change occurs in the purchase order (e.g., if the
setBillTo() method is called), as shown in Figure 2.7.

30 CHAPTER 2 • Introducing EMF

PurchaseOrder

Adapter

adapter.notifyChanged()

setBillTo()

Figure 2.7 Calling the notifyChanged() method.

Unlike simple observers, attaching an adapter as a behavior extension is nor-
mally done using an adapter factory. An adapter factory is asked to adapt an
object with an extension of the required type, something like this:

PurchaseOrder aPurchaseOrder = ...
AdapterFactory somePOAdapterFactory = ...
Object poExtensionType = ...
if (somePOAdapterFactory.isFactoryForType(poExtensionType))
{
Adapter poAdapter =
somePOAdapterFactory.adapt(aPurchaseOrder, poExtensionType);

...
}

Often, the poExtensionType represents some interface supported by the
adapter. For example, the argument could be the actual java.lang.Class for
an interface of the chosen adapter. The returned adapter can then be downcast
to the requested interface, like this:

POAdapter poAdapter =
(POAdapter)somePOAdapterFactory.adapt(someObject,

POAdapter.class);

If the adapter of the requested type is already attached to the object, then
adapt() will return the existing adapter; otherwise it will create a new one.

In EMF, the adapter factory is the one responsible for creating the adapter; the
EMF object itself has no notion of being able to adapt itself. This approach
allows greater flexibility to implement the same behavioral extension in more
than one way, as different factories can return different implementation for a
given extension type.

As you can see, an adapter must be attached to each individual EObject that
it wants to observe. Sometimes, you might want to be informed of state changes
to any object in a containment hierarchy, a resource, or even any of a set of rela-
ted resources. Rather than requiring you to walk through the hierarchy and
attach your observer to each object, EMF provides a very convenient adapter
class, EContentAdapter, that can be used for this purpose. It can be attached to
a root object, a resource, or even a resource set, and it will automatically attach
itself to all the contents. It will then receive notification of state changes to any
of the objects and will even respond to content change notifications itself, by
attaching or detaching itself as appropriate.

Adapters are used extensively in EMF as observers and to extend behavior.
They are the foundation for the UI and command support provided by EMF.Edit,
as we will see in Chapter 3. We’ll also look at how they work in much more
detail in Chapter 16.

2.5.2 Object Persistence

The ability to persist and reference other persisted objects, is one of the most
important benefits of EMF modeling; it’s the foundation for fine-grained data
integration between applications. EMF provides simple, yet powerful, mecha-
nisms for managing object persistence.

As we’ve seen earlier, Ecore models are serialized using XMI. Actually, EMF
includes a default XMI serializer that can be used to persist objects generically
from any model, not just Ecore. Even better, if your model is defined using an
XML Schema, EMF allows you to persist your objects as an XML instance doc-
ument conforming to that schema. The persistence framework, combined with
the code generated for your model, handles all this for you.

Above and beyond the default serialization support, EMF allows you to save
your objects in any persistent form you like. In this case you’ll also need to write
the actual serialization code yourself, but once you do that the model will trans-
parently be able to reference (and be referenced by) objects in other models and
documents, regardless of how they’re persisted.

When we looked at the properties of a generated model class in Section
2.4.1, we pointed out that there are two methods related to persistence:
eContainer() and eResource(). To understand how they work, let’s start with
the following example:

2.5 The Runtime Framework 31

PurchaseOrder aPurchaseOrder =
POFactory.eINSTANCE.createPurchaseOrder();

aPurchaseOrder.setBillTo("123 Maple Street");

Item aItem = POFactory.eINSTANCE.createItem();
aItem.setProductName("Apples");
aItem.setQuantity(12);
aItem.setPrice(0.50);

aPurchaseOrder.getItems().add(aItem);

Here we’ve created a PurchaseOrder and an Item using the generated classes
from our purchase order model. We then added the Item to the items reference
by calling getItems().add().

Whenever an object is added to a containment reference, which items is, it
also sets the container of the added object. So, in our example, if we were to call
aItem.eContainer() now, it would return the purchase order,
aPurchaseOrder.12 The purchase order itself is not in any container, so calling
eContainer() on it would return null. Note also that calling the eResource()
method on either object would also return null at this point.

Now, to persist this pair of objects, we need to put them into a resource.
Interface Resource is used to represent a physical storage location (e.g., a file).
To persist our objects, all we need to do is add the root object (i.e., the purchase
order) to a resource like this:

Resource poResource = ...
poResource.getContents().add(aPurchaseOrder);

After adding the purchase order to the resource, calling eResource() on
either object will return poResource. The item (aItem) is in the resource via its
container (aPurchaseOrder).

Now that we’ve put the two objects into the resource, we can save them by
simply calling save()on the resource. That seems simple enough, but where
did we get the resource from in the first place? To understand how it all fits
together we need to look at another important interface in the persistence
framework: ResourceSet.

A ResourceSet, as its name implies, is a set of resources that are accessed
together to allow for potential cross-document references among them. It’s also

32 CHAPTER 2 • Introducing EMF

12. Notice how this implies that a containment association is implicitly bidirectional, even if, like the items
reference, it is declared to be one-way. We discuss this issue in more detail in Chapter 10.

the factory for its resources. So, to complete our example, we would create the
resource, add the purchase order to it, and then save it like this:13

ResourceSet resourceSet = new ResourceSetImpl();
URI fileURI =
URI.createFileURI(new File("mypo.xml").getAbsolutePath());

Resource poResource = resourceSet.createResource(fileURI);
poResource.getContents().add(aPurchaseOrder);
poResource.save(null);

Class ResourceSetImpl chooses the resource implementation class using an
implementation registry. Resource implementations are registered, globally or
local to the resource set, based on a URI scheme, file extension, or other possi-
ble criteria. If no specific resource implementation applies for the specified URI,
then EMF’s default XMI resource implementation will be used.

Assuming that we haven’t registered a different resource implementation,
after saving our simple resource, we’d get an XMI file, mypo.xml, that looks
something like this:

<?xml version="1.0" encoding="UTF-8"?>
<po:PurchaseOrder xmi:version="2.0"

xmlns:xmi="http://www.omg.org/XMI"
xmlns:po="http://www.example.com/SimplePO"
billTo="123 Maple Street">

<items productName="Apples" quantity="12" price="0.5"/>
</po:PurchaseOrder>

Now that we’ve been able to save our model instance, let’s look at how we
would load it again. Loading is also done using a resource set like this:

ResourceSet resourceSet = new ResourceSetImpl();
URI fileURI =
URI.createFileURI(new File("mypo.xml").getAbsolutePath());

Resource poResource = resourceSet.getResource(fileURI, true);
PurchaseOrder aPurchaseOrder =
(PurchaseOrder)poResource.getContents().get(0);

Notice that because we know that the resource has our single purchase order
at its root, we simply get the first element and downcast.

2.5 The Runtime Framework 33

13. If you’re wondering about the call to File.getAbsolutePath(), it’s used to ensure that we start
with an absolute URI that will allow any cross-document references that we might serialize to use relative
URIs, guaranteeing that our serialized document(s) will be location independent. URIs and cross-docu-
ment referencing are described in detail in Chapter 14.

The resource set also manages demand load for cross-document references,
if there are any. When loading a resource, any cross-document references that are
encountered will use a proxy object instead of the actual target. These proxies
will then be resolved lazily when they are first used.

In our simple example, we actually have no cross-document references; the
purchase order contains the item, and they are both in the same resource.
Imagine, however, that we had modeled items as a non-containment reference as
shown in Figure 2.8.

34 CHAPTER 2 • Introducing EMF

PurchaseOrder

0..*

items Item

Figure 2.8 items as a simple reference.

Notice the missing black diamond on the PurchaseOrder end of the associa-
tion, indicating a simple reference as opposed to a by-value aggregation (con-
tainment reference). If we make this change using Java annotations instead of
UML, the getItems() method would need to change to this:

/**
* @model type="Item"
*/

List getItems();

Now that items is not a containment reference, we’ll need to explicitly call
getContents().add() on a resource for the item, just like we previously did for
the purchase order. We also have the option of adding it to the same resource as
the purchase order, or to a different one. If we choose to put the items into sepa-
rate resources, then demand loading would come into play, as shown in Figure 2.9.
In Figure 2.9, Resource 1 (which could contain our purchase order, for example)
contains cross-document references to Resource 2 (e.g., containing our item).
When we load Resource 1 by calling getResource() for “uri 1”, any references
to objects in Resource 2 (i.e., “uri 2”) will simply be set to proxies. A proxy is
an uninitialized instance of the target class, but with the actual object’s URI
stored in it. Later, when we access the object—for example, by calling
aPurchaseOrder.getItems().get(0)—Resource 2 will be demand loaded
and the proxy will be resolved (i.e., replaced with the target object).

Although, as we saw earlier, objects in containment references are implicitly
included in their container’s resource by default, it is also possible to enable
cross-resource containment. In Chapters 10 and 15, we’ll explore this topic, and
look at demand loading, proxies, and proxy resolution in greater detail.

Figure 2.9 Resource set demand loading of resources.

2.5.3 The Reflective EObject API

As we observed in Section 2.4.1, every generated model class implements the
EMF base interface, EObject. Among other things, EObject defines a generic,
reflective API for manipulating instances:

public interface EObject
{
Object eGet(EStructuralFeature feature);
void eSet(EStructuralFeature feature, Object newValue);

boolean eIsSet(EStructuralFeature feature);
void eUnset(EStructuralFeature feature);

...
}

We can use this reflective API, instead of the generated methods, to read and
write the model. For example, we can set the shipTo attribute of the purchase
order like this:

aPurchaseOrder.eSet(shipToAttribute, "123 Maple Street");

We can read it back like this:

String shipTo = (String)aPurchaseOrder.eGet(shipToAttribute);

We can also create a purchase order reflectively by calling a generic create
method on the factory like this:

2.5 The Runtime Framework 35

Resource 2Resource 1

ResourceSet

Client

load

demand-load
resource 2

resource 1 uri 1 resource 1

uri 2 resource 2

EObject aPurchaseOrder =
poFactory.create(purchaseOrderClass);

If you’re wondering where the metaobjects, purchaseOrderClass and
shipToAttribute, and the poFactory come from, the answer is that you can
get them using generated static fields like this:

POFactory poFactory = POFactory.eINSTANCE;
EClass purchaseOrderClass = POPackage.Literals.PURCHASE_ORDER;
EAttribute shipToAttribute =
POPackage.Literals.PURCHASE_ORDER__SHIP_TO;

The EMF code generator also generates efficient implementations of the
reflective methods. They are slightly less efficient than the generated
getShipTo() and setShipTo() methods (the reflective methods dispatch to the
generated ones through a generated switch statement), but they open up the
model for completely generic access. For example, the reflective methods are
used by EMF.Edit to implement a full set of generic commands (e.g.,
AddCommand, RemoveCommand, SetCommand) that can be used on any model.
We’ll talk more about this in Chapter 3.

Notice that in addition to the eGet() and eSet() methods, the reflective
EObject API includes two more methods: eIsSet() and eUnset(). The
eIsSet() method can be used to find out if an attribute is set or not, whereas
eUnset() can be used to unset or reset it. The generic XMI serializer, for exam-
ple, uses eIsSet() to determine which attributes need to be serialized during a
resource save operation. We’ll talk more about the “unset” state, and its signifi-
cance on certain models, in Chapters 5 and 10.

2.5.4 Dynamic EMF

Until now, we’ve only ever considered the value of EMF in generating imple-
mentations of models. Sometimes, we would like to simply share objects without
requiring generated implementation classes to be available. A simple interpretive
implementation would be good enough.

A particularly interesting characteristic of the reflective API is that it can also
be used to manipulate instances of dynamic, non-generated, classes. Imagine if
we hadn’t created the purchase order model or run the EMF generator to pro-
duce the Java implementation classes in the usual way. Instead, we could simply
create the Ecore model at runtime, something like this:

36 CHAPTER 2 • Introducing EMF

EPackage poPackage = EcoreFactory.eINSTANCE.createEPackage();

EClass purchaseOrderClass = EcoreFactory.eINSTANCE.createEClass();
purchaseOrderClass.setName("PurchaseOrder");
poPackage.getEClassifiers().add(purchaseOrderClass);

EClass itemClass = EcoreFactory.eINSTANCE.createEClass();
itemClass.setName("Item");
poPackage.getEClassifiers().add(itemClass);

EAttribute shipToAttribute =
EcoreFactory.eINSTANCE.createEAttribute();

shipToAttribute.setName("shipTo");
shipToAttribute.setEType(EcorePackage.eINSTANCE.getEString());
purchaseOrderClass.getEStructuralFeatures().add(shipToAttribute);

// and so on ...

Here we have an in-memory Ecore model, for which we haven’t generated
any Java classes. We can now create a purchase order instance and initialize it
using the same reflective calls as we used in the previous section:

EFactory poFactory = poPackage.getEFactoryInstance();
EObject aPurchaseOrder = poFactory.create(purchaseOrderClass);
aPurchaseOrder.eSet(shipToAttribute, "123 Maple Street");

Because there is no generated PurchaseOrderImpl class, the factory will
create an instance of EObjectImpl instead.14 EObjectImpl provides a default
dynamic implementation of the reflective API. As you’d expect, this implemen-
tation is slower than the generated one, but the behavior is exactly the same.

An even more interesting scenario involves a mixture of generated
and dynamic classes. For example, assume that we had generated class
PurchaseOrder in the usual way and now we’d like to create a dynamic subclass
of it.

EClass subPOClass = EcoreFactory.eINSTANCE.createEClass();
subPOClass.setName("SubPO");
subPOClass.getESuperTypes().add(poPackage.getPurchaseOrder());
poPackage.getEClassifiers().add(subPOClass);

If we now instantiate an instance of our dynamic class SubPO, then the fac-
tory will detect the generated base class and will instantiate it instead of

2.5 The Runtime Framework 37

14. This is not entirely true. It could instantiate EObjectImpl directly, but instead it actually uses an
instance of a simple subclass of EObjectImpl, DynamicEObjectImpl, which is tuned to provide bet-
ter performance in the pure dynamic case.

EObjectImpl. The significance of this is that any accesses we make to attributes
or references that come from the base class will call the efficient generated imple-
mentations in class PurchaseOrderImpl:

String shipTo = aSubPO.eGet(shipToAttribute);

Only features that come from the derived (dynamic) class will use the slow-
er dynamic implementation. Another direct benefit of this approach is that any
SubPO object is actually an instance of the Java interface PurchaseOrder, as
reported by the instanceof operator.

The most important point of all of this is that, when using the reflective API,
the presence (or lack thereof) of generated implementation classes is completely
transparent. All you need is the Ecore model in memory. If generated implemen-
tation classes are (later) added to the class path, they will then be used. From the
client’s perspective, the only thing that will change is the speed of the code.

2.5.5 Foundation for Data Integration

The last few sections have shown various features of the runtime framework that
support sharing of data. Section 2.5.1 described how change notification is an
intrinsic property of every EMF object, and how adapters can be used to support
open-ended extension. In Section 2.5.2, we showed how the EMF persistence
framework uses Resources and ResourceSets to support cross-document ref-
erencing, demand loading of documents, and arbitrary persistent forms. Finally,
in Sections 2.5.3 and 2.5.4 we saw how EMF supports generic access to EMF
models, including ones that might be partially or completely dynamic (i.e., with-
out generated implementation classes).

In addition to these features, the runtime framework provides a number of
convenience classes and utility functions to help manage the sharing of objects.
For example, a utility class for finding object cross-references (EcoreUtil.
CrossReferencer and its subclasses) can be used to find any uses of an object
(e.g., to clean up references when deleting the object) and any unresolved prox-
ies in a resource, among other things.

All these features, combined with an intrinsic property of models—that they
are higher level descriptions that can more easily be shared—provide all the
needed ingredients to foster fine-grained data integration. While Eclipse itself
provides a wonderful platform for integration at the UI and file level, EMF builds
on this capability to enable applications to integrate at a much finer granularity
than would otherwise be possible. We’ve seen how EMF can be used to share
data reflectively, even without using the EMF code generation support. Whether

38 CHAPTER 2 • Introducing EMF

dynamic or generated, EMF models are the foundation for fine-grained data inte-
gration in Eclipse.

2.6 EMF and Modeling Standards

EMF is often discussed together with several important modeling standards of
the Object Management Group (OMG), including UML, MOF, XMI, and MDA.
This section introduces these standards and describes EMF’s relationships with
them.

2.6.1 Unified Modeling Language

UML is the most widely used standard for describing systems in terms of object
concepts. UML is very popular in the specification and design of software, most
often software to be written using an object-oriented language. UML emphasizes
the idea that complex systems are best described through a number of different
views, as no single view can capture all aspects of such a system completely. As
such, it includes several different types of model diagrams to capture usage sce-
narios, class structures, behaviors, and implementations.

EMF is concerned with only one aspect of UML, class modeling. This focus
is in no way a rejection of UML’s holistic approach. Rather, it is a starting point,
based on the pragmatic realization that the task of translating the ideas that can
be expressed in various UML diagrams into concrete implementations is very
large and very complex.

UML was first standardized by the OMG in 1997. The standard’s latest ver-
sion is 2.1.2; it is available at http://www.omg.org/spec/UML/2.1.2/. The UML2
project, which like EMF belongs to the Eclipse Modeling Project, provides an
EMF-based implementation of the UML metamodel.

2.6.2 Meta-Object Facility

Meta-Object Facility (MOF) concretely defines a subset of UML for describing
class modeling concepts within an object repository. As such, MOF is compara-
ble to Ecore. However, with a focus on tool integration, rather than metadata
repository management, Ecore avoids some of MOF’s complexities, resulting in
a widely applicable, optimized implementation.

MOF and Ecore have many similarities in their ability to specify classes and
their structural and behavioral features, inheritance, packages, and reflection.
They differ in the area of life cycle, data type structures, package relationships,
and complex aspects of associations.

2.6 EMF and Modeling Standards 39

http://www.omg.org/spec/UML/2.1.2/

MOF was first standardized in 1997, at the same time as UML. The stan-
dard, which is now at version 2.0, is available at http://www.omg.org/spec/
MOF/2.0/.

Development experience from EMF has substantially influenced this latest
version of the specification, in terms of the layering of the architecture and the
structure of the semantic core. Essential Meta-Object Facility (EMOF) is the new,
lightweight core of the metamodel that quite closely resembles Ecore. Because the
two models are so similar, EMF is able to support EMOF directly as an alternate
XMI serialization of Ecore.

2.6.3 XML Metadata Interchange

XMI is the standard that connects modeling with XML, defining a simple way
to serialize models in XML documents. An XMI document’s structure closely
matches that of the corresponding model, with the same names and an element
hierarchy that follows the model’s containment hierarchy. As a result, the rela-
tionship between a model and its XMI serialization is easy to understand.

Although XMI can be, and is by default, used as the serialization format for
instances of any EMF model, it is most appropriate for use with models repre-
senting metadata; that is, metamodels, like Ecore itself. We refer to an Ecore
model, serialized in XMI 2.0, as Ecore XMI and consider an Ecore XMI (.ecore)
file as the canonical form of such a model.

XMI was standardized in 1998, shortly after XML 1.0 was finalized. The lat-
est XMI specification, version 2.1.1, is available at http://www.omg.org/spec/
XMI/2.1.1/.

2.6.4 Model Driven Architecture

MDA is an industry architecture proposed by the OMG that addresses full life-
cycle application development, data, and application integration standards that
work with multiple middleware languages and interchange formats. MDA uni-
fies some of the industry best practices in software architecture, modeling, meta-
data management, and software transformation technologies that allow a user to
develop a modeling specification once and target multiple technology implemen-
tations by using precise transformations and mappings.

EMF supports the key MDA concept of using models as input to develop-
ment and integration tools: in EMF, a model is used to drive code generation and
serialization for data interchange.

MDA information and key specifications are available at http://www.omg.
org/mda/.

40 CHAPTER 2 • Introducing EMF

http://www.omg.org/spec/MOF/2.0/
http://www.omg.org/spec/MOF/2.0/
http://www.omg.org/spec/XMI/2.1.1/
http://www.omg.org/spec/XMI/2.1.1/
http://www.omg.org/mda/
http://www.omg.org/mda/

CHAPTER 9

XML Schema

If you wish to create an object model for manipulating an XML data structure
of some type, EMF provides a particularly desirable approach based on XML
Schema. EMF can create an Ecore model that corresponds to a schema, allowing
you to leverage the code generator, or dynamic EMF, to provide a Java API for
manipulating instances of that schema.

At a high level, the mapping to Ecore is quite simple:

❍ A schema maps to an EPackage.

❍ A complex type definition maps to an EClass.

❍ A simple type definition maps to an EDataType.

❍ An attribute declaration or element declaration maps to an EAttribute if
its type maps to an EDataType, or to an EReference if its type maps to an
EClass.

From a modeling perspective, however, XML Schema is not as expressive as
Ecore. For example, it can’t be used to define bidirectional references, or to pro-
vide the type of a reference target. To address this, EMF provides a set of exten-
sions to XML Schema in the form of attributes from the Ecore namespace
(“http://www.eclipse.org/emf/2002/Ecore”), which can be used to specify this
missing information or to customize the mapping in other ways. These attributes
are described in the following sections, which correspond to the components to
which they apply, and are also summarized in Section 9.10.

Although not expressive enough from a modeling perspective, XML Schema
is, at the same time, able to express many details, mostly serialization related,
that are not representable in Ecore. Because XML Schema’s primary purpose is
to define the structure of XML instance documents, instances of the Ecore model
should conform to the corresponding schema when they are serialized as XML.
EMF records the extra information required to do this on the model using

179

http://www.eclipse.org/emf/2002/Ecore

180 CHAPTER 9 • XML Schema

extended metadata EAnnotations. Recall from Chapter 8 that the source of such
an EAnnotation is “http:///org/eclipse/emf/ecore/util/ExtendedMetaData”. The
details of all such annotations are described in this chapter, and their use in cus-
tomizing the default EMF serialization is discussed in Chapter 15.

One important use of extended metadata EAnnotations is to record the orig-
inal name of an XML Schema component corresponding to an Ecore element
whose name is adjusted while mapping to Ecore. Such adjustment is often
required because XML Schema naming rules are less restrictive then Java’s (and
consequently Ecore’s). The resulting Ecore names are always valid Java identi-
fiers and conform to the naming conventions outlined in Chapter 6 of the Java
Language Specification [6]. For example, camel case is used, and EClassifier
names start with an uppercase letter while EStructuralFeature names begin with
lowercase.

As we saw briefly in Chapter 8, a number of XML Schema constructs give
rise to feature maps in the corresponding Ecore model, where they are used to
maintain cross-feature order. Extended metadata annotations are also used cap-
ture details about these feature maps, such as what type of construct a feature
map represents and, when needed, which other feature’s values it can contain.

In the following sections, we’ll look at the details of how the various schema
components map to Ecore, and how their associated EAnnotations are initial-
ized. For each schema component, the corresponding Ecore representation is
described along with any attributes and nested content that affect the resulting
model. In some situations, the mapping rules, described later, might result in
Ecore elements with conflicting names (e.g., two EAttributes that are in the same
EClass and have the same name). In such situations, the second and subsequent
elements are made unique by appending a number to the end of their names (e.g.,
“foo1”).

Note that an understanding of XML Schema is assumed in this discussion.
Readers who are unfamiliar with this technology should first consult an intro-
ductory resource, such as the XML Schema primer. [2]

9.1 Schema

An xsd:schema maps to an EPackage. The name, nsURI, and nsPrefix of the
EPackage depend on whether or not the schema has a targetNamespace attrib-
ute.

9.1.1 Schema without Target Namespace

An xsd:schema with no targetNamespace maps to an EPackage initialized as
follows:

http://org/eclipse/emf/ecore/util/ExtendedMetaData

❍ nsURI = the URI of the schema document

❍ nsPrefix = the last segment of the URI (short file name), excluding the file
extension

❍ name = same as nsPrefix

❍ eAnnotations = an extended metadata EAnnotation

The details map of the extended metadata EAnnotation contains the follow-
ing entry:

❍ key = "qualified", value = "false"

9.1 Schema 181

in resource: file:/c:/myexample/po.xsd
<xsd:schema>
...

</xsd:schema>

EPackage
name=“po”
nsPrefix=“po”
nsURI=“file:/c:/myexample/po.xsd”
EAnnotation

source=“…/ExtendedMetaData”
details=“qualified”➞“false”

9.1.2 Schema with Target Namespace

If a schema has a targetNamespace attribute, then it is used to initialize the
corresponding EPackage, as well as to specify the fully qualified Java package
name, via the GenPackage in the generator model that is created along with the
Ecore model to control code generation for it.

In this case, the EPackage attributes are set as follows:

❍ nsURI = the targetNamespace value

❍ nsPrefix = the last segment of the Java package name (derived from the
targetNamespace)

❍ name = same as nsPrefix

There is no extended metadata EAnnotation in this case.
The Java package name, and consequently the nsPrefix, is derived from the

targetNamespace using the following algorithm:

1. Strip the URI scheme and leading slash (“/”) characters (e.g.,
“http://www.example.com/library” ➞ “www.example.com/library”).

2. Remove “www” and then reverse the components of the URI authority, if
present (e.g., “www.example.com/library” ➞ “com.example/library”).

3. Replace slash (“/”) characters with dot (“.”) characters.

4. Split mixed-case names into dot-separated lowercase names.

The nsPrefix is then set to the last component of the Java package name.1

The basePackage property in the GenPackage is set to the rest of the name.

182 CHAPTER 9 • XML Schema

<xsd:schema
targetNamespace=
"http://www.example.com/PrimerPO">

...
</xsd:schema>

EPackage
name=“po”
nsPrefix=“po”
nsURI=“http://www.example.com/PrimerPO”
…

GenPackage
basePackage=“com.example.primer”
…

9.1.3 Global Element or Attribute Declaration

If there is one or more global element or attribute declaration in the schema, an
EClass, representing the document root, is created in the schema’s EPackage. The
name of the document root class is “DocumentRoot” by default.

<xsd:schema ... >
<xsd:element ... />
...

</xsd:schema>

EPackage
EClass

name=“DocumentRoot”
…

A document root class contains one feature for every global attribute or ele-
ment declaration in the schema (see Sections 9.4.6 and 9.5.7). A single instance
of this class is used as the root object of an XML resource (i.e., a conforming
XML document). This instance will have exactly one of its element features set:
the one corresponding to the global element at the root of the XML document.
The features corresponding to global attribute declarations will never be set, but
can be used for setting values in attribute wildcard feature maps.

