INTRODUCTION TO
SCRIPTING

he main topic of this book is the synergy of scripting

technologies and the Java platform. I describe projects
Java developers can use to create a more powerful develop-
ment environment, and some of the practices that make
scripting useful.

Before I start to discuss the application of scripting in
the Java world, I summarize some of the theory behind
scripting in general and its use in information technology
infrastructure. This is the topic of the first two chapters of
the book, and it gives us a better perspective of scripting
technology as well as how this technology can be useful
within the Java platform.

To begin, we must define what scripting languages are
and describe their characteristics. Their characteristics
greatly determine the roles in which they could (should) be
used. In this chapter, I explain what the term scripting lan-
guage means and discuss their basic characteristics.

At the end of this chapter, I discuss the differences
between scripting and system-programming languages and
how these differences make them suitable for certain roles
in development.

Background

The definition of a scripting language is fuzzy and sometimes
inconsistent with how scripting languages are used in the real
world, so it is a good idea to summarize some of the basic con-
cepts about programming and computing in general. This sum-
mary provides a foundation necessary to define scripting
languages and discuss their characteristics.

Let’s start from the beginning. Processors execute machine
instructions, which operate on data either in the processors’ reg-
isters or in external memory. Put simply, a machine instruction
is made up of a sequence of binary digits (Os and 1s) and is
specific to the particular processor on which it runs. Machine
instructions consist of the operation code telling the processor
what operation it should perform, and operands representing
the data on which the operation should be performed.

For example, consider the simple operation of adding a
value contained in one register to the value contained in
another. Now let’s imagine a simple processor with an 8-bit
instruction set, where the first 5 bits represent the operation
code (say, 00111 for register value addition), and the registers
are addressed by a 3-bit pattern. We can write this simple
example as follows:

00111 001 010

In this example, I used 001 and 010 to address registers
number one and two (R1 and R2, respectively) of the processor.

This basic method of computing has been well known for
decades, and I'm sure you are familiar with it. Various kinds of
processors have different strategies regarding how their instruc-
tion sets should look (RISC or CISC architecture), but from the
software developer’s point of view, the only important fact is
the processor is capable of executing only binary instructions.
No matter what programming language is used, the resulting
application is a sequence of machine instructions executed by
the processor.

What has been changing over time is how people create the
order in which the machine instructions are executed. This
ordered sequence of machine instructions is called a computer
program. As hardware is becoming more affordable and more
powerful, users’ expectations rise. The whole purpose of soft-
ware development as a science discipline is to provide mecha-
nisms enabling developers to craft more complex applications
with the same (or even less) effort as before.

A specific processor’s instruction set is called its machine
language. Machine languages are classified as first-generation
programming languages. Programs written in this way are usu-
ally very fast because they are optimized for the particular
processor’s architecture. But despite this benefit, it is hard (if
not impossible) for humans to write large and secure applica-
tions in machine languages because humans are not good at
dealing with large sequences of Os and 1s.

In an attempt to solve this problem, developers began creat-
ing symbols for certain binary patterns, and with this, assembly
languages were introduced. Assembly languages are second-
generation programming languages. The instructions in assembly
languages are just one level above machine instructions, in that
they replace binary digits with easy-to-remember keywords
such as ADD, SUB, and so on. As such, you can rewrite the pre-
ceding simple instruction example in assembly language as
follows:

ADD R1, R2

In this example, the ADD keyword represents the operation
code of the instruction, and R1 and R2 define the registers
involved in the operation. Even if you observe just this simple
example, it is obvious assembly languages made programs eas-
ier for humans to read and thus enabled creation of more com-
plex applications.

Although they are much more human-oriented, however,
second-generation languages do not extend processor capabili-
ties by any means.

Enter high-level languages, which allow developers to
express themselves in higher-level, semantic forms. As you
might have guessed, these languages are referred to as third-
generation programming languages. High-level languages pro-
vide various powerful loops, data structures, objects, and so on,
making it much easier to craft many applications with them.

Over time, a diverse array of high-level programming lan-
guages were introduced, and their characteristics varied a great
deal. Some of these characteristics categorize programming lan-
guages as scripting (or dynamic) languages, as we see in the
coming sections.

Also, there is a difference in how programming languages
are executed on the host machine. Usually, compilers translate
high-level language constructs into machine instructions that
reside in memory. Although programs written in this way ini-
tially were slightly less efficient than programs written in
assembly language because of early compilers’ inability to use
system resources efficiently, as time passed compilers and
machines improved, making system-programming languages
superior to assembly languages. Eventually, high-level lan-
guages became popular in a wide range of development areas,
from business applications and games to communications soft-
ware and operating system implementations.

But there is another way to transform high-level semantic
constructs into machine instructions, and that is to interpret
them as they are executed. This way, your applications reside in
scripts, in their original form, and the constructs are trans-
formed at runtime by a program called an interpreter. Basically,
you are executing the interpreter that reads statements of your
application and then executes them. Called scripting or dynamic
languages, such languages offer an even higher level of abstrac-
tion than that offered by system-programming languages, and
we discuss them in detail later in this chapter.

Languages with these characteristics are a natural fit for
certain tasks, such as process automation, system administra-
tion, and gluing existing software components together; in
short, anywhere the strict syntax and constraints introduced by
system-programming languages were getting in the way

between developers and their jobs. A description of the usual
roles of scripting languages is a focus of Chapter 2, “Appropri-
ate Applications for Scripting Languages.”

But what does all this have to do with you as a Java devel-
oper? To answer this question, let’s first briefly summarize the
history of the Java platform. As platforms became more diverse,
it became increasingly difficult for developers to write software
that can run on the majority of available systems. This is when
Sun Microsystems developed Java, which offers “write once, run
anywhere” simplicity.

The main idea behind the Java platform was to implement a
virtual processor as a software component, called a virtual
machine. When we have such a virtual machine, we can write
and compile the code for that processor, instead of the specific
hardware platform or operating system. The output of this com-
pilation process is called bytecode, and it practically represents
the machine code of the targeted virtual machine. When the
application is executed, the virtual machine is started, and the
bytecode is interpreted. It is obvious an application developed
in this way can run on any platform with an appropriate virtual
machine installed. This approach to software development
found many interesting uses.

