

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and Addison-Wesley
was aware of a trademark claim, the designations have been printed with initial capital letters
or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omis-
sions. No liability is assumed for incidental or consequential damages in connection with or
arising out of the use of the information or programs contained herein.

The publisher offers discounts on this book when ordered in quantity for special sales. For
more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact:

International Sales
(317) 581-3793
international@pearsontechgroup.com

Visit Addison-Wesley on the Web: www.awprofessional.com

Library of Congress Cataloging-in-Publication Data

Cooper, James William, 1943–
C# design patterns : a tutorial / James W. Cooper.

p. cm.
Includes bibliographical references and index.
ISBN 0-201-84453-2 (alk. paper)
1. C# (Computer program language) 2. Software patterns. I. Title.

QA76.73.C154 C664 2003
005.13'3—dc21 2002074380

Copyright © 2003 by Pearson Education, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval sys-
tem, or transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher. Printed in the United
States of America. Published simultaneously in Canada.

For information on obtaining permission for use of material from this work, please submit a
written request to:

Pearson Education, Inc.
Rights and Contracts Department
75 Arlington Street, Suite 300
Boston, MA 02116
Fax: (617) 848-7047

ISBN 0201844532
08 07 06DOC98 101112

Printing7th

7

April 2006

Text printed on recycled and acid-free paper.

www.awprofessional.com

CONTENTS

Preface xix

Acknowledgments xxi

Part 1 Object-Oriented Programming in C# 1

Chapter 1 What Are Design Patterns? 3
Defining Design Patterns 5
The Learning Process 6
Studying Design Patterns 7
Notes on Object-Oriented Approaches 7
C# Design Patterns 8
How This Book Is Organized 8

Chapter 2 Syntax of the C# Language 11
Data Types 12
Converting between Numbers and Strings 13
Declaring Multiple Variables 14
Numeric Constants 14
Character Constants 14
Variables 15

Declaring Variables as You Use Them 15

Multiple Equals Signs for Initialization 16
A Simple C# Program 16
Arithmetic Operators 17

v

2

4
5

9

2
2
2
2
2
2
2
2
2
2

4
4

Increment and Decrement Operators 18
Combining Arithmetic and Assignment Statements 18
Making Decisions in C# 19
Comparison Operators 20
Combining Conditions 21
The Most Common Mistake 21
The Switch Statement 22
C# Comments 23
The Ornery Ternary Operator 23
Looping Statements in C# 24
The While Loop 24
The Do-While Statement 24
The For Loop 24
Declaring Variables as Needed in For Loops 25
Commas in For Loop Statements 25
How C# Differs from C 26
How C# Differs from Java 27
Summary 27

Chapter 3 Writing Windows C# Programs 29
Objects in C# 29
Managed Languages and Garbage Collection 30
Classes and Namespaces in C# 30
Building a C# Application 31
The Simplest Window Program in C# 32
Windows Controls 35

Labels 35

TextBox 36

CheckBox 36

Buttons 37

Radio Buttons 37

ListBoxes and ComboBoxes 38

The Items Collection 38

vi Contents

6
7

6
7

6
7

6
7

Menus 39

ToolTips 39

The Windows Controls Program 40
Summary 41
Programs on the CD-ROM 41

Chapter 4 Using Classes and Objects in C# 43
What Do We Use Classes For? 43
A Simple Temperature Conversion Program 43
Building a Temperature Class 45

Converting to Kelvin 47

Putting the Decisions into the Temperature Class 47
Using Classes for Format and Value Conversion 48

Handling Unreasonable Values 51

A String Tokenizer Class 51
Classes as Objects 53
Class Containment 55
Initialization 56
Classes and Properties 56
Programming Style in C# 58
Delegates 59
Indexers 61
Operator Overloading 62
Summary 63
Programs on the CD-ROM 63

Chapter 5 Inheritance 65
Constructors 65
Drawing and Graphics in C# 66
Using Inheritance 68
Namespaces 68

Creating a Square from a Rectangle 69

Public, Private, and Protected 71

Contents vii

2

4

2
2
2
2
2
2
2
2
2
2

4
4
4

Overloading 71
Virtual and Override Keywords 72
Overriding Methods in Derived Classes 72
Replacing Methods Using New 74
Overriding Windows Controls 74
Interfaces 76
Abstract Classes 76
Comparing Interfaces and Abstract Classes 79
Summary 80
Programs on the CD-ROM 80

Chapter 6 UML Diagrams 81
Inheritance 82
Interfaces 84
Composition 84
Annotation 85
WithClass UML Diagrams 86
C# Project Files 86

Chapter 7 Arrays, Files, and Exceptions in C# 87
Arrays 87
Collection Objects 88

ArrayLists 88

Hashtables 89

SortedLists 89

Exceptions 90
Multiple Exceptions 91
Throwing Exceptions 92
File Handling 92

The File Object 92

Reading a Text File 93

Writing a Text File 93

Exceptions in File Handling 94
Testing for End of File 94

viii Contents

6
7

6
7

6
7

6
7

A csFile Class 95
Program on the CD-ROM 96

Part 2 Creational Patterns 97

Chapter 8 The Simple Factory Pattern 99
How a Simple Factory Works 99
Sample Code 100
The Two Derived Classes 100
Building the Simple Factory 101

Using the Factory 102

Factory Patterns in Math Computation 103
Summary 106
Thought Questions 106
Programs on the CD-ROM 106

Chapter 9 The Factory Method 107
The Swimmer Class 109
The Events Classes 109
StraightSeeding 110

CircleSeeding 111

Our Seeding Program 111
Other Factories 112
When to Use a Factory Method 113
Thought Question 113
Program on the CD-ROM 113

Chapter 10 The Abstract Factory Pattern 115
A GardenMaker Factory 115

The PictureBox 118

Handling the RadioButton
and Button Events 119

Adding More Classes 120
Consequences of Abstract Factory 120

Contents ix

2

4

2
2
2
2
2
2
2
2
2
2

4
4
4

Thought Question 121
Program on the CD-ROM 121

Chapter 11 The Singleton Pattern 123
Creating Singleton Using a Static Method 123
Exceptions and Instances 124
Throwing the Exception 125
Creating an Instance of the Class 125
Providing a Global Point of Access to a Singleton 126
Other Consequences of the Singleton Pattern 126
Programs on the CD-ROM 127

Chapter 12 The Builder Pattern 129
An Investment Tracker 130

The Stock Factory 132

The CheckChoice Class 133

The ListboxChoice Class 134

Using the Items Collection in the ListBox Control 135
Plotting the Data 136

The Final Choice 137

Consequences of the Builder Pattern 138
Thought Questions 138
Program on the CD-ROM 139

Chapter 13 The Prototype Pattern 141
Cloning in C# 142
Using the Prototype 142
Cloning the Class 146
Using the Prototype Pattern 147

Dissimilar Classes with the Same Interface 150

Prototype Managers 152
Consequences of the Prototype Pattern 153
Thought Question 153
Programs on the CD-ROM 154
Summary of Creational Patterns 154

x Contents

6
7

6
7

6
7

6
7

Part 3 Structural Patterns 155

Chapter 14 The Adapter Pattern 157
Moving Data between Lists 157
Making an Adapter 159
Using the DataGrid 160

Detecting Row Selection 162

Using a TreeView 163
The Class Adapter 164
Two-Way Adapters 166
Object versus Class Adapters in C# 166
Pluggable Adapters 166
Thought Question 167
Programs on the CD-ROM 167

Chapter 15 The Bridge Pattern 169
The Bridger Interface 170
The VisList Classes 172
The Class Diagram 173
Extending the Bridge 173
Windows Forms as Bridges 176
Consequences of the Bridge Pattern 177
Thought Question 177
Programs on the CD-ROM 177

Chapter 16 The Composite Pattern 179
An Implementation of a Composite 180
Computing Salaries 180
The Employee Classes 181
The Boss Class 183
Building the Employee Tree 184
Self-Promotion 186
Doubly Linked Lists 187
Consequences of the Composite Pattern 188
A Simple Composite 188

Contents xi

2

4

2
2
2
2
2
2
2
2
2
2

4
4
4

Composites in .NET 189
Other Implementation Issues 189
Thought Questions 189
Programs on the CD-ROM 190

Chapter 17 The Decorator Pattern 191
Decorating a CoolButton 191
Handling Events in a Decorator 193

Layout Considerations 194

Control Size and Position 194

Multiple Decorators 195
Nonvisual Decorators 197
Decorators, Adapters, and Composites 197
Consequences of the Decorator Pattern 198
Thought Questions 198
Programs on the CD-ROM 198

Chapter 18 The Façade Pattern 199
What Is a Database? 199
Getting Data Out of Databases 201
Kinds of Databases 202
ODBC 202
Database Structure 203
Using ADO.NET 203

Connecting to a Database 204

Reading Data from a Database Table 204

Executing a Query 205

Deleting the Contents of a Table 205

Adding Rows to Database Tables Using ADO.NET 206
Building the Façade Classes 207

Building the Price Query 207

Making the ADO.NET Façade 209
The DBTable Class 211

Creating Classes for Each Table 213
Building the Price Table 215

xii Contents

6
7

6
7

6
7

6
7

Loading the Database Tables 218
The Final Application 219
What Constitutes the Façade? 220
Consequences of the Façade 220
Thought Question 221
Program on the CD-ROM 221

Chapter 19 The Flyweight Pattern 223
Discussion 224
Example Code 224

The Class Diagram 228

Selecting a Folder 229

Handling the Mouse and Paint Events 230
Flyweight Uses in C# 231
Sharable Objects 231
Copy-on-Write Objects 232
Thought Question 232
Program on the CD-ROM 232

Chapter 20 The Proxy Pattern 233
Sample Code 234
Proxies in C# 236
Copy-on-Write 237
Comparison with Related Patterns 237
Thought Question 237
Program on the CD-ROM 237
Summary of Structural Patterns 237

Part 4 Behavioral Patterns 239

Chapter 21 Chain of Responsibility 241
Applicability 242
Sample Code 243
ListBoxes 246
Programming a Help System 248

Receiving the Help Command 250

Contents xiii

2

4

2
2
2
2
2
2
2
2
2
2

4
4
4

A Chain or a Tree? 251
Kinds of Requests 252
Examples in C# 252
The Chain of Responsibility 253
Thought Question 253
Programs on the CD-ROM 253

Chapter 22 The Command Pattern 255
Motivation 255
Command Objects 256
Building Command Objects 257
Consequences of the Command Pattern 259
The CommandHolder Interface 259
Providing Undo 262
Thought Questions 268
Programs on the CD-ROM 268

Chapter 23 The Interpreter Pattern 269
Motivation 269
Applicability 269
A Simple Report Example 270
Interpreting the Language 271
Objects Used in Parsing 272
Reducing the Parsed Stack 276
Implementing the Interpreter Pattern 277

The Syntax Tree 278

Consequences of the Interpreter Pattern 281
Thought Question 282
Program on the CD-ROM 282

Chapter 24 The Iterator Pattern 283
Motivation 283
Sample Iterator Code 284

Fetching an Iterator 285

Filtered Iterators 286
The Filtered Iterator 286

xiv Contents

6
7

6
7

6
7

6
7

Keeping Track of the Clubs 288
Consequences of the Iterator Pattern 289
Programs on the CD-ROM 290