The document root EClass looks like one corresponding to a mixed complex
type (see Section 9.3.4) including a “mixed” feature, and derived implementa-
tions for the other features in the class. This allows it to maintain comments and
whitespace that appear in the document, before the root element. A document
root class contains two additional features, both string-to-string maps, which are
used to record special mappings needed in instance documents. One, named

1. A leading underscore is introduced if the nsURI would otherwise start with any case variations of
“xml”, yielding a valid prefix as defined by the Namespaces in XML recommendation. [5]

9.1.4 Element or Attribute Form Default

Whether qualification of local elements and attributes is required can be glo-
bally specified by a pair of attributes, elementFormDefault and attribute-
FormDefault, on the schema element, or can be specified separately for each
local declaration using the form attribute. The value of any of these attributes
can be “qualified” or “unqualified”, to indicate whether or not locally declared
elements and attributes must be qualified in conforming documents.

Neither elementFormDefault nor attributeFormDefault have any
effect on the corresponding EPackage or “DocumentRoot” EClass (if it exists),
but the Ecore model for any corresponding local declarations may include addi-
tional information. For details see Sections 9.4.5 and 9.5.6.

9.1 Schema 183

<xsd:schema
ecore:documentRoot="PORoot" ... >

<xsd:element ... />
...

</xsd:schema>

EPackage
EClass

name=“PORoot”
…

<xsd:schema
elementFormDefault="qualified" ... >

...
</xsd:schema>

EPackage
…

“xMLNSPrefixMap”, records namespace to prefix mappings, and the other,
“xSISchemaLocation”, records xsi:schemaLocation mappings.

The name of a document root class, if there is one, can be changed from the
default (“DocumentRoot”) by including an ecore:documentRoot attribute on
the schema.

9.1.5 EMF Extensions

The initialization of an EPackage corresponding to a schema can be further cus-
tomized through the use of additional schema attributes from the Ecore name-
space.

An ecore:nsPrefix attribute can be used to explicitly set the nsPrefix
attribute of the EPackage.

<xsd:schema
ecore:nsPrefix="myprefix" ... >

...
</xsd:schema>

EPackage
nsPrefix=“myprefix”
…

An ecore:package attribute can be used to specify the fully qualified Java
package name corresponding to the schema. It sets both the name of the corre-
sponding EPackage and the basePackage of the GenPackage (in the generator
model) based on the Java package name, as described in Section 9.1.2.

184 CHAPTER 9 • XML Schema

<xsd:schema
ecore:package=
"org.basepackage.mypackage" ... >

...
</xsd:schema>

EPackage
name=“mypackage”
…

GenPackage
basePackage=“org.basepackage”
…

Finally, an ecore:documentRoot attribute can be used to specify a non-
default name for the document root class created in the presence of global ele-
ment or attribute declarations, as discussed in Section 9.1.3.

9.2 Simple Type Definitions

Each simple type definition in a schema maps to an EDataType in the eClassifiers
list of the schema’s corresponding EPackage. The name, instanceClassName, and
eAnnotations of the EDataType depend on the contents of the type definition.

In some cases, a single simple type actually maps to two EDataTypes, where
the second represents a wrapper for the first that allows it to be used in certain
needed contexts. We’ll see these situations in Sections 9.2.1 and 9.2.2.

9.2.1 Restriction

An EDataType corresponding to a simple type defined by restriction is initialized
as follows:

❍ name = the name of the simple type converted, if necessary, to a proper
Java class name

❍ instanceClassName = the instanceClassName of the EDataType corre-
sponding to the base type

❍ eAnnotations = an extended metadata EAnnotation

The details map of the extended metadata EAnnotation contains the follow-
ing entries:

❍ key = “name”, value = the unaltered name of the simple type

❍ key = “baseType”, value = the restriction’s namespace-qualified base type

The restriction’s facets, which represent constraints on the base type, are also
captured in the details map. Each facet produces an additional entry as follows:

❍ key = the name of facet, value = the facet’s value

9.2 Simple Type Definitions 185

<xsd:simpleType name="zipCode">
<xsd:restriction base="xsd:int">
<xsd:minInclusive value="10000"/>
<xsd:maxInclusive value="99999"/>

</xsd:restriction>
</xsd:simpleType>

EDataType
name=“ZipCode”
instanceClassName=“int”
EAnnotation

source=“…/ExtendedMetaData”
details=“name”➞“zipCode”,

“baseType”➞“…/XMLType#int”,
“minInclusive”➞“10000”,
“maxInclusive”➞“99999”

An ecore:ignore attribute can be specified on a facet to suppress it in the
corresponding EDataType.

<xsd:minInclusive value="10000"
ecore:ignore="true"/>

No minInclusive entry in details map

When the EDataType represents a primitive type (i.e., when
instanceClassName identifies a Java primitive type), a second EDataType must
be created for the corresponding wrapper class. This is because the simple type
may be used as the type of a nillable element (see Section 9.5.4), and a primitive
would be unable to represent the xsi:nill="true" state. In this case, the
wrapper EDataType is initialized as follows:

❍ name = the name of the primitive EDataType, with the suffix “Object”
appended

❍ instanceClassName = the wrapper class for the instance class of the primi-
tive EDataType (e.g., “java.lang.Integer” for “int”)

❍ eAnnotations = an extended metadata EAnnotation

The details map of the extended metadata EAnnotation contains the follow-
ing entries:

❍ key = “name”, value = the name of the simple type, with the suffix
“:Object” appended

❍ key = “baseType”, value = the original name of the simple type

The wrapper EDataType is only used as the type of an EAttribute corre-
sponding to a nillable element, as described in Section 9.5.4. The primitive
EDataType is used in all other circumstances.

9.2.2 Restriction with Enumeration Facets

A restriction with enumeration facets maps to an EEnum and a wrapper
EDataType. The EEnum is initialized as follows:

❍ name = the name of the simple type converted, if necessary, to a proper
Java class name

❍ eLiterals = one EEnumLiteral for each enumeration facet in the restriction

❍ eAnnotations = an extended metadata EAnnotation

Each EEnumLiteral has the following attributes:

❍ name = the value of the enumeration facet converted, if necessary, to a
valid Java identifier

❍ literal = the unaltered value of the enumeration facet

❍ value = an integer value sequentially assigned, starting at 0

The details map of the EEnum’s extended metadata EAnnotation contains
the following entry:

❍ key = “name”, value = the unaltered name of the simple type

186 CHAPTER 9 • XML Schema

<xsd:simpleType name="zipCode">
<xsd:restriction base="xsd:int">
...

</xsd:restriction>
</xsd:simpleType>

EDataType name=“ZipCode” …
EDataType

name=“ZipCodeObject”
instanceClassName=“java.lang.Integer”
EAnnotation

source=“…/ExtendedMetaData”
details=“name”➞“zipCode:Object”,

“baseType”➞“zipCode”

<xsd:simpleType name="USState">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="A-K"/>
<xsd:enumeration value="A-L"/>
<!-- and so on ... -->

</xsd:restriction>
</xsd:simpleType>

EEnum
name=“USState”
EEnumLiteral

name=“AK” literal=“A-K” value=0
EEnumLiteral

name=“AL” literal=“A-L” value=1
EAnnotation

source=“…/ExtendedMetaData”
details=“name”➞ “USState”

If the simple type definition includes an ecore:enum="false" attribute,
the type maps instead to an ordinary EDataType as described in Section 9.2.1. If
the Java instance class of such an EDataType is primitive (e.g., int), EAttributes
of the type will have a default value set (see Sections 9.4.4 and 9.5.5).

An ecore:name attribute can be added to an enumeration facet to specify
the name attribute of the corresponding EEnumLiteral.

9.2 Simple Type Definitions 187

<xsd:enumeration value="A-K"
ecore:name="A_K"/>

EEnumLiteral
name=“A_K” …

Likewise, an ecore:value attribute can be used to specify the value attrib-
ute of an EEnumLiteral.

<xsd:enumeration value="A-K"
ecore:value="100"/>

EEnumLiteral
value=“100” …

In Ecore, the only valid values of an EEnum are its literals; null is not
allowed. As a result, EEnums have the same limitation as primitive EDataTypes:
they cannot be used as the type of an attribute corresponding to a nillable ele-
ment. So, a wrapper EDataType is needed for each EEnum, for use only in that
context. The attributes of the EDataType are as follows:

❍ name = the name of the EEnum, with the suffix “Object” appended

❍ instanceClassName = “org.eclipse.emf.common.util.Enumerator”

❍ eAnnotations = an extended metadata EAnnotation

The details map of the extended metadata EAnnotation contains the follow-
ing entries:

❍ key = “name”, value = the name of the simple type, with the suffix
“:Object” appended

❍ key = “baseType”, value = the original name of the simple type

<xsd:simpleType name="USState">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="A-K"/>
...

</xsd:restriction>
</xsd:simpleType>

EEnum name=“USState” …
EDataType

name=“USStateObject”
instanceClassName=

“org.eclipse.emf.common.util.Enumerator”
EAnnotation

source=“…/ExtendedMetaData”
details=“name”➞“USState:Object”,

“baseType”➞“USState”

9.2.3 List Type

An EDataType corresponding to a list simple type is initialized as follows:

❍ name = the name of the simple type converted, if necessary, to a proper
Java class name instanceClassName = “java.util.List”

❍ eAnnotations = an extended metadata EAnnotation

The details map of the extended metadata EAnnotation contains the follow-
ing entries:

❍ key = “name”, value = the unaltered name of the simple type

❍ key = “itemType”, value = the itemType of the list

188 CHAPTER 9 • XML Schema

<xsd:simpleType name="nameList">
<xsd:list itemType="xsd:NCName"/>

</xsd:simpleType>

EDataType
name=“NameList”
instanceClassName=“java.util.List”
EAnnotation

source=“…/ExtendedMetaData”
details=“name”➞“nameList”,

“itemType”➞“…/XMLType#NCName”

9.2.4 Union Type

An EDataType corresponding to a union simple type is initialized as follows:

❍ name = the name of the simple type converted, if necessary, to a proper
Java class name instanceClassName = a common instance class of the
members (if there is one) or “java.lang.Object”

❍ eAnnotations = an extended metadata EAnnotation

If the EDataTypes corresponding to the union members share a common
instanceClassName, then the instanceClassName of the union’s EDataType is set
to this common value. If they are not all the same, then “java.lang.Object” is
used instead.

The details map of the extended metadata EAnnotation contains the follow-
ing entries:

❍ key = “name”, value = the unaltered name of the simple type

❍ key = “memberTypes”, value = the space-separated list of memberTypes
in the union

9.2.5 Anonymous Type

Even when defined anonymously, a simple type still maps to an EDataType in the
containing package’s eClassifiers list. If an anonymous simple type is used in an
element or attribute declaration, then the corresponding EDataType’s name is
obtained by appending the suffix “Type” to the converted name of that enclos-
ing element or attribute,. The “name” entry in the details map of the extended
metadata EAnnotation has as its value the original name of the enclosing element
or attribute, with the suffix “_._type” appended. Any additional entries that
would appear in the details map for the simple type are unchanged.

9.2 Simple Type Definitions 189

<xsd:simpleType name="zipUnion">
<xsd:union

memberTypes="zipCode USState"/>
</xsd:simpleType>

EDataType
name=“ ZipUnion"
instanceClassName=“java.lang.Object"
EAnnotation

source=“…/ExtendedMetaData"
details=“name"➞“zipUnion",

“memberTypes"➞“zipCode USState"

<xsd:element name="myElement">
<xsd:simpleType>
...

</xsd:simpleType>
</xsd:element>

EDataType
name=“MyElementType”
EAnnotation

source=“…/ExtendedMetaData”
details=“name”➞“myElement_._type”,

…
…

If an anonymous simple type is used as the base type of a restriction, then the
corresponding EDataType’s name is based on the enclosing type’s converted
name and carries the suffix “Base”, instead of “Type”. The “name” entry in the
details map of the extended metadata EAnnotation has the suffix “_._base” in
this case.

<xsd:simpleType name="myType">
<xsd:restriction>
<xsd:simpleType>
...

</xsd:simpleType>
</xsd:restriction>

</xsd:simpleType>

EDataType
name=“MyTypeBase”
EAnnotation

source=“…/ExtendedMetaData”
details=“name”➞“myType_._base”, …

…

Similarly, if an anonymous simple type is used as the item type of a list, then
the corresponding EDataType’s name is obtained by appending the suffix “Item”
to the enclosing type’s converted name. The “name” entry in the details map of
the extended metadata EAnnotation has the suffix “_._item”.

190 CHAPTER 9 • XML Schema

<xsd:simpleType name="myType">
<xsd:list>
<xsd:simpleType>
...

</xsd:simpleType>
</xsd:list>

</xsd:simpleType>

EDataType
name=“MyTypeItem”
EAnnotation

source=“…/ExtendedMetaData”
details=“name”➞“myType_._item”, …

…

Finally, if an anonymous simple type is used as a member type of a union,
then the corresponding EDataType’s name is formed from the enclosing type’s
converted name and the suffix “Member”, but in this case, it ends with a num-
ber representing the position (starting from 0) of the member in the union. The
“name” entry in the details map of the extended metadata EAnnotation has the
suffix “_._member”, also qualified with the position number.

<xsd:simpleType name="myType">
<xsd:union>
<xsd:simpleType>
...

</xsd:simpleType>
...

</xsd:union>
</xsd:simpleType>

EDataType
name=“MyTypeMember0”
EAnnotation

source=“…/ExtendedMetaData”
details=

“name”➞“myType_._member0”,
…

…

9.2.6 EMF Extensions

In addition to the ecore:ignore, ecore:enum, ecore:name, and
ecore:value attributes described in Sections 9.2.1 and 9.2.2, there are several
attributes from the Ecore namespace that are applicable to simple type declara-
tions in general.

An ecore:name attribute can be used to set the name of the EDataType, for
example, if the corresponding simple type is anonymous or if the default name
conversion is unacceptable.

An ecore:instanceClass attribute can be used to set the
instanceClassName attribute of the corresponding EDataType.

9.3 Complex Type Definitions 191

<xsd:simpleType name="stName"
ecore:name="MyName">

...
</xsd:simpleType>

EDataType
name=“MyName”
…

<xsd:simpleType name="date"
ecore:instanceClass="java.util.Date">

...
</xsd:simpleType>

EDataType
name=“Date”
instanceClassName=“java.util.Date”
…

The “baseType” (see Section 9.2.1) is not recorded in the details map of the
extended metadata EAnnotation in this case.

An ecore:serializable attribute can be used to set the serializable
attribute of the corresponding EDataType.

<xsd:simpleType name="date"
ecore:serializable="false">

...
</xsd:simpleType>

EDataType
name=“Date”
serializable=“false”
…

An ecore:constraints attribute can be used to declare named constraints
by adding an Ecore-sourced EAnnotation to the corresponding EDataType.
Constraints and validation are discussed in depth in Chapter 18.

<xsd:simpleType name="date"
ecore:constraints="A B">

...
</xsd:simpleType>

EDataType
name=“Date”
EAnnotation

source=“ …/emf/2002/Ecore”
details=“constraints”➞“A B”

9.3 Complex Type Definitions

Each complex type definition of a schema maps to an EClass in the eClassifiers list
of the schema’s corresponding EPackage. Such an EClass is initialized as follows:

❍ name = the name of the complex type converted, if necessary, to a proper
Java class name

❍ eAnnotations = an extended metadata EAnnotation

The details map of the extended metadata EAnnotation contains the follow-
ing entries:

❍ key = “name”, value = the unaltered name of the simple type

❍ key = “kind”, value = one of “empty”, “simple”, “elementOnly”, or
“mixed”

The value of the “kind” details entry depends on the content type of the com-
plex type definition.

192 CHAPTER 9 • XML Schema

<xsd:complexType name="globalAddress">
<xsd:complexContent>
...

</xsd:complexContent>
</xsd:complexType>

EClass
name=“GlobalAddress”
EAnnotation

source=“…/ExtendedMetaData”
details=“name”➞“globalAddress”,

“kind”➞“elementOnly”

The complex type’s attributes, elements, groups, and wildcards map to
EStructuralFeatures of its corresponding EClass. These mappings will be dis-
cussed later, in Sections 9.4 through 9.7.

9.3.1 Extension and Restriction

If a complex type is an extension or restriction of another complex type, then the
base type’s corresponding EClass is added to the eSuperTypes of the EClass.

<xsd:complexType name="globalAddress">
<xsd:complexContent>
<xsd:extension base="Address">
...

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

EClass
name=“GlobalAddress”
eSuperTypes=“//Address”
…

In the case of extension, attribute and element declarations within the body
of the extension also produce features in the EClass as described in the follow-
ing sections.

The mapping for the contents of a restriction, however, depends on whether
or not the base type contains any wildcards (i.e., if its definition includes
xsd:any or xsd:anyAttribute elements). If the restricted base type contains
no wildcards, everything in the restriction body is ignored and the corresponding
EClass contains no new features. In this case, the subclass is simply provided to

restrict the existing features, for example, to constrain their multiplicity or to
make their types narrower. Because Ecore does not allow inherited features to be
redeclared, such restrictions are not captured in the Ecore representation.

If, on the other hand, the base type contains wildcards for which the
restricted complex type introduces new elements or attributes, the corresponding
derived EClass includes features for them.

9.3 Complex Type Definitions 193

<xsd:complexType name="MyBaseType">
<xsd:sequence>
<xsd:element name="element1" ... />
<xsd:any maxOccurs="unbounded" ... />

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="MyType">
<xsd:complexContent>
<xsd:restriction base="MyBaseType">
<xsd:sequence>
<xsd:element name="element1" ... />
<xsd:element name="element2" ... />

</xsd:sequence>
</xsd:restriction>

</xsd:complexContent>
</xsd:complexType>

EClass
name=“MyType”
eSuperTypes=“//MyBaseType”
…
EAttribute

name=“element2”
volatile=true
transient=true
derived=true (from “any”)
…

These new features have derived implementations that delegate to the feature
map for the base type’s xsd:any or xsd:anyAttribute feature (see Section
9.7). This is similar to the way the features of a mixed complex type delegate to
a “mixed” feature map, as we will see in Section 9.3.4.

9.3.2 Simple Content

A complex type with simple content is defined as an extension or restriction of a
simple type. Instead of adding an eSuperType to the corresponding EClass, a sin-
gle EAttribute is added to its eAttributes to represent the simple content. This
EAttribute is initialized as follows:

❍ name = “value”

❍ eType = an EDataType corresponding to the simple base of the extension
or restriction

❍ eAnnotations = an extended metadata EAnnotation

The details map of the extended metadata EAnnotation on the EAttribute
contains the following entries:

❍ key = “name”, value = “:0”

❍ key = “kind”, value = “simple”

The “kind” of the EClass is also “simple” in this case.

194 CHAPTER 9 • XML Schema

<xsd:complexType name="richInt">
<xsd:simpleContent>
<xsd:extension base="xsd:int">
...

</xsd:extension>
</xsd:simpleContent>

</xsd:complexType>

EClass
name=“RichInt”
EAnnotation

source=“…/ExtendedMetaData”
details=“name”➞“richInt”,

“kind”➞“simple”
EAttribute

name=“value”
eType=“…/XMLType#//Int”
EAnnotation

source=“…/ExtendedMetaData”
details=

“name”➞“:0”, “kind”➞“simple”
…

9.3.3 Anonymous Type

If an anonymous complex type is used as the type of an element declaration, then
the corresponding EClass’s name is obtained by appending the suffix “Type” to
the enclosing element’s converted name. The value of the “name” entry in the
details map of the extended metadata EAnnotation is based on the original,
uncoverted name of the enclosing element and carries the suffix “_._type”.

<xsd:element name="myElement">
<xsd:complexType>
...

</xsd:complexType>
</xsd:element>

EClass
name=“MyElementType”
EAnnotation

source=“…/ExtendedMetaData”
details=“name-”>“myElement_._type”, …

…

9.3.4 Abstract Type

If a complex type definition includes an abstract attribute, it is used to set the
abstract attribute of the corresponding EClass.

9.3.5 Mixed Type

A complex type with mixed content produces a feature map EAttribute named
“mixed” in the corresponding EClass. This EAttribute includes the following
entries in the details map of its extended metadata EAnnotation:

❍ key = “name”, value = “:mixed”

❍ key = “kind”, value = “elementWildcard”

In this case, the “kind” of the EClass is “mixed”.

9.3 Complex Type Definitions 195

<xsd:complexType abstract="true" ... >
...

</xsd:complexType>

EClass
abstract=true
…

<xsd:complexType name="MixedType"
mixed="true">

...
</xsd:complexType>

EClass
name=“MixedType”
EAnnotation

source=“…/ExtendedMetaData”
details=“name”➞“MixedType”,

“kind”➞“mixed”
EAttribute

name=“mixed”
eType=“…/Ecore#//EFeatureMapEntry”
upperBound=-1 (unbounded)
EAnnotation

source=“…/ExtendedMetaData”
details=“name”➞“:mixed”,

“kind”➞“elementWildcard”
…

The EAnnotation specifying the special name “:mixed” identifies the attribute
as the mixed feature for the class, of which there can only be one. All other fea-
tures (EReferences and EAttributes) mapped from element declarations in the
schema are derived, with implementations that delegate to the mixed feature map.

<xsd:complexType name="customersType"
mixed="true">

<xsd:sequence>
<xsd:element name="customer" ... />

</xsd:sequence>
</xsd:complexType>

EClass name=“CustomersType” …
EAttribute

name=“customer”
volatile=true
transient=true
derived=true (from “mixed”)
…

This structure allows values of the derived references to be mixed with val-
ues of the special features XMLTypeDocumentRoot.text, XMLType-
DocumentRoot.cDATA, and XMLTypeDocumentRoot.comment. These fea-
tures, defined in EMF’s XMLType model, represent simple text, character data
sections, and XML comments, respectively.2

An ecore:mixed attribute can be added to a complex type that is not actu-
ally mixed in order to produce the same feature-map-based mapping described
in this section. The complex type must have complex content and cannot be an
extension or restriction of another complex type. This feature is typically used to
provide support for adding and accessing comments and whitespace in an XML
document,3 as opposed to real mixed text. Adding any non-whitespace text to
instances of such a type would produce an invalid document.

196 CHAPTER 9 • XML Schema

2. Beginning in EMF 2.3, processing instructions are also represented using the special feature
XMLTypeDocumentRoot.processingInstruction.

3. For comments and whitespace to be read from XML documents, the OPTION_USE_LEXICAL_HANDLER
resource option must be enabled, as described in Chapter 15.

<xsd:complexType ecore:mixed="true" ... >
...

</xsd:complexType>

EClass …
EAttribute

name=“mixed”
eType=“…/Ecore#//EFeatureMapEntry”
…

It is also possible to use a name other than “mixed” for the mixed feature.
To do so, an ecore:featureMap attribute is added to the complex type defini-
tion, and the desired name is specified as its value. This works both for real
mixed complex types and for other complex types on which the ecore:mixed
attribute is specified.

<xsd:complexType mixed="true"
ecore:featureMap="order" ... >

...
</xsd:complexType>

EClass …
EAttribute

name=“order”
eType=“…/Ecore#//EFeatureMapEntry”
…

An ecore:featureMap attribute can also be specified, without
ecore:mixed, on a complex type to introduce another, subtly different feature-
map-based structure in the corresponding EClass. Once again, this is only per-
mitted on a complex type that has complex content and that is not an extension
or restriction of another type. In this case, the value of the ecore:featureMap

attribute still determines the name of the feature map EAttribute; however, its
EAnnotation contains the following details entries:

❍ key = “name”, value = “:group”

❍ key = “kind”, value = “group”

9.3 Complex Type Definitions 197

<xsd:complexType
ecore:featureMap="myMap" ... >

...
</xsd:complexType>

EClass …
Eattribute

name=“myMap”
eType=“…/Ecore#//EFeatureMapEntry”
upperBound=-1 (unbounded)
EAnnotation

source=“…/ExtendedMetaData”
details=“name”➞“:group”,

“kind”➞“group”
…

This structure closely resembles the one used to handle a repeating model
group, which is described in Section 9.6.1. All other features mapped from ele-
ments in the complex type are still derived from the feature map, as described in
that section. The feature map is strictly limited to values of those features, how-
ever, and does not allow text, character data or comments, unlike in the case of
a mixed type.

9.3.6 EMF Extensions

In addition to the ecore:mixed and ecore:featureMap attributes described
in the previous section, there are several Ecore-namespace attributes that are
applicable to complex type declarations in general.

An ecore:name attribute can be used to set the name of the EClass, for
example, if the corresponding complex type is anonymous or if the default name
conversion is unacceptable.

<xsd:complexType name="ctName"
ecore:name="MyName"

...
</xsd:complexType>

EClass
name=“MyName”
…

An ecore:instanceClass attribute can be used to set the
instanceClassName attribute of the corresponding EClass.

An ecore:interface attribute can be used to set the interface attribute of
the corresponding EClass.

198 CHAPTER 9 • XML Schema

<xsd:complexType ecore:interface="true">
...

</xsd:complexType>

EClass
interface=“true”
…

An ecore:implements attribute can be used to specify additional
eSuperTypes for the corresponding EClass. The value of the attribute must be a
space-separated list of qualified names, each of which resolves to corresponding
complex type.

<xsd:complexType
ecore:implements="MyOtherType">

...
</xsd:complexType>

EClass
eSuperTypes=“… //MyOtherType”
…

An ecore:constraints attribute can be used to declare named constraints
by adding an Ecore-sourced EAnnotation to the corresponding EClass.
Constraints and validation are discussed in depth in Chapter 18.

<xsd:complexType ecore:constraints="A B">
...

</xsd:complexType>

EClass
EAnnotation

source=“…/emf/2002/Ecore”
details=“constraints”➞“A B”

9.3.7 Operations

The EOperations of a complex type’s corresponding EClass can be specified
directly in the schema using a specialized appinfo annotation (see Section 9.8.2).
To be recognized as defining EOperations, the xsd:appinfo element must have
the following two attributes: a source whose value is “http://www.eclipse.org/
emf/2002/Ecore”, and an ecore:key whose value is “operations”.

