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Foreword

How do you decide what a software system is supposed to do? And then, how
do you communicate that decision between the various people affected? This
book takes on this complicated problem. The problem is difficult because each
participant has different needs. Project managers want to track progress. Pro-
grammers want to implement the system. Product managers want flexibility.
Testers want to measure. Users want a useful system. Creating productive con-
flict between these perspectives, coming to a single collective decision everyone
can support, and maintaining that balance for months or years are all difficult
problems.

The solution Mike Cohn explores in this book, User Stories Applied, is
superficially the same as previous attempts to solve this problem—require-
ments, use cases, and scenarios. What’s so complicated? You write down what
you want to do and then you do it. The proliferation of solutions suggests that
the problem is not as simple as it appears. The variation comes down to what
you write down and when.

User stories start the process by writing down just two pieces of information:
each goal to be satisfied by the system and the rough cost of satisfying that goal.
This takes just a few sentences and gives you information other approaches
don't. Using the principle of the “last responsible moment,” the team defers
writing down most details of the features until just before implementation.

This simple time shift has two major effects. First, the team can easily begin
implementing the “juiciest” features early in the development cycle while the
other features are still vague. The automated tests specifying the details of each
feature ensure that early features continue to run as specified as you add new
features. Second, putting a price on features early encourages prioritizing from
the beginning instead of a panicked abortion of scope at the end in order to
meet a delivery date.

XV



FOREWORD

Mike’s experience with user stories makes this a book full of practical advice
for making user stories work for your development team. I wish you clear, con-
fident development.

Kent Beck
Three Rivers Institute
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Introduction

I felt guilty throughout much of the mid-1990s. I was working for a company
that was acquiring about one new company each year. Every time we’d buy a
new company I would be assigned to run their software development group.
And each of the acquired development groups came with glorious, beautiful,
lengthy requirements documents. I inevitably felt guilty that my own groups
were not producing such beautiful requirements specifications. Yet, my groups
were consistently far more successful at producing software than were the
groups we were acquiring.

I knew that what we were doing worked. Yet I had this nagging feeling that
if we’d write big, lengthy requirements documents we could be even more suc-
cessful. After all, that was what was being written in the books and articles I
was reading at the time. If the successful software development teams were
writing glorious requirements documents then it seemed like we should do the
same. But, we never had the time. Our projects were always too important and
were needed too soon for us to delay them at the start.

Because we never had the time to write a beautiful, lengthy requirements
document, we settled on a way of working in which we would talk with our
users. Rather than writing things down, passing them back and forth, and
negotiating while the clock ran out, we talked. We’d draw screen samples on
paper, sometimes we’d prototype, often we’d code a little and then show the
intended users what we’d coded. At least once a month we’d grab a representa-
tive set of users and show them exactly what had been coded. By staying close
to our users and by showing them progress in small pieces, we had found a way
to be successful without the beautiful requirements documents.

Still, T felt guilty that we weren’t doing things the way I thought we were sup-
posed to.

In 1999 Kent Beck’s revolutionary little book, Extreme Programming
Explained: Embrace Change, was released. Overnight all of my guilt went
away. Here was someone saying it was OK for developers and customers to talk
rather than write, negotiate, and then write some more. Kent clarified a lot of
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INTRODUCTION

things and gave me many new ways of working. But, most importantly, he justi-
fied what I’d learned from my own experience.

Extensive upfront requirements gathering and documentation can kill a
project in many ways. One of the most common is when the requirements doc-
ument itself becomes a goal. A requirements document should be written only
when it helps achieve the real goal of delivering some software.

A second way that extensive upfront requirements gathering and documen-
tation can kill a project is through the inaccuracies of written language. I
remember many years ago being told a story about a child at bath time. The
child’s father has filled the bath tub and is helping his child into the water. The
young child, probably two or three years old, dips a toe in the water, quickly
removes it, and tells her father “make it warmer.” The father puts his hand into
the water and is surprised to find that, rather than too cold, the water is already
warmer than what his daughter is used to.

After thinking about his child’s request for a moment, the father realizes they
are miscommunicating and are using the same words to mean different things.
The child’s request to “make it warmer” is interpreted by any adult to be the
same as “increase the temperature.” To the child, however, “make it warmer”
meant “make it closer to the temperature I call warm.”

Words, especially when written, are a very thin medium through which to
express requirements for something as complex as software. With their ability
to be misinterpreted we need to replace written words with frequent conversa-
tions between developers, customers, and users. User stories provide us with a
way of having just enough written down that we don’t forget and that we can
estimate and plan while also encouraging this time of communication.