The main motivation for the invention of the Java platform
was to create an environment for the development of easy,
portable, network-aware client software. But mostly due to per-
formance penalties introduced by the virtual machine, Java is
now best suited in the area of server software development. It is
clear as personal computers increase in speed, more desktop
applications are being written in Java. This trend only continues.

One of the basic requirements of a scripting language is to
have an interpreter or some kind of virtual machine. The Java
platform comes with the Java Virtual Machine (JVM), which
enables it to be a host to various scripting languages. There is a
growing interest in this area today in the Java community. Few
projects exist that are trying to provide Java developers with
the same power developers of traditional scripting languages
have. Also, there is a way to execute your existing application
written in a dynamic language such as Python inside the JVM
and integrate it with another Java application or module.

This is what we discuss in this book. We take a scripting
approach to programming, while discussing all the strengths
and weaknesses of this approach, how to best use scripts in an
application architecture, and what tools are available today
inside the JVM.

Definition of a Scripting Language

There are many definitions of the term scripting language, and
every definition you can find does not fully match some of the
languages known to be representatives of scripting languages.
Some people categorize languages by their purpose and others
by their features and the concepts they introduce. In this chap-
ter, we discuss all the characteristics defining a scripting lan-
guage. In Chapter 2, we categorize scripting languages based on
their role in the development process.

Compilers Versus Interpreters

Strictly speaking, an interpreter is a computer program that
executes other high-level programs line by line. Languages exe-
cuted only by interpreters are called interpreted languages.

To better understand the differences between compilers and
interpreters, let’s take a brief look at compiler architecture (see
Figure 1.1).

As you can see in Figure 1.1, translating source code to
machine code involves several steps:

1. First, the source code (which is in textual form) is read
character by character. The scanner groups individual
characters into valid language constructs (such as vari-
ables, reserved words, and so on), called tokens.

2. The tokens are passed to the parser, which checks that
the correct language syntax is being used in the pro-
gram. In this step, the program is converted to its parse
tree representation.

3. Semantic analysis performs type checking. Type check-
ing validates that all variables, functions, and so on, in

the source program have been used consistently with
their definitions. The result of this phase is intermediate
representation (IR) code.

4. Next, the optimizer (optionally) tries to make equivalent
but improved IR code.

5. In the final step, the code generator creates target
machine code from the optimized IR code. The gener-
ated machine code is written as an object file.

Tokens Parse tree

Scanner Parser Semantical
(Lexical analyzer) (Syntax analyzer) analyzer

Intermediate
representation

Symbol

table Optimizer

Intermediate
representation

Code generator

Target machine
code

FIGURE 1.1 Compiler architecture

To create one executable file, a linking phase is necessary.
The linker takes several object files and libraries, resolves all
external references, and creates one executable object file.
When such a compiled program is executed, it has complete
control of its execution.

Unlike compilers, interpreters handle programs as data that
can be manipulated in any suitable way (see Figure 1.2).

Interpreter :> Output

Source code Data

FIGURE 1.2 Interpreter architecture

As you can see in Figure 1.2, the interpreter, not the user
program, controls program execution. Thus, we can say the user
program is passive in this case. So, to run an interpreted pro-
gram on a host, both the source code and a suitable interpreter
must be available. The presence of the program source (script) is
the reason why some developers associate interpreted languages
with scripting languages. In the same manner, compiled lan-
guages are usually associated with system-programming
languages.

Interpreters usually support two modes of operation. In the
first mode, the script file (with the source code) is passed to the
interpreter. This is the most common way of distributing
scripted programs. In the second, the interpreter is run in inter-
active mode. This mode enables the developer to enter program
statements line by line, seeing the result of the execution after
every statement. Source code is not saved to the file. This mode
is important for initial system debugging, as we see later in the
book.

In the following sections, I provide more details on the
strengths and weaknesses of using compilers and interpreters.
For now, here are some clear drawbacks of both approaches
important for our further discussion:

m [t is obvious compiled programs usually run faster than
interpreted ones. This is because with compiled pro-
grams, no high-level code analysis is being done during
runtime.

B An interpreter enables the modification of a user pro-

gram as it runs, which enables interactive debugging
capability. In general, interpreted programs are much
easier to debug because most interpreters point directly
to errors in the source code.

Interpreters introduce a certain level of machine inde-
pendence because no specific machine code is generated.

The important thing from a scripting point of view, as
we see in a moment, is interpreters allow the variable
type to change dynamically. Because the user program
is reexamined constantly during execution, variables do
not need to have fixed types. This is much harder to
accomplish with compilers because semantic analysis is
done at compile time.

From this list, we can conclude interpreters are better suited
for the development process, and compiled programs are better
suited for production use. Because of this, for some languages,
you can find both an interpreter and a compiler. This means
you can reap all the benefits of interpreters in the development
phase and then compile a final version of the program for a
specific platform to gain better performance.

Many of today’s interpreted languages are not interpreted
purely. Rather, they use a hybrid compiler-interpreter approach,
as shown in Figure 1.3.

Source code

External libraries

—>

—>

Compiler

Intermediate language
code

Interpreter

Result

FIGURE 1.3 Hybrid compiler-interpreter architecture

In this model, the source code is first compiled to some
intermediate code (such as Java bytecode), which is then inter-
preted. This intermediate code is usually designed to be very
compact (it has been compressed and optimized). Also, this lan-
guage is not tied to any specific machine. It is designed for
some kind of virtual machine, which could be implemented in
software. Basically, the virtual machine represents some kind of
processor, whereas this intermediate code (bytecode) could be
seen as a machine language for this processor.

This hybrid approach is a compromise between pure
interpreted and compiled languages, due to the following
characteristics:

m Because the bytecode is optimized and compact, inter-
preting overhead is minimized compared with purely
interpreted languages.

m The platform independence of interpreted languages is
inherited from purely interpreted languages because the
intermediate code could be executed on any host with a
suitable virtual machine.

Lately, just-in-time compiler technology has been intro-
duced, which allows developers to compile bytecode to
machine-specific code to gain performance similar to compiled
languages. I mention this technology throughout the book,
where applicable.

