
Asoftware configuration management (SCM) system consists of tools
and processes used to manage the source code of a project and to assess

its state. With these tools, management and developers can do the following:

■ Peruse the source code managed by the SCM system
■ Obtain a local copy of the source code
■ Submit modifications made to the source code by developers
■ Understand which changes have been made to the source code by

developers
■ Determine the state of the source code (for example, whether it

compiles)
■ Log and track defects associated with binaries created from the source

code

In a cross-platform project, certain aspects of an SCM system take on
added importance. In this chapter, I describe the tools that were most
important to Netscape and Mozilla in this regard:

■ CVS, the Concurrent Version System, which was used to maintain and
manage a central copy of the Netscape/Mozilla source code

■ Bugzilla, used to track defects in programs generated from the source
code stored in CVS

■ Tinderbox, used to determine the state of the source code as changes
were made to the copy stored in CVS

■ Patch, a tool that fosters the distribution and communication of changes
among developers (in particular, between a developer and code
reviewers) prior to it being permanently stored in CVS

Software Configuration
Management 3

131

04_032124642X_ch03.qxd 10/22/07 4:22 PM Page 131

These tools, combined with some best practices for using them that I
describe in this chapter, helped greatly in ensuring that Netscape shipped
cross-platform products that were similar in features and overall quality,
and did so on the same schedule.

Item 11: Use a Cross-Platform Bug Reporting and
Tracking System

A major component of a cross-platform toolset is the bug reporting and
tracking system (which I refer to as a “bug system” here for brevity). A bug
system is used by developers and testers to report defects and issues
encountered during the software development and testing phases of a
project. In general, a bug system should allow the reporter to specify the
problem encountered, identify the context or state of the system at the time
the bug was discovered, and list the steps required to reproduce the bug.
The bug system also must allow for the tracking of any issues it contains. In
terms of tracking, bugs generally go through the following states:

■ New. A bug that has been discovered, but has not been investigated by
a developer.

■ Assigned. The developer acknowledges the bug and is investigating.
■ Resolved. The developer has fixed the bug, or has some other resolution

(for example, unable to reproduce the problem, or the feature is
working as designed).

■ Verified. QA/test has acknowledged the resolution of the developer, and
has verified it to be correct.

In addition, a bug can be in the reopened state, an indication that a once-
verified bug has resurfaced in testing after originally being verified by QA.

Finally, a bug system should allow someone to specify the relative
priority of bugs filed against a product. Initially, this will be the person filing
the bug, but ideally, it is done in a “triage” session, with participation of the
following teams: development, QA/test, and product management. Tracking
priorities is not easy, it takes discipline for people to sit down for an hour or
two and grind through a list of bugs, but doing so allows developers to
prioritize their work, and allows those who are making ship/no-ship
decisions the opportunity to objectively decide what state the project is in.

132 Chapter 3 Software Configuration Management

04_032124642X_ch03.qxd 10/22/07 4:22 PM Page 132

When it comes to cross-platform development, you should always look
for a couple of attributes and features when selecting a bug system for use in
your project.

Accessibility

Perhaps the most important cross-platform attribute you should look for
when selecting a bug system is accessibility. In a cross-platform development
project, everyone will have his or her preferred development platform (see
Item 1). For some developers, it will be Mac OS X, and for many it will be
Windows. If the bug system is not accessible to everyone on the team via
their native platforms, it risks not being used by those who would rather not
boot into one of the operating systems that the bug system does support.
Therefore, the bug system itself needs to be cross-platform. And, it must
support all of your tier-1 platforms.

These days, by and large, the accessibility requirement is best met by
using a Web-based bug system. Web browsers are available for every
platform, including PDAs and mobile phones. Bug reporting/tracking
systems based on LAMP (Linux, Apache, MySQL, PHP) or Java/JSP are
available.

Ability to Track Platform-Specific Bugs

In some cases, a bug will be reproducible on all platforms, and in other
cases, only a subset of the supported platforms will exhibit the given
problem. It is critical that the platforms affected by the problem be tracked.
The bug system should allow the person filing the bug, or even someone
updating the bug at a later time, to specify the platform(s) affected by any
given bug. Doing so will allow someone searching the bug database to
specify a subset of the supported platforms as search criteria (for example,
“find all assigned Linux bugs”). By specifying the platforms as part of the
search criteria, platform specialists will be able to quickly identify bugs that
affect their platform, and management will be able determine the number of
open (and resolved) issues on a per-platform basis.

Bugzilla

Most of my experience with bug reporting systems has been with a bug
tracking system named Bugzilla—yet another result of the Netscape/Mozilla
project. Bugzilla is implemented as a Web application, allowing the database
to be viewed from any platform that supports a Web browser. Bugzilla has

Item 11: Use a Cross-Platform Bug Reporting and Tracking System 133

04_032124642X_ch03.qxd 10/22/07 4:22 PM Page 133

been in active development for years, and is used by hundreds of organiza-
tions. Because Bugzilla originated during the development of the cross-
platform Netscape/Mozilla system (it replaced a Netscape-internal bug
system in use during the development of the 4.x browser called bugsplat), it
has always supported cross-platform development directly.

Installing Bugzilla is pretty straightforward, and is well documented. A
basic installation of Bugzilla can be done in about an hour, depending on
your setup. (That was my experience on a stock Red Hat Fedora Core 4
system, and your results may vary.)

The following instructions are based on a Fedora Core 4 setup, using
Apache and MySQL. (The default versions of Apache, Perl, and MySQL
that come with FC4 are suitable for use with Bugzilla 2.22.)

Visit www.bugzilla.org, and download the latest stable release (2.22 as
of this writing) onto the Linux machine that you will use to host the Bugzilla
server. Then:

$ su

tar –zxvf bugzilla-2.22.tar.gz

mkdir /var/www/html/bugzilla

cd bugzilla-2.22

cp –r * /var/www/html/bugzilla

cd /var/www/html/

chown –R apache bugzilla

chgrp –R apache bugzilla

The next step is to install required Perl modules. To do this, enter the
following:

perl -MCPAN -e 'install “Bundle::Bugzilla”'

You may be prompted for inputs. If so, just take whatever default responses
are offered. To validate that the required modules are installed, issue the
following (as root):

cd /var/www/html/bugzilla

perl checksetup –check-modules

When that completes, you need to rerun checksetup once again:

perl checksetup.pl

134 Chapter 3 Software Configuration Management

04_032124642X_ch03.qxd 10/22/07 4:22 PM Page 134

This will create a file named localconfig. To configure Bugzilla to work with
MySQL, follow the instructions at www.bugzilla.org/docs/2.22/html/
configuration.html#mysql. Finally, rerun checksetup.pl one last time. The
checksetup.pl script will create the Bugzilla database and prompt you for
information needed to set up an administrator account in the Bugzilla
database. Following this, you should be able to use the following URL to
access bugzilla from your local Web browser:

http://localhost/bugzilla

If you have any problems with these instructions (or have a setup that
differs from mine), refer to file://var/www/html/bugzilla/docs/index.html
for help.