By the time you’ve finished the first part of this book you will be ready to
begin the shift away from rigorously writing down every last requirement
detail. By the time you’ve finished the book you will know everything necessary
to implement a story-driven process in your environment. This book is orga-
nized in four parts and two appendices.

e Part I: Getting Started—A description of everything you need to know to
get started writing stories foday. One of the goals of user stories is to get
people talking rather than writing. It is the goal of Part I to get you talking
as soon as possible. The first chapter provides an overview of what a user
story is and how you’ll use stories. The next chapters in Part I provide
additional detail on writing user stories, gathering stories through user
role modeling, writing stories when you don’t have access to real end
users, and testing user stories. Part I concludes with a chapter providing
guidelines that will improve your user stories.
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e Part II: Estimating and Planning—Equipped with a collection of user sto-
ries, one of the first things we often need to answer is “How long will it
take to develop?” The chapters of Part II cover how to estimate stories in
story points, how to plan a release over a three- to six-month time hori-
zon, how to plan an ensuing iteration in more detail, and, finally, how to
measure progress and assess whether the project is progressing as you’d

like.

e Part III: Frequently Discussed Topics—Part III starts by describing how
stories differ from requirements alternatives such as use cases, software
requirements specifications, and interaction design scenarios. The next
chapters in Part III look at the unique advantages of user stories, how to
tell when something is going wrong, and how to adapt the agile process
Scrum to use stories. The final chapter of Part III looks at a variety of
smaller issues such as whether to writes stories on paper note cards or in a
software system and how to handle nonfunctional requirements.

e Part IV: An Example—An extended example intended to help bring every-
thing together. If we’re to make the claim that developers can best under-
stand user’s needs through stories then it is important to conclude this
book with an extended story showing all aspects of user stories brought
together in one example.

e Part V: Appendices—User stories originate in Extreme Programming. You
do not need to be familiar with Extreme Programming in order to read
this book. However, a brief introduction to Extreme Programming is pro-
vided in Appendix A. Appendix B contains answers to the questions that
conclude the chapters.
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Chapter 3

User Role Modeling

On many projects, stories are written as though there is only one type of user.
All stories are written from the perspective of that user type. This simplification
is a fallacy and can lead a team to miss stories for users who do not fit the gen-
eral mold of the system’s primary user type. The disciplines of usage-centered
design (Constantine and Lockwood 1999) and interaction design (Cooper
1999) teach us the benefits of identifying user roles and personas prior to writ-
ing stories. In this chapter we will look at user roles, role modeling, user role
maps, and personas and show how taking these initial steps leads to better sto-
ries and better software.

User Roles!

Suppose we are building the BigMoneyJobs job posting and search site. This
type of site will have many different types of users. When we talk about user
stories, who is the user we’re talking about? Are we talking about Ashish who
has a job but always keeps an eye out for a better one? Are we talking about
Laura, a new college graduate looking for her first professional job? Are we
talking about Allan, who has decided he’ll take any job that lets him move to
Maui and windsurf every afternoon? Or are we talking about Scott, who
doesn’t hate his job but has realized it’s time to move on? Perhaps we’re talking
about Kindra who was laid off six months ago and was looking for a great job
but will now take anything in the northeastern United States.

Or should we think of the user as coming from one of the companies posting
the jobs? Perhaps the user is Mario, who works in human resources and posts

1.  Much of the discussion of user roles in this chapter is based on the work of Larry
Constantine and Lucy Lockwood. Further information on user role modeling is available
at their website at www.foruse.com or in Software for Use (1999).
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new job openings. Perhaps the user is Delaney, who also works in human
resources but is responsible for reviewing resumes. Or perhaps the user is
Savannah, who works as an independent recruiter and is looking for both good
jobs and good people.

Clearly we cannot write stories from a single perspective and have those sto-
ries reflect the experiences, backgrounds and goals of each of these users. Ash-
ish, an accountant, may look at the site once a month just to keep his options
open. Allan, a waiter, may want to create a filter to notify him any time any job
on Maui gets posted but he won’t be able to do that unless we make it easy.
Kindra may spend hours each day looking for a job, broadening her search as
time goes by. If Mario and Delaney work for a large company with many posi-
tions to fill, they may spend four or more hours a day on the site.

While each user comes to your software with a different background and
with different goals, it is still possible to aggregate individual users and think of
them in terms of user roles. A user role is a collection of defining attributes that
characterize a population of users and their intended interactions with the sys-
tem. So, we could look at the users in the preceding example and group them
into roles as shown in Table 3.1 into roles this way.

Table 3.1 One possible list of roles for the BigMoneyJobs project.