Source Code in Production

As some people have pointed out, you should use a scripting
language to write user-readable and modifiable programs that
perform simple operations and control the execution of other
programs. In this scenario, source code should be available in
the production system at runtime, so programs are delivered not
in object code, but in plain text files (scripts) in their original
source. From our previous discussion of interpreters, it is obvi-
ous this holds true for purely interpreted languages. Because
scripting languages are interpreted, we can say this rule applies
to them as well. But because some of them use a hybrid
compilation-interpretation strategy, it is possible to deliver the

program in intermediate bytecode form. The presence of the
bytecode improves execution speed because no compilation
process is required. The usual approach is to deliver necessary
libraries in the bytecode and not the program itself. This way,
execution speed is improved, and the program source is still
readable in production. Some of the compiler-interpreter lan-
guages cache in the file the bytecode for the script on its first
execution. On every following script execution, if the source
hasn’t been changed, the interpreter uses the cached bytecode,
improving the startup speed required to execute the script.

As such, the presence of source code in the production
environment is one of the characteristics of scripting languages,
although you can omit it for performance reasons or if you
want to keep your source code secret.

Typing Strategies

Before I start a discussion on typing strategies implemented in
different programming languages, I have to explain what types
are.

There is no simple way to explain what typing is because
its definition depends on the context in which it is used. Also, a
whole branch of mathematics is dedicated to this issue. It is
called type theory, and its proponents have the following say-
ing, which emphasizes their attitude toward the importance of
this topic:

Design the type system correctly, and the language will design
itself.

To put it simply, types are metadata that describe the data
stored in some variable. Types specify what values can be
stored in certain variables, as well as the operations that can be
performed on them.

Type constraints determine how we can handle and operate
a certain variable. For example, what happens when you add
the values of one variable to those of another depends on
whether the variables are integers, floats, Booleans, or strings.
A programming language’s type system could classify the value

hello as a string and the value 7 as a number. Whether you
can mix strings with numbers in this language depends on the
language’s type policy.

Some types are native (or primitive), meaning they are built
into the language. The usual representatives of this type category
are Booleans, integers, floats, characters, and even strings in
some languages. These types have no visible internal structure.

Other types are composite, and are constructed of primitive
types. In this category, we have structures and various so-called
container types, such as lists, maps, and sets. In some lan-
guages, string is defined as a list of characters, so it can be
categorized as a composite type.

In object-oriented languages, developers got the opportunity
to create their own types, also known as classes. This type cate-
gory is called user-defined types. The big difference between
structures and classes is with classes, you define not just the
structure of your complex data, but also the behavior and possi-
ble operations you can perform with it. This categorizes every
class as a single type, where structures (in C, for example) are

one type.
Type systems provide the following major benefits:

m Safety—Type systems are designed to catch the majority
of type-misuse mistakes made by developers. In other
words, types make it practically impossible to code
some operations that cannot be valid in a certain
context.

m Optimization—As I already mentioned, languages that
employ static typing result in programs with better-
optimized machine code. That is because early type
checks provide useful information to the compiler, mak-
ing it easier to allocate optimized space in memory for
a certain variable. For example, there is a great differ-
ence in memory usage when you are dealing with a
Boolean variable versus a variable containing some
random text.

m Abstraction—Types allow developers to make better
abstractions in their code, enabling them to think about
programs at a higher level of abstraction, not bothering

with low-level implementation of those types. The most
obvious example of this is in the way developers deal
with strings. It is much more useful to think of a string
as a text value rather than as a byte array.

B Modularity—Types allow developers to create application
programming interfaces (APIs) for the subsystems used
to build applications. Typing localizes the definitions
required for interoperability of subsystems and prevents
inconsistencies when those subsystems communicate.

m Documentation—Use of types in languages can improve
the overall documentation of the code. For example, a
declaration that some method’s arguments are of a spe-
cific type documents how that method can be used. The
same is true for return values of methods and variables.

Now that we know the basic concepts of types and typing
systems, we can discuss the type strategies implemented in vari-
ous languages. We also discuss how the choice of implemented
typing system defines languages as either scripting (dynamic) or
static.

Dynamic TYPING

The type-checking process verifies that the constraints intro-
duced by types are being respected. System-programming lan-
guages traditionally used to do type checking at compile time.
This is referred to as static typing.

Scripting languages force another approach to typing. With
this approach, type checking is done at runtime. One obvious
consequence of runtime checking is all errors caused by inap-
propriate use of a type are triggered at runtime. Consider the
following example:

7
“hello world”
X + Y

N <
o n

This code snippet defines an integer variable, x, and a string
variable, y, and then tries to assign a value for the z variable
that is the sum of the x and y values. If the language has not

defined an operator, +, for these two types, different things hap-
pen depending on whether the language is statically or dynami-
cally typed. If the language was statically typed, this problem
would be discovered at compile time, so the developer would be
notified of it and forced to fix it before even being able to run
the program. If the language was dynamically typed, the pro-
gram would be executable, but when it tried to execute this
problematic line, a runtime error would be triggered.

Dynamic typing usually allows a variable to change type
during program execution. For example, the following code
would generate a compile-time error in most statically typed
programming languages:

X
X

“He1lo world”

On the other hand, this code would be legal in a purely
dynamic typing language. This is simply because the type is not
being misused here.

Dynamic typing is usually implemented by tagging the
variables. For example, in our previous code snippet, the value
of variable x after the first line would be internally represented
as a pair (7, number). After the second line, the value would be
internally represented as a pair (“HeTlo worl1d”, string).
When the operation is executed on the variable, the type is
checked and a runtime error is triggered if the misuse is discov-
ered. Because no misuse is detected in the previous example, the
code snippet runs without raising any errors.

I comprehensively discuss the pros and cons of these
approaches later in this chapter, but for now, it is important to
note a key benefit of dynamic typing from the developer’s point
of view. Programs written in dynamically typed languages tend
to be much shorter than equivalent solutions written in stati-
cally typed languages. This is an implication of the fact that
developers have much more freedom in terms of expressing
their ideas when they are not constrained by a strict type
system.

