
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321193681
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321193681
https://plusone.google.com/share?url=http://www.informit.com/title/9780321193681
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321193681
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321193681/Free-Sample-Chapter

Praise for UML Distilled

“UML Distilled remains the best introduction to UML notation. Martin’s agile
and pragmatic approach hits the sweet spot, and I wholeheartedly recommend
it!”

—Craig Larman
Author of Applying UML and Patterns

“Fowler cuts through the complexity of UML to get users started quickly.”

—Jim Rumbaugh
Author and originator of UML

“Martin Fowler’s UML Distilled is an excellent way to get started with UML.
In fact for most users, UML Distilled contains all you need to apply UML suc-
cessfully. As Martin points out, UML can be used in many ways, but the most
common is as a widely recognized notation for sketching designs. This book
does an excellent job of distilling the essence of UML. Highly recommended.”

—Steve Cook
Software Architect
Microsoft Corporation

“Short books on UML are better than long books on UML. This is still the best
short book on UML. In fact, it’s the best short book on many subjects.”

—Alistair Cockburn
Author and President, Humans and Technology

“The book is immensely useful, readable, and—one of its great virtues—
delightfully concise for the immense scope of its subject. If you only buy one
book on UML, this should be it.”

—Andy Carmichael
BetterSoftwareFaster, Ltd.

“If you’re using UML, this book should never be out of reach.”

—John Crupi
Distinguished Engineer, Sun Microsystems
Coauthor of Core J2EE™ Patterns

“Anyone doing UML modeling, learning UML, reading UML, or building
UML tools should have this latest edition. (I own all editions.) There is lots of
good, useful information; generally, just enough to be useful, but not too much
to be dry. It’s a must-have reference for my bookshelf!”

—Jon Kern
Modeler

“This is a great starting point for learning the fundamentals of the UML.”

—Scott W. Ambler
Author of Agile Modeling

“An eminently sensible description of UML and its usage, with enough humor to
hold one’s attention. ‘The swimming metaphor no longer holds water’ indeed!”

—Stephen J. Mellor
Coauthor of Executable UML

“This is the perfect book for those who want to use the UML but aren’t inter-
ested in reading thick UML reference books and research papers. Martin
Fowler selects all the critical techniques needed to use the UML for design
sketches, freeing the reader from complex and rarely used UML features. Read-
ers will find no shortage of suggestions for further reading. He gives the reader
advice based on experience. It’s a concise and readable book covering the essen-
tial aspects of the UML and related object-oriented concepts.”

—Pavel Hruby
Microsoft Business Solutions

“Like all good software developers, Fowler improves his product with each iter-
ation. This is the only book I consider when teaching a class involving UML or
if asked to recommend one that can be used to learn it.”

—Charles Ashbacher
President/CEO, Charles Ashbacher Technologies

“More books should be like UML Distilled—concise and readable. Martin
Fowler selects the parts of UML that you need, and presents them in an easy to
read style. More valuable than a mere description of the modeling language,
however, is the author’s insight and experience in how to use this technique to
communicate and document design.”

—Rob Purser
Purser Consulting, LLC.

UML Distilled
Third Edition

UML Distilled
Third Edition

A Brief Guide to the Standard
Object Modeling Language

Martin Fowler

Boston • San Francisco • New York • Toronto • Montreal
London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and Addison-
Wesley was aware of a trademark claim, the designations have been printed with initial
capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportuni-
ties (which may include electronic versions; custom cover designs; and content particular
to your business, training goals, marketing focus, or branding interests), please contact
our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Fowler, Martin, 1963–
UML distilled : a brief guide to the standard object modeling language / Martin

Fowler.—3rd ed.
p. cm.

Includes bibliographical references and index.
ISBN 0-321-19368-7 (alk. paper)
1. Object-oriented methods (Computer science) 2. Computer software—

Development. 3. UML (Computer science) I. Title.

QA76.9.O35F695 2003
005.1'7—dc22 2003057759

Copyright © 2004 by Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, request forms and the appropriate contacts within the Pearson Education
Global Rights & Permissions Department, please visit www.pearsoned.com/permissions/.

ISBN-13: 978-0-321-19368-1
ISBN-10: 0-321-19368-7

22 17

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw
http://www.pearsoned.com/permissions/

For Cindy

This page intentionally left blank

xi

Contents

List of Figures .xvii

Foreword to the Third Edition . xxi

Foreword to the First Edition . xxiii

Preface . xxv

Why Bother with the UML? . xxvi
Structure of the Book .xxvii
Changes for the Third Edition .xxvii
Acknowledgments . xxviii

Chapter 1: Introduction . 1

What Is the UML? .1
Ways of Using the UML .2
How We Got to the UML .7
Notations and Meta-Models .9
UML Diagrams .10
What Is Legal UML? .13
The Meaning of UML .14
UML Is Not Enough .14
Where to Start with the UML .16
Where to Find Out More .16

Chapter 2: Development Process . 19

Iterative and Waterfall Processes .19
Predictive and Adaptive Planning .23
Agile Processes .24
Rational Unified Process .25

xii CONTENTS

Fitting a Process to a Project .26
Fitting the UML into a Process .29

Requirements Analysis .29
Design .30
Documentation .31
Understanding Legacy Code .32

Choosing a Development Process .33
Where to Find Out More .33

Chapter 3: Class Diagrams: The Essentials . 35

Properties .35
Attributes .36
Associations .37

Multiplicity .38
Programming Interpretation of Properties .39
Bidirectional Associations .41
Operations .43
Generalization .45
Notes and Comments .46
Dependency .47
Constraint Rules .49
When to Use Class Diagrams .51
Where to Find Out More .52

Chapter 4: Sequence Diagrams . 53

Creating and Deleting Participants .56
Loops, Conditionals, and the Like .57
Synchronous and Asynchronous Calls .61
When to Use Sequence Diagrams .61

Chapter 5: Class Diagrams: Advanced Concepts . 65

Keywords .65
Responsibilities .66
Static Operations and Attributes .66
Aggregation and Composition .67
Derived Properties .68
Interfaces and Abstract Classes .69
Read-Only and Frozen .72
Reference Objects and Value Objects .73

CONTENTS xiii

Qualified Associations .74
Classification and Generalization .75
Multiple and Dynamic Classification .76
Association Class .78
Template (Parameterized) Class .81
Enumerations .82
Active Class .83
Visibility .83
Messages .84

Chapter 6: Object Diagrams . 87

When to Use Object Diagrams .87

Chapter 7: Package Diagrams . 89

Packages and Dependencies .91
Package Aspects .93
Implementing Packages .94
When to Use Package Diagrams .95
Where to Find Out More .95

Chapter 8: Deployment Diagrams . 97

When to Use Deployment Diagrams .98

Chapter 9: Use Cases . 99

Content of a Use Case .100
Use Case Diagrams .102
Levels of Use Cases .103
Use Cases and Features (or Stories) .104
When to Use Use Cases .104
Where to Find Out More .105

Chapter 10: State Machine Diagrams. 107

Internal Activities .109
Activity States .109
Superstates .110
Concurrent States .111
Implementing State Diagrams .111
When to Use State Diagrams .114
Where to Find Out More .115

xiv CONTENTS

Chapter 11: Activity Diagrams . 117

Decomposing an Action .119
Partitions .120
Signals .121
Tokens .124
Flows and Edges .124
Pins and Transformations .125
Expansion Regions .126
Flow Final .127
Join Specifications .128
And There’s More .129
When to Use Activity Diagrams .129
Where to Find Out More .130

Chapter 12: Communication Diagrams . 131

When to Use Communication Diagrams .133

Chapter 13: Composite Structures . 135

When to Use Composite Structures .137

Chapter 14: Component Diagrams . 139

When to Use Component Diagrams .141

Chapter 15: Collaborations . 143

When to Use Collaborations .146

Chapter 16: Interaction Overview Diagrams . 147

When to Use Interaction Overview Diagrams147

Chapter 17: Timing Diagrams . 149

When to Use Timing Diagrams .150

Appendix: Changes between UML Versions . 151

Revisions to the UML .151
Changes in UML Distilled .152
Changes from UML 1.0 to 1.1 .153

Type and Implementation Class .153
Complete and Incomplete Discriminator Constraints154
Composition .154
Immutability and Frozen .154

CONTENTS xv

Returns on Sequence Diagrams .154
Use of the Term “Role” .155

Changes from UML 1.2 (and 1.1) to 1.3 (and 1.5)155
Use Cases .155
Activity Diagrams .156

Changes from UML 1.3 to 1.4 .157
Changes from UML 1.4. to 1.5 .157
From UML 1.x to UML 2.0 .157

Class Diagrams: The Essentials (Chapter 3)158
Sequence Diagrams (Chapter 4) .158
Class Diagrams: Concepts (Chapter 5) .158
State Machine Diagrams (Chapter 10) .159
Activity Diagrams (Chapter 11) .159

Bibliography . 161

Index .167

This page intentionally left blank

xvii

List of Figures

Figure 1.1: A small piece of the UML meta-model10
Figure 1.2: Classification of UML diagram types .12
Figure 1.3: An informal screen flow diagram for part

of the wiki (http://c2.com/cgi/wiki) .15

Figure 3.1: A simple class diagram .36
Figure 3.2: Showing properties of an order as attributes 37
Figure 3.3: Showing properties of an order as associations38
Figure 3.4: A bidirectional association .42
Figure 3.5: Using a verb phrase to name an association 42
Figure 3.6: A note is used as a comment on

one or more diagram elements .46
Figure 3.7: Example dependencies .47

Figure 4.1: A sequence diagram for centralized control 54
Figure 4.2: A sequence diagram for distributed control 55
Figure 4.3: Creation and deletion of participants .57
Figure 4.4: Interaction frames .58
Figure 4.5: Older conventions for control logic .60
Figure 4.6: A sample CRC card .62