After you have installed Bugzilla, you need to add products to the bug
database, and modify the list of platforms (hardware and operating systems)
that can be specified when bugs are filed in the database. To do this, log in
as the administrator; you should see a screen similar to the one shown in
Figure 3-1.

Item 11: Use a Cross-Platform Bug Reporting and Tracking System 135

Figure 3-1 Bugzilla main screen

04_032124642X_ch03.qxd 10/22/07 4:22 PM Page 135

In the bottom half of Figure 3-1, there is a link labeled Products.
Clicking that link takes you to a screen on which you can enter the name
and attributes of a product. Enter the product name and a description,
accept defaults for the remaining fields, and click the Add button. You
should get something like Figure 3-2.

136 Chapter 3 Software Configuration Management

Figure 3-2 Products screen

The next step manages the list of supported operating systems. To view
the list, click the Field Values link (visible in Figures 3-1 and 3-2). Then,
click the OS link in the resulting page, and you should see the list of
supported operating systems (All, Windows, Mac OS, Linux, and Other, as
in Figure 3-3). By clicking the operating system names to edit them, change
the value Windows to Windows XP, the value Mac OS to be Mac OS X
10.4, and the value Linux to be Fedora Core 4. I personally think it is better
to be fine-grained when it comes to the list of operating systems; Linux, for
example, is far too vague to be truly useful. You can also add or remove
operating systems using the provided controls.

04_032124642X_ch03.qxd 10/22/07 4:22 PM Page 136

Item 11: Use a Cross-Platform Bug Reporting and Tracking System 137

Figure 3-3 Platforms screen

To modify the list of supported hardware, click the Field Values link
again, click the Hardware link on the resulting page, and then modify the
list of supported hardware types so that it is consistent with your supported
hardware platforms. Again, being fine-grained can help in diagnosing
problems. For example, instead of Macintosh, you might add choices based
on type and CPU (for example, PowerBook and MacBook).

Before any bug can be filed against a product, components and version
numbers need to be added for the product. This can be done by clicking the
Product link, clicking the product name in the resulting table, and then
clicking the Edit Components and Edit Versions links, respectively.
Components are specific areas of a product. For Trixul, I defined three
components: JavaScript Integration, Layout engine, and liblayout. Addi-
tional components can be added by the administrator as needed. Version
numbers can be any text string that helps to identify the versions of the
product; I specified 0.1.0 and 1.0. Figure 3-4 illustrates the resulting product
summary page displayed by Bugzilla. As soon as at least one component and
one version number has been specified, users should be able to add new
bugs to the database.

04_032124642X_ch03.qxd 10/22/07 4:22 PM Page 137

138 Chapter 3 Software Configuration Management

Figure 3-4 Product Summary Page

Returning to the cross-platform issues of platform and hardware, let’s
see how they are specified by filing a bug against Trixul. One problem with
Trixul is that under Microsoft Windows XP, the layout engine is built as an
executable, whereas on all other platforms, the layout engine is built as a
shared library that is then linked to a small executable. The reason for this
bug (I believe) is a difficulty with linking a mixed (native and Common
Language Infrastructure [CLI]) .NET application to a shared library using
Visual Studio .NET 2003.

To file this bug, I logged on to Bugzilla, clicked the Enter a New Bug
Report link, filled out the form as shown in Figure 3-5, and then clicked
Commit.

Notice how I selected Windows XP in the OS field, and PC (Intel
Pentium 4) in the Platform field.

Platform-specific bugs can be easily located using the search feature of
Bugzilla. To do so, visit the main Bugzilla page and click the Search Existing
Bug Reports link. The resulting page allows you to specify a wide variety of
search criteria, including the OS and Platform fields. Figure 3-6 illustrates a
search of all open bugs filed against both Fedora Core 4 and Windows XP
on the Pentium 4 platform.

04_032124642X_ch03.qxd 10/22/07 4:22 PM Page 138

Item 11: Use a Cross-Platform Bug Reporting and Tracking System 139

Figure 3-5 Filing a new bug report

Figure 3-6 Searching for bugs

04_032124642X_ch03.qxd 10/22/07 4:22 PM Page 139

If you like, you can copy and paste the URL of the search result page
into a Web page or e-mail, and use that as a quick way to find all bugs
related to a specific platform/operating system combination. When using
Bugzilla I generally make a Web page consisting of links to all queries that I
consider essential for the project I am working on; clicking a link is much
easier than revisiting the Bugzilla search page and reentering all the
parameters of the desired query each time I go to look at my list of bugs.

That’s pretty much it for Bugzilla. Using the general guidelines I just
provided, it is fairly easy to set up and maintain a database that is capable of
helping you ensure that platform-specific issues are tracked accurately.

Item 12: Set Up a Tinderbox

Tinderbox is a tool that was developed initially at Netscape, but that is now
open source software maintained by the Mozilla project. Tinderbox is
designed to manage the complexity one encounters when developing
software, especially in terms of large-scale cross-platform software that
involves a widely distributed team of developers. Tinderbox is particularly
useful in cross-platform projects, as you will see. Coupled with a system
known as bonsai, the goals of Tinderbox are fairly simple:

■ Communicate any and all changes made over time to the source code
repository to the entire development team, in a centralized location, as
soon as the changes have been made.

■ Communicate the overall health of the repository by continually pulling
and building the source code on each supported platform. For each pull
and build cycle, a pass/fail status is reported to a centralized location.
This allows developers to determine when they should update their local
trees to avoid pulling source code that will not build (or run) correctly.

■ Combining the above, Tinderbox can be used to assign accountability of
the health of the tree to specific individuals and/or changes to the
repository. Knowing this information helps get problems solved as
quickly and accurately as possible.

Basically, Tinderbox is a group of machines that continually pull and
build the contents of a CVS repository (see Item 13), and a server that
retrieves and reports the status of these builds on a Web server that everyone
in the organization can monitor. Tinderbox is currently supported as three
versions. Version 1, perhaps the most widely used, was developed by
Netscape/Mozilla, and is still in use by mozilla.org. Tinderbox 2.0 is a

140 Chapter 3 Software Configuration Management

04_032124642X_ch03.qxd 10/22/07 4:22 PM Page 140

rewrite of version 1, providing essentially the same feature set. The goal of
Tinderbox 2.0 was to essentially clean up the implementation of version 1.
Both Tinderbox 1 and Tinderbox 2 are available from mozilla.org.
Tinderbox 3 is a more recent version, available as a tarball from John
Keiser, an ex-Netscape developer. Tinderbox 3 adds a number of desirable
features, and strives to make Tinderbox easier to set up and administer.

Figure 3-7 illustrates the Web page displayed by a Tinderbox server.
(You can access a large number of live Tinderboxen by visiting http:
//Tinderbox.mozilla.org.)

