f‘n
USER STORIES
APPLIED.
FOR AGILE SOFTWARE

DEVELOPMENT

Mike COHN
Foreword by Kent Beck



User Stories Applied



L/%f M %@ e y e VAV

The Addison-Wesley Signature Series provides readers with practical and authoritative information on
the latest trends in modern technology for computer professionals. The series is based on one simple
premise: great books come from great authors. Books in the series are personally chosen by expert advi-
sors, world-class authors in their own right. These experts are proud to put their signatures on the cov-
ers, and their signatures ensure that these thought leaders have worked closely with authors to define
topic coverage, book scope, critical content, and overall uniqueness. The expert signatures also symbol-
ize a promise to our readers: you are reading a future classic.

THE ADDISON-WESLEY SIGNATURE SERIES
SiGNERS: KENT BECK AND MARTIN FOWLER

Kent Beck has pioneered people-oriented technologies like JUnit, Extreme Programming, and patterns
for software development. Kent is interested in helping teams do well by doing good — finding a style of
software development that simultaneously satisfies economic, aesthetic, emotional, and practical con-
straints. His books focus on touching the lives of the creators and users of software.

Martin Fowler has been a pioneer of object technology in enterprise applications. His central concern is
how to design software well. He focuses on getting to the heart of how to build enterprise software that
will last well into the future. He is interested in looking behind the specifics of technologies to the patterns,
practices, and principles that last for many years; these books should be usable a decade from now.
Martin's criterion is that these are books he wished he could write.

TITLES IN THE SERIES

@T By Implementation Patterns
% Kent Beck, ISBN 0321413091

+
<Q&} ﬁw Test-Driven Development: By Example
Kent Beck, ISBN 0321146530

°q NO\’ User Stories Applied: For Agile Software Development
Mike Cohn, ISBN 0321205685

Implementing Lean Software Development: From Concept to Cash
Mary and Tom Poppendieck, ISBN 0321437381

SN £ Refactoring Databases: Evolutionary Database Design

2 ) Scott W. Ambler and Pramodkumar J. Sadalage, ISBN 0321293533

$/\/] A ; Continuous Integration: Improving Software Quality and Reducing Risk
@ &~ Paul M. Duvall, with Steve Matyas and Andrew Glover, 0321336380
% quoﬁaé

Patterns of Enterprise Application Architecture
Martin Fowler, ISBN 0321127420

Refactoring HTML: Improving the Design of Existing Web Applications
Elliotte Rusty Harold, ISBN 0321503635

Beyond Software Architecture: Creating and Sustaining Winning Solutions
Luke Hohmann, ISBN 0201775948

Enterprise Integration Patterns: Designing, Building, and Deploying
Messaging Solutions
Gregor Hohpe and Bobby Woolf, ISBN 0321200683

Refactoring to Patterns
Joshua Kerievsky, ISBN 0321213351



User Stories Applied
for Agile Software Development

Mike Cohn

vvAddison-Wesley

Boston ® San Francisco ® New York e Toronto ® Montreal
London ® Munich e Paris ® Madrid
Capetown ® Sydney ¢ Tokyo e Singapore ® Mexico City



Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and Addison-Wesley was aware of a
trademark claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers discounts on this book when ordered in quantity for bulk purchases and special
sales. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact:

International Sales
(317) 581-3793
international@pearsontechgroup.com

Visit Addison-Wesley on the Web: www.awprofessional.com

Library of Congress Cataloging-in-Publication Data

A catalog record for this book can be obtained from the Library of Congress

Copyright © 2004 by Pearson Education, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording, or oth-
erwise, without the prior consent of the publisher. Printed in the United States of America. Published
simultaneously in Canada.

For information on obtaining permission for use of material from this work, please submit a written
request to:

Pearson Education, Inc.

Rights and Contracts Department
75 Arlington Street, Suite 300
Boston, MA 02116

Fax: (617) 848-7047

ISBN 0-321-20568-5
Text printed in the United States on recycled paper at RR Donnelley Crawfordsville in Crawfordsville, Indiana.
13th Printing  February 2009


www.awprofessional.com

To Laura, for reading this one;
To Savannabh, for loving to read;
To Delaney, for insisting you already know how to read.
With readers like you, it's easy to write.



This page intentionally left blank



Contents

Foreword ...... ..ottt XV
Acknowledgments ........ ... it Xvii
Introduction . .........c.iiuiiuiiineninennennennenns Xix
PART I: Getting Started. . . ... .o vvvinetnnnneennnnnnn 1
Chapter 1:  An OVerview . .......ooiuiinennennennennnnnns 3
WhatIsa User Story?. . .....ovitiinnnennn.. 4
Where Are the Details?. .. ...................... 5
“How Long Does It Haveto Be?” ................ 7
The Customer Team. .. .......... ..., 8
What Will the Process Be Like? .................. 8
Planning Releases and Iterations. .. .............. 10
What Are Acceptance Tests? ...........cuuunn.. 12
Why Change?. . ...t 13
Summary . ... 15
QUESEIONS . « vt ittt i e e e e e e 15
Chapter 2:  Writing StOTies . « « o v vt vt enreeenerenenennns 17
Independent . .......... ..., 17
Negotiable . . ...... .. i 18
Valuable to Purchasersor Users . ................ 20
Estimatable. . ........ ... ... ... ... ... ... ... .. 22
Small ... . 23
Testable .. ... .o 27
Summary . ... 28
Developer Responsibilities . . ................... 28
Customer Responsibilities ..................... 28
QUESEIONS . .+ v vttt ettt et e ettt e 29

vii



v CONTENTS

Chapter 3:

Chapter 4:

Chapter 5:

User Role Modeling .............cccvuvnnn... 31
UserRoles...... ... 31
Role Modeling Steps . . .. ..o oo iviiii i 33
Two Additional Techniques ................... 37
What If I Have On-Site Users?. .. ............... 39
Summary. ... 40
Developer Responsibilities. .. .................. 40
Customer Responsibilities . .. .................. 41
QUESTIONS v v ettt et et et et et 141
Gathering Stories. . . . oo vvvi i it 43
Elicitation and Capture Should Be Illicit .. ........ 43
A Little Is Enough,or Is It? . . ... ... ... 44
Techniques . ......vitii i 45
UserInterviews . . ..o, 45
QUEStIONNAITES + v v v vt vttt e et e e e e eeeeeeennns 47
Observation. . . ...c..vuiuin i 48
Story-Writing Workshops .. ................... 49
Summary. ....... .. 52
Developer Responsibilities. . . .................. 53
Customer Responsibilities . . ................... 53
QUESTIONS v v v ettt et et et et et e 53
Working with User Proxies .. .................. 55
The Users” Manager . .........covuinnenn.n.. 55
A Development Manager. . .................... 57
Salespersons . ........iiiiii e 57
Domain Experts ............ .. ... ... ... ..... 58
The Marketing Group . ... .o ovvvii i, 59
Former Users.......... ... .o ... 59
CUSTOMETS . v vttt ettt ettt e e 59
Trainers and Technical Support. . ............... 61
Business or Systems Analysts. .................. 61
What to Do When Working with a User Proxy. . ... 61
Can YouDo It Yourself?. . .................... 63
Constituting the Customer Team. ............... 63
Summary....... .. 64
Developer Responsibilities. .. .................. 65
Customer Responsibilities . .. .................. 65

