Preface

During the ten or so years of my career prior to joining Netscape in 1998, 1
had the good fortune to work on a wide variety of projects, on an equally
diverse set of platforms. I worked on an embedded kernel of my own design
for a somewhat obscure CPU (the TMS34020). I obtained experience in
Windows kernel development, writing file systems drivers for the Windows
NT and Windows 98 kernels, to support the development of a Network File
System (NFS) client. In user space, I mostly specialized in user interface
development, initially developing Motif (Z-Mail) and OpenWindows
applications for UNIX, eventually getting exposure to Win32 and the
Microsoft Foundation Classes (MFC) toolkit on the Windows platform. I
even had the chance to write code for the Classic Mac OS to support a
project that would be shipped by Apple, using the Mac Toolbox application
programming interface (API). All of this code was written in the C language,
and all of it was highly nonportable, written only with a concern for the job,
and platform, at hand.

But then I joined Netscape, as a UNIX expert of sorts. Initially, I was
assigned the task of working on bugs in the 4.x Netscape browser, specifically
handling defects filed against a port of the browser to IBM’s Advanced
Interactive eXecutive (AIX) platform. Netscape had a contract with IBM to
ensure that bugs filed against the AIX version of the Netscape browser, or
bugs that IBM considered important, were fixed in a timely fashion, and this
contract funded my hiring. Similar deals were cut with SGI, Hewlett-Packard,
and Sun, and perhaps others, and these deals funded additional Netscape
staff. Two or three of us were assigned to deal with AIX, specifically.

During this time, portability had not yet been perfected at Netscape.
Although much of the codebase of Netscape was portable, the project did
not have a unified build system, and the user interface code was completely

XU



Xvi Preface

platform specific. Many bugs had a decidedly platform-specific nature to
them (hence the need to have separate teams to support individual plat-
forms). Code that worked flawlessly on the Windows version of Netscape
ran horribly on less well-supported platforms. Not all platforms had the
same set of features, and features varied from platform to platform.

Within a year of joining Netscape and fixing AIX bugs, I somehow
earned my way onto the Netscape Instant Messenger team, and worked on
the new codebase based on the open source Mozilla platform. This team,
which consisted of three engineers, was tasked with porting the AOL Instant
Messenger client to the Netscape browser. The Netscape IM team was
hastily formed right after AOL acquired Netscape, to try to bring AOL-
based functionality into the application. (The other major AOL property
integrated into Netscape was support for AOL Mail.)

The new Netscape client, in development at that time, was, as men-
tioned previously, based on the open source codebase named Mozilla. This
codebase, at the time, was largely the product of Netscape engineers located
in offices located in San Diego, and Mountain View, but contributions from
the open source community were on the rise. (I refer to the project as
Netscape/Mozilla in the remainder of this Preface.)

Netscape was in fierce competition with Microsoft for the browser
market at this time, which meant the browser of course had to work well,
and ship on time on the Windows platform. Netscape also generated
significant advertising revenue through the Netscape portal, and clicks there
were highest when a new version of the browser was released, and tens of
millions of users visited the portal to download a fresh copy of Netscape.
Supporting Netscape not only on Windows but also on Mac OS and Linux
helped keep the number of visits high and generate revenue. So, Linux and
Mac OS were treated as equals with Windows within the Netscape culture,
not only because it was the morally right thing to do (as many of us
believed), but also because every visit to the Netscape portal was important
to the bottom line of the company.

Netscape/Mozilla was a complete departure from anything that I had
ever seen or worked on before. First of all, this new version of Netscape was
not just a browser, it was a platform, capable of hosting applications. (The
primary examples shipped with Netscape were AIM, the Mail/News client,
a WYSIWYG HTML editor named Composer, the Chatzilla IRC client, and
the browser itself. Extensions, such as those available for Firefox today, are
closely related.) Instead of building the graphical user interface (GUI) for
these applications in C or C++, using APIs provided by a native platform



Preface xXvii

GUI toolkit such as MFC or Gtk+, Netscape/Mozilla-developed technolo-
gies were used instead. Static Extensible Markup Language (XML) files
were used to describe the layout of the user interface, much like HTML is
used to describe the layout of a Web page. The XML dialect developed for
this purpose was called XML User Interface Language (XUL). JavaScript
code, linked to the XML elements via attributes much like JavaScript is
linked to HTML elements in a Web page, was used to respond to menu item
selections and button clicks. To build an application for Netscape/Modzilla,
all one needed was this combination of XML and JavaScript; and because
both JavaScript and XML are intrinsically portable, so were the user
interfaces that were designed using these technologies. When JavaScript
wasn’t enough to do the job (as was the case for any real applications, like
those shipped with Netscape and Mozilla), JavaScript code could call C++
functions that provided the guts of the application, housed in shared
libraries. These shared libraries, or components, were directly supported in
the Netscape/Mozilla architecture via two technologies: XPConnect and
XPCOM. These technologies allowed component developers to define
platform-agnostic interfaces using an Interface Description Language (IDL).
Using XPCOM and XPConnect, JavaScript code could query for the
existence of a component, and from there, query for a specific interface. If
all was good, the JavaScript code was handed an object that it could call just
like any other object, except the object was written in C++, and was capable
of doing things that JavaScript programmers could only dream of. The
interfaces, by their nature, were highly platform agnostic.