Item 12: Set Up a Tinderbox 141

Figure 3-7 Tinderbox

The Tinderbox in Figure 3-7 illustrates the state of Mozilla’s Seamonkey
reporting the health of some of the “port” platforms that are defined by the
Mozilla project. (Seamonkey was the code name used by Netscape/Mozilla
during the development of the Mozilla browser suite. A port is a platform
that is not considered to be tier-1 by Mozilla.)

The use of Tinderbox is pervasive in the software development
community. Not only is it used by mozilla.org, but by other open source
projects (for example, OSDL) and in commercial development (AOL, for
example). Tinderbox is particularly well-suited to cross-platform develop-
ment, as we discuss later.

04_032124642X_ch03.qxd 10/22/07 4:22 PM Page 141

The Tinderbox Web page consists of a table viewed as a series of
mutually exclusive columns that are organized from left to right. In the first
column (Build Time), each row contains a timestamp that can be used to
identify the time associated with events that are represented in the remain-
ing columns of the table. The second column identifies each check-in made
by developers; the time of these check-ins can easily be determined by
looking at the corresponding row in the Build Time column. The remaining
columns each represent a specific platform that is being reported on by the
Tinderbox. (An organization may have several Tinderboxen, each reporting
a specific group of builds. You can see an example of this by visiting
http://tinderbox.mozilla.org/showbuilds.cgi.)

Any given column represents a build machine, and a platform, and
contains a series of colored boxes. Green boxes indicate a successful build of
the repository for that platform on that machine. Conversely, a red box
indicates a failed build, and a yellow box indicates a build that is currently
in the process of being produced. Furthermore, the lower edge of any of
these boxes represents the start of a pull and build cycle, and the upper edge
represents the time of completion. The time corresponding to both of these
events, for a particular colored box, can be determined by looking at the
timestamp at the same row in column one as the upper or lower edge of that
box. For example, the uppermost failed build in Figure 3-7 (Linux balsa
Dep (static), represented by column four of the table) was started at about
13:07, and failed about five minutes later, at about 13:12.

Let’s take a closer look at this failed build, and see what we can infer
about it. It is clear that the check-in by sspitzer at 13:09:41 did not result in
the failure of the build for two reasons. First of all, the Linux balsa Dep
build was already burning prior to sspitzer’s check-in. (See the red box in
the same column that completed around 12:00, and also notice how the
lower edge of the uppermost red box is lower than the entry for sspitzer’s
check-in.) Another piece of evidence that sspitzer is not the cause of the
problem is that each of the other Linux platform builds are green. (Gener-
ally, one finds that Linux builds of Mozilla are generally are either all red at
the same time, or all green.) Finally, and perhaps most important, we can see
that the build was previously red at noon (12:00), and had not gone through
a green cycle since then. (Gray portions of the Tinderbox indicate no build
was in progress, or the progress of a build was not reported to the Tinder-
box server.)

For largely the same reasons cited previously for sspitzer, we can also
infer that mozilla.mano is not to blame for the redness of the build, either.

142 Chapter 3 Software Configuration Management

04_032124642X_ch03.qxd 10/22/07 4:22 PM Page 142

The tree was already red prior to his or her check-in, and the other Linux
builds were not affected.

Let’s say I am not entirely sure that sspitzer is not to blame, and want to
take a closer look at what the exact cause of the broken build might be.
There are several other facilities provided by Tinderbox that you can use to
drill down for further information. The L (or L1) link inside of the red box
can be used to obtain a log of the build; this log contains compiler and
perhaps linker output that should identify what caused the build to break.
Clicking the L1 link gives the result shown in Figure 3-8.

Item 12: Set Up a Tinderbox 143

Figure 3-8 L1 link output

Clicking View Brief Log results in Figure 3-9, which indicates a problem
building libmozjs.so, the shared library that contains the implementation of
the Mozilla Spidermonkey JavaScript engine (which is used in Trixul; see
Chapter 9, “Developing a Cross-Platform GUI Toolkit in C++”).

Figure 3-9 View brief log output

04_032124642X_ch03.qxd 10/22/07 4:22 PM Page 143

The other major source of input that I would want to consider is an
understanding of what portion of the tree was impacted by sspitzer. If the
check-in he made does not correlate to the error messages displayed in the
log (Figure 3-9), I can eliminate him from the “blame” list and focus my
search elsewhere. I can do this in two ways. First, by clicking the C link in
the red box; this will display a list of checkins that were made prior to the
start of the build. It is these checkins that likely would be the cause of any
state change in the build (that is, going from red to green, or from green to
red, which is not the case here since the tree was already red at the 12:00
hour). Figure 3-10 shows the result of clicking the C link.

144 Chapter 3 Software Configuration Management

Figure 3-10 List of checkins

This result clearly confirms that sspitzer is not on the blame list—and it
also shows that the problem is not related to a check-in by mozilla.mano,
because this change was made to a Cascading Style Sheets (CSS) source file
that would have no impact on the JavaScript engine.

The final technique to eliminate sspitzer from the blame list (short of
sending him an e-mail and asking him whether his check-in caused the build
failure) would be to click the sspitzer link in column one and see what
changes he made. Doing so gives us Figure 3-11.

Once again, these are changes to Extensible Markup Language (XML)
markup and JavaScript sources that have no bearing whatsoever on the
stability of the JavaScript engine, the failure of which was clearly the cause
of the red tree.

04_032124642X_ch03.qxd 10/22/07 4:22 PM Page 144

Item 12: Set Up a Tinderbox 145

Figure 3-11 List of checkins made by sspitzer

In terms of cross-platform development, it is best not to rely on a
Tinderbox to find all of your portability problems. At Netscape, developers
were required to ensure that any changes they were considering for checkin
built and executed cleanly on each tier-1 platform, before submitting the
changes to the repository (see Item 4). However, you can never be sure that
all developers will follow this rule all the time, without exception. Because
of this, having a Tinderbox monitor the health of the repository is an
especially good idea. It isolates the problems in terms of change made, time
of the change, and developer who made the change, focusing the area of
investigation to a small fraction of the overall possibilities.

At Netscape, Tinderbox was a way of life (as it remains for Mozilla and
many other development projects). The state of the tree was closely
monitored, and acted as the focal point of development. If the tree was red,
you could not checkin to the tree until it turned green. After you checked in
your changes, you were added to a group called “the hook,” and as a
member of the hook, you were required to watch the Tinderbox and ensure
that the your changes built cleanly (that is, were green) for each platform
affected. (Obviously, if the change was only made to, say, Mac-specific code,
you were only obligated to see the Mac builds go green.) If the tree affected
by your changes was green when you checked in, and then it went red in the
first build that followed, then, as a member of the hook, you were required
to help identify and fix the problem.