Figure 5.1: Showing responsibilities in a class diagram67
Figure 5.2: Static notation .67
Figure 5.3: Aggregation .68
Figure 5.4: Composition .68
Figure 5.5: Derived attribute in a time period .69
Figure 5.6: A Java example of interfaces and an abstract class70
Figure 5.7: Ball-and-socket notation .71
Figure 5.8: Older dependencies with lollipops .72
Figure 5.9: Using a lollipop to show polymorphism

in a sequence diagram .73

http://c2.com/cgi/wiki

xviii LIST OF FIGURES

Figure 5.10: Qualified association .75
Figure 5.11: Multiple classification .77
Figure 5.12: Association class .78
Figure 5.13: Promoting an association class to a full class 78
Figure 5.14: Association class subtleties (Role should probably

not be an association class) .79
Figure 5.15: Using a class for a temporal relationship 80
Figure 5.16: «Temporal» keyword for associations .80
Figure 5.17: Template class .81
Figure 5.18: Bound element (version 1) .82
Figure 5.19: Bound element (version 2) .82
Figure 5.20: Enumeration .83
Figure 5.21: Active class .83
Figure 5.22: Classes with messages .84

Figure 6.1: Class diagram of Party composition structure 88
Figure 6.2: Object diagram showing example instances of Party 88

Figure 7.1: Ways of showing packages on diagrams90
Figure 7.2: Package diagram for an enterprise application92
Figure 7.3: Separating Figure 7.2 into two aspects93
Figure 7.4: A package implemented by other packages94
Figure 7.5: Defining a required interface in a client package95

Figure 8.1: Example deployment diagram .98

Figure 9.1: Example use case text .101
Figure 9.2: Use case diagram .103

Figure 10.1: A simple state machine diagram .108
Figure 10.2: Internal events shown with the typing state

of a text field .109
Figure 10.3: A state with an activity .110
Figure 10.4: Superstate with nested substates .111
Figure 10.5: Concurrent orthogonal states .112
Figure 10.6: A C# nested switch to handle the state

transition from Figure 10.1 .113
Figure 10.7: A State pattern implementation for Figure 10.1 114

Figure 11.1: A simple activity diagram .118
Figure 11.2: A subsidiary activity diagram .120

LIST OF FIGURES xix

Figure 11.3: The activity of Figure 11.1 modified
to call Figure 11.2 .121

Figure 11.4: Partitions on an activity diagram .122
Figure 11.5: Signals on an activity diagram .123
Figure 11.6: Sending and receiving signals .123
Figure 11.7: Four ways of showing an edge .125
Figure 11.8: Transformation on a flow .126
Figure 11.9: Expansion region .127
Figure 11.10: Shorthand for a single action in an expansion region127
Figure 11.11: Flow finals in an activity .128
Figure 11.12: Join specification .129

Figure 12.1: Communication diagram for centralized control 132
Figure 12.2: Communication diagram with nested

decimal numbering .132

Figure 13.1: Two ways of showing a TV viewer and its interfaces 136
Figure 13.2: Internal view of a component

(example suggested by Jim Rumbaugh) 136
Figure 13.3: A component with multiple ports .137

Figure 14.1: Notation for components .140
Figure 14.2: An example component diagram .140

Figure 15.1: A collaboration with its class diagram of roles144
Figure 15.2: A sequence diagram for the auction collaboration 144
Figure 15.3: A collaboration occurrence .145
Figure 15.4: A nonstandard way of showing pattern

use in JUnit (junit.org) .145

Figure 16.1: Interaction summary diagram .148

Figure 17.1: Timing diagram showing states as lines 150
Figure 17.2: Timing diagram showing states as areas150

http://junit.org

This page intentionally left blank

xxi

Foreword to
the Third Edition

Since ancient times, the most talented architects and the most gifted designers
have known the law of parsimony. Whether it is stated as a paradox (“less is
more”), or a koan (“Zen mind is beginner’s mind”), its wisdom is timeless:
Reduce everything to its essence so that form harmonizes with function. From
the pyramids to the Sydney Opera House, from von Neumann architectures to
UNIX and Smalltalk, the best architects and designers have strived to follow
this universal and eternal principle.

Recognizing the value of shaving with Occam’s Razor, when I architect and
read I seek projects and books that adhere to the law of parsimony. Conse-
quently, I applaud the book you are reading now.

You may find my last remark surprising at first. I am frequently associated
with the voluminous and dense specifications that define the Unified Modeling
Language (UML). These specifications allow tool vendors to implement the UML
and methodologists to apply it. For seven years, I have chaired large international
standardization teams to specify UML 1.1 and UML 2.0, as well as several minor
revisions in between. During this time, the UML has matured in expressiveness
and precision, but it has also added gratuitous complexity as a result of the stan-
dardization process. Regrettably, standardization processes are better known for
design-by-committee compromises than parsimonious elegance.

What can a UML expert familiar with the arcane minutiae of the specifica-
tion learn from Martin’s distillation of UML 2.0? Quite a bit, as can you. To
start with, Martin adroitly reduces a large and complex language into a prag-
matic subset that he has proven effective in his practice. He has resisted the easy
route of tacking on additional pages to the last edition of his book. As the lan-
guage has grown, Martin has kept true to his goal of seeking the “fraction of
UML that is most useful” and telling you just that. The fraction he refers to is

xxii FOREWORD TO THE THIRD EDITION

the mythical 20 percent of UML that helps you do 80 percent of your work.
Capturing and taming this elusive beast is no mean accomplishment!

It is even more impressive that Martin achieves this goal while writing in a
wonderfully engaging conversational style. By sharing his opinions and anec-
dotes with us, he makes this book fun to read and reminds us that architecting
and designing systems should be both creative and productive. If we pursue the
parsimony koan to its full intent, we should find UML modeling projects to be
as enjoyable as we found finger-painting and drawing classes in grammar
school. UML should be a lightning rod for our creativity as well as a laser for
precisely specifying system blueprints so that third parties can bid and build
those systems. The latter is the acid test for any bona fide blueprint language.

So, while this may be a small book, it is not a trivial one. You can learn as
much from Martin’s approach to modeling as you can learn from his explana-
tions of UML 2.0.

I have enjoyed working with Martin to improve the selection and correctness
of the UML 2.0 language features explained in this revision. We need to keep in
mind that all living languages, both natural and synthetic, must evolve or per-
ish. Martin’s choices of new features, along with your preferences and those of
other practitioners, are a crucial part of the UML revision process. They keep
the language vital and help it evolve via natural selection in the marketplace.

Much challenging work remains before model-driven development becomes
mainstream, but I am encouraged by books like this that explain UML model-
ing basics clearly and apply them pragmatically. I hope you will learn from it as
I have and will use your new insights to improve your own software modeling
practices.

Cris Kobryn
Chair, U2 Partners’ UML 2.0 Submission Team
Chief Technologist, Telelogic

xxiii

Foreword to
the First Edition

When we began to craft the Unified Modeling Language, we hoped that we
could produce a standard means of expressing design that would not only
reflect the best practices of industry, but would also help demystify the process
of software system modeling. We believed that the availability of a standard
modeling language would encourage more developers to model their software
systems before building them. The rapid and widespread adoption of the UML
demonstrates that the benefits of modeling are indeed well known to the devel-
oper community.

The creation of the UML was itself an iterative and incremental process very
similar to the modeling of a large software system. The end result is a standard
built on, and reflective of, the many ideas and contributions made by numerous
individuals and companies from the object community. We began the UML
effort, but many others helped bring it to a successful conclusion; we are grate-
ful for their contribution.

Creating and agreeing on a standard modeling language is a significant chal-
lenge by itself. Educating the development community, and presenting the UML
in a manner that is both accessible and in the context of the software develop-
ment process, is also a significant challenge. In this deceptively short book,
updated to reflect the most recent changes to the UML, Martin Fowler has
more than met this challenge.

In a clear and friendly style, Martin not only introduces the key aspects of
UML, but also clearly demonstrates the role UML plays in the development
process. Along the way, we are treated to abundant nuggets of modeling
insight and wisdom drawn from Martin’s 12-plus years of design and model-
ing experience.

xxiv FOREWORD TO THE FIRST EDITION

The result is a book that has introduced many thousands of developers to
UML, whetting their appetite to further explore the many benefits of modeling
with this now standard modeling language.

We recommend the book to any modeler or developer interested in getting a
first look at UML and in gaining a perspective on the key role it plays in the
development process.

Grady Booch
Ivar Jacobson
James Rumbaugh

xxv

Preface

I’ve been lucky in a lot of ways in my life; one of my great strokes of fortune
was being in the right place with the right knowledge to write the first edition of
this book in 1997. Back then, the chaotic world of object-oriented (OO) model-
ing was just beginning to unify under the Unified Modeling Language (UML).
Since then, the UML has become the standard for the graphical modeling of
software, not just for objects. My fortune is that this book has been the most
popular book on the UML, selling more than a quarter of a million copies.

Well, that’s very nice for me, but should you buy this book?
I like to stress that this is a brief book. It’s not intended to give you the details

on every facet of the UML, which has grown and grown over the years. My
intention is to find that fraction of the UML that is most useful and tell you just
that. Although a bigger book gives you more detail, it also takes longer to read.
And your time is the biggest investment you’ll make in a book. By keeping this
book small, I’ve spent the time selecting the best bits to save you from having to
do that selection yourself. (Sadly, being smaller doesn’t mean proportionately
cheaper; there is a certain fixed cost to producing a quality technical book.)