QUESEIONS v vttt ettt ettt e ettt 66



CONTENTS v

Chapter 6:  Acceptance Testing User Stories . . ....oovvuun... 67
Write Tests Before Coding . ................... 68
The Customer Specifies the Tests ............... 69
Testing Is Part of the Process. . ................. 69
How Many Tests Are Too Many?............... 70
The Framework for Integrated Test. .. ........... 70
Typesof Testing . . ..o, 72
Summary. . ... e 73
Developer Responsibilities. ... ................. 73
Customer Responsibilities. .. .................. 73
QUESTIONS & o v vttt et e e e e e e e 74
Chapter 7:  Guidelines for Good Stories ................... 75
Start with Goal Stories ....................... 75
Slicethe Cake . ......... . i, 75
Write Closed Stories .. ..., 76
Put Constraintson Cards . .................... 77
Size the Story to the Horizon. .. ................ 78
Keep the UI Out as Long as Possible. ............ 79
Some Things Aren’t Stories. .. .........covuvn.. 80
Include User Roles in the Stories................ 80
Write for OneUser . ......ooviiinnnnn.n. 81
Write in Active Voice ... ..o, 81
Customer Writes . . . v v v vttt ettt ettt e e e 81
Don’t Number Story Cards. . .................. 82
Don’t Forget the Purpose ..................... 82
SUMMAry. . oottt 82
QUESTIONS & v v vt ettt ettt et et 83
PART II: Estimating and Planning. .................... 85
Chapter 8:  Estimating User Stories . . ... vvvevveenneennnnn. 87
Story Points. . . . ... ... 87
EstimateasaTeam............. ... ... ...... 88
Estimating. . ....... .. ... i 88
Triangulate . .. ... 90
Using Story Points. .. ..., 91
What If We Pair Program? .................... 92
Some Reminders . ............ ..., 93

Summary. . ... 94



v CONTENTS

Chapter 9:

Chapter 10:

Chapter 11:

Developer Responsibilities. .. .................. 94
Customer Responsibilities . . ................... 95
QUESTIONS & vttt ettt et e e e e e e 95
Planning aRelease............... ..., 97
When Do We Want the Release?. . .............. 98
What Would You LikeinIt?................... 98
Prioritizing the Stories. .. ..... .. ... ... .. ..... 99
Mixed Priorities. . . ..o v v 100
Risky Stories . . ..o v vt e 101
Prioritizing Infrastructural Needs .............. 101
Selecting an Iteration Length . . ................ 103
From Story Points to Expected Duration. ........ 103
The Initial Velocity .. ....... .o, 104
Creating the Release Plan .. .................. 105
Summary........ ... 106
Developer Responsibilities. . .................. 106
Customer Responsibilities . .. ................. 107
QUESLIONS v v vttt ettt e 107
Planning an Iteration. . .. ........covvvnenn... 109
Iteration Planning Overview .................. 109
Discussing the Stories ....................... 110
Disaggregating into Tasks . . .................. 111
Accepting Responsibility . .. .......... ... ... 113
Estimate and Confirm . ...................... 113
Summary. ...... ..o . 115
Developer Responsibilities. . . ................. 115
Customer Responsibilities . . . ................. 116
QUESEIONS v vt vttt ettt it et e it 116
Measuring and Monitoring Velocity ............ 117
Measuring Velocity . .. .....ooviviiiii. .. 117
Planned and Actual Velocity . ................. 119
Iteration Burndown Charts . .................. 121
Burndown Charts During an Iteration. .......... 123
Summary. . ..... ... 126
Developer Responsibilities. . .. ................ 127
Customer Responsibilities . . . ................. 127

QUESEIONS v vt vttt e ettt et et 127



CONTENTS v

PART III: Frequently Discussed Topics ... ...oovuvnn.n. 131
Chapter 12: What Stories Are Not . .. ........civiin... 133
User Stories Aren’t [EEE 830. . ................ 133
User Stories Are Not Use Cases. . .............. 137
User Stories Aren’t Scenarios. . ................ 141
Summary. ... 143
QUESLIONS . . vttt ettt 143
Chapter 13: Why User Stories?. .. .. .ovvvitienenneennn.. 145
Verbal Communication. .. ................... 145
User Stories Are Comprehensible .............. 148
User Stories Are the Right Size for Planning . ... .. 148
User Stories Work for Iterative Development . . . .. 149
Stories Encourage Deferring Detail .. ........... 150
Stories Support Opportunistic Development. . . . .. 151
User Stories Encourage Participatory Design. ... .. 152
Stories Build Up Tacit Knowledge. . ............ 153
Why Not Stories? . ..o, 153
Summary. ........ 154
Developer Responsibilities. ... ................ 155
Customer Responsibilities. .. ................. 155
QUESEIONS v v v vttt e ettt et et 155
Chapter 14: A Catalog of Story Smells . ................... 157
Stories Are TooSmall . ......... ... ... ...... 157
Interdependent Stories. .. ....... ... .. .. ... 157
Goldplating. .. ...... .o 158
TooMany Details. ......................... 159
Including User Interface Detail Too Soon . ....... 159
Thinking Too Far Ahead. .................... 160
Splitting Too Many Stories . .. ................ 160
Customer Has Trouble Prioritizing . ... ......... 161
Customer Won’t Write and Prioritize the Stories. .. 162
Summary. ... 162
Developer Responsibilities. ... ................ 163
Customer Responsibilities. .. ................. 163
QUESEIONS v v vttt ettt it et e et 163
Chapter 15: Using Stories with Scrum .................... 165

Scrum Is Iterative and Incremental ............. 165



v CONTENTS

The Basicsof Scrum . ....................... 166
The Scrum Team . ............ ..., 166
The Product Backlog . ....................... 167
The Sprint Planning Meeting. . .. .............. 168
The Sprint Review Meeting . . . ................ 170
The Daily Scrum Meeting ... ................. 171
Adding Stories to Scrum ... ... .o 173
ACaseStudy. ... ..o, 174
Summary........ .. . 175
QUESLIONS &+ v vttt ettt e 176
Chapter 16: Additional Topics . ... ovvvvvetinenennnnnnn. 177
Handling NonFunctional Requirements ......... 177
Paper or Software? ......... ... ... 179
User Stories and the User Interface ............. 181
Retaining the Stories . .. .......... ... ... ..., 184
Storiesfor Bugs . . ...... ... i 185
Summary....... .. 186
Developer Responsibilities. ... ................ 186
Customer Responsibilities . . . ................. 187
QUESEIONS v vt vttt et ettt ettt 187
PARTIV:AnExample .........cciiiiiiiiinnennn. 189
Chapter 17: TheUserRoles ............ ..., 191
The Project . ..o oo 191
Identifying the Customer..................... 191
Identifying Some Initial Roles . ................ 192
Consolidating and Narrowing. . ............... 193
Role Modeling. . ........ ... ... 195
Adding Personas . ............ ..., 197
Chapter 18: TheStories ......cvvvitiiniinienneennnn. 199
Stories for Teresa. .. ..., 199
Stories for CaptainRon. . .................... 202
Stories for a Novice Sailor. . .................. 203
Stories for a Non-Sailing Gift Buyer ............ 204
Stories for a Report Viewer. . ................. 204
Some Administration Stories . .. ...t 205