Each EOperation of the EClass is represented by an operation element
within the xsd:appinfo. The features of the EOperation are specified by attrib-
utes and nested elements of the operation as follows:

<xsd:complexType
ecore:instanceClass="java.io.Serializable">

...
</xsd:complexType>

EClass
instanceClassName=“java.io.Serializable”
…

http://www.eclipse.org/emf/2002/Ecore
http://www.eclipse.org/emf/2002/Ecore

❍ name = the value of the name attribute

❍ eType = an EDataType or EClass corresponding to the simple or complex
type specified as the type attribute, or null if that attribute is absent

❍ eParameters = a list of EParameters, one per nested parameter element

❍ eExceptions = a list of EDataTypes and EClasses corresponding to the
space-separated list of simple and complex types in the exceptions
attribute

❍ lowerBound = the value of the lowerBound attribute

❍ upperBound = the value of the upperBound attribute

❍ ordered = the value of the ordered attribute

❍ unique = the value of the unique value

❍ eAnnotations = a list of EAnnotations, one per nested annotation element

9.3 Complex Type Definitions 199

<xsd:complexType ... >
<xsd:annotation>

<xsd:appinfo source=
"http://www.eclipse.org/emf/2002/Ecore"
ecore:key="operations">

<operation name="foo" type="xsd:string"
lowerBound="1" upperBound="-1"
exceptions="Exception">

...
</operation>

</xsd:appinfo>
</xsd:annotation>

</xsd:complexType>

EClass …
EOperation

name=“foo”
eType=“…/XMLType#//String”
lowerBound=1
upperBound=-1 (unbounded)
eExceptions=“//Exception”
…

Each EParameter of the EOperation is initialized from the corresponding
parameter element as follows:

❍ name = the value of the name attribute

❍ eType = an EDataType or EClass corresponding to the value of the type
attribute

❍ lowerBound = the value of the lowerBound attribute

❍ upperBound = the value of the upperBound attribute

❍ ordered = the value of the ordered attribute

❍ unique = the value of the unique attribute

❍ eAnnotations = list of EAnnotations, one per nested annotation element

If the operation element contains a nested body element, the correspond-
ing EOperation includes an EAnnotation with source “http://www.eclipse.org/
emf/2002/GenModel” and the following entry in its details map:

❍ key = “body”, value = the text content of the body element

As discussed in Section 5.7.1, this value should be the Java code that imple-
ments the EOperation. The code generator will make use of it, including it in the
generated method.

200 CHAPTER 9 • XML Schema

4. Elsewhere, schema xsd:annotations map directly to EAnnotations. See Section 9.8 for details.

<operation name="foo" ... >
<parameter name="x"

type="xsd:string"
lowerBound="1"
upperBound="-1"/>

</operation>

EOperation name=“foo” …
EParameter

name=“x”
eType=“…/XMLType#//String”
lowerBound=1
upperBound=-1 (unbounded)

<operation name="foo" ... >
...

<body>return x;</body>
</operation>

EOperation name=“foo” …
EAnnotation

source=“…/emf/2002/GenModel”
details=“body”➞“return x;”

Arbitrary EAnnotations on an EOperation or EParameter can be specified by
nesting annotation elements in the corresponding operation or parameter.4

Each EAnnotation’s source is initialized using the value of the annotation ele-
ment’s source attribute, and one entry is added to the details map for each nest-
ed detail element as follows:

❍ key = the value of the key attribute, value = the content of the detail
element

<operation name="foo" ... >
<annotation

source="http://www.example.com/A1"/>
<parameter name="x" ... >
<annotation

source="http://www.example.com/A1">
<detail key="key0">someValue</detail>
<detail key="key1">otherValue</detail>

</annotation>
</parameter>

</annotation>
...

</operation>

EOperation name=“foo” …
EAnnotation

source=“http://www.example.com/A1”
EParameter name=“x” …

EAnnotation
source=“http://www.example.com/A1”
details=“key0”➞“someValue”,

“key1”➞“otherValue”

http://www.eclipse.org/emf/2002/GenModel
http://www.eclipse.org/emf/2002/GenModel

9.4 Attribute Declarations

Each schema attribute declaration maps to an EAttribute or EReference in the
EClass corresponding to the complex type definition containing the attribute if
locally defined, or in the “DocumentRoot” EClass if the attribute is global.

An attribute declaration maps to an EReference in only a few special cases,
which are described in Section 9.4.3. Otherwise, it maps to an EAttribute that is
initialized as follows:

❍ name = the name of the attribute converted, if necessary, to a proper Java
field name

❍ eType = an EDataType corresponding to the attribute’s simple type

❍ lowerBound = 0 if use="optional" (the default), or 1 if
use="required" (see Section 9.4.3)

❍ upperBound = 1

❍ eAnnotations = an extended metadata EAnnotation

If the type of the attribute is one of the predefined schema types, then the
eType of the EAttribute is set to the corresponding EDataType from the
XMLType model (see Section 9.9). Otherwise, the eType is set to a user-defined
EDataType created from the simple type as described in Section 9.2.

The details map of the extended metadata EAnnotation contains the follow-
ing entries:

❍ key = “name”, value = the unaltered name of the attribute

❍ key = “kind”, value = “attribute”

9.4 Attribute Declarations 201

<xsd:attribute name="productName"
type="xsd:string"/>

EAttribute
name=“productName”
eType=“…/XMLType#//String”
lowerBound=0
upperBound=1
EAnnotation

source=“…/ExtendedMetaData”
details=“name”➞“productName”,

“kind”➞“attribute”

9.4.1 ID Attribute

An attribute of type xsd:ID, or of any type derived from it, maps to an
EAttribute whose type is the “ID” EDataType from the XMLType model (see
Section 9.9). In addition, the iD attribute of the EAttribute is set to true.

202 CHAPTER 9 • XML Schema

<xsd:attribute name="id" type="xsd:ID"/> EAttribute
name=“id”
eType=“…/XMLType#//ID”
iD=true
…

9.4.2 ID Reference or URI Attribute

Attributes of types xsd:IDREF, xsd:IDREFS, and xsd:anyURI, and of types
derived from them, usually are intended to represent references to objects defined
elsewhere in a document. However, by default, they are handled no differently
from attributes of other predefined schema simple types. They simply map to
EAttributes with eType set to the corresponding EDataType from the XMLType
model (see Section 9.9). Such an EAttribute can only record the value of the object
identifier appearing in a document, not refer to the object it actually represents.

<xsd:attribute name="customer"
type="xsd:IDREF"/>

EAttribute
name=“customer”
eType=“…/XMLType#//IDREF”
…

If, however, an attribute of one of these three types also includes an
ecore:reference attribute, it maps to an EReference instead, capturing the
semantic intent of the model. The reference is non-containment (containment is
false) and its eType is set to the EClass corresponding to the complex type spec-
ified by the ecore:reference attribute. The upperBound is set to 1 if the
attribute’s type is xsd:IDREF or xsd:anyURI, or -1 (unbounded) for
xsd:IDREFS. For xsd:IDREF and xsd:IDREFS, which cannot span documents,
resolveProxies is set to false. For xsd:anyURI, which can span documents, it is
set to true.

If the relationship is bidirectional, an ecore:opposite attribute can be
used to specify the attribute or element of the target complex type that corre-
sponds to the reverse (eOpposite) EReference.

9.4 Attribute Declarations 203

<xsd:attribute name="customer"
type="xsd:IDREF"
ecore:reference="Customer"/>

EReference
name=“customer”
eType=“//Customer”
upperBound=1
containment=false
resolveProxies=false
…

<xsd:attribute name="customers"
type="xsd:IDREFS"
ecore:reference="Customer"/>

EReference
name=“customers”
eType=“//Customer”
upperBound=-1 (unbounded)
containment=false
resolveProxies=false
…

<xsd:attribute name="customer"
type="xsd:anyURI"
ecore:reference="Customer"/>

EReference
name=“customer”
eType=“//Customer”
upperBound=1
containment=false
resolveProxies=true
…

<xsd:attribute name="customer"
type="xsd:anyURI"
ecore:reference="Customer"
ecore:opposite="orders"/>

EReference
name=“customer”
eType=“//Customer”
upperBound=1
containment=false
resolveProxies=true
eOpposite=“//Customer/orders”
…

The ecore:opposite attribute can be specified on either (or both) sides of
the relationship.

9.4.3 Required Attribute

The lowerBound of an EAttribute or EReference corresponding to a required
schema attribute is set to 1, instead of the default value of 0.

<xsd:attribute use="required" ... /> EAttribute
lowerBound=1
…

9.4.4 Default Value

Specifying a default value on an attribute sets the defaultValueLiteral attribute
of the corresponding EAttribute. The EAttribute is also unsettable in this case.

204 CHAPTER 9 • XML Schema

<xsd:attribute name="message"
type="xsd:string"
default="hello world" ... />

EAttribute
name=“message”
eType=“…/XMLType#//String”
defaultValueLiteral=“hello world”
unsettable=true
…

An attribute declaration without an explicit default value also maps to an
unsettable EAttribute if the type has an intrinsic default value that is non-null
(i.e., if the corresponding eType is an EEnum or an EDataType representing a
primitive Java type).

<xsd:attribute name="quantity"
type="xsd:int"/>

EAttribute
name=“quantity”
eType=“…/XMLType#//Int”
unsettable=true
…

Section 9.2.2 described how a simple type restriction with enumeration
facets can map to an ordinary EDataType, instead of an EEnum, when
ecore:enum="false" is specified. If such a simple type maps to a primitive
EDataType and is used as the type of an attribute, then the resulting EAttribute
has its default value set, even if no explicit default is specified in the attribute
declaration. In this case, the defaultValueLiteral of the EAttribute is set to the
first enumeration value of the simple type.

<xsd:attribute name="oneThreeFive">
<xsd:simpleType ecore:enum="false">
<xsd:restriction base="xsd:int">
<xsd:enumeration value="1"/>
<xsd:enumeration value="3"/>
<xsd:enumeration value="5"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:attribute>

EDataType
name=“OneThreeFiveType”
instanceClassName=“int”
…

EAttribute
name=“oneThreeFive”
eType=“//OneThreeFiveType”
defaultValueLiteral=“1”
unsettable=true
…

9.4.5 Qualified Attribute

If a local attribute declaration has qualified form, either explicitly declared with
a form="qualified" attribute or inherited from an xsd:schema with
attributeFormDefault="qualified" (see Section 9.1.7), the details map of
the extended metadata EAnnotation for the corresponding feature contains an
additional entry:

❍ key = “namespace”, value = “##targetNamespace”

9.4 Attribute Declarations 205

<xsd:attribute form="qualified" ... /> EAttribute …
EAnnotation

source=“…/ExtendedMetaData”
details=

“namespace”➞“##targetNamespace”, …

9.4.6 Global Attribute

The EAttribute or EReference corresponding to a global attribute declaration is
added to the package’s “DocumentRoot” EClass as described in Section 9.1.5,
unless it has an ecore:ignore="true" attribute, in which case it is ignored.
The extended metadata EAnnotation on the feature also includes exactly the
same “namespace” details entry (with value “##targetNamespace”) as in the
case of a qualified attribute, which was described in Section 9.4.5.

<xsd:schema ... >
<xsd:attribute name="globalAttribute"

type="xsd:string"/>
...

</xsd:schema>

EClass name=“DocumentRoot” …
EAttribute

name=“globalAttribute”
eType=“…/XMLType#//String”
…
EAnnotation

source=“…/ExtendedMetaData”
details=

“namespace”➞“##targetNamespace”,
…

9.4.7 Attribute Reference

An attribute reference (i.e., one with a ref attribute) maps to an EAttribute or
EReference with a “namespace” entry in the details map of its extended meta-
data EAnnotation. If the reference is to a global attribute defined (or included)
in the same schema, the value of this entry is “##targetNamespace”.

However, if the reference is to a global attribute from a different schema,
then the value of the “namespace” entry is set instead to the targetNamespace
of that schema.

9.4.8 EMF Extensions

The initialization of an EAttribute or EReference corresponding to a schema
attribute can be further customized through the use of several additional attrib-
utes from the Ecore namespace. Except as otherwise noted, these extensions are
generally applicable to all local and global attribute declarations and attribute
references. In cases where one of these attributes is used on both a global attrib-
ute declaration and a local reference to it, the value specified on the local attrib-
ute reference takes precedence.

The ecore:reference, ecore:opposite, and ecore:ignore attributes,
which are not discussed here, have the specific uses outlined in Sections 9.4.2 and
9.4.6.

Name

An ecore:name attribute can be used to explicitly set the name of the EAttribute
or EReference, if the default name conversion is unacceptable.

206 CHAPTER 9 • XML Schema

<xsd:complexType ... >
...
<xsd:attribute ref="globalAttribute"/>

</xsd:complexType>

EClass …
EAttribute …

EAnnotation
source=“…/ExtendedMetaData”
details=

“namespace”➞“##targetNamespace”,
…

<xsd:attribute name="..."
ecore:name="MyName" ... />

EAttribute
name=“MyName”
…

Default Value

An ecore:default attribute can be added to a local attribute declaration to
specify the default value of the corresponding EAttribute. This would typically
be used only if the attribute is required and hence is not permitted to have a
schema-specified default.

Multiplicity

An ecore:many attribute can be used on an attribute of a list simple type to
indicate that it should map to a multiplicity-many EAttribute with an eType cor-
responding to the list’s item type.

9.4 Attribute Declarations 207

<xsd:attribute ecore:default="value" ... /> EAttribute
defaultValueLiteral=“value”
…

<xsd:attribute type="xsd:IDREFS"
ecore:many="true" ... />

EAttribute
upperBound=“-1”
eType=“…/XMLType#//IDREF”
…

If the list type has an xsd:maxLength or xsd:length facet, that value is
used as the upper bound. If the list has an xsd:minLength or xsd:length
facet, and the attribute is not optional, that value is used as the lower bound.
Otherwise, default lower and upper bounds of 0 and -1 apply.

The ecore:lowerBound and ecore:upperBound attributes can be used to
explicitly override the lowerBound and upperBound of the structural feature cor-
responding to any attribute declaration or reference, if the default mapping rules
don’t produce the desired result.

<xsd:attribute ecore:lowerBound="1" ... /> EAttribute
lowerBound=“1”
…

<xsd:attribute ecore:upperBound="10" ... /> EAttribute
upperBound=“10”
…

<xsd:attribute ecore:ordered="false" ... /> EAttribute
ordered=“false”
…

<xsd:attribute ecore:unique="true" ... /> EAttribute
unique=“true”
…

When an attribute maps to a multiplicity-many structural feature,
ecore:ordered and ecore:unique attributes can be specified on the declara-
tion or reference to set the feature’s ordered and unique attributes.

Although ecore:ordered and ecore:unique are allowed on attributes
that map to both EAttributes and EReferences, their usefulness is currently lim-
ited, as was described in Section 5.3: basically, only setting unique on an
EAttribute is meaningful.

Behavior

Several boolean attributes of an EAttribute or EReference, which specify how a fea-
ture stores and accesses its values, can be set directly, using Ecore-namespace attrib-
utes of the same name. These attributes, which include ecore:unsettable,
ecore:changeable, ecore:derived, ecore:transient, ecore:volatile,
and ecore:resolveProxies, can be used when the default mapping rules don’t
produce the desired result.

208 CHAPTER 9 • XML Schema

<xsd:attribute
ecore:unsettable="true" ... />

EAttribute
unsettable=“true”
…

<xsd:attribute
ecore:changeable="true" ... />

EAttribute
changeable=“true”
…

<xsd:attribute
ecore:derived="true" ... />

EAttribute
derived=“true”
…

<xsd:attribute
ecore:transient="true" ... />

EAttribute
transient=“true”
…

<xsd:attribute
ecore:volatile="true" ... />

EAttribute
volatile=“true”
…

<xsd:attribute ecore:reference="..."
ecore:resolveProxies="true" ... />

EAttribute
resolveProxies=“true”
…

Note that the last of these, ecore:resolveProxies, is valid only on an
attribute that maps to an EReference (see Section 9.4.2).

Accessor Visibility

Four Ecore-namespace attributes, ecore:suppressedGetVisibility,
ecore:suppressedSetVisibility, ecore:suppressedIsSetVisibility,
and ecore:suppressedUnsetVisibility, can be used to add an accessor

suppressing GenModel-namespace EAnnotation to the structural feature. As
described in Section 5.7, such an EAnnotation instructs the code generator to sup-
press one or more of the accessors that would normally appear in the interface gen-
erated for the feature’s containing class.

9.5 Element Declarations 209

<xsd:attribute
ecore:suppressedGetVisibility="true"
ecore:suppressedSetVisibility="true"
ecore:suppressedIsSetVisibility="true"
ecore:suppressedUnsetVisibility="true"
... />

EAttribute
…
EAnnotation

source=“…/emf/2002/GenModel”
details=

“suppressedSetVisibility”➞“true”,
“suppressedGetVisibility”➞“true”,
“suppressedIsSetVisibility”➞“true”,
“suppressedUnsetVisibility”➞“true”

9.5 Element Declarations

Each schema element declaration maps to an EAttribute or EReference in the
EClass corresponding to the complex type definition containing the element, or
in the “DocumentRoot” EClass if the element is global.

An element declaration maps to an EAttribute if its type is simple (with the
exception of the special cases described in Section 9.5.3). Otherwise, if the type
is complex, it maps to an EReference. In either case, the attributes of the feature
are initialized as follows:

❍ name = the name of the element converted, if necessary, to a proper Java
field name

❍ eType = an EDataType or EClass corresponding to the element’s type

❍ lowerBound = the minOccurs value of the element declaration multiplied
by the minOccurs of any containing model groups, or 0 for a global ele-
ment or an element nested in an xsd:choice

❍ upperBound = the maxOccurs value of the element declaration multiplied
by the maxOccurs of any containing model groups, or -2 (unspecified)
for a global element (see Section 9.5.7)

❍ eAnnotations = an extended metadata EAnnotation

If the type of the element is one of the predefined schema types, then the
eType of the corresponding EAttribute is set to the corresponding EDataType
from the XMLType model (see Section 9.9). If the element has a user-defined sim-
ple type, the eType is set to an EDataType created from the simple type as
described in Section 9.2.

Otherwise, if the element declaration maps to an EReference, the eType is set
to the EClass corresponding to the element’s type. The EReference’s containment
attribute is true, except in the cases described in Section 9.5.3.

The details map of the extended metadata EAnnotation contains the follow-
ing entries:

❍ key = “name”, value = the unaltered name of the element

❍ key = “kind”, value = “element”

210 CHAPTER 9 • XML Schema

<xsd:element name="mySimple"
type="xsd:string"
maxOccurs="unbounded" />

EAttribute
name=“mySimple”
eType=“…/XMLType#//String”
lowerBound=1
upperBound=-1 (unbounded)
EAnnotation

source=“…/ExtendedMetaData”
details=“name”➞“mySimple”,

“kind”➞“element”

<xsd:element name="myComplex">
<xsd:complexType ... >
...

</xsd:complexType>
</xsd:element>

EReference
name=“myComplex”
eType=“//MyComplexType”
lowerBound=1
upperBound=1
containment=true
EAnnotation

source=“…/ExtendedMetaData”
details=“name”➞“myComplex”,

“kind”➞“element”

9.5.1 AnyType Element

In addition to the EDataTypes for all the XML Schema predefined simple types
(see Section 9.9), the XMLType model also includes an EClass, named
“AnyType”, that corresponds to the xsd:anyType complex type. An element of
type xsd:anyType maps to an EReference, but not of this type, as you might
expect. Instead, the eType of the EReference is EObject, the base class for all
EMF objects.

<xsd:element name="..."
type="xsd:anyType"/>

EReference
eType=“…/Ecore#//EObject”
…

Using EObject as the type of the reference allows it to take an instance of any
EMF object as its value, which is the intended behavior. The purpose of the
“AnyType” EClass is to handle situations where an instance contains arbitrary
XML content. For example, when processing wildcard content in “lax mode”
with no metadata available, an instance of the “AnyType” EClass, which like
every other EClass implicitly extends EObject, will be used as the value of the
feature. Such an instance can represent any arbitrary XML element content
including any attributes and mixed text that it might have.

9.5.2 ID Element

Note: The XML Schema specification recommends avoiding the use of xsd:ID as
the type of an element declaration.

An element of type xsd:ID, or of any type derived from it, maps to an
EAttribute whose type is the “ID” EDataType from the XMLType model (see
Section 9.9). In addition, the iD attribute of the EAttribute is set to true.

9.5 Element Declarations 211

<xsd:element name="..." type="xsd:ID"/> EAttribute
eType=“…/XMLType#//ID”
iD=true
…

9.5.3 ID Reference or URI Element

Note: The XML Schema specification recommends avoiding the use of
xsd:IDREF or xsd:IDREFS as the type of an element declaration.

Elements of type xsd:IDREF or xsd:anyURI, or of any derived simple type, are
given the same special treatment as was described for attributes of these types in
Section 9.4.2. By default, they are treated as ordinary elements of simple type
and mapped to EAttributes. When an ecore:reference is specified, they map
to EReferences, instead.. Unlike attributes, however, elements can be repeated, so
the upperBound of the EReference is not always 1, but is instead set according
to the maxOccurs attribute of the element declaration.

<xsd:element name="customer"
type="xsd:anyURI"
maxOccurs="10"
ecore:reference="Customer"/>

EReference
name=“customer”
eType=“//Customer”
upperBound=10
containment=false
resolveProxies=true
…

An ecore:opposite can also be specified to indicate that the relationship
described by the element is bidirectional, just like for an attribute.

The xsd:IDREFS case is a little more complicated. This is because the
xsd:IDREFS type represents multiple references and can, itself, be repeated (i.e.,
maxOccurs might be greater than 1). So, in this case the EReference’s contain-
ment attribute is set to true and its eType is set to an additional holder EClass,
instead of to the type specified by the ecore:reference attribute.

212 CHAPTER 9 • XML Schema

<xsd:element name="customers"
type="xsd:IDREFS"
ecore:reference="Customer"/>

EReference
name=“customers”
eType=“//CustomersHolder”
containment=true
…

A holder EClass, “CustomersHolder” in this example, is automatically cre-
ated for every element declaration of type xsd:IDREFS with an ecore:refer-
ence attribute specified. This EClass is initialized as follows:

❍ name = the name of the element converted, if necessary, to a proper Java
class name, and with the string “Holder” appended

❍ eReferences = a single, multiplicity-many EReference

❍ eAnnotations = an extended metadata EAnnotation

The details map of the extended metadata EAnnotation for the EClass has
the following entries:

❍ key = “name”, value = the name of the element, with the string “:holder”
appended

❍ key = “kind”, value = “simple”

The EReference in the holder EClass is initialized as follows:

❍ name = “value”

❍ eType = the EClass corresponding to the type specified by the
ecore:reference attribute

❍ upperBound = -1 (unbounded)

❍ containment = false

❍ resolveProxies = false

The details map of the extended metadata EAnnotation for the “value”
EReference contains the following:

❍ key = “name”, value = “:0”

❍ key = “kind”, value = “simple”

9.5 Element Declarations 213

<xsd:element name="customers"
type="xsd:IDREFS"
ecore:reference="Customer"/>

EClass
name=“CustomersHolder”
EAnnotation

source=“…/ExtendedMetaData”
details=“name”➞“customers:holder”,

“kind”➞“simple”
…

EReference
name=“value”
eType=“//Customer”
upperBound=-1 (unbounded)
containment=false
resolveProxies=false
EAnnotation

source=“…/ExtendedMetaData”
details=“name”➞“:0”,

“kind”➞“simple”
…

9.5.4 Nillable Element

A nillable element with maxOccurs equal to 1 maps to an EAttribute or
EReference with unsettable set to true.

In the case of an element with simple type, if the type would ordinarily map
to a primitive or enumerated type, then a wrapper EDataType is used as the
EAttribute’s eType, instead. Recall from Sections 9.2.1 and 9.2.2 that an addi-
tional wrapper EDataType is produced for each primitive and enumerated type
in a schema. In addition, the XMLType model defines wrappers for all of the
built-in primitive schema types, as we will see in Section 9.9.

<xsd:element type="xsd:int"
nillable="true" ... />

EAttribute
eType=“…/XMLType#//IntObject”
unsettable=true
…

9.5.5 Default Value

When an element maps to an EAttribute, specifing a default value on the ele-
ment sets the EAttribute’s defaultValueLiteral. The EAttribute is also unsettable
in this case.

214 CHAPTER 9 • XML Schema

<xsd:element name="message"
type="xsd:string"
default="hello world" ... />

EAttribute
name=“message”
eType=“…/XMLType#//String”
defaultValueLiteral=“hello world”
unsettable=true
…

An element declaration without an explicit default value also maps to an
unsettable EAttribute if the type has an intrinsic default value that is non-null
(i.e., if the corresponding eType is an EEnum or an EDataType representing a
primitive Java type).

<xsd:element name="quantity"
type="xsd:int"/>

EAttribute
name=“quantity”
eType=“…/XMLType#//Int”
unsettable=true
…

Section 9.2.2 described how a simple type restriction with enumeration
facets can map to an ordinary EDataType, instead of an EEnum, when
ecore:enum="false" is specified. If such a simple type maps to a primitive
EDataType and is used as the type of an element, then the resulting EAttribute
has its default value set, even if no explicit default is specified for the element.
In this case, the defaultValueLiteral of the corresponding EAttribute is set to the
first enumeration value of the simple type.

<xsd:element name="oneThreeFive">
<xsd:simpleType ecore:enum="false">
<xsd:restriction base="xsd:int">
<xsd:enumeration value="1"/>
<xsd:enumeration value="3"/>
<xsd:enumeration value="5"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>

EDataType
name=“OneThreeFiveType”
instanceClassName=“int”
…

EAttribute
name=“oneThreeFive”
eType=“//OneThreeFiveType”
defaultValueLiteral=“1”
unsettable=true
…

9.5.6 Qualified Element

If a local element declaration has qualified form, either explicitly declared with
a form="qualified" attribute or inherited from an xsd:schema with
elementFormDefault="qualified" (see Section 9.1.7), then the details map
of the extended metadata EAnnotation for the corresponding feature contains an
additional entry:

❍ key = “namespace”, value = “##targetNamespace”

9.5 Element Declarations 215

<xsd:element form="qualified" ... /> EReference …
EAnnotation

source=“…/ExtendedMetaData”
details=

“namespace”➞“##targetNamespace”,
…

9.5.7 Global Element

The EAttribute or EReference corresponding to a global element declaration is
added to the package’s “DocumentRoot” EClass as described in Section 9.1.5,
unless it has an ecore:ignore="true" attribute, in which case it is ignored.
The upperBound of the feature is set to -2 (unspecified). The extended metadata
EAnnotation on the feature also includes exactly the same “namespace” details
entry (with value “##targetNamespace”) as in the case of a qualified element,
which was described in Section 9.5.6.