One reason to have this book is to begin to learn about the UML. Because
this is a short book, it will quickly get you up to speed on the essentials of the
UML. With that under your belt, you can go into more detail on the UML with
the bigger books, such as the User Guide [Booch, UML user] or the Reference
Manual [Rumbaugh, UML Reference].

This book can also act as a handy reference to the most common parts of the
UML. Although the book doesn’t cover everything, it’s a lot lighter to carry
around than most other UML books.

It’s also an opinionated book. I’ve been working with objects for a long time
now, and I have definite ideas about what works and what doesn’t. Any book
reflects the opinions of the author, and I don’t try to hide mine. So if you’re
looking for something that has a flavor of objectivity, you might want to try
something else.

xxvi PREFACE

Although many people have told me that this book is a good introduction to
objects, I didn’t write it with that in mind. If you are after an introduction to OO
design, I suggest Craig Larman’s book [Larman].

Many people who are interested in the UML are using tools. This book con-
centrates on the standard and on conventional usage of the UML and doesn’t
get into the details of what various tools support. Although the UML did
resolve the tower of Babel of pre-UML notations, many annoying differences
remain between what tools show and allow when drawing UML diagrams.

I don’t say much in this book about Model Driven Architecture (MDA).
Although many people consider the two to be the same thing, many developers
use the UML without being interested in MDA. If you want to learn more
about MDA, I would start with this book to get an overview of the UML first
and then move on to a book that’s more specific about MDA.

Although the main point of this book is the UML, I’ve also added bits of
other material about techniques, such as CRC cards, that are valuable for OO
design. The UML is just a part of what you need to succeed with objects, and I
think that it’s important to introduce you to some other techniques.

In a brief book like this, it’s impossible to go into detail about how the UML
relates to source code, particularly as there is no standard way of making that
correspondence. However, I do point out common coding techniques for imple-
menting pieces of the UML. My code examples are in Java and C#, as I’ve found
that these languages are usually the most widely understood. Don’t assume that
I prefer those languages; I’ve done too much Smalltalk for that!

Why Bother with the UML?

Graphical design notations have been with us for a while. For me, their primary
value is in communication and understanding. A good diagram can often help
communicate ideas about a design, particularly when you want to avoid a lot of
details. Diagrams can also help you understand either a software system or a
business process. As part of a team trying to figure out something, diagrams
both help understanding and communicate that understanding throughout a
team. Although they aren’t, at least yet, a replacement for textual programming
languages, they are a helpful assistant.

Many people believe that in the future, graphical techniques will play a dom-
inant role in software development. I’m more skeptical of that, but it’s certainly
useful to have an appreciation of what these notations can and can’t do.

Of these graphical notations, the UML’s importance comes from its wide use
and standardization within the OO development community. The UML has

PREFACE xxvii

become not only the dominant graphical notation within the OO world but
also a popular technique in non-OO circles.

Structure of the Book

Chapter 1 gives an introduction to the UML: what it is, the different meanings
it has to different people, and where it came from.

Chapter 2 talks about software process. Although this is strictly independent
of the UML, I think that it’s essential to understand process in order to see the
context of something like the UML. In particular, it’s important to understand
the role of iterative development, which has been the underlying approach to
process for most of the OO community.

I’ve organized the rest of the book around the diagram types within the
UML. Chapters 3 and 4 discuss the two most useful parts of the UML: class
diagrams (core) and sequence diagrams. Even though this book is slim, I believe
that you can get the most value out of the UML by using the techniques that I
talk about in these chapters. The UML is a large and growing beast, but you
don’t need all of it.

Chapter 5 goes into detail on the less essential but still useful parts of class
diagrams. Chapters 6 through 8 describe three useful diagrams that shed fur-
ther light on the structure of a system: object diagrams, package diagrams, and
deployment diagrams.

Chapters 9 through 11 show three further useful behavioral techniques: use
cases, state diagrams (although officially known as state machine diagrams, they
are generally called state diagrams), and activity diagrams. Chapters 12 through
17 are very brief and cover diagrams that are generally less important, so for
these, I’ve only provided a quick example and explanation.

The inside covers summarize the most useful parts of the notation. I’ve often
heard people say that these covers are the most valuable part of the book.
You’ll probably find it handy to refer to them as you’re reading some of the
other parts of the book.

Changes for the Third Edition

If you have earlier editions of this book, you’re probably wondering what is dif-
ferent and, more important, whether you should buy the new edition.

xxviii PREFACE

The primary trigger for the third edition was the appearance of UML 2.
UML 2 has added a lot of new stuff, including several new diagram types. Even
familiar diagrams have a lot of new notation, such as interaction frames in
sequence diagrams. If you want to be aware of what’s happened but don’t want
to wade through the specification (I certainly don’t recommend that!), this book
should give you a good overview.

I’ve also taken this opportunity to completely rewrite most of the book,
bringing the text and examples up to date. I’ve incorporated much that I’ve
learned in teaching and using the UML over the past five years. So although the
spirit of this ultrathin UML book is intact, most of the words are new.

Over the years, I’ve worked hard to keep this book as current as is possible.
As the UML has gone through its changes, I’ve done my best to keep pace. This
book is based on the UML 2 drafts that were accepted by the relevant commit-
tee in June 2003. It’s unlikely that further changes will occur between that vote
and more formal votes, so I feel that UML 2 is now stable enough for my revi-
sion to go into print. I’ll post information any further updates on my Web site
(http://martinfowler.com).

Acknowledgments

Over many years, many people have been part of the success of this book. My
first thanks go Carter Shanklin and Kendall Scott. Carter was the editor at
Addison-Wesley who suggested this book to me. Kendall Scott helped me put
together the first two editions, working over the text and graphics. Between
them, they pulled off the impossible in getting the first edition out in an impos-
sibly short time, while keeping up the high quality that people expect from
Addison-Wesley. They also kept pushing out changes during the early days of
the UML when nothing seemed stable.

Jim Odell has been my mentor and guide for much of the early part of my
career. He’s also been deeply involved with the technical and personal issues of
making opinionated methodologists settle their differences and agree to a com-
mon standard. His contribution to this book is both profound and difficult to
measure, and I bet it’s the same for the UML too.

The UML is a creature of standards, but I’m allergic to standards bodies. So
to know what’s going on, I need a network of spies who can keep me up to
date on all the machinations of the committees. Without these spies, including
Conrad Bock, Steve Cook, Cris Kobryn, Jim Odell, Guus Ramackers, and Jim

http://martinfowler.com

PREFACE xxix

Rumbaugh, I would be sunk. They’ve all given me useful tips and answered
stupid questions.

Grady Booch, Ivar Jacobson, and Jim Rumbaugh are known as the Three
Amigos. Despite the playful jibes I’ve given them over the years, they have given
me much support and encouragement with this book. Never forget that my jabs
usually sprout from fond appreciation.

Reviewers are the key to a book’s quality, and I learned from Carter that you
can never have too many reviewers. The reviewers of the previous editions of
this book were Simmi Kochhar Bhargava, Grady Booch, Eric Evans, Tom Had-
field, Ivar Jacobson, Ronald E. Jeffries, Joshua Kerievsky, Helen Klein, Jim
Odell, Jim Rumbaugh, and Vivek Salgar.

The third edition also had a fine group of reviewers:

All these reviewers spent time reading the manuscript, and every one of them
found at least one embarrassing howler. My sincere thanks to all of them. Any
howlers that remain are entirely my responsibility. I will post an errata sheet to
the books section of martinfowler.com when I find them.

The core team that designed and wrote the UML specification are Don Baisley,
Morgan Björkander, Conrad Bock, Steve Cook, Philippe Desfray, Nathan Dyk-
man, Anders Ek, David Frankel, Eran Gery, Øystein Haugen, Sridhar Iyengar,
Cris Kobryn, Birger Møller-Pedersen, James Odell, Gunnar Övergaard, Karin
Palmkvist, Guus Ramackers, Jim Rumbaugh, Bran Selic, Thomas Weigert, and
Larry Williams. Without them, I would have nothing to write about.

Pavel Hruby developed some excellent Visio templates that I use a lot for
UML diagrams; you can get them at http://phruby.com.

Many people have contacted me on the Net and in person with suggestions
and questions and to point out errors. I haven’t been able to keep track of you
all, but my thanks are no less sincere.

The people at my favorite technical bookstore, SoftPro in Burlington, Massa-
chusetts, let me spend many hours there looking at their stock to find how peo-
ple use the UML in practice and fed me good coffee while I was there.

Conrad Bock
Andy Carmichael
Alistair Cockburn
Steve Cook
Luke Hohmann
Pavel Hruby
Jon Kern
Cris Kobryn

Craig Larman
Steve Mellor
Jim Odell
Alan O’Callaghan
Guus Ramackers
Jim Rumbaugh
Tim Seltzer

http://martinfowler.com
http://phruby.com

xxx PREFACE

For the third edition, the acquisition editor was Mike Hendrickson. Kim
Arney Mulcahy managed the project, as well as did the layout and clean-up of
the diagrams. John Fuller, at Addison-Wesley, was the production editor, while
Evelyn Pyle and Rebecca Rider helped with the copyediting and proofreading of
the book. I thank them all.

Cindy has stayed with me while I persist in writing books. She then plants
the proceeds in the garden.

My parents started me off with a good education, from which all else springs.

Martin Fowler
Melrose, Massachusetts
http://martinfowler.com

http://martinfowler.com

1

Chapter 1

Introduction

What Is the UML?