The impact of the work done to support portability in the
Netscape/Mozilla architecture was not, quite frankly, immediately apparent
to me. But, over time, I came to appreciate the power of such an approach.
The positive effects of the decisions of those who came up with the
architecture are indisputable; during its heyday, Netscape was shipping tens
of millions of browsers to users, not just for Windows, Mac, and Linux, but
for SunOS, AIX, HP-UX, SGI Irix, and a host of other UNIX-based
platforms. The “tier-1” platforms (Mac OS, Linux, and Windows) literally
shipped at the same time. Each of these ports had, for the most part, the
same feature set, and mostly shared the same set of bugs and quirks. To
achieve portability at such a grand scale required a very special architecture,
and it is one of the goals of this book to give you a good understanding (if
not an appreciation) for how the Netscape/Mozilla architecture directly
impacted the portability of the codebase.



Xviii Preface

However, it was not just the architecture of Netscape/Mozilla that made
the browser and related applications (AIM, Mail, Composer) portable. To
pull this sort of thing off, one needs not only a solid architecture, but also a
culture of policies and procedures that put cross-platform development high
on their lists of priorities—as well as large doses of discipline to ensure these
best practices were followed. Tools, such as Tinderbox and Bugzilla, both of
which are described in this book, were invested in heavily by Netscape and
Mozilla, and the investment paid off in spades. Engineers were forced to
consider other platforms, not just their own, and a regression found during
daily testing on just one platform could halt development on all platforms,
not just the one affected, because Netscape and Mozilla realized that the
only true way to achieve portability was to deal with the issues in the here
and now. A good chunk of this book steps away from the code, and
describes these best practices, because no matter how good your architec-
ture is in supporting cross-platform, you have to work all the platforms you
plan to support with the level of care and devotion to detail if they are going
to make it to the finish line with the same levels of quality.

Similar to the way that the programs we write are made up of data
structures and algorithms, portability, in my opinion, consists largely of
architecture and process, and this conviction is at the foundation of the
book that you now hold in your hands.

How This Book Is Organized

This book is organized as a series of themed chapters. Most of these
chapters consist of a set of items, with each item covering a specific topic
supporting the chapter’s overall theme. Early in the book, you will find
sections that contain items presenting best practices that must be communi-
cated to the entire development organization, including management,
development, and testing. Later chapters cover software-engineering topics
that management should be aware of, but these chapters have been written
primarily for readers who will be implementing the code. In all, there are
23 items presented in these initial chapters.

The implementation of a user interface is a major concern in the
development of cross-platform desktop applications. Item 23 serves to
introduce the topic. The final two chapters of the book are therefore
devoted to cross-platform GUI-related topics. The first of these chapters



Preface xix

provides a comprehensive introduction and tutorial to the wxWidgets cross-
platform GUI toolkit. After reading my introduction to wxWidgets, you
may want to check out Prentice Hall’s detailed treatment on the subject,
Cross-Platform GUI Programming with wx Widgets, by Julian Smart, et al.
wx Widgets is not the only cross-platform GUI toolkit available for use in
your projects. Another capable, and very popular cross-platform GUI
toolkit, Qt, is not covered in this book. However, if you are interested in Qt,
a few books are currently available that cover the subject in great detail,
perhaps most notably C++ GUI Programming with Qt 4, by Jasmin
Blanchette and Mark Summerfield, also published by Prentice Hall (see also
their Qt 3-specific book).

The last chapter of this book, Chapter 9, “Developing a Cross-Platform
GUI Toolkit in C++,” starts with an introduction to the cross-platform GUI
toolkit, XPToolkit, which is a major component of Netscape and Mozilla’s
cross-platform browser suite. It then goes on to detail the implementation of
a toolkit I created especially for this book, Trixul. Trixul has many of the
same attributes that made up the Netscape/Mozilla XPToolkit we used at
Netscape to construct cross-platform GUIs. Both XPToolkit and Trixul, for
example, allow you to describe the user interface of an application in XML
and JavaScript, both support a component-based model that allows the user
interface to call into shared libraries written in C or C++, and both are
highly portable. However, there are two major differences between Trixul
and the Mozilla offering. First, Trixul is a desktop GUI toolkit, whereas
XPToolkit applications execute within the context of a Web browser only.
Second, the overall design of Trixul is (I think) much simpler than
XPToolkit, which (I am certain) allowed me to do a much better job of
describing both the architecture of the toolkit, and the concepts behind its
design, than I otherwise would have been able to do. Although I don’t really
expect that you will want to design a custom cross-platform GUI toolkit for
your project, there is much to be learned from taking a look at how Trixul
was designed and implemented.