04_032124642X_ch03.qxd 10/22/07 4:22 PM Page 145

In addition to the hook, a sheriff was assigned by Netscape (or Mozilla)
to monitor the overall state of the Tinderbox monitoring the tier-1 plat-
forms, and to ensure that the builds all remained green. We eventually
rotated the responsibility of sheriffing inside of Netscape among the various
development teams, one day the responsibility would fall to members of the
mail-news team, on another, it was the responsibility of the IM team, and so
on. Should a problem arise, the sheriff had the power to close the tree to all
check-ins (this was communicated by a simple message at the top of the
Tinderbox page), which was done in an attempt to aid those trying to isolate
the cause of problems. The sheriff also had the authority to contact anyone
on the hook, usually by e-mail, but by phone if necessary, should a diagnosis
of the problem indicate that the person being contacted was to blame for the
tree going red. As sheriff, I recall numerous times calling people by phone
who had left the tree burning and had gone home for the night. Not
everyone was happy about the policy, but it did cause people to be more
careful about their work.

In a nutshell, Tinderbox plays an important role in cross-platform
development because it forces developers to confront issues that affect the
portability of code being committed to the repository. Although a respon-
sible developer will try to determine the impact of changes on other
platforms before landing code in the tree, this is not always done. Tinderbox
acts as a backstop, ensuring that nothing slips through the cracks. And
when problems are detected, either because of a red tree or a failed QA test
the next day, Tinderbox can be used as an aid in determining which changes
had been made that might be the cause of the problem.

Getting a green build on all the platforms is, of course, not the end of
the story. A green build does not ensure that cross-platform feature parity is
met for the platform, for example. A developer could implement a cross-
platform feature and check in a full implementation for, say, Mac OS X and
only stub implementations for Linux and Windows, and Tinderbox will not
make this fact evident. What Tinderbox does do a good job of is ensuring
that code shared among platforms builds everywhere, and that no one
platform can hijack the stability of the tree (that is, leave the repository in a
state such that it builds cleanly for only a subset of the supported plat-
forms). As such, Tinderbox helps ensure that when platforms are worked on
at the same time, the cross-platform train is moving ahead at the same pace
for all platforms involved. This in turn helps ensure that the organization
will be able to release a product to the market for all the supported
platforms at about the same point in time, which is something that we

146 Chapter 3 Software Configuration Management

04_032124642X_ch03.qxd 10/22/07 4:22 PM Page 146

strived for at Netscape. Remember, however, that Tinderbox is just an aid—
only by testing the resulting builds carefully can you confirm that a product
or feature has achieved cross-platform parity.

Item 13: Use CVS or Subversion to Manage Source Code

An SCM system does exactly what the name implies; it helps you manage
source code and related resources. To appreciate why SCM is important,
consider for a moment what life without it might be like. Assume that you
are a developer working on a new project that will consist of C++ sources
files, a Makefile, and perhaps some resources such as icons or images.
Obviously, these items must live somewhere, and so on day one of the
project, you create a directory on your local desktop system where these files
will live, and write a few hundred lines of code, storing the results in that
directory. After a few weeks of hacking, you come up with version 0.1 of
your creation, and after some light testing, you decide that your creation is
ready to be pushed out onto the Web, with the hope of generating some user
feedback from a small community of users.

After a few weeks, your e-mail inbox has accumulated several feature
requests from users, and perhaps a dozen or so bug reports (in addition to a
ton of spam because you gave out your e-mail address to the public). You
get busy implementing some of these features and fixing the worst of the
bugs, and after a few more weeks, you are ready to post version 0.2. This
process repeats itself for a few months, and before you know it, you are
shipping version 1.0 to an even wider audience.

The 1.0 release is a success, but isn’t without its share of problems. First
off, users are beginning to report a nasty bug in a feature that was first
introduced in version 0.8, and was working flawlessly until version 1.0 was
released to the public. You are able to duplicate the bug in a release version
of the 1.0 binary, but can’t duplicate it in a debugger. In an attempt to
understand the problem, you pour over the code in search of clues; but after
numerous hours of looking, you realize that you have no idea what might
have caused this bug to surface. About the only way you can think of
identifying the cause of the problem is to determine what specific changes
you made to the codebase that might have led to the bug’s manifestation.
However, all you have to work with is the 1.0 source code, and you have no
way of identifying the changes you made between 0.9 and 1.0.

The second problem before you is a request. It turns out that you
removed a feature that was present in version 1.0, and removing the feature

Item 13: Use CVS or Subversion to Manage Source Code 147

04_032124642X_ch03.qxd 10/22/07 4:22 PM Page 147

has angered a lot of your users, who are clamoring for it to be reinstated in
version 1.1. However, the code for this feature no longer exists, having been
deleted from the source code long ago.

It is these two situations that, in my experience, make the use of a source
code management system a necessity, cross-platform or not, no matter how
large the project is or how many developers are involved. A good source
code management system will allow you to re-create, in an instance, a
snapshot of the source tree at some point in the past, either in terms of a
specific date and time, or in terms of a specific release version. It will also
help you to keep track of where and when changes to the source code have
been made, so that you can go back and isolate specific changes related to a
feature or a bug fix.

Had the developer used a source control management system, he or she
could have retrieved versions of the source code starting at 0.9 and used this
to isolate exactly what change(s) to the source caused the bug to first
surface. And, to retrieve the source code for the feature that was removed in
1.0, the developer could have used the source code management system to
retrieve the code associated with the feature, and undo its removal (or
reengineer it back into the current version of the source code).

The benefits of a source code management system increase significantly
as soon as multiple developers are assigned to a project. The main benefits
from the point of view of a multideveloper project are accountability and
consistency. To see how these benefits are realized, I need to describe in
more detail how a source code management system works. Earlier, I
described how a developer will typically manage a body of source code, in
the absence of a source code management system, in a directory, which is
usually created somewhere on the developer’s system where a single copy of
the source is stored and edited. The use of a source code management
system changes things dramatically, however. When using a source code
management system, the source code for a project is maintained in
something called a repository, which you can think of as being a database
that stores the master copy of a project’s source code and related files. To
work with the project source code, a developer retrieves a copy of the source
code from the repository. Changes made to the local copy of the source code
do not affect the repository. When the developer is done making changes to
his or her copy of the source, he or she submits the changes to the source
code management system, which will update the master copy maintained in
the repository. It is important to realize that the repository records only the
changes made to the file, instead of a complete copy of the latest version.

148 Chapter 3 Software Configuration Management

04_032124642X_ch03.qxd 10/22/07 4:22 PM Page 148

By storing only changes, you can easily retrieve earlier versions of files
stored in the repository. The date of the change, the name or the ID of the
developer who made the change, and any comments provided by the
developer along with the change are all stored in the repository along with
the change itself. The implications for developer accountability should be
obvious; at any time, you can query the source code management system for
a log of changes, when they were made, and by whom. This is a great help
in locating the source of bugs and who may have caused them.

The ability to attribute a change in the repository to a developer, bug, or
feature is directly affected by the granularity of check-ins made by developers
on the project. Frequent, small changes to the repository will increase the
ability of a developer to use the source control management system to
identify and isolate change, and will also help ensure that other developers
on the project gain access to the latest changes in a timely manner. A good
rule of thumb is to limit the number of bugs fixed by a check-in to the
repository to one (unless there are multiple, related bugs fixed by the same
change).