The Unified Modeling Language (UML) is a family of graphical notations,
backed by single meta-model, that help in describing and designing software
systems, particularly software systems built using the object-oriented (OO)
style. That’s a somewhat simplified definition. In fact, the UML is a few differ-
ent things to different people. This comes both from its own history and from
the different views that people have about what makes an effective software
engineering process. As a result, my task in much of this chapter is to set the
scene for this book by explaining the different ways in which people see and use
the UML.

Graphical modeling languages have been around in the software industry for
a long time. The fundamental driver behind them all is that programming lan-
guages are not at a high enough level of abstraction to facilitate discussions
about design.

Despite the fact that graphical modeling languages have been around for a
long time, there is an enormous amount of dispute in the software industry
about their role. These disputes play directly into how people perceive the role
of the UML itself.

The UML is a relatively open standard, controlled by the Object Manage-
ment Group (OMG), an open consortium of companies. The OMG was formed
to build standards that supported interoperability, specifically the interoperabil-
ity of object-oriented systems. The OMG is perhaps best known for the
CORBA (Common Object Request Broker Architecture) standards.

The UML was born out of the unification of the many object-oriented graph-
ical modeling languages that thrived in the late 1980s and early 1990s. Since its
appearance in 1997, it has relegated that particular tower of Babel to history.
That’s a service I, and many other developers, am deeply thankful for.

2 CHAPTER 1 INTRODUCTION

Ways of Using the UML

At the heart of the role of the UML in software development are the different
ways in which people want to use it, differences that carry over from other
graphical modeling languages. These differences lead to long and difficult argu-
ments about how the UML should be used.

To untangle this, Steve Mellor and I independently came up with a character-
ization of the three modes in which people use the UML: sketch, blueprint, and
programming language. By far the most common of the three, at least to my
biased eye, is UML as sketch. In this usage, developers use the UML to help
communicate some aspects of a system. As with blueprints, you can use sketches
in a forward-engineering or reverse-engineering direction. Forward engineering
draws a UML diagram before you write code, while reverse engineering builds a
UML diagram from existing code in order to help understand it.

The essence of sketching is selectivity. With forward sketching, you rough
out some issues in code you are about to write, usually discussing them with a
group of people on your team. Your aim is to use the sketches to help commu-
nicate ideas and alternatives about what you’re about to do. You don’t talk
about all the code you are going to work on, only important issues that you
want to run past your colleagues first or sections of the design that you want to
visualize before you begin programming. Sessions like this can be very short: a
10-minute session to discuss a few hours of programming or a day to discuss a
2-week iteration.

With reverse engineering, you use sketches to explain how some part of a
system works. You don’t show every class, simply those that are interesting and
worth talking about before you dig into the code.

Because sketching is pretty informal and dynamic, you need to do it quickly
and collaboratively, so a common medium is a whiteboard. Sketches are also
useful in documents, in which case the focus is communication rather than com-
pleteness. The tools used for sketching are lightweight drawing tools, and often
people aren’t too particular about keeping to every strict rule of the UML. Most
UML diagrams shown in books, such as my other books, are sketches. Their
emphasis is on selective communication rather than complete specification.

In contrast, UML as blueprint is about completeness. In forward engineer-
ing, the idea is that blueprints are developed by a designer whose job is to build
a detailed design for a programmer to code up. That design should be suffi-
ciently complete in that all design decisions are laid out, and the programmer
should be able to follow it as a pretty straightforward activity that requires little
thought. The designer may be the same person as the programmer, but usually

WAYS OF USING THE UML 3

the designer is a more senior developer who designs for a team of programmers.
The inspiration for this approach is other forms of engineering in which profes-
sional engineers create engineering drawings that are handed over to construc-
tion companies to build.

Blueprinting may be used for all details, or a designer may draw blueprints
to a particular area. A common approach is for a designer to develop blueprint-
level models as far as interfaces of subsystems but then let developers work out
the details of implementing those details.

In reverse engineering, blueprints aim to convey detailed information about
the code either in paper documents or as an interactive graphical browser. The
blueprints can show every detail about a class in a graphical form that’s easier
for developers to understand.

Blueprints require much more sophisticated tools than sketches do in order
to handle the details required for the task. Specialized CASE (computer-aided
software engineering) tools fall into this category, although the term CASE has
become a dirty word, and vendors try to avoid it now. Forward-engineering
tools support diagram drawing and back it up with a repository to hold the
information. Reverse-engineering tools read source code and interpret from it
into the repository and generate diagrams. Tools that can do both forward and
reverse engineering like this are referred to as round-trip tools.

Some tools use the source code itself as the repository and use diagrams as a
graphic viewport on the code. These tools tie much more closely into program-
ming and often integrate directly with programming editors. I like to think of
these as tripless tools.

The line between blueprints and sketches is somewhat blurry, but the distinc-
tion, I think, rests on the fact that sketches are deliberately incomplete, high-
lighting important information, while blueprints intend to be comprehensive,
often with the aim of reducing programming to a simple and fairly mechanical
activity. In a sound bite, I’d say that sketches are explorative, while blueprints
are definitive.

As you do more and more in the UML and the programming gets increasingly
mechanical, it becomes obvious that the programming should be automated.
Indeed, many CASE tools do some form of code generation, which automates
building a significant part of a system. Eventually, however, you reach the point
at which all the system can be specified in the UML, and you reach UML as pro-
gramming language. In this environment, developers draw UML diagrams that
are compiled directly to executable code, and the UML becomes the source code.
Obviously, this usage of UML demands particularly sophisticated tooling. (Also,
the notions of forward and reverse engineering don’t make any sense for this
mode, as the UML and source code are the same thing.)

4 CHAPTER 1 INTRODUCTION

Model Driven Architecture and Executable UML

When people talk about the UML, they also often talk about Model
Driven Architecture (MDA) [Kleppe et al.]. Essentially, MDA is a standard
approach to using the UML as a programming language; the standard is
controlled by the OMG, as is the UML. By producing a modeling environ-
ment that conforms to the MDA, vendors can create models that can also
work with other MDA-compliant environments.

MDA is often talked about in the same breath as the UML because
MDA uses the UML as its basic modeling language. But, of course, you
don’t have to be using MDA to use the UML.

MDA divides development work into two main areas. Modelers repre-
sent a particular application by creating a Platform Independent Model
(PIM). The PIM is a UML model that is independent of any particular
technology. Tools can then turn a PIM into a Platform Specific Model
(PSM). The PSM is a model of a system targeted to a specific execution
environment. Further tools then take the PSM and generate code for that
platform. The PSM could be UML but doesn’t have to be.

So if you want to build a warehousing system using MDA, you would
start by creating a single PIM of your warehousing system. If you then
wanted this warehousing system to run on J2EE and .NET, you would use
some vendor tools to create two PSMs: one for each platform. Then fur-
ther tools would generate code for the two platforms.

If the process of going from PIM to PSM to final code is completely
automated, we have the UML as programming language. If any of the
steps is manual, we have blueprints.

Steve Mellor has long been active in this kind of work and has recently
used the term Executable UML [Mellor and Balcer]. Executable UML is
similar to MDA but uses slightly different terms. Similarly, you begin with
a platform-independent model that is equivalent to MDA’s PIM. However,
the next step is to use a Model Compiler to turn that UML model into a
deployable system in a single step; hence, there’s no need for the PSM. As
the term compiler suggests, this step is completely automatic.

The model compilers are based on reusable archetypes. An archetype
describes how to take an executable UML model and turn it into a partic-
ular programming platform. So for the warehousing example, you would
buy a model compiler and two archetypes (J2EE and .NET). Run each
archetype on your executable UML model, and you have your two ver-
sions of the warehousing system.

WAYS OF USING THE UML 5

One of the interesting questions around the UML as programming language
is how to model behavioral logic. UML 2 offers three ways of behavioral mod-
eling: interaction diagrams, state diagrams, and activity diagrams. All have
their proponents for programming in. If the UML does gain popularity as a
programming language, it will be interesting to see which of these techniques
become successful.

Another way in which people look at the UML is the range between using it
for conceptual and for software modeling. Most people are familiar with the
UML used for software modeling. In this software perspective, the elements of
the UML map pretty directly to elements in a software system. As we shall see,
the mapping is by no means prescriptive, but when we use the UML, we are
talking about software elements.

With the conceptual perspective, the UML represents a description of the
concepts of a domain of study. Here, we aren’t talking about software elements
so much as we are building a vocabulary to talk about a particular domain.

There are no hard-and-fast rules about perspective; as it turns out, there’s
really quite a large range of usage. Some tools automatically turn source code
into the UML diagrams, treating the UML as an alternative view of the source.

Executable UML does not use the full UML standard; many constructs
of UML are considered to be unnecessary and are therefore not used. As a
result, Executable UML is simpler than full UML.

All this sounds good, but how realistic is it? In my view, there are two
issues here. First is the question of the tools: whether they are mature
enough to do the job. This is something that changes over time; certainly,
as I write this, they aren’t widely used, and I haven’t seen much of them in
action.

A more fundamental issue is the whole notion of the UML as a pro-
gramming language. In my view, it’s worth using the UML as a program-
ming language only if it results in something that’s significantly more
productive than using another programming language. I’m not convinced
that it is, based on various graphical development environments I’ve
worked with in the past. Even if it is more productive, it still needs to get a
critical mass of users for it to make the mainstream. That’s a big hurdle in
itself. Like many old Smalltalkers, I consider Smalltalk to be much more
productive than current mainstream languages. But as Smalltalk is now
only a niche language, I don’t see many projects using it. To avoid Small-
talk’s fate, the UML has to be luckier, even if it is superior.

6 CHAPTER 1 INTRODUCTION

That’s very much a software perspective. If you use UML diagrams to try and
understand the various meanings of the terms asset pool with a bunch of
accountants, you are in a much more conceptual frame of mind.

