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CHAPTER 3

Inside an Apple

A pple initiated its transition from the 68K hardware platform to the PowerPC
in 1994. Within the next two years, Apple’s entire line of computers moved

to the PowerPC. The various PowerPC-based Apple computer families available
at any given time have often differed in system architecture,1 the specific proces-
sor used, and the processor vendor. For example, before the G4 iBook was intro-
duced in October 2003, Apple’s then current systems included three generations
of the PowerPC: the G3, the G4, and the G5. Whereas the G4 processor line is
supplied by Motorola, the G3 and the G5 are from IBM. Table 3–1 lists the vari-
ous PowerPC processors2 used by Apple.

On June 6, 2005, at the Worldwide Developers Conference in San Francisco,
Apple announced its plans to base future models of Macintosh computers on Intel
processors. The move was presented as a two-year transition: Apple stated that

1.  System architecture refers to the type and interconnection of a system’s hardware components,
including—but not limited to—the processor type.

2.  The list does not account for minor differences between processor models—for example, differ-
ences based solely on processor clock frequencies.
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156 Chapter 3 Inside an Apple

although x86-based Macintosh models would become available by mid-2006, all
Apple computers would transition to the x86 platform only by the end of 2007.
The transition was faster than expected, with the first x86 Macintosh computers
appearing in January 2006. These systems—the iMac and the MacBook Pro—
were based on the Intel Core Duo3 dual-core processor line, which is built on 65
nm process technology.

In this chapter, we will look at the system architecture of a specific type of
Apple computer: a G5-based dual-processor Power Mac. Moreover, we will dis-
cuss a specific PowerPC processor used in these systems: the 970FX. We focus
on a G5-based system because the 970FX is more advanced, more powerful, and
more interesting in general than its predecessors. It is also the basis for the first
64-bit dual-core PowerPC processor: the 970MP.

3.1 The Power Mac G5

Apple announced the Power Mac G5—its first 64-bit desktop system—in June
2003. Initial G5-based Apple computers used IBM’s PowerPC 970 processors.
These were followed by systems based on the 970FX processor. In late 2005,
Apple revamped the Power Mac line by moving to the dual-core 970MP proces-

TABLE 3–1 Processors Used in PowerPC-Based Apple Systems

Processor Introduced Discontinued

PowerPC 601 March 1994 June 1996

PowerPC 603 April 1995 May 1996

PowerPC 603e April 1996 August 1998

PowerPC 604 August 1995 April 1998

PowerPC 604e August 1996 September 1998

PowerPC G3 November 1997 October 2003

PowerPC G4 October 1999 —

PowerPC G5 June 2003 —

PowerPC G5 (dual-core) October 2005 —

3.  This processor was originally codenamed Yonah.
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3.1 The Power Mac G5 157

sor. The 970, 970FX, and 970MP are all derived from the execution core of the
POWER4 processor family, which was designed for IBM’s high-end servers. G5
is Apple’s marketing term for the 970 and its variants.

IBM’s Other G5

There was another G5 from IBM—the microprocessor used in the S/390 G5 sys-
tem, which was announced in May 1998. The S/390 G5 was a member of IBM’s
CMOS4 mainframe family. Unlike the 970 family processors, the S/390 G5 had a
Complex Instruction-Set Computer (CISC) architecture.

Before we examine the architecture of any particular Power Mac G5, note
that various Power Mac G5 models may have slightly different system architectures.
In the following discussion, we will refer to the system shown in Figure 3–1.

3.1.1 The U3H System Controller

The U3H system controller combines the functionality of a memory controller5

and a PCI bus bridge.6 It is a custom integrated chip (IC) that is the meeting point
of key system components: processors, the Double Data Rate (DDR) memory
system, the Accelerated Graphics Port (AGP)7 slot, and the HyperTransport bus
that runs into a PCI-X bridge. The U3H provides bridging functionality by per-
forming point-to-point routing between these components. It supports a Graphics
Address Remapping Table (GART) that allows the AGP bridge to translate linear
addresses used in AGP transactions into physical addresses. This improves the
performance of direct memory access (DMA) transactions involving multiple
pages that would typically be noncontiguous in virtual memory. Another table
supported by the U3H is the Device Address Resolution Table (DART),8 which
translates linear addresses to physical addresses for devices attached to the

4.  CMOS stands for Complementary Metal Oxide Semiconductor—a type of integrated circuit tech-
nology. CMOS chips use metal oxide semiconductor field effect transistors (MOSFETs), which dif-
fer greatly from the bipolar transistors that were prevalent before CMOS. Most modern processors
are manufactured in CMOS technology.

5.  A memory controller controls processor and I/O interactions with the memory system.

6.  The G5 processors use the PCI bus bridge to execute operations on the PCI bus. The bridge also
provides an interface through which PCI devices can access system memory.

7.  AGP extends the PCI standard by adding functionality optimized for video devices.

8.  DART is sometimes expanded as DMA Address Relocation Table.
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FIGURE 3–1 Architecture of a dual-processor Power Mac G5 system
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HyperTransport bus. We will come across the DART in Chapter 10, when we dis-
cuss the I/O Kit.

3.1.2 The K2 I/O Device Controller

The U3H is connected to a PCI-X bridge via a 16-bit HyperTransport bus. The
PCI-X bridge is further connected to the K2 custom IC via an 8-bit HyperTransport
bus. The K2 is a custom integrated I/O device controller. In particular, it provides
disk and multiprocessor interrupt controller (MPIC) functionality.

3.1.3 PCI-X and PCI Express

The Power Mac system shown in Figure 3–1 provides three PCI-X 1.0 slots.
Power Mac G5 systems with dual-core processors use PCI Express.

3.1.3.1 PCI-X

PCI-X was developed to increase the bus speed and reduce the latency of PCI
(see the sidebar “A Primer on Local Busses”). PCI-X 1.0 was based on the exist-
ing PCI architecture. In particular, it is also a shared bus. It solves many—but not
all—of the problems with PCI. For example, its split-transaction protocol
improves bus bandwidth utilization, resulting in far greater throughput rates than
PCI. It is fully backward compatible in that PCI-X cards can be used in Conven-
tional PCI slots, and conversely, Conventional PCI cards—both 33MHz and
66MHz—can be used in PCI-X slots. However, PCI-X is not electrically compat-
ible with 5V-only cards or 5V-only slots.

PCI-X 1.0 uses 64-bit slots. It provides two speed grades: PCI-X 66
(66MHz signaling speed, up to 533MBps peak throughput) and PCI-X 133
(133MHz signaling speed, up to 1GBps peak throughput).

PCI-X 2.0 provides enhancements such as the following:

• An error correction code (ECC) mechanism for providing automatic 1-bit
error recovery and 2-bit error detection

• New speed grades: PCI-X 266 (266MHz signaling speed, up to 2.13GBps
peak throughput) and PCI-X 533 (533MHz signaling speed, up to 4.26GBps
peak throughput)

• A new 16-bit interface for embedded or portable applications
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Note how the slots are connected to the PCI-X bridge in Figure 3–1:
Whereas one of them is “individually” connected (a point-to-point load), the
other two “share” a connection (a multidrop load). A PCI-X speed limitation is
that its highest speed grades are supported only if the load is point-to-point. Spe-
cifically, two PCI-X 133 loads will each operate at a maximum of 100MHz.9 Cor-
respondingly, two of this Power Mac’s slots are 100MHz each, whereas the third
is a 133MHz slot.

3.1.3.2 PCI Express

An alternative to using a shared bus is to use point-to-point links to connect
devices. PCI Express10 uses a high-speed, point-to-point architecture. It provides
PCI compatibility using established PCI driver programming models. Software-
generated I/O requests are transported to I/O devices through a split-transaction,
packet-based protocol. In other words, PCI Express essentially serializes and
packetizes PCI. It supports multiple interconnect widths—a link’s bandwidth can
be linearly scaled by adding signal pairs to form lanes. There can be up to 32 sep-
arate lanes.

A Primer on Local Busses

As CPU speeds have increased greatly over the years, other computer sub-
systems have not managed to keep pace. Perhaps an exception is the main
memory, which has fared better than I/O bandwidth. In 1991,11 Intel introduced
the Peripheral Component Interconnect (PCI) local bus standard. In the simplest
terms, a bus is a shared communications link. In a computer system, a bus is
implemented as a set of wires that connect some of the computer’s subsystems.
Multiple busses are typically used as building blocks to construct complex com-

9.  Four PCI-X 133 loads in a multidrop configuration will operate at a maximum speed of 66MHz
each.

The next revision of PCI-X—3.0—provides a 1066MHz data rate
with a peak throughput of 8.5GBps.

10.  The PCI Express standard was approved by the PCI-SIG Board of Directors in July 2002. PCI
Express was formerly called 3GIO.

11.  This was also the year that Macintosh System 7 was released, the Apple-IBM-Motorola (AIM)
alliance was formed, and the Personal Computer Memory Card International Association (PCMCIA)
was established, among other things.
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puter systems. The “local” in local bus implies its proximity to the processor.12 The
PCI bus has proven to be an extremely popular interconnect mechanism (also
called simply an interconnect), particularly in the so-called North Bridge/South
Bridge implementation. A North Bridge typically takes care of communication
between the processor, main memory, AGP, and the South Bridge. Note, how-
ever, that modern system designs are moving the memory controller to the pro-
cessor die, thus making AGP obsolete and rendering the traditional North Bridge
unnecessary.

A typical South Bridge controls various busses and devices, including the PCI
bus. It is common to have the PCI bus work both as a plug-in bus for peripherals
and as an interconnect allowing devices connected directly or indirectly to it to
communicate with memory.

The PCI bus uses a shared, parallel multidrop architecture in which address,
data, and control signals are multiplexed on the bus. When one PCI bus master13

uses the bus, other connected devices must either wait for it to become free or
use a contention protocol to request control of the bus. Several sideband sig-
nals14 are required to keep track of communication directions, types of bus trans-
actions, indications of bus-mastering requests, and so on. Moreover, a shared
bus runs at limited clock speeds, and since the PCI bus can support a wide vari-
ety of devices with greatly varying requirements (in terms of bandwidth, transfer
sizes, latency ranges, and so on), bus arbitration can be rather complicated. PCI
has several other limitations that are beyond the scope of this chapter.

PCI has evolved into multiple variants that differ in backward compatibility, for-
ward planning, bandwidth supported, and so on.

• Conventional PCI—The original PCI Local Bus Specification has evolved into
what is now called Conventional PCI. The PCI Special Interest Group (PCI-
SIG) introduced PCI 2.01 in 1993, followed by revisions 2.1 (1995), 2.2 (1998),
and 2.3 (2002). Depending on the revision, PCI bus characteristics include the
following: 5V or 3.3V signaling, 32-bit or 64-bit bus width, operation at 33MHz
or 66MHz, and a peak throughput of 133MBps, 266MBps, or 533MBps. Con-
ventional PCI 3.0—the current standard—finishes the migration of the PCI bus
from being a 5.0V signaling bus to a 3.3V signaling bus.

• MiniPCI—MiniPCI defines a smaller form factor PCI card based on PCI 2.2. It
is meant for use in products where space is a premium—such as notebook
computers, docking stations, and set-top boxes. Apple’s AirPort Extreme wire-
less card is based on MiniPCI.

12.  The first local bus was the VESA local bus (VLB).

13.  A bus master is a device that can initiate a read or write transaction—for example, a processor.

14.  In the context of PCI, a sideband signal is any signal that is not part of the PCI specification but
is used to connect two or more PCI-compliant devices. Sideband signals can be used for product-
specific extensions to the bus, provided they do not interfere with the specification’s implementation.
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• CardBus—CardBus is a member of the PC Card family that provides a 32-bit,
33MHz PCI-like interface that operates at 3.3V. The PC Card Standard is
maintained by the PCMCIA.15

PCI-X (Section 3.1.3.1) and PCI Express (Section 3.1.3.2) represent further
advancements in I/O bus architecture.

3.1.4 HyperTransport

HyperTransport (HT) is a high-speed, point-to-point, chip interconnect technol-
ogy. Formerly known as Lightning Data Transport (LDT), it was developed in the
late 1990s at Advanced Micro Devices (AMD) in collaboration with industry
partners. The technology was formally introduced in July 2001. Apple Computer
was one of the founding members of the HyperTransport Technology Consor-
tium. The HyperTransport architecture is open and nonproprietary.

HyperTransport aims to simplify complex chip-to-chip and board-to-board
interconnections in a system by replacing multilevel busses. Each connection in
the HyperTransport protocol is between two devices. Instead of using a single
bidirectional bus, each connection consists of two unidirectional links. Hyper-
Transport point-to-point interconnects (Figure 3–2 shows an example) can be
extended to support a variety of devices, including tunnels, bridges, and end-point
devices. HyperTransport connections are especially well suited for devices on the
main logic board—that is, those devices that require the lowest latency and the
highest performance. Chains of HyperTransport links can also be used as I/O
channels, connecting I/O devices and bridges to a host system.

15.  The PCMCIA was established to standardize certain types of add-in memory cards for mobile
computers.

FIGURE 3–2 HyperTransport I/O link
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Some important HyperTransport features include the following.

• HyperTransport uses a packet-based data protocol in which narrow and fast
unidirectional point-to-point links carry command, address, and data (CAD)
information encoded as packets.

• The electrical characteristics of the links help in cleaner signal transmission,
higher clock rates, and lower power consumption. Consequently, consider-
ably fewer sideband signals are required.

• Widths of various links do not need to be equal. An 8-bit-wide link can eas-
ily connect to a 32-bit-wide link. Links can scale from 2 bits to 4, 8, 16, or
32 bits in width. As shown in Figure 3–1, the HyperTransport bus between
the U3H and the PCI-X bridge is 16 bits wide, whereas the PCI-X bridge
and the K2 are connected by an 8-bit-wide HyperTransport bus.

• Clock speeds of various links do not need to be equal and can scale across a
wide spectrum. Thus, it is possible to scale links in both width and speed to
suit specific needs.

• HyperTransport supports split transactions, eliminating the need for ineffi-
cient retries, disconnects by targets, and insertion of wait states.

• HyperTransport combines many benefits of serial and parallel bus architectures.

• HyperTransport has comprehensive legacy support for PCI.

Split Transactions

When split transactions are used, a request (which requires a response) and
completion of that request—the response16—are separate transactions on the
bus. From the standpoint of operations that are performed as split transactions,
the link is free after the request is sent and before the response is received.
Moreover, depending on a chipset’s implementation, multiple transactions could
be pending17 at the same time. It is also easier to route such transactions across
larger fabrics.

HyperTransport was designed to work with the widely used PCI bus standard—
it is software compatible with PCI, PCI-X, and PCI Express. In fact, it could be
viewed as a superset of PCI, since it can offer complete PCI transparency by preserving

16.  The response may also have data associated with it, as in the case of a read operation.

17.  This is analogous to tagged queuing in the SCSI protocol.
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PCI definitions and register formats. It can conform to PCI ordering and configu-
ration specifications. It can also use Plug-and-Play so that compliant operating
systems can recognize and configure HyperTransport-enabled devices. It is designed
to support both CPU-to-CPU communications and CPU-to-I/O transfers, while
emphasizing low latency. 

A HyperTransport tunnel device can be used to provide connection to other
busses such as PCI-X. A system can use additional HyperTransport busses by
using an HT-to-HT bridge.

Apple uses HyperTransport in G5-based systems to connect PCI, PCI-X,
USB, FireWire, Audio, and Video links. The U3H acts as a North Bridge in this
scenario.

System Architecture and Platform

From the standpoint of Mac OS X, we can define a system’s architecture to be
primarily a combination of its processor type, the North Bridge (including the
memory controller), and the I/O controller. For example, the AppleMacRISC4PE
system architecture consists of one or more G5-based processors, a U3-based
North Bridge, and a K2-based I/O controller. The combination of a G3- or G4-
based processor, a UniNorth-based host bridge, and a KeyLargo-based I/O con-
troller is referred to as the AppleMacRISC2PE system architecture.

A more model-specific concept is that of a platform, which usually depends on
the specific motherboard and is likely to change more frequently than system
architecture. An example of a platform is PowerMac11,2, which corresponds to a
2.5GHz quad-processor (dual dual-core) Power Mac G5.

3.1.5 Elastic I/O Interconnect

The PowerPC 970 was introduced along with Elastic I/O, a high-bandwidth and
high-frequency processor-interconnect (PI) mechanism that requires no bus-level
arbitration.18 Elastic I/O consists of two 32-bit logical busses, each a high-speed
source-synchronous bus (SSB) that represents a unidirectional point-to-point
connection. As shown in Figure 3–1, one travels from the processor to the U3H
companion chip, and the other travels from the U3H to the processor. In a dual-
processor system, each processor gets its own dual-SSB bus. Note that the SSBs also
support cache-coherency “snooping” protocols for use in multiprocessor systems.

18.  In colloquial terms, arbitration is the mechanism that answers the question, “Who gets the bus?”
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Whereas the logical width of each SSB is 32 bits, the physical width is
greater. Each SSB consists of 50 signal lines that are used as follows:

• 2 signals for the differential bus clock lines

• 44 signals for data, to transmit 35 bits of address and data or control infor-
mation (AD), along with 1 bit for transfer-handshake (TH) packets for
acknowledging such command or data packets received on the bus

• 4 signals for the differential snoop response (SR) bus to carry snoop-coherency
responses, allowing global snooping activities to maintain cache coherency

The overall processor interconnect is shown in Figure 3–1 as logically con-
sisting of three inbound segments (ADI, THI, SRI) and three outbound segments
(ADO, THO, SRO). The direction of transmission is from a driver side (D), or
master, to a receive side (R), or slave. The unit of data transmission is a packet.

Each SSB runs at a frequency that is an integer fraction of the processor fre-
quency. The 970FX design allows several such ratios. For example, Apple’s dual-
processor 2.7GHz system has an SSB frequency of 1.35GHz (a PI bus ratio of
2:1), whereas one of the single-processor 1.8GHz models has an SSB frequency
of 600MHz (a PI bus ratio of 3:1).

The bidirectional nature of the channel between a 970FX processor and the
U3H means there are dedicated data paths for reading and writing. Consequently,
throughput will be highest in a workload containing an equal number of reads and
writes. Conventional bus architectures that are shared and unidirectional-at-a-
time will offer higher peak throughput for workloads that are mostly reads or
mostly writes. In other words, Elastic I/O leads to higher bus utilization for bal-
anced workloads.

A synchronous bus is one that includes a clock signal in its control
lines. Its communication protocol functions with respect to the
clock. A source-synchronous bus uses a timing scheme in which a
clock signal is forwarded along with the data, allowing data to be
sampled precisely when the clock signal goes high or low.

Using 44 physical bits to transmit 36 logical bits of information
allows 8 bits to be used for parity. Another supported format for
redundant data transmission uses a balanced coding method
(BCM) in which there are exactly 22 high signals and 22 low signals
if the bus state is valid.
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3.2 The G5: Lineage and Roadmap

As we saw earlier, the G5 is a derivative of IBM’s POWER4 processor. In this
section, we will briefly look at how the G5 is similar to and different from the
POWER4 and some of the POWER4’s successors. This will help us understand
the position of the G5 in the POWER/PowerPC roadmap. Table 3–2 provides a
high-level summary of some key features of the POWER4 and POWER5 lines.

The Bus Interface Unit (BIU) is capable of self-tuning during startup
to ensure optimal signal quality.

TABLE 3–2 POWER4 and Newer Processors

POWER4 POWER4+ POWER5 POWER5+

Year introduced 2001 2002 2004 2005

Lithography 180 nm 130 nm 130 nm 90 nm

Cores/chip 2 2 2 2

Transistors 174 million 184 million 276 million/chipa

a. A chip includes two processor cores and L2 cache. A multichip module (MCM) contains multiple chips and usually
L3 cache. A four-chip POWER5 MCM with four L3 cache modules is 95 mm2.

276 million/chip

Die size 415 mm2 267 mm2 389 mm2/chip 243 mm2/chip

LPARb

b. LPAR stands for (processor-level) Logical Partitioning.

Yes Yes Yes Yes

SMTc

c. SMT stands for simultaneous multithreading.

No No Yes Yes

Memory controller Off-chip Off-chip On-chip On-chip

Fast Path No No Yes Yes

L1 I-cache 2×64KB 2×64KB 2×64KB 2×64KB

L1 D-cache 2×32KB 2×32KB 2×32KB 2×32KB

L2 cache 1.41MB 1.5MB 1.875MB 1.875MB

L3 cache 32MB+ 32MB+ 36MB+ 36MB+
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Transcribing Transistors

In light of the technical specifications of modern processors, it is interesting to
see how they compare with some of the most important processors in the history
of personal computing.