Chapter 25 The Mediator Pattern 291
An Example System 291
Interactions between Controls 292
Sample Code 294

Initialization of the System 297

Mediators and Command Objects 297
Consequences of the Mediator Pattern 298
Single Interface Mediators 299
Implementation Issues 299
Program on the CD-ROM 299

Chapter 26 The Memento Pattern 301
Motivation 301
Implementation 302
Sample Code 302

A Cautionary Note 308

Command Objects in the User Interface 309
Handling Mouse and Paint Events 310
Consequences of the Memento 311
Thought Question 312
Program on the CD-ROM 312

Chapter 27 The Observer Pattern 313
Watching Colors Change 314
The Message to the Media 318
Consequences of the Observer Pattern 318
Program on the CD-ROM 319

Chapter 28 The State Pattern 321
Sample Code 321
Switching between States 325
How the Mediator Interacts with the StateManager 326

The ComdToolBarButton 327

Contents xv

2

4

2
2
2
2
2
2
2
2
2
2

4
4
4

Handling the Fill State 330
Handling the Undo List 331
The VisRectangle and VisCircle Classes 333
Mediators and the God Class 335
Consequences of the State Pattern 335
State Transitions 336
Thought Questions 336
Program on the CD-ROM 336

Chapter 29 The Strategy Pattern 337
Motivation 337
Sample Code 338
The Context 339
The Program Commands 339
The Line and Bar Graph Strategies 340
Drawing Plots in C# 341

Making Bar Plots 341

Making Line Plots 342

Consequences of the Strategy Pattern 344
Program on the CD-ROM 344

Chapter 30 The Template Method Pattern 345
Motivation 345
Kinds of Methods in a Template Class 347
Sample Code 347

Drawing a Standard Triangle 349

Drawing an Isosceles Triangle 349

The Triangle Drawing Program 350
Templates and Callbacks 351
Summary and Consequences 352
Programs on the CD-ROM 352

Chapter 31 The Visitor Pattern 353
Motivation 353
When to Use the Visitor Pattern 355

xvi Contents

6
7

6
7

6
7

6
7

Contents xvii

2

4

2
2
2
2
2
2
2
2
2
2

4
4
4

Sample Code 355
Visiting the Classes 357
Visiting Several Classes 357
Bosses Are Employees, Too 359
Catch-All Operations with Visitors 360
Double Dispatching 361
Why Are We Doing This? 361
Traversing a Series of Classes 362
Consequences of the Visitor Pattern 362
Thought Question 363
Program on the CD-ROM 363

Bibliography 365

Index 367

This page intentionally left blank

PREFACE

This is a practical book that tells you how to write C# programs using some of
the most common design patterns. It also serves as a quick introduction to pro-
gramming in the new C# language. The pattern discussions are structured as a
series of short chapters, each describing a design pattern and giving one or more
complete working, visual example programs that use that pattern. Each chapter
also includes UML diagrams illustrating how the classes interact.

This book is not a “companion” book to the well-known Design Patterns
text by the “Gang of Four.” Instead, it is a tutorial for people who want to learn
what design patterns are about and how to use them in their work. You do not
have to have read Design Patterns to read this book, but when you are done
here, you may well want to read or reread it to gain additional insights.

In this book, you will learn that design patterns are frequently used ways of
organizing objects in your programs to make them easier to write and modify.
You’ll also see that by familiarizing yourself with them, you’ve gained some
valuable vocabulary for discussing how your programs are constructed.

People come to appreciate design patterns in different ways—from the
highly theoretical to the intensely practical—and when they finally see the great
power of these patterns, an “Aha!” moment occurs. Usually this is the moment
when you discover how that pattern can help you in your work.

In this book, we try to help you form that conceptual idea, or gestalt, by
describing the pattern in as many ways as possible. The book is organized
into six main sections: an introductory description, an introduction to C#,
and descriptions of patterns that are grouped as creational, structural, and
behavioral.

For each pattern, we start with a brief verbal description and then build
simple example programs. Each of these examples is a visual program that you
can run and examine to make the pattern as concrete a concept as possible. All

xix

2

4
5

9

2
2
2
2
2
2
2
2
2
2

4
4

of the example programs and their variations are on the companion CD-ROM,
where you run them, change them, and see how the variations you create work.

Since each of the examples consists of a number of C# files for each of the
classes we use in that example, we provide a C# project file for each example
and place each example in a separate subdirectory to prevent any confusion.
This book assumes you have and will be using a copy of Visual Studio.NET,
which comes in several versions. We used the Professional Edition in developing
the code samples.

If you leaf through the book, you’ll see screenshots of the programs we
developed to illustrate the design patterns, providing yet another way to rein-
force your learning of these patterns. In addition, you’ll see UML diagrams of
these programs, illustrating the interactions between classes in yet another way.
UML diagrams are just simple box-and-arrow illustrations of classes and their
inheritance structure, where arrows point to parent classes, and dotted arrows
point to interfaces. And if you’re not yet familiar with UML, we provide a simple
introduction in the second chapter. All of the diagrams were produced using
WithClass 2000, and a demonstration version of that program is included on
the CD-ROM.

When you finish this book, you’ll be comfortable with the basics of design
patterns and will be able to start using them in your day-to-day C# program-
ming work.

James W. Cooper
Nantucket, MA

Wilton, CT
Kona, HI

xx Preface

6
7

6
7

6
7

6
7

CHAPTER 3
Writing Windows C# Programs

The C# language has its roots in C++, Visual Basic, and Java. Both C# and
VB.Net use the same libraries and compile to the same underlying code. Both
are managed languages with garbage collection of unused variable space, and
both can be used interchangeably. Both also use classes with method names that
are very similar to those in Java, so if you are familiar with Java, you will have
no trouble with C#.

Objects in C#

In C#, everything is treated as an object. Objects contain data and have methods
that operate on them. For example, strings are now objects. They have methods
such as these.

Substring
ToLowerCase
ToUpperCase
IndexOf
Insert

Integers, float, and double variables are also objects, and they have methods.

string s;
float x;
x = 12.3;
s = x.ToString();

Note that conversion from numerical types is done using these methods
rather than external functions. If you want to format a number as a particular
kind of string, each numeric type has a Format method.

29

2

4
5

9

2
2
2
2
2
2
2
2
2
2

4
4

Managed Languages and Garbage Collection

C# and VB.Net are both managed languages. This has two major implications.
First, both are compiled to an intermediate low-level language, and a common
language runtime (CLR) is used to execute this compiled code, perhaps compil-
ing it further first. So, not only do C# and VB.Net share the same runtime
libraries, they are to a large degree two sides of the same coin and two aspects
of the same language system. The differences are that VB7 is more Visual
Basic–like and a bit easier for VB programmers to learn and use. C# on the
other hand is more C++- and Java-like and may appeal more to programmers
already experienced in those languages.

The other major implication is that managed languages are garbage-collected.
Garbage-collected languages take care of releasing unused memory. (You never
have to be concerned with this.) As soon as the garbage-collection system detects
that there are no more active references to a variable, array, or object, the memory
is released back to the system. Of course, it is still possible to write memory-eating
code, but for the most part, you do not have to worry about memory allocation
and release problems.

Classes and Namespaces in C#

All C# programs are composed entirely of classes. Visual windows forms are a
type of class. You will see that all the program features we’ll be writing are com-
posed of classes. Since everything is a class, the number of names of class objects
can be overwhelming. They have therefore been grouped into various func-
tional libraries that you must specifically mention in order to use the functions
in these libraries.

Under the covers these libraries are each individual DLLs. However, you
need only refer to them by their base names, using the using statement, and the
functions in that library are available to you.

using System;
using System.Drawing;
using System.Collections;

Logically, each of these libraries represents a different namespace. Each
namespace is a separate group of class and method names, which the compiler
will recognize after you declare that namespace. You can use namespaces that
contain identically named classes or methods, but you will only be notified of a
conflict if you try to use a class or method that is duplicated in more than one
namespace.

30 CHAPTER 3 Writing Windows C# Programs

6
7

6
7

6
7

6
7

The most common namespace is the System namespace, and it is imported
by default without your needing to declare it. It contains many of the most fun-
damental classes and methods that C# uses for access to basic classes such as
Application, Array, Console, Exceptions, Objects, and standard objects such as
byte, bool, and string. In the simplest C# program we can simply write out a
message to the console without ever bringing up a window or form.

class Hello {
static void Main(string[] args) {
Console.WriteLine ("Hello C# World");

}
}

This program just writes the text “Hello C# World” to a command (DOS)
window. The entry point of any program must be a Main method, and it must
be declared as static.

Building a C# Application

Let’s start by creating a simple console application—that is, one without any
windows that just runs from the command line. Start the Visual Studio.NET
program, and select File | New Project. From the selection box, choose C# Con-
sole application, as shown in Figure 3-1.

Figure 3-1 The New Project selection window: selecting a console application.

Building a C# Application 31

2

4

2
2
2
2
2
2
2
2
2
2

4
4
4

This will bring up a module with Main already filled in. You can type in the rest
of the code as follows.

Console.WriteLine ("Hello C# World");

You can compile this and run it by pressing F5.
When you compile and run the program by pressing F5, a DOS window

will appear and print out the message “Hello C# World” and then exit.

The Simplest Window Program in C#

C# makes it very easy to create Windows GUI programs. In fact, you can create
most of it using the Windows Designer. To do this, start Visual Studio.NET,
select File | New Project, and select C# Windows Application. The default name
(and filename) is WindowsApplication1, but you can change this before you
close the New dialog box. This brings up a single form project, initially called
Form1.cs. You can then use the Toolbox to insert controls, just as you can in
Visual Basic.

The Windows Designer for a simple form with one text field and one button
is shown in Figure 3-2.

Figure 3-2 The Windows Designer in Visual Studio.NET

32 CHAPTER 3 Writing Windows C# Programs

6
7

6
7

6
7

6
7

You can draw the controls on the form by selecting the TextBox from the
Toolbox, dragging it onto the form, and then doing the same with the button.
Then, to create program code, we need only double-click on the controls. In this
simple form, we want to click on the “Hello” button, which copies the text
from the text field to the textbox we called txHi and clears the text field. So
in the designer, we double-click on that button, and this code is automatically
generated.

private void btHello_Click(object sender, EventArgs e) {
txHi.Text ="Hello there";
}

Note that the Click routine passes in a sender object and an event object
that you can query for further information. Under the covers, it also connects
the event to this method. The running program is shown in Figure 3-3.

Figure 3-3 The SimpleHello form after clicking the Say Hello button

While we only had to write one line of code inside the previous subrou-
tine, it is instructive to see how different the rest of the code is for this program.
We first see that several libraries of classes are imported so the program can
use them.

using System;
using System.Drawing;
using System.Collections;
using System.ComponentModel;
using System.Windows.Forms;
using System.Data;

Most significant is the Windows.Forms library, which is common to all the
.NET languages.