Role Who

Job Seeker Scott

First Timer Laura

Layoff Victim Kindra
Geographic Searcher Allan

Monitor Ashish

Job Poster Mario, Savannah
Resume Reader Delaney, Savannah

Naturally, there will be some overlap between different user roles. The Job
Seeker, First Timer, Layoff Victim, Geographic Searcher, and Monitor roles will
all use the job search features of the site. They may use them in different ways
and at different frequencies, but much of how they use the system will be simi-
lar. The Resume Reader and Job Poster roles will probably overlap as well since
these roles are both pursuing the same goal of finding good candidates.

Table 3.1 does not show the only possible way to group users of BigMoney-
Jobs into roles. For example, we could choose to include roles like Part-Timer,
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Full-Timer and Contractor. In the rest of this chapter we’ll look at how to come
up with a list of roles and how to refine that list so that it is useful.

Role Modeling Steps

We will use the following steps to identify and select a useful set of user roles:
¢ brainstorm an initial set of user roles
¢ organize the initial set
¢ consolidate roles
e refine the roles

Each of these steps is discussed in the following sections.

Brainstorming an Initial Set of User Roles

To identify user roles, the customer and as many of the developers as possible
meet in a room with either a large table or a wall to which they can tape or pin
cards. It’s always ideal to include the full team for the user role modeling that
initiates a project but it’s not necessary. As long as a reasonable representation
of the developers is present along with the customer, you can have a successful
session.

Each participant grabs a stack of note cards from a pile placed in the middle
of the table. (Even if you plan to store the user roles electronically you should
start by writing them on cards.) Start with everyone writing role names on
cards and then placing them on a table, or taping or pinning them to a wall.

When a new role card is placed, the author says the name of the new role
and nothing more. Since this is a brainstorming session, there is no dicsussion
of the cards or evaluation of the roles. Rather, each person writes as many cards
as he or she can think of. There are no turns, you don’t go around the table ask-
ing for new roles. Each participant just writes a card whenever she thinks of a
new role.

While brainstorming roles, the room will be filled with sounds of pens
scratching on cards and will be punctuated by someone occasionally placing a
new card and reading the name of the role. Continue until progress stalls and
participants are having a hard time thinking up new roles. At that point you
may not have identified all of the roles but you’re close enough. Rarely does
this need to last longer than fifteen minutes.
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v v

A User Role Is One User

When brainstorming a project’s roles, stick to identifying roles that represent a sin-
gle user. For example, for the BigMoneyJobs project it may be tempting to write sto-
ries such as “A company can post a job opening.” However, since a company as a
whole cannot use the software, the story will be better if it refers to a role that repre-
sents an individual.

A A

Organizing the Initial Set

Once the group has finished identify roles, it’s time to organize them. To do
this, cards are moved around on the table or wall so that their positions indi-
cate the relationships between the roles. Overlapping roles are placed so that
their cards overlap. If the roles overlap a little, overlap the cards a little. If the
roles overlap entirely, overlap the cards entirely. An example is shown in
Figure 3.1.

College Grad

Job Poster Resume Reader
First Timer

Layoff Victim

Recruiter

Geographic
Searcher

Job Seeker

Monitor Administrator

Figure 3.1 Organizing the user role cards on a table.

Figure 3.1 shows that the College Grad and First Timer, as those roles were
intended by their card writers, overlap signficantly. There’s less but similar
overlap among the other cards representing people who will use the site to
search for jobs. The Monitor role card is shown with only a slight overlap
because that role refers to someone who is relatively happy in her current job
but likes to keep her eyes open.

To the right of the job-seeking roles in Figure 3.1 are the Job Poster,
Recruiter, and Resume Reader role cards. The Recruiter role is shown overlap-
ping both Job Poster and Resume Reader because a recruiter will both post ads
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and read resumes. An Administrator role is shown also. This role represents
users internal to BigMoneyJobs who will support the system.

v v

System Roles

As much as you can, stick with user roles that define people, as opposed to other
systems. If you think it will help, then identify an occasional non-human user role.
However, the purpose of identifying user roles is to make sure that we think really
hard about the users that we absolutely, positively must satisfy with the new system.
We don’t need user roles for every conceivable user of the system, but we need roles
for the ones who can make or break the success of the project. Since other systems
are rarely purchasers of our system, they can rarely make or break the success of
our system. Naturally, there can be exceptions to this and if you feel that adding a
non-human user role helps you think about your system, then add it.

A A

Consolidating Roles

After the roles have been grouped, try to consolidate and condense the roles.
Start with cards that are entirely overlapping. The authors of overlapping cards
describe what they meant by those role names. After a brief discusson the group
decides if the roles are equivalent. If equivalent, the roles can either be consoli-
dated into a single role (perhaps taking its name from the two initial roles), or
one of the initial role cards can be ripped up.