Wrapping Up. . . ..o oo ittt 206



CONTENTS v

Chapter 19: Estimating the Stories . ...................... 209
The First Story ... ovi i i 210
Advanced Search.......... ... ... ... . .. 212
Rating and Reviewing. ...................... 213
ACCOUNTS . o vttt et e 214
Finishing the Estimates ... ................... 215
All the Estimates . . .. ..., 216
Chapter 20: The ReleasePlan........................... 219
Estimating Velocity . .. ..., 219
Prioritizing the Stories. .. ....... ... ... .. .... 220
The Finished Release Plan. .. ................. 221
Chapter 21: The Acceptance Tests . . oo veveeeeenneennnn. 223
The Search Tests . . . .o oo ii i 223
Shopping Cart Tests .. ...vvvnivniennn... 224
Buying Books .......... ... ... o, 225
User Accounts. . ...covviiie i 226
Administration .. ........coutinintnanan. 227
Testing the Constraints . . ... .......ovvuenn... 228
AFinalStory........ ..o i 229
PART V: Appendices. . . oo vvtvineenneenneennennnns 231
Appendix A: An Overview of Extreme Programming. . ........ 233
Roles. .. oovui 233
The Twelve Practices. . .......cvvvvinennn... 234
XPsValues. ...cooiiiiiii i 240
The Principlesof XP .. ........ ... ... 241
Summary. . ... 242
Appendix B: Answers to Questions . . . ......cvitiitien... 245
Chapter 1, An Overview . . .. ..o vviviinenn.n. 245
Chapter 2, Writing Stories. . . .....cvvuvennn... 246
Chapter 3, User Role Modeling. . .............. 247
Chapter 4, Gathering Stories. .. ............... 248
Chapter 5, Working with User Proxies .......... 249
Chapter 6, Acceptance Testing User Stories. . .. ... 249
Chapter 7, Guidelines for Good Stories. . ........ 249
Chapter 8, Estimating User Stories . ............ 251

Chapter 9, Planning a Release. . ............... 251



v CONTENTS

Chapter 10, Planning an Iteration . . ............ 252
Chapter 11, Measuring and Monitoring Velocity .. 252
Chapter 12, What Stories Are Not . ............ 253
Chapter 13, Why User Stories? ................ 254
Chapter 14, A Catalog of Story Smells .......... 255
Chapter 15, Using Stories with Scrum . .......... 255
Chapter 16, Additional Topics . ............... 256
.......................................... 259
.......................................... 263



Foreword

How do you decide what a software system is supposed to do? And then, how
do you communicate that decision between the various people affected? This
book takes on this complicated problem. The problem is difficult because each
participant has different needs. Project managers want to track progress. Pro-
grammers want to implement the system. Product managers want flexibility.
Testers want to measure. Users want a useful system. Creating productive con-
flict between these perspectives, coming to a single collective decision everyone
can support, and maintaining that balance for months or years are all difficult
problems.

The solution Mike Cohn explores in this book, User Stories Applied, is
superficially the same as previous attempts to solve this problem—require-
ments, use cases, and scenarios. What’s so complicated? You write down what
you want to do and then you do it. The proliferation of solutions suggests that
the problem is not as simple as it appears. The variation comes down to what
you write down and when.

User stories start the process by writing down just two pieces of information:
each goal to be satisfied by the system and the rough cost of satisfying that goal.
This takes just a few sentences and gives you information other approaches
don't. Using the principle of the “last responsible moment,” the team defers
writing down most details of the features until just before implementation.

This simple time shift has two major effects. First, the team can easily begin
implementing the “juiciest” features early in the development cycle while the
other features are still vague. The automated tests specifying the details of each
feature ensure that early features continue to run as specified as you add new
features. Second, putting a price on features early encourages prioritizing from
the beginning instead of a panicked abortion of scope at the end in order to
meet a delivery date.

XV



FOREWORD

Mike’s experience with user stories makes this a book full of practical advice
for making user stories work for your development team. I wish you clear, con-
fident development.

Kent Beck
Three Rivers Institute



Acknowledgments

This book has benefitted greatly from comments from many reviewers. In par-
ticular I thank Marco Abis, Dave Astels, Steve Bannerman, Steve Berczuk, Lyn
Bain, Dan Brown, Laura Cohn, Ron Crocker, Ward Cunningham, Rachel
Davies, Robert Ellsworth, Doris Ford, John Gilman, Sven Gorts, Deb Hart-
mann, Chris Leslie, Chin Keong Ling, Phlip, Keith Ray, Michele Sliger, Jeff
Tatelman, Anko Tijman, Trond Wingard, Jason Yip, and a handful of anony-
mous reviewers.

My sincerest thanks to my formal reviewers: Ron Jeffries, Tom Poppendieck,
and Bill Wake. Ron kept me honest and agile. Tom opened my eyes to many
ideas I hadn’t considered before. Bill kept me on track and shared with me his
INVEST acronym. This book has been immeasurably improved by suggestions
from each of these fine individuals with whom I am proud to have worked.

I also thank Lisa Crispin, author of Testing Extreme Programming, who
encouraged me to write this book by telling me about her pleasant experience
with Addison-Wesley. Without her encouragement, I never would have started.

Most of what I know I’ve argued about with Tod Golding over the last nine
years. Tod and I agree more often than either of us knows, but I always learn
something from our arguments. I am indebted to Tod for all he’s taught me over
the years. Much of this book has been greatly enriched because of my conversa-
tions with him.

Thanks to Alex Viggio and everyone at XP Denver where I was able to
present an early version of many of the ideas in this book. Thank you, also, to
Mark Mosholder and J. B. Rainsberger, who talked to me about how they use
software instead of note cards. Thank you to Kenny Rubin, co-author of Suc-
ceeding With Objects with Adele Goldberg, whose obvious pride in their book
helped me want to write again after a few years off.

A hearty thank you to Mark and Dan Gutrich, the founders of Fast401k,
who have wholeheartedly embraced user stories and Scrum. Thank you as well
to each of my coworkers at Fast401k, where we are well on our way to achiev-
ing our goal of being one of the best teams in Colorado.

xvii



ACKNOWLEDGMENTS

There is no way to thank my family enough for all the time they did without
me. Thank you to my wonderful daughters and princesses, Savannah and
Delaney. A special thank you to my wonderful and beautiful wife, Laura, for
doing so much even when I do so little.

I owe a huge debt of gratitude to the team at Addison-Wesley. Paul Petralia
made the process enjoyable from start to finish. Michele Vincenti kept things
moving. Lisa Iarkowski offered me invaluable FrameMaker help. Gail Cocker
made my illustrations worth looking at. And Nick Radhuber brought it all
together at the end.

And last, but far from least, thank you to Kent Beck for his wonderful
insights, his time, and for including this book in his Signature Series.



Introduction

I felt guilty throughout much of the mid-1990s. I was working for a company
that was acquiring about one new company each year. Every time we’d buy a
new company I would be assigned to run their software development group.
And each of the acquired development groups came with glorious, beautiful,
lengthy requirements documents. I inevitably felt guilty that my own groups
were not producing such beautiful requirements specifications. Yet, my groups
were consistently far more successful at producing software than were the
groups we were acquiring.

I knew that what we were doing worked. Yet I had this nagging feeling that
if we’d write big, lengthy requirements documents we could be even more suc-
cessful. After all, that was what was being written in the books and articles I
was reading at the time. If the successful software development teams were
writing glorious requirements documents then it seemed like we should do the
same. But, we never had the time. Our projects were always too important and
were needed too soon for us to delay them at the start.

Because we never had the time to write a beautiful, lengthy requirements
document, we settled on a way of working in which we would talk with our
users. Rather than writing things down, passing them back and forth, and
negotiating while the clock ran out, we talked. We’d draw screen samples on
paper, sometimes we’d prototype, often we’d code a little and then show the
intended users what we’d coded. At least once a month we’d grab a representa-
tive set of users and show them exactly what had been coded. By staying close
to our users and by showing them progress in small pieces, we had found a way
to be successful without the beautiful requirements documents.

Still, T felt guilty that we weren’t doing things the way I thought we were sup-
posed to.

In 1999 Kent Beck’s revolutionary little book, Extreme Programming
Explained: Embrace Change, was released. Overnight all of my guilt went
away. Here was someone saying it was OK for developers and customers to talk
rather than write, negotiate, and then write some more. Kent clarified a lot of

XiX



INTRODUCTION

things and gave me many new ways of working. But, most importantly, he justi-
fied what I’d learned from my own experience.