So, now that you know the basic ideas being using an SCM, let’s talk
briefly about the implications to portability. First off, using an SCM is not a
magic pill that makes your project portable. Portability requires attention to
a lot more than just a source code management system to happen. (If that
were not the case, this book would not need to be written.) But, using a
source code management system that is available on each of the platforms
that your organization is supporting (or plans to support) is, in my view, a
critical part of any successful cross-platform project. It does no one any
good if only Windows developers are able to pull source code, but Linux
and Macintosh developers are left without a solution, after all. Not only
should the SCM software be available everywhere, it at least should support
a “lowest common denominator” user interface that behaves the same on
all platforms, and to me, that means that the user interface needs to be
command line based (both CVS and Subversion [SVN] support a command-
line interface).

Because cross-platform availability and a common user interface are
requirements, there are only two choices for an SCM system that I can see at
the time of writing this book: CVS and SVN. At Netscape, and at countless
other places (open source or not), CVS is the SCM of choice. It has stood
the test of time, and is capable. It has been ported nearly everywhere, and its
user interface is command line based. A very close cousin of CVS is SVN.
After using SVN in a professional project, I have come to the conclusion

Item 13: Use CVS or Subversion to Manage Source Code 149

04_032124642X_ch03.qxd 10/22/07 4:22 PM Page 149

that for the programmers using it, SVN is quite similar to CVS in terms of
how one approaches it and the commands that it offers, so either would be a
good choice. (It is not without its quirks, however.) In this book, when I
refer to an SCM, I am referring to CVS, but I could have easily said the same
thing about SVN.

Besides providing a location from which Tinderbox can pull sources
(see Item 12) and its support for Windows, Mac OS X, and Linux, perhaps
the most important contribution of CVS to cross-platform development is
its ability to create diff (or patch) files. The implications to cross-platform
development of patch files are detailed in Item 14; in the following para-
graphs, I describe what a patch file is and how CVS can be used to create a
patch file.

A diff file, or a patch, is created by executing the cvs diff command.
For example, assume I have added a method called GetAlignment() to a file
named nsLabel.h in the Mozilla source tree. By typing cvs diff, I can easily
identify the lines containing changes that I made:

$ cvs diff

cvs server: Diffing .

Index: nsLabel.h

===

RCS file: /cvsroot/mozilla/widget/src/gtk/nsLabel.h,v

retrieving revision 1.21

diff -r1.21 nsLabel.h

61a62

> NS_IMETHOD GetAlignment(nsLabelAlignment *aAlignment);

71d71

< GtkJustification GetNativeAlignment();

The preceding output tells us that a line was added around line 61 of the file
nsLabel.h, and one was removed around line 71 of the file. I can take this
output, mail it to others on my team, and ask them to review it for errors or
comments before checking in the changes. I can also look at this patch and
make sure that it contains only those changes that I intended to land in the
repository. I can’t stress how important cvs diff is as a tool for identifying
inadvertent check-ins before they are made.

With a lot of changes, the default output format that is shown here can
be difficult to understand. A better output would show context lines, and
make it more obvious which lines were added to the source, and which lines
were deleted. The –u argument to cvs diff causes it to generate a “unified”
diff, as follows:

150 Chapter 3 Software Configuration Management

04_032124642X_ch03.qxd 10/22/07 4:22 PM Page 150

$ cvs diff -u

cvs server: Diffing .

Index: nsLabel.h

===

RCS file: /cvsroot/mozilla/widget/src/gtk/nsLabel.h,v

retrieving revision 1.21

diff -u -r1.21 nsLabel.h

--- nsLabel.h 28 Sep 2001 20:11:17 -0000 1.21

+++ nsLabel.h 1 Feb 2004 02:47:21 -0000

@@ -59,6 +59,7 @@

NS_IMETHOD SetLabel(const nsString &aText);

NS_IMETHOD GetLabel(nsString &aBuffer);

NS_IMETHOD SetAlignment(nsLabelAlignment aAlignment);

+ NS_IMETHOD GetAlignment(nsLabelAlignment *aAlignment);

NS_IMETHOD PreCreateWidget(nsWidgetInitData *aInitData);

@@ -68,7 +69,6 @@

protected:

NS_METHOD CreateNative(GtkObject *parentWindow);

- GtkJustification GetNativeAlignment();

nsLabelAlignment mAlignment;

The differences in the output are the inclusion of context lines before and
after the affected lines, and the use of + and - to indicate lines that have
been added, or removed, respectively, from the source. This format is
generally much easier on everyone who must read the patch, and it is the
format that I recommend you use. You can change the number of lines of
context generated by cvs diff by appending a count after the –u argument.
For example, to generate only one line of context, issue the following
command:

$ cvs diff -u1

cvs server: Diffing .

Index: nsLabel.h

===

RCS file: /cvsroot/mozilla/widget/src/gtk/nsLabel.h,v

retrieving revision 1.21

diff -u -1 -r1.21 nsLabel.h

--- nsLabel.h 28 Sep 2001 20:11:17 -0000 1.21

+++ nsLabel.h 1 Feb 2004 02:50:45 -0000

@@ -61,2 +61,3 @@

Item 13: Use CVS or Subversion to Manage Source Code 151

04_032124642X_ch03.qxd 10/22/07 4:22 PM Page 151

NS_IMETHOD SetAlignment(nsLabelAlignment aAlignment);

+ NS_IMETHOD GetAlignment(nsLabelAlignment *aAlignment);

@@ -70,3 +71,2 @@

NS_METHOD CreateNative(GtkObject *parentWindow);

- GtkJustification GetNativeAlignment();

Generally, you’ll want to generate somewhere between three or five lines
of context for patches of moderate complexity. I use –u3 almost religiously,
and it is the default number of lines for svn diff (which does context diffs
by default, too). However, don’t be surprised if developers working with
your patch files ask for more lines of context.

Setting Up and Using CVS

For those of you who are interested, I describe the steps it takes to set up a
CVS server on a Red Hat-based system. The steps I provide here are almost
certainly going to be the same when executed on non-Red Hat systems, and
may differ in certain ways on other UNIX-based systems, including Mac OS
X. The work involved in getting a CVS server up and running is not terribly
difficult, and can be done in a relatively short amount of time. You will need
root access to the system upon which you are installing the server, and it will
help to have a second system with a CVS client so that you can test the
result.

That said, if doing system administration makes you nervous, or site
policy disallows it, or you do not have root access, check with a local guru
or your system administrator for help.

To start the process of getting a CVS server running, you need to
download the source for CVS from the Internet, build it, and install it. I
retrieved a nonstable version of CVS by downloading the file cvs-1.11.22.
tar.gz from http://ftp.gnu.org/non-gnu/cvs/source/stable/1.1.22. You are
probably best, however, grabbing the latest stable version you can find.