The Simplest Window Program in C# 33

2

4

2
2
2
2
2
2
2
2
2
2

4
4
4

The code the designer generates for the controls is illuminating—and it is
right out there in the open for you to change if you want. Essentially, each con-
trol is declared as a variable and added to a container. Here are the control dec-
larations. Note the event handler added to the btHello.Click event.

private System.Windows.Forms.TextBox txHi;
private System.Windows.Forms.Button btHello;

private void InitializeComponent() {
this.btHello = new System.Windows.Forms.Button();
this.txHi = new System.Windows.Forms.TextBox();
this.SuspendLayout();
//
// btHello
//
this.btHello.Location =

new System.Drawing.Point(80, 112);
this.btHello.Name = "btHello";
this.btHello.Size = new System.Drawing.Size(64, 24);
this.btHello.TabIndex = 1;
this.btHello.Text = "Hello";
this.btHello.Click +=

new EventHandler(this.btHello_Click);
//
// txHi
//
this.txHi.Location =

new System.Drawing.Point(64, 48);
this.txHi.Name = "txHi";
this.txHi.Size = new System.Drawing.Size(104, 20);
this.txHi.TabIndex = 0;
this.txHi.Text = "";
//
// Form1
//
this.AutoScaleBaseSize =

new System.Drawing.Size(5, 13);
this.ClientSize = new System.Drawing.Size(240, 213);
this.Controls.AddRange(

new System.Windows.Forms.Control[] {
this.btHello,
this.txHi});
this.Name = "Form1";
this.Text = "Hello window";
this.ResumeLayout(false);

}

If you change this code manually instead of using the property page, the
window designer may not work anymore. We’ll look more at the power of this
system after we discuss objects and classes in the next chapter.

34 CHAPTER 3 Writing Windows C# Programs

6
7

6
7

6
7

6
7

Windows Controls

All of the basic Windows controls work in much the same way as the TextBox
and Button we have used so far. Many of the more common ones are shown in
the Windows Controls program in Figure 3-4.

Figure 3-4 A selection of basic Windows controls

Each of these controls has properties such as Name, Text, Font, Forecolor,
and Borderstyle that you can change most conveniently using the properties win-
dow shown at the right of Figure 3-2. You can also change these properties in
your program code as well. The Windows Form class that the designer gener-
ates always creates a Form1 constructor that calls an InitializeComponent
method like the preceding one. Once that method has been called, the rest of the
controls have been created, and you can change their properties in code. Gener-
ally, we will create a private init() method that is called right after the Initialize-
Component method, in which we add any such additional initialization code.

Labels

A label is a field on the window form that simply displays text. Usually
programmers use this to label the purpose of text boxes next to them. You
can’t click on a label or tab to it so it obtains the focus. However, if you want,
you can change the major properties in Table 3-1 either in the designer or at
runtime.

Windows Controls 35

2

4

2
2
2
2
2
2
2
2
2
2

4
4
4

TextBox

The TextBox is a single line or multiline editable control. You can set or get the
contents of that box using its Text property.

TextBox tbox = new TextBox();
tbox.Text = "Hello there";

In addition to the properties in Table 3-1, the TextBox also supports the proper-
ties in Table 3-2.

CheckBox

A CheckBox can be either checked or not, depending on the value of the
Checked property. You can set or interrogate this property in code as well as in
the designer. You can create an event handler to catch the event when the box is
checked or unchecked by double-clicking on the checkbox in the design mode.

CheckBoxes have an Appearance property that can be set to Appearance.
Normal or Appearance.Button. When the appearance is set to the Button value,

36 CHAPTER 3 Writing Windows C# Programs

6
7

6
7

6
7

6
7

Property Value

Name At design time only

BackColor A Color object

BorderStyle None, FixedSingle, or Fixed3D

Enabled True or false. If false, grayed out.

Font Set to a new Font object

ForeColor A Color object

Image An image to be displayed within the label

ImageAlign Where in the label to place the image

Text Text of the label

Visible True or false

Table 3-1 Properties for the Label Control

the control acts like a toggle button that stays depressed when you click on
it and becomes raised when you click on it again. All the properties in Table 3-1
apply as well.

Buttons

A Button is usually used to send a command to a program. When you click on
it, it causes an event that you usually catch with an event handler. Like the
CheckBox, you create this event handler by double-clicking on the button in
the designer. All of the properties in Table 3-1 can be used as well.

Buttons are also frequently shown with images on them. You can set the
button image in the designer or at runtime. The images can be in bmp, gif, jpeg,
or icon files.

Radio Buttons

Radio buttons or option buttons are round buttons that can be selected by
clicking on them. Only one of a group of radio buttons can be selected at a time.
If there is more than one group of radio buttons on a window form, you
should put each set of buttons inside a Group box as we did in the program in
Figure 3-4. As with checkboxes and buttons, you can attach events to clicking
on these buttons by double-clicking on them in the designer. Radio buttons do
not always have events associated with them. Instead, programmers check the
Checked property of radio buttons when some other event, like an OK button
click, occurs.

Windows Controls 37

2

4

2
2
2
2
2
2
2
2
2
2

4
4
4

Property Value

Lines An array of strings, one per line

Locked If true, you can’t type into the text box

Multiline True or false

ReadOnly Same as locked. If true, you can still select
the text and copy it, or set values from
within code.

WordWrap True or false

Table 3-2 TextBox Properties

ListBoxes and ComboBoxes

Both ListBoxes and ComboBoxes contain an Items array of the elements in that
list. A ComboBox is a single-line drop-down that programmers use to save
space when selections are changed less frequently. ListBoxes allow you to set
properties that allow multiple selections, but ComboBoxes do not. Some of
their properties include those in Table 3-3.

The Items Collection

You use the Items collection in the ListBox and ComboBox to add and remove
elements in the displayed list. It is essentially an ArrayList, as we discuss in
Chapter 7. The basic methods are shown in Table 3-4.

If you set a ListBox to a multiple selection mode, you can obtain a collection
of the selected items or the selected indexes by

ListBox.SelectedIndexCollection it =
new ListBox.SelectedIndexCollection (lsCommands);

ListBox.SelectedObjectCollection so =
new ListBox.SelectedObjectCollection (lsCommands);

where lsCommands is the ListBox name.

38 CHAPTER 3 Writing Windows C# Programs

6
7

6
7

6
7

6
7

Property Value

Items A collection of items in the list

MultiColumn If true, the ColumnWidth property
describes the width of each column.
(Does not apply to ComboBox.)

SelectionMode One, MultiSimple, or MultiExtended.
If set to MultiSimple, you can select or
deselect multiple items with a mouse click.
If set to MultiExtended, you can select
groups of adjacent items with a mouse.
(Does not apply to ComboBox.)

SelectedIndex Index of selected item

SelectedIndices Returns collection of selections when
ListBox selection mode is multiple.

SelectedItem Returns the item selected

Table 3-3 The ListBox and ComboBox Properties

Menus

You add a menu to a window by adding a MainMenu control to the window
form. Then you can select the menu control and edit its drop-down names and
new main item entries, as shown in Figure 3-5.

Figure 3-5 Adding a menu to a form

As with other clickable controls, double-clicking on one in the designer creates
an event whose code you can fill in.

ToolTips

A ToolTip is a box that appears when your mouse pointer hovers over a control
in a window. This feature is activated by adding an (invisible) ToolTip control
to the form and then adding specific ToolTip control and text combinations to
the control. In our example in Figure 3-4, we add ToolTips text to the button
and ListBox using the tips control we have added to the window.

tips.SetToolTip (btPush, "Press to add text to list box");
tips.SetToolTip (lsCommands, "Click to copy to text box");

This is illustrated in Figure 3-6.

Windows Controls 39

2

4

2
2
2
2
2
2
2
2
2
2

4
4
4

Method Value

Add Add object to list

Count Number in list

Item[i] Element in collection

RemoveAt(i) Remove element i

Table 3-4 Methods for the Items Collection

Figure 3-6 A ToolTip over a button

We discuss how to use the DataGrid and TreeList in Chapters 14 and 15, and
Toolbar is discussed in Chapters 28 and 29.

The Windows Controls Program

The Windows Controls program, shown in Figure 3-4, controls changes in the
text in the label.

• Font size is set from the combo box.
• Font color is set from the radio buttons.
• Boldface is set from the check box.

For the check box, we create a new font that is either lightface or boldface,
depending on the state of the check box.

private void ckBold_CheckedChanged(object sender, EventArgs e) {
if (ckBold.Checked) {

lbText.Font =new Font ("Arial",
fontSize,FontStyle.Bold);

}
else {

lbText.Font = new Font ("Arial", fontSize);
}

When we create the form, we add the list of font sizes to the combo box.

private void init() {
fontSize = 12;
cbFont.Items.Add ("8");
cbFont.Items.Add ("10");
cbFont.Items.Add ("12");
cbFont.Items.Add ("14");
cbFont.Items.Add ("18");
lbText.Text ="Greetings";
tips.SetToolTip (btPush, "Press to add text to list box");
tips.SetToolTip (lsCommands, "Click to copy to text box");

}

When someone clicks on a font size in the combo box, we convert that text
to a number and create a font of that size. Note that we just call the check box
changing code so we don’t have to duplicate anything.

40 CHAPTER 3 Writing Windows C# Programs

6
7

6
7

6
7

6
7

private void cbFont_SelectedIndexChanged(
object sender, EventArgs e) {

fontSize= Convert.ToInt16 (cbFont.SelectedItem);
ckBold_CheckedChanged(null, null);

}

For each radio button, we click on it and insert color-changing code.

private void opGreen_CheckedChanged(object sender, EventArgs e) {
lbText.ForeColor =Color.Green;

}

private void opRed_CheckedChanged(object sender, EventArgs e) {
lbText.ForeColor =Color.Red ;

}

private void opBlack_CheckedChanged(object sender, EventArgs e) {
lbText.ForeColor =Color.Black ;

}

When you click on the ListBox, it copies that text into the text box by getting
the selected item as an object and converting it to a string.

private void lsCommands_SelectedIndexChanged(
object sender, EventArgs e) {

txBox.Text = lsCommands.SelectedItem.ToString () ;
}

Finally, when you click on the File | Exit menu item, it closes the form and,
hence, the program.

private void menuItem2_Click(object sender, EventArgs e) {
this.Close ();

}

Summary

Now that we’ve seen the basics of how to write programs in C#, we are ready to
talk more about objects and OO programming in the chapters that follow.

Programs on the CD-ROM

Console Hello \IntroCSharp\Hello

Windows Hello \IntroCSharp\SayHello

Windows Controls \IntroCSharp\WinControls

Programs on the CD-ROM 41

2

4

2
2
2
2
2
2
2
2
2
2

4
4
4

INDEX

367

2

4
5

9

2
2
2
2
2
2
2
2
2
2

4
4

Symbols
+, addition operator, 18
\\, backslash character, 15
\b, backspace character, 15
&, bitwise AND, 18
^, bitwise exclusive OR, 18
|, bitwise OR, 18
\r, carriage return, 15
--, decrement operator, 18, 19
/, division operator, 18
\", double quote, 15
\f, form feed, 15
>, greater than operator, 21
>=, greater than or equal to operator, 21
++, increment operator, 18, 19
==, is equal to operator, 21
!=, is not equal to operator, 21
<<n, left shift n places, 18
<, less than operator, 21
<=, less than or equal to operator, 21
&&, logical AND, 21
||, logical OR, 21
%, modulo, 18
*, multiplication operator, 18
\n, newline feed, 15

\0, null character, 15
>>n, right shift n places, 18
\', single quote, 15
-, subtraction operator, 18
\t, tab character, 15

A
Absolute zero, and Kelvin scale, 47
Abstract classes, 7, 76–80, 192
Abstract class system, and drawing rectangle

and circle, 78
AbstractEmployee class, 181

Employee and Boss derived from, 184
AbstractEmployee interface, 182
AbstractEmployee subclasses, 187
AbstractExpression object, in Interpreter

pattern, 277
Abstract Factory pattern, 9, 97, 115–121,

154
and Builder pattern, 138
consequences of, 120
and GardenMaker factory, 115–120
more classes added to, 120

Abstraction, in Bridge pattern, 169
abstract keyword, 82

Note: Italicized page locators refer to figures/tables.