In previous editions of this book, I split the software perspective into specifi-
cation (interface) and implementation. In practice, I found that it was too hard
to draw a precise line between the two, so I feel that the distinction is no longer
worth making a fuss about. However, I’m always inclined to emphasize inter-
face rather than implementation in my diagrams.

These different ways of using the UML lead to a host of arguments about
what UML diagrams mean and what their relationship is to the rest of the
world. In particular, it affects the relationship between the UML and source
code. Some people hold the view that the UML should be used to create a
design that is independent of the programming language that’s used for imple-
mentation. Others believe that language-independent design is an oxymoron,
with a strong emphasis on the moron.

Another difference in viewpoints is what the essence of the UML is. In my
view, most users of the UML, particularly sketchers, see the essence of the UML
to be the diagrams. However, the creators of the UML see the diagrams as sec-
ondary; the essence of the UML is the meta-model. Diagrams are simply a pre-
sentation of the meta-model. This view also makes sense to blueprinters and
UML programming language users.

So whenever you read anything involving the UML, it’s important to under-
stand the point of view of the author. Only then can you make sense of the
often fierce arguments that the UML encourages.

Having said all that, I need to make my biases clear. Almost all the time, my
use of the UML is as sketches. I find the UML sketches useful with forward and
reverse engineering and in both conceptual and software perspectives.

I’m not a fan of detailed forward-engineered blueprints; I believe that it’s too
difficult to do well and slows down a development effort. Blueprinting to a level
of subsystem interfaces is reasonable, but even then you should expect to
change those interfaces as developers implement the interactions across the
interface. The value of reverse-engineered blueprints is dependent on how the
tool works. If it’s used as a dynamic browser, it can be very helpful; if it gener-
ates a large document, all it does is kill trees.

I see the UML as programming language as a nice idea but doubt that it will
ever see significant usage. I’m not convinced that graphical forms are more pro-
ductive than textual forms for most programming tasks and that even if they
are, it’s very difficult for a language to be widely accepted.

As a result of my biases, this book focuses much more on using the UML for
sketching. Fortunately, this makes sense for a brief guide. I can’t do justice to

HOW WE GOT TO THE UML 7

the UML in its other modes in a book this size, but a book this size makes a
good introduction to other books that can. So if you’re interested in the UML
in its other modes, I’d suggest that you treat this book as an introduction and
move on to other books as you need them. If you’re interested only in sketches,
this book may well be all you need.

How We Got to the UML

I’ll admit, I’m a history buff. My favorite idea of light reading is a good history
book. But I also know that it’s not everybody’s idea of fun. I talk about history
here because I think that in many ways, it’s hard to understand where the UML
is without understanding the history of how it got here.

In the 1980s, objects began to move away from the research labs and took
their first steps toward the “real” world. Smalltalk stabilized into a platform
that people could use, and C++ was born. At that time, various people started
thinking about object-oriented graphical design languages.

The key books about object-oriented graphical modeling languages appeared
between 1988 and 1992. Leading figures included Grady Booch [Booch,
OOAD]; Peter Coad [Coad, OOA], [Coad, OOD]; Ivar Jacobson (Objectory)
[Jacobson, OOSE]; Jim Odell [Odell]; Jim Rumbaugh (OMT) [Rumbaugh,
insights], [Rumbaugh, OMT]; Sally Shlaer and Steve Mellor [Shlaer and Mellor,
data], [Shlaer and Mellor, states]; and Rebecca Wirfs-Brock (Responsibility
Driven Design) [Wirfs-Brock].

Each of those authors was now informally leading a group of practitioners
who liked those ideas. All these methods were very similar, yet they contained a
number of often annoying minor differences among them. The same basic con-
cepts would appear in very different notations, which caused confusion to my
clients.

During that heady time, standardization was as talked about as it was
ignored. A team from the OMG tried to look at standardization but got only an
open letter of protest from all the key methodologists. (This reminds me of an
old joke. Question: What is the difference between a methodologist and a ter-
rorist? Answer: You can negotiate with a terrorist.)

The cataclysmic event that first initiated the UML was when Jim Rum-
baugh left GE to join Grady Booch at Rational (now a part of IBM). The
Booch/Rumbaugh alliance was seen from the beginning as one that could get
a critical mass of market share. Grady and Jim proclaimed that “the methods
war is over—we won,” basically declaring that they were going to achieve

8 CHAPTER 1 INTRODUCTION

standardization “the Microsoft way.” A number of other methodologists sug-
gested forming an Anti-Booch Coalition.

By OOPSLA ’95, Grady and Jim had prepared their first public description
of their merged method: version 0.8 of the Unified Method documentation.
Even more significant, they announced that Rational Software had bought
Objectory and that therefore, Ivar Jacobson would be joining the Unified team.
Rational held a well-attended party to celebrate the release of the 0.8 draft.
(The highlight of the party was the first public display of Jim Rumbaugh’s sing-
ing; we all hope it’s also the last.)

The next year saw a more open process emerge. The OMG, which had
mostly stood on the sidelines, now took an active role. Rational had to incorpo-
rate Ivar’s ideas and also spent time with other partners. More important, the
OMG decided to take a major role.

At this point, it’s important to realize why the OMG got involved. Method-
ologists, like book authors, like to think that they are important. But I don’t
think that the screams of book authors would even be heard by the OMG.
What got the OMG involved were the screams of tools vendors, all of which
were frightened that a standard controlled by Rational would give Rational
tools an unfair competitive advantage. As a result, the vendors energized the
OMG to do something about it, under the banner of CASE tool interoperabil-
ity. This banner was important, as the OMG was all about interoperability. The
idea was to create a UML that would allow CASE tools to freely exchange
models.

Mary Loomis and Jim Odell chaired the initial task force. Odell made it clear
that he was prepared to give up his method to a standard, but he did not want a
Rational-imposed standard. In January 1997, various organizations submitted
proposals for a methods standard to facilitate the interchange of models. Ratio-
nal collaborated with a number of other organizations and released version 1.0
of the UML documentation as their proposal, the first animal to answer to the
name Unified Modeling Language.

Then followed a short period of arm twisting while the various proposals
were merged. The OMG adopted the resulting 1.1 as an official OMG stan-
dard. Some revisions were made later on. Revision 1.2 was entirely cosmetic.
Revision 1.3 was more significant. Revision 1.4 added a number of detailed
concepts around components and profiles. Revision 1.5 added action semantics.

When people talk about the UML, they credit mainly Grady Booch, Ivar
Jacobson, and Jim Rumbaugh as its creators. They are generally referred to as
the Three Amigos, although wags like to drop the first syllable of the second
word. Although they are most credited with the UML, I think it somewhat
unfair to give them the dominant credit. The UML notation was first formed in

NOTATIONS AND META-MODELS 9

the Booch/Rumbaugh Unified Method. Since then, much of the work has been
led by OMG committees. During these later stages, Jim Rumbaugh is the only
one of the three to have made a heavy commitment. My view is that it’s these
members of the UML committee process that deserve the principal credit for
the UML.

Notations and Meta-Models

The UML, in its current state, defines a notation and a meta-model. The nota-
tion is the graphical stuff you see in models; it is the graphical syntax of the
modeling language. For instance, class diagram notation defines how items and
concepts, such as class, association, and multiplicity, are represented.

Of course, this leads to the question of what exactly is meant by an associa-
tion or multiplicity or even a class. Common usage suggests some informal def-
initions, but many people want more rigor than that.

The idea of rigorous specification and design languages is most prevalent
in the field of formal methods. In such techniques, designs and specifications
are represented using some derivative of predicate calculus. Such definitions are
mathematically rigorous and allow no ambiguity. However, the value of these
definitions is by no means universal. Even if you can prove that a program sat-
isfies a mathematical specification, there is no way to prove that the mathemat-
ical specification meets the real requirements of the system.

Most graphical modeling languages have very little rigor; their notation
appeals to intuition rather than to formal definition. On the whole, this does
not seem to have done much harm. These methods may be informal, but many
people still find them useful—and it is usefulness that counts.

However, methodologists are looking for ways to improve the rigor of
methods without sacrificing their usefulness. One way to do this is to define a
meta-model: a diagram, usually a class diagram, that defines the concepts of
the language.

Figure 1.1, a small piece of the UML meta-model, shows the relationship
among features. (The extract is there to give you a flavor of what meta-models
are like. I’m not even going to try to explain it.)

How much does the meta-model affect a user of the modeling notation? The
answer depends mostly on the mode of usage. A sketcher usually doesn’t care
too much; a blueprinter should care rather more. It’s vitally important to those
who use the UML as a programming language, as it defines the abstract syntax
of that language.

10 CHAPTER 1 INTRODUCTION

Many of the people who are involved in the ongoing development of the
UML are interested primarily in the meta-model, particularly as this is impor-
tant to the usage of the UML as a programming language. Notational issues
often run second place, which is important to bear in mind if you ever try to get
familiar with the standards documents themselves.

As you get deeper into the more detailed usage of the UML, you realize that
you need much more than the graphical notation. This is why UML tools are so
complex.

I am not rigorous in this book. I prefer the traditional methods path and
appeal mainly to your intuition. That’s natural for a small book like this written
by an author who’s inclined mostly to a sketch usage. If you want more rigor,
you should turn to more detailed tomes.

UML Diagrams

UML 2 describes 13 official diagram types listed in Table 1.1 and classified as
indicated on Figure 1.2. Although these diagram types are the way many people

*

0..1

{ordered}

Behavioral
Feature

Parameter

Structural
Feature

Feature

Figure 1.1 A small piece of the UML meta-model

UML DIAGRAMS 11

approach the UML and how I’ve organized this book, the UML’s authors do
not see diagrams as the central part of the UML. As a result, the diagram types
are not particularly rigid. Often, you can legally use elements from one diagram
type on another diagram. The UML standard indicates that certain elements are
typically drawn on certain diagram types, but this is not a prescription.