• Intel 4004—1971, 750kHz clock frequency, 2,300 transistors, 4-bit accumula-
tor architecture, 8 µm pMOS, 3×4 mm2, 8–16 cycles/instruction, designed for a
desktop printing calculator

• Intel 8086—1978, 8MHz clock frequency, 29,000 transistors, 16-bit extended
accumulator architecture, assembly-compatible with the 8080, 20-bit address-
ing through a segmented addressing scheme

• Intel 8088—1979 (prototyped), 8-bit bus version of the 8086, used in the IBM
PC in 1981

• Motorola 68000—1979, 8MHz clock frequency, 68,000 transistors, 32-bit gen-
eral-purpose register architecture (with 24 address pins), heavily microcoded
(even nanocoded), eight address registers, eight data registers, used in the
original Macintosh in 1984

3.2.1 Fundamental Aspects of the G5

All POWER processors listed in Table 3–2, as well as the G5 derivatives, share
some fundamental architectural features. They are all 64-bit and superscalar, and
they perform speculative, out-of-order execution. Let us briefly discuss each of
these terms.

3.2.1.1 64-bit Processor

Although there is no formal definition of what constitutes a 64-bit processor, the
following attributes are shared by all 64-bit processors:

• 64-bit-wide general-purpose registers

• Support for 64-bit virtual addressing, although the physical or virtual
address spaces may not use all 64 bits

• Integer arithmetic and logical operations performed on all 64 bits of a 64-bit
operand—without being broken down into, say, two operations on two 32-
bit quantities

The PowerPC architecture was designed to support both 32-bit and 64-bit
computation modes—an implementation is free to implement only the 32-bit subset.

Singh.book  Page 167  Thursday, May 25, 2006  11:46 AM



168 Chapter 3 Inside an Apple

The G5 supports both computation modes. In fact, the POWER4 supports multi-
ple processor architectures: the 32-bit and 64-bit POWER; the 32-bit and 64-bit
PowerPC; and the 64-bit Amazon architecture. We will use the term PowerPC to
refer to both the processor and the processor architecture. We will discuss the 64-
bit capabilities of the 970FX in Section 3.3.12.1.

Amazon

The Amazon architecture was defined in 1991 by a group of IBM researchers and
developers as they collaborated to create an architecture that could be used for
both the RS/6000 and the AS/400. Amazon is a 64-bit-only architecture.

3.2.1.2 Superscalar

If we define scalar to be a processor design in which one instruction is issued per
clock cycle, then a superscalar processor would be one that issues a variable
number of instructions per clock cycle, allowing a clock-cycle-per-instruction
(CPI) ratio of less than 1. It is important to note that even though a superscalar
processor can issue multiple instructions in a clock cycle, it can do so only with
several caveats, such as whether the instructions depend on each other and which
specific functional units they use. Superscalar processors typically have multiple
functional units, including multiple units of the same type. 

VLIW

Another type of multiple-issue processor is a very-large instruction-word (VLIW)
processor, which packages multiple operations into one very long instruction. The
compiler—rather than the processor’s instruction dispatcher—plays a critical role
in selecting which instructions are to be issued simultaneously in a VLIW proces-
sor. It may schedule operations by using heuristics, traces, and profiles to guess
branch directions.

3.2.1.3 Speculative Execution

A speculative processor can execute instructions before it is determined whether
those instructions will need to be executed (instructions may not need to be exe-
cuted because of a branch that bypasses them, for example). Therefore, instruc-
tion execution does not wait for control dependencies to resolve—it waits only
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for the instruction’s operands (data) to become available. Such speculation can be
done by the compiler, the processor, or both. The processors in Table 3–2 employ
in-hardware dynamic branch prediction (with multiple branches “in flight”),
speculation, and dynamic scheduling of instruction groups to achieve substantial
instruction-level parallelism.

3.2.1.4 Out-of-Order Execution

A processor that performs out-of-order execution includes additional hardware
that can bypass instructions whose operands are not available—say, due to a
cache miss that occurred during register loading. Thus, rather than always execut-
ing instructions in the order they appear in the programs being run, the processor
may execute instructions whose operands are ready, deferring the bypassed
instructions for execution at a more appropriate time.

3.2.2 New POWER Generations

The POWER4 contains two processor cores in a single chip. Moreover, the
POWER4 architecture has features that help in virtualization. Examples include a
special hypervisor mode in the processor, the ability to include an address offset
when using nonvirtual memory addressing, and support for multiple global inter-
rupt queues in the interrupt controller. IBM’s Logical Partitioning (LPAR) allows
multiple independent operating system images (such as AIX and Linux) to be run
on a single POWER4-based system simultaneously. Dynamic LPAR (DLPAR),
introduced in AIX 5L Version 5.2, allows dynamic addition and removal of
resources from active partitions.

The POWER4+ improves upon the POWER4 by reducing its size, consuming
less power, providing a larger L2 cache, and allowing more DLPAR partitions.

The POWER5 introduces simultaneous multithreading (SMT), wherein a single
processor supports multiple instruction streams—in this case, two—simultaneously.

Many Processors . . . Simultaneously

IBM’s RS 64 IV, a 64-bit member of the PowerPC family, was the first mainstream
processor to support processor-level multithreading (the processor holds the
states of multiple threads). The RS 64 IV implemented coarse-grained two-way
multithreading—a single thread (the foreground thread) executed until a high-
latency event, such as a cache miss, occurred. Thereafter, execution switched to
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the background thread. This was essentially a very fast hardware-based context-
switching implementation. Additional hardware resources allowed two threads to
have their state in hardware at the same time. Switching between the two states
was extremely fast, consuming only three “dead” cycles.

The POWER5 implements two-way SMT, which is far more fine-grained. The
processor fetches instructions from two active instruction streams. Each instruc-
tion includes a thread indicator. The processor can issue instructions from both
streams simultaneously to the various functional units. In fact, an instruction pipe-
line can simultaneously contain instructions from both streams in its various stages.

A two-way SMT implementation does not provide a factor-of-two performance
improvement—the processor effectively behaves as if it were more than one pro-
cessor, but not quite two processors. Nevertheless, the operating system sees a
symmetric-multiprocessing (SMP) programming mode. Typical improvement fac-
tors range between 1.2 and 1.3, with a best case of about 1.6. In some patholog-
ical cases, the performance could even degrade. 

A single POWER5 chip contains two cores, each of which is capable of two-
way SMT. A multichip module (MCM) can contain multiple such chips. For example,
a four-chip POWER5 module has eight cores. When each core is running in SMT
mode, the operating system will see sixteen processors. Note that the operating
system will be able to utilize the “real” processors first before resorting to SMT.

The POWER5 supports other important features such as the following:

• 64-way multiprocessing.

• Subprocessor partitioning (or micropartitioning), wherein multiple LPAR
partitions can share a single processor.19 Micropartitioned LPARs support
automatic CPU load balancing.

• Virtual Inter-partition Ethernet, which enables a VLAN connection between
LPARs—at gigabit or even higher speeds—without requiring physical net-
work interface cards. Virtual Ethernet devices can be defined through the
management console. Multiple virtual adapters are supported per partition,
depending on the operating system.

• Virtual I/O Server Partition,20 which provides virtual disk storage and Ether-
net adapter sharing. Ethernet sharing connects virtual Ethernet to external
networks.

19.  A single processor may be shared by up to 10 partitions, with support for up to 160 partitions
total.

20.  The Virtual I/O Server Partition must run in either a dedicated partition or a micropartition.
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• An on-chip memory controller.

• Dynamic firmware updates.

• Detection and correction of errors in transmitting data courtesy of special-
ized circuitry.

• Fast Path, the ability to execute some common software operations directly
within the processor. For example, certain parts of TCP/IP processing that
are traditionally handled within the operating system using a sequence of
processor instructions could be performed via a single instruction. Such sil-
icon acceleration could be applied to other operating system areas such as
message passing and virtual memory.

Besides using 90-nm technology, the POWER5+ adds several features to the
POWER5’s feature set, for example: 16GB page sizes, 1TB segments, multiple
page sizes per segment, a larger (2048-entry) translation lookaside buffer (TLB),
and a larger number of memory controller read queues.

The POWER6 is expected to add evolutionary improvements and to extend
the Fast Path concept even further, allowing functions of higher-level software—
for example, databases and application servers—to be performed in silicon.21 It is
likely to be based on a 65-nm process and is expected to have multiple ultra-high-
frequency cores and multiple L2 caches.

3.2.3 The PowerPC 970, 970FX, and 970MP

The PowerPC 970 was introduced in October 2002 as a 64-bit high-performance
processor for desktops, entry-level servers, and embedded systems. The 970 can
be thought of as a stripped-down POWER4+. Apple used the 970—followed by
the 970FX and the 970MP—in its G5-based systems. Table 3–3 contains a brief
comparison of the specifications of these processors. Figure 3–3 shows a pictorial
comparison. Note that unlike the POWER4+, whose L2 cache is shared between
cores, each core in the 970MP has its own L2 cache, which is twice as large as the
L2 cache in the 970 or the 970FX.

Another noteworthy point about the 970MP is that both its cores share the
same input and output busses. In particular, the output bus is shared “fairly”
between cores using a simple round-robin algorithm.   

21.  The “reduced” in RISC becomes not quite reduced!
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TABLE 3–3 POWER4+ and the PowerPC 9xx
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Year introduced 2002 2002 2004 2005

Lithography 130 nm 130 nm 90 nma 90 nm

Cores/chip 2 1 1 2

Transistors 184 million 55 million 58 million 183 million

Die size 267 mm2 121 mm2 66 mm2 154 mm2

LPAR Yes No No No

SMT No No No No

Memory controller Off-chip Off-chip Off-chip Off-chip

Fast Path No No No No

L1 I-cache 2×64KB 64KB 64KB 2×64KB

L1 D-cache 2×32KB 32KB 32KB 2×32KB

L2 cache 1.41MB 
sharedb

512KB 512KB 2×1MB

L3 cache 32MB+ None None None

VMX (AltiVecc) No Yes Yes Yes

PowerTuned No No Yes Yes

a. The 970FX and 970MP use 90 nm lithography, in which copper wiring, strained silicon, and silicon-on-insulator
(SOI) are fused into the same manufacturing process. This technique accelerates electron flow through transistors
and provides an insulating layer in silicon. The result is increased performance, transistor isolation, and lower pow-
er consumption. Controlling power dissipation is particularly critical for chips with low process geometries, where
subthreshold leakage current can cause problems.

b. The L2 cache is shared between the two processor cores.

c. Although jointly developed by Motorola, Apple, and IBM, AltiVec is a trademark of Motorola, or more precisely,
Freescale. In early 2004, Motorola spun out its semiconductor products sector as Freescale Semiconductor, Inc.

d. PowerTune is a clock-frequency and voltage-scaling technology.
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3.2.4 The Intel Core Duo

In contrast, the Intel Core Duo processor line used in the first x86-based Macintosh
computers (the iMac and the MacBook Pro) has the following key characteristics:

• Two cores per chip

• Manufactured using 65-nm process technology

• 90.3 mm2 die size

• 151.6 million transistors

• Up to 2.16GHz frequency (along with a 667MHz processor system bus)

• 32KB on-die I-cache and 32KB on-die D-cache (write-back)

• 2MB on-die L2 cache (shared between the two cores)

• Data prefetch logic

FIGURE 3–3 The PowerPC 9xx family and the POWER4+
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• Streaming SIMD22 Extensions 2 (SSE2) and Streaming SIMD Extensions 3
(SSE3)

• Sophisticated power and thermal management features

3.3 The PowerPC 970FX

3.3.1 At a Glance

In this section, we will look at details of the PowerPC 970FX. Although several
parts of the discussion could apply to other PowerPC processors, we will not
attempt to identify such cases. Table 3–4 lists the important technical specifica-
tions of the 970FX.  

22.  Section 3.3.10.1 defines SIMD.

TABLE 3–4  The PowerPC 970FX at a Glance

Feature Details

Architecture 64-bit PowerPC AS,a with support for 32-bit operating system 
bridge facility

Extensions Vector/SIMD Multimedia extension (VMXb)

Processor clock frequency Up to 2.7GHzc

Front-side bus frequency Integer fraction of processor clock frequency

Data-bus width 128 bits

Address-bus width 42 bits

Maximum addressable 
physical memory

4TB (242 bytes)

Address translation 65-bit virtual addresses, 42-bit real addresses, support for large 
(16MB) virtual memory pages, a 1024-entry translation lookaside 
buffer (TLB), and a 64-entry segment lookaside buffer (SLB)

Endianness Big-endian; optional little-endian facility not implemented

L1 I-cache 64KB, direct-mapped, with parity

L1 D-cache 32KB, two-way set-associative, with parity

(continues)
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3.3.2 Caches

A multilevel cache hierarchy is a common aspect of modern processors. A cache
can be defined as a small chunk of very fast memory that stores recently used
data, instructions, or both. Information is typically added and removed from a
cache in aligned quanta called cache lines. The 970FX contains several caches
and other special-purpose buffers to improve memory performance. Figure 3–4
shows a conceptual diagram of these caches and buffers.

L2 cache 512KB, eight-way set-associative, with ECC, fully inclusive of L1 
D-cache

L3 cache None

Cache line width 128 bytes for all caches

Instruction buffer 32 entries

Instructions/cycle Up to five (up to four nonbranch + up to one branch)

General-purpose registers 32×64-bit

Floating-point registers 32×64-bit

Vector registers 32×128-bit

Load/Store Units Two units, with 64-bit data paths

Fixed-Point Units Two asymmetricald 64-bit units

Floating-Point Units Two 64-bit units, with support for IEEE-754 double-precision 
floating-point, hardware fused multiply-add, and square root

Vector units A 128-bit unit

Condition Register Unit For performing logical operations on the Condition Register (CR)

Execution pipeline Ten execution pipelines, with up to 25 stages in a pipeline, and up 
to 215 instructions in various stages of execution at a time

Power management Multiple software-initialized power-saving modes, PowerTune 
frequency and voltage scaling

a. AS stands for Advanced Series.

b. VMX is interchangeable with AltiVec. Apple markets the PowerPC’s vector functionality as Velocity Engine.

c. As of 2005.

d. The two fixed-point (integer) units of the 970FX are not symmetrical. Only one of them can perform division, and
only one can be used for special-purpose register (SPR) operations.

TABLE 3–4  The PowerPC 970FX at a Glance (Continued)

Feature Details
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3.3.2.1 L1 and L2 Caches

The level 1 (L1) cache is closest to the processor. Memory-resident information
must be loaded into this cache before the processor can use it, unless that portion
of memory is marked noncacheable. For example, when a load instruction is being
executed, the processor refers to the L1 cache to see if the data in question is
already held by a currently resident cache line. If so, the data is simply loaded from
the L1 cache—an L1 cache hit. This operation takes only a few processor cycles
as compared to a few hundred cycles for accessing main memory.23 If there is an L1
miss, the processor checks the next level in the cache hierarchy: the level 2 (L2)
cache. An L2 hit would cause the cache line containing the data to be loaded into the

FIGURE 3–4 Caches and buffers in the 970FX

23.  Main memory refers to the system’s installed and available dynamic memory (DRAM).
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L1 cache and then into the appropriate register. The 970FX does not have level 3
(L3) caches, but if it did, similar steps would be repeated for the L3 cache. If none
of the caches contains the requested data, the processor must access main memory.

As a cache line’s worth of data is loaded into L1, a resident cache line must
be flushed to make room for the new cache line. The 970FX uses a pseudo-least-
recently-used (LRU) algorithm24 to determine which cache line to evict. Unless
instructed otherwise, the evicted cache line is sent to the L2 cache, which makes
L2 a victim cache. Table 3–5 shows the important properties of the 970FX’s caches.

24.  The 970FX allows the data-cache replacement algorithm to be changed from LRU to FIFO
through a bit in a hardware-dependent register.

TABLE 3–5 970FX Caches

Property L1 I-cache L1 D-cache L2 Cache

Size 64KB 32KB 512KB

Type Instructions Data Data and instructions

Associativity Direct-mapped Two-way set-associative Eight-way set-associative

Line size 128 bytes 128 bytes 128 bytes

Sector size 32 bytes — —

Number of cache lines 512 256 4096

Number of sets 512 128 512

Granularity 1 cache line 1 cache line 1 cache line

Replacement policy — LRU LRU

Store policy — Write-through, with no 
allocate-on-store-miss

Write-back, with allocate-
on-store-miss

Index Effective address Effective address Physical address

Tags Physical address Physical address Physical address

Inclusivity — — Inclusive of L1 D-cache

Hardware coherency No Yes Yes, standard MERSI 
cache-coherency protocol

Enable bit Yes Yes No

(continues)
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Harvard Architecture

The 970FX’s L1 cache is split into separate caches for instructions and data. This
design aspect is referred to as the Harvard Architecture, alluding to the separate
memories for instructions and data in the Mark-III and Mark-IV vacuum tube
machines that originated at Harvard University in the 1940s.

You can retrieve processor cache information using the sysctl command
on Mac OS X as shown in Figure 3–5. Note that the hwprefs command is part of
Apple’s CHUD Tools package.

FIGURE 3–5 Retrieving processor cache information using the sysctl command

$ sudo hwprefs machine_type # Power Mac G5 Dual 2.5GHz
PowerMac7,3
$ sysctl -a hw
...
hw.cachelinesize: 128
hw.l1icachesize: 65536
hw.l1dcachesize: 32768
hw.l2settings = 2147483648
hw.l2cachesize: 524288
...
$ sudo hwprefs machine_type # Power Mac G5 Quad 2.5GHz
PowerMac11,2
$ sysctl -a hw
...
hw.cachelinesize = 128
hw.l1icachesize = 65536
hw.l1dcachesize = 32768
hw.l2settings = 2147483648
hw.l2cachesize = 1048576
...

Reliability, availability, 
and serviceability (RAS)

Parity, with invalidate-on-
error for data and tags

Parity, with invalidate-on-
error for data and tags

ECC on data, parity on 
tags

Cache locking No No No

Demand load latencies 
(typical)

— 3, 5, 4, 5 cycles for 
GPRs, FPRs, VPERM, 
and VALU, respectivelya

11, 12, 11, 11 cycles for 
GPRs, FPRs, VPERM, 
and VALU, respectivelya

a. Section 3.3.6.1 discusses GPRs and FPRs. Section 3.3.10.2 discusses VPERM and VALU.

TABLE 3–5 970FX Caches (Continued)

Property L1 I-cache L1 D-cache L2 Cache
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3.3.2.2 Cache Properties

Let us look more closely at some of the cache-related terminology used in Table 3–5.

Associativity

As we saw earlier, the granularity of operation for a cache—that is, the unit of
memory transfers in and out of a cache—is a cache line (also called a block). The
cache line size on the 970FX is 128 bytes for both the L1 and L2 caches. The
associativity of a cache is used to determine where to place a cache line’s worth
of memory in the cache.

If a cache is m-way set-associative, then the total space in the cache is concep-
tually divided into sets, with each set containing m cache lines. In a set-associative
cache, a block of memory can be placed only in certain locations in the cache: It
is first mapped to a set in the cache, after which it can be stored in any of the
cache lines within that set. Typically, given a memory block with address B, the
target set is calculated using the following modulo operation:

target set = B MOD {number of sets in cache}

A direct-mapped cache is equivalent to a one-way set-associative cache. It
has the same number of sets as cache lines. This means a memory block with
address B can exist only in one cache line, which is calculated as the following:

target cache line = B MOD {number of cache lines in cache}

Store Policy

A cache’s store policy defines what happens when an instruction writes to mem-
ory. In a write-through design, such as the 970FX L1 D-cache, information is
written to both the cache line and to the corresponding block in memory. There is
no L1 D-cache allocation on write misses—the affected block is modified only in the
lower level of the cache hierarchy and is not loaded into L1. In a write-back design,
such as the 970FX L2 cache, information is written only to the cache line—the
affected block is written to memory only when the cache line is replaced.