After you have unpacked the file, cd into the top-level directory (in my
case, cvs-1.11.22), and enter the following to build and install the source:

$./configure

$ make

$ su

$ make install

152 Chapter 3 Software Configuration Management

04_032124642X_ch03.qxd 10/22/07 4:22 PM Page 152

Next, while still logged in as root, you need to do some work so that the
CVS server daemon executes each time the system is rebooted. The first step
is to check to see whether entries like the following are located in /etc/
services:

cvspserver 2401/tcp # CVS client/server operations

cvspserver 2401/udp # CVS client/server operations

If these lines don’t exist, add them to /etc/services as shown. Next, you need
to create a file named cvspserver in /etc/xinetd.d that contains the following:

service cvspserver

{

socket_type = stream

protocol = tcp

wait = no

user = root

passenv = PATH

server = /usr/bin/cvs

server_args = -f --allow-root=/usr/cvsroot pserver

}

Make sure the permissions of this file are -rw-r--r--, and that its group
and owner are root. This is probably the default, but it doesn’t hurt to
check.

If you are not yet running the desktop graphical user interface (GUI),
fire it up, and from the Red Hat Start menu, select System Settings, Users
and Groups to launch the Red Hat User Manager.

In the dialog that is displayed, click the Add Group button and add a
group named cvsadmin. Next, click the Add User button, and add a user
named cvsuser. You will be asked to provide a password; enter in
something you can remember, and when you are done, exit the Red Hat
User Manager.

Back in a terminal, and still as root, enter the following:

cd /usr

mkdir cvsroot

chmod 775 cvsroot

chown cvsuser cvsroot

chgrp cvsadmin cvsroot

Item 13: Use CVS or Subversion to Manage Source Code 153

04_032124642X_ch03.qxd 10/22/07 4:22 PM Page 153

The preceding commands create the root directory for the CVS server. The
path /usr/cvsroot corresponds to the value used in the server_args field of the
service aggregate that was created earlier in /etc/xinetd.d. The following
commands create a locks directory below cvsroot:

cd cvsroot

mkdir locks

chown cvsuser locks

chgrp cvsadmin locks

Now that the directory exists for the repository, it is time to create the
repository. You can do this by executing the cvs init command, as
follows:

cvs -d /usr/cvsroot init

The –d argument specifies the location of the repository.
Now that the repository has been created, change to your home

directory (for example, /home/syd), and execute the following command,
which will check out the CVSROOT module from the repository that was just
created:

cvs -d /usr/cvsroot checkout CVSROOT

cvs checkout: Updating CVSROOT

U CVSROOT/checkoutlist

U CVSROOT/commitinfo

U CVSROOT/config

U CVSROOT/cvswrappers

U CVSROOT/editinfo

U CVSROOT/loginfo

U CVSROOT/modules

U CVSROOT/notify

U CVSROOT/rcsinfo

U CVSROOT/taginfo

U CVSROOT/verifymsg

Next, cd into the CVSROOT directory that was created by the preceding
command, and open up the file named config using your favorite editor.
Make the contents of this file consistent with the following:

Set this to “no” if pserver shouldn't check system

users/passwords.

SystemAuth=no

154 Chapter 3 Software Configuration Management

04_032124642X_ch03.qxd 10/22/07 4:22 PM Page 154

Put CVS lock files in this directory rather than

directly in the repository.

#LockDir=/var/lock/cvs

Set 'TopLevelAdmin' to 'yes' to create a CVS

directory at the top level of the new working

directory when using the 'cvs checkout' command.

TopLevelAdmin=yes

Set 'LogHistory' to 'all' or 'TOFEWGCMAR' to log all

transactions to the history file, or a subset as

needed (ie 'TMAR' logs all write operations)

#LogHistory=TOFEWGCMAR

Set 'RereadLogAfterVerify' to 'always' (the default)

to allow the verifymsg script to change the log

message. Set it to 'stat' to force CVS to verify

that the file has changed before reading it. This can

take up to an extra second per directory being

committed, so it is not recommended for large

repositories. Set it to 'never' (the previous CVS

behavior) to prevent verifymsg scripts from changing

the log message.

#RereadLogAfterVerify=always

After you have made changes to the config file, check it into CVS as follows:

cvs commit

cvs commit: Examining .

Checking in config;

/usr/cvsroot/CVSROOT/config,v <-- config

new revision: 1.2; previous revision: 1.1

done

cvs commit: Rebuilding administrative file database

In the same directory, run the following command to create a password for
each user for whom you want to grant access to the repository. Every time
you add a new developer to the project, you need to update the passwd file
as I am about to describe, and check the changes into the repository:

htpasswd passwd syd

New password:

Re-type new password:

Adding password for user syd

Item 13: Use CVS or Subversion to Manage Source Code 155

04_032124642X_ch03.qxd 10/22/07 4:22 PM Page 155

Now, open the file passwd (which was just created). At the end of the
password, append :cvsuser. The result should look something like this:

syd:B9TyxNZ11EKb6:cvsuser

Next, you must add the password file to the repository, and commit the
result:

cvs -d /usr/cvsroot add passwd

cvs add: scheduling file 'passwd' for addition

cvs add: use 'cvs commit' to add this file permanently

cvs -d /usr/cvsroot commit

RCS file: /usr/cvsroot//CVSROOT/passwd,v

done

Checking in passwd;

/usr/cvsroot//CVSROOT/passwd,v <-- passwd

initial revision: 1.1

done

cvs commit: Rebuilding administrative file database

This should result in two files in /usr/cvsroot/CVSROOT, one named
passwd,v and the other named passwd. If there is not a file named passwd in
/usr/cvsroot/CVSROOT (this could happen because of a bug in CVS), return
to the checked-out version of CVSROOT (for example, the one in your home
directory), edit the file named checkoutlist, and add a line to the end of the
file that contains the text passwd. Then, doing a cvs commit on the
checkoutlist file will cause the passwd file in /usr/cvsroot/CVSROOT to
appear.

Now all that is left is to make the modules. Each directory you create
under /usr/cvsroot is, logically, a project that is maintained in the repository.
You can organize the hierarchy as you see fit. Here, I create a project named
client:

cd /usr/cvsroot

mkdir client

chown cvsuser client

chgrp cvsadmin client

Now that we have created the repository, added a project, and set up some
users, we can start the CVS server daemon by kicking xinetd:

156 Chapter 3 Software Configuration Management

04_032124642X_ch03.qxd 10/22/07 4:22 PM Page 156

/etc/init.d/xinetd restart

Stopping xinetd: [OK]

Starting xinetd: [OK]

To ensure that the CVS server is running, run the following command:

netstat -a | grep cvs

If you see output like the following, everything is in order, and you can use
the repository:

tcp 0 0 *:cvspserver *:* LISTEN

To test out the new server and repository, find another machine, open up a
shell (or a GUI CVS client if you prefer), and then check out the project
named client. In the following example, I am using a command-line CVS
client, and the server is located on my local network at the IP address
192.168.1.102:

$ cvs -d :pserver:syd@192.168.1.102:/usr/cvsroot login

(Logging in to syd@192.168.1.102)

CVS password:

$ cvs -d :pserver:syd@192.168.1.102:/usr/cvsroot co \

client

cvs server: Updating client

There now should be a directory named client in the current directory. If
you cd into the client directory, you should see the following contents:

$ cd client

$ ls

CVS

At this point, you can add files and directories to the project with cvs add,
and commit them to the repository using cvs commit.