<xsd:schema ... >
<xsd:element name="address"

type="USAddress"/>
...

</xsd:schema>

EClass name=“DocumentRoot” …
EReference

name=“address”
eType=“//USAddress”
upperBound=-2 (unspecified)
…
EAnnotation

source=“…/ExtendedMetaData”
details=

“namespace”➞"##targetNamespace”,
…

9.5.8 Element Reference

An element reference (i.e., one with a ref attribute) maps to an EAttribute or
EReference with a “namespace” entry in the details map of its extended meta-
data EAnnotation. If the reference is to a global element defined (or included) in
the same schema, the value of this entry is “##targetNamespace”.

216 CHAPTER 9 • XML Schema

<xsd:complexType ...>
<xsd:sequence>
<xsd:element ref="address"/>

</xsd:sequence>
</xsd:complexType>

EClass …
EReference …

EAnnotation
source=“…/ExtendedMetaData”
details=

“namespace”➞“##targetNamespace”,
…

However, if the reference is to a global element from a different schema, then
the value of the “namespace” entry is set instead to the targetNamespace of
that schema.

9.5.9 Substitution Group

A substitutionGroup attribute in a global element declaration produces an
additional entry in the details map of the extended metadata EAnnotation of the
corresponding EReference or EAttribute:

❍ key = “affiliation”, value = the value of the substitutionGroup attribute

<xsd:schema ... >
<xsd:element name="staffComment"

substitutionGroup="comment">
<xsd:complexType>
...

</xsd:complexType>
</xsd:element>
...
<xsd:element name="comment"

type="xsd:string"/>
</xsd:schema>

EClass name=“DocumentRoot” …
EReference

name=“staffComment”
eType=“//StaffCommentType”
EAnnotation

source=“…/ExtendedMetaData”
details=“affiliation”➞“comment”,

…
…

EAttribute
name=“comment”
eType=“…/XMLType#//String”
…

To be in a substitution group, an element must have the same type as the
head element (the element named by the substitutionGroup attribute) or a
type derived from it. In this example, the anonymously defined complex type of
the “staffComment” element would extend the “comment” head element’s sim-
ple string type.

Any reference to a substitution group’s head element in a complex type pro-
duces an additional feature map EAttribute in the corresponding EClass, from
which the ordinary EAttribute or EReference derives. By default, the name of
the feature map EAttribute is formed by appending “Group” to the name of the
ordinary feature. In addition, the extended metadata EAnnotation on the feature
map EAttribute contains the following details entries:

❍ key = “name”, value = the name of the element, with the suffix “:group”
appended

❍ key = “kind”, value = “group”

9.5 Element Declarations 217

<xsd:complexType name="PurchaseOrder">
<xsd:sequence>
...
<xsd:element ref="comment"/>
...

</xsd:sequence>
</xsd:complexType>

EClass name=“PurchaseOrder” …
EAttribute

name=“commentGroup”
eType=“…/Ecore#//EFeatureMapEntry”
EAnnotation

source=“…/ExtendedMetaData”
details=“name”➞“comment:group”,

“kind”➞“group”, …
…

EAttribute
name=“comment”
eType=“…/XMLType#//String”
volatile=true
transient=true
derived=true (from “commentGroup”)
EAnnotation

source=“…/ExtendedMetaData”
details=“name”➞“comment”,

“kind”➞“element”,
“group”➞“comment:group”, …

…

This feature-map-based implementation is required to allow instances of the
substitution elements to be serialized in an XML document without using an
xsi:type attribute. The same pattern is also used for a reference to an
abstract global element, as such an element is prohibited from being used

directly, requiring that substitution elements be serialized in its place. The derived
feature is also non-changeable in the abstract case.

If the reference to a head or abstract element is nested within a schema com-
ponent for which a feature map would already be produced (e.g., if the contain-
ing complex type is mixed), the resulting feature map EAttribute then derives
from that other feature map.

It is possible to specify a different name for the feature map EAttribute as the
value of an ecore:featureMap attribute on the head element declaration or
reference. Or, if you don’t really need the ability to serialize elements from the
substitution group, you can disable the feature-map-based implementation by
specifying ecore:featureMap="".

218 CHAPTER 9 • XML Schema

<xsd:element ref="comment"
ecore:featureMap=""/>

EAttribute
name=“comment”
eType=“…/XMLType#//String”
volatile=false
…

In fact, even when an element is not the head of a substitution group, an
ecore:featureMap attribute can be used to introduce the feature-map-based
structure that we have seen in this section.

<xsd:complexType name="PurchaseOrder">
<xsd:sequence>
...
<xsd:element name="address"

type="USAddress"
ecore:featureMap="addressGroup"/>

...
</xsd:sequence>

</xsd:complexType>

EClass name=“PurchaseOrder” …
EAttribute

name=“addressGroup”
eType=“…/Ecore#//EFeatureMapEntry”
EAnnotation

source=“…/ExtendedMetaData”
details=“name”➞“address:group”,

“kind”➞“group”, …
…

EReference
name=“comment”
eType=“…//USAddress”
volatile=true
transient=true
derived=true (from “addressGroup”)
EAnnotation

source=“…/ExtendedMetaData”
details=“name”➞“address”,

“kind”➞“element”,
“group”➞“#address:group”, …

…

9.5.10 EMF Extensions

The initialization of an EAttribute or EReference corresponding to an element
can be further customized through the use of several additional attributes from
the Ecore namespace. Except as otherwise noted, these extensions are generally
applicable to all local and global element declarations and element references. In
cases where one of these attributes is used on both a global element declaration
and a local reference to it, the value specified on the local element reference takes
precedence.

The ecore:reference, ecore:ignore, and ecore:featureMap attrib-
utes, which are not discussed here, have the specific uses outlined in Sections
9.5.3, 9.5.7, and 9.5.9.

Name

An ecore:name attribute can be used to explicitly set the name of the EAttribute
or EReference, if the default name conversion is unacceptable.

9.5 Element Declarations 219

<xsd:element name="..."
ecore:name="MyName" ... />

EReference
name=“MyName”
…

Multiplicity

The ecore:lowerBound and ecore:upperBound attributes can be used to
explicitly override the lowerBound and upperBound of the structural feature cor-
responding to any element declaration or reference, if the default mapping rules
don’t produce the desired result.

<xsd:element ecore:lowerBound="1" ... /> EReference
lowerBound=“1”
…

<xsd:element ecore:upperBound="10" ... /> EReference
upperBound=“10”
…

When an element maps to a multiplicity-many structural feature,
ecore:ordered and ecore:unique attributes can be specified on the declara-
tion or reference to set the feature’s ordered and unique attributes.

Although ecore:ordered and ecore:unique are allowed on elements
that map to both EAttributes and EReferences, their usefulness is currently lim-
ited, as was described in Section 5.3: basically, only setting unique on an
EAttribute is meaningful.

Behavior

Several boolean attributes of an EAttribute or EReference, which specify how a
feature stores and accesses its values, can be set directly, using Ecore-namespace
attributes of the same name. These attributes, which include ecore:unset-
table, ecore:changeable, ecore:derived, ecore:transient,
ecore:volatile, and ecore:resolveProxies, can be used when the default
mapping rules don’t produce the desired result.

220 CHAPTER 9 • XML Schema

<xsd:element ecore:ordered="false" ... /> EAttribute
ordered=“false”
…

<xsd:element ecore:unique="true" ... /> EAttribute
unique=“true”
…

<xsd:element
ecore:unsettable="true" ... />

EReference
unsettable=“true”
…

<xsd:element
ecore:changeable="true" ... />

EReference
changeable=“true”
…

<xsd:element
ecore:derived="true" ... />

EReference
derived=“true”
…

<xsd:element
ecore:transient="true" ... />

EReference
transient=“true”
…

<xsd:element
ecore:volatile="true" ... />

EReference
volatile=“true”
…

<xsd:element
ecore:resolveProxies="true" ... />

EReference
resolveProxies=“true”
…

Note that the last of these, ecore:resolveProxies, is only valid on ele-
ments that map to EReferences, while the rest are valid on all elements.

Opposite

For any element that maps to an EReference, an ecore:opposite attribute can
be used to make the relationship bidirectional and specify an eOpposite
EReference. If the reference is non-containment (see Section 9.5.3), the
ecore:opposite attribute identifies an attribute or element declaration in the
target complex type, as described in Section 9.4.2. Otherwise, it simply specifies
the name of a type-safe container reference to be added automatically to the tar-
get EClass.

9.5 Element Declarations 221

<xsd:element name="items"
type="Item"
maxOccurs="unbounded"
ecore:opposite="order"/>

EReference
name=“items”
eType=“//Item”
upperBound=-1 (unbounded)
containment=true
eOpposite=“//Item/order”
…

Accessor Visibility

Four Ecore-namespace attributes, ecore:suppressedGetVisibility,
ecore:suppressedSetVisibility, ecore:suppressedIsSetVisibility,
and ecore:suppressedUnsetVisibility, can be used to add an accessor sup-
pressing GenModel-namespace EAnnotation to the structural feature. As described
in Section 5.7, such an EAnnotation instructs the code generator to suppress one
or more of the accessors that would normally appear in the interface generated for
the feature’s containing class.

<xsd:element
ecore:suppressedGetVisibility="true"
ecore:suppressedSetVisibility="true"
ecore:suppressedIsSetVisibility="true"
ecore:suppressedUnsetVisibility="true"
... />

EReference
…
EAnnotation

source=“…/emf/2002/GenModel”
details=

“suppressedSetVisibility”➞“true”,
“suppressedGetVisibility”➞“true”,
“suppressedIsSetVisibility”➞“true”,
“suppressedUnsetVisibility”➞“true”

9.6 Model Groups

XML Schema model groups (xsd:sequence, xsd:choice, and xsd:all) with
maxOccurs equal to 1 (the default) produce no corresponding elements in the
Ecore model. These constructs simply serve to aggregate the elements under
them. In Ecore, the EClass corresponding to the containing complex type already
provides this aggregation function for its features. The only case requiring spe-
cial treatment is when a model group is allowed to repeat, as described in the fol-
lowing section.

9.6.1 Repeating Model Group

A repeating xsd:sequence or xsd:choice model group5 (one with
maxOccurs greater than 1) produces a feature map EAttribute in the EClass cor-
responding to the complex type definition containing the group. This is to rep-
resent the kind of cross-feature ordering described in Chapter 8. The EAttribute
is initialized as follows:

❍ name = “group”

❍ lowerBound = the minOccurs value of the model group multiplied by the
minOccurs of any containing model groups, or 0 if the group is nested in
an xsd:choice

❍ upperBound = the maxOccurs value of the model group multiplied by the
maxOccurs of any containing model groups

❍ eAnnotations = an extended metadata EAnnotation

The details map of the extended metadata EAnnotation contains the follow-
ing entries:

❍ key = “name”, value = the name of the EAttribute, followed by “:” and
its feature ID

❍ key = “kind”, value = “group”

222 CHAPTER 9 • XML Schema

5. A repeating xsd:all model group is not a valid XML Schema construct.

<xsd:choice maxOccurs="unbounded">
...

</xsd:choice>

EAttribute
name=“group”
eType=“…/Ecore#//EFeatureMapEntry”
upperBound=-1 (unbounded)
EAnnotation

source=“…/ExtendedMetaData”
details=“name”➞“group:0”,

“kind”➞“group”

All other EReferences and EAttributes corresponding to element declarations
in the model group have derived implementations that delegate to the feature map:

9.6 Model Groups 223

<xsd:choice maxOccurs="unbounded">
<xsd:element name="priorityOrders"

type="PurchaseOrder"/>
...

</xsd:choice>

EAttribute
name=“priorityOrders”
volatile=true
transient=true
derived=true (from “group”)
…
EAnnotation

source=“…/ExtendedMetaData”
details=“group”➞“#group:0”, …

If the repeating model group is nested within a schema component for which
a feature map would already be produced (e.g., if the containing complex type is
mixed), the group’s corresponding feature map EAttribute then derives from that
other feature map.

An ecore:featureMap attribute can be added to the model group to over-
ride the default name of the corresponding feature map EAttribute.

<xsd:choice maxOccurs="unbounded"
ecore:featureMap="choices">

...
</xsd:choice>

EAttribute
name=“choices”
eType=“…/Ecore#//EFeatureMapEntry”
upperBound=-1 (unbounded)
EAnnotation

source=“…/ExtendedMetaData”
details=“name”➞“choices:0”,

“kind”➞“group”

Alternatively, if order preservation among the elements in the group is not
desired, the feature map implementation can be suppressed by specifying
ecore:featureMap="". which produces the ordinary, non-derived implemen-
tation pattern for the elements in the group.

<xsd:choice maxOccurs="unbounded"
ecore:featureMap="">

...
</xsd:choice>

No feature map attribute

Finally, an ecore:featureMap attribute can also be used on a non-repeat-
ing model group to introduce a feature map implementation. The common use
of this is to provide order preservation in an xsd:all group. By definition, an

xsd:all group is one that places no restriction on the order in which instances
of its elements can appear. By default, EMF interprets this as meaning serializa-
tion order is irrelevant, so it does not use a feature map to implement the
xsd:all group. The other possible interpretation is that the elements can
appear in any order, but the order they’re in is important and must be main-
tained. If this is the desired behavior, an ecore:featureMap attribute can be
added to override the simpler default mapping and produce a feature map
EAttribute for the group.

224 CHAPTER 9 • XML Schema

<xsd:all ecore:featureMap="allGroup">
...

</xsd:all>

EAttribute
name=“allGroup”
eType=“…/Ecore#//EFeatureMapEntry”
upperBound=-1 (unbounded)
EAnnotation

source=“…/ExtendedMetaData”
details=“name”➞“allGroup:0”,

“kind”➞“group”

9.6.2 Repeating Model Group Reference

The feature map EAttribute corresponding to a repeating reference to a model
group definition (xsd:group) has its name set to that of the model group defi-
nition, instead of “group” as described in Section 9.6.1. The name is converted
to a proper Java field name if necessary.

<xsd:group name="content">
<xsd:choice>
...

</xsd:choice>
</xsd:group>
...
<xsd:complexType name="...">
<xsd:group ref="content"

maxOccurs="unbounded"/>
</xsd:complexType>

EClass name=“…”
EAttribute

name=“content”
eType=“…/Ecore#//EFeatureMapEntry”
upperBound=-1 (unbounded)
EAnnotation
source=“…/ExtendedMetaData”
details=“name”➞“content:0”,

“kind”➞“group”

An ecore:name attribute can also be added to the group definition to over-
ride the name of the feature map EAttribute.

Note that the same effect could be achieved with an ecore:featureMap
attribute on the xsd:choice itself. If both are specified, the
ecore:featureMap attribute takes precedence.

9.7 Wildcards

Element and attribute wildcards are represented in Ecore by feature map
EAttributes, so as to be able to accommodate values of structural features corre-
sponding to any elements and attributes.

9.7.1 Element Wildcard

An element wildcard (xsd:any) maps to a feature map EAttribute in the EClass
corresponding to the complex type definition containing the wildcard. The
EAttribute is initialized as follows:

❍ name = “any”

❍ lowerBound = 0 if the wildcard is nested in an xsd:choice model group;
otherwise, the value of the minOccurs attribute multiplied by the
minOccurs of any containing model groups

❍ upperBound = the value of the maxOccurs attribute multiplied by the
maxOccurs of any containing model groups

❍ eAnnotations = an extended metadata EAnnotation

The case where upperBound is 1 is somewhat special. It is still implemented
using a feature map, rather than a feature map entry; however, the feature map
is permitted to contain just a single entry.

The details map of the EAttribute’s extended metadata EAnnotation contains
the following entries:

9.7 Wildcards 225

<xsd:group name="content"
ecore:name="orders">

<xsd:choice>
...

</xsd:choice>
</xsd:group>
...
<xsd:complexType name="...">
<xsd:group ref="content"

maxOccurs="unbounded"/>
</xsd:complexType>

EClass name=“…”
EAttribute
name=“orders”
eType=“…/Ecore#//EFeatureMapEntry”
upperBound=-1 (unbounded)
EAnnotation

source=“…/ExtendedMetaData”
details=“name”➞“orders:0”,

“kind”➞“group”

❍ key = “name”, value = “:” followed by the feature ID of the EAttribute

❍ key = “kind”, value = “elementWildcard”

❍ key = “wildcards”, value = the value of the namespace attribute
(“##any” by default)

❍ key = “processing”, value = the value of the processContents attribute
(“strict” by default)

The value of the “processing” entry determines how to handle unrecognized
elements when loading an instance document. If it is “strict”, then they are not
allowed (metadata must be available for all elements). If it is “lax” or “skip”,
then metadata will be demand created for such elements, and instances of the
“AnyType” EClass (described in Section 9.5.1) will be used to represent their
contents.

226 CHAPTER 9 • XML Schema

<xsd:any namespace="##other"
maxOccurs="unbounded"/>

EAttribute
name=“any”
eType=“…/Ecore#//EFeatureMapEntry”
lowerBound=1
upperBound=-1 (unbounded)
EAnnotation

source=“…/ExtendedMetaData”
details=“name”➞“:0”,

“kind”➞“elementWildcard”,
“wildcards”➞“##other”,
“processing”➞“strict”

If a wildcard is nested within a schema component for which a feature map
would already be produced (e.g., if the containing complex type is mixed), the
wildcard’s corresponding feature map EAttribute then derives from the contain-
ing feature map.

9.7.2 Attribute Wildcard

An attribute wildcard (xsd:anyAttribute) also maps to a feature map
EAttribute in the EClass corresponding to the complex type definition contain-
ing the wildcard. The EAttribute is initialized as follows:

❍ name = “anyAttribute”

❍ lowerBound = 0

❍ upperBound = -1 (unbounded)

❍ eAnnotations = an extended metadata EAnnotation

The details map of the extended metadata EAnnotation contains the follow-
ing entries:

❍ key = “name”, value = “:” followed by the feature ID of the EAttribute

❍ key = “kind”, value = “attributeWildcard”

❍ key = “wildcards”, value = the value of the namespace attribute
(“##any” by default)

❍ key = “processing”, value = the value of the processContents attribute
(“strict” by default)

The value of the “processing” entry determines how to handle unrecognized
attributes when loading an instance document. If it is “strict”, then they are not
allowed (metadata must be available for all attributes). If it is “lax” or “skip”,
then metadata will be demand created for such attributes.

9.7 Wildcards 227

<xsd:anyAttribute processContents="lax"/> EAttribute
name=“anyAttribute”
eType=“…/Ecore#//EFeatureMapEntry”
lowerBound=0
upperBound=-1 (unbounded)
EAnnotation

source=“…/ExtendedMetaData”
details=“name”➞“:1”,

“kind”➞“attributeWildcard”,
“wildcards”➞“##any”,
“processing”➞“lax”

If a wildcard is nested within a schema component for which a feature map
would already be produced (e.g., if the containing complex type is mixed), the
wildcard’s corresponding feature map EAttribute then derives from the contain-
ing feature map.

9.7.3 EMF Extensions

There is only one Ecore-namespace attribute applicable to wildcards:
ecore:name, which can be used to set the name of a wildcard EAttribute to
something other than the default value of “any” or “anyAttribute”.

<xsd:any ecore:name="extension"/> EAttribute
name=“extension”
eType=“…/Ecore#//EFeatureMapEntry”
…

9.8 Annotations

XML Schema annotations map to EAnnotations in Ecore. More specifically, each
xsd:documentation and xsd:appinfo in a schema component’s xsd:anno-
tation maps to an EAnnotation in the eAnnotations list of the corresponding
Ecore element. Non-schema attributes on schema components are similarly rep-
resented as EAnnotations in Ecore.

9.8.1 Documentation

An xsd:documentation element in a schema component’s xsd:annotation
maps to a particular GenModel-sourced EAnnotation, allowing its contents
to be generated into the Javadoc comments of the corresponding Java code.
As described in Section 5.7.1, such an EAnnotation has as its source
“http://www.eclipse.org/emf/2002/GenModel”. Its details map contains a single
entry:

❍ key = “documentation”, value = the contents of the xsd:documenta-
tion element

228 CHAPTER 9 • XML Schema

<xsd:annotation>
<xsd:documentation xml:lang="en">
some information

</xsd:documentation>
</xsd:annotation>

EAnnotation
source=“…/emf/2002/GenModel”
details=

“documentation”➞“ some information ”

A single EAnnotation is used to represent all the xsd:documentation elements
in the xsd:annotation on a given schema component, should there be more
than one. In this case, the value of the “documentation” entry is simply the con-
catenation of the individual documentation elements.

<xsd:annotation>
<xsd:documentation xml:lang="en">
some information

</xsd:documentation>
<xsd:documentation xml:lang="en">
more information

</xsd:documentation>
</xsd:annotation>

EAnnotation
source=“…/emf/2002/GenModel”
details=

“documentation”➞“ some information
more information ”

Note that the contents of each xsd:documentation element is stored
exactly as is, without removing any line breaks or other whitespace.

http://www.eclipse.org/emf/2002/GenModel

9.8.2 Appinfo

An xsd:appinfo element in a schema component’s xsd:annotation maps to
an EAnnotation whose source is the same as the source attribute of the
xsd:appinfo, or null if none is provided. The EAnnotation’s details map con-
tains a single entry:

❍ key = “appinfo”, value = the contents of the xsd:appinfo element

9.8 Annotations 229

<xsd:annotation>
<xsd:appinfo source="http://myURI">
<info>hello</info>

</xsd:appinfo>
</xsd:annotation>

EAnnotation
source=“http://myURI”
details=“appinfo”➞“<info>hello</info>”

Alternatively, an ecore:key attribute can be used to specify an arbitrary key
for the details entry:

<xsd:annotation>
<xsd:appinfo source="http://myURI"

ecore:key="info">hello</xsd:appinfo>
</xsd:annotation>

EAnnotation
source=“http://myURI”
details=“info”➞“hello”

A single EAnnotation is used to represent all the xsd:appinfo elements
with a given source on a schema component, should there be more than one. If
each such element uses ecore:key to specify a different key, then each value
appears in a separate details entry. The values of xsd:appinfo elements with
the same source and key are concatenated into a single value.

9.8.3 Ignored Annotation

An ecore:ignore attribute can be added to an xsd:annotation to suppress
the EAnnotations corresponding to all its xsd:documentation and
xsd:appinfo children.

<xsd:annotation ecore:ignore="true">
...

</xsd:annotation>

No EAnnotation

Alternatively, ecore:ignore can be specified on individual xsd:documen-
tation or xsd:appinfo elements to suppress only their corresponding
EAnnotations.

9.8.4 Non-schema Attribute

An attribute from a namespace other than the XML Schema namespace maps to
an EAnnotation with source set to the the attribute’s namespace.6 The details
map of the EAnnotation contains a single entry:

❍ key = the local name of the attribute, value = the value of the attribute

230 CHAPTER 9 • XML Schema

6. Since attributes from the Ecore namespace are used specifically to customize the mapping from XML
Schema to Ecore, they are not represented as an EAnnotation either.

<xsd:element xmlns:x="http://x"
x:a="b" .../>

EAttribute …
EAnnotation

source=“http:///x”
details=“a”➞“b”

9.9 Predefined Schema Simple Types

Each predefined XML Schema simple type maps to a corresponding built-in
EDataType from the special XMLType model. This model defines a single pack-
age named “type” with namespace URI “http://www.eclipse.org/emf/2003/
XMLType”, which contains these simple type counterparts. Table 9.1 details the
mapping between XML Schema simple types and XMLType EDataTypes, includ-
ing the instance class for each EDataType. As pointed out in Section 9.5.4, the
model includes wrapper EDataTypes for all the schema primitive types. These are
provided for use in EAttributes corresponding to nillable elements.

Table 9.1 Schema Simple Types

Schema Type EDataType Instance Class

anySimpleType AnySimpleType java.lang.Object

anyURI AnyURI java.lang.String

base64Binary Base64Binary byte[]

boolean Boolean java.lang.boolean

boolean (nillable="true") BooleanObject java.lang.Boolean

byte Byte byte

byte (nillable="true") ByteObject java.lang.Byte

http://www.eclipse.org/emf/2003/XMLType
http://www.eclipse.org/emf/2003/XMLType

9.9 Predefined Schema Simple Types 231

7. Beginning in EMF 2.3, standard Java XML types (from the package java.xml.datatype) are used as
the instance class for several of these data types. In particular, for Date, DateTime, GDate, GMonth,
GMonthDay, GYear, GYearMonth, and Time, the instance class is XMLGregorianCalendar. The
instance class of Duration is Duration. For NOTATION and QName, the instance class is QName. These
XML types were introduced in Java 5.0, so they couldn’t be used by EMF 2.2, which can run on Java 1.4,
or earlier.

Schema Type EDataType Instance Class

date Date java.lang.Object7

dateTime DateTime java.lang.Object

decimal Decimal java.math.BigDecimal

double Double double

double (nillable="true") DoubleObject java.lang.Double

duration Duration java.lang.Object

ENTITIES ENTITIES java.util.List

ENTITY ENTITY java.lang.String

float Float float

float (nillable="true") FloatObject java.lang.Float

gDay GDay java.lang.Object

gMonth GMonth java.lang.Object

gMonthDay GMonthDay java.lang.Object

gYear GYear java.lang.Object

gYearMonth GYearMonth java.lang.Object

hexBinary HexBinary byte[]

ID ID java.lang.String

IDREF IDREF java.lang.String

IDREFS IDREFS java.util.List

int Int int

int (nillable="true") IntObject java.lang.Integer

integer Integer java.math.BigInteger

language Language java.lang.String

long Long long

long (nillable="true") LongObject java.lang.Long

(continues)

Table 9.1 Schema Simple Types (continued)

Schema Type EDataType Instance Class

Name Name java.lang.String

NCName NCName java.lang.String

negativeInteger NegativeInteger java.math.BigInteger

NMTOKEN NMToken java.lang.String

NMTOKENS NMTOKENS java.util.List

nonNegativeInteger NonNegativeInteger java.math.BigInteger

nonPositiveInteger NonPositiveInteger java.math.BigInteger

normalizedString NormalizedString java.lang.String

NOTATION NOTATION java.lang.Object

positiveInteger PositiveInteger java.math.BigInteger

QName QName java.lang.Object

short Short short

short (nillable="true") ShortObject java.lang.Short

string String java.lang.String

time Time java.lang.Object

token Token java.lang.String

unsignedByte UnsignedByte short

unsignedByte (nillable="true") UnsignedByteObject java.lang.Short

unsignedInt UnsignedInt long

unsignedInt (nillable="true") UnsignedIntObject java.lang.Long

unsignedLong UnsignedLong java.math.BigInteger

unsignedShort UnsignedShort int

unsignedShort (nillable="true") UnsignedShortObject java.lang.Integer

9.10 EMF Extensions

As described throughout this chapter, attributes from the Ecore namespace
(“http://www.eclipse.org/emf/2002/Ecore”) can be added to schema components
to customize the mapping to Ecore. The following attributes are recognized:

232 CHAPTER 9 • XML Schema

http://www.eclipse.org/emf/2002/Ecore

❍ ecore:changeable on an attribute or element declaration specifies the
value of the changeable attribute of the corresponding EStructuralFeature
(see Sections 9.4.8 and 9.5.10).