WEAkK TyPING

There is yet another categorization of programming-language
typing strategy. Some languages raise an error when a program-
mer tries to execute an operation on variables whose types are
not suitable for that operation (type misuse). These languages
are called strongly typed languages. On the other hand, weakly
typed languages implicitly cast (convert) a variable to a suitable
type before the operation takes place.

To clarify this, let’s take a look at our first example of sum-
ming a number and string variable. In a strongly typed envi-
ronment, which most system-programming languages deploy,
this operation results in a compile-time error if no operator is
defined for these types. In a weakly typed language, the integer
value usually would be converted to its string representative (7
in this case) and concatenated to the other string value (suppos-
ing that the + operator represents string concatenation in this
case). The result would be a z variable with the “7HeTTloWor1d”
value and the string type.

Most scripting languages tend to be dynamic and weakly
typed, but not all of them use these policies. For example,
Python, a popular scripting language, employs dynamic typing,
but it is strongly typed. We discuss in more detail the strengths
and weaknesses of these typing approaches, and how they can
fit into the overall system architecture, later in this chapter and
in Chapter 2.

Data Structures

For successful completion of common programming tasks,
developers usually need to use different complex data struc-
tures. The presence of language mechanisms for easy handling
of complex data structures is in direct connection to developers’
efficiency.

Scripting languages generally provide more powerful and
flexible built-in data types than traditional system-program-
ming languages. It is natural to see data structures such as lists,
sets, maps, and so on, as native data types in such languages.

Of course, it is possible to implement an arbitrary data
structure in any language, but the point is these data structures
are embedded natively in language syntax making them much
easier to learn and use. Also, without this standard implementa-
tion, novice developers are often tempted to create their own
solution that is usually not robust enough for production use.

As an example, let’s look at Python, a popular dynamic
language with lists and maps (also called dictionaries) as its
native language type. You can use these structures with other
language constructs, such as a for loop, for instance. Look at
the following example of defining and iterating a simple list:

Tist = [“Mike”, “Joe”, “Bruce”]
for item in list :
print item

As you can see, the Python code used in this example to
define a list is short and natural. But more important is the for
loop, which is designed to naturally traverse this kind of data.
Both of these features make for a comfortable programming
environment and thus save some time for developers.

Java developers may argue that Java collections provide the
same capability, but prior to J2SE 1.5, the equivalent Java code
would look like this:

String[] arr = new String[]{“Mike”, “Joe”,

List Tist = Arrays.asList(arr);

for (Iterator it = Tist.iterator(); it.hasNext();) {
System.out.println(it.next());

}

“Bruce”};

Even for this simple example, the Java code is almost twice
as long as and is much harder to read than the equivalent
Python code. In J2SE 1.5, Java got some features that brought
it closer to these scripting concepts. With the more flexible for
loop, you could rewrite the preceding example as follows:

String[] arr = new String[]1{“Mike”, “Joe”, “Bruce”};
List Tist = Arrays.aslList(arr);
for (String item : Tist) {
System.out.println(item);
}

With this in mind, we can conclude data structures are an
important part of programming, and therefore native language
support for commonly used structures could improve develop-
ers’ productivity. Many scripting languages come with flexible,
built-in data structures, which is one of the reasons why they
are often categorized as “human-oriented.”

Code as Data

The code and data in compiled system programming languages

are two distinct concepts. Scripting languages, however, attempt
to make them more similar. As I said earlier, programs (code) in
scripting languages are kept in plain text form. Language inter-
preters naturally treat them as ordinary strings.

EVALUATION

It is not unusual for the commands (built-in functions) in
scripting languages to evaluate a string (data) as language
expression (code). For example, in Python, you can use the
eval() function for this purpose:

x =9
eval (“print x + 77)

This code prints 16 on execution, meaning the value of the
variable x is embedded into the string, which is evaluated as a
regular Python program.

More important is the fact that scripted programs can gen-
erate new programs and execute them “on the fly” Look at the
following Python example:

temp = open(“temp.py”, “w”)
temp.write(“print x + 7”)
temp.close()

x =9

execfile(“temp.py”)

In this example, we created a file called temp.py, and we
wrote a Python expression in it. At the end of the snippet, the
execfile() command executed the file, at which point 16 was
displayed on the console.

This concept is natural to interpreted languages because the
interpreter is already running on the given host executing the
current script. Evaluation of the script generated at runtime is
not different from evaluation of other regular programs. On the
other hand, for compiled languages this could be a challenging
task. That is because a compile/link phase is introduced during
conversion of the source code to the executable program. With
interpreted languages, the interpreter must be present in the
production environment, and with compiled languages, the
compiler (and linker) is usually not part of the production
environment.

CLOSURES

Scripting languages also introduce a mechanism for passing
blocks of code as method arguments. This mechanism is called a
closure. A good way to demonstrate closures is to use methods
to select items in a list that meet certain criteria.

Imagine a list of integer values. We want to select only
those values greater than some threshold value. In Ruby, a
scripting language that supports closures, we can write some-
thing like this:

threshold = 10
newList = orig.select {|item| item > threshold}

The select() method of the collection object accepts a
closure, defined between the {}, as an argument. If parameters
must be passed, they can be defined between the | |. In this
example, the select() method iterates over the collection,
passing each item to the closure (as an item parameter) and
returning a collection of items for which the closure returned
true.

Another thing worth noting in this example is closures can
refer to variables visible in the scope in which the closure is
created. That’s why we could use the global threshold value in
the closure.

Closures in scripting languages are not different from any
other data type, meaning methods can accept them as param-
eters and return them as results.

Functions AS METHOD ARGUMENTS

Many scripting languages, even object-oriented ones, introduce
standalone functions as so-called “first-class language citizens.”
Even if you do not have true support for closures, you can pass
your functions as method arguments.

The Python language, for example, defines a filter()
function that accepts a list and the function to be executed on
every item in the list:

def over(item)
threshold = 10
return item > threshold

newList = filter(over, orig)

In this example, we defined the over () function, which
basically does the same job as our closure from the previous
example. Next, we called the filter() function and passed the
over () function as the second argument. Even though this
mechanism is not as convenient as closures are, it serves its
purpose well (and that is to pass blocks of code as data around
the application).