Acceptance, and learning design patterns, 6
accept method, 354, 356, 358, 361

adding to subclasses, 355
Accessor methods, 45
Action methods, 299
ActionVerb class, 280
ActiveX controls, 176
ActiveX Data Objects, 203
Adapter class, 318
Adapter pattern, 9, 155, 157–167, 237

and Bridge pattern, 169
and class adapter, 164–166
making an adapter, 159–160
moving data between lists, 157–158
moving the DataGrid, 160–164
object versus class adapters in C#, 166
pluggable adapters, 166
Proxy pattern, 237
two-way adapters, 166

Adapters, 157
decorators, composites and, 197–198
making, 159–160

Addition operator (+), 18
Address class, Person and Group derived

from, 129
addToChain method, 244
Add2.cs program, 16–17
ADO DataSet manipulation, and Clone

method, 142
ADO.NET, 199, 203

connecting to database in, 204
deleting contents of table in, 205–206
executing query in, 205
reading data from database table in,

204–205
rows added to database tables with,

206–207
using, 203–207

ADO.NET database connections
as proxies, 236
in Façade pattern, 9

ADO.NET Façade
DBTable class, 211–213
making, 209–213

AgeSwimData class, 151
age distribution display for, 150

Aggregation (in UML diagrams), diamonds
indicating, 84

Algebraic strings, parsing, 270
Algorithms

and Strategy pattern, 337
Strategy pattern and dynamic selection of,

344
and Template pattern, 345

AND operation, 17
Annotation, and UML diagrams, 85–86
AnnualGarden class, 117
ANSI standards, and SQL, 202
Appearance property, in CheckBoxes, 36
Application class, 31
Approach, 202
Arithmetic operators, 17, 18
Arithmetic statements, combining assignment

statements and, 18–19
Array class, 31
ArrayList, 38, 290, 361

of child nodes, 180
Kid objects in, 284
Observer objects added to, 314
and Prototype pattern, 147
and Stack class, 271
StoreFoodPrice objects in, 215
and TriangleForm class, 350

ArrayList methods, 88, 89
ArrayList object, 54, 88
Arrays, in C#, 87–88
Arrow-object state, 336
Assignment statements, combining arithmetic

statements and, 18–19
Autohighlight feature, of C# TextBox, 75
Automobile factories, 115
AxsDatabase class, 210

368 Index

6
7

6
7

6
7

6
7

B
Backslash character (\\), 15
Backspace character (\b), 15
Bar charts, 338, 345
Bar graph, and Strategy pattern, 343
BarGraph strategy, 344
BarPlot class, 345

LinePlot class derived from, 342
Bar plots, making, 341–342
BarPlotStrategy class, 340, 341
BarPlot window, 341
Base classes, and Template method, 345, 349,

352
Behavioral patterns, 6, 97, 239–363

Chain of Responsibility, 241–253
Command, 255–268
Interpreter, 269–282
Iterator, 283–290
Mediator, 291–299
Memento, 301–312
Observer, 313–319
State, 321–336
Strategy, 337–344
Template Method, 345–352
Visitor, 353–363

Bitfields, 26
BitList class, 61
Bitmap class, 235
Bitmaps, 231
Bitwise And (&), 18
Bitwise exclusive Or (^), 18
Bitwise operators, 17
Bitwise Or (_), 18
BlueCommand class, 265

derived from ColorCommand class, 267
BlueCommand object, and isUndo method,

265
Blue radio button, in watching colors change

program, 314
bmp files, and Buttons, 37
Bonds, with check box interface, 131

Booch, Grady, 81
Boolean operators, 17
Boolean variables, 13
Boolean variable type, spelling in C#, 27
bool object, 31
Borland Paradox, 202
Boss class, 183–184, 187, 357, 358

derived from AbstractEmployee class, 184
visitor classes visiting, 359

BossVisitor, 361
Braces ({}), 70

classes/functions surrounded by, 17
indentation styles for, 20
statements in condition enclosed within, 19

break statement, 22, 27
Bridge pattern, 9, 155, 169–177, 237

consequences of, 177
extending the bridge, 173–176
UML diagram for, 173
VisList classes, 172
Windows forms as bridges, 176

Bridger class, 173
Bridger interface, defined, 170
btClone_Click event, 149
btConvert_click method, 44
Builder pattern, 76, 98, 107, 129–139, 154

consequences of, 138
inheritance relationships in, 138
Investment Tracker, 130–135
and Prototype pattern, 141
using Items collection in ListBox control,

135–137
Builder program, 176
Builder tools, 176
Butterfly class, 104
Button class, 256, 257, 260, 294, 339
Button events, handling, 119
Buttons, 37, 58, 189, 255, 256

decorating, 191
ToolTip over, 40

Button value, 36

Index 369

2

4

2
2
2
2
2
2
2
2
2
2

4
4
4

bVacationVisitor class, 358, 359
byte object, 31

C
C, 11, 313

arrays in line with style used in, 87
differences between C# and, 26

C#, 1, 25. See also Writing Windows C#
programs

application building, 31–32
arithmetic and assignment statements

combined in, 18–19
arithmetic operators in, 17
character constants in, 14–15
classes used in, 43
class module created from IDE of, 45
cloning in, 142
commas in for loop statements in, 25–26
comments in, 23
common Exception classes in, 91
comparison operators in, 20–21
conditions combined in, 21
converting between numbers and strings

in, 13–14
and database structure, 203
decision making in, 19–20
declaring multiple variables in, 14
differences between C and, 26
differences between Java and, 27
do-while statement in, 24
flyweight uses in, 231
for loop in, 24–25
IEnumerator interface in, 284
increment and decrement operators in, 18
logical operators in, 18
looping statements in, 24
as managed language, 30
most common mistake in, 21–22
multiple equal signs for initialization in, 16
numeric constants in, 14
object versus class adapters in, 166

plots drawn in, 341
programming style in, 58
project files, 86
proxies in, 236
simple program in, 16–17
States implementing common interface in,

336
switch statement in, 22
syntax of, 11–27
ternary operator, 23
variables in, 15–16
while loop in, 24

C++, 7, 11, 284, 313
arrays in line with style used in, 87
C# roots in, 29
friend construction in, 302

Caching results, and Composite pattern, 189
Capital class, 60
Capitalization, 27
Caretaker class, 304, 307, 311
Caretaker object, and Memento pattern, 302
Carriage return (\r), 15
Cascading notifications, 318
Case sensitivity, with C#, 11
Casting, 13
Catch blocks, and multiple exceptions, 91–92
catch statement, and exceptions, 90
Celsius temperature scale, 43

absolute zero on, 47
CEO Employee, 184
Chain class, 244, 248, 253
Chain interface, 248, 253
Chain of responsibility pattern, 8, 239,

241–253, 280
applicability of, 242
chain or tree?, 251–252
class diagram for help system, 251
and Command pattern, 255
examples in C#, 252–253
Help chain, 241
implementation of as linear chain, 252

370 Index

6
7

6
7

6
7

6
7

implementation of as tree structure, 251
kinds of requests with, 252
ListBoxes, 246–248
programming a Help system, 248–251
program on the CD-ROM, 253
purpose of, 253
sample code, 243–246
simple Chain of Responsibility, 242
and syntax tree, 278
visual command interpreter program

sample, 243
Chain of Responsibility program, class

structure of, 247
Character constants, 14–15
CheckBox, 36–37
Check Box Builder, 133
Check boxes, 189, 255
Check box interface, bonds with, 131
CheckChoice class, 133–134
Checked property, of radio buttons, 37
Child nodes, ArrayList of, 180
Children, and nodes, 179
Circle button, 321, 323
Circle class, 77
CircleSeeding, 111

instance of, returned by PrelimEvent class,
110

subclass, 108, 109
Circle seeding

of 100 Free, 112
of swimmers, 107

Circle state object, 324
Class adapter, 157, 164–166

list adapter approach to, 165
object adapter versus, 166

Class-based Adapter, 169
Class containment, 55
Classes, 1, 17, 63

abstract, 76–78
in C#, 30–31
cloning, 145, 146–147

and design patterns, 7
fetching iterators in, 285–286
in Filtered enumeration, 288
and flyweights, 224
for format and value conversion, 48–51
interaction between for simple drawing

program, 322
isolation of, with Abstract Factory, 120
and Mediator pattern, 291
as objects, 53–54
and properties, 56–58
for tables in Façade pattern, 213–215
tangled web of interactions between, in

Mediator pattern visual interface, 293
traversing series of, 362
uses for, 43
visiting, 357–358

Class instances, cloning, 142
Class libraries, and visitors, 355
Class methods, declaring as public, private,

and protected, 71
Class modules, 45
Class patterns, object patterns versus, 155
Clear button, 291, 294, 297, 302, 321

behavior of, 323
Command objects for, 309

Clear method, and Mediator, 295
Click events, event handler for, 295
Client object, in Interpreter pattern, 277
cloneMe method, inheritance of by

AgeSwimData class, 150
Clone method, 142, 146, 149
Cloning

in C#, 142
classes, 145, 146–147
and Prototype pattern, 141, 153

closeTriangle method, 352
CLR. See Common language runtime
Cocoon class, 105
Colleague, and Mediator, 293
Colleague elements, 299

Index 371

2

4

2
2
2
2
2
2
2
2
2
2

4
4
4

Collection objects, 88–90
Collisions, avoiding, 68
ColObserver class, 315–316, 318
Colon (:), 70

and parsing, 49
ColorChain class, 245
Color-changing code, in Windows Controls

program
ColorCommand class, 265–266

classes derived from, 267
ColorForm observer, 316
ColorImage class, 248
Color objects, 316
Color observer, 317
Colors, watching changes in, 314–317
Columns, 199, 203
ComboBox properties, 38
ComdToolBarButton class, 327–328
Command buttons, 297

automatic language generation with, 281
CommandHolder approach, UML diagram

of, 262
CommandHolder interface, 259–262
Command interface, 294, 309, 339

ExitCommand implementing, 84
implementing in new classes, 257
and Undo function, 263
and unDo method, 265

CommandMenu class, 260
Command objects, 256–257, 259, 261, 277

building, 257–259
interactions between Mediator object and,

198
Mediators and, 297
and Undo command, 264

Command pattern, 8, 239, 255–268, 280,
311

and building command objects, 257–259
and CommandHolder interface, 259–262
and command objects, 256–257
consequences of, 259

and Mediator pattern, 297
menu designer interface, 258
menu part of using ComandHolder

interface, 262
motivation for, 255–256
programs on the CD-ROM, 268
purpose of, 256
simple program demo, 255
undo function provided by, 262–267