Memory pages that are contiguous in virtual memory will normally
not be contiguous in physical memory. Similarly, given a set of virtual
addresses, it is not possible to predict how they will fit in the cache. A
related point is that if you take a block of contiguous virtual memory
the same size as a cache, say, a 512KB block (the size of the entire
L2 cache), there is little chance that it will fit in the L2 cache.
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MERSI

Only the L2 cache is physically mapped, although all caches use physical address
tags. Stores are always sent to the L2 cache in addition to the L1 cache, as the L2
cache is the data coherency point. Coherent memory systems aim to provide the
same view of all devices accessing the memory. For example, it must be ensured
that processors in a multiprocessor system access the correct data—whether the most
up-to-date data resides in main memory or in another processor’s cache. Maintain-
ing such coherency in hardware introduces a protocol that requires the processor
to “remember” the state of the sharing of cache lines.25 The L2 cache implements
the MERSI cache-coherency protocol, which has the following five states.

1. Modified—This cache line is modified with respect to the rest of the mem-
ory subsystem.

2. Exclusive—This cache line is not cached in any other cache.

3. Recent—The current processor is the most recent reader of this shared
cache line.

4. Shared—This cache line was cached by multiple processors.

5. Invalid—This cache line is invalid.

RAS

The caches incorporate parity-based error detection and correction mechanisms.
Parity bits are additional bits used along with normal information to detect and
correct errors in the transmission of that information. In the simplest case, a sin-
gle parity bit is used to detect an error. The basic idea in such parity checking is to
add an extra bit to each unit of information—say, to make the number of 1s in
each unit either odd or even. Now, if a single error (actually, an odd number of
errors) occurs during information transfer, the parity-protected information unit
would be invalid. In the 970FX’s L1 cache, parity errors are reported as cache
misses and therefore are implicitly handled by refetching the cache line from the
L2 cache. Besides parity, the L2 cache implements an error detection and correc-
tion scheme that can detect double errors and correct single errors by using a
Hamming code.26 When a single error is detected during an L2 fetch request, the

25.  Cache-coherency protocols are primarily either directory-based or snooping-based.

26.  A Hamming code is an error-correcting code. It is an algorithm in which a sequence of numbers
can be expressed such that any errors that appear in certain numbers (say, on the receiving side after
the sequence was transmitted by one party to another) can be detected, and corrected, subject to cer-
tain limits, based on the remaining numbers.
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bad data is corrected and actually written back to the L2 cache. Thereafter, the
good data is refetched from the L2 cache.

3.3.3 Memory Management Unit (MMU)

During virtual memory operation, software-visible memory addresses must be
translated to real (or physical) addresses, both for instruction accesses and for
data accesses generated by load/store instructions. The 970FX uses a two-step
address translation mechanism27 based on segments and pages. In the first step, a
software-generated 64-bit effective address (EA) is translated to a 65-bit virtual
address (VA) using the segment table, which lives in memory. Segment table
entries (STEs) contain segment descriptors that define virtual addresses of seg-
ments. In the second step, the virtual address is translated to a 42-bit real address
(RA) using the hashed page table, which also lives in memory.

The 32-bit PowerPC architecture provides 16 segment registers through
which the 4GB virtual address space can be divided into 16 segments of 256MB
each. The 32-bit PowerPC implementations use these segment registers to gener-
ate VAs from EAs. The 970FX includes a transitional bridge facility that allows a
32-bit operating system to continue using the 32-bit PowerPC implementation’s
segment register manipulation instructions. Specifically, the 970FX allows soft-
ware to associate segments 0 through 15 with any of the 237 available virtual seg-
ments. In this case, the first 16 entries of the segment lookaside buffer (SLB),
which is discussed next, act as the 16 segment registers.

3.3.3.1 SLB and TLB

We saw that the segment table and the page table are memory-resident. It would
be prohibitively expensive if the processor were to go to main memory not only
for data fetching but also for address translation. Caching exploits the principle of
locality of memory. If caching is effective, then address translations will also
have the same locality as memory. The 970FX includes two on-chip buffers for
caching recently used segment table entries and page address translations: the
segment lookaside buffer (SLB) and the translation lookaside buffer (TLB), respec-
tively. The SLB is a 64-entry, fully associative cache. The TLB is a 1024-entry,

27.  The 970FX also supports a real addressing mode, in which physical translation can be effectively
disabled.
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four-way set-associative cache with parity protection. It also supports large pages
(see Section 3.3.3.4). 

3.3.3.2 Address Translation

Figure 3–6 depicts address translation in the 970FX MMU, including the roles of
the SLB and the TLB. The 970FX MMU uses 64-bit or 32-bit effective addresses,
65-bit virtual addresses, and 42-bit physical addresses. The presence of the
DART introduces another address flavor, the I/O address, which is an address in a
32-bit address space that maps to a larger physical address space.  

The 65-bit extended address space is divided into pages. Each page is
mapped to a physical page. A 970FX page table can be as large as 231 bytes (2GB),
containing up to 224 (16 million) page table entry groups (PTEGs), where each
PTEG is 128 bytes.

As Figure 3–6 shows, during address translation, the MMU converts pro-
gram-visible effective addresses to real addresses in physical memory. It uses a
part of the effective address (the effective segment ID) to locate an entry in the
segment table. It first checks the SLB to see if it contains the desired STE. If there
is an SLB miss, the MMU searches for the STE in the memory-resident segment
table. If the STE is still not found, a memory access fault occurs. If the STE is
found, a new SLB entry is allocated for it. The STE represents a segment descrip-
tor, which is used to generate the 65-bit virtual address. The virtual address has a
37-bit virtual segment ID (VSID). Note that the page index and the byte offset in
the virtual address are the same as in the effective address. The concatenation of
the VSID and the page index forms the virtual page number (VPN), which is used
for looking up in the TLB. If there is a TLB miss, the memory-resident page table
is looked up to retrieve a page table entry (PTE), which contains a real page num-
ber (RPN). The RPN, along with the byte offset carried over from the effective
address, forms the physical address.

Technically, a computer architecture has three (and perhaps more)
types of memory addresses: the processor-visible physical address,
the software-visible virtual address, and the bus address, which is
visible to an I/O device. In most cases (especially on 32-bit hard-
ware), the physical and bus addresses are identical and therefore
not differentiated.
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3.3.3.3 Caching the Caches: ERATs

Information from the SLB and the TLB may be cached in two effective-to-real
address translation caches (ERATs)—one for instructions (I-ERAT) and another
for data (D-ERAT). Both ERATs are 128-entry, two-way set-associative caches.
Each ERAT entry contains effective-to-real address translation information for a
4KB block of storage. Both ERATs contain invalid information upon power-on.
As shown in Figure 3–6, the ERATs represent a shortcut path to the physical
address when there is a match for the effective address in the ERATs.

FIGURE 3–6 Address translation in the 970FX MMU

The 970FX allows setting up the TLB to be direct-mapped by setting
a particular bit of a hardware-implementation-dependent register.
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3.3.3.4 Large Pages

Large pages are meant for use by high-performance computing (HPC) applica-
tions. The typical page size of 4KB could be detrimental to memory performance
in certain circumstances. If an application’s locality of reference is too wide, 4KB
pages may not capture the locality effectively enough. If too many TLB misses
occur, the consequent TLB entry allocations and the associated delays would be
undesirable. Since a large page represents a much larger memory range, the num-
ber of TLB hits should increase, as the TLB would now cache translations for
larger virtual memory ranges. 

It is an interesting problem for the operating system to make large pages
available to applications. Linux provides large-page support through a pseudo file
system (hugetlbfs) that is backed by large pages. The superuser must explicitly
configure some number of large pages in the system by preallocating physically
contiguous memory. Thereafter, the hugetlbfs instance can be mounted on a
directory, which is required if applications intend to use the mmap() system call
to access large pages. An alternative is to use shared memory calls—shmat()
and shmget(). Files may be created, deleted, mmap()’ed, and munmap()’ed on
hugetlbfs. It does not support reads or writes, however. AIX also requires sepa-
rate, dedicated physical memory for large-page use. An AIX application can use
large pages either via shared memory, as on Linux, or by requesting that the
application’s data and heap segments be backed by large pages.

Note that whereas the 970FX TLB supports large pages, the ERATs do not;
large pages require multiple entries—corresponding to each referenced 4KB
block of a large page—in the ERATs. Cache-inhibited accesses to addresses in
large pages are not permitted.

3.3.3.5 No Support for Block Address Translation Mechanism

The 970FX does not support the Block Address Translation (BAT) mechanism
that is supported in earlier PowerPC processors such as the G4. BAT is a software-
controlled array used for mapping large—often much larger than a page—virtual
address ranges into contiguous areas of physical memory. The entire map will
have the same attributes, including access protection. Thus, the BAT mechanism
is meant to reduce address translation overhead for large, contiguous regions of
special-purpose virtual address spaces. Since BAT does not use pages, such mem-
ory cannot be paged normally. A good example of a scenario where BAT is useful
is that of a region of framebuffer memory, which could be memory-mapped effec-
tively via BAT. Software can select block sizes ranging from 128KB to 256MB.
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On PowerPC processors that implement BAT, there are four BAT registers
each for data (DBATs) and instructions (IBATs). A BAT register is actually a pair
of upper and lower registers, which are accessible from supervisor mode. The eight
pairs are named DBAT0U-DBAT3U, DBAT0L-DBAT3L, IBAT0U-IBAT3U, and
IBAT0L-IBAT3L. The contents of a BAT register include a block effective page
index (BEPI), a block length (BL), and a block real page number (BRPN). During
BAT translation, a certain number of high-order bits of the EA—as specified by
BL—are matched against each BAT register. If there is a match, the BRPN value
is used to yield the RA from the EA. Note that BAT translation is used over page
table translation for storage locations that have mappings in both a BAT register
and the page table.

3.3.4 Miscellaneous Internal Buffers and Queues

The 970FX contains several miscellaneous buffers and queues internal to the pro-
cessor, most of which are not visible to software. Examples include the following:

• A 4-entry (128 bytes per entry) Instruction Prefetch Queue logically above
the L1 I-cache

• Fetch buffers in the Instruction Fetch Unit and the Instruction Decode Unit

• An 8-entry Load Miss Queue (LMQ) that tracks loads that missed the L1
cache and are waiting to receive data from the processor’s storage subsystem

• A 32-entry Store Queue (STQ)28 for holding stores that can be written to
cache or memory later

• A 32-entry Load Reorder Queue (LRQ) in the Load/Store Unit (LSU) that
holds physical addresses for tracking the order of loads and watching for
hazards

• A 32-entry Store Reorder Queue (SRQ) in the LSU that holds physical
addresses and tracks all active stores

• A 32-entry Store Data Queue (SDQ) in the LSU that holds a double word of
data

• A 12-entry Prefetch Filter Queue (PFQ) for detecting data streams for
prefetching

• An 8-entry (64 bytes per entry) fully associative Store Queue for the L2
cache controller

28.  The STQ supports forwarding.
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3.3.5 Prefetching

Cache miss rates can be reduced through a technique called prefetching—that is,
fetching information before the processor requests it. The 970FX prefetches
instructions and data to hide memory latency. It also supports software-initiated
prefetching of up to eight data streams called hardware streams, four of which
can optionally be vector streams. A stream is defined as a sequence of loads that
reference more than one contiguous cache line.

The prefetch engine is a functionality of the Load/Store Unit. It can detect
sequential access patterns in ascending or descending order by monitoring loads
and recording cache line addresses when there are cache misses. The 970FX does
not prefetch store misses.

Let us look at an example of the prefetch engine’s operation. Assuming no
prefetch streams are active, the prefetch engine will act when there is an L1 D-cache
miss. Suppose the miss was for a cache line with address A; then the engine will
create an entry in the Prefetch Filter Queue (PFQ)29 with the address of either the
next or the previous cache line—that is, either A + 1 or A – 1. It guesses the direc-
tion (up or down) based on whether the memory access was located in the top 25%
of the cache line (guesses down) or the bottom 75% of the cache line (guesses
up). If there is another L1 D-cache miss, the engine will compare the line address
with the entries in the PFQ. If the access is indeed sequential, the line address now
being compared must be either A + 1 or A – 1. Alternatively, the engine could
have incorrectly guessed the direction, in which case it would create another filter
entry for the opposite direction. If the guessed direction was correct (say, up), the
engine deems it a sequential access and allocates a stream entry in the Prefetch
Request Queue (PRQ)30 using the next available stream identifier. Moreover, the
engine will initiate prefetching for cache line A + 2 to L1 and cache line A + 3 to
L2. If A + 2 is read, the engine will cause A + 3 to be fetched to L1 from L2, and
A + 4, A + 5, and A + 6 to be fetched to L2. If further sequential demand-reads
occur (for A + 3 next), this pattern will continue until all streams are assigned.
The PFQ is updated using an LRU algorithm.

The 970FX allows software to manipulate the prefetch mechanism. This is
useful if the programmer knows data access patterns ahead of time. A version of
the data-cache-block-touch (dcbt) instruction, which is one of the storage con-

29.  The PFQ is a 12-entry queue for detecting data streams for prefetching.

30.  The PRQ is a queue of eight streams that will be prefetched.
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trol instructions, can be used by a program to provide hints that it intends to read
from a specified address or data stream in the near future. Consequently, the pro-
cessor would initiate a data stream prefetch from a particular address.

Note that if you attempt to access unmapped or protected memory via soft-
ware-initiated prefetching, no page faults will occur. Moreover, these instructions
are not guaranteed to succeed and can fail silently for a variety of reasons. In the
case of success, no result is returned in any register—only the cache block is
fetched. In the case of failure, no cache block is fetched, and again, no result is
returned in any register. In particular, failure does not affect program correctness;
it simply means that the program will not benefit from prefetching.

Prefetching continues until a page boundary is reached, at which point the
stream will have to be reinitialized. This is so because the prefetch engine does
not know about the effective-to-real address mapping and can prefetch only
within a real page. This is an example of a situation in which large pages—with
page boundaries that are 16MB apart—will fare better than 4KB pages.

On a Mac OS X system with AltiVec hardware, you can use the vec_dst()
AltiVec function to initiate data read of a line into cache, as shown in the
pseudocode in Figure 3–7.

FIGURE 3–7 Data prefetching in AltiVec

while (/* data processing loop */) {
   
    /* prefetch */    
    vec_dst(address + prefetch_lead, control, stream_id);
    
    /* do some processing */
    
    /* advance address pointer */
}
   
/* stop the stream */
vec_dss(stream_id);

The address argument to vec_dst() is a pointer to a byte that lies within
the first cache line to be fetched; the control argument is a word whose bits
specify the block size, the block count, and the distance between the blocks; and
the stream_id specifies the stream to use.
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3.3.6 Registers

The 970FX has two privilege modes of operation: a user mode (problem state)
and a supervisor mode (privileged state). The former is used by user-space appli-
cations, whereas the latter is used by the Mac OS X kernel. When the processor is
first initialized, it comes up in supervisor mode, after which it can be switched to
user mode via the Machine State Register (MSR).

The set of architected registers can be divided into three levels (or models)
in the PowerPC architecture:

1. User Instruction Set Architecture (UISA)

2. Virtual Environment Architecture (VEA)

3. Operating Environment Architecture (OEA)

The UISA and VEA registers can be accessed by software through either
user-level or supervisor-level privileges, although there are VEA registers that
cannot be written to by user-level instructions. OEA registers can be accessed
only by supervisor-level instructions.

3.3.6.1 UISA and VEA Registers

Figure 3–8 shows the UISA and VEA registers of the 970FX. Their purpose is
summarized in Table 3–6. Note that whereas the general-purpose registers are all
64-bit wide, the set of supervisor-level registers contains both 32-bit and 64-bit
registers.   

Processor registers are used with all normal instructions that access mem-
ory. In fact, there are no computational instructions in the PowerPC architecture
that modify storage. For a computational instruction to use a storage operand, it
must first load the operand into a register. Similarly, if a computational instruc-
tion writes a value to a storage operand, the value must go to the target location
via a register. The PowerPC architecture supports the following addressing modes
for such instructions.

• Register Indirect—The effective address EA is given by (rA | 0).

• Register Indirect with Immediate Index—EA is given by (rA | 0) + offset,
where offset can be zero.

• Register Indirect with Index—EA is given by (rA | 0) + rB.
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FIGURE 3–8 PowerPC UISA and VEA registers
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TABLE 3–6 UISA and VEA Registers

Name Width Count Notes

General-Purpose Regis-
ters (GPRs)

64-bit 32 GPRs are used as source or destination registers for 
fixed-point operations—e.g., by fixed-point load/store 
instructions. You also use GPRs while accessing 
special-purpose registers (SPRs). Note that GPR0 is 
not hardwired to the value 0, as is the case on several 
RISC architectures.

Floating-Point Registers 
(FPRs)

64-bit 32 FPRs are used as source or destination registers for 
floating-point instructions. You also use FPRs to access 
the Floating-Point Status and Control Register (FPSCR). 
An FPR can hold integer, single-precision floating-point, 
or double-precision floating-point values.

Vector Registers (VRs) 128-bit 32 VRs are used as vector source or destination registers 
for vector instructions.

Integer Exception 
Register (XER)

32-bit 1 The XER is used to indicate carry conditions and over-
flows for integer operations. It is also used to specify the 
number of bytes to be transferred by a load-string-word-
indexed (lswx) or store-string-word-indexed (stswx) 
instruction.

Floating-Point Status 
and Control Register 
(FPSCR)

32-bit 1 The FPSCR is used to record floating-point exceptions 
and the result type of a floating-point operation. It is also 
used to toggle the reporting of floating-point exceptions 
and to control the floating-point rounding mode.

Vector Status and Con-
trol Register (VSCR)

32-bit 1 Only two bits of the VSCR are defined: the saturate 
(SAT) bit and the non-Java mode (NJ) bit. The SAT bit 
indicates that a vector saturating-type instruction gener-
ated a saturated result. The NJ bit, if cleared, enables a 
Java-IEEE-C9X-compliant mode for vector floating-point 
operations that handles denormalized values in accor-
dance with these standards. When the NJ bit is set, a 
potentially faster mode is selected, in which the value 0 
is used in place of denormalized values in source or 
result vectors.

Condition Register (CR) 32-bit 1 The CR is conceptually divided into eight 4-bit fields 
(CR0–CR7). These fields store results of certain fixed-
point and floating-point operations. Some branch 
instructions can test individual CR bits.

Vector Save/Restore 
Register (VRSAVE)

32-bit 1 The VRSAVE is used by software while saving and 
restoring VRs across context-switching events. Each bit 
of the VRSAVE corresponds to a VR and specifies 
whether that VR is in use or not.

(continues)
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The UISA-level performance-monitoring registers provide user-level read
access to the 970FX’s performance-monitoring facility. They can be written only
by a supervisor-level program such as the kernel or a kernel extension.

The Timebase Register

The Timebase (TB) provides a long-period counter driven by an implementation-
dependent frequency. The TB is a 64-bit register containing an unsigned 64-bit
integer that is incremented periodically. Each increment adds 1 to bit 63 (the lowest-
order bit) of the TB. The maximum value that the TB can hold is 264 – 1, after which
it resets to zero without generating any exception. The TB can either be incre-
mented at a frequency that is a function of the processor clock frequency, or it can

Link Register (LR) 64-bit 1 The LR can be used to return from a subroutine—it 
holds the return address after a branch instruction if the 
link (LK) bit in that branch instruction’s encoding is 1. It is 
also used to hold the target address for the branch-
conditional-to-Link-Register (bclrx) instruction. Some 
instructions can automatically load the LR to the instruc-
tion following the branch.

Count Register (CTR) 64-bit 1 The CTR can be used to hold a loop count that is decre-
mented during execution of branch instructions. The 
branch-conditional-to-Count-Register (bcctrx) instruc-
tion branches to the target address held in this register.

Timebase Registers 
(TBL, TBU)

32-bit 2 The Timebase (TB) Register, which is the concatenation 
of the 32-bit TBU and TBL registers, contains a periodi-
cally incrementing 64-bit unsigned integer.

TABLE 3–6 UISA and VEA Registers (Continued)

Name Width Count Notes

rA and rB represent register contents. The notation (rA | 0) means
the contents of register rA unless rA is GPR0, in which case (rA | 0)
is taken to be the value 0.

Apple’s Computer Hardware Understanding Development (CHUD)
is a suite of programs (the “CHUD Tools”) for measuring and opti-
mizing performance on Mac OS X. The software in the CHUD Tools
package makes use of the processor’s performance-monitoring
counters.
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be driven by the rising edge of the signal on the TB enable (TBEN) input pin.31 In
the former case, the 970FX increments the TB once every eight full frequency
processor clocks. It is the operating system’s responsibility to initialize the TB.
The TB can be read—but not written to—from user space. The program shown in
Figure 3–9 retrieves and prints the TB.