Of course, you can achieve similar functionality in other
nonscripting languages. For example, Java developers have the
concept of anonymous inner classes serving the same purpose.
Let’s implement a similar solution using this approach:

package net.scriptinginjava.chl;

import java.util.ArraylList;
import java.util.Arrays;
import java.util.Iterator;
import java.util.List;

interface IFilter {
public boolean filter(Integer item);

public class Filter {

private static List select(List Tist, IFilter filter) {
List result = new ArrayList();
for (Iterator it = list.iterator(); it.hasNext();) {
Integer item = (Integer)it.next();
if (filter.filter(item)) {

result.add(item);

}
}
return result;

}

public static void main(String[] args) {

Integer[] arr

= new Integer[]{

new Integer(5),
new Integer(7),
new Integer(13),
new Integer(32)

};

List orig = Arrays.asList(arr);
List newList = select(orig,
new IFilter(Q {

}
);
System.out.pri

NortEe

Some closure propo-
nents say that the
existence of this
“named” interface
breaks the anony-
mous concept at the
beginning.

private Integer threshold
= new Integer(10);
public boolean filter(Integer item) {
return item.compareTo(threshold) > 0;
}

ntln(newlList);

First we defined the IFilter interface with a filter()
method that returns a Boolean value indicating whether the
condition is satisfied.

Our Filter class contains a select() method equal to the
methods we saw in the earlier Ruby and Python examples. It
accepts a list to be handled and the implementation of the
IFilter interface that filters the values we want in our new
list. At the end, we implement the IFiTter interface as the
anonymous inner class in the select() method call.

As a result, the program prints this result list to the screen:

[13, 32]

From this example, we can see even though a similar con-
cept is possible in system-programming languages, the syntax is
much more complex. This is an important difference because
the natural syntax for some functionality leads to its frequent
use, in practice. Closures have simple syntax for passing the

code around the application. That is why you see closures used
more often in languages that naturally support them than you
see similar structures in other languages (anonymous inner
classes in Java, for example).

Hopefully, closures will be added in Java SE 7, which
will move Java one step closer to the flexibility of scripting
languages.

Summary

In this section of the chapter, I discussed some basic functional
characteristics of scripting languages. Many experts tend to cat-
egorize a language as scripting or system programming, not by
these functional characteristics but by the programming style
and the role the language plays in the system. However, these
two categorizations are not independent, so to understand how
scripting can fit into your development process, it is important
to know the functional characteristics of the scripting language
and the implications of its design. The differences between
system-programming and scripting languages are described
later in this chapter, helping us to understand how these two
approaches can work together to create systems that feature the
strengths of both programming styles.

It is important to note that the characteristics we’ve dis-
cussed thus far are not independent among each other. For
example, whether to use static or dynamic typing depends on
when the type checking is done. It is hard to implement dynamic
typing in a strictly compiled environment. Thus, interpreter and
dynamic typing somehow fit naturally together and are usually
employed in scripting environments. The same is true for the
compiler and static typing found in system-programming
environments.

The similar is true for the generation and execution of other
programs, which is a natural thing to do in interpreted environ-
ments and is not very easy (and thus is rarely done) in compiled
environments.

To summarize, these characteristics are usually found in
scripting programming environments. Not all languages support
all the features described earlier, which is a decision driven by

the primary domain for which the language is used. For exam-
ple, although Python is a dynamic language, it introduces
strong typing, making it more resistible to type misuse and
more convenient for development of larger applications.

These characteristics should serve only as a marker when
exploring certain languages and their possible use in your
development process. More important is the language’s pro-
gramming style, a topic we discuss shortly.

Scripting Languages
and Virtual Machines

A recent trend in programming language design is the presence
of a virtual machine as one of the vital elements of program-
ming platforms. One of the main elements of the Java Runtime
Environment (JRE) is the virtual machine that interprets byte-
code and serves as a layer between the application and operat-
ing systems. A virtual machine serves as a layer between the
application and operating systems in Microsoft’s .NET platform
as well.

Let’s now summarize briefly how the JRE works. Java pro-
grams contained in java extension source files are compiled to
bytecode (files with a class extension). As I said earlier, the
purpose of bytecode is to provide a compact format for interme-
diate code and support for platform independence. The JVM is a
virtual processor, and like all other processors, it interprets
code—bytecode in this case. This is a short description of the
JRE, but it is needed for our further discussion. You can find a
more comprehensive description at the beginning of Chapter 3,
“Scripting Languages Inside the JVM.”

Following this, we can say Java is a hybrid compiled-inter-
preted language. But even with this model, Java cannot be
characterized as a scripting language because it lacks all the
other features mentioned earlier.

At this point, you are probably asking what this discussion
has to do with scripting languages. The point is many modern
scripting languages follow the same hybrid concept. Although
programs are distributed in script form and are interpreted at

runtime, the things going on in the background are pretty much
the same.

Let’s look at Python, for example. The Python interpreter
consists of a compiler that compiles source code to the interme-
diate bytecode, and the Python Virtual Machine (PVM) that
interprets this code. This process is being done in the back-
ground, leaving the impression that the pure Python source
code has been interpreted. If the Python interpreter has write
privileges on the host system, it caches the generated bytecode
in files with a pyc extension (the py extension is used for the
scripts or source code). If that script had not been modified
since its previous execution, the compilation process would be
skipped and the virtual machine could start interpreting the
bytecode at once. This could greatly improve the Python script’s
startup speed. Even if the Python interpreter has no write privi-
leges on the system and the bytecode was not written in files,
this compilation process would still be performed. In this case,
the bytecode would be kept in memory.

From this discussion, we can conclude virtual machines are
one of the standard parts of modern scripting languages. So our
original dilemma remains. Should we use languages that
enforce a certain programming paradigm, and if so, how do we
use them? The dynamic and weak typing, closures, complex
built-in data structures, and so on, could be implemented in a
runtime environment with the virtual machine.

There is nothing to restrict the use of a dynamic (scripting)
language on the virtual machines designed for languages such
as Java and C#. As long as we implement the compiler appro-
priate for the target virtual machine’s intermediate bytecode,
we will receive all the features of the scripting language in this
environment. Doing this, we could benefit from the strengths of
both the system-programming approach of Java, and the script-
ing programming model in our software development process.