Table 1.1 Official Diagram Types of the UML

Diagram
Book
Chapters Purpose Lineage

Activity 11 Procedural and parallel
behavior

In UML 1

Class 3, 5 Class, features, and
relationships

In UML 1

Communication 12 Interaction between objects;
emphasis on links

UML 1 collaboration
diagram

Component 14 Structure and connections of
components

In UML 1

Composite
structure

13 Runtime decomposition of a
class

New to UML 2

Deployment 8 Deployment of artifacts to
nodes

In UML 1

Interaction
overview

16 Mix of sequence and activity
diagram

New to UML 2

Object 6 Example configurations of
instances

Unofficially in UML 1

Package 7 Compile-time hierarchic
structure

Unofficially in UML 1

Sequence 4 Interaction between objects;
emphasis on sequence

In UML 1

State machine 10 How events change an object
over its life

In UML 1

Timing 17 Interaction between objects;
emphasis on timing

New to UML 2

Use case 9 How users interact with a
system

In UML 1

12 CHAPTER 1 INTRODUCTION

Diagram

Class Diagram

Component
Diagram

Composite
Structure
Diagram

Deployment
Diagram

Object Diagram

Package
Diagram

Interaction
Diagram

Activity
Diagram

Use Case
Diagram

State Machine
Diagram

Sequence
Diagram

Communication
Diagram

Interaction
Overview
Diagram

Timing Diagram

Structure
Diagram

Behavior
Diagram

Figure 1.2 Classification of UML diagram types

WHAT IS LEGAL UML? 13

What Is Legal UML?

At first blush, this should be a simple question to answer: Legal UML is what is
defined as well formed in the specification. In practice, however, the answer is a
bit more complicated.

An important part of this question is whether the UML has descriptive or
prescriptive rules. A language with prescriptive rules is controlled by an official
body that states what is or isn’t legal in the language and what meaning you
give to utterances in that language. A language with descriptive rules is one in
which you understand its rules by looking at how people use the language in
practice. Programming languages tend to have prescriptive rules set by a stan-
dards committee or dominant vendor, while natural languages, such as English,
tend to have descriptive rules whose meaning is set by convention.

UML is quite a precise language, so you might expect it to have prescriptive
rules. But UML is often considered to be the software equivalent of the blueprints
in other engineering disciplines, and these blueprints are not prescriptive nota-
tions. No committee says what the legal symbols are on a structural engineering
drawing; the notation has been accepted by convention, similarly to a natural lan-
guage. Simply having a standards body doesn’t do the trick either, because people
in the field may not follow everything the standards body says; just ask the
French about the Académie Française. In addition, the UML is so complex that
the standard is often open to multiple interpretations. Even the UML leaders who
reviewed this book would disagree on interpretation of the UML standard.

This issue is important both for me writing this book and for you using the
UML. If you want to understand a UML diagram, it’s important to realize that
understanding the UML standard is not the whole picture. People do adopt
conventions, both in the industry widely and within a particular project. As a
result, although the UML standard can be the primary source of information on
the UML, it can’t be the only one.

My attitude is that, for most people, the UML has descriptive rules. The
UML standard is the biggest single influence on what UML means, but it isn’t
the only one. I think that this will become particularly true with UML 2, which
introduces some notational conventions that conflict with either UML 1’s defi-
nition or the conventional usage of UML, as well as adds yet more complexity
to the UML. In this book, therefore, I’m trying to summarize the UML as I find
it: both the standards and the conventional usage. When I have to make a dis-
tinction in this book, I’ll use the term conventional use to indicate something
that isn’t in the standard but that I think is widely used. For something that
conforms to the standard, I’ll use the terms standard or normative. (Normative

14 CHAPTER 1 INTRODUCTION

is the term standards people use to mean a statement that you must conform to
be valid in the standard. So non-normative UML is a fancy way of saying that
something is strictly illegal according to the UML standard.)

When you are looking at a UML diagram, you should bear in mind that a
general principle in the UML is that any information may be suppressed for a
particular diagram. This suppression can occur either generally—hide all
attributes—or specifically—don’t show these three classes. In a diagram, there-
fore, you can never infer anything by its absence. If a multiplicity is missing,
you cannot infer what value it might be. Even if the UML meta-model has a
default, such as [1] for attributes, if you don’t see the information on the dia-
gram, it may be because it’s the default or because it’s suppressed.

Having said that, there are some general conventions, such as multivalued
properties being sets. In the text, I’ll point out these default conventions.

It’s important to not put too much emphasis on having legal UML if you’re a
sketcher or blueprinter. It’s more important to have a good design for your sys-
tem, and I would rather have a good design in illegal UML than a legal but
poor design. Obviously, good and legal is best, but you’re better off putting
your energy into having a good design than worrying about the arcana of UML.
(Of course, you have to be legal in UML as programming language, or your
program won’t run properly!)

The Meaning of UML

One of the awkward issues about the UML is that, although the specification
describes in great detail what well-formed UML is, it doesn’t have much to say
about what the UML means outside of the rarefied world of the UML meta-
model. No formal definition exists of how the UML maps to any particular pro-
gramming language. You cannot look at a UML diagram and say exactly what
the equivalent code would look like. However, you can get a rough idea of what
the code would look like. In practice, that’s enough to be useful. Development
teams often form their local conventions for these, and you’ll need to be famil-
iar with the ones in use.

UML Is Not Enough

Although the UML provides quite a considerable body of various diagrams that
help to define an application, it’s by no means a complete list of all the useful

UML IS NOT ENOUGH 15

diagrams that you might want to use. In many places, different diagrams can be
useful, and you shouldn’t hesitate to use a non-UML diagram if no UML dia-
gram suits your purpose.

Figure 1.3, a screen flow diagram, shows the various screens on a user inter-
face and how you move between them. I’ve seen and used these screen flow dia-
grams for many years. I’ve never seen more than a very rough definition of
what they mean; there isn’t anything like it in the UML, yet I’ve found it a very
useful diagram.

Table 1.2 shows another favorite: the decision table. Decision tables are a
good way to show complicated logical conditions. You can do this with an
activity diagram, but once you get beyond simple cases, the table is both more
compact and more clear. Again, many forms of decision tables are out there.
Table 1.2 divides the table into two sections: conditions above the double line
and consequences below it. Each column shows how a particular combination
of conditions leads to a particular set of consequences.

WelcomeVisitors

RecentChanges

SomeWikiPage

Edit PageVisual Tour

Find Page

for recently changed pages

screen

navigation

!
non-

normative

submit search

save button

Figure 1.3 An informal screen flow diagram for part of the wiki (http://c2.com/cgi/wiki)

http://c2.com/cgi/wiki

16 CHAPTER 1 INTRODUCTION

You’ll run into various kinds of these things in various books. Don’t hesitate
to try out techniques that seem appropriate for your project. If they work well,
use them. If not, discard them. (This is, of course, the same advice as for UML
diagrams.)

Where to Start with the UML

Nobody, not even the creators of the UML, understand or use all of it. Most
people use a small subset of the UML and work with that. You have to find the
subset of the UML that works for you and your colleagues.

If you are starting out, I suggest that you concentrate first on the basic forms
of class diagrams and sequence diagrams. These are the most common and, in
my view, the most useful diagram types.

Once you’ve got the hang of those, you can start using some of the more
advanced class diagram notation and take a look at the other diagrams types.
Experiment with the diagrams and see how helpful they are to you. Don’t be
afraid to drop any that don’t seem to be useful to your work.

Where to Find Out More

This book is not a complete and definitive reference to the UML, let alone OO
analysis and design. A lot of words are out there and a lot of worthwhile things
to read. As I discuss the individual topics, I also mention other books you
should go to for more in-depth information there. Here are some general books
on the UML and object-oriented design.

As with all book recommendations, you may need to check which version of
the UML they are written for. As of June 2003, no published book uses UML 2.0,
which is hardly surprising, as the ink is barely dry on the standard. The books I

Table 1.2 A Decision Table

Premium customer X X Y Y N N

Priority order Y N Y N Y N

International order Y Y N N N N

Fee $150 $100 $70 $50 $80 $60

Alert rep • • •

WHERE TO FIND OUT MORE 17

suggest are good books, but I can’t tell whether or when they will be updated to
the UML 2 standard.

If you are new to objects, I recommend my current favorite introductory
book: [Larman]. The author’s strong responsibility-driven approach to design is
worth following.

For the conclusive word on the UML, you should look to the official stan-
dards documents; but remember, they are written for consenting methodolo-
gists in the privacy of their own cubicles. For a much more digestible version of
the standard, take a look at [Rumbaugh, UML Reference].

For more detailed advice on object-oriented design, you’ll learn many good
things from [Martin].

I also suggest that you read books on patterns for material that will take you
beyond the basics. Now that the methods war is over, patterns (page 27) are
where most of the interesting material about analysis and design appears.