Commands, undoing, 263
Commas, in for loop statements, 25–26
Comments, 17, 23

shown in box with turned-down
corner, 86

in UML diagram, 85
Commercial languages, licensing fees and

embedding of, 269
Common language runtime, 30
Communication patterns, 5
Company class

with any number of instances of
Employee, 85

instances of Person and Employee in, 84
CompareTo method, 147, 173
Comparison operators, 20–21, 21
Compilation errors, 22
Compiler error messages, 25
Complex class, 62
Components, ordering, 189
Composite pattern, 9, 155, 179–190, 237,

283, 355, 362
and Boss class, 183–184
building Employee tree, 184–186
composites in .NET, 189
computing salaries, 180–181
consequences of, 188
doubly linked lists, 187
and Employee class, 181–183
implementation of composite, 180
other implementation issues with, 189
programs on the CD-ROM, 190

372 Index

6
7

6
7

6
7

6
7

and self-promotion, 186–187
and simple composite, 188–189

Composites, adapters, decorators and,
197–198

Composition, and UML diagrams, 84–85
ConcreteImplementors, 173

in Bridge pattern, 169
Concrete methods, 347
Conditions, combining, 21
Console class, 17, 31
Constants

character, 14–15
numeric, 14

const modifier, in C#, 12
Constructor method, for Rectangle class, 68
Constructors, 43, 72, 80
Containers, 189

for Command object, 259
as Decorators, 192

Containment, 5
list of swimmers and their times using, 55

contains method, 306
Context class, 323, 337, 339
Context interface, 344
Context object, in Interpreter pattern, 277
ControlChain class, 249–250
Controller, 4
Control names, 58
Controls

in C#, 176, 249–250
collection, 189
interactions between, 292–293
Mediator and initialization of, 297

Controls array, and Windows form
containing buttons, 194

Convert methods, for converting between
numbers and strings, 13

CoolBar, 192
CoolButton, 195

decorating, 191–193
decoration of, with SlashDecorator, 196

CoolDecorator, 196
Coplien, J. O., 141
Copy button, 291
Copy method, and Mediator, 295
Copy-on-write

objects, 232
and Proxy pattern, 237

Count property, 88, 89, 180
Coupling between objects, reducing, 253
CpyButton class, 294
CreateText method, 93
Creational patterns, 6, 97–154, 123

Abstract Factory, 115–121
Builder, 129–139
Factory Method, 107–113
Prototype, 141–154
Simple Factory, 99–106
Singleton, 123–127
summary of, 154

csFile class, 95–96, 142
csPatterns namespace, 229
Current() property, 284
currentState variable, 325
Cursor class, 235
Customer version, of ListBox, 172

D
Data

extrinsic, 223, 224, 226
getting out of databases, 201–202
intrinsic, 223, 232
moving between lists, 157–158
plotting in Builder pattern, 136

Database class, 220
Databases

connecting with ADO.Net, 204
description of, 199–201
getting data out of, 201–202
kinds of, 202
reading data from with ADO.Net, 204–205
structure of, 203

Index 373

2

4

2
2
2
2
2
2
2
2
2
2

4
4
4

Database tables
loading and Façade pattern, 218–219
rows added to using ADO.Net,

206–207
DataColumns, 160
DataGrid, 9, 40

and row selection detection, 162
using, 160–162

DataGrid type, 166
Data manipulation, interface manipulation

separated from, 45
Data model, 3
Data modification, and Iterator pattern,

289–290
DataRow, 203, 220
DataSet, 142, 203, 220
Data streams, 94
DataTable class, 160, 161, 203, 220
Data types, in C#, 12
dBase, 202, 209, 220, 232
DBTable, 211–213, 215

classes derived from, 207, 213
classes wrapped in by Façade, 220

DB/2 (IBM), 2022
Decisions

making in C#, 19–20
in Temperature class, 47–48

Declaration
property, 56
multiple variable, 14
variable, 15–16, 25

Decorator class, 191
Decorator panel, code for button added to,

194
Decorator pattern, 155, 191–198, 238

consequences of, 198
decorating CoolButton, 191–193
decorators, adapters, composites and, 198
and event handling, 193–194
and multiple decorators, 195–196
and nonvisual decorators, 197

programs on the CD-ROM, 198
and Proxy pattern, 237

Decrement operator (--), 18, 19
Deep copy, 147
Default case, for switch statements, 22
Delegates, 26, 27, 59–61

demo, 59
Delete * from Table SQL statement, 205
Derived classes

caching special cases in, 361
overriding methods in, 72–73
and Template method, 345, 347, 352

Design patterns, 1
C#, 8
defining, 5–6
description of, 3–4
learning, 6–7
and object-oriented approaches, 7–8
studying, 7

Design Patterns: Elements of Reusable
Software (Gamma, et al.), 4, 6, 7, 16,
133, 179, 192, 197, 198, 223, 283, 302

and Context class, 323
and State pattern, 321
Template Method discussed in, 347
on Templates, 351
types of iterators described by, 290
Visitor pattern discussed in, 362

Design Patterns Smalltalk Companion, The
(Alpert, Brown, and Woolf), 4, 5, 7, 231,
251, 269, 302, 307

Diamonds, in UML diagrams, 84
Director class, 133
Display classes, using Bridge pattern, 169,

170
Division operator (/), 18
Dot (.), and Convert methods, 13
Double angle brackets, 84
Double dispatching, and Visitor pattern, 361
Double quote (\"), 15
DoubleRect class(es), 72, 73

374 Index

6
7

6
7

6
7

6
7

double type, 14
Double variable, methods for, 29
Doubly linked lists, and Composite pattern,

187
do-while loop, 24
draw code, in base Triangle class, 351
drawCommand class, draw method in, 266
DrawData objects, 265
drawHandle method, 333
Drawing, in C#, 66–67
Drawing interface

circle and rectangle objects implementing,
332

VisRectangle implementing, 333
Drawing program, for illustrating State

pattern, 321, 322, 323–325
drawLine method, 352
drawList collection, 265
DrawMemento class, 332
draw method, 77, 349, 350, 352

in drawCommand class, 266
as empty method, 79
for Rectangle class, 68
and Visitor class, 354

DrawObject, three subclasses of, 353
draw routine, and Triangle class, 348
draw2ndLine method, 348, 349, 350, 352

E
Editing, and ADO style of programming,

207
Equal signs (multiple), for initialization, 16
else clause, 19, 20
e-mail address book, 129
Employee, instances of, in Company, 84
Employee class, 181–183, 188

derived from AbstractEmployee class,
184

derived from Person class, 82–83
visitor classes visiting, 359
and Visitor pattern, 355–356

Employee records, in databases, 200
Employee salaries

sorted by magnitude, 201
sorted by name, 201

Employee tree, building, 184–186
EmployeeVisitor, 361
EmpNode class, 185
Empty methods, base classes with, 79
Encapsulation, 7, 8, 47, 51, 71, 337
EndChain class, 250
End of file, testing for, 94–95
End-of-file function, 94
Enumerated types, 27
Enumeration class, 287
Enumeration interface, 9
Enumerator, 182
Enumerator property, of Hashtable, 213
Equal sign (=), for representing assignment of

data, 17
Equities class, 132
Error checking, and language introduction,

281
Error handling

in C#, 90
encapsulation of, 51

ET++, 4
Event class, 107–108
EventHandler class, 194
Event handling in Decorator, 193–194

control size and position, 194
layout considerations, 194

Events button, 66
Events classes, 109
Examplar pattern, 141
Examples

FileExit class, 258
Flyweight, 224–230
simple report, 270–271

Exception classes, in C#, 91
Exception errors, 13
Exception object, 94

Index 375

2

4

2
2
2
2
2
2
2
2
2
2

4
4
4

Exceptions, 9
in C#, 90–91
in file handling, 94
and Singleton pattern, 124

Exceptions class, 31
Execute command, and Butterfly class, 104
Execute method, 259, 260, 280, 295, 328
Execute() method, 256
ExecuteNonQuery method, 205
ExitCommand, Command interface

implemented by, 84
ExitMenu class, 257
External iterators, internal iterators versus,

290
Extrinsic data, 223, 224, 226

F
Façade classes

building, 207–209
building price query, 207–208

Façade pattern, 155, 199–221, 232, 238
ADO.NET database connections in, 9
and building Façade classes, 207–209
building Price table, 215–218
consequences of, 220
creating classes for each table with,

213–215
and Decorator pattern, 198
elements in constitution of, 220
final application with, 219
grocery program using, 209
loading database tables, 218–219
and making ADO.Net Façade, 209–213
program on the CD-ROM, 221

Factory class, 100, 224
Factory method pattern, 97, 107–113

Events classes, 109–110
and other factories, 112–113
Prototype pattern combined with, 152
StraightSeeding, 110–111
Swimmer class, 109

variations on, 113
when to use, 113

Factory pattern(s), 8, 103–105, 129, 154
Fahrenheit temperature scale, 43, 44
false reserved word, 14, 17
Fast Fourier Transform (FFT), 103
FFT “butterfly,” 103
File compression, with different algorithms,

337
FileExit class, 258
File handling

in C#, 92–94
exceptions in, 94
file object, 92–93
reading to text file, 93
writing to text file, 93–94

FileList box, 246
FileList class, 248
File object, 92–93
Files, opening for reading, 96
Fill button, 321

behavior of, 323, 324
FillDataSet method, 204
FillState class, 325, 330–331, 336
Fill State object, 330–331
Filtered enumeration, classes used in, 288
Filtered iterators, 286–287
FilteredIterator class, 286–287
Filtered Iterator demo, simple program-

illustrated filtered
enumeration, 288

FinalImage class, 235
FirstFirst class, 100
First normal form (1NF), tables in, 200
fixText method, 60, 61
Floating point numbers, 13
Float variable, methods for, 29
FlyCanvas class, 228
Flyweight demo, 224
Flyweight display, with one folder selected,

225

376 Index

6
7

6
7

6
7

6
7

FlyweightFactor class, 224
Flyweight pattern, 8, 155, 223–232, 238

copy-on write objects, 232
discussion about flyweights, 224
example code, 224–230
flyweight uses in C#, 231
handling the mouse and paint events,

230
program on the CD-ROM, 232
sharable objects, 231–232

Flyweights, generation of, 228
Folder class, 226, 228
FolderFactory class, 225, 227, 228
Folders

dynamic selection of and FolderFactory,
227

Flyweight demo, 224
Flyweight example and selection of,

229–230
selection of one in Flyweight display, 225

Food class, derived from DBTable, 213
FoodKey, Foods table with, 207
FoodName, Foods table with, 207
Foods table, 207, 214, 218
foreach looping construct, 24, 88
For loop, 24–25
For loop statements, commas in, 25–26
Format conversion, classes used for, 48–51
Format method, 29
Form class, 43, 65, 66, 256
Form Designer, 258
Form feed (\f), 15
Form initialization method, 194, 295
Form_Load routine, 247
Form object, 259
Form1 class, simple hello window in, 65
Forms, menus added to, 39
Form window, 68, 69
Fortran, 19
Fowler, M., 81
FoxBase, 202