We focus on projects that bring scripting languages closer
to the Java platform later in this book. Also, we discuss where
it’s appropriate to apply the scripting style of development with
traditional Java programming. Before we cover these topics,
though, let’s take a look at how scripting and system program-
ming compare.

NoTE

Python programs
can be distributed in
bytecode format,
keeping the source
code out of the
production
environment.

A Comparison of Scripting and
System Programming

Every decision made during the language design process is
directly related to the programming style used in that language
and its usability in the development process.

In this section, I do not intend to imply one style is better
than the other is. Instead, my objective is to summarize the
strengths and weaknesses of both approaches so that we can
proceed to Chapter 2, where I discuss how best to incorporate
them into the development process.

Runtime Performance

It is clear programs written in system-programming languages
have better runtime performance than equivalent scripts in most
cases, for a few reasons:

m The most obvious reason is the runtime presence of the
interpreter in scripting languages. Source code analysis
and transformation during runtime introduces addi-
tional overhead in terms of program execution.

® Another factor influencing runtime performance is
typing. Because system-programming languages force
strong static typing, machine code created by the com-
piler is more compact and optimized for the target
machine.

The fact that the script could be compiled to intermediate
bytecode makes these interpreter performance penalties more
acceptable. But the machine code is definitely more optimized
than the intermediate code.

We have to take another point of view when talking about
runtime performance, however. Many people approach runtime
performance by asking which solution is faster. The more
important question, which is often neglected, is whether a par-
ticular solution is fast enough.

You must take into consideration the tradeoffs between
the benefits and the runtime performance that each approach

provides when you are thinking about applying a certain tech-
nology in your project. If the solution brings quality to your
development process and still is fast enough, you should con-
sider using it.

A recent development trend supports this point of view.
Many experts state you should not analyze performance with-
out comparing it to measurements and goals. This leads to
debate concerning whether to perform premature or prudent
optimization. The latter approach assumes you have a flexible
system, and only after you've conducted the performance tests
and found the system bottlenecks should you optimize those
parts of your code.

Deciding whether scripting is suitable for some tasks in
your development process must be driven by the same question.
For instance, say you need to load a large amount of data from
a file, and developing a system-programming solution to
accomplish the task would take twice as long as developing a
scripting approach. If both the system-programming and script-
ing solutions need 1 second to load the data and the interpreter
required an additional 0.1 second to compile the script to the
bytecode, you should consider scripting to be a fast enough
solution for this task. As we see in a moment, scripts are much
faster to write (because of the higher level of abstraction they
introduce), and the end users of your project probably wouldn’t
even notice the performance advantage of the system-
programming solution that took twice as much time to develop.

If we take another point of view, we can conclude the
startup cost of executing programs written in dynamic lan-
guages could be close to their compiled alternatives. The first
important thing to note is the fact that bytecode is usually
smaller than its equivalent machine code. Experts who support
this point of view stress that processors have increased in speed
much faster than disks have. This leads to the thinking that the
in-memory operations of the just-in-time compilers (compiling
the bytecode to the machine code) are not much more expen-
sive than the operation of loading the large sequence of
machine code from the disk into memory.

To summarize, it is clear system-programming languages
are faster than scripting languages. But if you don’t need to be

restricted by only one programming language, you should ask
yourself another question: What is the best tool for this task? If
the development speed is more important and the runtime per-
formance of the scripting solution is acceptable, there is your
answer.

Development Speed

I already mentioned dynamic languages lead to faster develop-
ment processes. A few facts support this assertion.

For one, a statement in a system-programming language
executes about five machine instructions. However, a statement
in a scripting language executes hundreds or even thousands
of instructions. Certainly, this increase is partially due to the
presence of the interpreter, but more important is the fact that
primitive operations in scripting languages have greater func-
tionality. For example, operations for matching certain patterns
in text with regular expressions are as easy to perform as multi-
plying two integers.

These more powerful statements and built-in data structures
lead to a higher level of abstraction that language can provide,
as well as much shorter code.

Of course, dynamic typing plays an important role here too.
The need to define each variable explicitly with its type requires
a lot of typing, and this is time consuming from a developer’s
perspective. This higher level of abstraction and dynamic typing
allows developers to spend more time writing the actual business
logic of the application than dealing with the language issues.

Another thing speeding up the scripting development
process is the lack of a compile (and linking) phase. Compila-
tion of large programs could be time consuming. Every change
in a program written in a system-programming language
requires a new compile/link process, which could slow down
development a great deal. In scripting, on the other hand,
immediately after the code is written or changed, it can be exe-
cuted (interpreted), leaving more time for the developer to actu-
ally write the code.

As you can see, all the things that increase runtime per-
formance, such as compilation and static typing, tend to slow

down development and increase the amount of time needed to
build the solution. That is why you hear scripting languages are
more human oriented than machine oriented (which isn’t the
case with system-programming languages).

To emphasize this point further, here is a snippet from
David Ascher’s article titled “Dynamic Languages—ready for the
next challenges, by design” (www.activestate.com/Company/
NewsRoom/whitepapers_ADL.plex), which reflects the paradigm
of scripting language design:

The driving forces for the creation of each major dynamic lan-
guage centered on making tasks easier for people, with raw
computer performance a secondary concern. As the language
implementations have matured, they have enabled programmers
to build very efficient software, but that was never their primary
focus. Getting the job done fast is typically prioritized above
getting the job done so that it runs faster. This approach makes
sense when one considers that many programs are run only
periodically, and take effectively no time to execute, but can take
days, weeks, or months to write. When considering networked
applications, where network latency or database accesses tend to
be the bottlenecks, the folly of hyper-optimizing the execution
time of the wrong parts of the program is even clearer. A
notable consequence of this difference in priority is seen in the
different types of competition among languages. While system
languages compete like CPU manufacturers on performance
measured by numeric benchmarks such as LINPACK, dynamic
languages compete, less formally, on productivity arguments
and, through an indirect measure of productivity, on how “fun”
a language is. It is apparently widely believed that fun lan-
guages correspond to more productive programmers—a hypothe-
sis that would be interesting to test.