FIGURE 3–9 Retrieving and displaying the Timebase Register

// timebase.c

   
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
   
u_int64_t mftb64(void);
void mftb32(u_int32_t *, u_int32_t *);
   
int
main(void)
{
    u_int64_t tb64;
    u_int32_t tb32u, tb32l;
   
    tb64 = mftb64();
    mftb32(&tb32u, &tb32l);
   
    printf("%llx %x%08x\n", tb64, tb32l, tb32u);
    exit(0);
}
   
// Requires a 64-bit processor

// The TBR can be read in a single instruction (TBU || TBL)

u_int64_t
mftb64(void)
{
    u_int64_t tb64;
   
    __asm("mftb %0\n\t"
          : "=r" (tb64)
          :

    );
   
    return tb64;
}

(continues)
   

31.  In this case, the TB frequency may change at any time.
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FIGURE 3–9 Retrieving and displaying the Timebase Register (continued)

// 32-bit or 64-bit

void
mftb32(u_int32_t *u, u_int32_t *l)
{
    u_int32_t tmp;
   
    __asm(
    "loop:              \n\t"
        "mftbu    %0    \n\t"
        "mftb     %1    \n\t"
        "mftbu    %2    \n\t"
        "cmpw     %2,%0 \n\t"
        "bne      loop  \n\t"
        : "=r"(*u), "=r"(*l), "=r"(tmp)
        :
    );
}
   
   
$ gcc -Wall -o timebase timebase.c
$ ./timebase; ./timebase; ./timebase; ./timebase; ./timebase
b6d10de300000001 b6d10de4000002d3
b6d4db7100000001 b6d4db72000002d3
b6d795f700000001 b6d795f8000002d3
b6da5a3000000001 b6da5a31000002d3
b6dd538c00000001 b6dd538d000002d3

Note in Figure 3–9 that we use inline assembly rather than create a separate
assembly source file. The GNU assembler inline syntax is based on the template
shown in Figure 3–10.

FIGURE 3–10 Code template for inline assembly in the GNU assembler

__asm__ volatile(
        "assembly statement 1\n"
        "assembly statement 2\n"
        ...
        "assembly statement N\n"
    :   outputs, if any
    :   inputs, if any
    :   clobbered registers, if any
);

We will come across other examples of inline assembly in this book.
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Viewing Register Contents: The Mac OS X Way

The contents of the TBR, along with those of several configuration registers,
memory management registers, performance-monitoring registers, and miscella-
neous registers can be viewed using the Reggie SE graphical application (Reggie
SE.app), which is part of the CHUD Tools package. Reggie SE can also display
physical memory contents and details of PCI devices.

3.3.6.2 OEA Registers

The OEA registers are shown in Figure 3–11. Examples of their use include the
following.

• The bit-fields of the Machine State Register (MSR) are used to define the
processor’s state. For example, MSR bits are used to specify the processor’s
computation mode (32-bit or 64-bit), to enable or disable power manage-
ment, to determine whether the processor is in privileged (supervisor) or
nonprivileged (user) mode, to enable single-step tracing, and to enable or
disable address translation. The MSR can be explicitly accessed via the
move-to-MSR (mtmsr), move-to-MSR-double (mtmsrd), and move-from-MSR
(mfmsr) instructions. It is also modified by the system-call (sc) and return-
from-interrupt-double (rfid) instructions.

• The Hardware-Implementation-Dependent (HID) registers allow very fine-
grained control of the processor’s features. Bit-fields in the various HID
registers can be used to enable, disable, or alter the behavior of processor
features such as branch prediction mode, data prefetching, instruction
cache, and instruction prefetch mode and also to specify which data cache
replacement algorithm to use (LRU or first-in first-out [FIFO]), whether the
Timebase is externally clocked, and whether large pages are disabled.

• The Storage Description Register (SDR1) is used to hold the page table
base address.

3.3.7 Rename Registers

The 970FX implements a substantial number of rename registers, which are used
to handle register-name dependencies. Instructions can depend on one another
from the point of view of control, data, or name. Consider two instructions, say,
I1 and I2, in a program, where I2 comes after I1.
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FIGURE 3–11 PowerPC OEA registers
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I1
...
Ix
...
I2

In a data dependency, I2 either uses a result produced by I1, or I2 has a
data dependency on an instruction Ix, which in turn has a data dependency on I1.
In both cases, a value is effectively transmitted from I1 to I2.

In a name dependency, I1 and I2 use the same logical resource or name,
such as a register or a memory location. In particular, if I2 writes to the same reg-
ister that is either read from or written to by I1, then I2 would have to wait for
I1 to execute before it can execute. These are known as write-after-read (WAR)
and write-after-write (WAW) hazards.

I1 reads (or writes) <REGISTER X>
...

I2 writes <REGISTER X>

In this case, the dependency is not “real” in that I2 does not need I1’s
result. One solution to handle register-name dependencies is to rename the con-
flicting register used in the instructions so that they become independent. Such
renaming could be done in software (statically, by the compiler) or in hardware
(dynamically, by logic in the processor). The 970FX uses pools of physical
rename registers that are assigned to instructions during the mapping stage in the
processor pipeline and released when they are no longer needed. In other words,
the processor internally renames architected registers used by instructions to
physical registers. This makes sense only when the number of physical registers
is (substantially) larger than the number of architected registers. For example, the
PowerPC architecture has 32 GPRs, but the 970FX implementation has a pool of
80 physical GPRs, from which the 32 architected GPRs are assigned. Let us con-
sider a specific example, say, of a WAW hazard, where renaming is helpful.

; before renaming
r20  r21 + r22 ; r20 is written to
...
r20  r23 + r24 ; r20 is written to... WAW hazard here
r25  r20 + r26 ; r20 is read from
   
; after renaming
r20  r21 + r22 ; r20 is written to
...
r64  r23 + 424 ; r20 is renamed to r64... no WAW hazard now
r25  r64 + r26 ; r20 is renamed to r64
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Renaming is also beneficial to speculative execution, since the processor
can use the extra physical registers to reduce the amount of architected register
state it must save to recover from incorrectly speculated execution.

Table 3–7 lists the available renamed registers in the 970FX. The table also
mentions emulation registers, which are available to cracked and microcoded
instructions, which, as we will see in Section 3.3.9.1, are processes by which
complex instructions are broken down into simpler instructions.

3.3.8 Instruction Set

All PowerPC instructions are 32 bits wide regardless of whether the processor is
in 32-bit or 64-bit computation mode. All instructions are word aligned, which
means that the two lowest-order bits of an instruction address are irrelevant from
the processor’s standpoint. There are several instruction formats, but bits 0
through 5 of an instruction word always specify the major opcode. PowerPC
instructions typically have three operands: two source operands and one result.

TABLE 3–7 Rename Register Resources

Resource

Architected 
(Logical 
Resource)

Emulation 
(Logical 
Resource) Rename Pool (Physical Resource)

GPRs 32×64-bit 4×64-bit 80×64-bit.

VRSAVE 1×32-bit — Shared with the GPR rename pool.

FPRs 32×64-bit 1×64-bit 80×64-bit.

FPSCR 1×32-bit — One rename per active instruction group using 
a 20-entry buffer.

LR 1×64-bit — 16×64-bit.

CTR 1×64-bit — LR and CTR share the same rename pool.

CR 8×4-bit 1×4-bit 32×4-bit.

XER 1×32-bit — 24×2-bit. Only two bits—the overflow bit OV 
and the carry bit CA—are renamed from a 
pool of 24 2-bit registers.

VRs 32×128-bit — 80×128-bit.

VSCR 1×32-bit — 20×1-bit. Of the VSCR’s two defined bits, only 
the SAT bit is renamed from a pool of 20 1-bit 
registers.

Singh.book  Page 197  Thursday, May 25, 2006  11:46 AM



198 Chapter 3 Inside an Apple

One of the source operands may be a constant or a register, but the other operands
are usually registers.

We can broadly divide the instruction set implemented by the 970FX into
the following instruction categories: fixed-point, floating-point, vector, control
flow, and everything else.

3.3.8.1 Fixed-Point Instructions

Operands of fixed-point instructions can be bytes (8-bit), half words (16-bit),
words (32-bit), or double words (64-bit). This category includes the following
instruction types:

• Fixed-point load and store instructions for moving values between the GPRs
and storage

• Fixed-point load-multiple-word (lmw) and store-multiple-word (stmw), which
can be used for restoring or saving up to 32 GPRs in a single instruction 

• Fixed-point load-string-word-immediate (lswi), load-string-word-indexed
(lswx), store-string-word-immediate (stswi), and store-string-word-indexed
(stswx), which can be used to fetch and store fixed- and variable-length
strings, with arbitrary alignments

• Fixed-point arithmetic instructions, such as add, divide, multiply, negate,
and subtract

• Fixed-point compare instructions, such as compare-algebraic, compare-
algebraic-immediate, compare-algebraic-logical, and compare-algebraic-
logical-immediate

• Fixed-point logical instructions, such as and, and-with-complement, equiva-
lent, or, or-with-complement, nor, xor, sign-extend, and count-leading-zeros
(cntlzw and variants)

• Fixed-point rotate and shift instructions, such as rotate, rotate-and-mask,
shift-left, and shift-right

• Fixed-point move-to-system-register (mtspr), move-from-system-register
(mfspr), move-to-MSR (mtmsr), and move-from-MSR (mfmsr), which
allow GPRs to be used to access system registers

Most load/store instructions can optionally update the base register
with the effective address of the data operated on by the instruction.
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3.3.8.2 Floating-Point Instructions

Floating-point operands can be single-precision (32-bit) or double-precision (64-
bit) floating-point quantities. However, floating-point data is always stored in the
FPRs in double-precision format. Loading a single-precision value from storage
converts it to double precision, and storing a single-precision value to storage
actually rounds the FPR-resident double-precision value to single precision. The
970FX complies with the IEEE 754 standard32 for floating-point arithmetic. This
instruction category includes the following types:

• Floating-point load and store instructions for moving values between the
FPRs and storage

• Floating-point comparison instructions

• Floating-point arithmetic instructions, such as add, divide, multiply, multiply-
add, multiply-subtract, negative-multiply-add, negative-multiply-subtract,
negate, square-root, and subtract

• Instructions for manipulating the FPSCR, such as move-to-FPSCR, move-
from-FPSCR, set-FPSCR-bit, clear-FPSCR-bit, and copy-FPSCR-field-to-CR

• PowerPC optional floating-point instructions, namely: floating-square-root
(fsqrt), floating-square-root-single (fsqrts), floating-reciprocal-estimate-
single (fres), floating-reciprocal-square-root-estimate (frsqrte), and floating-
point-select (fsel)

3.3.8.3 Vector Instructions

Vector instructions execute in the 128-bit VMX execution unit. We will look at
some of the VMX details in Section 3.3.10. The 970FX VMX implementation
contains 162 vector instructions in various categories.

32.  The IEEE 754 standard governs binary floating-point arithmetic. The standard’s primary archi-
tect was William Velvel Kahan, who received the Turing Award in 1989 for his fundamental contri-
butions to numerical analysis.

The precision of floating-point-estimate instructions (fres and
frsqrte) is less on the 970FX than on the G4. Although the 970FX
is at least as accurate as the IEEE 754 standard requires, the G4 is
more accurate than required. Figure 3–12 shows a program that
can be executed on a G4 and a G5 to illustrate this difference.
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FIGURE 3–12 Precision of the floating-point-estimate instruction on the G4 and the G5

// frsqrte.c

   
#include <stdio.h>
#include <stdlib.h>
   
double
frsqrte(double n)
{
    double s;
   
    asm(
        "frsqrte %0, %1"
        : "=f" (s)  /* out */
        : "f"  (n)  /* in */
    );
   
    return s;
}
   
int
main(int argc, char **argv)
{
    printf("%8.8f\n", frsqrte(strtod(argv[1], NULL)));
    return 0;
}
   
$ machine
ppc7450
$ gcc -Wall -o frsqrte frsqrte.c
$ ./frsqrte 0.5
1.39062500
   
$ machine
ppc970
$ gcc -Wall -o frsqrte frsqrte.c
$ ./frsqrte 0.5
1.37500000

3.3.8.4 Control-Flow Instructions

A program’s control flow is sequential—that is, its instructions logically execute
in the order they appear—until a control-flow change occurs either explicitly
(because of an instruction that modifies the control flow of a program) or as a side
effect of another event. The following are examples of control-flow changes:
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• An explicit branch instruction, after which execution continues at the target
address specified by the branch

• An exception, which could represent an error, a signal external to the pro-
cessor core, or an unusual condition that sets a status bit but may or may not
cause an interrupt33

• A trap, which is an interrupt caused by a trap instruction

• A system call, which is a form of software-only interrupt caused by the system-
call (sc) instruction

Each of these events could have handlers—pieces of code that handle them.
For example, a trap handler may be executed when the conditions specified in the
trap instruction are satisfied. When a user-space program executes an sc instruc-
tion with a valid system call identifier, a function in the operating system kernel is
invoked to provide the service corresponding to that system call. Similarly, con-
trol flow also changes when the program is returning from such handlers. For
example, after a system call finishes in the kernel, execution continues in user
space—in a different piece of code.

The 970FX supports absolute and relative branching. A branch could be
conditional or unconditional. A conditional branch can be based on any of the
bits in the CR being 1 or 0. We earlier came across the special-purpose registers
LR and CTR. LR can hold the return address on a procedure call. A leaf proce-
dure—one that does not call another procedure—does not need to save LR and
therefore can return faster. CTR is used for loops with a fixed iteration limit. It
can be used to branch based on its contents—the loop counter—being zero or
nonzero, while decrementing the counter automatically. LR and CTR are also
used to hold target addresses of conditional branches for use with the bclr and
bcctr instructions, respectively.

3.3.8.5 Miscellaneous Instructions

The 970FX includes various other types of instructions, many of which are used
by the operating system for low-level manipulation of the processor. Examples
include the following types:

33.  When machine state changes in response to an exception, an interrupt is said to have occurred.

Besides performing aggressive dynamic branch prediction, the
970FX allows hints to be provided along with many types of branch
instructions to improve branch prediction accuracy.
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• Instructions for processor management, including direct manipulation of
some SPRs

• Instructions for controlling caches, such as for touching, zeroing, and flush-
ing a cache; requesting a store; and requesting a prefetch stream to be initi-
ated—for example: instruction-cache-block-invalidate (icbi), data-cache-
block-touch (dcbt), data-cache-block-touch-for-store (dcbtst), data-
cache-block-set-to-zero (dcbz), data-cache-block-store (dcbst), and data-
cache-block-flush (dcbf)

• Instructions for loading and storing conditionally, such as load-word-and-
reserve-indexed (lwarx), load-double-word-and-reserve-indexed (ldarx), store-
word-conditional-indexed (stwcx.), and store-double-word-conditional-
indexed (stdcx.)

• Instructions for memory synchronization,34 such as enforce-in-order-execution-
of-i/o (eieio), synchronize (sync), and special forms of sync (lwsync and
ptesync)

• Instructions for manipulating SLB and TLB entries, such as slb-invalidate-
all (slbia), slb-invalidate-entry (slbie), tlb-invalidate-entry (tlbie), and
tlb-synchronize (tlbsync)

3.3.9 The 970FX Core

The 970FX core is depicted in Figure 3–13. We have come across several of the
core’s major components earlier in this chapter, such as the L1 caches, the
ERATs, the TLB, the SLB, register files, and register-renaming resources.

The 970FX core is designed to achieve a high degree of instruction parallel-
ism. Some of its noteworthy features include the following.

The lwarx (or ldarx) instruction performs a load and sets a reser-
vation bit internal to the processor. This bit is hidden from the pro-
gramming model. The corresponding store instruction—stwcx. (or
stdcx.)—performs a conditional store if the reservation bit is set
and clears the reservation bit. 

34.  During memory synchronization, bit 2 of the CR—the EQ bit—is set to record the successful
completion of a store operation.
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• It has a highly superscalar 64-bit design, with support for the 32-bit operat-
ing-system-bridge35 facility.

• It performs dynamic “cracking” of certain instructions into two or more
simpler instructions.

• It performs highly speculative execution of instructions along with aggres-
sive branch prediction and dynamic instruction scheduling.

• It has twelve logically separate functional units and ten execution pipelines.

FIGURE 3–13 The core of the 970FX

35.  The “bridge” refers to a set of optional features defined to simplify the migration of 32-bit
operating systems to 64-bit implementations.
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• It has two Fixed-Point Units (FXU1 and FXU2). Both units are capable of
basic arithmetic, logical, shifting, and multiplicative operations on integers.
However, only FXU1 is capable of executing divide instructions, whereas
only FXU2 can be used in operations involving special purpose registers.

• It has two Floating-Point Units (FPU1 and FPU2). Both units are capable of
performing the full supported set of floating-point operations.

• It has two Load/Store Units (LSU1 and LSU2).

• It has a Condition Register Unit (CRU) that executes CR logical instructions.

• It has a Branch Execution Unit (BRU) that computes branch address and
branch direction. The latter is compared with the predicted direction. If the
prediction was incorrect, the BRU redirects instruction fetching.

• It has a Vector Processing Unit (VPU) with two subunits: a Vector Arithmetic
and Logical Unit (VALU) and a Vector Permute Unit (VPERM). The VALU
has three subunits of its own: a Vector Simple-Integer36 Unit (VX), a Vector
Complex-Integer Unit (VC), and a Vector Floating-Point Unit (VF).

• It can perform 64-bit integer or floating-point operations in one clock cycle.

• It has deeply pipelined execution units, with pipeline depths of up to 25
stages.

• It has reordering issue queues that allow for out-of-order execution.

• Up to 8 instructions can be fetched in each cycle from the L1 instruction
cache.

• Up to 8 instructions can be issued in each cycle.

• Up to 5 instructions can complete in each cycle.

• Up to 215 instructions can be in flight—that is, in various stages of execu-
tion (partially executed)—at any time.

36.  Simple integers (non-floating-point) are also referred to as fixed-point. The “X” in “VX” indi-
cates “fixed.”

The processor uses a large number of its resources such as reor-
der queues, rename register pools, and other logic to track in-flight
instructions and their dependencies.
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3.3.9.1 Instruction Pipeline

In this section, we will discuss how the 970FX processes instructions. The overall
instruction pipeline is shown in Figure 3–14. Let us look at the important stages
of this pipeline.

FIGURE 3–14 The 970FX instruction pipeline
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IFAR, ICA37

Based on the address in the Instruction Fetch Address Register (IFAR), the
instruction-fetch-logic fetches eight instructions every cycle from the L1 I-cache
into a 32-entry instruction buffer. The eight-instruction block, so fetched, is 32-
byte aligned. Besides performing IFAR-based demand fetching, the 970FX
prefetches cache lines into a 4×128-byte Instruction Prefetch Queue. If a demand
fetch results in an I-cache miss, the 970FX checks whether the instructions are in
the prefetch queue. If the instructions are found, they are inserted into the pipe-
line as if no I-cache miss had occurred. The cache line’s critical sector (eight
words) is written into the I-cache. 

D0

There is logic to partially decode (predecode) instructions after they leave the L2
cache and before they enter the I-cache or the prefetch queue. This process adds
five extra bits to each instruction to yield a 37-bit instruction. An instruction’s
predecode bits mark it as illegal, microcoded, conditional or unconditional
branch, and so on. In particular, the bits also specify how the instruction is to be
grouped for dispatching.

D1, D2, D3

The 970FX splits complex instructions into two or more internal operations, or
iops. The iops are more RISC-like than the instructions they are part of. Instruc-
tions that are broken into exactly two iops are called cracked instructions,
whereas those that are broken into three or more iops are called microcoded
instructions because the processor emulates them using microcode.

Fetched instructions go to a 32-instruction fetch buffer. Every cycle, up to
five instructions are taken from this buffer and sent through a decode pipeline that

37.  Instruction Cache Access.

An instruction may not be atomic because the atomicity of cracked
or microcoded instructions is at the iop level. Moreover, it is the
iops, and not programmer-visible instructions, that are executed
out-of-order. This approach allows the processor more flexibility in
parallelizing execution. Note that AltiVec instructions are neither
cracked nor microcoded.
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is either inline (consisting of three stages, namely, D1, D2, and D3), or template-
based if the instruction needs to be microcoded. The template-based decode pipe-
line generates up to four iops per cycle that emulate the original instruction. In any
case, the decode pipeline leads to the formation of an instruction dispatch group.

Given the out-of-order execution of instructions, the processor needs to
keep track of the program order of all instructions in various stages of execution.
Rather than tracking individual instructions, the 970FX tracks instructions in dis-
patch groups. The 970FX forms such groups containing one to five iops, each
occupying an instruction slot (0 through 4) in the group. Dispatch group forma-
tion38 is subject to a long list of rules and conditions such as the following.