Friend construction (C++), 302
ftx delegate, 60

G
Gamma, Eric, 4
“Gang of Four” (GoF), 4, 277
Garbage collection, and managed languages,

30
Garden class, 116
Gardener program

major objects in, 117
user interface of, 117

Garden interface, 116
GardenMaker factory, 115–120

and handling RadioButton and Button
events, 119–120

PictureBox, 118–119
Garden object, methods in, 118
GardenPic class. from PictureBox, 118
Gestalt, 3
getBuilder method, 133
getChain method, 244
getChild method, 186, 188
getChild operation, 180
getClass method, 100
getConvTemp method, 47
getEnumerator method, 289
getFrname method, 102
GetHashCode property, 309
getIterator method, 285
getJob method, 82, 83
getLname method, 102
Get property, and Rectangle class, 306
getSalaries() method, 181, 184
getSeeding method, 109
getSelected method, 136
getSpooler method, 123, 124
getSubordinates method, 283
getSwimmers method, 111
getVacationDays method, 361
getVacDays function, 356

Index 377

2

4

2
2
2
2
2
2
2
2
2
2

4
4
4

getValue method, 215
getWindow method, with Investment

Tracker, 130
gif files, and Buttons, 37
Global points of access, to Singletons, 126
“God class,” Mediator as, 298, 335
GoF patterns, 99
Grand, 81
Graphical editor, state of, 321
Graphics, in C#, 66–67
Graphics object, 68
Greater than operator ((>), 21
Greater than or equal to operator (>=), 21
Green radio button, in watching colors

change program, 314
Grid adapter, 166
GridAdapter class, 161
Grocery Database, Price table in, 216
Grocery pricing data, 207, 208
Grocery program, using Façade pattern, 209
Group class, derived from Address class, 129
GUI, 4
Guillamets, 84

H
Hashtable, 89, 290, 309, 327

of color objects, 245
kids clubs in, 288–289
using, 213
in watching colors change program, 316

Hello form, 65
Help chain, simple demonstration, 248
Help command, receiving, 250–251
Help system, programming, 248–251
HiTextBox, instance of on Windows

Designer pane of new form, 74
HiTextBox control, 74

new derived and regular TextBox control,
75

HitTest object, 162
“Hollywood Principle,” and Templates, 351

Hook methods, 347, 352
Hysteresis, 263

I
IBM DB/2, 202
ICloneable interface, 149

implemented by SwimData class, 146
IComparable interface, 147, 173
Icon class, 235
Icon files, and Buttons, 37
Icons

adding to toolbox, 257
and Flyweight, 223
Flyweight pattern, 224, 225

IDE. See Integrated development
environment

IdictionaryEnumerator, 289
IEnumerator, 181

interface, 284
if clause, 19
if-else case statements, 321
if statement, 19
If tests, 322
if-then-else, 19
Illegal filenames, exceptions for, 94
ImageChain class, 245
Image class, 235
Image control, 234
Image proxy, 234
ImageProxy class, 234
Imager class, 248
Imager interface, 234, 235
Imager object, 234
Images, on Buttons, 37
Implementing the interface, 76
Implementor

in Bridge pattern, 169
VisList interface defines interface of, 173

#include directive, in C and C++, 16
Increment operator (++), 18, 19
Indenting, 19, 20

378 Index

6
7

6
7

6
7

6
7

Indexers, 26, 27, 61–62
in databases, 199
demo of bits gotten from number with, 62

Inheritance, 1, 7, 8, 27, 65–80, 74, 80
abstract classes, 76–78
and adapters, 157
constructors, 65–66
drawing and graphics in C#, 66–67
interfaces, 76
interfaces and abstract classes compared,

79–80
namespaces, 68–71
object, 5
and overloading, 71–72
overriding methods in derived classes,

72–73
overriding Windows controls, 74–75
relationships in Builder pattern, 138
replacing methods using new keyword, 74
representation of, in UML diagram, 83
and UML diagrams, 82–83
using, 68
virtual and override keywords, 72

Initialization, 56
and constructor methods, 65
multiple equal signs for, 16

InitializeComponent method, 35, 66, 67
init method, 66, 112
Instances, 43, 63

of classes, 53
and Singleton pattern, 124

Integers, methods for, 29
Integrated development environment, class

module created from, 45
Interaction, between objects, 5
Interface manipulation, data manipulation

separated from, 45
Interfaces, 1, 7, 76, 179

abstract classes compared with, 79–80
dissimilar classes with same, 150–152
For Iterator, 283

and Observers, 314
and UML diagrams, 84

Interleaved Commands, 263
Internal iterators, external iterators versus,

290
Internalization, and learning design patterns,

6
internal keyword, 302
Internet Explorer, 191
InterpChain class, 279
Interpreter pattern, 8, 239, 269–282

applicability of, 269–270
and Chain of Responsibility pattern, 253
consequences of, 281–282
implementing, 277–280
interpreting the language, 271–272
motivation for, 269
names for participating objects in, 277
objects used in parsing, 272–276
operation of on simple command in text

field, 281
program on the CD-ROM, 282
reducing the parsed stack, 276–277
simple parsing hierarchy for, 273
simple report example, 270–271
and syntax tree, 278–280

Intrinsic data, 223, 232
int type, 14
Investment Tracker, 130–135

CheckChoice class, 133–134
ListboxChoice class, 134–135
StockFactory class, 132–133

is equal to operator (==), 21
isLegal, 275
is not equal to operator (!=), 21
Isosceles triangle, drawing, 349–350, 351
isUndo method, 265
Items collection, 38, 159

methods for, 39
using in ListBox control, 135–136

Iterator, fetching, 285–286

Index 379

2

4

2
2
2
2
2
2
2
2
2
2

4
4
4

Iterator code, sample, 284–285
Iterator interface, and KidIterator class, 285
Iterator pattern, 9, 239, 283–290

consequences of, 289–290
and filtered iterators, 286–288
motivation, 283–284
programs on the CD-ROM, 290
sample iterator code, 284–286
and tracking clubs, 288–289

J
Jacobson, Ivar, 81
Java, 11, 302

arrays in line with style used in, 87
C# roots in, 29
differences between C# and, 27
Hashtable, 213

Java Design Patterns: A Tutorial, 4
JPEG files, and Buttons, 37

K
Kelvin temperature scale, converting

to, 47
Keyboard listeners, 250
KeyDown event, 251
KeyDown event listener, 250
Keys

and Hashtable, 213
to Hashtable of color objects, 245
for Price table, 215

Keywords, 43
KidClub class, 287
KidData class, 284, 287
KidIterator class, 285
KidList class, 286, 294
Kid objects, 284, 285
Kids class, 285

L
Label control, properties for, 36
Labels, 35, 40

Languages
applicability of, 270
and Interpreter pattern, 269
interpreting, 271–272

Language symbols, parsing into tokens, 271
LastFirst class, 101
Layout, in Decorator, 194
Layout managers, 27
Leaves, 179, 180, 185, 189
Left shift n places (<< n), 18
length property, for arrays, 87
Less than operator (<), 21
Less than or equal to operator (<=), 21
Licensing fees, and embedding of commercial

languages, 269
LineButton command Button class, 339–340
Line graphs, 338

plotting, 345
and Strategy pattern, 343

LineGraph strategy, 344
LinePlot class, 345
Line plots, making, 342
LinePlotStrategy class, 340, 341
LinePlot window, 341
List adapter, 158, 159

class adapter approach to, 165
ListboxChoice class, 134–135
ListBox class, 59, 76, 159, 169

KidList class derived from, 294
MyList derived from, 164–165
properties, 38

ListBox control
Items collection in, 135–136
plotting data with, 136

ListBoxes, 38, 58
List boxes

automatic language generation with, 281
food prices loaded into, 218
kidclub, 289

Listbox pattern, 9
ListBox type, 166

380 Index

6
7

6
7

6
7

6
7

ListBridge class, 171, 173
Listeners, 250
ListForm observer, 317
List interface, stocks with, 131
List observer, 317
ListObs window, 315
Lists, data moved between, 157–158
Logical AND operator (&&), 21
Logical Not operator (~), 21
Logical operators, 17, 18
Logical Or operator (__), 21
Looping, through arrays, 87
Looping statements, 24
Lowercase, C# syntax in, 11
Lower class, 60

M
Macro language, 269
Macro record button, 281
main function, 17
MainMenu control, 257

adding to window form, 39
Managed languages, and garbage collection,

30
Manager class, 360, 361
ManagerVisitor, 361
Math computation, factory patterns in,

103–105
Mathematica, 270
Mediator

and command buttons management,
321

and handling of mouse and paint events,
310

interaction between buttons and, 330
StateManager and, 326–328, 329

Mediator class, 294, 296–297, 306, 326
interactions between classes simplified

with, 293
Mediator object, interactions between

Command objects and, 198

Mediator pattern, 8, 239, 291–299, 311
consequences of, 298–299
example system, 291–292
and initialization of system, 297
interactions between controls, 292–293
looser coupling between classes with, 291
mediators and command objects, 297
program on the CD-ROM, 299
sample code, 294–297
simple program with two lists, two

buttons, and text field, 292
and single interface mediators, 299

Mediators, and “god class,” 298, 335
Memento class, 306, 321
Memento interface, and handling undo list,

331
Memento objects, 302, 307, 308
Memento pattern, 8, 239, 301–312,

327, 331
cautionary note about sample code with,

308–309
and command objects in user interface,

309–310
consequences of, 311
implementation, 302
motivation, 301–302
mouse and paint events handled

with, 310
program on the CD-ROM, 312
purpose of, 301
rectangles drawing pattern demo, 302,

303, 304
roles for objects defined by, 302
sample code, 302–309
UML diagram for drawing program with,

311
MenuBar, 257
MenuItem class, 257, 260
Menu items, 255, 256
Menus adding to form, 39
Metafile class, 235

Index 381

2

4

2
2
2
2
2
2
2
2
2
2

4
4
4

Methods, 43, 45
accessor, 45
ArrayList, 88, 89
Concrete, 347
with Garden object, 118
Hook, 347, 352
implementations of and interfaces, 76
for Items Collection, 39
for objects, 29
overriding in derived classes, 72–73
polymorphic, 72
replacing using new, 74
Template, 347
in Template class, 347
virtual, 347

MicroGold, 86
Microsoft Access, 202
Microsoft Excel, 313
Microsoft Office products, VBA in, 269
Microsoft SQL Server, 202
Microsoft Works, 202
Model-View-Controller framework,

3, 4
Modules, class, 45
Modulo operator (%), 18
Mouse, handling in C#, 230
Mouse click events, 323
MouseDown event, 162

and State object, 323, 324
Mouse drag events, 323
MouseEventHandler, 162, 193
MouseMove, 192, 230, 252
MouseUp event, 322
move method, 333
moveNext() method, 287
MultiChoice interface, 132

with Investment Tracker, 130
Multiple exceptions, 91–92
Multiple variables, declaring, 14
Multiplication operator (*), 18
MultVar class, 276