Robustness

Many proponents of the system-programming approach say
dynamic typing introduces more bugs in programs because
there is no type checking at compile time. From this point of
view, it is always good to detect programming errors as soon as

possible. This is certainly true, but as we discuss in a moment,
static typing introduces some drawbacks, and programs written
in dynamically typed languages could be as solid as programs
written in purely statically typed environments. This way of
thinking leads to the theory that dynamically typed languages
are good for building prototypes quickly, but they are not
robust enough for industrial-strength systems.

On the other side stand proponents of dynamic typing.
From that point of view, type errors are just one source of bugs
in an application, and programs free of type-error problems are
not guaranteed to be free of bugs. Their attitude is static typing
leads to code much longer and much harder to maintain. Also,
static typing requires the developer to spend more of his time
and energy working around the limitations of that kind of
typing.

Another implication we can glean from this is the impor-
tance of testing. Because a successful compilation does not
guarantee your program will behave correctly, appropriate test-
ing must be done in both environments. Or as best-selling Java
author Bruce Eckel wrote in his book Thinking in Java (Prentice
Hall):

If it’s not tested, it’s broken.

Because dynamic typing allows you to implement function-
ality faster, more time remains for testing. Those fine-grained
tests could include testing program behavior for type misuse.

Despite all the hype about type checking, type errors are
not common in practice, and they are discovered quickly in the
development process. Look at the most obvious example. With
no types declared for method parameters, you could easily find
yourself calling a method with the wrong order of parameters.
But these kinds of errors are obvious and are detected immedi-
ately the next time the script is executed. It is highly unlikely
this kind of error would make it to distribution if it was tested
appropriately.

Another extreme point of view says even statically typed
languages are not typed. To clarify this statement, look at the
following Java code:

List Tist = new ArrayList();
Tist.add(new String(“Hell0”));
Tist.add(new Integer(77));

Iterator it = list.iterator();
while (it.hasNext()) {
String item = (String)it.next(Q);

This code snippet would be compiled with no errors, but at
execution time, it would throw a java.lang.ClassCastExcep-
tion. This is a classic example of a runtime type error. So what
is the problem?

The problem is objects lose their type information when
they are going through more-generic structures. In Java, all
objects in the container are of type java.lang.Object, and
they must be converted to the appropriate type (class) as soon
as they are released from the container. This is when inappro-
priate object casting could result in runtime type errors. Because
many objects in the application are actually contained in a
more-generic structure, this is not an irrelevant issue.

Of course, there is a workaround for this problem in stati-
cally typed languages. One solution recently introduced in Java
is called generics. With generics, you would write the preceding
example as follows:

List Tist<String> = new ArrayList<String>(Q);
Tist.add(new String(“Hel10”));
Tist.add(new Integer(77));

Iterator<String> it = list.iterator(Q);
while (it.hasNext()) {
String item = it.next();

This way, you are telling the compiler only String objects
can be placed in this container. An attempt to add an Integer
object would result in a compilation error. This is a solution to
this problem, but like all workarounds, it is not a natural
approach.

The fact that scripting programs are smaller and more read-
able by humans makes them more suitable for code review by a

development team, which is one more way to ensure your appli-
cation is correct. Guido van Rossum, the creator of the Python
language, supported this view when he was asked in an inter-
view whether he would fly an airplane controlled by software
written in Python (www.artima.com/intv/strongweakP.html):

You’ll never get all the bugs out. Making the code easier to read
and write, and more transparent to the team of human readers
who will review the source code, may be much more valuable
than the narrow-focused type checking that some other compiler
offers. There have been reported anecdotes about spacecraft or
aircraft crashing because of type-related software bugs, where
the compilers weren’t enough to save you from the problems.

This discussion is intended just to emphasize one thing:
Type errors are just one kind of bug in a program. Early type
checking is a good thing, but it is certainly not enough, so con-
ducting appropriate quality assurance procedures (including unit
testing) is the only way to build stable and robust systems.

Many huge projects written purely in Python prove the fact
that modern scripting languages are ready for building large
and stable applications.

Maintenance

A few aspects of scripting make programs written in scripting
languages easier to maintain.

The first important aspect is the fact that programs written in
scripting languages are shorter than their system-programming
equivalents, due to the natural integration of complex data
types, more powerful statements, and dynamic typing. Simple
logic dictates it is easier to debug and add additional features to
a shorter program than to a longer one, regardless of what pro-
gramming language it was written in. Here’s a more descriptive
discussion on this topic, taken from the aforementioned Guido
van Rossum interview (www.artima.com/intv/speed.html):

This is all very informal, but I heard someone say a good pro-
grammer can reasonably maintain about 20,000 lines of code.

Whether that is 20,000 lines of assembler, C, or some high-level
language doesn’t matter. It’s still 20,000 lines. If your language
requires fewer lines to express the same ideas, you can spend
more time on stuff that otherwise would go beyond those
20,000 lines.

A 20,000-line Python program would probably be a 100,000-
line Java or C++ program. It might be a 200,000-line C pro-
gram, because C offers you even less structure. Looking for a
bug or making a systematic change is much more work in a
100,000-line program than in a 20,000-line program. For
smaller scales, it works in the same way. A 500-line program
feels much different than a 10,000-line program.

The counterargument to this is the claim that static typing
also represents a kind of code documentation. Having every
variable, method argument, and return result in a defined type
makes code more readable. Although this is a valid claim when
it comes to method and property declarations, it certainly is not
important to document every temporary variable. Also, in
almost every programming language you can find a mechanism
and tools used to document your code. For example, Java
developers usually use the Javadoc tool (http://java.sun.com/
j2se/javadoc/) to generate HTML documentation from specially
formatted comments in source code. This kind of documentation
is more comprehensive and could be used both in scripting and
in system-programming languages.

Also, almost every dynamically typed language permits
explicit type declaration but does not force it. Every scripting
developer is free to choose where explicit type declarations
should be used and where they are sufficient. This could result
in both a rapid development environment and readable, docu-
mented code.

Extreme Programming

In the past few years, many organizations adopted extreme pro-
gramming as their software development methodology. The two
basic principles of extreme programming are test-driven devel-
opment (TDD) and refactoring.