• The iops in a group must be in program order, with the oldest instruction
being in slot 0.

• A group may contain up to four nonbranch instructions and optionally a
branch instruction. When a branch is encountered, it is the last instruction in
the current group, and a new group is started.

• Slot 4 can contain only branch instructions. In fact, no-op (no-operation)
instructions may have to be inserted in the other slots to force a branch
instruction to fall in slot 4.

• An instruction that is a branch target is always at the start of a group.

• A cracked instruction takes two slots in a group.

• A microcoded instruction takes an entire group by itself.

• An instruction that modifies an SPR with no associated rename register ter-
minates a group.

• No more than two instructions that modify the CR may be in a group.

XFER

The iops wait for resources to become free in the XFER stage.

GD, DSP, WRT, GCT, MAP

After group formation, the execution pipeline divides into multiple pipelines for
the various execution units. Every cycle, one group of instructions can be sent (or
dispatched) to the issue queues. Note that instructions in a group remain together
from dispatch to completion.

38.  The instruction grouping performed by the 970FX has similarities to a VLIW processor.
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As a group is dispatched, several operations occur before the instructions
actually execute. Internal group instruction dependencies are determined (GD).
Various internal resources are assigned, such as issue queue slots, rename regis-
ters and mappers, and entries in the load/store reorder queues. In particular, each
iop in the group that returns a result must be assigned a register to hold the result.
Rename registers are allocated in the dispatch phase before the instructions enter
the issue queues (DSP, MAP).

To track the groups themselves, the 970FX uses a global completion table
(GCT) that stores up to 20 entries in program order—that is, up to 20 dispatch
groups can be in flight concurrently. Since each group can have up to 5 iops, as
many as 100 iops can be tracked in this manner. The WRT stage represents the
writes to the GCT.

ISS, RF

After all the resources that are required to execute the instructions are available,
the instructions are sent (ISS) to appropriate issue queues. Once their operands
appear, the instructions start to execute. Each slot in a group feeds separate issue
queues for various execution units. For example, the FXU/LSU and the FPU draw
their instructions from slots { 0, 3 } and { 1, 2 }, respectively, of an instruction
group. If one pair goes to the FXU/LSU, the other pair goes to the FPU. The CRU
draws its instructions from the CR logical issue queue that is fed from instruction
slots 0 and 1. As we saw earlier, slot 4 of an instruction group is dedicated to
branch instructions. AltiVec instructions can be issued to the VALU and the
VPERM issue queues from any slot except slot 4. Table 3–8 shows the 970FX
issue queue sizes—each execution unit listed has one issue queue.

The FXU/LSU and FPU issue queues have odd and even halves that are
hardwired to receive instructions only from certain slots of a dispatch group, as
shown in Figure 3–15.

As long as an issue queue contains instructions that have all their data
dependencies resolved, an instruction moves every cycle from the queue into the
appropriate execution unit. However, there are likely to be instructions whose
operands are not ready; such instructions block in the queue. Although the 970FX
will attempt to execute the oldest instruction first, it will reorder instructions
within a queue’s context to avoid stalling. Ready-to-execute instructions access
their source operands by reading the corresponding register file (RF), after which
they enter the execution unit pipelines. Up to ten operations can be issued in a
cycle—one to each of the ten execution pipelines. Note that different execution
units may have varying numbers of pipeline stages.  
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TABLE 3–8 Sizes of the Various 970FX Issue Queues

Execution Unit Queue Size (Instructions)

LSU0/FXU0a 18

LSU1/FXU1b 18

FPU0 10

FPU1 10

BRU 12

CRU 10

VALU 20

VPERM 16

a. LSU0 and FXU0 share an 18-entry issue queue.

b. LSU1 and FXU1 share an 18-entry issue queue.

FIGURE 3–15 The FPU and FXU/LSU issue queues in the 970FX
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We have seen that instructions both issue and execute out of order. However,
if an instruction has finished execution, it does not mean that the program will
“know” about it. After all, from the program’s standpoint, instructions must exe-
cute in program order. The 970FX differentiates between an instruction finishing
execution and an instruction completing. An instruction may finish execution
(speculatively, say), but unless it completes, its effect is not visible to the pro-
gram. All pipelines terminate in a common stage: the group completion stage
(CP). When groups complete, many of their resources are released, such as load
reorder queue entries, mappers, and global completion table entries. One dispatch
group may be “retired” per cycle.

Accounting for 215 In-Flight Instructions

We can account for the theoretical maximum of 215 in-flight instructions by
looking at Figure 3–4—specifically, the areas marked 1 through 6.

1. The Instruction Fetch Unit has a fetch/overflow buffer that can hold 16
instructions.

2. The instruction fetch buffer in the decode/dispatch unit can hold 32 instructions.

3. Every cycle, up to 5 instructions are taken from the instruction fetch buffer
and sent through a three-stage instruction decode pipeline. Therefore, up to
15 instructions can be in this pipeline.

4. There are four dispatch buffers, each holding a dispatch group of up to five
operations. Therefore, up to 20 instructions can be held in these buffers.

5. The global completion table can track up to 20 dispatch groups after they
have been dispatched, corresponding to up to 100 instructions in the 970FX
core.

6. The store queue can hold up to 32 stores.

Thus, the theoretical maximum number of in-flight instructions can be cal-
culated as the sum 16 + 32 + 15 + 20 + 100 + 32, which is 215.

When a branch instruction completes, the resultant target address
is compared with a predicted address. Depending on whether the
prediction is correct or incorrect, either all instructions in the pipe-
line that were fetched after the branch in question are flushed, or
the processor waits for all remaining instructions in the branch’s
group to complete.
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3.3.9.2 Branch Prediction

Branch prediction is a mechanism wherein the processor attempts to keep the
pipeline full, and therefore improve overall performance, by fetching instructions
in the hope that they will be executed. In this context, a branch is a decision point
for the processor: It must predict the outcome of the branch—whether it will be
taken or not—and accordingly prefetch instructions. As shown in Figure 3–15,
the 970FX scans fetched instructions for branches. It looks for up to two branches
per cycle and uses multistrategy branch prediction logic to predict their target
addresses, directions, or both. Consequently, up to 2 branches are predicted per
cycle, and up to 16 predicted branches can be in flight.

All conditional branches are predicted, based on whether the 970FX fetches
instructions beyond a branch and speculatively executes them. Once the branch
instruction itself executes in the BRU, its actual outcome is compared with its
predicted outcome. If the prediction was incorrect, there is a severe penalty: Any
instructions that may have speculatively executed are discarded, and instructions
in the correct control-flow path are fetched.

The 970FX’s dynamic branch prediction hardware includes three branch
history tables (BHTs), a link stack, and a count cache. Each BHT has 16K 1-bit entries.

The first BHT is the local predictor table. Its 16K entries are indexed by
branch instruction addresses. Each 1-bit entry indicates whether the branch should
be taken or not. This scheme is “local” because each branch is tracked in isolation.

The second BHT is the global predictor table. It is used by a prediction scheme
that takes into account the execution path taken to reach the branch. An 11-bit
vector—the global history vector—represents the execution path. The bits of this
vector represent the previous 11 instruction groups fetched. A particular bit is 1 if
the next group was fetched sequentially and is 0 otherwise. A given branch’s entry
in the global predictor table is at a location calculated by performing an XOR
operation between the global history vector and the branch instruction address.

The third BHT is the selector table. It tracks which of the two prediction
schemes is to be favored for a given branch. The BHTs are kept up to date with
the actual outcomes of executed branch instructions.

The link stack and the count cache are used by the 970FX to predict branch
target addresses of branch-conditional-to-link-register (bclr, bclrl) and branch-
conditional-to-count-register (bcctr, bcctrl) instructions, respectively.

The 970FX’s hardware branch prediction can be overridden by
software. 
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So far, we have looked at dynamic branch prediction. The 970FX also sup-
ports static prediction wherein the programmer can use certain bits in a condi-
tional branch operand to statically override dynamic prediction. Specifically, two
bits called the “a” and “t” bits are used to provide hints regarding the branch’s
direction, as shown in Table 3–9.

3.3.9.3 Summary

Let us summarize the instruction parallelism achieved by the 970FX. In every
cycle of the 970FX, the following events occur.

• Up to eight instructions are fetched.

• Up to two branches are predicted.

• Up to five iops (one group) are dispatched.

• Up to five iops are renamed.

• Up to ten iops are issued from the issue queues.

• Up to five iops are completed.

3.3.10 AltiVec

The 970FX includes a dedicated vector-processing unit and implements the VMX
instruction set, which is an AltiVec39 interchangeable extension to the PowerPC
architecture. AltiVec provides a SIMD-style 128-bit40 vector-processing unit.

TABLE 3–9 Static Branch Prediction Hints

“a” Bit “t” Bit Hint

0 0 Dynamic branch prediction is used.

0 1 Dynamic branch prediction is used.

1 0 Dynamic branch prediction is disabled; static prediction is “not taken”; 
specified by a “-” suffix to a branch conditional mnemonic.

1 1 Dynamic branch prediction is disabled; static prediction is “taken”; 
specified by a “+” suffix to a branch conditional mnemonic.

39.  AltiVec was first introduced in Motorola’s e600 PowerPC core—the G4.

40.  All AltiVec execution units and data paths are 128 bits wide.
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3.3.10.1 Vector Computing

SIMD stands for single-instruction, multiple-data. It refers to a set of operations
that can efficiently handle large quantities of data in parallel. SIMD operations do
not necessarily require more or wider registers, although more is better. SIMD
essentially better uses registers and data paths. For example, a non-SIMD compu-
tation would typically use a hardware register for each data element, even if the
register could hold multiple such elements. In contrast, SIMD would use a regis-
ter to hold multiple data elements—as many as would fit—and would perform the
same operation on all elements through a single instruction. Thus, any operation
that can be parallelized in this manner stands to benefit from SIMD. In AltiVec’s
case, a vector instruction can perform the same operation on all constituents of a
vector. Note that AltiVec instructions work on fixed-length vectors.

41

Several processor architectures have similar extensions. Table 3–10 lists
some well-known examples.

AltiVec can greatly improve the performance of data movement, benefiting
applications that do processing of vectors, matrices, arrays, signals, and so on. As we
saw in Chapter 2, Apple provides portable APIs—through the Accelerate framework
(Accelerate.framework)—for performing vector-optimized operations.42 Accel-
erate is an umbrella framework that contains the vecLib and vImage43 subframe-
works. vecLib is targeted for performing numerical and scientific computing—it

SIMD-based optimization does not come for free. A problem must
lend itself well to vectorization, and the programmer must usually
perform extra work. Some compilers—such as IBM’s XL suite of
compilers and GCC 4.0 or above—also support auto-vectorization,
an optimization that auto-generates vector instructions based on
the compiler’s analysis of the source code.41 Auto-vectorization may
or may not work well depending on the nature and structure of the
code.

41.  For example, the compiler may attempt to detect patterns of code that are known to be well suited
for vectorization.

42.  The Accelerate framework automatically uses the best available code that it implements,
depending on the hardware it is running on. For example, it will use vectorized code for AltiVec if
AltiVec is available. On the x86 platform, it will use MMX, SSE, SSE2, and SSE3 if these features
are available.

43.  vImage is also available as a stand-alone framework.
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provides functionality such as BLAS, LAPACK, digital signal processing, dot prod-
ucts, linear algebra, and matrix operations. vImage provides vector-optimized
APIs for working with image data. For example, it provides functions for alpha
compositing, convolutions, format conversion, geometric transformations, histo-
grams operations, and morphological operations.

AltiVec has wide-ranging applications since areas such as high-fidelity
audio, video, videoconferencing, graphics, medical imaging, handwriting analy-
sis, data encryption, speech recognition, image processing, and communications
all use algorithms that can benefit from vector processing. 

Figure 3–16 shows a trivial AltiVec C program.
As also shown in Figure 3–16, the -faltivec option to GCC enables

AltiVec language extensions.

TABLE 3–10 Examples of Processor Multimedia-Extensions

Processor Family Manufacturers Multimedia Extension Sets

Alpha Hewlett-Packard (Digital Equipment 
Corporation)

MVI

AMD Advanced Micro Devices (AMD) 3DNow!

MIPS Silicon Graphics Incorporated (SGI) MDMX, MIPS-3D

PA-RISC Hewlett-Packard MAX, MAX2

PowerPC IBM, Motorola VMX/AltiVec

SPARC V9 Sun Microsystems VIS

x86 Intel, AMD, Cyrix MMX, SSE, SSE2, SSE3

Although a vector instruction performs work that would typically
require many times more nonvector instructions, vector instructions
are not simply instructions that deal with “many scalars” or “more
memory” at a time. The fact that a vector’s members are related is
critical, and so is the fact that the same operation is performed on
all members. Vector operations certainly play better with memory
accesses—they lead to amortization. The semantic difference
between performing a vector operation and a sequence of scalar
operations on the same data set is that you are implicitly providing
more information to the processor about your intentions. Vector
operations—by their nature—alleviate both data and control hazards.
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FIGURE 3–16 A trivial AltiVec program

// altivec.c

   
#include <stdio.h>
#include <stdlib.h>
   
int
main(void)
{
    // "vector" is an AltiVec keyword
    vector float v1, v2, v3;
    
    v1 = (vector float)(1.0, 2.0, 3.0, 4.0);
    v2 = (vector float)(2.0, 3.0, 4.0, 5.0);
    
    // vector_add() is a compiler built-in function
    v3 = vector_add(v1, v2);
    
    // "%vf" is a vector-formatting string for printf()
    printf("%vf\n", v3);
    
    exit(0);
}
   
$ gcc -Wall -faltivec -o altivec altivec.c
$ ./altivec
3.000000 5.000000 7.000000 9.000000

3.3.10.2 The 970FX AltiVec Implementation

The 970FX AltiVec implementation consists of the following components:

• A vector register file (VRF) consisting of 32 128-bit architected vector reg-
isters (VR0–VR31)

• 48 128-bit rename registers for allocation in the dispatch phase

• A 32-bit Vector Status and Control Register (VSCR)

• A 32-bit Vector Save/Restore Register (VRSAVE)

• A Vector Permute Unit (VPERM) that benefits the implementation of oper-
ations such as arbitrary byte-wise data organization, table lookups, and
packing/unpacking of data

• A Vector Arithmetic and Logical Unit (VALU) that contains three parallel
subunits: the Vector Simple-Integer Unit (VX), the Vector Complex-Integer
Unit (VC), and the Vector Floating-Point Unit (VF)
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The CR is also modified as a result of certain vector instructions.

The 32-bit VRSAVE serves a special purpose: Each of its bits indicates
whether the corresponding vector register is in use or not. The processor main-
tains this register so that it does not have to save and restore every vector register
every time there is an exception or a context switch. Frequently saving or restor-
ing 32 128-bit registers, which together constitute 512 bytes, would be severely
detrimental to cache performance, as other, perhaps more critical data would need
to be evicted from cache.

Let us extend our example program from Figure 3–16 to examine the value
in the VRSAVE. Figure 3–17 shows the extended program.

FIGURE 3–17 Displaying the contents of the VRSAVE

// vrsave.c

   
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
   
void prbits(u_int32_t);
u_int32_t read_vrsave(void);
   
// Print the bits of a 32-bit number

void
prbits32(u_int32_t u)
{
    u_int32_t i = 32;
   
    for (; i--; putchar(u & 1 << i ? '1' : '0'));
   
    printf("\n");
}
   
// Retrieve the contents of the VRSAVE

u_int32_t
read_vrsave(void)
{
    u_int32_t v;

(continues)
   

The VALU and the VPERM are both dispatchable units that receive
predecoded instructions via the issue queues.
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FIGURE 3–17 Displaying the contents of the VRSAVE (continued)

    __asm("mfspr %0,VRsave\n\t"
          : "=r"(v)
          :
    );
   
    return v;
}
   
int
main()
{
    vector float v1, v2, v3;
   
    v1 = (vector float)(1.0, 2.0, 3.0, 4.0);
    v2 = (vector float)(2.0, 3.0, 4.0, 5.0);
   
    v3 = vec_add(v1, v2);
   
    prbits32(read_vrsave());
   
    exit(0);
}
   
   
$ gcc -Wall –faltivec –o vrsave vrsave.c
$ ./vrsave
11000000000000000000000000000000

We see in Figure 3–17 that two high-order bits of the VRSAVE are set and
the rest are cleared. This means the program uses two VRs: VR0 and VR1. You
can verify this by looking at the assembly listing for the program.

The VPERM execution unit can do merge, permute, and splat operations on
vectors. Having a separate permute unit allows data-reorganization instructions to
proceed in parallel with vector arithmetic and logical instructions. The VPERM
and VALU both maintain their own copies of the VRF that are synchronized on
the half cycle. Thus, each receives its operands from its own VRF. Note that vec-
tor loads, stores, and data stream instructions are handled in the usual LSU pipes.
Although no AltiVec instructions are cracked or microcoded, vector store instruc-
tions logically break down into two components: a vector part and an LSU part.
In the group formation stage, a vector store is a single entity occupying one slot.
However, once the instruction is issued, it occupies two issue queue slots: one in
the vector store unit and another in the LSU. Address generation takes place in
the LSU. There is a slot for moving the data out of the VRF in the vector unit.
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This is not any different from scalar (integer and floating-point) stores, in whose
case address generation still takes place in the LSU, and the respective execution
unit—integer or floating-point—is used for accessing the GPR file (GPRF) or the
FPR file (FPRF).

AltiVec instructions were designed to be pipelined easily. The 970FX can
dispatch up to four vector instructions every cycle—regardless of type—to the
issue queues. Any vector instruction can be dispatched from any slot of the dis-
patch group except the dedicated branch slot 4.

3.3.10.3 AltiVec Instructions

AltiVec adds 162 vector instructions to the PowerPC architecture. Like all other
PowerPC instructions, AltiVec instructions have 32-bit-wide encodings. To use
AltiVec, no context switching is required. There is no special AltiVec operating
mode—AltiVec instructions can be used along with regular PowerPC instructions
in a program. AltiVec also does not interfere with floating-point registers.

The following points are noteworthy regarding AltiVec vectors.

• A vector is 128 bits wide.

• A vector can be comprised of one of the following: 16 bytes, 8 half words,
4 words (integers), or 4 single-precision floating-point numbers.

It is usually very inefficient to pass data between the scalar units
and the vector unit because data transfer between register files is
not direct but goes through the caches.

AltiVec instructions should be used at the UISA and VEA levels of
the PowerPC architecture but not at the OEA level (the kernel). The
same holds for floating-point arithmetic. Nevertheless, it is possible
to use AltiVec and floating-point in the Mac OS X kernel beginning
with a revision of Mac OS X 10.3. However, doing so would be at
the cost of performance overhead in the kernel, since using AltiVec
or floating-point will lead to a larger number of exceptions and reg-
ister save/restore operations. Moreover, AltiVec data stream
instructions cannot be used in the kernel. High-speed video scroll-
ing on the system console is an example of the Floating-Point Unit
being used by the kernel—the scrolling routines use floating-point
registers for fast copying. The audio subsystem also uses floating-
point in the kernel.
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• The largest vector element size is hardware-limited to 32 bits; the largest
adder in the VALU is 32 bits wide. Moreover, the largest multiplier array is
24 bits wide, which is good enough for only a single-precision floating-
point mantissa.44

• A given vector’s members can be all unsigned or all signed quantities.

• The VALU behaves as multiple ALUs based on the vector element size.

Instructions in the AltiVec instruction set can be broadly classified into the
following categories:

• Vector load and store instructions

• Instructions for reading from or writing to the VSCR

• Data stream manipulation instructions, such as data-stream-touch (dst),
data-stream-stop (dss), and data-stream-stop-all (dssall)

• Vector fixed-point arithmetic and comparison instructions

• Vector logical, rotate, and shift instructions

• Vector pack, unpack, merge, splat, and permute instructions

• Vector floating-point instructions

45

3.3.11 Power Management

The 970FX supports power management features such as the following.

• It can dynamically stop the clocks of some of its constituents when they are idle.

• It can be programmatically put into predefined power-saving modes such as
doze, nap, and deep nap.

44.  The IEEE 754 standard defines the 32 bits of a single-precision floating-point number to consist
of a sign (1 bit), an exponent (8 bits), and a mantissa (23 bits).

Vector single-element loads are implemented as lvx, with unde-
fined fields not zeroed explicitly. Care should be taken while dealing
with such cases as this could lead to denormals45 in floating-point
calculations.