Extensive upfront requirements gathering and documentation can kill a
project in many ways. One of the most common is when the requirements doc-
ument itself becomes a goal. A requirements document should be written only
when it helps achieve the real goal of delivering some software.

A second way that extensive upfront requirements gathering and documen-
tation can kill a project is through the inaccuracies of written language. I
remember many years ago being told a story about a child at bath time. The
child’s father has filled the bath tub and is helping his child into the water. The
young child, probably two or three years old, dips a toe in the water, quickly
removes it, and tells her father “make it warmer.” The father puts his hand into
the water and is surprised to find that, rather than too cold, the water is already
warmer than what his daughter is used to.

After thinking about his child’s request for a moment, the father realizes they
are miscommunicating and are using the same words to mean different things.
The child’s request to “make it warmer” is interpreted by any adult to be the
same as “increase the temperature.” To the child, however, “make it warmer”
meant “make it closer to the temperature I call warm.”

Words, especially when written, are a very thin medium through which to
express requirements for something as complex as software. With their ability
to be misinterpreted we need to replace written words with frequent conversa-
tions between developers, customers, and users. User stories provide us with a
way of having just enough written down that we don’t forget and that we can
estimate and plan while also encouraging this time of communication.

By the time you’ve finished the first part of this book you will be ready to
begin the shift away from rigorously writing down every last requirement
detail. By the time you’ve finished the book you will know everything necessary
to implement a story-driven process in your environment. This book is orga-
nized in four parts and two appendices.

e Part I: Getting Started—A description of everything you need to know to
get started writing stories foday. One of the goals of user stories is to get
people talking rather than writing. It is the goal of Part I to get you talking
as soon as possible. The first chapter provides an overview of what a user
story is and how you’ll use stories. The next chapters in Part I provide
additional detail on writing user stories, gathering stories through user
role modeling, writing stories when you don’t have access to real end
users, and testing user stories. Part I concludes with a chapter providing
guidelines that will improve your user stories.



INTRODUCTION

e Part II: Estimating and Planning—Equipped with a collection of user sto-
ries, one of the first things we often need to answer is “How long will it
take to develop?” The chapters of Part II cover how to estimate stories in
story points, how to plan a release over a three- to six-month time hori-
zon, how to plan an ensuing iteration in more detail, and, finally, how to
measure progress and assess whether the project is progressing as you’d

like.

e Part III: Frequently Discussed Topics—Part III starts by describing how
stories differ from requirements alternatives such as use cases, software
requirements specifications, and interaction design scenarios. The next
chapters in Part III look at the unique advantages of user stories, how to
tell when something is going wrong, and how to adapt the agile process
Scrum to use stories. The final chapter of Part III looks at a variety of
smaller issues such as whether to writes stories on paper note cards or in a
software system and how to handle nonfunctional requirements.

e Part IV: An Example—An extended example intended to help bring every-
thing together. If we’re to make the claim that developers can best under-
stand user’s needs through stories then it is important to conclude this
book with an extended story showing all aspects of user stories brought
together in one example.

e Part V: Appendices—User stories originate in Extreme Programming. You
do not need to be familiar with Extreme Programming in order to read
this book. However, a brief introduction to Extreme Programming is pro-
vided in Appendix A. Appendix B contains answers to the questions that
conclude the chapters.



This page intentionally left blank



Chapter 3

User Role Modeling

On many projects, stories are written as though there is only one type of user.
All stories are written from the perspective of that user type. This simplification
is a fallacy and can lead a team to miss stories for users who do not fit the gen-
eral mold of the system’s primary user type. The disciplines of usage-centered
design (Constantine and Lockwood 1999) and interaction design (Cooper
1999) teach us the benefits of identifying user roles and personas prior to writ-
ing stories. In this chapter we will look at user roles, role modeling, user role
maps, and personas and show how taking these initial steps leads to better sto-
ries and better software.

User Roles!

Suppose we are building the BigMoneyJobs job posting and search site. This
type of site will have many different types of users. When we talk about user
stories, who is the user we’re talking about? Are we talking about Ashish who
has a job but always keeps an eye out for a better one? Are we talking about
Laura, a new college graduate looking for her first professional job? Are we
talking about Allan, who has decided he’ll take any job that lets him move to
Maui and windsurf every afternoon? Or are we talking about Scott, who
doesn’t hate his job but has realized it’s time to move on? Perhaps we’re talking
about Kindra who was laid off six months ago and was looking for a great job
but will now take anything in the northeastern United States.

Or should we think of the user as coming from one of the companies posting
the jobs? Perhaps the user is Mario, who works in human resources and posts

1.  Much of the discussion of user roles in this chapter is based on the work of Larry
Constantine and Lucy Lockwood. Further information on user role modeling is available
at their website at www.foruse.com or in Software for Use (1999).

31


www.foruse.com

UserR ROLE MODELING

new job openings. Perhaps the user is Delaney, who also works in human
resources but is responsible for reviewing resumes. Or perhaps the user is
Savannah, who works as an independent recruiter and is looking for both good
jobs and good people.

Clearly we cannot write stories from a single perspective and have those sto-
ries reflect the experiences, backgrounds and goals of each of these users. Ash-
ish, an accountant, may look at the site once a month just to keep his options
open. Allan, a waiter, may want to create a filter to notify him any time any job
on Maui gets posted but he won’t be able to do that unless we make it easy.
Kindra may spend hours each day looking for a job, broadening her search as
time goes by. If Mario and Delaney work for a large company with many posi-
tions to fill, they may spend four or more hours a day on the site.

While each user comes to your software with a different background and
with different goals, it is still possible to aggregate individual users and think of
them in terms of user roles. A user role is a collection of defining attributes that
characterize a population of users and their intended interactions with the sys-
tem. So, we could look at the users in the preceding example and group them
into roles as shown in Table 3.1 into roles this way.

Table 3.1 One possible list of roles for the BigMoneyJobs project.

Role Who

Job Seeker Scott

First Timer Laura

Layoff Victim Kindra
Geographic Searcher Allan

Monitor Ashish

Job Poster Mario, Savannah
Resume Reader Delaney, Savannah

Naturally, there will be some overlap between different user roles. The Job
Seeker, First Timer, Layoff Victim, Geographic Searcher, and Monitor roles will
all use the job search features of the site. They may use them in different ways
and at different frequencies, but much of how they use the system will be simi-
lar. The Resume Reader and Job Poster roles will probably overlap as well since
these roles are both pursuing the same goal of finding good candidates.

Table 3.1 does not show the only possible way to group users of BigMoney-
Jobs into roles. For example, we could choose to include roles like Part-Timer,



BRAINSTORMING AN INITIAL SET OF USER ROLES

Full-Timer and Contractor. In the rest of this chapter we’ll look at how to come
up with a list of roles and how to refine that list so that it is useful.

Role Modeling Steps

We will use the following steps to identify and select a useful set of user roles:
¢ brainstorm an initial set of user roles
¢ organize the initial set
¢ consolidate roles
e refine the roles

Each of these steps is discussed in the following sections.

Brainstorming an Initial Set of User Roles

To identify user roles, the customer and as many of the developers as possible
meet in a room with either a large table or a wall to which they can tape or pin
cards. It’s always ideal to include the full team for the user role modeling that
initiates a project but it’s not necessary. As long as a reasonable representation
of the developers is present along with the customer, you can have a successful
session.

Each participant grabs a stack of note cards from a pile placed in the middle
of the table. (Even if you plan to store the user roles electronically you should
start by writing them on cards.) Start with everyone writing role names on
cards and then placing them on a table, or taping or pinning them to a wall.