Item 14: Use Patch

The patch program is considered by some to be the prime enabler behind
the success of open source software. To quote Eric Raymond, “The patch
program did more than any other single tool to enable collaborative

Item 14: Use Patch 157

04_032124642X_ch03.qxd 10/22/07 4:22 PM Page 157

development over the Internet—a method that would revitalize UNIX after
1990” (The Art of UNIX Programming, Addison-Wesley, 2003). Of course,
it is hard to imagine patch taking all the credit; after all, what would
development be without vi(1)? But still, there is a ring of truth in what
he says.

In the open source community, at any given moment, on any given
project, there are dozens, if not hundreds of developers, all working on
some derivation of what is in currently on the tip (or branch) of some source
code repository. All of them are working relatively blind to the changes that
their counterparts are making to the same body of source code.

An Example

Integrating (and evaluating) the changes made to a shared body of source
code in such an environment can be difficult and error prone without a tool
like patch. To see how, consider a team of three developers (A, B, and C) all
working from the tip of the repository. Developer B is the team lead, and his
job is to perform code reviews for Developer A and C, and integrate their
changes into the source tree once an acceptable code review has been
obtained. He also does development on the same body of source code,
because he owns the overall architecture.

Let’s say that Developer A finishes his work and is in need of a code
review. To obtain the code review, Developer B needs to communicate his
changes to Developer B. I’ve seen this done a few different ways over the
years:

■ Developer A copies and pastes the changes made to the source file(s)
into a text file, and sends the result to Developer B. In addition,
Developer A adds comments to the text file to describe what the changes
are, and where in the original source file the changes were made (or
Developer A e-mails this information separately to Developer B). This is
perhaps the worst method of all for conducting a code review, for two
reasons:

1. Developer A may make a mistake and not copy and paste all the
changes that were made, or miss entire source files that have
modification. The omission of a single line of change can greatly
affect the ability of a code reviewer to accurately perform his task.
Worse yet, if the code reviewer is responsible for integrating the
changes into the repository and changes were missed, the process
will surely lead to bugs.

158 Chapter 3 Software Configuration Management

04_032124642X_ch03.qxd 10/22/07 4:22 PM Page 158

2. Even if all changes are copied and pasted by Developer A, there is
a chance that context will be lost or incorrectly communicated.
One way to counter this problem would be for Developer A to
include extra lines above and below the code that actually
changed, but this is a better job for a tool like cvs diff, which
can generate a patch file that contains the needed lines of context.

■ Developer A sends to Developer B copies of all the source files that were
changed. This is better than sending a series of hand-constructed diffs,
because Developer B can now take the source files and create a patch
that correctly captures the changes made by Developer A, along with the
context of those changes. If Developer A sends source files that are not
being modified by Developer B, Developer B can simply use the diff
program (not cvs diff or svn diff) to generate a patch file relative to
his current working tree. If Developer A, however, sends changes that do
affect files modified by Developer B, Developer B can either diff against
his working tree to see the changes in the context of work he is
performing, or Developer B can pull a new tree somewhere and generate
a patch file from it. The actual method used is usually best determined
by the code reviewer. The downsides of this method are as follows:

1. It is error prone. (Developer A might forget to include source files
that contain change.)

2. It places a burden on the code reviewer to generate a patch file.
The last thing you want to do on a large project is make more
work for the code reviewer. Usually, a code reviewer is generally
always struggling to keep up with not only his own development
task, but with all the code review requests that are pouring in.
Anything you can do to make his job easier will generally be
appreciative (and may result in the code reviewer giving your
requests a higher priority).

■ Developer A generates a patch file using cvn or svn diff , and sends it
to the code reviewer. This is the best method because

1. The changes are relative to Developer A’s source tree.
2. cvs diff won’t miss any changes that were made, assuming that

cvs diff is run at a high-enough level of the source tree. (There is
one exception: new source files that have not been added to the
repository, along with forgetting to pass the –N argument to cvs
diff when creating a patch file [this is not a problem with svn
diff, which automatically includes new source files in its diff
output.])

Item 14: Use Patch 159

04_032124642X_ch03.qxd 10/22/07 4:22 PM Page 159

After the code reviewer (Developer B) receives the patch from Developer
A, he or she has a few options:

■ Simply look at the patch file, performing the code review based on its
contents alone. Most of the time, this is what I do, especially if the patch
file is a unified diff (as it should always be), and if the changes do not
intersect any that I am making.

■ Apply the patch file to his local tree, build the result, and then perhaps
test it. This can be helpful if Developer B would like to step through an
execution of the code in a debugger, or to see that the patch builds
correctly and without warnings. If Developer A has made changes to
some of the source files that were modified by Developer B, Developer B
can either

1. Pull a new tree and apply the patch to it so that his or her changes
are not affected.

2. Use cvs diff to generate a patch file that contains his own
changes, and then attempt to apply the changes from Developer A
into his source tree. This allows Developer B not only to see the
changes made by Developer A, but also to see them in the context
of the changes that he is making. When the code review has been
completed, Developer B can continue working on his changes, and
check both his and Developer B’s changes in at a later time, or
Developer B can have Developer A check in the changes, and then
do a cvs or svn update to get in sync.

The patch program is the tool used by a code reviewer to apply changes
specified in a patch file to a local copy of the repository. In essence, if both
you and I have a copy of the same source tree, you can use cvs diff to
generate a patch file containing changes you have made to your copy of the
sources, and then I can use the patch program, along with your patch file, to
apply those changes to my copy of the sources. The patch program tries very
hard to do its job accurately, even if the copy of the sources the patch is
being applied to have been changed in some unrelated way. The type of diff
contained in the patch file affects the accuracy attained by the patch
program; patch is generally more successful if it is fed a set of context diffs
rather than normal diffs. The cvs diff –u3 syntax (unified diff with three
lines of context) is enough to generate a patch file that gives a good result.
(SVN by default generates unified diffs with three lines of context.)