❍ ecore:constraints on a simple or complex type definition adds an
EAnnotation declaring named constraints to the corresponding
EClassifier (see Sections 9.2.6 and 9.3.6).

❍ ecore:default on an attribute declaration specifies the value of the
defaultValueLiteral attribute of the corresponding EAttribute (see Section
9.4.8).

❍ ecore:derived on an attribute or element declaration specifies the value
of the derived attribute of the corresponding EStructuralFeature (see
Sections 9.4.8 and 9.5.10).

❍ ecore:documentRoot on a schema is used to change the name of the
document root EClass from the default, “DocumentRoot” (see Section
9.1.3).

❍ ecore:enum on a simple type definition with enumeration facets deter-
mines whether the type maps to an EEnum or to an EDataType with the
facets recorded in its extended metadata annotation (see Section 9.2.2).

❍ ecore:featureMap on a model group or reference, an element declara-
tion or reference, or a complex type, can be used to force or block the use
of a feature map in the corresponding Ecore representation. By default,
feature maps are used to implement mixed complex types (see Section
9.3.5), substitution groups and abstract elements (see Section 9.5.9),
repeating model groups (see Section 9.6.1), and wildcards (see Section
9.7).

❍ ecore:ignore on a global attribute or element, facet, annotation, docu-
mentation or appinfo determines whether the component is excluded from
the corresponding Ecore representation (see Sections 9.4.6, 9.5.7, 9.2.1
and 9.8.3).

❍ ecore:implements on a complex type definition specifies additional
eSuperTypes for the corresponding EClass (see Section 9.3.6).

❍ ecore:instanceClass on a simple or complex type definition specifies
the instanceClassName (i.e., Java class) of the corresponding EClassifier
(see Sections 9.2.6 and 9.3.6).

❍ ecore:interface on a complex type definition specifies the value of the
interface attribute of the corresponding EClass (see Section 9.3.6).

❍ ecore:key on an xsd:appinfo annotation component specifies the key
for the corresponding EAnnotation details entry (see Section 9.8.2).

9.10 EMF Extensions 233

❍ ecore:lowerBound on an attribute or element declaration specifies the
value of the lowerBound attribute of the corresponding
EStructuralFeature (see Sections 9.4.8 and 9.5.10).

❍ ecore:many on an attribute declaration with a list simple type deter-
mines whether it maps to a multi-valued EAttribute of a type correspon-
ding to the list’s item type (see Section 9.4.8).

❍ ecore:mixed on a complex type definition that is not actually mixed
specifies whether to use the feature-map-based Ecore representation for a
mixed type anyway (see Section 9.3.5).

❍ ecore:name on any named schema component or on a wildcard can be
used to override the default name of the corresponding ENamedElement
(see Sections 9.2.2, 9.2.6, 9.3.6, 9.4.8, 9.5.10, 9.6.2, and 9.7.3).

❍ ecore:nsPrefix on a schema specifies the value of the nsPrefix attrib-
ute of the corresponding EPackage (see Section 9.1.5).

❍ ecore:opposite on an element or attribute declaration that maps to an
EReference specifies the element or attribute corresponding to the refer-
ence’s eOpposite (see Sections 9.4.2 and 9.5.10).

❍ ecore:ordered on an attribute or element declaration specifies the value
of the ordered attribute of the corresponding EStructuralFeature (see
Sections 9.4.8 and 9.5.10).

❍ ecore:package on a schema specifies the fully qualified Java package
name for the corresponding EPackage (see Section 9.1.5).

❍ ecore:reference on an attribute or element declaration of type
xsd:IDREF, xsd:IDREFS, or xsd:anyURI specifies the target type of the
corresponding EReference (see Sections 9.4.2 and 9.5.3).

❍ ecore:resolveProxies on an attribute or element declaration specifies
the value of the resolveProxies attribute of the corresponding EReference
(see Sections 9.4.8 and 9.5.10).

❍ ecore:serializable on a simple type definition specifies the serializ-
able attribute of the corresponding EDataType (see Section 9.2.6).

❍ ecore:suppressedGetVisibility on an attribute or element declara-
tion adds a GenModel-namespace EAnnotation to the corresponding
EStructuralFeature, specifying that the feature’s get() accessor should be
suppressed (see Sections 9.4.8 and 9.5.10).

❍ ecore:suppressedIsSetVisibility on an attribute or element decla-
ration adds a GenModel-namespace EAnnotation to the corresponding
EStructuralFeature, specifying that the feature’s isSet() accessor should
be suppressed (see Sections 9.4.8 and 9.5.10).

234 CHAPTER 9 • XML Schema

❍ ecore:suppressedSetVisibility on an attribute or element declara-
tion adds a GenModel-namespace EAnnotation to the corresponding
EStructuralFeature, specifying that the feature’s set() accessor should be
suppressed (see Sections 9.4.8 and 9.5.10).

❍ ecore:suppressedUnsetVisibility on an attribute or element decla-
ration adds a GenModel-namespace EAnnotation to the corresponding
EStructuralFeature, specifying that the feature’s unset() accessor should
be suppressed (see Sections 9.4.8 and 9.5.10).

❍ ecore:transient on an attribute or element declaration specifies the
value of the transient attribute of the corresponding EStructuralFeature
(see Sections 9.4.8 and 9.5.10).

❍ ecore:unique on an attribute or element declaration specifies the value
of the unique attribute of the corresponding EStructuralFeature (see
Sections 9.4.8 and 9.5.10).

❍ ecore:unsettable on an attribute or element declaration specifies the
value of the unsettable attribute of the corresponding EStructuralFeature
(see Sections 9.4.8 and 9.5.10).

❍ ecore:upperBound on an attribute or element declaration specifies the
value of the upperBound attribute of the corresponding
EStructuralFeature (see Sections 9.4.8 and 9.5.10).

❍ ecore:value on an enumeration facet specifies the value attribute of the
corresponding EEnumLiteral (see Section 9.2.2).

❍ ecore:volatile on an attribute or element declaration specifies the
value of the volatile attribute of the corresponding EStructuralFeature (see
Sections 9.4.8 and 9.5.10).

These attributes are described in more detail in the referenced sections.

9.10 EMF Extensions 235

Index

A
AbstractOverrideableCommand class, 61
abstract property (EClass class), 146
abstract types

AbstractCommand class, 56
XML Schema complex type definitions, 194

accessing
metadata in packages, 420-422
packages, 422
resource sets, 64-65

accessors
reflective, 279-283

eGet(), 280-282
eIsSet(), 282
eSet(), 282
eUnset(), 282

generated, 241-243
visibility attribute, 209, 221

action bar contributor, 45
generated class, 67, 334-336
object creation support, 322

actions, 8, 44-45
code generation, 94-95, 349

adapt() method, 30, 293, 508, 513, 518
default implmentation, 589
EMF.Edit, 48, 63, 589

AdapterFactoryContentProvider class, 47, 52
AdapterFactoryEditingDomain class, 51, 62
AdapterFactoryLabelProvider class, 47
Adapter Factory property, 360
adapters, 29, 508

adding to objects, 508-515
adapter factories, 510-513
eAdapters lists, 508-510
type-specific adapters, 513-515

as behavior extensions, 30
behavioral extensions, 515-519
content, 519-520
cross-referencers, 526-529
EContentAdapter class, 31
ECrossReferenceAdapter, 526
factories, 30-31

adding adapters to objects, 510-513
EMF.Edit Item providers, 327-330
generated classes, 291-295

generated classes, observing, 521-522
as simple observers, 29

AddCommand class, 59-60
adding

adapters to objects, 508-515
adapter factories, 510-513
eAdapters lists, 508-510
type-specific adapters, 513-515

JAR files to class paths, 609-612
non-model intermediary view objects (EMF.Edit),

587-597
drag-and-drop, 596
object correction, 594-595
Supplier class children, 587
Supplier class create child property, dis-

abling, 593-594
Supplier class getChildren() method

override, 588
Supplier class non-modeled nodes, 588
Supplier class OrdersItemProvider class, 589
Supplier class SupplierItemProvider

class, 590
Supplier class TransientSupplierItemProvider

class, 591-592
SupplierItemProvider class dispose()

method, 597
SupplierItemProvider class getOrders()

method, 593
addPreviousOrderPropertyDescriptor() method, 395
Address class, 275
alternative generated code patterns, 295

performance optimization, 295-302
Boolean flags, 295-298
constant-time reflective methods, 301-302
virtual feature delegation, 298-301

suppressing EMFisms, 302-305
EObject API, 302-303
interface/implementation split, 305
metadata, 304
types, 303

annotated Java
creating model files, 72-79

Generator model location/name, 77
model directory, creating, 74
model importer, selecting, 78
new wizard opening page, 76
packages, selecting, 79
PPOPackage interface, 76

675

676 Index

projects, creating, 73
PurchaseOrder interface, 74-76

feature maps, 175-176
model importer (EMF 2.3/2.4 new

features), 645-646
annotation property

EAnnotation class, 165
EClassifier class, 142
EModelElement class, 144
EOperation class, 144
EPackage class, 142
EStructuralFeature class, 143

Annotations
Ecore, 119-121
Java, 164-165
sources

Ecore, 121
EMOF, 123
Extended metadata, 123
GenModel, 122
XSD2Ecore, 123

XML Schema, 228
Appinfo element, 229
documentation, 228
ignored, 229
non-schema attributes, 230

anonymous types (XML Schema)
complex type definitions, 194
simple type definitions, 189-190

Ant
runner, 372
scripts, executing, 372
tasks (generator), 371

Advantages, 372
emf.Ecore2Java, 375
emf.Java2Java, 646
emf.Rose2Java, 373-374
emf.XSD2Java, 374-375

AnyType element, declaring, 210
APIs

EObject
interface reflective API, 35-36, 427-432
suppressing, 302-303

persistence, 447
Resource Factory interface, 456
Resource interface, 452-456
Resource Registry interface, 457-459
ResourceSet interface, 459-462
URIConverter interface, 449-450
URIs, 447-448

TrAX, 487
appendAndExecute() method, 58
appending commands, 58
Appinfo element (XML Schema annotations), 229
applications

compiling during code generation, 95
defined, 607
development, 104
RCP. See RCP
running, 95-97, 104
stand-alone, 608-609

package registration, 614-615
plug-in JAR files, adding to class

paths, 609-612
resource factory registration, 612-614

apply() method (ChangeDescription class), 539

applyAndReverse() method (ChangeDescription
class), 540

applying change descriptions, 539, 541
Arguments tab (RCP), 603
Array Accessors property, 352
attaching adapters to objects, 29
attributeName property (EStructuralFeature

class), 143
attributes. See also properties

Boolean:PurchaseOrder class, 296
Changeable

EReference, 267
EStructuralFeature, 108

comment (PurchaseOrder class), 244-245
containment (EReference class), 111, 150
declarations (XML Schema), 201

Attribute references, 205
Default values, 204
Ecore attributes, 206-209
Global attributes, 205
ID attributes, 202
ID references, 202-203
Qualified attributes, 205
required attributes, 203
URI attributes, 202-203

defaultValue
EAttribute class, 148
EClassifer class, 114
EStructuralFeature class, 109

defaultValueLiteral (EStructuralFeature
class), 109

Definition, 17
derived, 108

EAttribute class, 148
Ecore, 233
Ecore kernel, 108
EReference class, 150
EStructuralFeature class, 108

EAnnotation class, 120
EAttribute, 201

Complex type definitions, 193
XML Schema element declarations, 209

EClass (Complex type definitions), 191
EClassifer class, 113-114
Ecore, 110-111

accessor visibility, 209, 221
behavior, 208
behaviors, 220
changeable, 233
constraints, 233
default, 206, 233
derived, 233
DocumentRoot, 233
Enum, 233
FeatureMap, 233
iD, 110
ignore, 233
implements, 233
instanceClass, 233
interface, 233
lowerBound, 234
many, 207, 234
mixed, 234
multiplicity, 219
name, 206, 219, 234
nsPrefix, 234

Index 677

opposite, 221, 234
ordered, 234
package, 234
reference, 234
resolveProxies, 234
serializable, 234
suppressedGetVisibility, 234
suppressedIsSetVisibility, 234
suppressedSetVisibility, 235
suppressedUnsetVisibility, 235
transient, 235
unique, 235
unsettable, 235
upperBound, 235
value, 235
volatile, 235
XML Schema, 232-235
XML Schema attribute declarations, 206-209
XML Schema complex type

definitions, 197-198
XML Schema elements, 219-221
XML Schema simple type

definitions, 190-191
XML Schema wildcards, 227

EDataType, 188
EEnum (XML Schema simple type

definitions), 186
EEnumLiteral (XML Schema simple type

definitions), 186
emf.Rose2Java task, 373
EOperation (Complex type definitions), 198
EPackage, 118, 181
EParameter, 199
EReference (XML Schema element

declarations), 209
EStructuralFeature

Boolean, 108
Default value, 109
Operations, 109

ETypedElement, 107-108
Generated code, 243

Data type, 245-248
Default values, 252-253
Enumerated type, 248-250
Multi-valued, 250-252
Non-changeable, 254-255
Simple, 244-245
Unsettable, 255-257
Volatile, 253-254

iD
EAttribute class, 148
Ecore, 110
XML Schema, 202

instanceClass
EClassifer class, 113
EDataType class, 160
Ecore, 233

iInstanceClassName, 113
EClassifer class, 113
EDataType, 188

interface attribute
EClass class, 146
Ecore, 233

isInstance (EClassifier class), 114
isSuperTypeOf (EClass class), 116
Java, 147-149

literal (EEnumLiteral), 158, 186
lowerBound, 107

EAttribute class, 148, 201
Ecore, 234
EOperation class, 155, 199
EParameter class, 156, 199
EReference class, 150
ETypedElement class, 107

Non-schema XML attributes, 230
nsPrefix

Ecore, 81, 234
EPackage class, 118, 181

nsURI
Ecore package, 81
EPackage class, 118, 181

objects
copying, 532
descriptors, 44
names/values, printing, 427
source providers, 44

opposite
Ecore, 221, 234
EReference class, 151

OrderDate (PurchaseOrder class), 246-247
ordered (ETypedElement), 108
orders (EFeatureMapEntry), 272
required (ETypedElement class), 109
resolveProxies (EReference class), 111
Resources (EMF 2.4 enhancements), 639-640
serializable

Ecore, 234
EDataType class, 160

source (EAnnotation class), 120
Status (PurchaseOrder class), 248
TotalAmount (PurchaseOrder class), 253
UML, 132

default values, 133-134
multi-valued, 133
single-valued, 132

unique
EAttribute class, 149
Ecore, 235
EOperation, 155, 199
EParameter, 157, 199
EReference class, 151
ETypedElement class, 107

unsettable
EAttribute, 149, 255
Ecore, 235
EReference class, 151
EStructuralFeature class, 108
generated code, 255-257

volatile
EAttribute class, 149
Ecore, 235
EReference class, 152
EStructuralFeature class, 108
generated code, 253-254

XML resources, 464
XML Schema, 183

Declaring, 182
default values, 204
FormDefault, 183
Global, 205
Qualified, 205
References, 205

678 Index

required, 203
URI, 202-203
wildcards, 226-227

authorities (URIs), 447
autoBuild attribute (emf.Rose2Java task), 374

B
backupSupplier reference, 405
backward compatible enumerated types, 620
base implementations of XML resources, 489
basePackage property, 359

EPackage class, 142
Generator model, 81

BasicCommandStack class, 57
basicSet() method, 261
basicUnsetShipTo() method, 269
beginRecording() method, 546
behaviors

Ecore, 112-113, 208, 220
extensions (objects), 515-519
XML resource options, 478

bidirectional references, 135-136, 259-261
binary compatible reflective methods property, 650
Boolean attributes

EStructuralFeature, 108
PurchaseOrder class, 296

Boolean flags (Performance optimization generated
code), 295, 298

Boolean Flags Field property, 356
Boolean Flags Reserved Bits property, 356
Bundle Manifest property, 351
bundles. See plug-ins
by-value aggregation. See containment

C
caching

Intrinsic IDs, 495
Resource URIs, 496

canExecute() method, 55
canHandle() method, 634
canUndo() method, 55
Change model

change descriptions, 537-541
multi-valued features, 541-544
recording, 545-547

starting, 546
stopping, 546
transaction atomicity and rollback, 547-548

resources, 544-545
changeable attribute

Ecore, 233
EReference, 267
EStructuralFeature class, 108

changeable property
EAttribute class, 148
EReference class, 150

ChangeCommand class, 60
ChangeDescription class, 538

apply() method, 539
applyAndReverse() method, 540

ChangeRecorder class, 546
changes

describing, 537-541
multi-valued features, 541-544

notifications
EMF.Edit generated item providers, 319-321
Item providers, 51-52

recording, 545-547
starting, 546
stopping, 546
transaction atomicity and rollback, 547-548

resources, 453, 544-545
child creation extenders property, 651
Children property, 363
Class properties (generator), 362-363
classes

abstract, 243
AbstractCommand, 56
AbstractOverrideableCommand, 61
Adapter factory, 291-295
AdapterFactoryContentProvider, 47, 52
AdapterFactoryEditingDomain, 51, 62
AdapterFactoryLabelProvider, 47
Address, 275
BasicCommandStack, 57
ChangeDescription, 538

apply() method, 539
applyAndReverse() method, 540

ChangeRecorder, 546
CommandParameter, 61
CommandStackListener, 57
CommandWrapper, 58
CompoundCommand, 57-58
Copier, 531
Customer, 383
CustomersItemProvider, 596
Diagnostician, 560
dynamic, 36-38
EAnnotation, 119-121

@model properties, 164
attributes, 120
Ecore-sourced, 121
EMOF tags 123,
extended metadata, 123
GenModel-sourced, 122
Java specification, 164-165
map-typed features, 120
XSD2Ecore, 123

EAttribute, 105
@model properties, 147-149
attributes, 110,193, 209
Java specification, 147-149
UML class mappings, 132
unsettable attribute, 255
XML Schema attribute declarations, 201
XML Schema element declarations, 214
XML Schema model groups,

repeating, 222-225
XML Schema wildcards, 225-227

EClass, 105, 114-116
@model properties, 146
attributes, 191
getEAllStructuralFeatures() method, 278
Java specification, 146-147
multiple inheritance support, 115
operations, 116
UML class mappings, 129-130
XML Schema complex type

definitions, 191-198

Index 679

EClassifier, 113-114
attributes, 113-114
operations, 114
Rational Rose non-UML Ecore

properties, 142
EContentAdapter, 31, 519
Ecore, 18, 87, 114-116
EcoreResourceFactoryImpl, 492
EcoreUtil, 503

copy() method, 530
equals() method, 534
getAllContents() method, 507
getAllProperContents() method, 507

EDataType, 105, 116
@model properties, 160
Java specification, 160-161
UML class mappings, 131-132

EDataTypeUniqueEList, 251
EditingDomainActionBarContributor, 335
EditorActionBarContributor, 45
EEnum, 117

operations, 118
UML class mappings, 130-131
XML Schema simple type definition

attributes, 186
EEnumLiteral, 117

@model properties, 158
Java specification, 158-159
XML Schema simple type definition

attributes, 186
EFactory, 119
EGenericType, 623
EMap, 269-271
EMFPlugin, 338
EModelElement, 144
EMOFResourceImpl, 492-493
EObjectValidator, 563
EOperation, 113

@model properties, 154-155
attributes, 198
code generated patterns, 273-275
Java specification, 153-155
Rational Rose non-UML Ecore

properties, 143
UML class mappings, 138-140
XML Schema complex type

definitions, 198-200
EPackage

attributes, 118, 181
Java specification, 159-160
Rational Rose non-UML Ecore

properties, 141-142
references, 118
UML class mappings, 129
XML Schemas, 180-183

EParameter, 113
@model properties, 156
attributes, 199
Java specification, 156-157

EPO1Editor, 581
EPO2Switch, 504
EReference, 106, 111-112

@model properties, 150-152
attributes, 209, 267
Java specification, 150-152
UML bidirectional references, 135-136

UML containment references, 136
UML map references, 136-138
XML Schema attribute declarations, 201

EStoreEObjectImpl, 497
EStringToStringMapEntry, 120
EStructuralFeature, 106, 109-110

Boolean attributes, 108
default value attributes, 109
operations, 109
Rational Rose non-UML Ecore

properties, 142-143
ETypedElement

attributes, 107-109
Java specification, 163-164

ETypeParameter, 623
FeatureChange, 539
FilteredSettingsIterator, 528
generated, observing, 521-522
generating, 25-26
GenericXMLResourceFactoryImpl, 490
GlobalAddress, 276
inheritance (generated code), 275

interface, 277-278
multiple, 276-277
single, 275-276

ItemProviderAdapter, 47, 311-312, 568
Java, 146-147
ListChange, 541, 544
ListViewer, 44
Map entry classes, 161-163
Modeled, Generated code, 240-243
OrdersItemProvider, 589, 596
Plugin, 338
POProcessor, 629
PPOAdapterFactory, 293
PPOModelWizard, 336
PPOSwitch, 291-292
PropertySource, 49
PurchaseOrder

Boolean attributes, 296
comment attribute, 244-245
EClass, 434
ExtendedPO2 model new features, 382
items containment reference, 264
Operations, 273
orderDate attribute, 246-247
orders reference, 262
pendingOrders reference, 266
previousOrder reference, 263, 393
shippedOrders reference, 266
status attribute, 248
totalAmount attribute, 253
URI fragments, 454
UsageCrossReferencer class, 523-525

ReflectiveItemProvider, 47, 53
ResourceChange, 544
ResourceImpl, 452
ResourceSetImpl, 33
SimplePOEditorAdvisor, 606-607
Supplier, 168, 382

children, 587
Create child property, disabling, 593
getChildren() method, overriding, 588
non-modeled nodes, 588
OrdersItemProvider class, 589
purchase orders/customers, deleting, 594

680 Index

SupplierItemProvider class, 590
TransientSupplierItemProvider class, 591-592

SupplierItemProvider, 590
dispose() method, 597
getOrders() method, 593
object correction, 594-595

Switch, 291-295
TableViewer, 44
TransientItemProvider

drag-and-drop, 596
Object correction, 594-595

TransientSupplierItemProvider, 591-592
TreeViewer, 43
UML, 129-130

Data types, 131-132
Enumerations, 130-131

UnmodifiableEList, 386
UnresolvedProxyCrossReferencer, 525
USAddress, 275, 463
USAddressImpl, 553
UsageCrossReferencer, 402, 523, 525
Viewer, 43

Content providers, 43
ListViewer class, 44
Populating from resources, 43-44
Property sheets, 44
TableViewer class, 44
TreeViewer class, 43

Visitor, creating, 504
XMIResourceImpl, 490-492

Classifiers
Ecore, 113-114
Rational Rose non-UML Ecore properties, 142

Code Formatting property, 358
code generation, 23

actions, 94-95
active object storage, 500-502
adapter factory classes, 291-295
alternative, 295

Performance optimization, 295-302
Suppressing EMFisms, 302-305

applications, 95-97
attributes, 243

Data type, 245-248
Default values, 252-253
Enumerated type, 248-250
Multi-valued, 250-252
Non-changeable, 254-255
Simple, 244-245
Unsettable, 255-257
Volatile, 253-254

class inheritance, 275
interface, 277-278
multiple, 276-277
single, 275-276

customizing, 305-308
editing, 98
factories/packages, 287-291
feature maps, 272-273
generators, 93, 341-346

Ant tasks, 371-375, 646
class properties, 362-363
command-line tools, 364-371, 645-646
edit content, 344
editor content, 344
enum properties, 652

ExtendedPO2 example. See ExtendedPO2
model

feature properties, 363-364
GenModel object, 342
GenPackage objects, 342
model content, 343
model object properties, 350-359, 648-651
package properties, 359-362, 651-652
properties, 350, 648
template format, 375-380
test content, 345
user interface, 346-349

modeled classes, 240
abstract classes, 243
accessor methods, 241-243
implementation classes, 240-241
interfaces, 240-243

operations, 273-275
properties, 93
RCP, 606-607
references, 257

bidirectional, 259-261
containment, 264-266
map, 269-271
multiplicity-many, 261-263
non-changeable, 267
non-proxy-resolving, 263-264
one-way, 257-259
unsettable, 268-269
volatile, 266-267

reflective methods, 278
feature IDs, 278-279, 285-287
inverse handshaking, 283-285
reflective accessors, 279-283

switch classes, 291-295
validation framework, 553-557
XML resource implementations, 493

code generation (EMF.Edit), 45-46
Action bar contributors, 334-336
Editor, 331-334
Generate Edit Code, 66-67
Generate Editor Code, 67-68
Generator model, 28-29
item providers, 310-311

adapter factories, 327-330
change notification, 319-321
commands, 318-319
content/label, 311-315
item property sources, 315-318
object appearance, 325-326
object candidates, 324-325
object creation support, 321-324

Merge behavior, 28
Model classes, 24

Factories, 26
Interfaces, 24-25
Methods, 25-26
Packages, 26
Plug-in manifest files/property files, 27

plug-ins, 337-339
regeneration, 27-28, 68
skeleton adapter factory classes, 26
switch classes, 26
wizard, 336-337

collectNewChildDescriptors() method, 324
Color providers property, 649

Index 681

Command interface, 55-56
command-line generator tools, 364, 645

Ecore2GenModel, 369-370
Generator, 370-371
Headless invocation, 365-366
Java2GenModel, 645
Rose2GenModel, 366, 368
XSD2GenModel, 369

CommandParamter class, 61
commands

appending and executing, 58
classes

AbstractCommand, 56
BackCommandStack, 57
CommandStackListener, 57
CommandWrapper, 58
CompoundCommand, 57-58