When a new role card is placed, the author says the name of the new role
and nothing more. Since this is a brainstorming session, there is no dicsussion
of the cards or evaluation of the roles. Rather, each person writes as many cards
as he or she can think of. There are no turns, you don’t go around the table ask-
ing for new roles. Each participant just writes a card whenever she thinks of a
new role.

While brainstorming roles, the room will be filled with sounds of pens
scratching on cards and will be punctuated by someone occasionally placing a
new card and reading the name of the role. Continue until progress stalls and
participants are having a hard time thinking up new roles. At that point you
may not have identified all of the roles but you’re close enough. Rarely does
this need to last longer than fifteen minutes.



v UserR ROLE MODELING

v v

A User Role Is One User

When brainstorming a project’s roles, stick to identifying roles that represent a sin-
gle user. For example, for the BigMoneyJobs project it may be tempting to write sto-
ries such as “A company can post a job opening.” However, since a company as a
whole cannot use the software, the story will be better if it refers to a role that repre-
sents an individual.

A A

Organizing the Initial Set

Once the group has finished identify roles, it’s time to organize them. To do
this, cards are moved around on the table or wall so that their positions indi-
cate the relationships between the roles. Overlapping roles are placed so that
their cards overlap. If the roles overlap a little, overlap the cards a little. If the
roles overlap entirely, overlap the cards entirely. An example is shown in
Figure 3.1.

College Grad

Job Poster Resume Reader
First Timer

Layoff Victim

Recruiter

Geographic
Searcher

Job Seeker

Monitor Administrator

Figure 3.1 Organizing the user role cards on a table.

Figure 3.1 shows that the College Grad and First Timer, as those roles were
intended by their card writers, overlap signficantly. There’s less but similar
overlap among the other cards representing people who will use the site to
search for jobs. The Monitor role card is shown with only a slight overlap
because that role refers to someone who is relatively happy in her current job
but likes to keep her eyes open.

To the right of the job-seeking roles in Figure 3.1 are the Job Poster,
Recruiter, and Resume Reader role cards. The Recruiter role is shown overlap-
ping both Job Poster and Resume Reader because a recruiter will both post ads



CONSOLIDATING ROLES v

and read resumes. An Administrator role is shown also. This role represents
users internal to BigMoneyJobs who will support the system.

v v

System Roles

As much as you can, stick with user roles that define people, as opposed to other
systems. If you think it will help, then identify an occasional non-human user role.
However, the purpose of identifying user roles is to make sure that we think really
hard about the users that we absolutely, positively must satisfy with the new system.
We don’t need user roles for every conceivable user of the system, but we need roles
for the ones who can make or break the success of the project. Since other systems
are rarely purchasers of our system, they can rarely make or break the success of
our system. Naturally, there can be exceptions to this and if you feel that adding a
non-human user role helps you think about your system, then add it.

A A

Consolidating Roles

After the roles have been grouped, try to consolidate and condense the roles.
Start with cards that are entirely overlapping. The authors of overlapping cards
describe what they meant by those role names. After a brief discusson the group
decides if the roles are equivalent. If equivalent, the roles can either be consoli-
dated into a single role (perhaps taking its name from the two initial roles), or
one of the initial role cards can be ripped up.

In Figure 3.1 the College Grad and First Timer roles are shown as heavily
overlapping. The group decides to rip up the College Grad card since any sto-
ries for that user role would likely be identical to stories for a First Timer. Even
though First Timer, Layoff Victim, Geographic Searcher and Job Seeker have
significant overlap, the group decides that each represents a constituency that
will be important to satisfy and the roles will have important but subtly differ-
ent goals for how they use the BigMoneyJobs website.

When they look at the right side of Figure 3.1, the group decides that it is not
worth distinguishing between a Job Poster and a Resume Reader. They decide
that a Recruiter covers these two roles adequately and those cards are ripped
up. However, the group decides that there are differences between an Internal
Recruiter (working for a specific company) and an External Recruiter (match-
ing candidates to jobs at any company). They create new cards for Internal
Recruiter and External Recruiter, and consider these as specialized versions of
the Recruiter role.



UserR ROLE MODELING

In addition to consolidating overlapping roles, the group should also rip up
any role cards for roles that are unimportant to the success of the system. For
example, the Monitor role card represents someone who is just keeping an eye
on the job market. A Monitor may not switch jobs for three years. BigMoney-
Jobs can probably do quite well without paying attention to that user role.
They decide they will be better off focusing on the roles that will be important
to the success of the company, such as Job Seeker and the Recruiter roles.

After the team has consolidated the cards, they are arranged on the table or
wall to show relationships between the roles. Figure 3.2 shows one of many
possible layouts for the BigMoneyJobs role cards. Here a generic role, such as
Job Seeker or Recruiter, is positioned above specialized versions of that role.
Alternatively, cards can be stacked or positioned in any other way that the
group desires in order to show whatever relationships they think are important.

Job Seeker Recruiter Administrator
Layoff Victim Internal Recruiter
Geographic External
Searcher Recruiter
First Timer

Figure 3.2 The consolidated role cards.

Refining the Roles

Once we’ve consolidated roles and have a basic understanding for how the
roles relate to each other, it is possible to model those roles by defining
attributes of each role. A role attribute is a fact or bit of useful information
about the users who fulfill the role. Any information about the user roles that
distinguishes one role from another may be used as a role attribute. Here are
some attributes worth considering when preparing any role model:



Two ADDITIONAL TECHNIQUES v

The frequency with which the user will use the software.

e The user’s level of expertise with the domain.

® The user’s general level of proficiency with computers and software.

The user’s level of proficiency with the software being developed.

¢ The user’s general goal for using the software. Some users are after conve-
nience, others favor a rich experience, and so on.

Beyond these standard attributes you should consider the software being
built and see if there are any attributes that might be useful in describing its
users. For instance, for the BigMoneyJobs website you may want to consider
whether the user role will be looking for a part-time or full-time job.

As you identify interesting attributes for a role, write notes on the role card.
When finished, you can hang the role cards in a common area used by the team
so they can be used as reminders. A sample user role card is shown in
Figure 3.3.

User Role: Internal Recruiter

Not particularly computer-savwy but quite adept at using the
Web. Will use the software infrequently but intensely. Will read
ads from other companies to figure out how to best word her
ads. Ease of use is important, but more importantly what she
learns must be easily recalled months later.

Figure 3.3 A sample user role card.

Two Additional Techniques

We could stop right now if we want to. By now a team might have spent an
hour—almost certainly no more than that—and they will have put more
thought into the users of their software than probably 99% of all software
teams. Most teams should, in fact, stop at this point. However, there are two
additional techniques that are worth pointing out because they may be helpful
in thinking about users on some projects. Only use these techniques if you can
anticipate a direct, tangible benefit to the project.



UserR ROLE MODELING

Personas

Identifying user roles is a great leap forward, but for some of the more impor-
tant user roles, it might be worth going one step further and creating a persona
for the role. A persona is an imaginary representation of a user role. Earlier in
this chapter we met Mario who is responsible for posting new job openings for
his company. Creating a persona requires more than just adding a name to a
user role. A persona should be described sufficiently that everyone on the team
feels like they know the persona. For example, Mario may be described as fol-
lows:

Mario works as a recruiter in the Personnel department of Speedy-
Networks, a manufacturer of high-end networking components.
He’s worked for SpeedyNetworks six years. Mario has a flex-time
arrangement and works from home every Friday. Mario is very
strong with computers and considers himself a power user of just
about all the products he uses. Mario’s wife, Kim, is finishing her
Ph.D. in chemistry at Stanford University. Because SpeedyNet-
works has been growing almost consistently, Mario is always
looking for good engineers.