45.  Denormal numbers—also called subnormal numbers—are numbers that are so small they cannot
be represented with full precision.
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• It includes PowerTune, a processor-level power management technology
that supports scaling of processor and bus clock frequencies and voltage.

3.3.11.1 PowerTune

PowerTune allows clock frequencies to be dynamically controlled and even syn-
chronized across multiple processors. PowerTune frequency scaling occurs in the
processor core, the busses, the bridge, and the memory controller. Allowed frequen-
cies range from f—the full nominal frequency—to f/2, f/4, and f/64. The latter
corresponds to the deep nap power-saving mode. If an application does not
require the processor’s maximum available performance, frequency and voltage
can be changed system-wide—without stopping the core execution units and
without disabling interrupts or bus snooping. All processor logic, except the bus
clocks, remains active. Moreover, the frequency change is very rapid. Since
power has a quadratic dependency on voltage, reducing voltage has a desirable
effect on power dissipation. Consequently, the 970FX has much lower typical
power consumption than the 970, which did not have PowerTune.

3.3.11.2 Power Mac G5 Thermal and Power Management

In the Power Mac G5, Apple combines the power management capabilities of the
970FX/970MP with a network of fans and sensors to contain heat generation,
power consumption, and noise levels. Examples of hardware sensors include
those for fan speed, temperature, current, and voltage. The system is divided into
discrete cooling zones with independently controlled fans. Some Power Mac G5
models additionally contain a liquid cooling system that circulates a thermally
conductive fluid to transfer heat away from the processors into a radiant grille. As
air passes over the grille’s cooling fins, the fluid’s temperature decreases.46

The Liquid in Liquid Cooling

The heat transfer fluid used in the liquid cooling system consists of mostly water
mixed with antifreeze. A deionized form of water called DI water is used. The low
concentration of ions in such water prevents mineral deposits and electric arcing,
which may occur because the circulating coolant can cause static charge to build up.

46.  Similar to how an automobile radiator works.
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Operating system support is required to make the Power Mac G5’s thermal
management work properly. Mac OS X regularly monitors various temperatures
and power consumption. It also communicates with the fan control unit (FCU). If
the FCU does not receive feedback from the operating system, it will spin the
fans at maximum speed.

A liquid-cooled dual-processor 2.5GHz Power Mac has the following fans:

• CPU A PUMP

• CPU A INTAKE

• CPU A EXHAUST

• CPU B PUMP

• CPU B INTAKE

• CPU B EXHAUST

• BACKSIDE

• DRIVE BAY

• SLOT

Additionally, the Power Mac has sensors for current, voltage, and tempera-
ture, as listed in Table 3–11.  

TABLE 3–11 Power Mac G5 Sensors: An Example

Sensor Type Sensor Location/Name

Ammeter CPU A AD7417a AD2

Ammeter CPU A AD7417 AD4

Ammeter CPU B AD7417 AD2

Ammeter CPU B AD7417 AD4

Switch Power Button

Thermometer BACKSIDE

Thermometer U3 HEATSINK

Thermometer DRIVE BAY

Thermometer CPU A AD7417 AMB

(continues)
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We will see in Chapter 10 how to programmatically retrieve the values of
various sensors from the kernel.

3.3.12 64-bit Architecture

We saw earlier that the PowerPC architecture was designed with explicit support
for 64- and 32-bit computing. PowerPC is, in fact, a 64-bit architecture with a 32-bit
subset. A particular PowerPC implementation may choose to implement only the
32-bit subset, as is the case with the G3 and G4 processor families used by Apple.
The 970FX implements both the 64-bit and 32-bit forms47—dynamic computa-
tion modes48—of the PowerPC architecture. The modes are dynamic in that you
can switch between the two dynamically by setting or clearing bit 0 of the MSR.

3.3.12.1 64-bit Features

The key aspects of the 970FX’s 64-bit mode are as follows:

• 64-bit registers:49 the GPRs, CTR, LR, and XER

• 64-bit addressing, including 64-bit pointers, which allow one program’s
address space to be larger than 4GB

• 32-bit and 64-bit programs, which can execute side by side

Thermometer CPU A AD7417 AD1

Thermometer CPU B AD7417 AMB

Thermometer CPU B AD7417 AD1

Thermometer MLB INLET AMB

Voltmeter CPU A AD7417 AD3

Voltmeter CPU B AD7417 AD3

a. The AD7417 is a type of analog-to-digital converter with an on-chip temperature sensor.

47.  A 64-bit PowerPC implementation must implement the 32-bit subset.

48.  The computation mode encompasses addressing mode.

49.  Several registers are defined to be 32-bit in the 64-bit PowerPC architecture, such as CR, FP-
SCR, VRSAVE, and VSCR.

TABLE 3–11 Power Mac G5 Sensors: An Example (Continued)

Sensor Type Sensor Location/Name
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• 64-bit integer and logical operations, with fewer instructions required to
load and store 64-bit quantities50

• Fixed instruction size—32 bits—in both 32- and 64-bit modes

• 64-bit-only instructions such as load-word-algebraic (lwa), load-word-
algebraic-indexed (lwax), and “double-word” versions of several instructions

Although a Mac OS X process must be 64-bit itself to be able to directly
access more than 4GB of virtual memory, having support in the processor for
more than 4GB of physical memory benefits both 64-bit and 32-bit applications.
After all, physical memory backs virtual memory. Recall that the 970FX can
track a large amount of physical memory—42 bits worth, or 4TB. Therefore, as
long as there is enough RAM, much greater amounts of it can be kept “alive” than
is possible with only 32 bits of physical addressing. This is beneficial to 32-bit
applications because the operating system can now keep more working sets in
RAM, reducing the number of page-outs—even though a single 32-bit applica-
tion will still “see” only a 4GB address space. 

3.3.12.2 The 970FX as a 32-bit Processor

Just as the 64-bit PowerPC is not an extension of the 32-bit PowerPC, the latter is
not a performance-limited version of the former—there is no penalty for execut-
ing in 32-bit-only mode on the 970FX. There are, however, some differences.
Important aspects of running the 970FX in 32-bit mode include the following.

• The sizes of the floating-point and AltiVec registers are the same across 32-bit
and 64-bit implementations. For example, an FPR is 64 bits wide and a VR
is 128 bits wide on both the G4 and the G5.

• The 970FX uses the same resources—registers, execution units, data paths,
caches, and busses—in 64- and 32-bit modes.

• Fixed-point logical, rotate, and shift instructions behave the same in both
modes.

• Fixed-point arithmetic instructions (except the negate instruction) actually
produce the same result in 64- and 32-bit modes. However, the carry (CA)

50.  One way to use 64-bit integers on a 32-bit processor is to have the programming language main-
tain 64-bit integers as two 32-bit integers. Doing so would consume more registers and would require
more load/store instructions.
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and overflow (OV) fields of the XER register are set in a 32-bit-compatible
way in 32-bit mode.

• Load/store instructions ignore the upper 32 bits of an effective address in
32-bit mode. Similarly, branch instructions deal with only the lower 32 bits
of an effective address in 32-bit mode.

3.3.13 Softpatch Facility

The 970FX provides a facility called softpatch, which is a mechanism that allows
software to work around bugs in the processor core and to otherwise debug the
core. This is achieved either by replacing an instruction with a substitute micro-
coded instruction sequence or by making an instruction cause a trap to software
through a softpatch exception.

The 970FX’s Instruction Fetch Unit contains a seven-entry array with content-
addressable memory (CAM). This array is called the Instruction Match CAM
(IMC). Additionally, the 970FX’s instruction decode unit contains a microcode
softpatch table. The IMC array has eight rows. The first six IMC entries occupy
one row each, whereas the seventh entry occupies two rows. Of the seven entries,
the first six are used to match partially (17 bits) over an instruction’s major
opcode (bits 0 through 5) and extended opcode (bits 21 through 31). The seventh
entry matches in its entirety: a 32-bit full instruction match. As instructions are
fetched from storage, they are matched against the IMC entries by the Instruction
Fetch Unit’s matching facility. If matched, the instruction’s processing can be
altered based on other information in the matched entry. For example, the instruc-
tion can be replaced with microcode from the instruction decode unit’s softpatch
table.

The 970FX provides various other tracing and performance-monitoring
facilities that are beyond the scope of this chapter.

3.4 Software Conventions

An application binary interface (ABI) defines a system interface for compiled
programs, allowing compilers, linkers, debuggers, executables, libraries, other
object files, and the operating system to work with each other. In a simplistic
sense, an ABI is a low-level, “binary” API. A program conforming to an API
should be compilable from source on different systems supporting that API,
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whereas a binary executable conforming to an ABI should operate on different
systems supporting that ABI.51

An ABI usually includes a set of rules specifying how hardware and soft-
ware resources are to be used for a given architecture. Besides interoperability,
the conventions laid down by an ABI may have performance-related goals too,
such as minimizing average subroutine-call overhead, branch latencies, and mem-
ory accesses. The scope of an ABI could be extensive, covering a wide variety of
areas such as the following:

• Byte ordering (endianness)

• Alignment and padding

• Register usage

• Stack usage

• Subroutine parameter passing and value returning

• Subroutine prologues and epilogues

• System calls

• Object files

• Dynamic code generation

• Program loading and dynamic linking

The PowerPC version of Mac OS X uses the Darwin PowerPC ABI in its
32-bit and 64-bit versions, whereas the 32-bit x86 version uses the System V IA-
32 ABI. The Darwin PowerPC ABI is similar to—but not the same as—the popu-
lar IBM AIX ABI for the PowerPC. In this section, we look at some aspects of
the Darwin PowerPC ABI without analyzing its differences from the AIX ABI.

3.4.1 Byte Ordering

The PowerPC architecture natively supports 8-bit (byte), 16-bit (half word), 32-
bit (word), and 64-bit (double word) data types. It uses a flat-address-space
model with byte-addressable storage. Although the PowerPC architecture pro-
vides an optional little-endian facility, the 970FX does not implement it—it
implements only the big-endian addressing mode. Big-endian refers to storing the
“big” end of a multibyte value at the lowest memory address. In the PowerPC

51.  ABIs vary in whether they strictly enforce cross-operating-system compatibility or not.
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architecture, the leftmost bit—bit 0—is defined to be the most significant bit,
whereas the rightmost bit is the least significant bit. For example, if a 64-bit reg-
ister is being used as a 32-bit register in 32-bit computation mode, then bits 32
through 63 of the 64-bit register represent the 32-bit register; bits 0 through 31
are to be ignored. By corollary, the leftmost byte—byte 0—is the most significant
byte, and so on.

52

3.4.2 Register Usage

The Darwin ABI defines a register to be dedicated, volatile, or nonvolatile. A
dedicated register has a predefined or standard purpose; it should not be arbi-
trarily modified by the compiler. A volatile register is available for use at all
times, but its contents may change if the context changes—for example, because
of calling a subroutine. Since the caller must save volatile registers in such cases,
such registers are also called caller-save registers. A nonvolatile register is available
for use in a local context, but the user of such registers must save their original
contents before use and must restore the contents before returning to the calling
context. Therefore, it is the callee—and not the caller—who must save nonvola-
tile registers. Correspondingly, such registers are also called callee-save registers.

Table 3–12 lists common PowerPC registers along with their usage conven-
tions as defined by the 32-bit Darwin ABI.

In PowerPC implementations that support both the big-endian and
little-endian52 addressing modes, the LE bit of the Machine State
Register can be set to 1 to specify little-endian mode. Another bit—
the ILE bit—is used to specify the mode for exception handlers. The
default value of both bits is 0 (big-endian) on such processors.

52.  The use of little-endian mode on such processors is subject to several caveats as compared to
big-endian mode. For example, certain instructions—such as load/store multiple and load/store
string—are not supported in little-endian mode.

In some cases, a register may be available for general use in one
runtime environment but may have a special purpose in some other
runtime environment. For example, GPR12 has a predefined pur-
pose on Mac OS X when used for indirect function calls.
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TABLE 3–12 Register Conventions in the 32-bit Darwin PowerPC ABI

Register(s) Volatility Purpose/Comments

GPR0 Volatile Cannot be a base register.

GPR1 Dedicated Used as the stack pointer to allow access to parameters and other tem-
porary data.

GPR2 Volatile Available on Darwin as a local register but used as the Table of Contents 
(TOC) pointer in the AIX ABI. Darwin does not use the TOC.

GPR3 Volatile Contains the first argument word when calling a subroutine; contains 
the first word of a subroutine’s return value. Objective-C uses GPR3 to 
pass a pointer to the object being messaged (i.e., “self”) as an implicit 
parameter.

GPR4 Volatile Contains the second argument word when calling a subroutine; contains 
the second word of a subroutine’s return value. Objective-C uses GPR4 
to pass the method selector as an implicit parameter.

GPR5–GPR10 Volatile GPRn contains the (n – 2)th argument word when calling a subroutine.

GPR11 Varies In the case of a nested function, used by the caller to pass its stack 
frame to the nested function—register is nonvolatile. In the case of a leaf 
function, the register is available and is volatile.

GPR12 Volatile Used in an optimization for dynamic code generation, wherein a routine 
that branches indirectly to another routine must store the target of the 
call in GPR12. No special purpose for a routine that has been called 
directly.

GPR13–GPR29 Nonvolatile Available for general use. Note that GPR13 is reserved for thread-
specific storage in the 64-bit Darwin PowerPC ABI.

GPR30 Nonvolatile Used as the frame pointer register—i.e., as the base register for access 
to a subroutine’s local variables.

GPR31 Nonvolatile Used as the PIC-offset table register.

FPR0 Volatile Scratch register.

FPR1–FPR4 Volatile FPRn contains the nth floating-point argument when calling a sub-
routine; FPR1 contains the subroutine’s single-precision floating-point 
return value; a double-precision floating-point value is returned in FPR1 
and FPR2.

FPR5–FPR13 Volatile FPRn contains the nth floating-point argument when calling a subroutine.

FPR14–FPR31 Nonvolatile Available for general use.

CR0 Volatile Used for holding condition codes during arithmetic operations.

CR1 Volatile Used for holding condition codes during floating-point operations.

CR2–CR4 Nonvolatile Various condition codes.

(continues)
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3.4.2.1 Indirect Calls

We noted in Table 3–12 that a function that branches indirectly to another func-
tion stores the target of the call in GPR12. Indirect calls are, in fact, the default
scenario for dynamically compiled Mac OS X user-level code. Since the target
address would need to be stored in a register in any case, using a standardized
register allows for potential optimizations. Consider the code fragment shown in
Figure 3–18.

FIGURE 3–18 A simple C function that calls another function

void
f1(void)
{
    f2();
}

CR5 Volatile Various condition codes.

CR6 Volatile Various condition codes; can be used by AltiVec.

CR7 Volatile Various condition codes.

CTR Volatile Contains a branch target address (for the bcctr instruction); contains 
counter value for a loop.

FPSCR Volatile Floating-Point Status and Control Register.

LR Volatile Contains a branch target address (for the bclr instruction); contains 
subroutine return address.

XER Volatile Fixed-point exception register.

VR0, VR1 Volatile Scratch registers.

VR2 Volatile Contains the first vector argument when calling a subroutine; contains 
the vector returned by a subroutine.

VR3–VR19 Volatile VRn contains the (n – 1)th vector argument when calling a subroutine.

VR20–VR31 Nonvolatile Available for general use.

VRSAVE Nonvolatile If bit n of the VRSAVE is set, then VRn must be saved during any kind of 
a context switch.

VSCR Volatile Vector Status and Control Register.

TABLE 3–12 Register Conventions in the 32-bit Darwin PowerPC ABI (Continued)

Register(s) Volatility Purpose/Comments
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By default, the assembly code generated by GCC on Mac OS X for the
function shown in Figure 3–18 will be similar to that shown in Figure 3–19,
which has been annotated and trimmed down to relevant parts. In particular, note
the use of GPR12, which is referred to as r12 in the GNU assembler syntax.

FIGURE 3–19 Assembly code depicting an indirect function call

...
_f1:
        mflr r0         ; prologue
        stmw r30,-8(r1) ; prologue
        stw r0,8(r1)    ; prologue
        stwu r1,-80(r1) ; prologue
        mr r30,r1       ; prologue
        bl L_f2$stub    ; indirect call

        lwz r1,0(r1)    ; epilogue
        lwz r0,8(r1)    ; epilogue
        mtlr r0         ; epilogue
        lmw r30,-8(r1)  ; epilogue
        blr             ; epilogue
...
L_f2$stub:
        .indirect_symbol _f2
        mflr r0
        bcl 20,31,L0$_f2
L0$_f2:
        mflr r11
   
        ; lazy pointer contains our desired branch target
        ; copy that value to r12 (the 'addis' and the 'lwzu')
        addis r11,r11,ha16(L_f2$lazy_ptr-L0$_f2)
        mtlr r0
        lwzu r12,lo16(L_f2$lazy_ptr-L0$_f2)(r11)
   
        ; copy branch target to CTR
        mtctr r12
   
        ; branch through CTR
        bctr
.data
.lazy_symbol_pointer
L_f2$lazy_ptr:
        .indirect_symbol _f2
        .long dyld_stub_binding_helper
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3.4.2.2 Direct Calls

If GCC is instructed to statically compile the code in Figure 3–18, we can verify
in the resultant assembly that there is a direct call to f2 from f1, with no use of
GPR12. This case is shown in Figure 3–20.

FIGURE 3–20 Assembly code depicting a direct function call

        .machine ppc
        .text
        .align 2
        .globl _f1
_f1:
        mflr r0
        stmw r30,-8(r1)

        stw r0,8(r1)
        stwu r1,-80(r1)
        mr r30,r1
        bl _f2
        lwz r1,0(r1)
        lwz r0,8(r1)
        mtlr r0
        lmw r30,-8(r1)
        blr

3.4.3 Stack Usage

On most processor architectures, a stack is used to hold automatic variables, temporary
variables, and return information for each invocation of a subroutine. The PowerPC
architecture does not explicitly define a stack for local storage: There is neither a
dedicated stack pointer nor any push or pop instructions. However, it is conven-
tional for operating systems running on the PowerPC—including Mac OS X—to
designate (per the ABI) an area of memory as the stack and grow it upward: from
a high memory address to a low memory address. GPR1, which is used as the
stack pointer, points to the top of the stack.

Both the stack and the registers play important roles in the working of sub-
routines. As listed in Table 3–12, registers are used to hold subroutine arguments,
up to a certain number.
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Functional Subtleties

The terms function, procedure, and subroutine are sometimes used in program-
ming language literature to denote similar but slightly differing entities. For exam-
ple, a function is a procedure that always returns a result, but a “pure” procedure
does not return a result. Subroutine is often used as a general term for either a
function or a procedure. The C language does not make such fine distinctions,
but some languages do. We use these terms synonymously to represent the fun-
damental programmer-visible unit of callable execution in a high-level language
like C.

Similarly, the terms argument and parameter are used synonymously in infor-
mal contexts. In general, when you declare a function that “takes arguments,” you
use formal parameters in its declaration. These are placeholders for actual
parameters, which are what you specify when you call the function. Actual param-
eters are often called arguments. 

The mechanism whereby actual parameters are matched with (or bound to)
formal parameters is called parameter passing, which could be performed in vari-
ous ways, such as call-by-value (actual parameter represents its value), call-by-
reference (actual parameter represents its location), call-by-name (actual param-
eter represents its program text), and variants.

If a function f1 calls another function f2, which calls yet another function
f3, and so on in a program, the program’s stack grows per the ABI’s conventions.
Each function in the call chain owns part of the stack. A representative runtime
stack for the 32-bit Darwin ABI is shown in Figure 3–21.

In Figure 3–21, f1 calls f2, which calls f3. f1’s stack frame contains a
parameter area and a linkage area.

The parameter area must be large enough to hold the largest parameter list
of all functions that f1 calls. f1 typically will pass arguments in registers as long
as there are registers available. Once registers are exhausted, f1 will place argu-
ments in its parameter area, from where f2 will pick them up. However, f1 must
reserve space for all arguments of f2 in any case—even if it is able to pass all
arguments in registers. f2 is free to use f1’s parameter area for storing arguments
if it wants to free up the corresponding registers for other use. Thus, in a subrou-
tine call, the caller sets up a parameter area in its own stack portion, and the callee
can access the caller’s parameter area for loading or storing arguments.