MultVar object, 280
MyList class, derived from ListBox class,

164–165

N
NameFactory, 102
Namer class, 100, 101
Namer Factory program, 102
Namer program, execution of, 103
Namespaces, 30–31, 68–70
Narrower data types, and wider data types,

13
.NET

composites in, 189
Visual control, 176

Netscape Navigator, 191
new keyword, methods replaced using, 74
Newline (line feed) character (\n), 15
new operator, 97
New Project selection window, 31
nextToken method, 52
nextTop method, 271
NoCmd Chain element, 246
NoCmd class, 248
Node object class, 189
Nodes, 179, 180, 185, 189
NonTerminal Expression, 280
NonTerminalExpression object, in Interpreter

pattern, 277
Nonvisual decorators, 197
Normal form, 200
Notification messages, and Observer pattern,

318
NOT operation, 17
Null character (\0), 15
Null exceptions, 94
null reserved word, 14
Numbers, converting between strings and,

13–14
Numerical types, conversion from, 29
Numeric constants, 14

382 Index

6
7

6
7

6
7

6
7

O
Object adapters, 157

class adapters versus, 166
Object Database Connectivity, 202–203
Object-oriented approaches, notes on,

7–8
Object-oriented languages, and

signatures, 71
Object-oriented programming, 1, 8

and design patterns, 4
difference between procedural

programming and, 53
factory concept in, 107
template patterns in, 352

Object patterns, class patterns versus, 155
Objects, 1, 43

in C#, 29
and Chain of Responsibility pattern, 242
classes as, 53–54
composition of, 8, 157
and creational patterns, 97
interaction between, 5
saving state of, 302
used in parsing, 272–276

Objects class, 31
object type, objects fetched from ArrayList

and, 88
Observer interface, 315
Observer pattern, 239, 242, 299, 313–319

candidate for, 317
consequences of, 318–319
data displayed as list and in graphical

mode, 313
and message to the media, 318
program on the CD-ROM, 319
simple control panel to create red, green,

or blue “data,” 314
UML diagram of observer interface

and subject interface implementation
of, 317

and watching colors change, 314–317

Observers
notification messages sent to, 318
and Observer pattern, 314
update methods to, 319
in watching colors change program, 315,

316, 317
ODBC. See Object Database Connectivity
OleDbAdapter, 220
OleDbCommandBuilder, 220
OleDbCommand class, 203
OleDbCommand object, 205
OleDbConnection, 220
OleDbConnection object, 203
OleDbDataAdapter, 203
One’s complement (~), 18
OneSexSwimData class, displaying with one

sex on the right, 148
OpenCommand class, 261
OpenForRead statement, 95
OpenForWrite() method, 96
OpenForWrite statement, 95
OpenMenu class, 257
open method, 204
Operator overloading, 27, 62
Oracle, 202
Ordering components, and Composite

pattern, 189
Organizational chart, typical, 180
Origin, 270
Originator class, 311
Originator object, and Memento pattern, 302
OR operation, 17
Output, 270
Overloading, 71–72, 80
override keyword, 72

P
Paint Event, selecting for PictureBox window,

67
PaintEventArgs object, 67
PaintEventHandler, 194

Index 383

2

4

2
2
2
2
2
2
2
2
2
2

4
4
4

Paint event handler, 69, 78
Paint events, 66, 118, 193, 310

and Decorator interface, 192
handling in C#, 230
in watching colors change program, 315

Paint handler, 266
Paint method, 194, 342
Paint routine, bar plot drawn in, 341
Panels, 131, 134, 136, 192
Parentheses ()

around conditions, 19
data type names enclosed in, 13
and switch statement, 22

Parsed stacks, reducing, 276–277
ParseObject class, 272
ParseObjects, 281
Parser class, 274–275, 277, 280
ParseVar class, 275
ParseVar object, 273
ParseVerb class, 275
ParseVerb object, 273
Parsing, 49

interaction of classes performing, 278
objects used in, 272–276

Parsing hierarchy, for Interpreter pattern, 273
Pascal, 19
Pattern groupings, 311
Pattern Hatching (Vlissides), 361
“Pattern mining,” 6
Peek method, 95
Pen object, 67, 77
Pens, and Paint method, 194
PerennialGarden class, 117
Person, instances of in Company, 84
Person class, 81

derived from Address class, 129
and inheritance, 82–83
with private, protected, and public

variables, and methods, 82
UML diagram for with/without method

types, 82

pic_Paint event handler, 347
picPaint handler, 230
PictureBox

control, 316
inserting on a Form, 66

Picturebox level, mouse motion checked at,
229

PictureBox window, Paint Event selected for,
67

Pie charts, 338
Placeholder classes, and template classes, 352
Plant object, 116
Plot click method, 136
PlotPanel class, 347
Plots, drawing in C#, 341
PlotStrategy class, 344

instances of, 338
PlotWindow class, 345
Pluggable adapters, 166
Plus sign (+), to combine strings, 17
Pointers, 26, 62
Polymorphic methods, 72
pop method, 271
Positioner class, 227
Prefix characters, and numeric constants, 14
Prefixes, 58
PrelimEvent class, 108, 109, 110, 112
Price class, 208, 213, 218
PriceKey, Price table with, 207
Price query, building, 207–208
Price table, 207, 218

building, 215–218
in Grocery Database, 216

PRINT, 273
Print object, 273
PrintSpooler class, writing skeleton of, 125
Private methods, 48, 53, 63, 71
Privileged access

and Iterator pattern, 290
and Memento pattern, 301

Process button, 60

384 Index

6
7

6
7

6
7

6
7

Product class, 170
ProductList class, 173
Product objects, 173, 174, 175
ProductTable class, 173
ProductTable version, of VisList, 172
Programming, object-oriented, 1
Programming style, in C#, 58
Programs

on CD-ROM, 41, 63, 80, 106, 113, 121,
127, 139, 154, 167, 177, 190, 198, 221,
232, 237, 253, 268, 282, 299, 312, 319,
336, 344, 352, 363

interpreters introduced into, 281
Mediator and changes in behavior of, 298
Seeding, 111–112
simple C#, 16–17
simplest Window, in C#, 32–34
simple temperature conversion, 43–45
triangle drawing, 350–351
undoable, 264
watching colors change, 314–317
Windows Controls, 40–41

Properties, classes and, 56–58
Properties window, 66

MouseMove event selected from, 231
Property methods, 56, 58, 63
protected keyword, 71
Protected methods, 71
Protected variables, 71
Prototype, re-sort of left list box shown with,

146
Prototype managers, 152–153
Prototype pattern, 98, 141–154, 154

and cloning in C#, 142
and cloning the class, 146–147
consequences of, 153
and prototype managers, 152–153
using, 142–145, 147–152

Prototype program
simple, 145
sorted results of, 145

Prototype Registry, 153
Proxy image display, with image load

shown, 236
Proxy pattern, 155, 233–238

comparison with related patterns, 237
copy-on-write, 232, 237
program on the CD-ROM, 237
proxies in C#, 236
sample code, 234–236
use of, 233–234

Public methods, 48, 53, 63, 71
push method, 271

Q
Queries, executing in ADO.Net, 205
Queue object, 90
Queuing of commands, 257
QuickImage class, 235
Quit key, 248
Quotes ('), characters enclosed in, 14

R
Radio button events, handling, 119
Radio buttons (or option buttons),

37, 281
Reading

opening file for, 96
text files, 93

readLine method, 96
Recognition, and learning design

patterns, 6
Rectangle

drawing in PictureBox on form, 66
square created from, 69–71

Rectangle button, 302, 307, 321
Rectangle class, 68, 77, 229, 306

DoubleRect class derived from, 72, 73
instance of, 69
Square class derived from, 69–70, 71

Rectangle drawing program, 69
Rectangle state object, 324

Index 385

2

4

2
2
2
2
2
2
2
2
2
2

4
4
4

RectButton
command class, 310
Command objects for, 309

Rect button, behavior of, 323
rects property, 333
RectState object, 324
Red button, 260
RedButton class, 257
RedCommand Class, 265, 267
RedCommand object, 260, 265
Red menu item, 260
Red radio button, in watching colors change

program, 314
References, to arrays, 88
Refined abstraction, in Bridge pattern, 169
Refresh method, 119, 192
registerInterest method, 314
Registry

of Prototype classes, 153
and Singleton instantiation, 126

Relational database, 270
remove method, 183, 188, 308
repaint method, 347
Report Generators, 270–271
Responsibilities, Decorator pattern and, 198
restore method, 308, 332
Right shift n places (>>n), 18
Rows, 199

adding to database tables using ADO.Net,
206–207

editing or deleting, 207
Row selection, detecting, 162
Rumbaugh, James, 81

S
Salaries computation, 180–181
SalaryType column, data in, 200
Scope, 16, 25
Scott, K., 81
Second normal form (2NF), tables in, 200

Seeding class, 108
Seeding diagram, Seeding interface and

derived classes in, 109
Select button, 321, 323
select case statements, 321
SelectedIndex property, 162
Selected instance, of Folder, 228, 229
SelectIndexChanged event, 295
Select method, and Mediator, 295
selectOne method, added to State interface,

324
Select statement, 204, 205
Select tests, 322
Self-promotion, and Composite pattern,

186–187
Semicolon (;)

C# statements terminating with, 11
at end of declaring draw method as

abstract, 77
statements terminating with, 17

Sender class, 248
sendNotify event, 315, 316
sendToChain method, 244, 248
Sequential operations, languages and

specifying order of, 281
setBounds method, 341
setFill method, 333
setPenColor method, 344
setPlotBounds(), 341
Set property, and Rectangle class, 306
setSelected method, 333
setText method, 295
SexSwimData class, 148, 149, 151
Shallow copy, 147
Shape class, 77, 79
Shape objects, 78
Sharable objects, 231–232
Signatures, 71, 76
Simonyi, Charles, 58
SimpleComposite example, 188–189

386 Index

6
7

6
7

6
7

6
7

Simple Factory pattern, 97, 99
building, 101–103
sample code, 100
two derived classes, 100–101
workings of, 99–100

SimpleHello form, after clicking Say Hello
button, 33

Single interface Mediators, 299
Single quote (\'), 15
SingletonException:Exception class, 124
Singleton pattern, 8, 9, 98, 123–127, 154

consequences of, 126
and creating instance of the class, 125–126
and creating singleton using static method,

123–124
exceptions and instances, 124
global point of access provided to

singletons, 126
and throwing the exception, 125

SlashDecorator, CoolButton decorated with,
196

Smalltalk, 7, 284, 302
Model-View-Controller framework for, 3

Smalltalk Companion. See Design Patterns
Smalltalk Companion

SORT, 273
SortBridge class, 173

sorted list generated using, 175
SortedList class, 89–90
Sort object, 273
Special characters, representations of, 15
Split method, of String class, 51
Spooler class, 123, 124
SQL. See Structured Query Language
SQL query, and ADO.NET Façade, 209, 211
SQL-92 standard, 202
Square, creating from rectangle, 69–71
Square class, deriving from Rectangle class,