If you choose to create personas for your project, be careful that enough
market and demographic research has been done that the personas chosen truly
represent the product’s target audience.

This persona description gives us a good introduction to Mario. However,
nothing speaks as loudly as a picture, so you should also find a picture of Mario
and include that with the persona definition. You can get photographs all over
the web or you can cut one from a magazine. A solid persona definition com-
bined with a photograph will give everyone on the team a thorough introduc-
tion to the persona.

Most persona definitions are too long to fit on a note card, so I suggest you
write them on a piece of paper and hang them in the team’s common space. You
do not need to write persona definitions for every user role. You may, however,
think about writing a persona definition for one or two of the primary user
roles. If the system you are building is such that it is absolutely vital that the
product satisfy one or two user roles, then those user roles are candidates for
expansion into personas.

Stories become much more expressive when put in terms of a user role or
persona. After you have identified user roles and possibly a persona or two, you
can begin to speak in terms of roles and personas instead of the more generic
“the user.” Rather than writing stories like “A user can restrict job searches to
specific geographic regions” you can write “A Geographic Searcher can restrict



WHAT Ir I HAVE ON-SI1TE USERS? v

his job searches to a specific geographic region.” Hopefully writing a story this
way reminds the team about Allan who is looking for any job on Maui. Writing
some stories with user role or persona names does not mean that other roles
cannot perform those stories; rather, it means that there is some benefit in
thinking about a specific user role or persona when discussing or coding the
story.

Extreme Characters

Djajadiningrat and co-authors (2000) have proposed a second technique you
might want to think about: the use of extreme characters when considering the
design of a new system. They describe an example of designing a Personal Digi-
tal Assistant (PDA) handheld computer. They advise that instead of designing
solely for a typical sharp-dressed, BMW-driving management consultant, the
system designers should consider users with exaggerated personalities. Spefi-
cially, the authors suggest designing the PDA for a drug dealer, the Pope, and a
twenty-year-old woman who is juggling multiple boyfriends.

It is very possible that considering extreme characters will lead you to stories
you would be likely to miss otherwise. For example, it is easy to imagine that
the drug dealer and a woman with several boyfriends may each want to main-
tain multiple separate schedules in case the PDA is seen by the police or a boy-
friend. The Pope probably has less need for secrecy but may want a larger font
size.

So, while extreme characters may lead to new stories, it is hard to know
whether those stories will be ones that should be included in the product. It is
probably not worth much investment in time, but you might want to experi-
ment with extreme characters. At a minimum, you can have a few minutes of
fun thinking about how the Pope might use your software and it just may lead
to an insight or two.

What If I Have On-Site Users?

The user role modeling techniques described in this chapter are still useful
even if you have real, live users in your building. Working with real users will
strongly improve your likelihood of delivering the desired software. However,
even with real users there is no guarantee that you have the right users or the
right mix of users.



v UserR ROLE MODELING

To decrease the likelihood of failing to satisfy important users, you should
do some simple role modeling on projects even when you have available inter-
nal users.

Summary

Most project teams consider only a single type of user. This leads to soft-
ware that ignores the needs of at least some user types.

To avoid writing all stories from the perspective of a single user, identify
the different user roles who will interact with the software.

By defining relevant attributes for each user role, you can better see the
differences between roles.

Some user roles benefit from being described by personas. A persona is an
imaginary representation of a user role. The persona is given a name, a
face, and enough relevant details to make them seem real to the project
members.

For some applications, extreme characters may be helpful in looking for
stories that would otherwise be missed.

Developer Responsibilities

You are responsible for participating in the process of identifying user
roles and personas.

You are responsible for understanding each of the user roles or personas
and how they differ.

While developing the software, you are responsible for thinking about
how different user roles may prefer the software to behave.

You are responsible for making sure that identifying and describing user
roles does not go beyond its role as a tool in the process.



QUESTIONS

Customer Responsibilities

® You are responsible for looking broadly across the space of possible users
and identifying appropriate user roles.

® You are responsible for participating in the process of identifying user
roles and personas.

® You are responsible for ensuring that the software does not focus inappro-
priately on a subset of users.

® When writing stories you will be responsible for ensuring that each story
can be associated with at least one user role or persona.

e While developing the software, you are responsible for thinking about
how different user roles may prefer the software to behave.

® You are responsible for making sure that identifying and describing user
roles does not go beyond its role as a tool in the process.

Questions

3.1  Take a look at the eBay website. What user roles can you identify?

3.2 Consolidate the roles you came up with in the previous question and
show how you would lay out the role cards. Explain your answer.

3.3  Write persona descriptions for the one most important user role.



This page intentionally left blank



Index

A
Acceptance testing, 12-13, 15,
67-74
customer responsibilities,
73
customer specification of
the tests, 69
developer responsibilities,
73
Framework for Integrated
Test (FIT), 70-71
South Coast Nautical Sup-
plies (example
project), 223-230
administration, 227-228
buying books, 225-226
constraint testing,
228-229
final story, 229-230
search tests, 223-224
shopping cart tests,
224-225
user accounts, 226-227
testing as part of the pro-
cess, 69-70
types of testing, 72
writing tests, 12-13
before coding, 68-69
writing too many tests,
70
Accounts, South Coast Nauti-
cal Supplies (example
project), 214-215
Active voice, writing in, 81
Administration stories, South
Coast Nautical Sup-
plies (example
project), 205-206
Agile Development with
Scrum (Schwaber/Bee-
dle), 165

Agile processes, 111

Agile usage-centered design,
182

Anderson, Ann, 233

Astels, Dave, 237

B
Bad smells:
customer responsibilities,
163
customer won’t write and
prioritize the stories,
162
developer responsibilities,
163
goldplating, 158-159
including user interface
detail too soon,
159-160
interdependent stories,
157-158
prioritizing difficulties,
161-162
small stories, 157
splitting too many stories,
160-161
thinking too far ahead, 160
too many details, 159
Beck, Kent, 97, 136,233-234,
236,239
Beedle, Mike, 165, 171
Berczuk, Steve, 136
BigMoneyJobs example story,
b
Black, J. B., 148
Boehm, Barry, 88, 101
Bower, G. H., 148
Brainstorming:
initial set of user roles,
33-34

263

with low-fidelity prototyp-
ing, 49

C
Capture, 43
Card, 4, See also Note cards;
Story cards
annotations on, 6—7
writing on the back of, 7
Carroll, John M., 135,
141-142
Central Limit Theorem, 92
Certification, 180
Changing priorities, 110
Clements, Paul C., 151
ClickTactics, choosing soft-
ware at, 180
Closed stories, 76-77
Cockburn, Alistair, 137, 140,
150, 237
Cohn, Mike, 173
Collocated team, 105
Colors, 185
Combined stories, 18, 26-27
Competitive analysis, 65
Complex stories, 24-26
splitting, 25
Compound stories, 24-25
disaggregating, 25
Confirmation, 4
Connection pools, 5
Consistent iterations, 103
Constantine, Larry, 31, 59,
140, 148, 181-182
Constraints, examples of,
77-78
Context-free questions, 46-47
Cooper, Alan, 135
Corporate desktop productiv-
ity software, 59
Cost, and priority, 100



INDEX

Could-have features, release
plan, 98-99
Credit card validity, 71
Cunningham, Ward, 70, 183
Customer responsibilities:
bad smells, 163
gathering stories, 53
iteration planning, 116
release planning, 107
user proxies, 65
user role remodeling, 41
user stories, estimating, 95
velocity, measuring/moni-
toring, 127
writing stories, 28
Customer team, 8, 15
constituting, 63-64
story writing by, 9
Customers, as user proxies, 65