Command interface, 55-56
CommandStack interface, 56
EMF.Edit, 55, 59-60

AddCommand, 59
ChangeCommand, 60
CopyCommand, 59
CopyToClipboardCommand, 59
CreateChildCommand, 59
Creating, 61
CutToClipboardCommand, 59
DeleteCommand, 59
DragAndDropCommand, 60
Editing domain, 61-65
Generated item providers, 318-319
MoveCommand, 59
Overrideability, 61
PasteFromClipboardCommand, 60
RemoveCommand, 59
ReplaceCommand, 59
SetCommand, 59

executability, testing, 55
framework, 55
overriding, 567-573

createCommand() method, 567
Property sheets, 572
Volume discounting example, 569-571

RemoveCommand, 62
stacks

listening to, 57
maintaining with EMF.Edit-based editor, 64

undoability, 55
commandStackChanged() method, 57
CommandStack interface, 56
CommandStackListener class, 57
CommandWrapper class, 58
Comment attribute (PurchaseOrder class), 244-245
comparing objects, 533-535
complex type definitions (XML Schema), 191

abstract types, 194
anonymous types, 194
Ecore attributes, 197-198
extensions, 192-193
mixed types, 195-197
operations, 198-200
restrictions, 192-193
simple content, 193

Compliance level property, 648
ComposeableAdapterFactory interface, 330
CompoundCommand class, 57-58

Conceptual UML generic models representation, 628
ConsideredItems reference, 265
constant-time reflective methods, 301-302
constraints

EObjectValidator class, 563
validation framework, 549-550
XML Schema, 564-565

Constraints attribute (Ecore), 233
Constraints property (EClassifier class), 142
containment

Ecore references, 111
proxies, enabling, 411
references, 264-266

PrimerPO model, 574
PriorityOrders, 168
StandardOrders, 168
UML, 136
XML resources, 464

containment attribute (EReference class), 111, 150
Containment Proxies property, 352
content

adapters, 519-520
generated providers, 311-315
generators

Edit, 344
Editor, 344
Model, 343
Test, 345

item providers, 47-49
plug-ins, 609
resources, 451
types

EMF 2.4, 634-637
identifier property, 652

contentDescription() method, 634
ContentHandler interface, 634
contributeToMenu() method, 336
contributeToToolBar() method, 336
convertDateToString() method, 388
convertSKUToString() method, 390
convertToString() method

EFactory class, 119
generated factories, 288

Copier class, 531
copy() method

Copier class, 531
EcoreUtil class, 530

copyAll() method, 530
copyAttribute() method, 532
CopyCommand class, 59
copyContainment() method, 532
copying objects, 529-533

copy() method, 530-531
copyAll() method, 530

copyReference() method, 533
copyright attribute (emf.Rose2Java task), 374
Copyright fields property, 648
Copyright Text property, 351
CopyToClipboardCommand class, 59
createAdapter() method, 294
Create Child property, 363, 593-594
CreateChildCommand class, 59
createChildParameter() method, 325
createCommand() method, 319

EMF.Edit editing domain, 63
ItemProviderAdapter class, 568

682 Index

CreateDateFromString() method, 391
createFileURI() method, 448
createFromString() method

EFactory class, 119
generated factories, 288

createInitialModel() method, 579
createItemPropertyDescriptor() method, 317
create() method, 61

Generated factories, 288
EFactory class, 119

createModel() method (EMF.Edit editor), 333
createPages() method (EMF.Edit editor), 333
createPlatformResourceURI() method, 448
createPurchaseOrder() method, 446
createRemoveCommand() method

(ItemProviderAdapter class), 568
createResource() method (URIs), 444
createSKUFromString() method, 390
createURI() method, 448
Creation Commands property, 357
Creation Icons property, 357
Creation submenus property, 650
cross-document containment references (ExtendedPO3

model), 411-415
Containment proxies, enabling, 411
Purchase orders, controlling, 412

Cross-document non-containment references
(ExtendedPO3 model), 404-408, 411

additional resources, loading, 405
concurrent resources, editing, 408
lazy loading, 408
resources, editing, 407
setting, 406
single resources, editing, 405

cross-document references
resource sets, 32
XML resources, 466, 468

cross-feature orders, 168-171
cross-referencers, 523

adapters, 526-529
basic, 523-526
objects, 38

Customer class, 383
customer orders, iterating over, 262
CustomersItemProvider class, 596
customizing

EMF.Edit views, 573
list/table viewers, 580-587
model objects, suppressing, 573-579
non-model intermediary view objects,

adding, 587-597
generated code, 305-308
objects, 428, 431-432

CutToClipboardCommand class, 59

D
data integration, 38
Data Type Converters property, 360
data types

attributes, 245-248
definition, 246
Ecore, 116-117

Enumerated types, 117-118
Literals, 117
Modeled data types, 123-124

ExtendedPO2 model, 387-391
Date, 387-389
SKU, 390-391

Java, 160-161
UML, 131-132

databases, relational, 23
DataType property

EAttribute class, 148
EOperation class, 155
EParameter class, 156

Date data type, implementing, 387-389
declaring

attributes, 182, 201-209
elements, 209-221

Default attribute (Ecore), 206, 233
default options (XML resources), 486
Default property (EAttribute class), 148
default values

attributes, 252-253
EStructuralFeature, 109
XML Schema attributes, 204
XML Schema elements, 214

defaultValue attribute
EAttribute class, 148
EClassifer class, 114
EStructuralFeature class, 109
UML, 133-134

defaultValueLiteral attribute
EAttribute, 204
EStructuralFeature class, 109

delegatedGetFactory() method, 458
delete() method, 633
DeleteCommand class, 59
deleting resources, 633
deltas (resource), 7
demand loading documents, 33-34
dependencies (packages), 398-404
deploying RCP applications, 608
derived attribute

EAttribute class, 148
Ecore, 233
Ecore kernel, 108
EReference class, 150
EStructuralFeature class, 108

developer tools
adapters, 508

adding to objects, 508-515
behavior extensions, 515-519
content, 519-520
generated classes, observing, 521-522

comparing objects, 533-535
copying objects, 529-533

copy() method, 530-531
copyAll() method, 530

cross-referencers, 523
adapters, 526-529
basic, 523-526

switches, 503-505
tree iterators, 505-508

development
applications, 104
Eclipse, 3

DiagnosticChain interface, 556
Diagnostician class, 560
Disposable Provider Factory property, 361
dispose() method (SupplierItemProvider class), 597

Index 683

documentation
UML, 140
XML Schema annotations, 228

DocumentRoot attribute (Ecore), 233
documents, demand loading, 33-34
DOM conversion, XML resources, 487-489
doSwitch() method, 292, 504
DragAndDropCommand class, 60
drag-and-drop (purchase orders), 596
dynamic classes, creating, 36-38
dynamic implementation of metadata, 432, 435-437
Dynamic property, 362
dynamic templates, 342
Dynamic Templates property, 358
dynamic XML resources, 479-482

E
eAllContents() method, 430
EAnnotation class, 119-121

@model properties, 164
attributes, 120
Java specification, 164-165
map-typed features, 120
sources

Ecore, 121
EMOF, 123
Extended metadata, 123
GenModel, 122
XSD2Ecore, 123

XML Schema annotations, 228
Appinfo element, 229
documentation, 228
ignored, 229
non-schema attributes, 230

EAnnotations attribute
EAttribute, 193, 201
EClass, 191
EDataType, 188
EEnum, 186
EOperation, 199
EPackage, 181
EParameter, 199

EAttribute class, 105
@model properties, 147-149
attributes, 110

complex type definitions, 193
XML Schema element declarations, 209

Java specification, 147-149
UML class mappings, 132
unsettable attribute, 255
XML Schema attribute declarations, 201
XML Schema element declarations, 214
XML Schema model groups, repeating, 222-225
XML Schema wildcards, 225

Attribute, 226-227
Ecore attributes, 227
Element, 225-226

eBaseStructuralFeatureID() method, 279, 286
eBasicRemoveFromContainerFeature() method, 285
EClass, 105, 114-116

@model properties, 146
attributes, 191
getEAllStructuralFeatures() method, 278
Java specification, 146-147
multiple inheritance support, 115
operations, 116

UML class mappings, 129-130
XML Schema complex type definitions, 191

Abstract types, 194
Anonymous types, 194
Ecore attributes, 197-198
Extensions, 192-193
Mixed types, 195-197
Operations, 198-200
Restrictions, 192-193
Simple content, 193

XML Schema element declarations, 212
EClassifer class, 113-114

attributes, 113-114
operations, 114
Rational Rose non-UML Ecore properties, 142

eClassifier() method, 420
Eclipse

development, 3
editors, 8
Foundation, 3
overview, 3
Modeling Project, 5
perspectives, 8
platform, 6

plug-in architecture, 6-7
Rich Client Platform (RCP), 9
user interface, 7-9
workspace resources, 7

projects, 4-5
views, 8
Web site, 9

Eclipse Public License (EPL), 3
eContainer() method, 31-32
EContentAdapter class, 31, 519
eContents() method, 430
Ecore, 17-19

annotations, 119-121
attributes, 110-111

Accessor visibility, 209, 221
Behavior, 208
Behaviors, 220
changeable, 233
constraints, 233
default, 206, 233
derived, 233
DocumentRoot, 233
Enum, 233
FeatureMap, 233
iD, 110
ignore, 233
implements, 233
instanceClass, 233
interface, 233
lowerBound, 234
many, 207, 234
Mixed, 234
Multiplicity, 219
name, 206, 219, 234
nsPrefix, 234
Opposite, 221, 234
ordered, 234
Package, 234
Reference, 234
resolveProxies, 234
serializable, 234
suppressedGetVisibility, 234

684 Index

suppressedIsSetVisibility, 234
suppressedSetVisibility, 235
suppressedUnsetVisibility, 235
transient, 235
unique, 235
unsettable, 235
upperBound, 235
value, 235
volatile, 235
XML Schema, 232, 235
XML Schema attribute declarations, 206-209
XML Schema complex type

definitions, 197-198
XML Schema elements, 219-221
XML Schema simple type

definitions, 190-191
XMLSchema wildcards, 227

behavioral features, 112-113
classes, 18, 87, 114-116
classifiers, 113-114
creating

relational databases, 23
UML, 19-20
XML schemas, 23

data types, 116-117
enumerated types, 117-118
literals, 117
modeled data types, 123-124

editor, 19
factories, 118-119
file, 28
Java annotations, 21-22
Java language types, 124
kernel, 105-107
metamodel

Modeling generics, 623
XMI serialization, 626

models
application development role, 104
application runtime role, 104
files, 71
generator models for, creating, 89-91
importers, 89

packages, 81, 118-119
purchase order instances, 18
Rational Rose non-UML properties, 140-141

Classifiers, 142
Model elements, 144
Operations, 143
Packages, 141-142
Structural features, 142-143

references, 111-112
structural features, 106-110

Boolean attributes, 108
Default value attributes, 109
Derived attributes, 108
ETypedElement class, 108
Feature IDs, 109
Operations, 109

user models, 125
validation, 642-643
XMI serialization, 20-21

Ecore2GenModel command-line interface, 369-370
EcoreResourceFactoryImpl class, 492
EcoreUtil class, 503

copy() method, 530

equals() method, 534
getAllContents() method, 507
getAllProperContents() method, 507

ECrossReferenceAdapter adapter, 526
eCrossReferences() method, 430
EDataType class, 105, 116

@model properties, 160
attributes, 188
Java specification, 160-161
UML class mappings, 131-132
XML predefined schema simple types, 230
XML Schema simple type definitions, 184

Anonymous types, 189-190
Ecore attributes, 190-191
List types, 188
Restrictions, 184-186
Restrictions with enumeration

facets, 186-187
Union types, 188

EDataTypeUniqueEList class, 251
eDerivedStructuralFeatureID() method, 279, 286
Edit Directory property, 357
Edit Plug-In Class property, 357
Edit plugin ID property, 649
Edit plugin variables property, 649
EditingDomainActionBarContributor class, 335
Editing domain (EMF.Edit), 61-62

Command stack maintenance, 64
Creating commands, 62-64
Resource set, accessing, 64-65

EditingDomain interface, 51
Editor Directory property, 357
Editor Plug-In Class property, 358
Editor plugin ID property, 650
Editor plugin variables property, 650
EditorActionBarContributor class, 45
editors

definition, 8
Ecore, 19
EMF.Edit, 331-332, 334
ExtendedPO2 model, 392-393

eDynamicGet() method, 302
EEnum class, 117

Operations, 118
UML class mappings, 130-131
XML Schema simple type definition

attributes, 186
EEnumLiteral class, 117

@model properties, 158
Java specification, 158-159
XML Schema simple type definition

attributes, 186
EExceptions attribute, 199
EFactory class, 119
EFactory interface, 287
EGenericType class, 623
eGet() method, 280-282
eInverseAdd() method, 261, 283
eInverseRemove() method, 261, 284
eIsSet() method, 36, 282, 428
Element declarations (XML Schema), 209

AnyType, 210
Default values, 214
Ecore attributes, 219-221
Global, 215
ID, 211

Index 685

ID references, 211-213
Nillable, 213
Qualified, 215
References, 216
Substitution groups, 216-218
URI elements, 211-213

Element wildcards (XMLSchema), 225-226
EMap class, 269-271
EMF 2.3/2.4

annotated Java model importer, 645-646
Ecore validation, 642-643
enhancements, 632-633

Content types, 634-637
Resource attributes, 639-640
Resource deletion, 633
Timestamps, 638-639
URI handlers, 640-641

generator model properties, 648
Enum, 652
Model object, 648-651
Packages, 651

Java 5.0 support, 617
enumerations, 618-622
generics, 622-632

reference keys, 643-645
resource options, 646
XML resource options, 647-648

emf.Ecore2Java task, 375
EMF.Edit

Action bar contributors, 334-336
code generation, 45-46, 65

Generate Edit Code, 66-67
Generate Editor Code, 67-68
regeneration, 68

commands, 55, 59-61
Editing domain, 61-62

command stack maintenance, 64
creating commands, 62-64
resource set, accessing, 64-65

editor, 331-334
generated item providers, 310-311

adapter factories, 327-330
change notification, 319-321
commands, 318-319
content/label, 311-315
item property sources, 315-318
object appearance, 325-326
object candidates, 324-325
object creation support, 321-324

item providers, 46-47
change notification, 51-52
Command factory role, 50-51
content and label providers, 47-49
property source role, 49-50
reflective, 53
roles, 47
typed, 54

ItemProviderAdapter class, 47
overriding commands, 567-573

createCommand() method, 567
Property sheets, 572
Volume discounting example, 569-571

plug-ins, 46, 337-339
reflective EObject API approach, 45
ReflectiveItemProvider class, 47

views, customizing, 573
list/table viewers, 580-587
model objects, suppressing, 573-579
non-model intermediary view objects,

adding, 587-597
wizard, 336-337

EMFisms, suppressing, 302-305
EObject API, 302-303
interface/implementation split, 305
metadata, 304
types, 303

emf.Java2Java task, 646
EMF Model wizard, 71
EMFPlugin class, 338
EMF Project wizard, 71
emf.Rose2Java task, 373-374
EMF support of RCP, 600-601
EMF types, suppressing, 303
emf.XSD2Java task, 374-375
EModelElement class, 144
EMOF (Essential Meta-Object Facility), 40

implementations, 492-493
tags, 123

EMOFResourceImpl class, 492-493
endRecording() method, 546
Enhancements (EMF 2.4), 632-633
eNotificationRequired() method (generated code

example), 245
eNotify() method (generated code example), 245
Enum attribute (Ecore), 233
Enum pattern, 618-621
Enum properties (generator), 652
Enumerated type attributes (generated code), 248-250
enumerations

Java 5.0, 618
Enumerated type generator pattern, 618-621
Java specification, 621-622

literals (Java), 158-159
types (Ecore), 117-118
UML, 130-131

EObject API, suppressing, 302-303
EObject interface

generating interfaces as extensions of, 24-25
Reflective API, 35-36, 45

EObjectValidator class, 563
EOperation class, 113

@model properties, 154-155
attributes, 198
code generated patterns, 273-275
Java specification, 153-155
Rational Rose non-UML Ecore properties, 143
UML class mappings, 138-140
XML Schema complex type definitions, 198-200

EOpposite reference, 111
EPackage class

attributes, 118, 181
Java specification, 159-160
Rational Rose non-UML Ecore

properties, 141-142
references, 118
UML class mappings, 129
XML Schemas

attribute declaration, 182
attributes, 183
Element/attribute FormDefault, 183
with target namespaces, 181
without target namespaces, 180

686 Index

EPackage interface, 290
eClassifier() method, 420
Registry, 423

EParameter class, 113
@model properties, 156
attributes, 199
Java specification, 156-157

EParameters attribute (EOperation class), 199
EPL (Eclipse Public License), 3
EPO1Editor class, 581
Epo2 package, 396
EPO2Switch class, 504
Epo3 package, 396
equals() method, 534
Equinox, 4
EReference class, 106, 111-112

@model properties, 150-152
attributes, 209, 267
Java specification, 150-152
UML

bidirectional references, 135-136
containment references, 136
map references, 136-138

XML Schema attribute declarations, 201
EReferenceType reference, 111
eResource() method, 31-32, 451
eSet() method, 282
eSetStore() method, 498
eSetVirtualIndexBits() method, 300
Essential Meta-Object Facility. See EMOF
EStoreEObjectImpl class, 497
EStore interface, 499-500
eStore() method, 498
EStringToStringMapEntry class, 120
EStructuralFeature class, 106, 109-110

Boolean attributes, 108
default value attributes, 109
operations, 109
Rational Rose non-UML Ecore

properties, 142-143
EType attribute

EAttribute, 193, 201
EOperation, 199
EParameter, 199

ETypedElement class
attributes, 107-109
Java specification, 163-164

ETypeParameter class, 623
eUnset() method, 36, 282
EValidator interface, 559
eVirtualGet() method, 299
eVirtualIndexBits() method, 300
eVirtualSet() method, 299
eVirtualValues() method, 299
Exceptions property (EOperation class), 155
execute() method (CompoundCommand class), 57
executing commands, 58
extended metadata, 437, 439-440

annotations, 123
XML resources, 482-485

ExtendedMetaData interface, 437-440
ExtendedMetaData property (EAnnotation class), 165
ExtendedPO1 model

customer and purchase order associations, 580
customer order list view, 580-582
drag-and-drop, 596

object correction, 594-595
purchase order table view, 582-586
Supplier class

children, 587
Create child property, disabling, 593
getChildren() methods, overriding, 588
non-modeled nodes, 588
OrdersItemProvider class, 589
purchase orders/customers, deleting, 594
SupplierItemProvider class, 590
TransientSupplierItemProvider class, 591-592

SupplierItemProvider class
dispose() method, 597
getOrders() method, 593

ExtendedPO2 model, 381
Custom class, 383
data types, implementing, 387-391

Date data type, 387-389
SKU data type, 390-391

editor, 392-393
generating, 384
PurchaseOrder class new features, 382
reference target restrictions, 393, 396
references, 382
Supplier class, 382
volatile features, implementing, 384-386

ExtendedPO3 model
multiple resources, editing, 404

cross-document containment
references, 411-415

cross-document non-containment
references, 404-408, 411

splitting into multiple packages, 396-397
package dependencies, 398-401
reference target restrictions, 401-404

UsageCrossReferencer class, 523, 525
Extensible model properties (Rational Rose class

model), 80
Extensible provider factory property, 651
extensions (XML Schema), 179, 192-193
extrinsic IDs (XML resources), 486

F
Facade Helper Class property, 359
factories

adapter factories, 30-31
adding adapters to objects, 510-513
EMF.Edit Item providers, 327-330
generated classes, 291-295

Ecore, 118-119
generated, 26, 287-291
item provider adapter (EMF.Edit), 327-330
resource, 457, 612-614

Feature Delegation property, 352
feature IDs, 109

conversion methods, 285-287
generated code, 278-279

Feature Map Wrapper Class property, 356
Feature Map Wrapper Interface property, 356
Feature Map Wrapper Internal Interface property, 356
feature maps, 168

annotated Java, 175-176
code generated patterns, 272-273
FeatureMap interface, 171-172
multiple features/cross-feature orders, 168-171

Index 687

UML, 173, 175
XML Schemas, 176-177

Feature properties (generator), 363-364
Feature-property property

Map entry classes, 162
Structural features, 153

FeatureChange class, 539
FeatureMap attribute (Ecore), 233
FeatureMap interface, 168, 171-172
Features property

Map entry classes, 162
Structural features, 153

File extensions property, 652
file scheme URIs, 83
files

annotated Java, 72-76, 79
Ecore, 28
generating, 342
Generator template, 375-376

example, 376-379
extensibility, 379-380

genmodel, 28
JAR, 609-612
model, 71
plug-in

manifest, 27
properties, 315

property, generating, 27
FilteredSettingsIterator class, 528
finding

object cross-references, 38
packages, 422-425

findUsage() method, 525
fireNotifyChanged() method, 52, 320
Font providers property, 649
Force Overwrite property, 359
framework (commands), 55

AbstractCommand class, 56
BasicCommandStack class, 57
Command interface, 55-56
CommandStack interface, 56
CommandStackListener class, 57
CommandWrapper class, 58
CompoundCommand class, 57-58

G
Generate example Class property, 362
Generate Schema property, 353
generated code

active object storage, 500-502
adapter factory classes, 291-295
alternative, 295

Performance optimization, 295-302
Suppressing EMFisms, 302-305

applications, 95-97
attributes, 243

Data type, 245-248
Default values, 252-253
Enumerated type, 248-250
Multi-valued, 250-252
Non-changeable, 254-255
Simple, 244-245
Unsettable, 255-257
Volatile, 253-254

class inheritance, 275
interface, 277-278
multiple, 276-277
single, 275-276

customizing, 305-308
editing, 98
factories/packages, 287-291
feature maps, 272-273
generators, 93, 341-346

Ant tasks, 371-375, 646
class properties, 362-363
command-line tools, 364-371, 645-646
edit content, 344
editor content, 344
enum properties, 652
ExtendedPO2 example. See ExtendedPO2

model
feature properties, 363-364
GenModel object, 342
GenPackage objects, 342
model content, 343
model object properties, 350-359, 648-651
package properties, 359-362, 651-652
properties, 350, 648
template format, 375-380
test content, 345
user interface, 346-349

modeled classes, 240
abstract classes, 243
accessor methods, 241-243
implementation classes, 240-241
interfaces, 240-243

operations, 273-275
RCP, 606-607
references, 257

bidirectional, 259-261
containment, 264-266
map, 269-271
multiplicity-many, 261-263
non-changeable, 267
non-proxy-resolving, 263-264
one-way, 257-259
unsettable, 268-269
volatile, 266-267

reflective methods, 278
feature IDs, 278-279, 285-287
inverse handshaking, 283-285
reflective accessors, 279-283

switch classes, 291-295
Validation framework effects, 553-554, 556-557
XML resource implementations, 493

generated code (EMF.Edit)
Action bar contributors, 334-336
Editor, 331-334
Generate Edit Code, 66-67
Generate Editor Code, 67-68
Generator model, 28-29
item providers, 310-311

adapter factories, 327-330
change notification, 319-321
commands, 318-319
content/label, 311-315
item property sources, 315-318
object appearance, 325-326
object candidates, 324-325
object creation support, 321-324

688 Index

Merge behavior, 28
Model classes, 24

Factories, 26
Interfaces, 24-25
Methods, 25-26
Packages, 26
Plug-in manifest files/property files, 27

plug-ins, 337-339
regeneration, 27-28, 68
skeleton adapter factory classes, 26
switch classes, 26
wizard, 336-337

generated editors, 97
generateEditorProject attribute (emf.Rose2Java

task), 374
@Generated tag, 306
generateJavaCode attribute (emf.Rose2Java task), 373
generateModelProject attribute (emf.Rose2Java

task), 374
generating

factories, 26
files, 342
interfaces

as EObject interface extension, 24-25
Interface-implementation separation

design, 24
Notifier interface, 25

methods, 25-26
packages, 26
plug-in manifest files, 27
property flies, 27
skeleton adapter factory classes, 26
switch classes, 26

generators, 341, 343-346
Ant tasks, 371

Advantages, 372
emf.Ecore2Java, 375
emf.Java2Java, 646
emf.Rose2Java, 373-374
emf.XSD2Java, 374-375

command-line tools, 364, 645
Ecore2GenModel, 369-371
Generator, 370-371
Headless invocation, 365-366
Java2GenModel, 645
Rose2GenModel, 366-368
XSD2GenModel, 369

content
Edit, 344
Editor, 344
Model, 343
Test, 345

ExtendedPO2 model, 381
Customer class, 383
data types, implementing, 387-391
editor, 392-393
generating, 384
PurchaseOrder class new features, 382
reference target restrictions, 393-396
references, 382
Supplier class, 382
volatile features, implementing, 384-386

ExtendedPO3 model. See Extended PO3 model
GenModel object, 342
GenPackage objects, 342

models, 28-29
Ecore models, creating, 89-91
files, 71
Location/name, 77

properties, 350, 648
Class, 362-363
Enum, 652
Feature, 363-364
Model object, 350-359, 648-651
Package, 359-362, 651-652

template format, 375-376
example, 376-379
extensibility, 379-380

User interface, 346, 348-349
generics (Java 5.0), 622

collections, 622-623
Java specifications, 629-630
modeling, 623-627
UML specifications, 627-629
XML resource implementations, 490
XML Schema specifications, 630-632

GenericXMLResourceFactoryImpl class, 490
GenModel

file, 28
object, 342
sourced annotations, 122

GenPackage objects, 342
get() method

Generated code example, 245
Items containment reference, 264

getAffectedObjects() method, 56
getAllContents() method, 507
getAllProperContents() method, 507
getAttributes() method, 639
getChildren() method

ItemProviderAdapter class, 312-313
overriding, 588

getChildrenFeatures() method, 312
getChoiceOfValues() method, 396
getClassifierID() method (EClassifier class), 114
getContentHandlers() method, 634
getCreateChildImage() method, 325
getCreateChildResult() method, 325
getCreateChildText() method, 325
getCrossReferenceAdapter() method, 528
getDefaultLoadOptions() method, 486
getDefaultSaveOptions() method, 486
getEAllAttributes() method, 428
getEAllStructuralFeatures() method, 278
getEEnumLiteral() method, 118
getEEnumLiteralByLiteral() method, 118
getElements() method (ItemProviderAdapter

class), 312
getEObject() method (ResourceSet interface), 461
getEStructuralFeature() method (EClass class), 116
getFeatureCount() method (EClass class), 116
getFeatureID() method (EClass class), 116
getInstantiableClass() method, 431
getInverseReferences() method, 528
getNewChildDescriptors() method, 324
getNonNavigableInverseReferences() method, 527
getOrders() method, 262 (SupplierItemProvider

class), 593
getParent() method (ItemProviderAdapter class), 312
getPendingOrders() method, 385
getPluginLogger() method, 338