The linkage area begins after the parameter area and is at the top of the
stack—adjacent to the stack pointer. The adjacency to the stack pointer is impor-
tant: The linkage area has a fixed size, and therefore the callee can find the

Singh.book  Page 231  Thursday, May 25, 2006  11:46 AM



232 Chapter 3 Inside an Apple

FIGURE 3–21 Darwin 32-bit ABI runtime stack
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caller’s parameter area deterministically. The callee can save the CR and the LR
in the caller’s linkage area if it needs to. The stack pointer is always saved by the
caller as a back chain to its caller.

In Figure 3–21, f2’s portion of the stack shows space for saving nonvolatile
registers that f2 changes. These must be restored by f2 before it returns to its caller.

Space for each function’s local variables is reserved by growing the stack
appropriately. This space lies below the parameter area and above the saved registers.

The fact that a called function is responsible for allocating its own stack
frame does not mean the programmer has to write code to do so. When you com-
pile a function, the compiler inserts code fragments called the prologue and the
epilogue before and after the function body, respectively. The prologue sets up
the stack frame for the function. The epilogue undoes the prologue’s work, restor-
ing any saved registers (including CR and LR), incrementing the stack pointer to
its previous value (that the prologue saved in its linkage area), and finally return-
ing to the caller.

Consider the trivial function shown in Figure 3–22, along with the corre-
sponding annotated assembly code.

FIGURE 3–22 Assembly listing for a C function with no arguments and an empty body

$ cat function.c
void
function(void)
{
}
$ gcc –S function.c
$ cat function.s
...
_function:
      stmw r30,-8(r1) ; Prologue: save r30 and r31
      stwu r1,-48(r1) ; Prologue: grow the stack 48 bytes

      mr r30,r1       ; Prologue: copy stack pointer to r30
      lwz r1,0(r1)    ; Epilogue: pop the stack (restore frame)
      lmw r30,-8(r1)  ; Epilogue: restore r30 and r31
      blr             ; Epilogue: return to caller (through LR)

A 32-bit Darwin ABI stack frame is 16-byte aligned.
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The Red Zone

Just after a function is called, the function’s prologue will decrement the stack
pointer from its existing location to reserve space for the function’s needs. The
area above the stack pointer, where the newly called function’s stack frame would
reside, is called the Red Zone.

In the 32-bit Darwin ABI, the Red Zone has space for 19 GPRs (amounts to
19 × 4 = 76 bytes) and 18 FPRs (amounts to 18 × 8 = 144 bytes), for a total of 220
bytes. Rounded up to the nearest 16-byte boundary, this becomes 224 bytes,
which is the size of the Red Zone.

Normally, the Red Zone is indeed occupied by the callee’s stack frame. How-
ever, if the callee does not call any other function—that is, it is a leaf function—
then it does not need a parameter area. It may also not need space for local vari-
ables on the stack if it can fit all of them in registers. It may need space for saving
the nonvolatile registers it uses (recall that if a callee needs to save the CR and
LR, it can save them in the caller’s linkage area). As long as it can fit the registers
to save in the Red Zone, it does not need to allocate a stack frame or decrement
the stack pointer. Note that by definition, there is only one leaf function active at
one time.

3.4.3.1 Stack Usage Examples

Figures 3–23 and 3–24 show examples of how the compiler sets up a function’s
stack depending on the number of local variables a function has, the number of
parameters it has, the number of arguments it passes to a function it calls, and so on.

f1 is identical to the “null” function that we encountered in Figure 3–22,
where we saw that the compiler reserves 48 bytes for the function’s stack. The
portions shown as shaded in the stacks are present either for alignment padding or
for some current or future purpose not necessarily exposed through the ABI. Note
that GPR30 and GPR31 are always saved, GPR30 being the designated frame pointer.

f2 uses a single 32-bit local variable. Its stack is 64 bytes.
f3 calls a function that takes no arguments. Nevertheless, this introduces a

parameter area on f3’s stack. A parameter area is at least eight words (32 bytes)
in size. f3’s stack is 80 bytes.

f4 takes eight arguments, has no local variables, and calls no functions. Its
stack area is the same size as that of the null function because space for its argu-
ments is reserved in the parameter area of its caller.
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f5 takes no arguments, has eight word-size local variables, and calls no
functions. Its stack is 64 bytes.

3.4.3.2 Printing Stack Frames

GCC provides built-in functions that may be used by a function to retrieve infor-
mation about its callers. The current function’s return address can be retrieved by
calling the __builtin_return_address() function, which takes a single
argument—the level, an integer specifying the number of stack frames to walk. A
level of 0 results in the return address of the current function. Similarly, the
__builtin_frame_address() function may be used to retrieve the frame

FIGURE 3–23 Examples of stack usage in functions
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address of a function in the call stack. Both functions return a NULL pointer when
the top of the stack has been reached.53 Figure 3–25 shows a program that uses
these functions to display a stack trace. The program also uses the dladdr()
function in the dyld API to find the various function addresses corresponding to
return addresses in the call stack.

FIGURE 3–24 Examples of stack usage in functions (continued from Figure 3–23)

53.  For __builtin_frame_address() to return a NULL pointer upon reaching the top of the stack,
the first frame pointer must have been set up correctly.
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FIGURE 3–25 Printing a function call stack trace54

// stacktrace.c

   
#include <stdio.h>
#include <dlfcn.h>
   
void
printframeinfo(unsigned int level, void *fp, void *ra)
{
    int     ret;
    Dl_info info;
   
    // Find the image containing the given address
    ret = dladdr(ra, &info);
    printf("#%u %s%s in %s, fp = %p, pc = %p\n",
           level,
           (ret) ? info.dli_sname : "?",          // symbol name
           (ret) ? "()" : "",                     // show as a function
           (ret) ? info.dli_fname : "?", fp, ra); // shared object name
}
   
void
stacktrace()
{
    unsigned int level = 0;
    void    *saved_ra  = __builtin_return_address(0);
    void   **fp        = (void **)__builtin_frame_address(0);
    void    *saved_fp  = __builtin_frame_address(1);
   
    printframeinfo(level, saved_fp, saved_ra);
    level++;
    fp = saved_fp;
    while (fp) {
        saved_fp = *fp;
        fp = saved_fp;
        if (*fp == NULL)
            break;
        saved_ra = *(fp + 2);
        printframeinfo(level, saved_fp, saved_ra);
        level++;
    }
}

(continues)   

54.  Note in the program’s output that the function name in frames #5 and #6 is tart. The dladdr()
function strips leading underscores from the symbols it returns—even if there is no leading under-
score (in which case it removes the first character). In this case, the symbol’s name is start.
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FIGURE 3–25 Printing a function call stack trace (continued)

void f4() { stacktrace(); }
void f3() { f4(); }
void f2() { f3(); }
void f1() { f2(); }
   
int
main()
{
    f1();
    return 0;
}
   
$ gcc -Wall -o stacktrace stacktrace.c
$ ./stacktrace
#0 f4() in /private/tmp/./stacktrace, fp = 0xbffff850, pc = 0x2a3c
#1 f3() in /private/tmp/./stacktrace, fp = 0xbffff8a0, pc = 0x2a68
#2 f2() in /private/tmp/./stacktrace, fp = 0xbffff8f0, pc = 0x2a94
#3 f1() in /private/tmp/./stacktrace, fp = 0xbffff940, pc = 0x2ac0
#4 main() in /private/tmp/./stacktrace, fp = 0xbffff990, pc = 0x2aec
#5 tart() in /private/tmp/./stacktrace, fp = 0xbffff9e0, pc = 0x20c8
#6 tart() in /private/tmp/./stacktrace, fp = 0xbffffa40, pc = 0x1f6c

3.4.4 Function Parameters and Return Values

We saw earlier that when a function calls another with arguments, the parameter
area in the caller’s stack frame is large enough to hold all parameters passed to
the called function, regardless of the number of parameters actually passed in reg-
isters. Doing so has benefits such as the following.

• The called function might want to call further functions that take arguments
or might want to use registers containing its arguments for other purposes.
Having a dedicated parameter area allows the callee to store an argument
from a register to the argument’s “home location” on the stack, thus freeing
up a register.

• It may be useful to have all arguments in the parameter area for debugging
purposes.

• If a function has a variable-length parameter list, it will typically access its
arguments from memory.
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3.4.4.1 Passing Parameters

Parameter-passing rules may depend on the type of programming language used—
for example, procedural or object-oriented. Let us look at parameter-passing rules
for C and C-like languages. Even for such languages, the rules further depend on
whether a function has a fixed-length or a variable-length parameter list. The
rules for fixed-length parameter lists are as follows.

• The first eight parameter words (i.e., the first 32 bytes, not necessarily the
first eight arguments) are passed in GPR3 through GPR10, unless a float-
ing-point parameter appears.

• Floating-point parameters are passed in FPR1 through FPR13.

• If a floating-point parameter appears, but GPRs are still available, then the
parameter is placed in an FPR, as expected. However, the next available
GPRs that together sum up to the floating-point parameter’s size are skipped
and not considered for allocation. Therefore, a single-precision floating-
point parameter (4 bytes) causes the next available GPR (4 bytes) to be
skipped. A double-precision floating-point parameter (8 bytes) causes the
next two available GPRs (8 bytes total) to be skipped.

• If not all parameters can fit within the available registers in accordance with
the skipping rules, the caller passes the excess parameters by storing them
in the parameter area of its stack frame.

• Vector parameters are passed in VR2 through VR13.

• Unlike floating-point parameters, vector parameters do not cause GPRs—or
FPRs, for that matter—to be skipped.

• Unless there are more vector parameters than can fit in available vector registers,
no space is allocated for vector parameters in the caller’s stack frame. Only when
the registers are exhausted does the caller reserve any vector parameter space.

Let us look at the case of functions with variable-length parameter lists.
Note that a function may have some number of required parameters preceding a
variable number of parameters.

• Parameters in the variable portion of the parameter list are passed in both
GPRs and FPRs. Consequently, floating-point parameters are always shad-
owed in GPRs instead of causing GPRs to be skipped.

• If there are vector parameters in the fixed portion of the parameter list, 16-
byte-aligned space is reserved for such parameters in the caller’s parameter
area, even if there are available vector registers.
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• If there are vector parameters in the variable portion of the parameter list,
such parameters are also shadowed in GPRs.

• The called routine accesses arguments from the fixed portion of the parame-
ter list similarly to the fixed-length parameter list case.

• The called routine accesses arguments from the variable portion of the
parameter list by copying GPRs to the callee’s parameter area and accessing
values from there.

3.4.4.2 Returning Values

Functions return values according to the following rules.

• Values less than one word (32 bits) in size are returned in the least signifi-
cant byte(s) of GPR3, with the remaining byte(s) being undefined.

• Values exactly one word in size are returned in GPR3.

• 64-bit fixed-point values are returned in GPR3 (the 4 low-order bytes) and
GPR4 (the 4 high-order bytes).

• Structures up to a word in size are returned in GPR3.

• Single-precision floating-point values are returned in FPR1.

• Double-precision floating-point values are returned in FPR1.

• A 16-byte long double value is returned in FPR1 (the 8 low-order bytes) and
FPR2 (the 8 high-order bytes).

• A composite value (such as an array, a structure, or a union) that is more
than one word in size is returned via an implicit pointer that the caller must
pass. Such functions require the caller to pass a pointer to a memory loca-
tion that is large enough to hold the return value. The pointer is passed as an
“invisible” argument in GPR3. Actual user-visible arguments, if any, are
passed in GPR4 onward. 

3.5 Examples

Let us now look at several miscellaneous examples to put some of the concepts
we have learned into practice. We will discuss the following specific examples:

• Assembly code corresponding to a recursive factorial function

• Implementation of an atomic compare-and-store function
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• Rerouting function calls

• Using a cycle-accurate 970FX simulator

3.5.1 A Recursive Factorial Function

In this example, we will understand how the assembly code corresponding to a
simple, high-level C function works. The function is shown in Figure 3–26. It
recursively computes the factorial of its integer argument.

FIGURE 3–26 A recursive function to compute factorials

// factorial.c

   

int
factorial(int n)
{
    if (n > 0)
        return n * factorial(n - 1);
    else
        return 1;
}
   
$ gcc -Wall -S factorial.c

The GCC command line shown in Figure 3–26 generates an assembly file
named factorial.s. Figure 3–27 shows an annotated version of the contents of
this file.

Noting Annotations

Whereas the listing in Figure 3–27 is hand-annotated, GCC can produce certain
types of annotated output that may be useful in some debugging scenarios. For
example, the -dA option annotates the assembler output with some minimal
debugging information; the -dp option annotates each assembly mnemonic with
a comment indicating which pattern and alternative were used; the -dP option
intersperses assembly-language lines with transcripts of the register transfer lan-
guage (RTL); and so on.
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FIGURE 3–27 Annotated assembly listing for the function shown in Figure 3–26

; factorial.s

   
.section __TEXT,__text
    .globl _factorial
_factorial:
   
    ; LR contains the return address, copy LR to r0.
    mflr r0
   
    ; Store multiple words (the registers r30 and r31) to the address starting
    ; at [-8 + r1]. An stmw instruction is of the form "stmw rS,d(rA)" -- it
    ; stores n consecutive words starting at the effective address (rA|0)+d.
    ; The words come from the low-order 32 bits of GPRs rS through r31. In
    ; this case, rS is r30, so two words are stored. 
    stmw r30,-8(r1)
   
    ; Save LR in the "saved LR" word of the linkage area of our caller.
    stw r0,8(r1)
   
    ; Grow the stack by 96 bytes:
    ;
    ; * 24 bytes for our linkage area
    ; * 32 bytes for 8 words' worth of arguments to functions we will call
    ;   (we actually use only one word)
    ; * 8 bytes of padding
    ; * 16 bytes for local variables (we actually use only one word)
    ; * 16 bytes for saving GPRs (such as r30 and r31)
    ;
    ; An stwu instruction is of the form "stwu rS, d(rA)" -- it stores the
    ; contents of the low-order 32 bits of rS into the memory word addressed
    ; by (rA)+d. The latter (the effective address) is also placed into rA.
    ; In this case, the contents of r1 are stored at (r1)-96, and the address

    ; (r1)-96 is placed into r1. In other words, the old stack pointer is
    ; stored and r1 gets the new stack pointer. 
    stwu r1,-96(r1)
   
    ; Copy current stack pointer to r30, which will be our frame pointer --
    ; that is, the base register for accessing local variables, etc.
    mr r30,r1
   
    ; r3 contains our first parameter
    ;
    ; Our caller contains space for the corresponding argument just below its
    ; linkage area, 24 bytes away from the original stack pointer (before we
    ; grew the stack): 96 + 24 = 120
    ; store the parameter word in the caller's space.
    stw r3,120(r30)

(continues)
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FIGURE 3–27 Annotated assembly listing for the function shown in Figure 3–26 (continued)

    ; Now access n, the first parameter, from the caller's parameter area.
    ; Copy n into r0.
    ; We could also use "mr" to copy from r3 to r0.
    lwz r0,120(r30)
   
    ; Compare n with 0, placing result in cr7 (corresponds to the C line).
    ; "if (n > 0)")
    cmpwi cr7,r0,0
   
    ; n is less than or equal to 0: we are done. Branch to factorial0.
    ble cr7,factorial0
   
    ; Copy n to r2 (this is Darwin, so r2 is available).
    lwz r2,120(r30)
   
    ; Decrement n by 1, and place the result in r0.
    addi r0,r2,-1
   
    ; Copy r0 (that is, n - 1) to r3.
    ; r3 is the first argument to the function that we will call: ourselves.
    mr r3,r0
   
    ; Recurse.
    bl _factorial
   
    ; r3 contains the return value.
    ; Copy r3 to r2
    mr r2,r3
   
    ; Retrieve n (the original value, before we decremented it by 1), placing
    ; it in r0.
    lwz r0,120(r30)
   
    ; Multiply n and the return value (factorial(n - 1)), placing the result
    ; in r0.
    mullw r0,r2,r0
   
    ; Store the result in a temporary variable on the stack.
    stw r0,64(r30)
   
    ; We are all done: get out of here.
    b done
   
factorial0:
    ; We need to return 1 for factorial(n), if n <= 0.
    li r0,1

(continues)
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FIGURE 3–27 Annotated assembly listing for the function shown in Figure 3–26 (continued)

    ; Store the return value in a temporary variable on the stack.
    stw r0,64(r30)
   
done:
    ; Load the return value from its temporary location into r3.
    lwz r3,64(r30)
    
    ; Restore the frame ("pop" the stack) by placing the first word in the
    ; linkage area into r1.
    ;
    ; The first word is the back chain to our caller.
    lwz r1,0(r1)
   
    ; Retrieve the LR value we placed in the caller's linkage area and place
    ; it in r0.
    lwz r0,8(r1)
   
    ; Load LR with the value in r0.
    mtlr r0
   
    ; Load multiple words from the address starting at [-8 + r1] into r30
    ; and r31.
    lmw r30,-8(r1)
   
    ; Go back to the caller.
        blr

3.5.2 An Atomic Compare-and-Store Function

We came across the load-and-reserve-conditional (lwarx, ldarx) and store-
conditional (stwcx., stdcx.) instructions earlier in this chapter. These instruc-
tions can be used to enforce storage ordering of I/O accesses. For example, we
can use lwarx and stcwx. to implement an atomic compare-and-store function.
Executing lwarx loads a word from a word-aligned location but also performs
the following two actions atomically with the load.

• It creates a reservation that can be used by a subsequent stwcx. instruction.
Note that a processor cannot have more than one reservation at a time.

• It notifies the processor’s storage coherence mechanism that there is now a
reservation for the specified memory location.
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stwcx. stores a word to the specified word-aligned location. Its behavior
depends on whether the location is the same as the one specified to lwarx to cre-
ate a reservation. If the two locations are the same, stwcx. will perform the store
only if there has been no other store to that location since the reservation’s cre-
ation—one or more other stores, if any, could be by another processor, cache
operations, or through any other mechanism. If the location specified to stwcx.
is different from the one used with lwarx, the store may or may not succeed, but
the reservation will be lost. A reservation may be lost in various other scenarios,
and stwcx. will fail in all such cases. Figure 3–28 shows an implementation of a
compare-and-store function. The Mac OS X kernel includes a similar function.
We will use this function in our next example to implement function rerouting.

FIGURE 3–28 A hardware-based compare-and-store function for the 970FX

// hw_cs.s

//

// hw_compare_and_store(u_int32_t old,

//                      u_int32_t new,

//                      u_int32_t *address,

//                      u_int32_t *dummyaddress)

//

// Performs the following atomically:

//

// Compares old value to the one at address, and if they are equal, stores new

// value, returning true (1). On store failure, returns false (0). dummyaddress

// points to a valid, trashable u_int32_t location, which is written to for

// canceling the reservation in case of a failure.

   
        .align  5
        .globl  _hw_compare_and_store
   
_hw_compare_and_store:
        // Arguments:

        //      r3      old

        //      r4      new

        //      r5      address

        //      r6      dummyaddress

   

        // Save the old value to a free register.

        mr      r7,r3
   
looptry:
        // Retrieve current value at address.

        // A reservation will also be created.

        lwarx   r9,0,r5
(continues)   
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FIGURE 3–28 A hardware-based compare-and-store function for the 970FX (continued)

        // Set return value to true, hoping we will succeed.

        li      r3,1
   
        // Do old value and current value at address match?

        cmplw   cr0,r9,r7
   
        // No! Somebody changed the value at address.

        bne--   fail
   
        // Try to store the new value at address.

        stwcx.  r4,0,r5
   
        // Failed! Reservation was lost for some reason.

        // Try again.

        bne--   looptry
   
        // If we use hw_compare_and_store to patch/instrument code dynamically,

        // without stopping already running code, the first instruction in the

        // newly created code must be isync. isync will prevent the execution

        // of instructions following itself until all preceding instructions

        // have completed, discarding prefetched instructions. Thus, execution

        // will be consistent with the newly created code. An instruction cache

        // miss will occur when fetching our instruction, resulting in fetching

        // of the modified instruction from storage.

        isync
   
        // return
        blr
   
fail:
        // We want to execute a stwcx. that specifies a dummy writable aligned
        // location. This will "clean up" (kill) the outstanding reservation.
        mr      r3,r6
        stwcx.  r3,0,r3
   
        // set return value to false.
        li      r3,0
   
        // return
        blr

3.5.3 Function Rerouting

Our goal in this example is to intercept a function in a C program by substituting
a new function in its place, with the ability to call the original function from the
new function. Let us assume that there is a function function(int, char *),
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which we wish to replace with function_new(int, char *). The replacement
must meet the following requirements.

• After replacement, when function() is called from anywhere within the
program, function_new() is called instead.

• function_new() can use function(), perhaps because function_new()
is meant to be a wrapper for the original function.