This page intentionally left blank

167

Index
A
Abstract classes, relationship of classes

to interfaces, 69–72
Actions

expansion regions, 126–127
UML version changes, 157

Active classes, 83
Activities, exit, 109
Activity diagrams, 11–12

actions, expansion regions, 126–127
basics, 117–119
decomposing actions, 119–121
edges, 124–125
flow final, 127–128
flows, 124–125

Petri Nets, 130
joins, 118–119

specifications, 128–129
partitions, 120–121, 122
pins, 125
requirement analysis, 29
resources, 130
signals, 121–123
times to use, 129–130
tokens, 124
transformations, 125–126
UML version changes, 156–157,

159
Activity state, 109–110
Actors, 99–100, 143–144
Acyclic Dependency Principle, 91
Aggregation, 67–68
Agile development processes, 24–25

resources, 33
Aliasing, 74
Analysis Patterns, 154
Archetypes, 4

Artifacts, 97–98
UML version changes, 157

Assertions, 50
subclassing, 51

Association classes, 78–80
Associations, class properties, 37–38

bidirectional, 41–43
immutability versus frozen, 154
qualified, 75–76
unidirectional, 41

Associative arrays. See Qualified
associations

Asynchronous messages, 61
Attributes

class properties, 36–37, 39
classes, 66–67
mandatory, 39

Automated regression tests, 22

B
Ball-and-socket notation, 71, 135, 139
Beck, Kent, CRC cards, 63
Bidirectional associations, 41–43
Blueprints, UML as

forward engineering, 2–3, 6
reverse engineering, 3, 6

Booch, Grady, UML history, 7–9
Bound elements, 81–82
Branches, 119
Business use cases, 103

C
CASE (computer-aided software

engineering) tools, 3
UML history, 8

Centralized control of sequence
diagramming, 55–57

168 INDEX

Ceremony, agile processes, 25
Class diagrams, 9, 11–12

abstract classes, 69–72
active classes, 83
aggregation and composition, 67–68
association classes, 78–80
classifications, 75–76

dynamic and multiple, 76–77
comments, 46
constraint rules, 49–50
dependencies, 47–49
design, 30
documentation, 32
generalizations, 45–46, 75–76
keywords, 65–66
messages, 84–85
notes, 46
operations, 43–46
properties (See Class properties)
reference objects, 73–74
requirement analysis, 29
resources, 52
responsibilities, 66
starting with UML, 16
static operations and attributes, 66–67
template (parameterized) classes,

81–82
times to use, 51–52
UML version changes, 158
value objects, 74
versus object diagrams, 88
visibility, 83–84

Class properties. See also Classes
associations, 37–38
associations, bidirectional

associations, 41–43
associations, immutability versus

frozen, 154
associations, qualified, 75–76
attributes, 36–37
basics, 35–38
derived, 68
frozen, 72
generalizations, 45–46
multiplicity, 38–39
program interpretations, 39–41
read-only, 72

Class-Responsibility-Collaboration
(CRC) cards, 62–63

Classes. See Class properties
abstract, 69–72
association, 78–80
attributes, 66–67
Class-Responsibility-Collaboration

(CRC) cards, 62–63
derivation, 81–82
dynamic data types, 153–154
generalizations, 35, 36
implementation, 153–154
presentation, 47
static data types, 153–154
static versus dynamic classifications,

77–78
subclassing, 51
template (parameterized), 81–82

Classifications
data types, 153–154
dynamic and multiple, 76–77
implementation classes, 153–154
versus generalizations, 75–76

Clients/suppliers, 47
Coad, Peter, UML history, 7
Cockburn, Alistair, use cases, 105
Collaboration diagram. See Communica-

tion diagrams
Collaborations

roles, 143–144
sequence diagrams, 144
times to use, 146

Comments in class diagrams, 46
Common Closure and Reuse Principles, 91
Common Object Request Broker Archi-

tecture (CORBA) standards, 1
Communication diagrams, 11–12

basics, 131–133
times to use, 133

Component diagrams, 11–12
basics, 139–141
times to use, 141

Composite structure diagrams, 11–12
basics, 135–136
times to use, 137

Composition, 67–68
changes between UML versions, 154

INDEX 169

Computer-aided software engineering
(CASE) tools, 3

UML history, 8
Conceptual perspectives of UML,

5–6
Concurrent states, 111
Conditionals, 57–61

decisions and merges, 119
Connector, 135
Constraints

complete/incomplete, 154
rules, 49–50

Construction, RUP projects, 26
Continuous integration, 22
Conventional use, 13–14
CORBA (Common Object Request

Broker Architecture), 1
CRC (Class-Responsibility-Collaboration)

cards, 62–63
Crystal, agile development process,

24–25
Cunningham, Ward, CRC cards, 62–63

D
Data tadpoles, 61
Data types, 74

dynamic and multiple classifications,
153–154

implementation classes, 153–154
Decisions, 119
Dependencies, 47–49

keywords, 48–49
packages, 91–93
resources, 52
UML version changes, 155

Deployment diagrams, 11–12
artifacts, 97–98
design, 30
devices, 97–98
execution environments, 97–98
nodes, 97–98
times to use, 98

Derivation of classes, 81–82
Derived properties, class diagrams, 68
Descriptive rules, UML, 13–14
Design, 30–31
Development cases, 25

Development processes
agile, 24–25
DSDM (Dynamic Systems Develop-

ment Method), 24–25
Extreme Programming (XP), 22,

24–25, 33
fitting processes to projects, 26, 28–29
FOD (Feature Driven Development),

24–25
iterative, 19–22
lightweight, 25
Manifesto of Agile Software

Development, 24–25
Rational Unified Process (RUP), 25
resources, 33
selecting, 33
staged delivery, 21
waterfall, 19–22

Devices, 97–98
Diagrams

activity, 11–12
actions, expansion regions, 126–127
basics, 117–119
decomposing actions, 119–121
edges, 124–125
flow final, 127–128
flows, 124–125
flows, Petri Nets, 130
joins, 118–119
joins, specifications, 128–129
partitions, 120–121, 122
pins, 125
requirement analysis, 29
resources, 130
signals, 121–123
times to use, 129–130
tokens, 124
transformations, 125–126
UML version changes, 156–157, 159

basics, 10–12
class, 9, 11–12

abstract classes, 69–72
active classes, 83
aggregation and composition,

67–68
association classes, 78–80
classifications, 75–76

170 INDEX

Diagrams, class, continued
classifications, dynamic and multiple,

76–77
comments, 46
constraint rules, 49–50
dependencies, 47–49
design, 30
documentation, 32
generalizations, 45–46, 75–76
keywords, 48–49, 65–66
messages, 84–85
notes, 46
operations, 43–46
properties (See Class properties)
reference objects, 73–74
requirement analysis, 29
resources, 52
responsibilities, 66
starting with UML, 16
static operations and attributes, 66–67
template (parameterized) classes,

81–82
times to use, 51–52
UML version changes, 158
value objects, 74
versus object diagrams, 88
visibility, 83–84

classifications, 12
communication, 11–12, 131–133
component, 11–12, 139–141
composite structure, 11–12

basics, 135–136
times to use, 137

deployment, 11–12
artifacts, 97–98
design, 30
devices, 97–98
execution environments, 97–98
nodes, 97–98
times to use, 98

interaction
basics, 53–56, 147–148
CRC cards, 62–63
design, 30
loops and conditionals, 57–61
Interaction Overview diagram,

147, 158
participants, 53–57

sequence diagrams, 53–56
synchronous and asynchronous

messages, 61
times to use, 147, 150

interactive overview, 11–12
object, 11–12

times to use, 87–88
package, 11–12

basics, 89–91
design, 30
documentation, 32
resources, 95
times to use, 95
UML version changes, 157

sequence, 11–12
basics, 53–56
centralized and distributed control,

55–57
collaborations, 144
CRC cards, 62–63
interaction diagrams, 53–56
loops and conditionals, 57–61
participants, 53–57
returns, 154
starting with UML, 16
synchronous and asynchronous

messages, 61
times to use, 61–63
UML version changes, 158

shortcomings, 14–16
starting point, 16
state machine, 11–12

activity status, 109–110
basics, 107–109
concurrent states, 111
implementing, 111–114
initial pseudostate, 107
internal activities, 109
requirement analysis, 29
resources, 115
superstates, 110–111
times to use, 114–115
transitions, 107–108, 111
UML version changes, 159

timing, 11–12
basics, 149–150

types, 11
types, UML version changes, 157–158

INDEX 171

use case
basics, 102–103
requirement analysis, 29

viewpoints, 6
Dictionaries. See Qualified associations
Distributed control of sequence

diagramming, 55–57
Do-activities, 110
Documentation, 31–32
Domain objects, 47
DSDM (Dynamic Systems Development

Method), 24–25
Dynamic classifications, 77–78

data types, 153–154

E
Edges, 124–125
Eiffel programming language, 50
Engineering, forward

UML as blueprints, 2–3, 6
UML as programming languages, 3
UML as sketches, 2

Entry activities, 109
Enumerations, 82
Event switches, 111
Evolutionary development process. See

Iterative development process
Executable UML, 4–5
Execution environments, 97–98
Exit activities, 109
Expansion regions, 126–127
Extensions, 100–102
Extreme Programming (XP)

agile development process, 24–25
resources, 33
technical practices, 22

F
Facades, 90–91
Features of use cases, 104
Fish-level use cases, 103–104
Flows, 124–125

flow final, 127–128
Petri Nets, 130

FDD (Feature Driven Development),
24–25

Forks, 117, 119
UML version changes, 156

Forward engineering
UML as blueprints, 2–3, 6
UML as programming languages, 3
UML as sketches, 2

Found messages, 55
Frozen property, 72, 154
Fully qualified names, 89

G
Gang of Four, 27–28
Generalizations, 35, 36

class properties, 45–46
sets, 76–77
UML version changes, 155
versus classifications, 75–76