In Figure 3.1 the College Grad and First Timer roles are shown as heavily
overlapping. The group decides to rip up the College Grad card since any sto-
ries for that user role would likely be identical to stories for a First Timer. Even
though First Timer, Layoff Victim, Geographic Searcher and Job Seeker have
significant overlap, the group decides that each represents a constituency that
will be important to satisfy and the roles will have important but subtly differ-
ent goals for how they use the BigMoneyJobs website.

When they look at the right side of Figure 3.1, the group decides that it is not
worth distinguishing between a Job Poster and a Resume Reader. They decide
that a Recruiter covers these two roles adequately and those cards are ripped
up. However, the group decides that there are differences between an Internal
Recruiter (working for a specific company) and an External Recruiter (match-
ing candidates to jobs at any company). They create new cards for Internal
Recruiter and External Recruiter, and consider these as specialized versions of
the Recruiter role.



UserR ROLE MODELING

In addition to consolidating overlapping roles, the group should also rip up
any role cards for roles that are unimportant to the success of the system. For
example, the Monitor role card represents someone who is just keeping an eye
on the job market. A Monitor may not switch jobs for three years. BigMoney-
Jobs can probably do quite well without paying attention to that user role.
They decide they will be better off focusing on the roles that will be important
to the success of the company, such as Job Seeker and the Recruiter roles.

After the team has consolidated the cards, they are arranged on the table or
wall to show relationships between the roles. Figure 3.2 shows one of many
possible layouts for the BigMoneyJobs role cards. Here a generic role, such as
Job Seeker or Recruiter, is positioned above specialized versions of that role.
Alternatively, cards can be stacked or positioned in any other way that the
group desires in order to show whatever relationships they think are important.

Job Seeker Recruiter Administrator
Layoff Victim Internal Recruiter
Geographic External
Searcher Recruiter
First Timer

Figure 3.2 The consolidated role cards.

Refining the Roles

Once we’ve consolidated roles and have a basic understanding for how the
roles relate to each other, it is possible to model those roles by defining
attributes of each role. A role attribute is a fact or bit of useful information
about the users who fulfill the role. Any information about the user roles that
distinguishes one role from another may be used as a role attribute. Here are
some attributes worth considering when preparing any role model:
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The frequency with which the user will use the software.

e The user’s level of expertise with the domain.

® The user’s general level of proficiency with computers and software.

The user’s level of proficiency with the software being developed.

¢ The user’s general goal for using the software. Some users are after conve-
nience, others favor a rich experience, and so on.

Beyond these standard attributes you should consider the software being
built and see if there are any attributes that might be useful in describing its
users. For instance, for the BigMoneyJobs website you may want to consider
whether the user role will be looking for a part-time or full-time job.

As you identify interesting attributes for a role, write notes on the role card.
When finished, you can hang the role cards in a common area used by the team
so they can be used as reminders. A sample user role card is shown in
Figure 3.3.

User Role: Internal Recruiter

Not particularly computer-savwy but quite adept at using the
Web. Will use the software infrequently but intensely. Will read
ads from other companies to figure out how to best word her
ads. Ease of use is important, but more importantly what she
learns must be easily recalled months later.

Figure 3.3 A sample user role card.

Two Additional Techniques

We could stop right now if we want to. By now a team might have spent an
hour—almost certainly no more than that—and they will have put more
thought into the users of their software than probably 99% of all software
teams. Most teams should, in fact, stop at this point. However, there are two
additional techniques that are worth pointing out because they may be helpful
in thinking about users on some projects. Only use these techniques if you can
anticipate a direct, tangible benefit to the project.
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Personas

Identifying user roles is a great leap forward, but for some of the more impor-
tant user roles, it might be worth going one step further and creating a persona
for the role. A persona is an imaginary representation of a user role. Earlier in
this chapter we met Mario who is responsible for posting new job openings for
his company. Creating a persona requires more than just adding a name to a
user role. A persona should be described sufficiently that everyone on the team
feels like they know the persona. For example, Mario may be described as fol-
lows:

Mario works as a recruiter in the Personnel department of Speedy-
Networks, a manufacturer of high-end networking components.
He’s worked for SpeedyNetworks six years. Mario has a flex-time
arrangement and works from home every Friday. Mario is very
strong with computers and considers himself a power user of just
about all the products he uses. Mario’s wife, Kim, is finishing her
Ph.D. in chemistry at Stanford University. Because SpeedyNet-
works has been growing almost consistently, Mario is always
looking for good engineers.