Index 689

getPluginResourceLocator() method, 338
getPriorityOrders() method, 273
getPropertyDescriptors() method, 44, 50, 316
getPropertySource() method, 44
getRegisteredAdapter() method, 518
getResources() method (ResourceSet interface), 444
getResult() method, 55
getTimeStamp() method, 638
getURIFragment() method, 454
getURIHandlers() method, 641
global attributes (XML Schema attributes), 205
global elements (XML Schema elements), 215
GlobalAddress class, 276
GlobalLocation interface, 278

H
handlers (URI), 640-641
hasChildren() method (ItemProviderAdapter

class), 312
headless invocation (command-line generator

tools), 365-366

I
IAction interface, 44
IChangeNotifier interface, 51
ID attribute

EAttribute class, 148
Ecore, 110
XML Schema, 202

ID element, declaring, 211
IDEs (integrated development environments), 4, 9
IDs

extrinsic, 486
feature

conversion methods, 285-287
generated code, 278-279

intrinsic, 495
references

declaring, 211-213
XML Schema, 202-203

IEditingDomainItemProvider interface, 51, 324
IEditingDomainProvider interface, 64
Ignore attribute (Ecore), 233
ignored annotation (XML Schema), 229
IItemLabelProvider interface, 49
IItemPropertySource interface, 49
Image property, 363
implementation classes, generated, 240-241
implementations

IPropertySource interface, 49
XML resources

Base, 489
Ecore, 492
EMOF, 492-493
Generated, 493
Generic, 490
XMI, 490-492

tree viewers, 45
Implements attribute (Ecore), 233
inheritance

classes (generated code), 275
interface, 277-278
multiple, 276-277
single, 275-276

EClass class, 115
Initialize By Loading property, 360

instanceClass attribute
EClassifer class, 113
Ecore, 233
EDataType class, 160

instanceClassName attribute
EClassifer class, 113
EDataType, 188

Integrated development environments (IDEs), 4, 9
interface attribute

EClass class, 146
Ecore, 233

interfaces
class inheritance, 277-278
Command, 55-56
CommandStack, 56
ComposeableAdapterFactory, 330
ContentHandler, 634
DiagnosticChain, 556
Ecore2GenModel command-line

interface, 369-370
EditingDomain, 51
EFactory, 287
EObject

Generating interfaces as extensions of, 24-25
Reflective API, 35-36, 45

EPackage, 290
eClassifier() method, 420
Registry, 423

EStore, 499-500
EValidator, 559
ExtendedMetaData, 437-440
FeatureMap, 168, 171-172
generated, 240-241

command-line interface, 370-371
as EObject interface extension, 24-25
factories, 287
interface-implementation separation

design, 24
notifier interface, 25
packages, 289-290

GlobalLocation, 278
IAction, 44
IChangeNotifier, 51
IEditingDomainItemProvider, 51, 324
IEditingDomainProvider, 64
IItemLabelProvider, 49
IItemPropertySource, 49
InternalEObject, 497
IPlatformRunnable, 365
IPropertyDescriptors, 44
IPropertySource, 49
IPropertySourceProvider, 44
IStructuredContentProvider, 44
IStructuredItemContentProvider, 48
ITableItemLabelProvider, 48
ITreeContentProvider, 43
ITreeItemContentProvider, 48, 312
Java2GenModel command-line interface, 645
Modeled classes generated code, 243
Notifier, 25
PPOPackage, 76
PurchaseOrder, 74-76
Resource, 32, 443, 452

Contents, 451
delete() method, 633
eResource() method, 451

690 Index

load() method, 452-453
Options, 453, 470, 646
save() method, 452-453
URI fragments, 454-456

Resource Factory, 456
Resource Registry, 457-459
ResourceSet, 444, 459-462

cross-document referencing, 32
demand loading of documents, 33-34

Rose2GenModel command-line
interface, 366-368

SubstitutionLabelProvider, 555
Suppressing, 305
UML diagram, 13
URIConverter, 449-450, 634
URIHandler, 640
User, 346-349
XSD2GenModel command-line interface, 369

InternalEObject interface, 497
interrogating objects, 427
intrinsic IDs, caching, 495
invariants (validation framework), 550-552
inverse handshaking methods, 283-285
inverse values (references), 528
invoking validation, 557, 560-563
IPlatformRunnable interface, 365
IPropertyDescriptors interface, 44
IPropertySource interface, 49
IPropertySourceProvider interface, 44
isAdapterForType() method, 511
isChangeable property (EStructuralFeature class), 143
isFactoryForType() method, 293, 327
isFollowup() method, 305
isID property (EStructuralFeature class), 143
isInstance attribute (EClassifier class), 114
isModified() method (Resource changes), 453
isMoreActive() method, 517
isResolveProxies property (EStructuralFeature

class), 143
isSet() method, 268
isSuperTypeOf attribute (EClass class), 116
isTransient property (EStructuralFeature class), 143
IStructuredContentProvider interface, 44
IStructuredItemContentProvider interface, 48
isUnique property

EOperation class, 144
EStructuralFeature class, 143

isUnsettable property (EStructuralFeature class), 143
isVolatile property (EStructuralFeature class), 143
isWrappingNeeded() method, 313
ITableItemLabelProvider interface, 48
item property sources, 315-318
item providers (EMF.Edit), 310-311

adapter factories, 327-330
change notification, 51-52, 319-321
Command factory role, 50-51
commands, 318-319
content/label, 47-49, 311-312, 314-315
item property sources, 315, 317-318
objects

appearance, 325-326
candidates, 324-325
creation support, 321-324

property source role, 49-50
reflective, 53

roles, 47
typed, 54

ItemProviderAdapter class, 47, 311
CreateCommand() method, 568
CreateRemoveCommand() method, 568
Methods, 312

Items containment reference, 264
iterating over orders, 262
ITreeContentProvider interface, 43
ITreeItemContentProvider interface, 48, 312

J
Java

@model properties for structural
features, 152-153

annotated, 164-165
creating model files, 72-79
Ecore models, 21-22
feature maps, 175-176
model importer, 645-646

attributes, 147, 149
classes, 146-147
data types, 160-161
Development Tools (JDT), 4
Emitter Templates (JET), 342, 376
enumeration literals, 158-159
language types in Ecore, 124
maps, 161

entry classes, 161-163
typed elements, 163-164

operations, 153-155
packages, 159-160
parameters, 156-157
purchase order example. See purchase order

example
references, 150-152
structural features, 152-153
unification, 14

Java 5.0 support, 617
enumerations, 618

Enumerated type generator pattern, 618-621
Java specification, 621-622

generics, 622
collections, 622-623
Java specifications, 629-630
modeling, 623-627
UML specifications, 627-629
XML resource implementations, 490
XML Schema specifications, 630-632

Java2GenModel command-line interface, 645
Javadoc comments, 145
JDT (Java Development Tools), 4
JET (Java Emitter Templates), 342, 376
JFace, 8, 43

content providers, 43
ListViewer class, 44
populating from resources, 43-44
property sheets, 44
TableViewer class, 44
TreeViewer class, 43

JMerge utility, 342

K
KeyType property (map-typed elements), 163

Index 691

L
Label Feature property, 363
label providers, 47-49, 311-315
Language property, 648
launching RCP, 601-605

arguments, 603
completing configuration, 604
configuration, 601
Main tab, 602
plug-ins, 603
Run... toolbar drop-down, 601
startup time, 604

list types (XML Schema simple type definitions), 188
list viewers (EMF.Edit), Extended PO1

model, 580-587
customer and purchase order associations, 580
customer order list view, 580-582
purchase order table view, 582-586

ListChange class, 541, 544
listeners. See adapters
ListViewer class, 44
literal attribute (EEnumLiteral), 158, 186
literals (Ecore), 117
Literals Interface property, 360
load() method (Resource interface), 452-453
locations

generator models, 77
Rational Rose model file, 83
XML Schemas, 88

lower property
EAttribute class, 148
EOperation class, 155
EParameter class, 156
EReference class, 150

lowerBound attribute
EAttribute class, 148, 201
Ecore, 234
EOperation class, 155, 199
EParameter class, 156, 199
EReference class, 150
ETypedElement class, 107

M
Main tab (RCP), 602
many attribute

EAttribute class, 148
Ecore, 207, 234
EOperation class, 155
EParameter class, 156
EReference class, 150
ETypedElement class, 109

map references, 136-138, 269-271
maps

complex XML Schema types to Ecore classes, 87
feature maps, 168

annotated Java, 175-176
code generated patterns, 272-273
FeatureMap interface, 171-172
multiple features/cross-feature

orders, 168-171
UML, 173, 175
XML Schemas, 176-177

Java specification, 161
Map entry classes, 161-163
Map-typed elements, 163-164

MapType property (map-typed elements), 163

map-typed features (EAnnotation class), 120
MDA (Model Driven Architecture), 40
menuAboutToShow() method, 336
Merge behavior (code generation), 28
Meta Object Facility (MOF), 39-40, 492
metadata

dynamic implementation, 432, 435-437
extended, 437-440, 482-485
packages, 419

accessing, 420-422
finding, 422-425

reflection, objects, 426
creating, 426-427
customization, 428, 431-432
interrogation, 427

suppressing, 304
metamodels. See Ecore
methods

accessor, 241-243
adapt(), 30, 293, 508, 513, 518
addPreviousOrderPropertyDescriptor(), 395
appendAndExecute(), 58
apply(), 539
applyAndReverse(), 540
basicSet(), 261
basicUnsetShipTo(), 269
beginRecording(), 546
canExecute(), 55
canHandle(), 634
canUndo(), 55
collectNewChildDescriptors(), 324
commandStackChanged(), 57
contentDescription(), 634
contributeToMenu(), 336
contributeToToolbar(), 336
convertDateToString(), 388
convertSKUToString(), 390
convertToString(), 288
copy()

Copier class, 531
EcoreUtil class, 530

copyAll(), 530
copyAttribute(), 532
copyContainment(), 532
copyReference(), 533
create(), 61, 288
createAdapter(), 294
createChildParameter(), 325
createCommand(), 319

EMF.Edit editing domain, 63
ItemProviderAdapter class, 568

createDateFromString(), 391
createFileURI(), 448
createFromString(), 288
createInitialModel(), 579
createItemPropertyDescriptor(), 317
createModel(), 333
createPages(), 333
createPlatformResourceURI(), 448
createPurchaseOrder(), 446
createRemoveCommand(), 568
createResource(), 444
createSKUFromString(), 390
createURI(), 448
delegatedGetFactory(), 458
delete(), 633

692 Index

dispose(), 597
doSwitch(), 292, 504
eAllContents(), 430
eBaseStructuralFeatureID(), 279, 286
eBasicRemoveFromContainerFeature(), 285
eClassifier(), 420
eContainer(), 31-32
eContents(), 430
eCrossReferences(), 430
eDerivedStructuralFeatureID(), 279, 286
eDynamicGet(), 302
eInverseAdd(), 261, 283
eInverseRemove(), 261, 284
eIsSet(), 36, 428
endRecording(), 546
eNotificationRequired(), 245
eNotify(), 245
equals(), 534
eResource(), 31-32, 451
eSetStore(), 498
eSetVirtualIndexBits(), 300
eStore(), 498
eUnset(), 36
eVirtualGet(), 299
eVirtualIndexBits(), 300
eVirtualSet(), 299
eVirtualValues(), 299
execute(), 57
Feature ID conversion, 285-287
FeatureMap interface, 172
findUsage(), 525
fireNotifyChanged(), 52, 320
Generating, 25-26
get()

generated code example, 245
items containment reference, 264

getAffectedObjects(), 56
getAllContents(), 507
getAllProperContents(), 507
getAttributes(), 639
getChildren()

ItemProviderAdapter class, 312-313
overriding, 588

getChildrenFeatures(), 312
getChoiceOfValues(), 396
getClassifierID(), 114
getContentHandlers(), 634
getCreateChildImage(), 325
getCreateChildResult(), 325
getCreateChildText(), 325
getCrossReferenceAdapter(), 528
getDefaultLoadOptions(), 486
getDefaultSaveOptions(), 486
getEAllAttributes(), 428
getEAllStructuralFeatures(), 278
getEEnumLiteral(), 118
getElements(), 312
getEObject(), 461
getEStructuralFeature(), 116
getFeatureCount(), 116
getFeatureID() method, 116
getInstantiableClass(), 431
getInverseReferences(), 528
getNewchildDescriptors(), 324
getNonNavigableInverseReferences(), 527
getOrders(), 262, 593

getParent(), 312
getPendingOrders(), 385
getPluginLogger(), 338
getPluginResourceLocator(), 338
getPriorityOrders(), 273
getPropertyDescriptors(), 44, 50, 316
getPropertySource(), 44
getRegisteredAdapter(), 518
getResource(), 444
getResult(), 55
getTimeStamp(), 638
getURIFragment(), 454
getURIHandlers(), 641
hasChildren(), 312
inverse handshaking, 283-285
isAdapterForType(), 511
isFactoryForType(), 293, 327
isFollowup(), 305
isModified(), 453
isMoreActive(), 517
isSet(), 268
isWrappingNeeded(), 313
itemProviderAdapter class, 312
load(), 452-453
menuAboutToShow(), 336
normalize(), 449
notifyChanged(), 30
overlayImage(), 314
performFinish(), 336, 409
prune(), 430, 506
reflective

constant-time, 301-302
generated code, 278-287

reflective accessor, 279-283
eGet(), 280-282
eIsSet(), 282
eSet(), 282
eUnset(), 282

Reflective EObject API, 36
save(), 452-453
set(), 245
setBillTo(), 22
setFeatureKind(), 439
setID(), 486
setParentAdapter(), 330
setShipTo(), 22
setTimeStamp(), 638
unload(), 453
unset(), 268
unsetShipTo(), 269
unwrap(), 58
useUUIDs(), 491
validateSKU_Pattern(), 564

Minimal Reflective Methods property, 353
Mixed attribute (Ecore), 234
mixed types (XML Schema complex type

definitions), 195-197
@model properties

EAnnotation class, 164
EAttribute class, 147-149
EClass, 146
EDataType class, 160
EEnumLiteral class, 158
EOperation class, 154-155
EParameter class, 156
EReference class, 150-152

Index 693

Map entry classes, 162
Map-typed elements, 163
Structural features, 152-153

model classes
generating, 24

factories, 26
interfaces, 24-25
methods, 25-26
packages, 26

Model Directory property, 353
Model Driven Architecture (MDA), 40
model object properties

generator, 350-359, 648-651
all plug-ins, 351-352, 648-649
edit project, 357, 649-650
editor project, 357, 650
model class defaults, 354-355, 650
model feature defaults, 356-357, 651
model project, 352-354, 650
templates/merge, 358-359, 651
test project, 358, 651

Model Plug-In Class property, 353
Model Plug-in ID property, 351
Model Plug-In Variables property, 353
model-serialization mapping options (XML

resources), 470-474
@model tag (Javadoc comments), 145
ModelName property, 351
modelPluginID attribute (emf.Rose2Java task), 373
modelProject attribute (emf.Rose2Java task), 373
modelProjectFragmentPath attribute (emf.Rose2Java

task), 373
models

attributes, 17
compared to programming, 15-16
content (generators), 343
classes, generated code, 240

abstract classes, 243
accessor methods, 241-243
implementation classes, 240-241
interfaces, 240-243

creating from annotated Java, 72-79
generator model location/name, 77
model directory, creating, 74
model importer, selecting, 78
New wizard opening page, 76
packages, selecting, 79
PPOPackage interface, 76
projects, creating, 73
PurchaseOrder interface, 74-76

data types (Ecore), 123-124
default properties, 651
directories, creating, 74
Ecore, 17-19

application development role, 104
application runtime role, 104
classes, 18
creating, 19-20, 23
editor, 19
generator models for, creating, 89-91
Java annotations, 21-22
purchase order instances, 18
XMI serialization, 20-21

ExtendedPO2, 381
Customer class, 383
data types, implementing, 387-391

editor, 392-393
generating, 384
PurchaseOrder class new features, 382
reference target restrictions, 393, 396
references, 382
Supplier class, 382
volatile features, implementing, 384-386

ExtendedPO3. See ExtendedPO3 model
files

Ecore, 71
generator, 71
Rational Rose, 83

generator, 28-29
generator for Ecore models, 89-91
groups (XML Schema), 222-225
importers

annotated java, selecting, 78
Ecore, 89
overview, 92
Rational Rose class model, 82
UML, 92
XML Schema, 87

Java 5.0 generics, 623-627
Ecore metamodel, 623
XMI serialization, 626

Java purchase order example, 12-14
objects, suppressing (Primer PO model), 573-579

containment references, 574
customized purchase order property

sheet, 575
default tree view, 574-575

overview, 11
references, 17
regeneration, 27-28
standards

MDA, 40
MOF, 39-40
UML, 39
XMI, 40

updating, 98
user (Ecore), 125

MOF (Meta Object Facility), 39-40, 492
MoveCommand class, 59
multi-resources, changing, 544-545
multi-valued attributes (generated code), 250-252
multi-valued features (changes), 541, 543-544
multiple class inheritance, 276-277
Multiple Editor Pages property, 362
multiple features (feature maps), 168-171
multiple resources, editing, 404

cross-document-containment references, 411-415
containment proxies, enabling, 411
purchase orders, controlling, 412

cross-document non-containment
references, 404-405, 408-411
additional resources, loading, 405
concurrent resources, editing, 408
lazy loading, 408
resources, editing, 407
setting, 406
single resources, editing, 405

Multiplicity attribute (Ecore), 219
many-many references, 261-263
multi-valued attributes (UML), 133

694 Index

N
name attribute

EAttribute, 193, 201
EClass, 191
Ecore, 206, 219, 234
EDataType, 188
EEnum, 186
EEnumLiteral, 186
EOperation, 199
EParameter, 199

name property (EEnumLiteral class), 158
names

generator models, 77
projects, 73

natures, 7
new features (EMF 2.3/2.4)

annotated Java model importer, 645-646
content types, 634-637
Ecore validation, 642-643
generator model properties, 648

Enum, 652
model object, 648-651
packages, 651

Java 5.0 support, 617
enumerations, 618-622
generics, 622-632

reference keys, 643-645
resources

attributes, 639-640
deletion, 633
options, 646

timestamps, 638-639
URI handlers, 640-641
XML resource options, 647-648

New Project wizard, 73, 82
New wizard, 76
nillable elements, declaring, 213
non-changeable attributes (generated code), 254-255
non-changeable references, 267
non-containment references (XML resources), 465
non-model intermediary view objects, adding in

EMF.Edit, 587-597
drag-and-drop, 596
object correction, 594-595
Supplier class

children, 587
create child property, disabling, 593-594
getChildren() method override, 588
non-modeled nodes, 588
OrdersItemProvider class, 589
SupplierItemProvider class, 590
TransientSupplierItemProvider class, 591-592

SupplierItemProvider class
dispose() method, 597
getOrders() method, 593

Non-NLS Markers property, 351
non-proxy-resolving references, 263-264
non-schema attributes (XML Schema), 230
normalize() method (URIConverter interface), 449
notification observers. See adapters
Notifier interface, 25
Notify property, 363
notifyChanged() method, 30
nsPrefix attribute

Ecore, 81, 234
EPackage class, 118, 181

nsURI attribute
Ecore package, 81
EPackage class, 118, 181

O
Object Management Group (OMG), 39-40
objects

active, 497-502
adapters

adding, 508-515
attaching, 29
behavioral extensions, 515, 517-519
content, 519-520

adding to generated editors, 97
appearance, 325-326
attributes

copying, 532
names/values, printing, 427

comparing, 533-535
copying, 529-533

copy() method, 530-531
copyAll() method, 530

creating, 321-324, 426-427
cross-references, 38
customizing, 428, 431-432
GenModel, 342
GenPackage, 342
interrogating, 427
model, suppressing, 573-579
non-model intermediary view objects. See non-

model intermediary view objects
persistence, 31-34

active object storage, 497-502
adding objects to resources, 32
API, 447
eContainer()/eResource() methods, 31-32
overview, 443-447
performance, 494-496
Resource Factory interface, 456
resource implementations, 33
Resource interface, 443, 452-456
Resource Registry interface, 457-459
resource sets, 32-34
ResourceSet interface, 444, 459-462
saving, 31
URIConverter interface, 449-450
URIs, 447-448
XML resources. See XML, resources

properties, 44
validation

constraints, 549-550
EObjectValidator constraints, 563
generated code effects, 553-557
invariants, 550-552
invoking, 557, 560-563
XML Schema constraints, 564-565

objectsToAttach reference, 544
objectsToDetach reference, 544
observers. See adapters
OMG (Object Management Group), 39

MDA, 40
MOF, 39-40
UML, 39
XMI, 40

Omondo EclipseUML Web site, 19
one-way references, 257-259

Index 695

OperationName property (EOperation class), 144
operations

code generated patterns, 273-275
EClass class, 116
EClassifer class, 114
EEnum class, 118
EFactory class, 119
EStructuralFeature class, 109
Java, 153-155
Rational Rose non-UML Ecore properties, 143
UML, 138, 140
XML Schema complex type definitions, 198-200

Opposite attribute
Ecore, 221, 234
EReference class, 151

Optimized has children property, 649
OPTION_ANY_SIMPLE_TYPE option, 470
OPTION_ANY_TYPE option, 470
OPTION_CIPHER option, 454
OPTION_CONFIGURATION_CACHE option, 476
OPTION_DECLARE_XML option, 474
OPTION_DEFER_ATTACHMENT option, 476
OPTION_DEFER_IDREF_RESOLUTION option, 476
OPTION_DISABLE_NOTIFY option, 478
OPTION_DOM_USE_NAMESPACES_IN_SCOPE

option, 471
OPTION_ELEMENT_HANDLER option, 647
OPTION_ENCODING option, 474
OPTION_ESCAPE_USING_CDATA option, 647
OPTION_EXTENDED_META_DATA option, 471
OPTION_FLUSH_TRESHOLD option, 476
OPTION_FORMATTED option, 474
OPTION_KEEP_DEFAULT_CONTENT option, 471
OPTION_LAX_FEATURE_PROCESSING

option, 471
OPTION_LAX_WILDCARD_PROCESSING

option, 647
OPTION_LINE_WIDTH option, 474
OPTION_PARSER_FEATURES option, 477
OPTION_PARSER_PROPERTIES option, 478
OPTION_PROCESS_DANGLING_HREF option, 478
OPTION_RECORD_ANY_TYPE_NAMESPACE_

DECLARATIONS option, 471
OPTION_RECORD_UNKOWN_FEATURE

option, 472
OPTION_RESOURCE_ENTITY_HANDLER

option, 647
OPTION_RESOURCE_HANDLER option, 478
OPTION_ROOT_OBJECTS option, 647
options

resources
EMF 2.3/2.4 new features, 646
interface, 453

XML resources, 470-478
EMF 2.3/2.4 new features, 647-648
miscellaneous behavior, 478
model-serialization mapping, 470-474
performance, 476-477, 494-495
serialization tweaks, 474-475
underlying parser control, 477-478

OPTION_SAVE_DOCTYPE option, 475
OPTION_SAVE_ONLY_IF_CHANGED option, 646
OPTION_SAVE_TYPE_INFORMATION option, 472
OPTION_SCHEMA_LOCATION option, 475
OPTION_SCHEMA_LOCATION_

IMPLEMENTATION option, 475

OPTION_SKIP_ESCAPE option, 475
OPTION_SKIP_ESCAPE_URI option, 475
OPTION_SUPPRESS_DOCUMENT_ROOT

option, 648
OPTION_URI_HANDLER option, 648
OPTION_USE_CACHED_LOOKUP_TABLE

option, 476
OPTION_USE_DEPRECATED_METHODS

option, 476
OPTION_USE_ENCODED_ATTRIBUTE_STYLE

option, 472
OPTION_USE_FILE_BUFFER option, 477
OPTION_USE_LEXICAL_HANDLER option, 473
OPTION_USE_PARSER_POOL option, 477
OPTION_USE_XML_NAME_TO_FEATURE_MAP

option, 477
OPTION_XML_MAP option, 474
OPTION_XML_OPTIONS option, 473
OPTION_XML_VERSION option, 475
OPTION_ZIP option, 454
OrderDate attribute (PurchaseOrder class), 246-247
ordered attribute

Ecore, 234
EOperation, 199
EParameter, 199
ETypedElement class, 108

ordered property
EAttribute class, 148
EOperation class, 155
EParameter class, 156
EReference class, 151

orders, iterating over, 262
Orders attribute (EFeatureMapEntry), 272
Orders reference (PurchaseOrder class), 262
OrdersItemProvider class, 589, 596
OrderStatus enumerated type, 618
org.eclipse.emf.edit plug-in, 46
org.eclipse.emf.edit.ui plug-in, 46
outline view (Purchase order example), 42
overlayImage() method, 314
overriding commands, 567-573

createCommand() method, 567
EMF.Edit, 61
property sheets, 572
volume discounting example, 569-571

P
Package attribute (Ecore), 234
packages, 419

accessing, 422
annotated java, 79
dependencies, 398-404
Ecore, 118-119
finding, 422-425
generated, 26, 287-291
Java, 159-160
map entry classes, 161-163
metadata, accessing, 420-422
properties (generator), 359-362, 651-652

all plug-ins, 359
edit project, 361, 651
editor project, 362, 652
model project, 360, 652
new, 651
package suffix, 361
test project, 362

696 Index

Rational Rose
class model, 84
non-UML Ecore properties, 141-142

registering, 424, 614-615
selecting, 88
UML, 128

Packed enums property, 651
Parameter-property property (EOperation class), 157
parameters (Java), 156-157
Parameters property (EOperation class), 157
PasteFromClipboardCommand class, 60
patterns of generated code. See code generation
PDE (Plug-in Development Environment), 4
PendingOrders reference, 266, 385
performance

optimization, generated code patterns, 295-302
Boolean flags, 295, 298
constant-time reflective methods, 301-302
virtual feature delegation, 298-301

persistence framework, 494
intrinsic IDs, caching, 495
resource URIs, caching, 496
XML resource options, 476-477, 494-495

performFinish() method, 336, 409
Persistence framework

active object storage, 497-498
EStore interface, 499-500
generated, 500-502

API, 447
Resource Factory interface, 456
Resource interface, 452-456
Resource Registry interface, 457-459
ResourceSet interface, 459-462
URIConverter interface, 449-450
URIs, 447-448

overview, 443-447
performance, 494

intrinsic IDs, caching, 495
Resource URIs, caching, 496
XML resource options, 494-495