Getting methods, 45
Graphical modeling languages, 1
Guarantees, 102
Guards, 59

H
Hashes. See Qualified associations
History pseudostate, 111–112

I
Implementation classes, data types,

153–154
Include relationships, 101
Incremental development process. See

Iterative development process
Initial node actions, 117, 119
Initial pseudostate, 107
Instance specifications, 87
Integration, continuous, 22
Interaction diagrams

basics, 53–56, 147–148
CRC cards, 62–63
design, 30
loops and conditionals, 57–61
participants, 53–57
sequence diagrams, 53–56
synchronous and asynchronous

messages, 61
times to use, 147, 150

Interaction frames
loops and conditionals, 58–59
operators, 59

Interactive overview diagrams, 11–12

172 INDEX

Interfaces, 65
relationship to classes, 69–72

Internal activities, entry and exit, 109
Internal activities, exit activities, 109
Invariants, 51
Iteration markers, 59
Iteration retrospective, 28
Iterations, 20

timeboxing, 21–22
Iterative development process, 19–22

J
Jacobson, Ivar

UML history, 7–8
use cases, 105

Jacuzzi development process. See Iterative
development process

Joins, 118–119
specifications, 128–129
UML version changes, 156

K
Keywords, class diagrams, 48–49, 65–66
Kite-level use cases, 103–104

L
Legacy code, 32
Lightweight development processes, 25
Lollipop notation, 71–72, 73
Loomis, Mary, UML history, 8
Loops, 57–61

M
Main success scenario, 100–102
Mandatory attributes, 39
Manifesto of Agile Software

Development, 24–25
Maps. See Qualified associations
Markers, iteration, 59
MDA (Model Driven Architecture), 4
Mellor, Steve

Executable UML, 4
UML history, 7

Merges, 119
Messages, 84–85

asynchronous and synchronous, 61
class diagrams, 84–85

found, 55
pseudomessages, 60

Meta-models
definitions, 9–10
UML version changes, 157

Methods
implementation of actions, 119
versus operations, 45

Meyer, Bertrand, Design by Contract, 50
Model compilers, 4
Modifiers, 44
Multiple classifications, 77–78

data types, 153–154
Multiplicity of properties, 38–39
Multivalued attributes, 39

N
Namespaces, 89
Navigability arrows, 42
Nodes, 97–98
Normative use, 13–14
Notation

ball and socket, 71
definitions, 9–10
Lollipop, 71–72, 73

O
Object diagrams, 11–12

times to use, 87–88
OCL (Object Constraint Language),

49–50
Odell, Jim, UML history, 7–8
OMG (Object Management Group)

control of UML, 1
MDA (Model Driven Architecture), 4
revisions to UML versions, 151–152
UML history, 7–9

OO (object-oriented) programming, 1
paradigm shift, 56

Operations, versus methods, 45
Operators, interaction frames, 59
Optional attributes, 39
P
Package diagrams, 11–12

basics, 89–91
design, 30
documentation, 32

INDEX 173

resources, 95
times to use, 95
UML version changes, 157

Packages
aspects, 93–94
Common Closure and Reuse Principles,

91
definitions, 89
dependencies, 91–93
fully qualified names, 89
implementing, 94–95
namespaces, 89

Part, 135
Participants, sequence diagrams, 53–57
Partitions, activity diagrams, 120–121,

122
Patterns

definition, 27–28
Separated Interface, 94
State, 111–114
using, 145

Petri Nets (flow-oriented techniques),
130

PIM (Platform Independent Model),
4

Pins, 125
Planning, adaptive versus predictive,

23–24
Platform Specific Model (PSM), 4
Port, 135–137
Post-conditions, Design by Contract, 50
Pre-conditions

Design by Contract, 50
use cases, 102

Predictive planning, versus adaptive
planning, 23–24

Prescriptive rules, UML, 13–14
Presentation classes, 47
Private elements, 83
Profiles, 66

UML version changes, 157
Programming languages, UML as, 3, 5

forward engineering, 3
MDA (Model Driven Architecture), 4
reverse engineering, 3
value, 5

Project retrospective, 28–29

Properties of classes
associations, 37–38

bidirectional associations, 41–43
qualified, 75–76

attributes, 36–37
basics, 35–38
derived, 68
frozen, 72
multiplicity, 38–39
program interpretations, 39–41
read-only, 72

Protected elements, 83
Proxy projects, 27
Pseudomessages, 60
PSM (Platform Specific Model), 4
Public elements, 83

Q
Qualified associations, 75–76
Queries, 44

R
Rational Unified Process (RUP)

development cases, 25
phases, 25–26
resources, 33

Read-only property, 72
Rebecca Wirfs-Brock, UML history, 7
Refactoring, 22
Reference objects, 73–74
Relationships

abstract classes to interfaces, 69–72
include, 101–103
temporal, 80
transitive, 48

Releases, 20
Requirement Analysis, 29–30
Requirements churn, 23
Responsibilities of classes, 66
Retrospectives

iteration, 28
project, 28–29

Reusable archetypes, 4
Reverse engineering

UML as blueprints, 3, 6
UML as programming languages, 3
UML as sketches, 2

174 INDEX

Revisions by versions (UML)
from 0.8 through 2.0, general history,

151–152
from 1.0 to 1.1, 153–155

Revisions by versions (UML), continued
from 1.2 to 1.3, 155–157
from 1.3 to 1.4, 157
from 1.4 to 1.5, 157
from 1.x through 2.0, 157–159

Roles. See Actors
Round-trip tools, 3
Rumbaugh, Jim

aggregation, 67
composite structures, 137
UML history, 7–9

RUP (Rational Unified Process)
development cases, 25
phases, 25–26
resources, 33

S
Scenario sets, 99
Scrum, 24–25
Sea-level use cases, 103–104
Searching state, 110
Separated Interface, 94
Sequence diagrams, 11–12

basics, 53–56
centralized and distributed control,

55–57
collaborations, 144
CRC cards, 62–63
interaction diagrams, 53–56
loops and conditionals, 57–61
participants, 53–57
returns, 154
starting with UML, 16
synchronous and asynchronous

messages, 61
times to use, 61–63
UML version changes, 158

Setting methods, 45
Shlaer, Sally, UML history, 7
Signals, 121–123
Single classification, 76–77

implementation classes, 153–154
Single-valued attributes, 39

Sketches, UML as, 6
forward engineering, 2
reverse engineering, 2

Smalltalk, 5
Software development processes. See

Development processes
Software perspectives, UML, 5–6
Spiral development process. See Iterative

development process
Stable Abstractions Principle, 92
Stable Dependencies Principle, 91
Staged delivery development process,

21
Standard use, 13–14
State diagrams. See State machine

diagrams
State machine diagrams, 11–12

activity status, 109–110
basics, 107–109
concurrent states, 111
implementing, 111–114
initial pseudostate, 107
internal activities, 109
requirement analysis, 29
resources, 115
superstates, 110–111
times to use, 114–115
transitions, 107–108, 111
UML version changes, 159

State tables, 111–112, 114
Static classifications

implementation classes, 153–154
versus dynamic classifications,

77–78
Static operations of classes, 66–67
Stereotypes, 66
Stories. See Features of use cases
Subactivities, 119–121
Subclassing, 46

assertions, 51
Substitutability, 45–46
Subtypes, 46
Superstates, 110–111
Suppliers/clients, 47
Swim lanes. See Partitions
Synchronous messages, 61
System use cases, 103

INDEX 175

T
Temporal relationships, 80
Three Amigos, 8
Time signals, 121
Timeboxing, 21–22
Timing diagrams, 11–12

basics, 149–150
Tokens, 124
Transformations, 125–126
Transitions, 26, 107–108, 111

state, 113
Transitive relationships, 48
Trigger, 102
Types. See Data types

U
UML

conventional use, 13–14
definition, 1
descriptive rules, 13–14
fitting into processes, 29–32
history, 7–9
meaning, 14
prescriptive rules, 13–14
resources, 16–17
software and conceptual perspectives,

5–6
standards, legal versus illegal use, 13–14

UML as blueprints
forward engineering, 2–3, 6
reverse engineering, 3, 6

UML as programming language, 3, 5
forward engineering, 3
MDA (Model Driven Architecture), 4
reverse engineering, 3
value, 5

UML as sketches, 6
forward engineering, 2
reverse engineering, 2

UML diagrams. See Diagrams and
specific diagram types

UML Distilled, book editions and corre-
sponding UML versions, 153–155

UML revisions by versions
from 0.8 through 2.0, general history,

151–152
from 1.0 to 1.1, 153–155

from 1.2 to 1.3, 155–157
from 1.3 to 1.4, 157
from 1.4 to 1.5, 157
from 1.x through 2.0, 157–159

Unidirectional associations, 41
Unified Method documentation, 7–8
Unified Modeling Language. See UML
UP (Unified Process). See RUP
Use case diagrams

basics, 102–103
requirement analysis, 29

Use cases
actors, 99–100
business, 103
extensions, 100–102
features, 104
include relationships, 101–103
levels, 103–104
MSS (main success scenario), 100–102
resources, 105
scenario sets, 99
times to use, 104–105
UML version changes, 155–156

User Guide, 115
User stories. See Features of use cases

V
Value objects, 74
Visibility, 83–84

W
Warehousing systems, Platform

Independent Model and Platform
Specific Model, 4

Waterfall development process, 19–22
Well formed UML

definition, 14
legal UML, 13–14

X
XP (Extreme Programming)

agile development process, 24–25
resources, 33
technical practices, 22

	Cover
	Title Page
	Copyright Page
	Contents
	List of Figures
	Foreword to the Third Edition
	Foreword to the First Edition
	Preface
	Why Bother with the UML?
	Structure of the Book
	Changes for the Third Edition
	Acknowledgments

	Chapter 1: Introduction
	What Is the UML?
	Ways of Using the UML
	How We Got to the UML
	Notations and Meta-Models
	UML Diagrams
	What Is Legal UML?
	The Meaning of UML
	UML Is Not Enough
	Where to Start with the UML
	Where to Find Out More

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