D
Daily burndown chart,
123-126
Daily scrum, 166, 171-172
Davies, Rachel, 4, 140
Decision-making, basis of, 4
Defect trackers, 179
Deferring detail, 14, 150
Dependencies between stories,
17-18
Details, 5-7
development team—cus-
tomer discussions
about, 6-7
as tests, 20
too many details, as bad
smell, 159
user stories with too much
detail, 19-20
Developer responsibilities:
acceptance testing user sto-
ries, 73
bad smells, 163
gathering stories, 53
iteration planning, 115
note cards, 186, 187
release planning, 106
software system, 186, 187
user proxies, 65
user role remodeling, 40
user stories, 155
user stories, estimating, 94
velocity, measuring/moni-
toring, 127
writing stories, 28
Development managers, 57,
64

Diaspar Software Services,
181

Disaggregation, 25, 94,
111-112

guidelines, 112

Domain experts, 58-59, 65

Domain knowledge, lack of,
23

DSDM, and MoSCoW rules,
98

DSDM: Business Focused
Development (Staple-
ton), 98

E
Early releases, 63, 65
Elicitation, 43
Empirical design, 152
Epics, 6, 94
categories of, 24
Essential use cases, 140
Estimatable stories, 22-23
Estimating:
approach, 88-90
as a team, 88
triangulating an estimate,
90-91
Example project, See South
Coast Nautical Sup-
plies (example
project):
Example user story, 4-5
Expectation maximization,
101
Extra detail, 19
Extreme characters, 39
Extreme Programming
Explained: Embrace
Change (Beck), 233
Extreme Programming
Explored (Wake), 17,
233
Extreme Programming
Installed (Jeffries,
Anderson, and Hen-
drickson), 233
Extreme Programming (XP),
8,22, 88,179,
233-243
coach, 234
customer role, 233
principles of, 241-242
programmer role, 234
roles, 233-234
teams, 26
twelve XP practices,
234-240
coding standards, 239

continuous integration,
240

metaphor, 239

on-site customer, 240

pair programming,
237-238

Planning Game, 235-236

refactoring, 236

simple design, 239

small releases, 235

sustainable pace, 238

team code ownership,
238-239

testing, 236-237

values, 240-241

F

Factors critical to project suc-
cess, determining, 64

First iteration, 9

FitNesse, 71, 181

Fowler, Martin, 150, 236

Framework for Integrated Test
(FIT), 70-71

G
Gathering stories, 43-52
customer responsibilities,
53
developer responsibilities,
53
elicitation and capture,
43-44
observation, 48-49
questionnaires, 47-48
story-writing workshops,
49-52
techniques, 45
user interviews, 45-47
write stories at different lev-
els of detail, 44-45
Gilb, Tom, 101
Goal stories, starting with, 75
Goldplating, 158-159
example of, 158
Good stories:
attributes of, 17
guidelines for, 75-83
active voice, writing in,
81
closed stories, 76-77
customer as writer of the
stories, 81-82
including user roles in the
stories, 80-81
putting constraints on
cards, 77-78
sizing the story, 78-79



story cards, numbering,
82
user interface, 79-80
using other formats, 80
writing for one user, 81
guidelines for writing:
goal stories, starting
with, 76
splitting stories
Grenning, James, 137
Guindon, Raymonde, 151

H

Hendrickson, Chet, 233

Highly dependent stories,
17-18

High-priority stories, 183

Historical values, and initial
velocity, 104

I
IEEE 830:
compared to user stories,
133-136
requirements, 135-136
Incremental process:
defined, 166
Scrum as, 166
Independent stories, 17-18
Individual ownership,
238-239
Infrastructural needs, and pri-
oritization of needs,
101-103
Initial collection of stories,
209
Initial set of user roles:
brainstorming, 33-34
organizing, 34-35
Initial stories, 9
Initial velocity, 104-105
Inmates Are Running the Asy-
lum, The (Cooper),
135
Institute of Electrical and Elec-
tronics Engineers
(IEEE), 133
Interdependent stories, bad
smells, 157-158
ISO (International Organiza-
tion for Standardiza-
tion), 180
Iteration burndown charts,
121-123
chart size, 126
daily burndown chart,
123-125
usefulness of, 122

Iteration length, selecting, 103
Iteration planning, 10-12,
109-116
accepting responsibility,
113
customer responsibilities,
116
developer responsibilities,
115
disaggregating into tasks,
111-112
discussing the stories, 110
estimation and confirma-
tion, 113-114
general sequence of activi-
ties for iterative plan-
ning meeting, 109
Iterations, 9-10
length, 9, 103
planning, 10-12, 109-116
Iterative development, and
user stories, 149-150
Iterative process, 14
defined, 165
Scrum as, 165-166

Jacobson, Ivar, 137

Jeffries, Ron, 4, 233

Joint Application Design
(JAD) sessions, 49

K
Kerievsky, Joshua, 87
Kuhn, Sarah, 152

L
Large stories, temporarily
skipping, 11-12
Lockwood, Lucy, 31, 59, 140,
148,182
Low-fidelity prototype, 49-50
throwing away, 51

M

Mad About You, 89
Marketing group, 64
Martin, Bob, 71, 77
Martin, Micah, 71

Mixed priorities, 100-101
MoSCoW rules, 98

Muller, Michael J., 152
Multiple user proxies, using,

Must-have features, release
plan, 98

INDEX

N
Namioka, Aki, 152
Negotiable stories, 18-19
Newkirk, James, 77
Non-functional requirements:
accuracy, 178
capacity, 179
as constraints on system
behavior, 177-179
handling, 177-179
interoperability, 179
maintainability, 179
performance, 178
portability, 179
reusability, 178
types of, 177-178
Note cards, 4
colors of, 185
limitations of, 179-180
Note, story card with, 7

O

Observation, 48—49

On-site users, 39-40
Open-ended questions, 46—47

P
Pair programming, 92-93,
237-238
Parnas, David L., 151
Participatory design, 152
Performance testing, 72
Personal digital assistant
(PDA) handheld com-
puter, 39
Personas, 38-39
South Coast Nautical Sup-
plies (example
project), 197-198
Planned velocity, 119-120
Planning releases, 97-107
and iterations, 10-12
Poppendieck, Tom, 147, 159
Positioning user role cards,
193
Potentially shippable product
increment, 170
Precision, and story size, 93
Prescriptive processes, 44
Priorities, changing, 110
Prioritizing stories, 98-101
customer has trouble priori-
tizing, 161-162
high-level stories, 183
infrastructural needs,
101-103
initial velocity, 104-105



INDEX

iteration length, selecting,
103
mixed priorities, 100-101
risky stories, 101
from story points to
expected duration,
103
Process, 8-10
Product backlog, 166,
167-168
sample list, 168
and user stories, 173
Product development road-
map, 97
Product owner, 167
Project champion, identifying,
64
Project failures, 3
Purchaser, distinction between
user and, 20-21

Q

Questionnaires, 47-48

R
Rainsberger, J. B., 181
Refactoring Workbook
(Wake), 17
Release plan, 9-12, 15
could-have features, 98-99
creating, 105-106
customer responsibilities,
107
developer responsibilities,
106
initiating, 97
MoSCoW rules, 98
must-have features, 98
prioritizing stories, 10,
98-101
putting too much faith in,
106
release date, 98
should-have features, 98-99
South Coast Nautical Sup-
plies (example
project), 219-222
finished plan, 221-222
won't have features, 98-99
Releases, planning, 9-10
Reminders, story cards as,
18-20
“Requirements engineering”
efforts, 160
Retaining user stories,
184-185
Risky stories, 101
Role attribute, 36-37