You can view the TDD technique as a kind of revolution
in the way people create programs. Instead of performing the
following:

1. Write the code.
2. Test it if appropriate.

The TDD cycle incorporates these steps:

1. Write the test for certain program functionality.
2. Write enough code to get it to fail (API).

3. Run the test and watch it fail.

4. Write the whole functionality.

5

Run the code and watch all tests pass.

On top of this development cycle, the extreme programming
methodology introduces refactoring as a technique for code
improvement and maintenance. Refactoring is the technique of
restructuring the existing code body without changing its exter-
nal behavior. The idea of refactoring is to keep the code design
clean, avoid code duplication, and improve bad design. These
changes should be small because that way, it is likely we will
not break the existing functionality.

After code refactoring, we have to run all the tests again to
make sure the program is still behaving according to its design.

I already stated tests are one way to improve our programs’
robustness and to prevent type errors in dynamically typed
languages. From the refactoring point of view, interpreted lan-
guages offer benefits because they skip the compilation process
during development. For applications developed using the
system-programming language, after every small change (refac-
toring), you have to do compilation and run tests. Both of these
operations could be time consuming on a large code base, so
the fact that compilation could be omitted means we can save
some time.

Dynamic typing is a real advance in terms of refactoring.
Usually, because of laziness or a lack of the big picture, a devel-
oper defines a method with as narrow an argument type as he
needs at that moment. To reuse that method later, we have to

change the argument type to some more general or complex
structure. If this type is a concrete type or does not share the
same interface as the one we used previously, we are in trouble.
Not only do we have to change that method definition, but also
the types of all variables passed to that method as the particular
argument. In dynamically typed languages, this problem does
not exist. All you need to do is change the method to handle
this more general type.

We could amortize these problems in system programming
environments with good refactoring tools, which exist for most
IDEs today. Again, the real benefit is speed of development.
Because scripting languages enable developers to write code
faster, they have more time to do appropriate unit testing and
to write stub classes. A higher level of abstraction and a
dynamic nature make scripted programs more convenient to
change, so we can say they naturally fit the extreme program-
ming methodology.

The Hybrid Approach

As we learned earlier in this chapter, neither system-
programming nor scripting languages are ideal tools for all
development tasks. System-programming languages have good
runtime performance, but developing certain functionality

and being able to modify that functionality later takes time.
Scripting languages, on the other hand, are the opposite. Their
flexible and dynamic nature makes them an excellent develop-
ment environment, but at the cost of runtime performance.

So the real question is not whether you should use a certain
system-programming or scripting language for all your devel-
opment tasks, but where and how each approach fits into your
project. Considering today’s diverse array of programming plat-
forms and the many ways in which you can integrate them,
there is no excuse for a programmer to be stuck with only one
programming language. Knowing at least two languages could
help you have a better perspective of the task at hand, and the
appropriate tool for that task.

You can find a more illustrative description of this
principle in Bill Venners’s article, “The Best Tool for the Job”
(www.artima.com/commentary/langtool.html):

To me, attempting to use one language for every programming
task is like attempting to use one tool for every carpentry task.
You may really like screwdrivers, and your screwdriver may
work great for a job like inserting screws into wood. But what if
you're handed a nail? You could conceivably use the butt of the
screwdriver’s handle and pound that nail into the wood. The
trouble is, a) you are likely to put an eye out, and b) you won’t
be as productive pounding in that nail with a screwdriver as
you would with a hammer.

Because learning a new programming language requires so
much time and effort, most programmers find it impractical to
learn many languages well. But I think most programmers could
learn two languages well. If you program primarily in a systems
language, find a scripting language that suits you and learn it
well enough to use it reqularly. I have found that having both a
systems and a scripting language in the toolbox is a powerful
combination. You can apply the most appropriate tool to the
programming job at hand.

So if we agree system-programming and scripting lan-
guages should be used together for different tasks in project
development, two more questions arise. The first, and the most
important one, is what tasks are suitable for a certain tool.

The second question concerns what additional characteris-
tics scripting languages should have to fit these development
roles.

Let’s try to answer these two questions by elaborating on
the most common roles (and characteristics) scripting languages
had in the past. This gives us a clear vision of how we can
apply them to the development challenges in Java projects
today, which is the topic of later chapters.

A Case for Scripting

To end our discussion of this topic, I quote John K. Ousterhout,
the creator of the Tcl scripting language. In one of his articles
(www.tcl.tk/doc/scripting.html), he wrote the following words:

In deciding whether to use a scripting language or a system
programming language for a particular task, consider the fol-
lowing questions:

Is the application’s main task to connect together pre-existing
components?

Will the application manipulate a variety of different kinds of
things?

Does the application include a graphical user interface?
Does the application do a lot of string manipulation?
Will the application’s functions evolve rapidly over time?
Does the application need to be extensible?

“Yes” answers to these questions suggest that a scripting lan-
guage will work well for the application. On the other hand,
“yes” answers to the following questions suggest that an appli-
cation is better suited to a system programming language:

Does the application implement complex algorithms or data
structures?

Does the application manipulate large datasets (e.g., all the
pixels in an image) so that execution speed is critical?

Are the application’s functions well-defined and changing
slowly?

You could translate Ousterhout’s comments as follows:
Dynamic languages are well suited for implementing application
parts not defined clearly at the time of development, for wiring
(gluing) existing components in a loosely coupled manner, and
for implementing all those parts that have to be flexible and
changeable over time. System languages, on the other hand, are

a good fit for implementing complex algorithms and data struc-
tures, and for all those components that are well defined and
probably won’t be modified extensively in the future.

Conclusion

In this chapter, I explained what scripting languages are and
discussed some basic features found in such environments.
After that, I compared those features to system-programming
languages in some key development areas. Next, I expressed the
need for software developers to master at least one representa-
tive of both system-programming and scripting languages. And
finally, I briefly described suitable tasks for both of these
approaches.

Before we proceed to particular technologies that enable
usage of scripting languages in Java applications, we focus in
more detail on the traditional roles of scripting languages. This
is the topic of Chapter 2, and it helps us to better understand
scripting and how it can be useful in the overall system
infrastructure.