The chapters, for the most part, have been written such that they can be
read in any order. If you are in technical management, I recommend that
you read the following chapters carefully:

m Chapter 1, “Policy and Management”
m Chapter 2, “Build System/Toolchain”
m Chapter 3, “Software Configuration Management”



xx Preface

Technical managers who are so inclined should consider at least scanning
through the following sections:

m Chapter 4, “Installation and Deployment”

m Chapter 5, “Operating System Interfaces and Libraries”
m Chapter 6, “Miscellaneous Portability Topics”

m Chapter 7, “User Interface”

Developers should plan to read the entire book, although you might
want to invert the recommendations made here for technical managers,
and skim what they are supposed to read carefully, and read carefully what
they are supposed to skim. If your focus is user interface development, I
recommend reading Items 22 and 23, and Chapter 8, “wxWidgets.” If you
are interested in GUI toolkit internals, or plan to help out with the develop-
ment of Trixul (described in the following section), you will definitely want
to read Chapter 9, “Developing a Cross-Platform GUI Toolkit in C++.”

A Word about Trixul

Trixul is an open source project that I put together specifically to aid me in
the writing of this book. In part, I had the same intentions of the original
authors of the Gtk+, to learn by doing. However, the more relevant goal
behind Trixul was to develop a simple, cross-platform toolkit, the architec-
ture and design of which could be easily described in fewer than 100 pages,
and understood by mere mortals without the need to read huge globs of
code. The design is heavily inspired by Netscape/Mozilla (the Document
Object Model [DOM], the Gecko layout engine, XUL, XPConnect, and
XPCOM are all Netscape/Mozilla technologies that have analogs in Trixul);
and although the details differ, I am certain that much of what you learn
about Trixul’s architecture will help you to understand Netscape/Mozilla.
Not everyone will want, or need, to write his own GUI toolkit, but Netscape
did, and so did America Online (a not-so-portable effort named Boxely was
developed in the years following Netscape’s demise), and perhaps it makes
sense for your company, too. The story of Mozilla/Netscape’s portability is
not at all complete without a discussion of the way in which the user
interface problem was solved, and Trixul is, in my opinion, the best way to
get the idea across in a reasonable number of pages.

However, Trixul isn’t just for learning. It is my sincere hope that Trixul
will take on a life of its own as a viable, next-generation desktop GUI
toolkit. The project, at the time of writing this book, is in its infancy. If you



Preface xxi

like what you read about Trixul and are interested in contributing to its
development, or work on a port, I certainly want to hear from you. You
can learn more by visiting www.trixul.com or the project page at
http://sourceforge.net/projects/trixul.

References

The following is a short list of books that are either mentioned directly in
the text, or have influenced in some way the content of this book:

Andrei Alexandrescu, Modern C++ Design: Generic Programming
and Design Patterns Applied (Reading, MA: Addison-Wesley, 2001).

Jasmine Blanchette and Mark Summerfield, C++ GUI Programming
with Qt 3 (Upper Saddle River, NJ: Prentice Hall, 2004).

Randal E. Bryant and David O’Hallaron, Computer Systems A

Programmer’s Perspective (Upper Saddle River, NJ: Prentice Hall,
2003).

David R. Butenhof, Programming with POSIX Threads (Upper
Saddle River, NJ: Prentice Hall, 1997).

Paul Dubois, Software Portability with imake (Sebastopol, CA:
O’Reilly Media, Inc., 1996).

Erich Gamma, et al., Design Patterns (Reading, MA: Addison-
Wesley, 1995).

Simson Garfinkel and Michael K. Mahoney, Building Cocoa
Applications: A Step-by-Step Guide (Sebastopol, CA: O’Reilly
Media, Inc., 2002).

Ian Griffiths, et al., .NET Windows Forms in a Nutshell (Sebastopol,
CA: O’Reilly Media, Inc., 2003).

Greg Lehey, Porting UNIX Software (Sebastopol, CA: O’Reilly
Media, Inc., 1995).

Syd Logan, Developing Gtk+ Applications in C (Upper Saddle River,
N]J: Prentice Hall, 2001).

Scott Meyers, Effective C++ (Reading, MA: Addison-Wesley, 2005).



xxii Preface

Andrew Oram and Steve Talbot, Managing Projects with make
(Sebastopol, CA: O’Reilly Media, Inc., 1993).

Eric S. Raymond, The Art of UNIX Programming (Reading, MA:
Addison-Wesley, 2003).

Julian Smart, et al., Cross-Platform GUI Programming with
wx Widgets (Upper Saddle River, NJ: Prentice Hall, 2006).

Bjarne Stroustrup, The C++ Programming Language (Reading, MA:
Addison-Wesley, 2000).