Role cards, 33
Role modeling steps, 33-37

S
Salespersons, 64
Scenarios, 137
compared to user stories,
141-142
Schuler, Douglas, 152
Schwaber, Ken, 165-166
Scrum, 9
adding stories to, 173-174
basics of, 166
as both iterative and incre-
mental process,
165-166
case study, 174-175
main rules of, 169
Scrum team, 166-167
sprint planning meeting,
168-169
sprint review meeting, 169,
170-171
using stories with, 165-176
ScrumMaster, 167-168,
170-172
Select Scope Manager, 179
Short iterations, 103
Should-have features, release
plan, 98-99
Small stories, bad smells, 157
Software Configuration Man-
agement Patterns (Ber-
czuk), 136
Software development
projects, predicting, 3
Software for Use (Constantine
and Lockwood), 311
Software requirements, as a
communication prob-
lem, 3
Software system, developer
responsibilities, 186,
187
Sorting stories, 99
South Coast Nautical Sup-
plies (example
project):
acceptance tests, 223-230
administration, 227-228
buying books, 225-226
constraint testing,
228-229
search tests, 223-224
shopping cart tests,
224-225
user accounts, 226-227
accounts, 214-215

administration stories,
205-206
advanced search, 212-213
complete list of stories and
estimates, 216-217
consolidating and narrow-
ing, 193-195
defined, 191
estimating the stories,
209-217
finishing the estimates, 215
identifying initial roles, 192
identifying the customer,
191-192
personas, adding, 197-198
prioritizing the stories,
220-221
rating and reviewing,
213-214
release plan, 219-222
finished, 221-222
stories for a Non-Sailing
Gift Buyer, 204
stories for a novice sailor,
203
stories for a Report Viewer,
204-205
stories for Captain Ron,
202-203
stories for Teresa, 199-202
user role modeling,
195-197
user roles, 191-198
velocity, estimating, 219
Spike, 22
putting in a different itera-
tion, 26
Spiral model (Boehm), 101
Splitting stories, 18, 23,
24-26, 75-76
splitting too many stories,
as bad smell, 160-161
Sprint backlog, 166-167, 170
Sprint goal, 168
Sprint planning meeting,
168-170
user stories in, 173-174
Sprint review meeting, 169,
170-171, 174
user stories in, 174
Sprints, 166
Stapleton, Jennifer, 98
Story cards:
defined, 18
limitations of, 179-180
main purpose of, 82
numbering, 82
as reminders, 18-20, 82



writing notes on the back
of, 67
writing on the back of, 7
writing test on the back of,
13
Story cost, 10-11
Story points, 87-88, 91-92,
94

Story size, 23-27
and precision, 93
Story smells, see Bad smells:
Story writing process, 8—10
initial stories, 9
Story-driven projects, process,
8-10
Story-writing workshops,
49-52
contributors of, 52
focus of, 51-52
Stress testing, 72
Surveys, 46
System roles, 35

T
Technical support personnel,
61
Test descriptions, 7-8
Testable stories, 27
Test-driven development, 237
Testing:
acceptance, 12-13, 15,
67-74
for bugs, 72
Framework for Integrated
Test (FIT), 70-71
performance, 72
stress, 72
as a two-step process, 67
usability, 72
user interface, 72
Tests, writing before coding,
68-69
Themes, 97
Timebox, 22
Time—constrained projects,
and deferred detail,
150
Trainers, 61
Trainers and technical sup-
port personnel, as user
proxies, 65
Trawling for requirements,
43-44
Turner, T. J., 148
Twelve XP practices, 234-240

U
Unified Process, 8, 137

Untestable stories, 27
Usability testing, 72
Use case briefs, 140
User, distinction between pur-
chaser and, 20-21
User interface guidelines, 80
User interface testing, 72
User interface (Ul):
details, including too soon,
159-160
writing two, 183
User Interviews, 45-47
open-ended and context-
free questions, 46-47
User proxies, 55-66
customer responsibilities,
65
customers, 59-60
developer responsibilities,
65
development manager, 57
domain experts, 58-59
former users, 59
marketing group, 59
salespersons, 57-58
trainers and technical sup-
port personnel, 61
users’ manager, 55-56
what to do when working
with, 61-63
User role cards, 33-36, 192
positioning, 193
sample, 37
User role modeling, 9, 31-41
consolidating roles, 35-36
customer responsibilities,
41
developer responsibilities,
40
extreme characters, 39
initial set of user roles:
brainstorming, 33-34
organizing, 34-35
on-site users, 39-40
personas, 38-39
refining roles, 36-37
role attributes, 36
South Coast Nautical Sup-
plies (example
project), 195-197
steps in, 33-37
user roles, 31-33
User roles:
attributes, 36-37
brainstorming an initial set
of, 33-34
consolidating, 35-36
identifying, 33

INDEX

identifying roles that repre-
sent a single user, 34

including in user stories,
80-81

initial set of:

brainstorming, 33-34

organizing, 34-35

refining, 36-37

role attribute, 36-37

South Coast Nautical Sup-
plies (example
project), 191-198

User stories:

advantages over alternative
approaches, 13-14
aspects of, 4
augmenting in require-
ments documentation
style, 6
comprehensibility of, 148
customer responsibilities,
155
and the daily Scrum meet-
ing, 174
and deferring detail, 150
defined, 4-5
descriptions, 4
developer responsibilities,
155
estimating, 87-95
approach, 88-90
customer responsibili-
ties, 95
developer responsibili-
ties, 94
pair programming,
92-93
story points, 87-88,
91-92
as a team, 88
triangulating an estimate,
90-91
IEEE 830 compared to,
133-136
and iterative development,
149-150
and participatory design,
152
prioritizing, 98-101
and the product backlog,
173
relationship between bug
reports and, 185
representing functionality
valued by users, 5
retaining, 184-185
scenarios compared to,
141-142



INDEX

size for planning, 148-149
size of, 6
splitting, 6, 12
in the sprint planning meet-
ing, 173-174
in the sprint review meet-
ing, 174
support for opportunistic
development, 151-152
tacit knowledge, build up
of, 153
and technical jargon, 14
test descriptions, 7-8
with too much detail, 19
use cases compared to,
137-141
and the user interface (UI),
26, 79-80, 139140,
159-160, 181-183
and verbal communication,
145-148
User task forces, 62, 65
Users’ manager, 64
Users stories, initial collection

of, 209-210

\'%

Value to purchasers/users,
20-22

Velocity, 9-10, 15, 91-92, 113
actual, 119-120
calculations, 119
guessing at, 104-105
initial, 104-105
iteration burndown charts,

121-123
measuring, 117-119
measuring/monitoring:

customer responsibili-
ties, 127
developer responsibili-
ties, 127
planned, 119-120

Verbal communication,

145-148

VersionOne, 179

A\

Wake, Bill, 17, 76, 233

Waterfall-oriented process, 8

“White book” (Beck), 234

Wideband Delphi approach,
88

Wikis, 179

Williams, Laurie, 237

Won’t-have features, release
plan, 98-99

Writing stories, 17-29

combined stories, 18

combining stories, 26-27

customer responsibilities,
28

developer responsibilities,
28

estimatable stories, 22-23

highly dependent stories,
17-18

independent stories, 17-18

negotiable stories, 18-19

small stories, 23-27

splitting stories, 18

story size, 23-27

testable stories, 27

X

XP, See Extreme Programming
(XP)

XPlanner, 179



	Contents
	Foreword
	Acknowledgments
	Introduction
	Chapter 3: User Role Modeling
	User Roles
	Role Modeling Steps
	Two Additional Techniques
	What If I Have On-Site Users?
	Summary
	Developer Responsibilities
	Customer Responsibilities
	Questions

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X