If you choose to create personas for your project, be careful that enough
market and demographic research has been done that the personas chosen truly
represent the product’s target audience.

This persona description gives us a good introduction to Mario. However,
nothing speaks as loudly as a picture, so you should also find a picture of Mario
and include that with the persona definition. You can get photographs all over
the web or you can cut one from a magazine. A solid persona definition com-
bined with a photograph will give everyone on the team a thorough introduc-
tion to the persona.

Most persona definitions are too long to fit on a note card, so I suggest you
write them on a piece of paper and hang them in the team’s common space. You
do not need to write persona definitions for every user role. You may, however,
think about writing a persona definition for one or two of the primary user
roles. If the system you are building is such that it is absolutely vital that the
product satisfy one or two user roles, then those user roles are candidates for
expansion into personas.

Stories become much more expressive when put in terms of a user role or
persona. After you have identified user roles and possibly a persona or two, you
can begin to speak in terms of roles and personas instead of the more generic
“the user.” Rather than writing stories like “A user can restrict job searches to
specific geographic regions” you can write “A Geographic Searcher can restrict
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his job searches to a specific geographic region.” Hopefully writing a story this
way reminds the team about Allan who is looking for any job on Maui. Writing
some stories with user role or persona names does not mean that other roles
cannot perform those stories; rather, it means that there is some benefit in
thinking about a specific user role or persona when discussing or coding the
story.

Extreme Characters

Djajadiningrat and co-authors (2000) have proposed a second technique you
might want to think about: the use of extreme characters when considering the
design of a new system. They describe an example of designing a Personal Digi-
tal Assistant (PDA) handheld computer. They advise that instead of designing
solely for a typical sharp-dressed, BMW-driving management consultant, the
system designers should consider users with exaggerated personalities. Spefi-
cially, the authors suggest designing the PDA for a drug dealer, the Pope, and a
twenty-year-old woman who is juggling multiple boyfriends.

It is very possible that considering extreme characters will lead you to stories
you would be likely to miss otherwise. For example, it is easy to imagine that
the drug dealer and a woman with several boyfriends may each want to main-
tain multiple separate schedules in case the PDA is seen by the police or a boy-
friend. The Pope probably has less need for secrecy but may want a larger font
size.

So, while extreme characters may lead to new stories, it is hard to know
whether those stories will be ones that should be included in the product. It is
probably not worth much investment in time, but you might want to experi-
ment with extreme characters. At a minimum, you can have a few minutes of
fun thinking about how the Pope might use your software and it just may lead
to an insight or two.

What If I Have On-Site Users?

The user role modeling techniques described in this chapter are still useful
even if you have real, live users in your building. Working with real users will
strongly improve your likelihood of delivering the desired software. However,
even with real users there is no guarantee that you have the right users or the
right mix of users.
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To decrease the likelihood of failing to satisfy important users, you should
do some simple role modeling on projects even when you have available inter-
nal users.

Summary

Most project teams consider only a single type of user. This leads to soft-
ware that ignores the needs of at least some user types.

To avoid writing all stories from the perspective of a single user, identify
the different user roles who will interact with the software.

By defining relevant attributes for each user role, you can better see the
differences between roles.

Some user roles benefit from being described by personas. A persona is an
imaginary representation of a user role. The persona is given a name, a
face, and enough relevant details to make them seem real to the project
members.

For some applications, extreme characters may be helpful in looking for
stories that would otherwise be missed.

Developer Responsibilities

You are responsible for participating in the process of identifying user
roles and personas.

You are responsible for understanding each of the user roles or personas
and how they differ.

While developing the software, you are responsible for thinking about
how different user roles may prefer the software to behave.

You are responsible for making sure that identifying and describing user
roles does not go beyond its role as a tool in the process.
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Customer Responsibilities

® You are responsible for looking broadly across the space of possible users
and identifying appropriate user roles.

® You are responsible for participating in the process of identifying user
roles and personas.

® You are responsible for ensuring that the software does not focus inappro-
priately on a subset of users.

® When writing stories you will be responsible for ensuring that each story
can be associated with at least one user role or persona.

e While developing the software, you are responsible for thinking about
how different user roles may prefer the software to behave.

® You are responsible for making sure that identifying and describing user
roles does not go beyond its role as a tool in the process.

Questions

3.1  Take a look at the eBay website. What user roles can you identify?

3.2 Consolidate the roles you came up with in the previous question and
show how you would lay out the role cards. Explain your answer.

3.3  Write persona descriptions for the one most important user role.
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identifying, 33

INDEX

identifying roles that repre-
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