Resource interface, 443
resources, 443
ResourceSet interface, 444
XML resources, 462

base implementations, 489
default options, 486
default serialization format, 462-468
deserialization, 468-470
DOM conversion, 487-489
dynamic, 479-482
Ecore resource factory implementations, 492
EMOF implementations, 492-493
extended metadata, 482-485
extrinsic IDs, 486
generated implementations, 493
generic implementations, 490
options, 470-478, 647-648
XMI implementations, 490, 492

persistence of objects, 31-34
adding objects to resources, 32
eContainer()/eResource() methods, 31-32
Resource implementations, 33
resource sets, 32-34
saving, 31

perspectives, 8
platform scheme URIs, 83

platforms (Eclipse), 6
plug-in architecture, 6-7
Rich Client Platform (RCP), 9
user interface, 7-9
workspace resources, 7

Plugin class, 338
Plug-in Development Environment (PDE), 4
plug-ins

architecture, 6-7
contents, 609
EMF.Edit, 46

regenerating, 68
UI-dependent plug-in, 67-68
UI-independent plug-in, 66-67

EMF.Edit generated, 337-339
JAR files, adding to class paths, 609-612
manifest files, generating, 27
properties files, 315
RCP, 603

POProcessor class, 629
populating JFace viewers from resources, 43-44
PPOAdapterFactory class, 293
PPO.ecore model, 366
PPOModelWizard class, 336
PPOPackage interface, 76
PPOSwitch class, 291-292
predefined XML Schema simple types, 230
Prefix property, 360

EPackage class, 142
Generator model, 82

PreviousOrder reference (PurchaseOrder
class), 263, 393

PrimerPO model
containment references, 574
customized purchase order property sheet, 575
default tree view, 574-575
genmodel, 367

Primer purchase order model, 70-71
PriorityOrders references, 272, 440
programming tools

adapters, 508
adding to objects, 508-515
behavioral extensions, 515-519
content, 519-520
generated classes, observing, 521-522

comparing
to modeling, 15-16
objects, 533-535

copying objects, 529-533
copy() method, 530-531
copyAll() method, 530

cross-referencers, 523
adapters, 526-529
basic, 523-526

switches, 503-505
tree iterators, 505-508

projects
creating from Rational Rose class model, 80, 86

Ecore package properties, 81
extensible model properties, 80
model file location, 83
model importer, selecting, 82
New Project wizard, 82
package selection, 84

Index 697

creating from XML Schemas, 86-88
mapping complex Schema types to Ecore

classes, 87
model importer, selecting, 87
packages, selecting, 88
projects, creating, 87
XML Schema location, 88

creating with New Project wizard, 73
Eclipse, 4

Eclipse Project, 4-5
Modeling Project, 5
Technology Project, 5
Tools Project, 5

naming, 73
resources, 7

properties. See also attributes
@model

EAnnotation class, 164
EAttribute class, 147-149
EClass, 146
EDataType class, 160
EEnumLiteral class, 158
EOperation class, 154-155
EParameter class, 156
EReference class, 150-152
Map entry classes, 162
Map-typed elements, 163
Structural features, 152-153

abstract, 146
Annotation

EAnnotation class, 165
EClassifier class, 142
EModelElement, 144
EOperation class, 144
EPackage class, 142
EStructuralFeature class, 143

AttributeName, 143
BasePackage, 359

EPackage class, 142
Generator model, 81

Changeable
EAttribute class, 148
EReference class, 150

Code generation, 93
Constraints, 142
DataType

EAttribute class, 148
EOperation class, 155
EParameter class, 156

Default, 148
Ecore package properties, 81
Exceptions, 155
ExtendedMetaData, 165
Extensible model properties, 80
Feature-property

Map entry classes, 162
Structural features, 153

Features
Map entry classes, 162
Structural features, 153

Generator, 350, 648
Class, 362-363
Enum, 652
Feature, 363-364
Model object, 350-359, 648-651
Package, 359-362, 651-652

isChangeable, 143
isID, 143
isResolveProxies, 143
isTransient, 143
isUnique

EOperation class, 144
EStructuralFeature class, 143

isUnsettable, 143
isVolatile, 143
KeyType, 163
lower

EAttribute class, 148
EOperation class, 155
EParameter class, 156
EReference class, 150

many
EAttribute class, 148
Ecore, 207, 234
EOperation class, 155
EParameter class, 156
EReference class, 150
ETypedElement class, 109

MapType, 163
name, 158
New generator model properties, 648

Enum, 652
Model object, 648-651
packages, 651

OperationName, 144
ordered

EAttribute class, 148
EOperation class, 155
EParameter class, 156
EReference class, 151

Parameter-property, 157
Parameters, 157
Prefix

EPackage class, 142
Generator model, 82

Rational Rose non-UML Ecore, 140-141
classifiers, 142
Model elements, 144
operations, 143
packages, 141-142
structural features, 142-143

ReferenceName, 143
required

EAttribute class, 148
EOperation class, 155
EParameter class, 156
EReference class, 151

resolveProxies, 151
suppressedGetVisibility

EAttribute class, 148
Ecore, 234
EReference class, 151

suppressedIsSetVisbility
EAttribute class, 148
Ecore, 234
EReference class, 151

suppressedSetVisibility
EAttribute class, 148
Ecore, 235
EReference class, 151

698 Index

suppressedUnsetVisibility
EAttribute class, 149
Ecore, 235
EReference class, 151

transient property
EAttribute class, 149
Ecore, 235
EReference class, 151
EStructuralFeature class, 108

Type
EAttribute class, 149
EOperation class, 155
EParameter class, 157
EReference class, 151

unsettable
EAttribute class, 149
EReference class, 151

upper
EAttribute class, 149
EOperation class, 155
EParameter class, 157
EReference class, 152

upperBound
EAttribute, 149, 201
Ecore, 235
EOperation, 155, 199
EParameter, 157, 199
EReference class, 152

ValueType, 163
Visibility, 143
xmlContentKind, 142
xmlFeatureKind, 143
xmlName, 142-143
xmlNamespace, 143

properties view (Purchase order example), 42
Property Category property, 364
Property Description property, 364
property files, generating, 27
Property Filter Flags property, 364
Property Multiline property, 364
property sheets

customized purchase order, 575
item providers as property sources, 49-50
JFace viewers, 44
purchase order items, 572

Property Short Choices property, 364
Property Type property, 363
PropertySource class, 49
Provider root extends class property, 649
Provider Type property, 363
prune() method (TreeIterator interface), 430, 506
Public constructors property, 650
purchase order example

containment association, 42
controlling, 412
Ecore instances, 18
Java annotations, 22
multiple features/cross-feature order, 168-171
outline/properties view, 42
PPOPackage interface, 76
Primer purchase order model, 70-71
program example, 12-14
property sheets, 572, 575
PurchaseOrder interface, 74-76
RCP application, 605
serializing, 42

volume discounting example, 569-571
XMI serialization, 20-21

PurchaseOrder class
Boolean attributes, 296
Comment attribute, 244-245
EClass, 434
ExtendedPO2 model features, 382
Items containment reference, 264
operations, 273
OrderDate attribute, 246-247
Orders reference, 262
PendingOrders reference, 266
PreviousOrder reference, 263, 393
ShippedOrders reference, 266
Status attribute, 248
TotalAmount attribute, 253
URI fragments, 454
UsageCrossReferencer class, 523-525

PurchaseOrder interface, 74, 76
PurchaseOrders class

Q
qualified elements (XML Schema elements), 215
qualified values (XML Schema attributes), 205

R
Rational Rose

class model, creating projects, 80, 86
Ecore package properties, 81
extensible model properties, 80
model file location, 83
model importer, selecting, 82
New Project wizard, 82
package selection, 84

Non-UML Ecore properties, 140-141
Classifiers, 142
Model elements, 144
Operations, 143
Packages, 141-142
Structural features, 142-143

UML generic models, 627-628
RCP (Rich Client Platform), 9, 599

deploying, 608
EMF support, 600-601
generated code, 606-607
launching, 601-605

arguments, 603
completing configuration, 604
configuration, 601
Main tab, 602
plug-ins, 603
Run[el] toolbar drop-down, 601
startup time, 604

purchase order example, 605
RDBs (relational databases), 23
reconcileGenModel attribute (emf.Rose2Java

task), 373
recording changes, 545-547

starting, 546
stopping, 546
transaction atomicity and rollback, 547-548

Redirection Pattern property, 359
Reference attribute (Ecore), 234
ReferenceName property (EStructuralFeature

class), 143

Index 699

references
backupSupplier, 405
code generated patterns, 257

bidirectional, 259-261
containment, 264-266
map, 269-271
multiplicity-many, 261-263
non-changeable, 267
non-proxy-resolving, 263-264
one-way, 257-259
unsettable, 268-269
volatile, 266-267

containment
PrimerPO model, 574
PriorityOrders, 168
StandardOrders, 168
XML resources, 464

cross-document
containment, 411-415
non-containment, 404-411
XML resources, 466, 468

cross-referencers, 523
Adapters, 526, 528-529
Basic, 523, 525-526

definitions, 17
Ecore, 111-112
elements, 216
eOpposite, 111
EPackage class, 118
eReferenceType, 111
ExtendedPO2 model, 382
ID, 202-203
Inverse values, 528
Java, 150-152
keys (EMF 2.3/2.4 new features), 643-645
non-containment, 465
objectsToAttach, 544
objectsToDetach, 544
Orders, 262
previousOrder, 263
priorityOrders, 272, 440
repeating model group, 224-225
standardOrders, 272, 440
subclasses, 468
targets

ExtendedPO2 model restrictions, 393, 396
ExtendedPO3 packages, 401-404

UML, 134-135
Bidirectional, 135-136
Containment, 136
Map, 136-138

XML Schema attributes, 205
reflection, 426

accessor methods, 279-283
eGet(), 280-282
eIsSet(), 282
eSet(), 282
eUnset(), 282

creating, 426-427
customizing, 428-432
EObject API, 35-36, 45
interrogating, 427
item providers, 53

reflective methods
constant-time, 301-302
generated code, 278

feature IDs, 278-279, 285-287
inverse handshaking, 283-285
reflective accessors, 279-283

ReflectiveItemProvider class, 47, 53
ReflectiveItemProviderAdapterFactory adapter

factory, 332
regeneration, 27-28, 68
registering

packages, 424, 614-615
resource factories, 612-614

registries
Packages, 423
Resource factory, 458

Relational databases (RDBs), 23
reloading models, 98
RemoveCommand class, 59-62
repeating model groups (XML Schema), 222-225
ReplaceCommand class, 59
required attribute

ETypedElement class, 109
XML Schema, 203

required property
EAttribute class, 148
EOperation class, 155
EParameter class, 156
EReference class, 151

resolveProxies attribute
Ecore, 234
EReference class, 111, 151

ResourceChange class, 544
ResourceImpl class, 452
Resource interface, 32, 443, 452

contents, 451
delete() method, 633
eResource() method, 451
load() method, 452-453
options, 453, 470, 646
save() method, 452-453
URI fragments, 454, 456

ResourceItemProviderAdapterFactory adapter
factory, 332

Resource Registry interface, 457-459
Resource Type property, 360
resources. See also Resource interface

attributes, 639-640
changes, tracking, 453
conceptual model of contents, 451
defined, 443
deleting, 633
deltas, 7
factories, 457

interface, 456
registering, 612-614
registries, 458

implementations, 33
JFace viewers, populating, 43-44
markers, 7
multiple, editing, 404

cross-document containment
references, 411-415

cross-document non-containment
references, 404-411

objects, adding, 32
options, 453, 470, 646
projects, 7

700 Index

sets
accessing, 64-65
creating, 444
cross-document referencing, 32
demand loading of documents, 33-34

unloading, 453
URIs, 83, 444

attributes (XML Schema), 202-203
caching, 496
creating, 448
elements, declaring, 211-213
file scheme URIs, 83
fragments, 448, 454-456
handlers, EMF 2.4 enhancements, 640-641
overview, 447-448
platform scheme URIs, 83
set identification, 444
schemes, 447
URIConverter interface, 449-450

workspaces, 7
XML, 462

base implementations, 489
default options, 486
default serialization format, 462-468
deserialization, 468-470
DOM conversion, 487-489
dynamic, 479-482
Ecore resource factory implementations, 492
EMF 2.3/2.4 new features, 647-648
EMOF implementations, 492-493
extended metadata, 482-485
extrinsic IDs, 486
generated implementations, 493
generic implementations, 490
options, 470-478, 647-648
performance options, 494-495
XMI implementations, 490-492

ResourceSet interface, 444, 459-462
cross-document referencing, 32
demand loading of documents, 33-34

ResourceSetImpl class, 33
restrictions (XML Schema)

complex type definitions, 192-193
enumeration facets, 186-187
simple type definitions, 184-186

Rich Client Platform property, 358
Rich Client Platform. See RCP
Root Extends Class property, 354
Root Extends Interface property, 355
Root Implements Interface property, 355
Rose2GenModel command-line interface, 366, 368
running applications, 95-97, 104
Runtime Compatibility property, 351
Runtime Jar property, 352
Runtime version property, 649
runtime workbenches, 95
Run... toolbar drop-down (RCP), 601

S
save() method (Resource interface), 452-453
saving persistent objects, 31
SAX (Simple API for XML), 468
Schemas (XML)

Ecore models, creating, 23
feature maps, 176-177
Java purchase order example, 13

location, 88
mapping to Ecore classes, 87
projects, creating, 86-88

mapping complex XML Schema types to
Ecore classes, 87

model importer, selecting, 87
packages, selecting, 88
projects, creating, 87
XML Schema location, 88

schemes (URIs), 447
scripts (Ant), executing, 372
segments (URIs), 448
selecting

annotated java packages, 79
model importers

annotated Java, 78
Ecore, 89
Rational Rose class model, 82
XML Schemas, 87

packages
Rational Rose class model, 84
XML Schemas, 88

serializable attribute
Ecore, 234
EDataType class, 160

serialization tweak options (XML resources), 474-475
set() method (Generated code example), 245
setBillTo() methods, 22
SetCommand class, 59
setFeatureKind() method, 439
setID() method (extrinsic IDs), 486
setParentAdapterFactory() method, 330
setShipTo() method, 22
setTimeStamp() method, 638
ShippedOrders reference, 266, 385
Simple API for XML (SAX), 468
simple attributes (generated code), 244-245
simple content (XML Schema complex type

definitions), 193
simple type definitions (XML Schema), 184

anonymous types, 189-190
Ecore attributes, 190-191
list types, 188
restrictions, 184-187
union types, 188

SimplePOEditorAdvisor class, 606-607
Single class inheritance, 275-276
single-valued attributes (UML), 132
skeleton adapter factory classes, generating, 26
SKU data type, implementing, 390-391
source attribute (EAnnotation class), 120
Source merge utility (JMerge), 342
sources (annotations)

Ecore, 121
EMOF, 123
extended metadata, 123
GenModel, 122
XSD2Ecore, 123

Soyatec eUML Web site, 19
splitting models into multiple packages, 396-397

package dependencies, 398-401
reference target restrictions, 401-404

stand-alone applications, 608-609
package registration, 614-615
plug-in JAR files, adding to class paths, 609-612
resource factory registration, 612-614

Index 701

StandardOrders containment reference, 168
StandardOrders reference, 272, 440
Standard Widget Toolkit (SWT), 7
Static Packages property, 355
static templates, 342
Status attribute (PurchaseOrder class), 248
storage (active objects), 497-498

EStore interface, 499-500
generated, 500-502

structural features
@model properties, 152-153
Ecore, 106-110

Boolean attributes, 108
default value attributes, 109
derived attributes, 108
ETypedElement class, 107-108
feature IDs, 109
operations, 109

Java, 152-153
Rational Rose non-UML Ecore

properties, 142-143
subclass references (XML resources), 468
Substitution groups (XML Schema elements), 216-218
SubstitutionLabelProvider interface, 555
Supplier class, 168, 382

children, 587
Create child property, disabling, 593
getChildren() method, overriding, 588
non-modeled nodes, 588
OrdersItemProvider class, 589
OrdersItemProvider item provider, 591-592
purchase orders/customers, deleting, 594

SupplierItemProvider class, 590
dispose() method, 597
getOrders() method, 593
Object correction, 594-595

Suppress Containment property, 354
Suppress EMF Metadata property, 354
Suppress EMF Model Tags property, 354
Suppress EMF Types property, 357
Suppress GenModel annotations property, 650
Suppress Interfaces property, 354
Suppress Notifications property, 354
Suppress Unsettable property, 357
suppressedGetVisibility property

EAttribute class, 148
Ecore, 234
EReference class, 151

suppressedIsSetVisibility property
EAttribute class, 148
Ecore, 234
EReference class, 151

suppressedSetVisibility property
EAttribute class, 148
Ecore, 235
EReference class, 151

suppressedUnsetVisibility property
EAttribute class, 149
Ecore, 235
EReference class, 151

suppressing EMFisms, 302-305
switch classes, generating, 26, 291-295
switches as development tool, 503, 505
SWT (Standard Widget Toolkit), 7

T
Table providers property, 650
TableViewer class, 44
table viewers (EMF.Edit Extended PO1

model), 580-587
customer and purchase order associations, 580
customer order list view, 580-582
purchase order table view, 582-586

tags
@generated, 306
@model, 145
EMOF, 123
JET template, 376

target namespaces (XML Schema), 180-181
Template Directory property, 359
Template plugin variables property, 651
templatePath attribute (emf.Rose2Java task), 374
templates

dynamic, 342
generator format, 375-376

example, 376-379
extensibility, 379-380

static, 342
testing

commands, 55
generators, 345

Test plugin ID property, 651
Test Suite Class property, 358
Tests Directory property, 358
Tests plugin variables property, 651
timestamps, 638-639
toolkits

JFace, 8
Standard Widget Toolkit (SWT), 7

tools (developer)
adapters, 508

adding to objects, 508-515
behavioral extensions, 515-519
content, 519-520
generated classes, observing, 521-522

code generation, 345-346
comparing objects, 533-535
copying objects, 529-533

copy() method, 530-531
copyAll() method, 530

cross-referencers, 523
adapters, 526-529
basic, 523-526

switches, 503-505
tree iterators, 505-508

Topcased Ecore Editor Web site, 19
TotalAmount attribute (PurchaseOrder class), 253
Transformations API for XML (TrAX), 487
TransientItemProvider class

drag-and-drop, 596
object correction, 594-595

transient property
EAttribute class, 149
Ecore, 235
EReference class, 151
EStructuralFeature class, 108

TransientSupplierItemProvider class, 591-592
TrAX (Transformations API for XML), 487
tree iterators, 505-508
TreeViewer class, 43

702 Index

tree views
implementing, 45
PrimerPO model, 574-575

Type property
EAttribute class, 149
EOperation class, 155
EParameter class, 157
EReference class, 151

Type safe Enum compatible property, 652
type-specific adapters, adding adapters to

objects, 513-515
typed item providers, 54

U
UIs (user interfaces), Eclipse framework, 7-9

generator, 346, 348-349
IDE, 9
JFace, 8
Standard Widget Toolkit), 7
Workbench, 8

UML (Unified Modeling Language), 11, 39
attributes, 132

default values, 133-134
multi-valued, 133
single-valued, 132

classes, 129-130
data types, 131-132
enumerations, 130-131

creating models from, 19-20
documentation, 140
feature maps, 173-175
interface diagram, 13
Java 5.0 generic specifications, 627-629

conceptual representation
representation, 628

Rational Rose notation examples, 628
Rational Rose representation, 627

model importers, 92
operations, 138-140
packages, 128
Primer purchase order model, 70-71
Rational Rose non-UML Ecore

properties, 140-141
classifiers, 142
model elements, 144
operations, 143
packages, 141-142
structural features, 142-143

references, 134-135
bidirectional, 135-136
containment, 136
map, 136-138

standards Web site, 39
unification, 14

underlying parser control options (XML
resources), 477-478

undoability of commands, 55
Unified Modeling Language. See UML
Uniform Resource Identifiers. See URIs
union types (XML Schema simple type

definitions), 188
unique attribute

EAttribute class, 149
Ecore, 235
EOperation, 155, 199
EParameter, 157, 199

EReference class, 151
ETypedElement class, 107

unload() method (resources), 453
UnmodifiableEList class, 386
UnresolvedProxyCrossReferencer class, 525
unset() method (unsettable references), 268
unsetShipTo() method, 269
unsettable attribute

EAttribute, 149, 255
Ecore, 235
EReference class, 151
EStructuralFeature class, 108
generated code, 255-257

unsettable references, 268-269
unwrap() method (compound commands), 58
Update Classpath property, 359
updating models, 98
upper property

EAttribute class, 149
EOperation class, 155
EParameter class, 157
EReference class, 152

upperBound attribute
EAttribute, 149, 201
Ecore, 235
EOperation, 155, 199
EParameter, 157, 199
EReference class, 152

URIConverter interface, 449-450, 634
URIHandler interface, 640
URIs (Uniform Resource Identifiers), 83, 444

attributes (XML Schema), 202-203
creating, 448
elements, declaring, 211-213
file scheme URIs, 83
fragments, 448, 454-456
handlers, EMF 2.4 enhancements, 640-641
overview, 447-448
platform scheme URIs, 83
resources

caching, 496
set identification, 444

schemes, 447
URIConverter interface, 449-450

USAddress class, 275, 463
USAddressImpl class, 553
UsageCrossReferencer class, 402, 523-525
user interfaces. See UIs
user models (Ecore), 125
useUUIDs() method, 491
UUIDs in XMI, 491

V
validateSKU_Pattern() method, 564
validation

constraints, 549-550
Ecore, 642-643
EObjectValiidator constraints, 563
generated code effects, 553-557
invariants, 550-552
invoking, 557-563
XML Schema constraints, 564-565

Validator.javajet template, 376
value attribute

Ecore, 235
EEnumLiteral, 186

Index 703

ValueType property (map-typed elements), 163
Viewer classes, 43

content providers, 43
ListViewer class, 44
populating from resources, 43-44
Property sheets, 44
TableViewer class, 44
TreeViewer class, 43

views
definition, 8
EMF.Edit, customizing, 573

list/table viewers, 580-587
model objects, suppressing, 573-579
non-model intermediary view objects,

adding, 587-597
PrimerPO model tree, 574-575
purchase order, 42

virtual feature delegation (performance optimization
generated code), 298-301

Visibility property (EStructuralFeature class), 143
Visitor class, creating, 504
volatile attribute

EAttribute class, 149
Ecore, 235
EReference class, 152
EStructuralFeature class, 108
generated code, 253-254

volatile features (ExtendedPO2 model), 384-386
volatile references, 266-267
volume discounting example, 569-571

W
Web sites

Eclipse, 9
MDA specifications, 40
MOF, 40, 492
Omondo EclipseUML, 19
Soyatec eUML, 19
Topcased Ecore Editor, 19
UML modeling standard, 39
XMI specifications, 40

wildcards (XML Schema), 225
attribute, 226-227
Ecore attributes, 227
element, 225-226

wizards
EMF.Edit generated, 336-337
EMF Model, 71
EMF Project, 71
New, 76
New Project, 73, 82

workbenches
Eclipse, 8
runtime, 95

workspaces (resources), 7

X – Z
XMI (XML Metadata Interchange), 20, 40, 490

Ecore model serialization, 20-21
implementations, 490-492
purchase order example, 20-21
serialization, 626
specifications Web site, 40
UUIDs, 491

XMIResourceImpl class, 490-492

XML
Metadata Interchange. See XMI
resources, 462

base implementations, 489
default options, 486
deserialization, 468-470
DOM conversion, 487-489
dynamic, 479-482
Ecore resource factory implementations, 492
EMF 2.3/2.4 new features, 647-648
EMOF implementations, 492-493
extended metadata, 482-485
extrinsic IDs, 486
generated implementations, 493
generic implementations, 490
options, 470-478, 647-648
performance options, 494-495
XMI implementations, 490-492

schemas. See XML Schemas
TrAX, 487
unification, 14
XMI. See XMI

XML Schemas
annotations, 228-230
attribute declarations, 201-209
attributes, 183

declaring, 182, 201-209
FormDefault, 183

complex type definitions, 191
abstract types, 194
anonymous types, 194
Ecore attributes, 197-198
extensions, 192-193
mixed types, 195-197
operations, 198-200
restrictions, 192-193
simple content, 193

constraints, 564-565
Ecore

attributes, 232-235
models, 23

element declarations, 209
AnyType, 210
default values, 214
Ecore attributes, 219-221
global, 215
ID, 211-213
nillable, 213
qualified, 215
references, 216
substitution groups, 216-218
URI elements, 211-213

extensions, 179
feature maps, 176-177
Java

5.0 generics specifications, 630-632
purchase order example, 13

location, 88
mapping to Ecore classes, 87
model groups, 222-225
predefined simple types, 230
projects, creating, 86-88

mapping complex XML Schema types to
Ecore classes, 87

model importer, selecting, 87
packages, selecting, 88

704 Index

projects, creating, 87
XML Schema location, 88

simple type definitions, 184
anonymous types, 189-190
Ecore attributes, 190-191
list types, 188
restrictions, 184-187
union types, 188

target namespaces, 180-181
wildcards, 225

attribute, 226-227
Ecore attributes, 227
element, 225-226

xmlContentKind property (EClassifier class), 142
xmlFeatureKind property (EStructuralFeature

class), 143
xmlName property

EClassifier class, 142
EStructuralFeature class, 143

xmlNamespace property (EStructuralFeature
class), 143

XSD2Ecore annotations, 123
XSD2GenModel command-line interface, 369

	Foreword
	Foreword
	Preface
	Chapter 2 Introducing EMF
	2.1 Unifying Java, XML, and UML
	2.2 Modeling vs. Programming
	2.3 Defining the Model
	2.4 Generating Code
	2.5 The Runtime Framework
	2.6 EMF and Modeling Standards

	Chapter 9 XML Schema
	9.1 Schema
	9.2 Simple Type Definitions
	9.3 Complex Type Definitions
	9.4 Attribute Declarations
	9.5 Element Declarations
	9.6 Model Groups
	9.7 Wildcards
	9.8 Annotations
	9.9 Predefined Schema Simple Types
	9.10 EMF Extensions

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X – Z