• The rerouting can be programmatically installed or removed.

• function_new() is a normal C function, with the only requirement being
that it has the exact same prototype as function().

3.5.3.1 Instruction Patching

Assume that function()’s implementation is the instruction sequence i0, i1, …,
iM, whereas function_new()’s implementation is the instruction sequence j0, j1,
…, jN, where M and N are some integers. A caller of function() executes i0 first
because it is the first instruction of function(). If our goal is to arrange for all
invocations of function() to actually call function_new(), we could over-
write i0 in memory with an unconditional branch instruction to j0, the first instruc-
tion of function_new(). Doing so would leave function() out of the picture
entirely. Since we also wish to call function() from within function_new(),
we cannot clobber function(). Moreover, we also wish to be able to turn off the
rerouting and restore function() as it originally was.

Rather than clobber i0, we save it somewhere in memory. Then, we allocate
a memory region large enough to hold a few instructions and mark it executable.
A convenient way to preallocate such a region is to declare a dummy function:
one that takes the exact same number and type of arguments as function(). The
dummy function will simply act as a stub; let us call it function_stub(). We
copy i0 to the beginning of function_stub(). We craft an instruction—an
unconditional jump to i1—that we write as the second instruction of
function_stub().

We see that we need to craft two branch instructions: one from function()
to function_new(), and another from function_stub() to function().

3.5.3.2 Constructing Branch Instructions

PowerPC unconditional branch instructions are self-contained in that they encode
their target addresses within the instruction word itself. Recall from the previous

Singh.book  Page 247  Thursday, May 25, 2006  11:46 AM



248 Chapter 3 Inside an Apple

example that it is possible to update a word—a single instruction—atomically on
the 970FX using a compare-and-store (also called compare-and-update) function.
It would be more complicated in general to overwrite multiple instructions.
Therefore, we will use unconditional branches to implement rerouting. The over-
all concept is shown in Figure 3–29.

The encoding of an unconditional branch instruction on the PowerPC is
shown in Figure 3–30. It has a 24-bit address field (LI). Since all instructions are
4 bytes long, the PowerPC refers to words instead of bytes when it comes to
branch target addresses. Since a word is 4 bytes, the 24 bits of LI are as good as
26 bits for our purposes. Given a 26-bit-wide effective branch address, the
branch’s maximum reachability is 64MB total,55 or 32MB in either direction.      

The Reach of a Branch

The “reachability” of a branch is processor-specific. A jump on MIPS uses 6 bits
for the operand field and 26 bits for the address field. The effective addressable
jump distance is actually 28 bits—four times more—because MIPS, like PowerPC,
refers to the number of words instead of the number of bytes. All instructions in
MIPS are 4 bytes long; 28 bits give you 256MB (±128MB) of total leeway. SPARC
uses a 22-bit signed integer for branch addresses, but again, it has two zero bits
appended, effectively providing a 24-bit program counter relative jump reachabil-
ity. This amounts to reachability of 16MB (±8MB). 

The AA field specifies whether the specified branch target address is abso-
lute or relative to the current instruction (AA = 0 for relative, AA = 1 for abso-
lute). If LK is 1, the effective address of the instruction following the branch
instruction is placed in the LR. We do not wish to clobber the LR, so we are left
with relative and absolute branches. We know now that to use a relative branch,
the branch target must be within 32MB of the current instruction, but more
importantly, we need to retrieve the address of the current instruction. Since the
PowerPC does not have a program counter56 register, we choose to use an uncon-
ditional branch with AA = 1 and LK = 0. However, this means the absolute
address must be ±32MB relative to zero. In other words, function_new and

55.  226 bytes.

56.  The conceptual Instruction Address Register (IAR) is not directly accessible without involving
the LR.
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FIGURE 3–29 Overview of function rerouting by instruction patching

FIGURE 3–30 Unconditional branch instruction on the PowerPC
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function_stub must reside in virtual memory within the first 32MB or the last
32MB of the process’s virtual address space! In a simple program such as ours,
this condition is actually likely to be satisfied due to the way Mac OS X sets up
process address spaces. Thus, in our example, we simply “hope” for
function_new() (our own declared function) and function_stub() (a buffer
allocated through the malloc() function) to have virtual addresses that are less
than 32MB. This makes our “technique” eminently unsuitable for production use.
However, there is almost certainly free memory available in the first or last 32MB
of any process’s address space. As we will see in Chapter 8, Mach allows you to
allocate memory at specified virtual addresses, so the technique can also be
improved.

Figure 3–31 shows the code for the function-rerouting demo program. Note
that the program is 32-bit only—it will behave incorrectly when compiled for the
64-bit architecture.

FIGURE 3–31 Implementation of function rerouting by instruction patching

// frr.c

   
#include <stdio.h>
#include <fcntl.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/mman.h>
   
// Constant on the PowerPC 

#define BYTES_PER_INSTRUCTION 4
   
// Branch instruction's major opcode

#define BRANCH_MOPCODE 0x12
   
// Large enough size for a function stub

#define DEFAULT_STUBSZ 128
   
// Atomic update function

//

int hw_compare_and_store(u_int32_t  old,
                         u_int32_t  new,
                         u_int32_t *address,
                         u_int32_t *dummy_address);

(continues)
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FIGURE 3–31 Implementation of function rerouting by instruction patching (continued)

// Structure corresponding to a branch instruction

//

typedef struct branch_s {
    u_int32_t OP: 6;  // bits 0 - 5, primary opcode
    u_int32_t LI: 24; // bits 6 - 29, LI
    u_int32_t AA: 1;  // bit 30, absolute address
    u_int32_t LK: 1;  // bit 31, link or not
} branch_t;
   
// Each instance of rerouting has the following data structure associated with

// it. A pointer to a frr_data_t is returned by the "install" function. The

// "remove" function takes the same pointer as argument.

//

typedef struct frr_data_s {
    void *f_orig; // "original" function
    void *f_new;  // user-provided "new" function
    void *f_stub; // stub to call "original" inside "new"
    char  f_bytes[BYTES_PER_INSTRUCTION]; // bytes from f_orig
} frr_data_t;
   
// Given an "original" function and a "new" function, frr_install() reroutes

// so that anybody calling "original" will actually be calling "new". Inside

// "new", it is possible to call "original" through a stub.

//

frr_data_t *
frr_install(void *original, void *new)
{
    int         ret = -1;
    branch_t    branch;
    frr_data_t *FRR = (frr_data_t *)0;
    u_int32_t   target_address, dummy_address;
   
    // Check new's address

    if ((u_int32_t)new >> 25) {
        fprintf(stderr, "This demo is out of luck. \"new\" too far.\n");
        goto ERROR;
    } else
        printf("    FRR: \"new\" is at address %#x.\n", (u_int32_t)new);
   
    // Allocate space for FRR metadata
    FRR = (frr_data_t *)malloc(sizeof(frr_data_t));
    if (!FRR)
        return FRR;
   
    FRR->f_orig = original;
    FRR->f_new = new;

(continues)
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FIGURE 3–31 Implementation of function rerouting by instruction patching (continued)

    // Allocate space for the stub to call the original function

    FRR->f_stub = (char *)malloc(DEFAULT_STUBSZ);
    if (!FRR->f_stub) {
        free(FRR);
        FRR = (frr_data_t *)0;
        return FRR;
    }
   
    // Prepare to write to the first 4 bytes of "original"

    ret = mprotect(FRR->f_orig, 4, PROT_READ|PROT_WRITE|PROT_EXEC);
    if (ret != 0)
        goto ERROR;
   
    // Prepare to populate the stub and make it executable

    ret = mprotect(FRR->f_stub, DEFAULT_STUBSZ, PROT_READ|PROT_WRITE|PROT_EXEC);
    if (ret != 0)
        goto ERROR;
   
    memcpy(FRR->f_bytes, (char *)FRR->f_orig, BYTES_PER_INSTRUCTION);
   
    // Unconditional branch (relative)

    branch.OP = BRANCH_MOPCODE;
    branch.AA = 1;
    branch.LK = 0;
   
    // Create unconditional branch from "stub" to "original"
    target_address = (u_int32_t)(FRR->f_orig + 4) >> 2;
    if (target_address >> 25) {
        fprintf(stderr, "This demo is out of luck. Target address too far.\n");
        goto ERROR;
    } else
        printf("    FRR: target_address for stub -> original is %#x.\n",
               target_address);
    branch.LI = target_address;
    memcpy((char *)FRR->f_stub, (char *)FRR->f_bytes, BYTES_PER_INSTRUCTION);
    memcpy((char *)FRR->f_stub + BYTES_PER_INSTRUCTION, (char *)&branch, 4);
   
    // Create unconditional branch from "original" to "new"

    target_address = (u_int32_t)FRR->f_new >> 2;
    if (target_address >> 25) {
        fprintf(stderr, "This demo is out of luck. Target address too far.\n");
        goto ERROR;
    } else
        printf("    FRR: target_address for original -> new is %#x.\n",
               target_address);
    branch.LI = target_address;

(continues)
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FIGURE 3–31 Implementation of function rerouting by instruction patching (continued)

    ret = hw_compare_and_store(*((u_int32_t *)FRR->f_orig),
                               *((u_int32_t *)&branch),
                               (u_int32_t *)FRR->f_orig,
                               &dummy_address);
    if (ret != 1) {
        fprintf(stderr, "Atomic store failed.\n");
        goto ERROR;
    } else
        printf("    FRR: Atomically updated instruction.\n");
   
    return FRR;
   
    ERROR:
    if (FRR && FRR->f_stub)
        free(FRR->f_stub);
    if (FRR)
        free(FRR);
    return FRR;
}
   
int
frr_remove(frr_data_t *FRR)
{
    int       ret;
    u_int32_t dummy_address;
   
    if (!FRR)
        return 0;
   
    ret = mprotect(FRR->f_orig, 4, PROT_READ|PROT_WRITE|PROT_EXEC);
    if (ret != 0)
        return -1;
   
    ret = hw_compare_and_store(*((u_int32_t *)FRR->f_orig),
                               *((u_int32_t *)FRR->f_bytes),
                               (u_int32_t *)FRR->f_orig,
                               &dummy_address);
   
    if (FRR && FRR->f_stub)
        free(FRR->f_stub);
   
    if (FRR)
        free(FRR);
   
    FRR = (frr_data_t *)0;
   
    return 0;
}

(continues)
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FIGURE 3–31 Implementation of function rerouting by instruction patching (continued)

int
function(int i, char *s)
{
    int   ret;
    char *m = s;
   
    if (!s)
        m = "(null)";
   
    printf(" CALLED: function(%d, %s).\n", i, m);
    ret = i + 1;
    printf(" RETURN: %d = function(%d, %s).\n", ret, i, m);
   
    return ret;
}
   
int (* function_stub)(int, char *);
   
int
function_new(int i, char *s)
{
    int   ret = -1;
    char *m = s;
   
    if (!s)
        m = "(null)";
   
    printf(" CALLED: function_new(%d, %s).\n", i, m);
   
    if (function_stub) {
        printf("CALLING: function_new() --> function_stub().\n");
        ret = function_stub(i, s);
    } else {
        printf("function_new(): function_stub missing.\n");
    }
   
    printf(" RETURN: %d = function_new(%d, %s).\n", ret, i, m);
   
    return ret;
}
   
int
main(int argc, char **argv)
{
    int         ret;
    int         arg_i = 2;
    char       *arg_s = "Hello, World!";
    frr_data_t *FRR;

(continues)
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FIGURE 3–31 Implementation of function rerouting by instruction patching (continued)

    function_stub = (int(*)(int, char *))0;
   
    printf("[Clean State]\n");
        printf("CALLING: main() --> function().\n");
    ret = function(arg_i, arg_s);
   
    printf("\n[Installing Rerouting]\n");
    printf("Maximum branch target address is %#x (32MB).\n", (1 << 25));
    FRR = frr_install(function, function_new);
    if (FRR)
        function_stub = FRR->f_stub;
    else {
        fprintf(stderr, "main(): frr_install failed.\n");
        return 1;
    }
   
    printf("\n[Rerouting installed]\n");
    printf("CALLING: main() --> function().\n");
    ret = function(arg_i, arg_s);
   
    ret = frr_remove(FRR);
    if (ret != 0) {
        fprintf(stderr, "main(): frr_remove failed.\n");
        return 1;
    }
   
    printf("\n[Rerouting removed]\n");
    printf("CALLING: main() --> function().\n");
    ret = function(arg_i, arg_s);
   
    return 0;
}

Figure 3–32 shows a sample run of the function-rerouting demonstration
program.

FIGURE 3–32 Function rerouting in action

$ gcc -Wall –o frr frr.c
$ ./frr
[Clean State]
CALLING: main() --> function().
CALLED: function(2, Hello, World!).
RETURN: 3 = function(2, Hello, World!).

(continues)
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FIGURE 3–32 Function rerouting in action (continued)

[Installing Rerouting]
Maximum branch target address is 0x2000000 (32MB).
FRR: "new" is at address 0x272c.
FRR: target_address for stub -> original is 0x9a6.
FRR: target_address for original -> new is 0x9cb.
FRR: Atomically updated instruction.
   
[Rerouting installed]
CALLING: main() --> function().
CALLED: function_new(2, Hello, World!).
CALLING: function_new() --> function_stub().
CALLED: function(2, Hello, World!).
RETURN: 3 = function(2, Hello, World!).
RETURN: 3 = function_new(2, Hello, World!).
   
[Rerouting removed]
CALLING: main() --> function().
CALLED: function(2, Hello, World!).
RETURN: 3 = function(2, Hello, World!).

3.5.4 Cycle-Accurate Simulation of the 970FX

Apple’s CHUD Tools package includes the amber and simg5 command-line pro-
grams that were briefly mentioned in Chapter 2. amber is a tool for tracing all
threads in a process, recording every instruction and data access to a trace file.
simg557 is a cycle-accurate core simulator for the 970/970FX. With these tools, it
is possible to analyze the execution of a program at the processor-cycle level. You
can see how instructions are broken down into iops, how the iops are grouped,
how the groups are dispatched, and so on. In this example, we will use amber and
simg5 to analyze a simple program.

The first step is to use amber to generate a trace of a program’s execution.
amber supports a few trace file formats. We will use the TT6E format with simg5.

Tracing the execution of an entire application—even a trivial program—will
result in the execution of an extremely large number of instructions. Execution of
the “empty” C program in Figure 3–33 causes over 90,000 instructions to be
traced. This is so because although the program does not have any programmer-
provided code (besides the empty function body), it still contains the runtime
environment’s startup and teardown routines. 

57.  simg5 was developed by IBM.
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FIGURE 3–33 Tracing an “empty” C program using amber

$ cat null.c
main()
{
}
$ gcc –o null null.c
$ amber ./null
...
Session Instructions Traced:  91353
Session Trace Time:           0.46 sec [0.20 million inst/sec]
...

Typically, you would not be interested in analyzing the execution of the lan-
guage runtime environment. In fact, even within your own code, you may want to
analyze only small portions at a time. It becomes impractical to deal with a large
number—say, more than a few thousand—of instructions using these tools. When
used with the –i or –I arguments, amber can toggle tracing for an application
upon encountering a privileged instruction. A readily usable example of such an
instruction is one that accesses an OEA register from user space. Thus, you can
instrument your code by surrounding the portion of interest with two such illegal
instructions. The first occurrence will cause amber to turn tracing on, and the
second will cause tracing to stop. Figure 3–34 shows the program we will trace
with amber.

FIGURE 3–34 A C program with instructions that are illegal in user space

// traceme.c

   
#include <stdlib.h>

#if defined(__GNUC__)
#include <ppc_intrinsics.h>
#endif
   
int
main(void)
{
    int i, a = 0;
   
    // supervisor-level instruction as a trigger
    // start tracing
    (void)__mfspr(1023);

(continues)
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FIGURE 3–34 A C program with instructions that are illegal in user space (continued)

    for (i = 0; i < 16; i++) {
        a += 3 * i;
    }
   
    // supervisor-level instruction as a trigger
    // stop tracing
    (void)__mfspr(1023);
   
   exit(0);
}

We trace the program in Figure 3–34 using amber with the –I option,
which directs amber to trace only the instrumented thread. The –i option would
cause all threads in the target process to be traced. As shown in Figure 3–35, the
executable will not run stand-alone because of the presence of illegal instructions
in the machine code. 

FIGURE 3–35 Tracing program execution with amber

$ gcc -S traceme.c # GCC 4.x
$ gcc -o traceme traceme.c
$ ./traceme
zsh: illegal hardware instruction  ./traceme
$ amber -I ./traceme
...
* Targeting process 'traceme' [1570]
* Recording TT6E trace
* Instrumented executable - tracing will start/stop for thread automatically
* Ctrl-Esc to quit
   
* Tracing session #1 started *
   
Session Instructions Traced: 214
Session Traced Time:          0.00 sec [0.09 million inst/sec]
   
* Tracing session #1 stopped *
   
* Exiting... *

amber creates a subdirectory called trace_xxx in the current directory,
where xxx is a three-digit numerical string: 001 if this is the first trace in the
directory. The trace_xxx directory contains further subdirectories, one per
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thread in your program, containing TT6E traces of the program’s threads. A trace
provides information such as what instructions were issued, what order they were
issued in, what were the load and store addresses, and so on. Our program has
only one thread, so the subdirectory is called thread_001.tt6e. As shown in
Figure 3–35, amber reports that 214 instructions were traced. Let us account for
these instructions by examining the generated assembly traceme.s, whose par-
tial contents (annotated) are shown in Figure 3–36. Note that we are interested
only in the portion between the pair of mfspr instructions. However, it is note-
worthy that the instruction immediately following the first mfspr instruction is
not included in amber’s trace.

FIGURE 3–36 Accounting for instructions traced by amber

; traceme.s (compiled with GCC 4.x)
        mfspr r0, 1023            
        stw   r0,60(r30)   ; not traced
        ; instructions of interest begin here
        li    r0,0
        stw   r0,68(r30)
        b     L2
L3:
        lwz   r2,68(r30)   ; i[n]
        mr    r0,r2        ; i[n + 1]
        slwi  r0,r0,1      ; i[n + 2]
        add   r2,r0,r2     ; i[n + 3]
        lwz   r0,64(r30)   ; i[n + 4]
        add   r0,r0,r2     ; i[n + 5]
        stw   r0,64(r30)   ; i[n + 6]
        lwz   r2,68(r30)   ; i[n + 7]
        addi  r0,r2,1      ; i[n + 8]
        stw   r0,68(r30)   ; i[n + 9]
L2:
        lwz   r0,68(r30)   ; i[n + 10]
        cmpwi cr7,r0,15    ; i[n + 11]
        ble   cr7,L3       ; i[n + 12]
        mfspr r0, 1023          

Each of the 3 instructions before the L3 loop label are executed only once,
whereas the rest of the instructions that lie between the L3 loop label and the sec-
ond mfspr instruction are executed during one or all iterations of the loop.
Instructions i[n] through i[n + 9] (10 instructions) are executed exactly 16
times, as the C variable i is incremented. The assembly implementation of the
loop begins by jumping to the L2 label and checks whether i has attained the
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value 16, in which case the loop terminates. Since i is initially zero, instructions
i[n + 10] through i[n + 12] (3 instructions) will be executed exactly 17
times. Thus, the total number of instructions executed can be calculated as
follows:

3 + (10 × 16) + (3 × 17) = 214

Let us now run simg5 on this trace. simg5 allows you to change certain
characteristics of the simulated processor, for example, by making the L1 I-cache,
the L1 D-cache, the TLBs, or the L2 cache infinite. There also exists a Java
viewer for viewing simg5’s output. simg5 can automatically run the viewer upon
finishing if the auto_load option is specified.

$ simg5 trace_001/thread_001.tt6e 214 1 1 test_run1 -p 1 -b 1 -e 214 -auto_load

...

Figure 3–37 shows simg5’s output as displayed by the Java viewer. The left
side of the screen contains a cycle-by-cycle sequence of processor events. These
are denoted by labels, examples of which are shown in Table 3–13.

In the simg5 output, we can see the breaking down of architected instruc-
tions into iops. For example, the second instruction of interest in Figure 3–36 has
two corresponding iops.

TABLE 3–13 Processor Event Labels

Label Event Notes

FVB Fetch Instruction fetched into the instruction buffer

D Decode Decode group formed

M Dispatch Dispatch group dispatched

su Issue Instruction issued

E Execute Instruction executing

f Finish Instruction finished execution

C Completion Instruction group completed
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FIGURE 3–37 simg5 output
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