160 Chapter 3 Software Configuration Management

04_032124642X_ch03.qxd 10/22/07 4:22 PM Page 160

Patch Options

The patch program has a number of options. (You can refer to the patch
man page for more details.) However, in practice, the only option that
matters much is the –p argument, which is used to align the absolute paths
used in the patch file with the local directory structure containing the
sources that the patch is being applied to. When you run cvs diff to create
a patch file, it is best to do it from within the source tree, at the highest level
in the directory hierarchy necessary to include all the files that have changes.
The resulting patch file will, for each file that has changes, identify the file
with a relative path, and patch uses this relative path to figure out what file
in the target directory to apply changes to. For example:

Index: layout/layout.cpp

===

RCS file: /usr/cvsroot/crossplatform/layout/layout.cpp,v

retrieving revision 1.33

diff -u -3 -r1.33 layout.cpp

--- layout/layout.cpp 27 May 2006 09:31:47 -0000 1.33

+++ layout/layout.cpp 7 Jun 2006 10:43:22 -0000

@@ -327,7 +327,7 @@

return document;

}

-int main(int argc, char *argv[])

+int LayoutMain(int argc, char *argv[])

{

int run, parse;

char *src = NULL;

The first line in the preceding patch (the line prefixed with Index:) specifies
the pathname of the file to be patched. Assuming that the patch is contained
in a file named patch.txt, then, if the preceding patch file were copied to the
same relative location in the target tree, then issuing the following command
is sufficient for patch to locate the files that are specified in the patch file:

$ patch –p0 < patch.txt

The -p argument will remove the smallest prefix containing the specified
number of leading slashes from each filename in the patch file, using the
result to locate the file in the local source tree. Because the patch file was

Item 14: Use Patch 161

04_032124642X_ch03.qxd 10/22/07 4:22 PM Page 161

copied to the same relative location of the target tree that was used to
generate the patch file in the source tree, we must use –p0 because we do not
want patch to remove any portion of the path names when searching for
files. If –p1 were used (with the same patch file, located in the same place in
the target tree), the pathname layout/layout.cpp would be reduced to
layout.cpp, and as a result, patch would not be able to locate the file,
because the file would not be located in the current directory. Copying the
patch file down into the layout directory would fix this, but this could only
be done if, and only if, the patch file affected only sources that were located
in the layout directory, because the –p0 is applied by patch to all sources
represented in the patch file.

Dealing with Rejects

So much for identifying which files to patch. The second difficulty you may
run into is rejects. If patch is unable to perform the patch operation, it will
announce this fact, and do one of two things. Either it will generate a reject
file, which is a filename in the same directory as the file being patched, but
with a .rej suffix (for example, bar.cpp.rej), or it will place text inside of the
patched file to identify the lines that it was unable to resolve. (The –dry-run
option can be used to preview the work performed by patch. As the name
implies, it will cause patch to do a “dry run” of the patch operation, to let
you know if it will succeed, without actually changing any of the target files.)

If either of these situations happens, there are a few ways to deal with it.
The first thing I would do is remove the original source file, re-pull it from
the repository using cvs update, and try to reapply the patch, in case I was
applying the patch to a file that was not up-to-date with the tip. If this didn’t
work, I would contact the person who generated the patch and ask that
person to verify that his or her source tree was up-to-date at the time the
patch file was generated. If it was not, I would ask that person to run cvs
update on the file or files and generate a new patch file.

If neither of these strategies works, what happens next depends on the
type of output generated by patch. If patch created a .rej file, I would open it
and the source file being patched in an editor, and manually copy and paste
the contents of the .rej file into the source, consulting with the author of the
patch file in case there are situations that are not clear. If, on the other hand,
patch inlined the errors instead of generating a .rej file, open the source that
was patched and search for lines containing <<<. These lines (and ones
containing >>>) delimit the original and new source changes that were in
conflict. By careful inspection of the patch output, and perhaps some

162 Chapter 3 Software Configuration Management

04_032124642X_ch03.qxd 10/22/07 4:22 PM Page 162

consultation with the author of the patch, you should be able to identify
which portions of the resulting output should stay, and which portions of
the result need to go, and perform the appropriate editing in the file to come
up with the desired final result.

Thankfully, problems like this happen only rarely. The two most
common causes of conflict occur when a developer is accepting a patch that
affects code that he or she has also modified, or the patch files are created
against a different baseline. There is little to do to avoid the first case, other
than better communication among developers to ensure that they are not
modifying the same code at the same time. The second case is usually are
avoided when developers are conscientious about ensuring that their source
trees (and patches) are consistent with the contents of the CVS repository.
When this is done, problems are relatively rare, and if they do occur, usually
are slight and easy to deal with.

Patch and Cross-Platform Development

Now that you have an idea of why patch is so important to open source
software, and how to use it, I need to describe how patch can make
developing cross-platform software easier. At Netscape, each developer had
a Mac, PC, and Linux system in his or her cubicle, or was at least encour-
aged to have one of each platform. (Not all did, in reality.) Each developer,
like most of us, tended to specialize in one platform. (There were many
Windows developers, a group of Mac developers, and a small handful of
Linux developers.) As a result, it would only be natural that each developer
did the majority of his or her work on the platform of his or her choice.

At Netscape, to overcome the tendency for the Windows developers to
ignore the Linux and Macintosh platforms (I’m not picking on just
Windows developers; Macintosh and Linux developers at Netscape were
just as likely to avoid the other platforms, too), it was required that each
developer ensure that all changes made to the repository correctly built and
executed on each of the primary supported platforms, not just the devel-
oper’s primary platform. To do this, some developers installed Network File
System (NFS) clients on their Macintosh and Windows machines, and then
pulled sources from the repository only on the Linux machine, to which
both Mac and Windows machines had mounts. Effectively, Linux was a file
server for the source, and the other platforms simply built off that source
remotely. (The build system for Netscape/Mozilla allowed for this by
isolating the output of builds; see Item 12.) This allowed, for example, the
Windows developers to do all of their work on Windows, walk over to the

Item 14: Use Patch 163

04_032124642X_ch03.qxd 10/22/07 4:22 PM Page 163

Mac and Linux boxes, and do the required builds on those platforms, using
the same source tree.

But what if NFS (or, Samba these days) was not available? Or, more
likely, developers did not have all three platforms to build on (or if they did,
have the skills needed to make use of them)? In these cases, the patch
program would come to the rescue. Developers could create a patch file, for
example, on their Windows machine, and then either copy it to the other
machines (where a clean source tree awaited for it to be applied to), or they
could mail it to a “build buddy” who would build the source for those
platforms that the developer was not equipped to build for. (Macintosh
build buddies were highly sought after at Netscape because most developers
at Netscape did not have the desire, or the necessary skills, to set up a
Macintosh development system; it was much easier to ask one of the
Macintosh helpers to be a build buddy.)

Netscape’s policy was a good one, and patch was an important part of
its implementation. The policy was a good one because, by forcing all
check-ins to build and run on all three platforms at the same time, it made
sure that the feature set of each of the three platforms moved forward at the
about the same pace (see Item 1). Mozilla, Netscape, and today, Firefox,
pretty much work the same on Mac, Windows, and Linux, at the time of
release. The combination of cvs diff , which accurately captured changes
made to a local tree, and patch, which accurately merged these changes into
a second copy of the tree, played a big role in enabling this sort of policy to
be carried out, and allows projects such as Mozilla Firefox to continue to
achieve cross-platform parity.

164 Chapter 3 Software Configuration Management

04_032124642X_ch03.qxd 10/22/07 4:22 PM Page 164