69–70, 71
Stack class, 271

Stack object, 90
Stack reduction, and syntax tree, 278
Stacks, 271

ParseObject pushed onto, 272
reducing during parsing, 276

State, of graphical editor, 321
State interface, selectOne method added to,

324
StateManager, 326–328

and the Mediator, 329
StateManager class, 323

current state tracked by, 324
and switches between states, 325–326

State object, mouse activities handled by,
323, 324

State pattern, 8, 239, 309, 321–336
consequences of, 335–336
Fill state handled with, 330–331
and Mediator interaction with State

Manager, 326–329
Mediators and “god class,” 335
program on the CD-ROM, 336
sample code, 321–325
simple drawing program illustrating, 322
and state transitions, 336
and Strategy pattern, 337
and switching between states, 325–326
undo list handled with, 331–333
using, 321
VisRectangle and VisCircle classes,

333–335
State transitions, and State pattern, 336
Static methods

in File object, 92
and global point of access, 126
singleton created with, 123–124

Static variable, 123
StockFactory class, 132–133
Stocks, with list interface, 131
Stocks:Equities class, 132

Index 387

2

4

2
2
2
2
2
2
2
2
2
2

4
4
4

Store class, derived from DBTable, 213
StoreFoodPrice objects, and Prices class, 215
StoreKey, Stores table with, 207
StoreName, Stores table with, 207
Stores table, 207, 214, 218
Straight seeding

of 500 free, 112
of swimmers, 107

StraightSeeding class, 110, 111
StraightSeeding subclass, 108, 109
Strategy pattern, 239, 337–344, 345

consequences of, 344
and Context class, 339
and drawing plots in C#, 341–342
line and bar graph strategies, 340
motivation, 337–338
program commands, 339–340
program on the CD-ROM, 344
sample code, 338
simple panel to call different plots, 340
UML diagram of, 343

StreamReader object, 93
StreamWriter object, 93
String class, Split method of, 51
string object, 31
Strings, 13–14, 27
StringTokenizer class, 51–52, 55, 56, 71–72,

142, 271, 274
struct types, 26
Structural patterns, 6, 97, 155–237

Adapter, 157–167
Bridge, 169–177
Composite, 179–190
Decorator, 191–198
Façade, 199–221
Flyweight, 223–232
Proxy, 233–237
summary of, 237

Structural programs, summary of, 237–238
Structured Query Language, 202, 270
Subclasses, 107, 129, 232

and Abstract Factory pattern, 120
of DrawObject, 353
of InterpChain, 280
and interpret operation, 279
and Prototype pattern, 148, 152, 153
and Singleton, 126
and Template pattern, 345
and visitor classes, 360

Subject, and Observer pattern, 314
Subject interface, 314
Subjects, observers and abstract coupling to,

318
Subordinates, ArrayList, 188
subordinates method, 182
Subsystems, and Façade pattern, 199, 220
Subtraction operator (-), 18
Suffix characters, and numeric constants, 14
Superclasses, 107
SwimData class, 143, 146, 148

UML diagram for, 152
SwimInfo class, 151
Swimmer class, 53, 54, 55, 56–58, 109, 142
Swimmer object, 157, 159
Swimmers, straight seeding of, 107
SwimmerTimes display program, revised

version of, 56
switch statement, 22, 27
Sybase, 202
Symbols, in UML diagrams, 82
Syntax tree, and parsing of stack, 278–280
System.Collections namespace, 88
System.Drawing namespace, 68, 229
System namespaces, 17, 31, 68

T
Tab character (\t), 15
Tables, 199, 203, 231

classes for in Façade pattern, 213–215
deleting contents of, in ADO.Net,

205–206
employee names and salary type, 200

388 Index

6
7

6
7

6
7

6
7

Temperature class
building, 45–47
decisions put into, 47–48

Temperature conversion program, simple,
43–45

Template class, methods in, 347
Template Method pattern, 239, 345–352

consequences of, 352
kinds of methods in Template class, 347
motivation, 345–347
programs on the CD-ROM, 352
sample code, 347–350
templates and callbacks and, 351–352
Triangle drawing program, 350–351

Template methods, 347
Template pattern

and abstract Triangle class, 348
using, 345

Templates, 345
temp variable, 47
TerminalExpression, 280
TerminalExpression object, in Interpreter

pattern, 277
Ternary operator, 23
Testing, for end of file, 94–95
Text, and changes in label, 40
TextBox class, 33, 36, 74
TextBox control, 74

and new derived HiTextBox control, 75
TextBoxes, 189
TextBox properties, 37
Text comments, in UML diagrams, 85
Text data, and different line-breaking

strategies, 338
Text files

reading, 93
writing, 93–94

Text property, 36
Third normal form (3NF), tables in, 200, 201
Third-party products, VBA embedded in, 269
Throwing exceptions, 92

throws keyword, 27
Throw statement, 92
TimedFinalEvent class, 108, 109, 110, 112
Time entry interface, with parsing of symbols

for Scratch, Disqualification, and No
Time, 50

TimerCallback class, 234
timerCall method, 234
Timer class, 234
Times class, 55

simple parsing program using, 49
TimeSwimData class, 151
Tokenizer class, 51–52
Tokenizer demo, 53
Tokens

parsing language symbols into, 271
strings separated into, 51

ToolbarButtons, in C#, 309
Toolbars, 40, 189
Toolbox

new control shown on, 74
TextBox selected from, 33

ToolTips, 39, 40
top method, 271
ToString method, 132, 135
TPaint method, 351
Tree adapter, 166
TreeAdapter class, 163, 175
TreeDemo program, 164
TreeList class, 40, 175
Tree list component, and Bridge, 176
Tree list display, of composite with display of

parent nodes, 188
TreeView, 163–164, 189
TreeView control, corporate organization

shown in, 186
TreeView list, 185
TreeView pattern, 9
Triangle class, 347, 350

draw code in, 351
three subclasses of, 348

Index 389

2

4

2
2
2
2
2
2
2
2
2
2

4
4
4

Triangle drawing program, 350–351
TriangleForm class, 350
Triangles

drawing, 349–350, 351
drawing isosceles, 349–350, 351
drawing standard, 349, 351

TrigButterfly class, 105
true reserved word, 14, 17
try block, 125, 205

and exceptions, 90
file manipulation code enclosed in, 94

Two-way adapters, 166
Type checking, and registry approach, 126

U
UML. See Unified Modeling Language
UML diagrams, 1, 81–86

and annotation, 85–86
for Bridge pattern, 173
of Chain of Responsibility program class

structure, 247
of CommandHolder approach, 262
and composition, 84–85
for Decorators, 197
for drawing program using Memento, 311
and inheritance, 82–83
of inheritance relationships in Builder

pattern, 138
and interfaces, 84
of observer interface and subject interface

implementation of Observer pattern,
317

showing Employee derived from Person,
83

of Strategy pattern, 343
for various SwimData classes, 152
WithClass, 86

UndoButton, 302
Command objects for, 309
and rectangles drawing program with

Memento, 302, 304

Undo command demo
program drawing red and blue lines,

263
program drawing red and blue lines after

Undo button clicked, 264
UndoCommand object, 265
Undo commands, 301
Undo function, with Command patterns,

262–267
unDo list

and Caretaker class, 307, 308
handling, 331–333

unDo method, 265
Undo program, classes implementing in

Command pattern implementation,
267

Undo requests, 257
Unicode, 12
Unified Modeling Language, 81
Unreasonable values, handling, 51
Unsafe blocks, 26
Unsafe mode, 27
Unsafe sections of C# code, pointers used

within, 62
Unselected instance, of Folder, 228, 229
User commands, command interpreter for

parsing, 270
User interfaces, command objects in,

309–310
using statement, 16

V
Vacation data

for bosses, 359
for employees, 356–359

Vacations button, 359
VacationVisitor class, 356
Value conversion, classes used for,

48–51
value keyword, 56
Value method, 289

390 Index

6
7

6
7

6
7

6
7

Variables, 11, 15–16
declaring as public, private, and protected,

71
declaring as they are used, 15–16
delegate, 59
protected, 71
static, 123

VAR type, 273
VarVarParse class, 280
VBA. See Visual Basic for Applications
VB.NET

and C#, 29
as managed language, 30

VB7, 30
VeggieGarden class, 116
VERB type, 273
Video data capture, and compression

schemes, 338
View, 4
virtual keyword, 72
Virtual methods, 347
VisCircle class, 333, 335
Visiting, meaning of, 354
visit method, 354, 358, 360
Visitor class, 354, 358, 360

triangle classes visited by, 354
Visitor object, 355
Visitor pattern, 239, 353–363

and Boss visits, 359
catch-all operations with visitors,

360–361
consequences of, 362
and double dispatching, 361
motivation, 353–355
program on the CD-ROM, 363
sample code, 355–356
times to use, 355
traversing series of classes and, 362
using, 353
vacation visits demo, 360
visit and accept methods interactions, 354

visiting several classes, 357–358
visiting the classes, 357

Visitors, catch-all operations with, 360–361
VisList interface, 173, 175, 176
VisList variable, 171
VisRectangle class, 304, 305–306, 333–335

Drawing interface implemented by, 333
VisCircle inheriting from, 333, 335

VisRectangle instance, 306
Visual Basic, 19

C# roots in, 29
major differences between C# and, 11

Visual Basic Design Patterns: VB6 and
VB.NET, 4

Visual Basic for Applications, 269
Visual Basic.NET, 11
Visual command interpreter program sample,

Chain of Responsibility pattern, 243
Visual controls, interactions between,

292–293
Visual Studio IDE, and mouse move event

handler, 230
Visual Studio.NET, 20, 31, 32, 86, 203

decorating inner class in, 197
grid table with, 160
Integrated Development Environment, 65
namespaces, 68
screen from, showing properties interface,

176, 177
visual builder in, 44

Vlissides, J., 361

W
WealthBuilder class, 135
WealthBuilder program, with list of equities,

list box, check
boxes, and plot panel, 137

Web sites, for learning design patterns, 7
While loop, 24
White space characters, 14

representations of, 15

Index 391

2

4

2
2
2
2
2
2
2
2
2
2

4
4
4

Wider data types, and narrower data types,
13

Windows
and data display, 313
and ODBC, 203

Windows controls, 35–40, 80
Buttons, 37
CheckBox, 36–37
Items collection, 38–39
labels, 35
ListBoxes and ComboBoxes, 38
menus, 39
overriding, 74–75
radio buttons, 37
selection of basic, 35
TextBox, 36
ToolTips, 39–40

Windows Controls program, 40–41
Windows Designer, 74

in Visual Studio.NET, 32

Windows Form class, 35
Windows Form Designer, 230
Windows.Forms library, 33
WithClass UML diagrams, 86
writeLine function, 17
writeLine method, 96
Writing text files, 93–94
Writing Windows C# programs, 29–41

building a C# application, 31–32
classes and namespaces in C#, 30–31
managed languages and garbage collection,

30
objects in C#, 29
simplest Window program in C#, 32–34
Windows controls, 35–40
Windows controls program, 40–41

X
XFactory class, 100
XML, and ADO.NET, 203

392 Index

6
7

6
7

6
7

6
7

	Contents
	Preface
	Chapter 3 Writing Windows C# Programs
	Objects in C#
	Managed Languages and Garbage Collection
	Classes and Namespaces in C#
	Building a C# Application
	The Simplest Window Program in C#
	Windows Controls
	The Windows Controls Program
	Summary
	Programs on the CD-ROM

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

